Supplemental Information

Osh Proteins Control Nanoscale Lipid Organization

Necessary for PI(4,5)P₂ Synthesis

Taki Nishimura, Michael Gecht, Roberto Covino, Gerhard Hummer, Michal A. Surma, Christian Klose, Hiroyuki Arai, Nozomu Kono, and Christopher J. Stefan

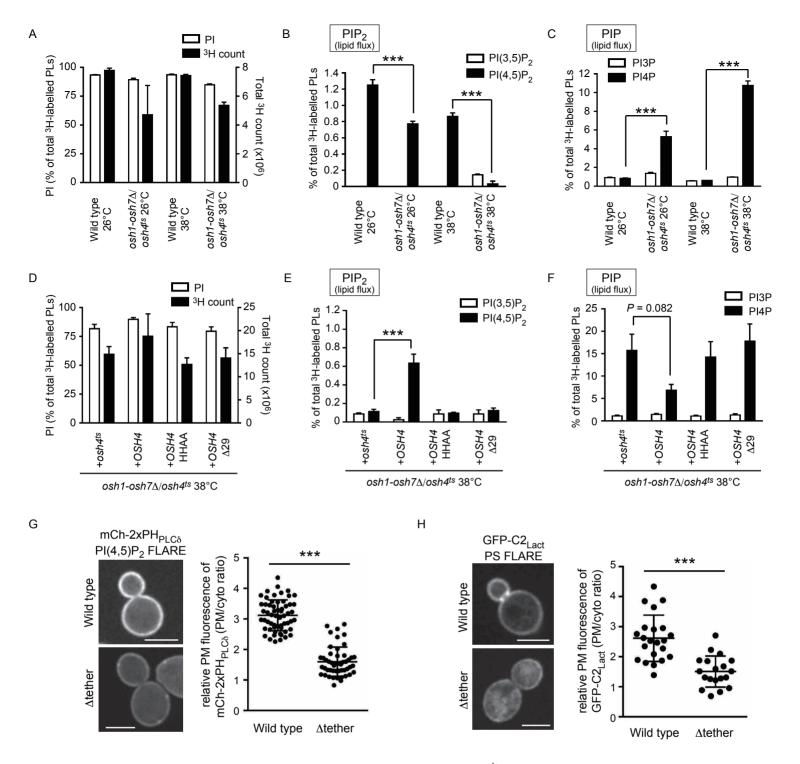


Figure S1. Reduction of PI(4,5)P₂ and PS levels at the PM of $osh1-7\triangle/osh4^{ts}$ and \triangle tether mutants, related to Figure 1 and the Supplemental Data Set

(A-C) Measurements of phosphatidylinositol (PI) and phosphoinositide lipid metabolism by $^3\text{H-inositol}$ labeling and HPLC analysis of wild type and $osh1-7\Delta/osh4^{ts}$ cells cultured at 26°C or 38°C for 1 h. Data represent mean \pm SEM (n = 3). (D-F) Measurements of phosphatidylinositol (PI) and phosphoinositide lipid metabolism by $^3\text{H-inositol}$ labeling and HPLC analysis of $osh1-7\Delta/osh4^{ts}$ cells expressing wild type or mutant forms of Osh4 cultured at 38°C for 1 h. Data represent mean \pm SEM (n = 3). (G, H) PI(4,5)P₂ (mCherry-2xPH_{PLC δ}) and PS (GFP-C2_{Lact}) FLARE localization in wild type and Δ tether cells. Data represent mean \pm SD; (G) n \geq 50 cells, (H) n \geq 19 cells. Scale bars, 4 µm. ***P < 0.001.

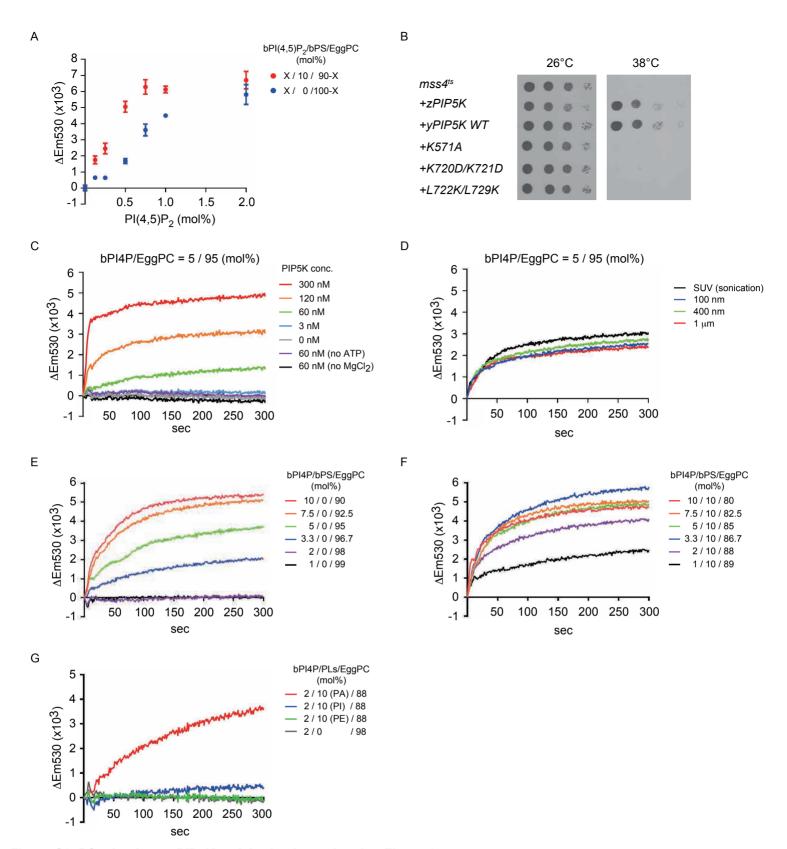


Figure S2. PS stimulates zPIP5K activity in vitro, related to Figure 2

(A) Changes in NBD-PH_{PLC δ} fluorescence intensity in response to PI(4,5)P₂ levels on liposomes. Liposomes were incubated with 400 nM NBD-PH_{PLC δ} for 5 min and NBD fluorescence was recorded by fluorescence spectroscopy. Data represent mean \pm SEM (n=3). (B) Growth assay of $mss4^{ts}$ mutant cells. A zebrafish PIP5K catalytic domain (zPIP5K), a full-length yPIP5K wild-type (yPIP5K WT), a kinase dead mutant (K571A), a negatively charged mutant (K720D/K721D), an amphipathic property mutant (L722K/L729K) or empty pRS416 plasmid was expressed in $mss4^{ts}$ mutant cells as indicated. Serial dilutions of the cells were grown on –Ura plates to retain the plasmids at either 26°C or 38°C for 4 days. (C) Increase of NBD-PH_{PLC δ} fluorescence intensity reflects PI(4,5)P₂ generation by the PIP 5-kinase (PIP5K) reaction. Real-time PIP5K assays were performed as described in the STAR Methods. Note that zPIP5K activity was undetectable in the absence of zPIP5K, ATP, and MgCl₂. Data represent mean values (n=3; SEM<0.36x10³). (D) zPIP5K showed minimal sensitivity to differences in size of liposomes containing 5 mol% bPI4P. The indicated sizes of liposomes were obtained by extrusion. Small unilamellar vesicles (SUV) were prepared by sonication. Data represent mean values (n≥3; SEM<0.44x10³). (E, F) PIP5K activity against liposomes containing different concentrations of brain PI4P. Liposomes containing 0 mol% bPS (E) or 10 mol% bPS (F) were analyzed. (E, F) Data represent mean values (n≥3; SEM<1.07x10³). (G) The effect of phosphatidic acid (PA), phosphatidylinositol (PI) and phosphatidylethanolamine (PE) on PIP5K activity in a real-time PIP5K assay. Data represent mean values (n=3; SEM<0.64x10³).

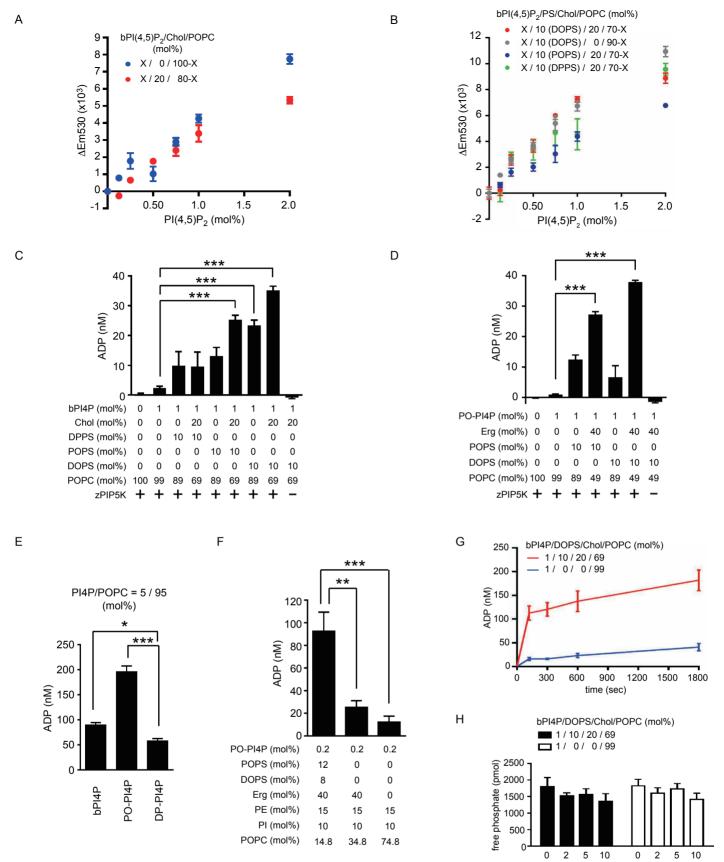
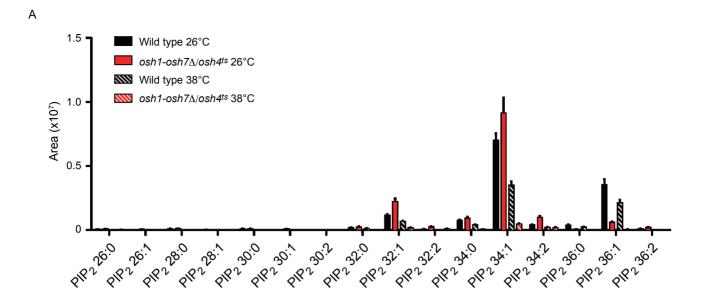
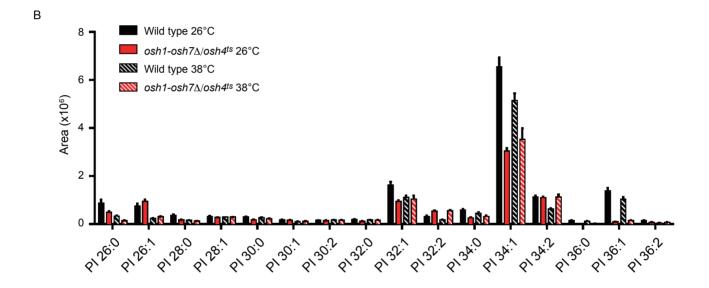


Figure S3. Sterols stimulate zPIP5K activity *in vitro*, related to Figure 3

(A) Effects of cholesterol on PI(4,5)P₂-dose dependency of NBD-PH_{PLC δ} fluorescence intensity. Data represent mean \pm SEM (n=3).

(B) Calibration of effects by PS and cholesterol on NBD-PH_{PLC δ} sensitivity to PI(4,5)P₂. Data represent mean \pm SEM (n=3).


(C) Stimulation of PIP5K activity by phosphatidylserine (PS) and cholesterol. Liposomes containing the indicated PS species and/or cholesterol were used as a substrate. After 3 min, the PIP5K reactions were stopped with ADP-Glo reagent. Data represent mean \pm SEM (n = 3).


(D) Unsaturated PS and ergosterol (Erg) stimulate PIP5K activity. Liposomes containing various PS species and/or ergosterol as indicated were used as a substrate. After 3 min, the PIP5K reactions were stopped with ADP-Glo reagent. Data represent mean \pm SEM (n = 3).

(E) The effect of PI4P unsaturation on zPIP5K activity. After 2 min, the PIP5K reactions were stopped with ADP-Glo reagent. Data represent mean \pm SEM (n = 3). (F) ADP-Glo assay using PIP5K and liposomes resembling yeast PM lipid composition (Zinser et al., 1991) or in the absence of PS and ergosterol as indicated. After 2 min, the PIP5K reactions were stopped with ADP-Glo reagent. Data represent mean \pm SEM (n = 3). (G) A time course analysis of PIP5K activity using the ADP-Glo assay. PIP5K (final conc. 130 nM) was used. Note that

ADP levels rise suddenly after 120 sec in the presence of DOPS and cholesterol. Data represent mean ± SEM (n=3). (H) Free phosphate levels during the indicated PIP5K reactions were monitored over time by the Malachite Green Phosphate assay. Data represent mean ± SEM (n=3).

*P < 0.05, **P < 0.01, ***P < 0.001.

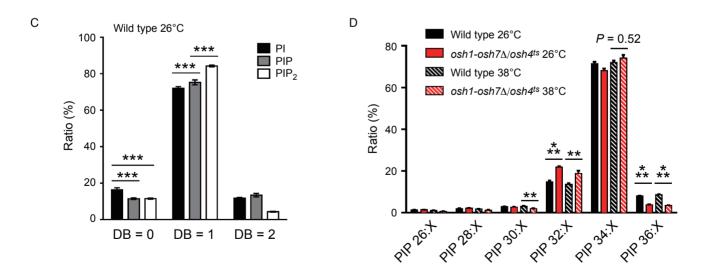


Figure S4 The fatty acid compositions of PI, PIP and PIP₂ in wild type and $osh1-7\Delta/osh4^{ts}$ mutant cells, related to Figure 4 Analysis of PI, PIP, and PIP₂ levels in wild-type and $osh1-7\Delta/osh4^{ts}$ cells cultured at 26°C or 38°C for 2 h by quantitative lipidomics was performed as described in the STAR Methods. (A, B) Fatty acid compositions of PIP₂ and PI. (C) Mono-unsaturated PIP₂ species are enriched in wild-type cells. (D) Fatty acid length of PIP species. (A-D) Data represent mean \pm SEM (n = 5). **P < 0.01, ***P < 0.001.

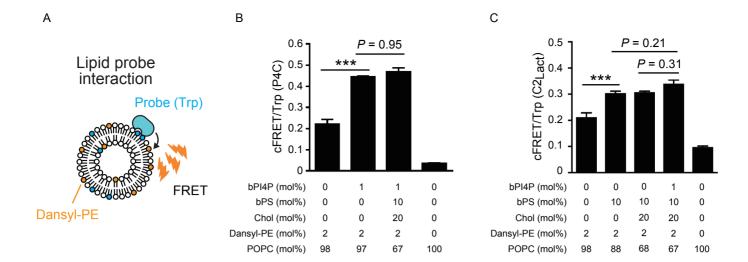


Figure S5. Quantitative measurements of lipid probe binding in the presence of unsaturated PS, PI4P, and cholesterol, related to Figure 5

(A) Membrane binding assay using Dansyl-PE liposomes. FRET signals increase by the proximity of dansyl-PE in the liposome to tryptophan residues in lipid probes. Corrected FRET (cFRET) was calculated as described in STAR Methods.

(B) Quantification of the PI4P probe (P4C) binding to dansyl-PE liposomes of defined compositions. (C) Quantification of PS probe (C2_{Lact}) binding to dansyl-PE liposomes as indicated. Data represent the mean \pm SEM (n=3). ***P < 0.001.

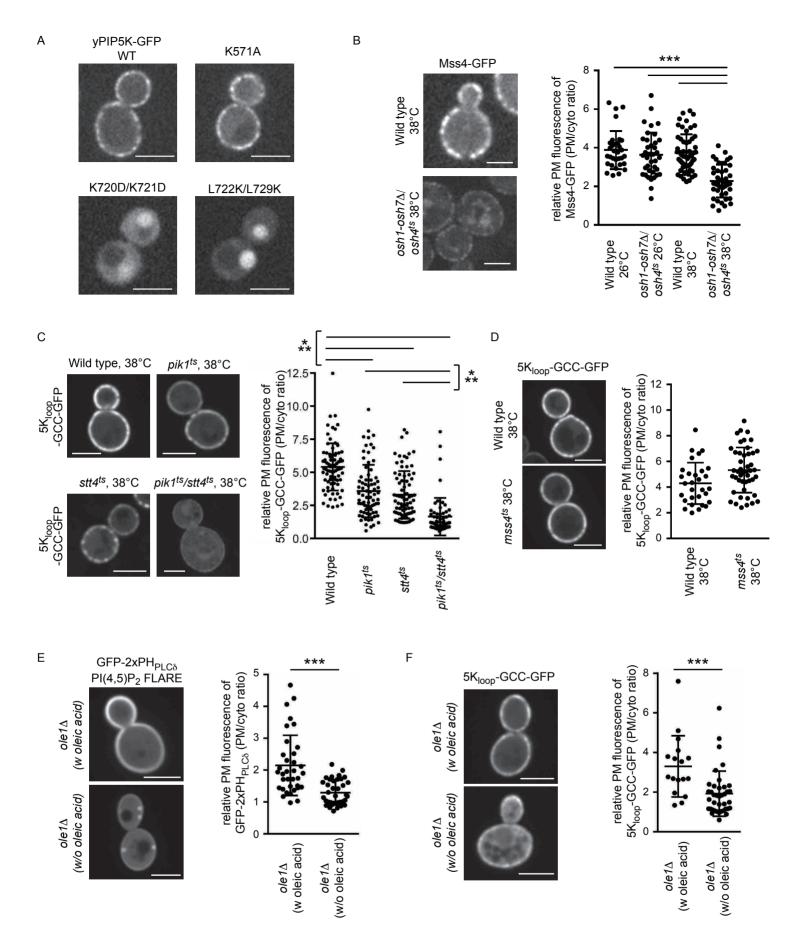


Figure S6. Unsaturated PI4P and PS co-distribution in the PM is recognized by the specificity loop of PIP5K, related to Figure 6

(A) Localization of GFP-tagged wild type and mutant yeast PIP5K Mss4 proteins (yPIP5K-GFP) in $mss4^{ts}$ mutant cultured at 26°C. (B) Mss4-GFP localization in wild type and $osh1-7\Delta/osh4^{ts}$ cells cultured at 38°C for 2 h (left panels). Quantification of Mss4-GFP localization (PM/cyto ratio) in wild type and $osh1-7\Delta/osh4^{ts}$ cells cultured at 26°C or 38°C for 2 h (right panel). Data represent mean \pm SD ($n \ge 32$ cells). (C) Localization of $5K_{loop}$ -GCC-GFP in wild-type, $pik1^{ts}$, $stt4^{ts}$ and $pik1^{ts}/stt4^{ts}$ mutants cultured at 38°C for 1 h. (left panels). Quantification of $5K_{loop}$ -GCC-GFP signals in the PM of wild-type, $pik1^{ts}$, $stt4^{ts}$ and $pik1^{ts}/stt4^{ts}$ mutants. Data represent mean \pm SD ($n \ge 61$ cells). (D) Quantitative analysis of $5K_{loop}$ -GCC-GFP PM localization in wild type and $mss4^{ts}$ mutant cells cultured at 38°C for 1 h. Data represent mean \pm SD ($n \ge 30$ cells). (E) Quantitative localization of $5K_{loop}$ -GCC-GFP in $ole1\Delta$ mutant cells cultured with or without 1 mM oleic acid for 20 h. Data represent mean \pm SD ($n \ge 17$ cells). Scale bars, 4 μ m. ***P < 0.001.

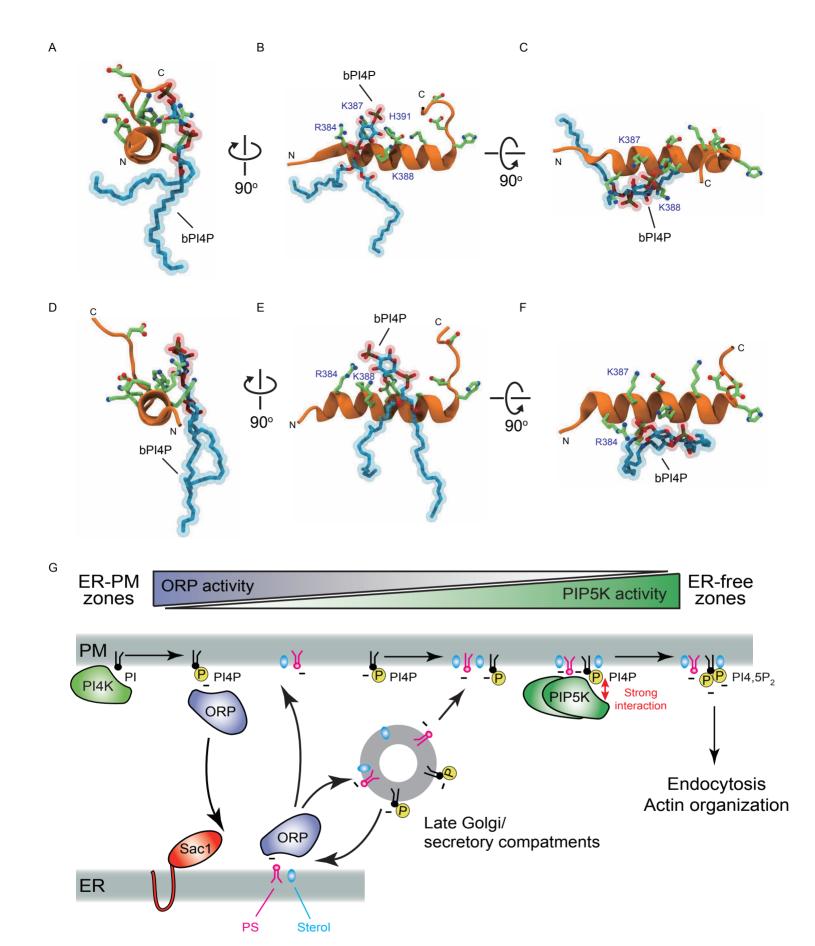


Figure S7. Speculative model for PIP5K stimulation by Osh-dependent lipid exchange, related to Figure 7 (A-F) The 5K_{loop} is visualized as a ribbon (orange), acidic and basic residues as green sticks, colored the same as in Fig 7H-J. (A-C) The bPI4P molecule is located at pocket #1 (Fig. 7G) and interacts with four residues of the 5K_{loop}: R384, K387, K388, and H391. (D-F) The bPI4P molecule is located at pocket #2 (Fig. 7G) and interacts with R384 and K388. (G) Speculative model for spatial and temporal PIP5K regulation by Osh-dependent lipid transfer. PM-localized PI4KIII\(\alpha\) synthesizes PI4P at the PM. As PI4P alone may not be sufficient for PIP5K activity, PI4P is used for Osh-dependent lipid exchange at ER-PM zones to facilitate PS and sterol transport from the ER to the PM. Once PS and sterol lipids reach sufficient levels, PI4P utilization switches from PI4P exchange by the Osh/Sac1 system to PI(4,5)P₂ synthesis by PIP5K. In addition, PI4P generated by Golgi-localized PI4K isoforms may be used for Osh-mediated PS and sterol transport to late Golgi/secretory compartments. These PS and sterol molecules are then delivered to the PM via vesicular transport for subsequent PIP5K activity. PI(4,5)P₂ synthesized by PIP5K controls global PM organization and dynamic events including endocytosis and actin organization in ER-free PM zones.