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Abstract: Simulating Many Accelerated Strongly-interacting Hadrons (SMASH) is a new hadronic
transport approach designed to describe the non-equilibrium evolution of heavy-ion collisions.
The production of strange particles in such systems is enhanced compared to elementary reactions
(Blume and Markert 2011), providing an interesting signal to study. Two different strangeness
production mechanisms are discussed: one based on resonances and another using forced canonical
thermalization. Comparisons to experimental data from elementary collisions are shown.
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1. Introduction

Relativistic heavy-ion collisions provide a unique opportunity to study matter under extreme
conditions. These experiments allow the creation of high temperatures similar to the universe during
the first few microseconds after the Big Bang, yielding insights into the equation of state of nuclear
matter, which is crucial for understanding the high-density physics of neutron stars.

Nuclear matter exclusively consists of up and down quarks, therefore, the newly produced strange
quarks during heavy-ion collisions are a particularly interesting probe for studying the evolution of
the reaction, see [1] for a recent overview. Strangeness enhancement in heavy-ion reactions compared
to elementary proton-proton collisions has been observed some time ago [2]. The High-Acceptance
Di-Electron Spectrometer (HADES) collaboration measured surprisingly high multiplicities of φ and
Ξ hadrons in heavy-ion collisions below the production threshold [3,4]. In the intermediate energy
range between the threshold and

√
s = 10A GeV, the multiplicities of multi-strange particles are still

unknown and of high interest to understand this effect.
Overall, there are still a lot of open questions about how strangeness is produced: what role do

kaon-nucleon potentials play; how strongly are cross sections affected by the medium; and what are
the production mechanisms in and out of equilibrium?

In the following, we focus on heavy-ion reactions at Schwerionen-Synchrotron (SIS) energies
(Ekin = 0.5− 3.5 GeV) and explore how the hadronic transport approach, Simulating Many Accelerated
Strongly-interacting Hadrons (SMASH) [5], models strangeness production out of equilibrium via
resonances and in equilibrium via forced thermalization. The aim is to provide a baseline founded
on vacuum properties and low-energy physics that can be extended to higher energies and larger
systems. Comparisons to elementary cross sections and dilepton measured in experiments are shown,
verifying that the resonance approach successfully describes such vacuum properties and providing the
foundations for studying the questions raised above within this approach.
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2. Model Description

The results presented here are obtained from simulations using SMASH, a microscopic transport
approach that solves the relativistic Boltzmann equation

pµ∂µ fi(x, p) = Ccoll( fi) (1)

using the test particle ansatz and the geometric collision criterion

dtrans < dint =

√
σtot

π
, (2)

where dtrans is the distance of closest approach between two particles and dint is the interaction distance
given by the total cross section σtot. SMASH has been tested against exact solutions of the Boltzmann
equation within an Friedmann-Lemaître-Robertson-Walker expanding metric to verify the numerical
implementation of the collision criterion [6]. The 2↔ 2 and 2↔ 1 reactions are included, implementing
all 106 hadrons species made of up, down and strange quarks that are considered experimentally
established by the Particle Data Group (PDG) [7]. This results in tens of thousands of possible reaction
pairs, for most of which the cross sections are not measured. In SMASH, these interactions are mostly
modeled via resonances. This approach has the advantage that the cross sections can be calculated
from the resonance properties, for which the available experimental data has been compiled by the
PDG . It can be extended to m→ n reactions by approximating them with a cascade of 1↔ 2 reactions,
maintaining a detailed balance. However, this approach is limited in energy (by the highest mass
of the known resonances) and some cross sections are not resonant and have to be parametrized.
Furthermore, many resonance properties are only sparsely constrained by experimental data.

SMASH can be used to simulate nuclear collisions (as in this work) or infinite matter and as an
afterburner for hydrodynamic simulations of the quark-gluon plasma. It is also able to generate
dileptons [8,9] and photons in heavy-ion collisions. The current goal is to test physics at SIS
energies, establishing a baseline that can be extended for predictions at Nuclotron-based Ion Collider
Facility (NICA) and Facility for Antiproton and Ion Research (FAIR) energies. See [5] for a detailed
description of the model and results on pion and proton production in heavy-ion collisions compared
to experimental data.

The implemented strange particle species are kaons, 11 kaonic resonances, Λ, Σ, Ξ, Ω baryons
and 28 baryonic resonances, plus antiparticles. In nucleus-nucleus collisions, hyperons (Y ∈ {Λ, Σ})
and kaons are primarily produced by nucleon resonances

NN → NN∗/∆∗ → NYK , (3)

while antikaons are produced from strangeness exchange and φ decays:

NN → NN∗/∆∗ → NYK πY → Y∗ → K̄N N∗ → φN (4)

The non-resonant contribution to the strangeness exchange πY ↔ K̄N is parametrized similar
to ref. [10].

3. Results

Let us first concentrate on strangeness production out of equilibrium by resonance excitation.
The production of hyperons and φ mesons are discussed separately because they are constrained very
differently by the available experimental data. Finally, strangeness production via a different approach
forcing local thermal equilibrium in hadronic transport is briefly presented and compared to a more
traditional hybrid approach of modeling heavy-ion collisions.
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3.1. Hyperon Production via Resonances

While the masses and decay widths of the resonances are well-established, their branching ratios
are only sparsely known. This can be alleviated by studying elementary cross sections. For example,
the reaction pπ− → ΛK0 is dominated by the N∗ → ΛK branching ratios. Taking the middle of the
range given by the PDG results in a cross section as shown in Figure 1a: The cross section reconstructed
from SMASH output (lines) overestimates the experimental data (circles) at the threshold and at√

s > 1.8 GeV. Looking at the contributions of the individual resonances reveals that N(1650), N(2080),
N(2190), N(2220) and N(2250) overshoot the data and that their branching ratios should be decreased,
while the N(1710) and N(1720) branching ratios can be increased to compensate. Adapting the
branching ratios in the range given by the PDG data results in Figure 1b: now the cross section is
reproduced rather well, especially at the threshold and at high energies. There might be a slight
underestimation at

√
s = 1.7 GeV and

√
s = 1.8 GeV, but it is hard to tell, due to large uncertainties in

the experimental data.
Another constraint on the N∗ → ΛK branching ratio is given by the pp → ΛpK+ cross section.

Potential conflicts with the constraints posed by the pπ− → ΛK0 cross section can usually be resolved
by adapting the N∗ → πN branching ratios. This has to be done under careful consideration of the
effect on pion production. Similarly, the N∗, ∆∗ → ΣK, πN branching ratios are constrained by the
Nπ → ΣK and NN → ΣNK cross sections. Due to the different possible charge combinations, there are
more constraints given by the measured cross sections than for the Λ.

Having constrained the branching ratios using only elementary data, it is now possible to compare
strangeness production in SMASH to heavy-ion experiments in the future. Discrepancies in large
systems might hint at in-medium effects.
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Figure 1. pπ− → ΛK0 cross section reconstructed from SMASH output (lines) compared to
experimental data [11] (circles). (a) Using N∗ branching ratios by choosing the middle of the range
given by the PDG [7]. (b) After tuning the branching ratios to fit the experimental cross section.

3.2. φ Production via Resonances

The HADES collaboration concluded that at low energies a significant fraction of the K− are
produced by φ decays [3]. However, none of the baryonic resonances given by the PDG decay
into any φ [7]. To be still able to produce φ in a resonance approach, it was proposed to use the
experimental uncertainty of the N∗ beyond 2 GeV to introduce a small φN branching ratio [12].
Independent experimental data constraining this arbitrary branching ratio is required.

A potential candidate is the pp → ppφ cross section shown in Figure 2a. Unfortunately, it has
only been measured close to the threshold, so it does not constrain the φ production very well. In our
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resonance approach, the largest contribution stems from higher energies where no data is available.
Other observables are the invariant mass spectra of dileptons measured by the HADES collaboration
at Ekin = 3.5 GeV in pNb collisions. As shown in Figure 2b, the experimental data resolves the φ peak
well enough, constraining the N∗ → φN branching ratios. By choosing a branching ratio of 0.5%,
SMASH is able to reproduce the dilepton spectra and the cross section shown in Figure 2. It remains
to be seen how this approach compares to experimental data from larger systems, where so the far
neglected in-medium effects on the φ may be important.
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Figure 2. (a) pp → ppφ cross section reconstructed from SMASH output (lines) compared to
experimental data [13,14] (circles). (b) Dielectron mass spectrum in proton-niobium collisions at
Ekin = 3.5 GeV in SMASH (lines) compared to HADES data (circles). Unlike the elementary cross
section, the pNb dilepton spectrum constrains the φ production.

3.3. Strangeness Production via Thermalization

Traditionally, hybrid models have been successfully used to simulate high-energy heavy-ion
collisions: a hydrodynamical model for the partonic phase and a microscopic model (like SMASH) for
the hadronic phase. However, it is not clear how to extend them to intermediate energies relevant for
the beam energy scan program at the Relativistic Heavy-Ion Collider (RHIC) and future measurements
at NICA and FAIR. In [15] it was proposed to use a different approach based on hadronic transport:
if there is a region beyond some critical energy density εth, force thermalization in that region by
resampling all particles according to a canonical thermal distribution while conserving all relevant
quantum numbers. This has similarities to a thermal model but it assumes local instead of global
equilibrium. Effectively, it mimics many-particle scattering and interpolates dynamically between two
limits of kinetic theory: the dilute gas and the ideal fluid.

As shown in Figure 3, the forced thermalization does barely affect the pion multiplicity but
enhances strangeness similar to a hybrid approach. Note that no mean-field potentials were applied
because the collision energy is high enough that they are not so important (

√
s = 3A GeV). The amount

of produced strangeness in the forced thermalization approach is regulated by the parameter εth
(the threshold energy density above which thermalization is performed). For low εth, as for instance
twice the nuclear ground-state energy density as in Figure 3, strangeness is strongly enhanced and
might be too high compared to experiment. High εth leads to a transport simulation without forced
thermalization where strangeness is usually underestimated. It remains for future studies to fix εth
versus collision energy and test if different strange particles can be described simultaneously.
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Figure 3. SMASH with and without forced canonical thermalization compared to a UrQMD hybrid
model [15]. The energy density threshold for thermalization in SMASH (εth) and particlization in
the hybrid approach was set to twice the nuclear ground-state energy density. The strangeness
enhancement due to the forced thermalization is comparable to the hybrid approach.

4. Conclusions and Outlook

In this work, it was shown how elementary K, K̄, Λ, Σ and φ production at low energies
can be modeled by via resonances. The PDG data on branching ratios was complemented with
constraints from elementary, exclusive cross sections. The φ production was modeled by introducing
small φN branching ratios to heavy N∗ resonances, which were successfully constrained by dilepton
spectra in pNb collisions. This non-equilibrium strangeness production at low energies via resonances
provides a baseline that can be extended to higher energies by including production from strings.
Future comparisons to experimental results for larger systems might hint at in-medium effects
required to describe the data, such as kaon-nucleon potentials, in-medium cross sections and kaon
self-energies [16]. As a mechanism for strangeness production in equilibrium, effective many-particle
interactions by forced thermalization were discussed. Promising results of how such an approach
enhances strangeness production in heavy-ion collisions similar to a more traditional hybrid approach
were shown. It remains to be seen how well this approach can describe the experimental data.
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