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Abstract: Often in climate system studies, linear and symmetric statistical measures are applied to
quantify interactions among subsystems or variables. However, they do not allow identification of the
driving and responding subsystems. Therefore, in this study, we aimed to apply asymmetric measures
from information theory: the axiomatically proposed transfer entropy and the first principle-based
information flow to detect and quantify climate interactions. As their estimations are challenging, we
initially tested nonparametric estimators like transfer entropy (TE)-binning, TE-kernel, and TE k-nearest
neighbor and parametric estimators like TE-linear and information flow (IF)-linear with idealized
two-dimensional test cases along with their sensitivity on sample size. Thereafter, we experimentally
applied these methods to the Lorenz-96 model and to two real climate phenomena, i.e., (1) the
Indo-Pacific Ocean coupling and (2) North Atlantic Oscillation (NAO)–European air temperature
coupling. As expected, the linear estimators work for linear systems but fail for strongly nonlinear
systems. The TE-kernel and TE k-nearest neighbor estimators are reliable for linear and nonlinear systems.
Nevertheless, the nonparametric methods are sensitive to parameter selection and sample size. Thus,
this work proposes a composite use of the TE-kernel and TE k-nearest neighbor estimators along with
parameter testing for consistent results. The revealed information exchange in Lorenz-96 is dominated
by the slow subsystem component. For real climate phenomena, expected bidirectional information
exchange between the Indian and Pacific SSTs was detected. Furthermore, expected information exchange
from NAO to European air temperature was detected, but also unexpected reversal information exchange.
The latter might hint to a hidden process driving both the NAO and European temperatures. Hence,
the limitations, availability of time series length and the system at hand must be taken into account before
drawing any conclusions from TE and IF-linear estimations.

Keywords: transfer entropy; information flow; climate informatics; Indian Ocean dipole; El Niño

1. Introduction

Complex dynamical systems consist of interacting subsystems. It is important to detect these
interactions and quantify their strength to improve process understanding. Especially in the climate
system, detecting the interactions could provide insights into system dynamics. These interactions can
be contemplated as information exchanged or transferred among subsystems. Shannon [1] introduced a
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mathematical theory for quantifying the information contained in the context of data compression and
transmission. Recently, there has been a surge in applications of information theory in a wide range of
fields, for example, uncertainty propagation [2–4], neurosciences [5,6], climate sciences [7–9], earth system
sciences [10–13], turbulence research [14], and networks and synchronization in dynamical systems [15].

Often in climate studies, the relationship among subsystems is assessed with correlation analysis,
empirical orthogonal functions, and linear regressions given time series. Among them, correlation
analysis is a parametric method used in identifying linear interactions. For nonlinear interactions,
mutual information, a nonparametric method [1,16], is often used. Mutual information reveals any
shared information between two subsystems. However, both correlation and mutual information
are symmetric, i.e., they cannot distinguish between a drive and a response system. For a better
understanding of the dynamics, detection of the directionality of interactions is essential. The time-lagged
cross-correlation and time-lagged mutual information methods are frequently used for this purpose [17,18].
The authors of [19] observed that these two methods are sensitive to autocorrelations which often obscure
detection and quantification of the interaction mechanisms. For example, in his study, a spurious
interaction between tropical east Pacific and the northern tropical Atlantic is detected at a time lag 3–6
months while cross-correlations are applied, while the information theoretic-based asymmetric measures
detected an interaction between tropical east Pacific and the northern tropical Atlantic at a time lag of
1 month. This interaction time lag is physically consistent with the advection speed of Pacific–Atlantic
Walker circulation.

For deeper insights into detecting drive and response linear interactions, the author of [20] proposed
a test based on the Wiener principle. According to the Granger test, X causes Y if the past of the system X
assists in predicting the future of the system, Y. In a statistical sense, if the error variance of the optimal
linear prediction of Y future state based on the past of X and Y has a smaller error variance than considering
the past of Y alone, then X causes, Y. A nonparametric method equivalent to Granger causality known as
transfer entropy (TE) was proposed by [21] (for linear Gaussian systems, they are equivalent up to a factor
of 2). The TE measures if any additional information is provided by the past of the source system, which
assists in predicting the future state of the destination system. In other words, it measures the divergence
or deviation between the entropy rates of the destination’s own past and the past included from a source
system. The TE, unlike mutual information, is an asymmetric quantity and hence, it can detect drive and
response interactions. It is worth noting that, in nature, the interactions do not merely consist of driving
and responding systems, but also systems which drive each other simultaneously with different interaction
strength. Hence, any reliable asymmetric estimate, e.g., TE, should reveal this underlying behavior. Many
information-theory-based methods were spawned based on a similar principle to that of TE, for example,
momentary information transfer, Information Transfer to Y, and Information transfer to X [22]. These
methods have their own applications and limitations.

The simplest estimation of TE uses a multivariate Gaussian model assuming linear interactions
between the subsystems. This parametric estimation is hereafter referred to as TE-linear. While the
parametric estimator TE-linear is straightforward to calculate, the nonparametric TE estimation is
notoriously challenging. Some of the common nonparametric estimation techniques of TE in the literature
include the binning, kernel density, and k-nearest neighbor. These estimators are sensitive to the parameter
selection in their implementation, such as the bin width selection in the binning estimator, the kernel width
in the kernel density estimator, and the number of nearest neighbors while applying the k-nearest neighbor
estimator. Unfortunately, no clear consensus is reached among the scientific community on selecting these
free parameters. As a result of this dependency, spurious detection of information exchange between
the system components could arise. Regardless, TE has been widely used—for example, the authors
of [8] applied TE in the identification of primary drivers of recent climate variability and quantified their
influence on climate variability. Their results suggested that greenhouse gases are primary contributors to
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the recent climate variability. The authors of [23] studied the information exchange between the South
Atlantic anomaly and global sea level for the last 300 years using TE and concluded that larger information
is exchanged from the south Atlantic anomaly to global sea-level rise than vice versa. However, these
studies relied only on a single TE estimation technique (binning). It is still unclear if TE nonparametric
estimations with the free parameters reliably produce numerically consistent estimations. Furthermore,
these estimators are also sensitive to the length of the time series. For example, robust kernel estimation
asks for “sufficient data”. Hence, before applying TE to climate phenomena, we tested various estimators
of TE along with their sensitivity on time series length with idealized systems where the system dynamics
is expected or known.

Liang and Kleeman [24], realizing that information exchange could be derived rigorously rather
than axiomatically, developed another method called it information flow (IF), which is derived from
the first principles of information theory. In their framework, the information source and destination
are abstracted as system components and thus derive the information flow between these dynamical
components. The information flow between the source system Y and destination system X is equal to the
difference between the time evolution of marginal entropy of X and entropy of X excluding the influence
of, Y. To apply the information flow method, the time evolution of the marginal probabilities must be
computed. This time evolution of the marginal probabilities, in turn, depends on the system dynamics.
If the system dynamics is unknown, IF becomes difficult to apply. The information flow method was
successfully applied to Heńon maps, the Rössler system, and truncated Burgers–Hopf with their respective
system dynamics known [25]. Unlike that of IF, the calculation of TE do not require system dynamics.
Hence, given two climate time series, TE is straightforward to apply. Liang [26] proposed a simple and
concise maximum likelihood estimator of IF for linear systems which is easy and straightforward to apply
without system dynamics. This estimator is a very important result for the climate community as it bridges
the gap between theory and real-world applications. From hereafter, this maximum likelihood estimator
is referred to as information flow-linear (IF-linear). IF-linear has been successfully applied in detecting
the causal structure between CO2 and global temperatures [7], changing the relationship between the
convection over the Western Tibetan Plateau and the sea surface temperature in the Northern Bay of
Bengal [27] and forecasting the tropical cyclone genesis over the Northwest Pacific through identifying the
causal factors in cyclone–climate interactions [28].

In this work, our aim was to apply information theory methods to detect interactions between climate
phenomena. Moreover, we were provided with a limited amount of temporal series of climate data and
with their dynamics unknown. Hence, we focused on IF-linear and TE methods. We wanted to find out if
these methods are consistently able to detect the directionality of the interactions for climate phenomena.
Having in mind that the nature of both methodologies differs, we first wanted to understand if this could
lead to differences in detecting the information exchange from climate time series. On the other hand, TE
methods are highly sensitive to the choice of free parameters and with time series length, which often
might lead to brittle information exchange detections. Thus, we initially checked if the different estimators
(IF-linear, TE-linear, TE-binning, TE-kernel, and TE-kraskov) detect the directionality of the interactions
using various temporal series lengths as realized by idealized systems, whose dynamics and directionality
of the interactions is expected or known. These systems consist of uni- and bidirectional coupled linear and
nonlinear systems. Thereafter, we applied these methods to the Lorenz-96 system [29], which is known
to mimic the mid-latitude atmosphere behavior. Finally, we experimentally applied these methods to (1)
Indo-Pacific sea surface temperatures interbasin coupling and (2) the relation between North Atlantic
Oscillation (NAO) and winter near-surface air temperatures over Europe. One of the limitations of this
study is that we rigorously tested and applied various estimators to two-dimensional systems only. For a
detailed and excellent review on the applications of TE on high dimensional interactions, refer to [30].
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This paper is organized as follows. Section 2 comprises the background material for IF-linear,
TE, and its estimation techniques such as TE-linear, TE-binning, TE-kernel, and TE k-nearest neighbor.
In Section 3, the abovementioned methods are applied to uni- and bidirectional coupled linear and
nonlinear systems, the Lorenz-96 system, and then to climate phenomena. Results are also discussed in
this section. Finally, conclusions are drawn in Section 4.

2. Methods

In this section, the basic concepts of information theory are discussed along with a brief introduction
of information flow and transfer entropy. Estimation techniques of TE are also presented.

2.1. Transfer Entropy

Let p(x) be the probability of a state for the random variable X. The Shannon entropy of X, H(X),
quantifies the amount of information needed to describe the random variable X [1]:

H(X) = −∑
x

p(x) log p(x),

where the summation goes through all states of the random variable X. The units of entropy are nats if a
natural logarithm is applied; alternatively, it is often expressed in bits when the logarithm base is 2.

Let q(x) be another probability distribution for the same random variable, and Kullback divergence
measures the distance between the two probability distributions p and q. It is defined as:

Dp||q = ∑
x

p(x) log
p(x)
q(x)

.

Similarly, mutual information(MI) is the divergence between the joint distribution p(x, y) of variable
X and Y and the product of the marginal distributions p(x) and p(y):

MIxy = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

Mutual information quantifies the shared information between X and Y and thus is symmetric and
lacks any direction of information exchange. Mutual information between X and Y while a third variable
(Z) taken into account is given by conditional mutual information (CMI) as:

CMIxy|z = ∑
x,y

p(x, y, z) log
p(x|y, z)
p(x|z) .

Transfer entropy is a special case of CMI, in which the conditioning is done on the past of Y inplace
of, Z. Furthermore, the TE reflects the dependencies contained in the transitional probabilities which
represent the dynamics of the system. The TE measures the deviation between the generalized Markov
property, in other words, the deviation between the transitional probabilities p(xn+1|xn, ..., xn−k+1) and
p(xn+1|xn, ...., xn−k+1, yn, ...., yn−l+1):

TEy−>x = ∑
x,y

p(xn+1, xk
n, yl

n) log
p(xn+1|xk

n, yl
n)

p(xn+1|xk
n)

, (1)
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where k and l are the embedding dimensions of the destination and source variables, respectively. An
important measure known as active information storage (AI) is given as:

AI = MI(xk
n; xn+1)

which is used in approximating the embedding dimensions of the destination system. It measures how
much of the information from the past of the X system (xk

n) is observed to be in use in computing its
next future observation (xn+1). Here, MI refers to mutual information. If additional information from yn

assists in the reduction of the uncertainty in the future state of xn+1 given xn, then there is an information
transfer from Y to, X. Thus, TE quantifies the average information transfer from Y to X and similarly
vice versa. It is important to note that the source Y can potentially influence the system X at various
interaction delays. A scanning approach for the largest information exchange values was employed
by [31] to calculate the interaction delay between the source and destination systems. In this work, we
adopted the same methodology to calculate the interaction delays for climate applications. Furthermore,
the comparison of TE estimations only makes sense if the interaction delays in both directions are properly
and independently reconstructed [32]. Hence, it is important to ensure the correct interaction delays are
extracted. The TE, unlike MI and correlation, is an asymmetric measure. While the TE equations seem
straightforward, its nonparametric estimation for continuous data is quite challenging. Coarse-graining
the continuous data into discrete states is hard to interpret unless the measure converges when reducing
the coarsening scale. The implementation of the binning estimator uses a bin width parameter upon which
the estimates are highly sensitive. Similarly, the kernel density estimator relies on kernel width and the
k-nearest neighbor estimator on the number of nearest neighbors. Unfortunately, no clear consensus is
reached in optimally choosing these parameters. Hence, in the current study, we tested all the methods for
numerical consistency before applying to climate applications. A brief introduction to these methods is
given in the following sections.

2.1.1. Estimation of TE-Binning

For the estimation of TE, joint probability distributions are calculated from the underlying time series.
Binning is one of the most straightforward approaches in the estimation of joint probabilities. Unfortunately,
entropy estimations are highly sensitive to the number of bins chosen (i.e., bin width). In the literature,
there exist numerous methods that describe the selection of an optimum number of bins for Gaussian
distributions [33,34] and suggestions for distributions without any underlying assumptions [35,36]. In the
current study, we used a more general method proposed by [37], known as generalized Knuth method
with no underlying assumptions about the distribution. In this method, each of the N observed data
points are placed into one of M-fixed width bins, where the number of bins is selected utilizing a Bayesian
paradigm. The likelihood of the multidimensional data with volume V and probabilities πi for the ith bin
is given by the multinomial distribution:

p(d|M, π) = (
M
V
)Nπn1

1 πn2
2 ...πnM

M ,

where d = [d1, d2..., dN ] denote N observed points, n1, n2...nN denotes the number of points in each sample,
and π = [π1, π2, .., πM] denote the respective probabilities of the bin. The Dirichlet prior conjugate to the
multinomial likelihood function for the non-informative prior is given as:

p(π|M) =
Γ(M

2 )

Γ( 1
2 )

[π1, π2, ..., πM−1, (1−
M−1

∑
i=1

πi)]
−1/2.
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The posterior distribution of the bin probabilites from the Bayes theorem is:

p(π, M|d) ∝ p(π|M)p(M)p(d|π, M).

Then, the optimum number of bins are chosen by the mode of the posterior distribution of:

log p(
M
d
) = N log M + log Γ(

M
2
)−M log Γ(

1
2
)− log Γ(N +

M
2
) +

M

∑
i=1

log Γ(ni +
M
2
) + K,

where M is the number of bins, d is the observed data points, ni is the number of data sample in each bin,
and K is a constant. For more details, refer to [37]. After calculating the optimal number of bins M, TE is
calculated by decomposing into individual joint entropies given as:

TEy−>x = H(xk
n, yl

n)− H(x(k+1)
n , yl

n) + H(x(k+1)
n )− H(xk

n), (2)

where k and l are the embedding dimensions of X and Y, respectively. An estimation bias for TE could
arise due to the assumption of a uniform distribution within every single bin which corresponds to
maximum entropy.

2.1.2. Estimation of TE-Kernel

This estimator uses the box step kernel Θ with Θ(x > 0) = 0 and Θ(x < 0) = 1 for the estimation
of relevent joint probability distributions (e.g., p̂(x, y), p̂(x) and p̂(y)). For example, the joint probability
distribution p̂(x, y) is calculated as:

P̂r(xn, yn) =
1
N

N

∑
n′=1

Θ(|(xn − xn′), (yn − yn′)| − r),

where the norm corresponds to the maximum distance in the joint space and r is the kernel width. In simple
terms, the resultant probability is the fraction of N values which fall within the kernel width r in the
joint dimensional space. Here, r is the free parameter and the resultant probability is sensitive to the
choice of r. Furthermore, the conditional probabilities are defined in terms of their respective component
joint probabilities. These probabilities are substituted in Equation (1) to calculate TE. Kernel estimators
are model-free (i.e., they do not assume parametric distribution). For more details about the estimator,
refer to [38,39] and information-theoretic toolkit from [40].

2.1.3. Estimation of TE-K-Nearest Neighbor

The authors of [41] introduced the k-nearest neighbor estimator which uses an adaptive binning
strategy. This estimator uses the average distances to the k-nearest neighbor data points for the calculation
of TE. This is a nonparametric estimation technique.

Transfer entropy from Y to X, TEyx with embedding dimensions k = 1 and l = 1, is calculated as
follows: For each point in the highest dimensional space given in Equation (2) (i.e., zi = (xn+1, xn, yn)),
its neighbors’ distance d=max||zi − zj|| is calculated. While any norm could be used, in the current study,
the maximum norm is utilized. The number of points that fall within the range d in all the marginal spaces
is counted. Thereafter, the number of points in each of the marginal spaces are substituted in the equation
below to calculate TE:

TEy−>x = Ψ(K)+ < Ψ(nxn + 1)−Ψ(nxn+1 , nxn)−Ψ(nxn , nyn) >,
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where K is the number of nearest neighbors, Ψ denotes the digamma function, while the angle brackets
indicate averaging over all the points, nxn+1 , nxn and nyn are the number of points that fall within the
range d in the marginal spaces. Similarly, this formula can be extended for higher embedding spaces.
Furthermore, this method enables for bias correction. From hereafter, this method is referred as TE-kraskov.
For more details, refer to the information-theoretic toolkit of [40].

2.1.4. Estimation of TE-Linear

The entropy for a continous random variable X is given as:

H(x) = −
∫ ∞

−∞
p(x) log p(x)dx.

For the linear estimation of entropy, substituting the probability of a Gaussian distribution [42] in the
above equation gives:

H(x) =
1
2

log 2πeσ2.

For a multivariate Gaussian model, the entropy is given as:

H(x) =
1
2

log((2πe)d|Ωx|),

where d is the number of dimensions, |Ωx| is the determinant of the d× d covariance matrix Ωx = x̄xT ,
and the overbar indicates averaging. Furthermore, the TE is estimated as the sums and differences of the
joint entropies given in Equation (2).

2.1.5. Assumptions in the Practical Estimation of TE

Before applying the TE estimators mentioned above, it is very important to observe their assumptions.
While the TE estimations in the above sections involve the interactions between two subsystems X and
Y, real-world climate applications often involve a tangle of higher dimensional interactions. In order to
disentangle the sole interactions between X and Y, one needs to remove the influence of all the other
interacting variables in the state phase. However, this can be computationally exhaustive and perhaps
almost impossible. This unreal aspect was already mentioned in [20]. Hence, while applying TE to retrieve
the information exchange between two subsystems, there might be unobserved variables influencing the
estimation. Hence, this limitation needs to be accounted for while applying TE. In the current study, we
limited our detailed investigations to two-dimensional systems. Hence, a possible influence of unobserved
variables on TE estimations cannot be ruled out. For a detailed review on the applications of TE on high
dimensional interactions, refer to [30].

In the TE Equation (1), the deviation between the transitional probabilities is calculated with the
embedding dimensions of the destination and source variables, k and l, respectively. The embedding
dimension l of the source variable could be chosen at which the maximum information exchange takes
place, while an ideal embedding k for the destination system should be as large as possible. Due to the
computational complexity and a limited number of time series data available for climate applications, a
minimum value for k = 1 could be chosen provided most of the information from the past of destination
system is embedded within the minimum k. In the current study, this was verified through the calculation
of active information of the destination system. Moreover, assumptions in the TE calculation involve
stationarity, time aggregation, faithfulness, etc. An excellent review of these assumptions is available
in [30].
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2.2. Liang and Kleeman Information Flow

Consider a two-dimensional nonlinear system x1 and x2:

dx1

dt
= F1(x1, x2, t),

dx2

dt
= F2(x1, x2, t),

with randomness limited to its intial condition. The above equations follow the convention in physics
which does not distinguish random and deterministic variables. Let H1 be the marginal entropy of x1.
The H1 evolution of x1 may be due internal mechanism of x1 itself or subject to the influence of x2. The later
is the information flow from x2 to x1, which is of interest to us . If dH∗1

dt is the contribution of evolution of
marginal entropy by x1 itself, then:

dH1

dt
=

dH∗1
dt

+ T2−>1,

where T2−>1 is the information flow from x2 to x1. Therefore, the information flow could be written as:

T2−>1 =
dH1

dt
−

dH∗1
dt

.

The term dH1
dt can be calculated by Liouville equation. Thus, Liang and Kleeman [24] obtained

the entropy evolution: dH
dt = E(∇ · F), where E is the expectation operator. Based on this argument,

the authors of [24] argued that the first term on the right hand side must be dH∗1
dt = E( ∂F1

∂x1
), which was

later proven by [25]. Substituting both terms in the above equation, the authors of [24] argued that the
information flow from x2 to x1 is equal to:

T2−>1 =
dH1

dt
−

dH∗1
dt

= −E
( 1

ρ1

∂F1ρ1

∂x1

)
,

where ρ1 is the marginal probability density function of x1. However, this heuristic argument was
rigorously proven in [43,44]. The thus obtained information flow is asymmetric between x1 and x2.
However, the above formalism is only for 2D deterministic systems. Moreover, for a 2D system with
stochasticity involved, this formalism does not work. The Liang information flow rigorous formalism has
undergone recent developments with higher dimensional systems and stochasticity involved. Consider a
dynamical system:

dx
dt

= F(t; x) + B(t; x)ẇ,

where x and F are n-dimensional vector, B is an n×m matrix, and w is an m-vector of standard Wiener
process (ẇ is a vector of white noise). The rate of information flow from x2 to x1 for the above dynamical
system is given by:

T2−>1 = −
∫

Rn
ρ2/1

∂(F1ρ
�2
)

∂x1
dxxx +

1
2

∫
Rn

ρ2/1
∂2(g11ρ

�2
)

∂x2
1

dxxx,

where ρ2/1 is the conditional probability density function of x2 on x1, ρ
�2
=
∫

R ρdx2 and g11 = ∑m
j=1 b1jb1j.

When n = 2, the equation reduces to:

T2−>1 = −E
[ 1

ρ1

∂(F1ρ1)

∂x1

]
+

1
2

E
[ 1

ρ1

∂2g11ρ1

∂x2
1

]
.
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If the system dynamics F1 and g11 are independent of x2, then T2−>1 = 0, which remarkably appears
in the classical formalism. For systems with the dynamics unknown, the estimation of entropy evolution is
a challenge. Hence, Liang [26], under the linear assumption, proposed a simple easy-to-use formula know
as the maximum likelihood estimator of information flow. Given two series x1 and x2, for consistency with
the formulae of TE mentioned above, we considered x = x1 and y = x2; the information flow maximum
likelihood estimator or IF-linear from the system y to x is given by:

Ty−>x =
CxxCxyCy,dx − C2

xyCx,dx

C2
xxCyy − CxxC2

xy
,

where Cxx, Cyy and Cxy are the covariances of x and y, while the subscript dx indicates time series derived

from x which is formed as x(n+k)−x(n)
k.dt , with k some integers greater than or equal to 1. This easy-to-use

formula bridges the gap between theory and real applications and has been successfully applied to
real-world applications.

3. Results

In the current section, the above-discussed methods are tested for one-way and two-way coupled
linear and nonlinear idealized systems. After testing various estimators, we applied them to the
Lorenz-96 model which mimics midlatitude atmosphere behavior and finally to two important real-world
climate phenomena.

3.1. Applications to Idealized Systems

3.1.1. Unidirectional Linearly-Coupled Autoregressive System

We considered a two-dimensional linear system x and y with the following governing [37] :

yn+1 = 0.5yn + N(0, 1),

xn+1 = 0.6xn + Cyn + N(0, 1),
(3)

where N(0, 1) is Gaussian noise with zero mean and unit variance. The coupling coefficient C is varied
from 0 to 1 with an increment of 0.1. The system was initialized with (x0, y0) = (0, 0). We integrated
around 100,000 iterations and considered the last 5000 steps for detecting and quantifying the information
exchange. Throughout this study, in all the idealized systems, a similar number of iterations was followed.
In real climate applications, the number of observations is limited and it is essential that the methods
mentioned in Section 2 detect the direction of information exchange even with a limited number of data
points. Hence, the total number of points was decreased from 5000 down to 200 time units to check the
reliability of these methods. It is worth noting that this article does not aim at suggesting solutions for
finite sample size effects; rather, we compared different estimators robustness against variations of the
sample size. Equation (3) implies that the coupling coefficient C drives the information exchange from y to
x. However, there is no exchange from x to y. Thus, any reliable method should reproduce this asymmetry.
We also show the error bars representing two standard deviations representing the measure of uncertainty
for the IF-linear and TE estimations. Furthermore, in order to choose the embedding dimensions for TE,
we calculated the active information for the system x and y. For the source embedding dimensions for TE
calculations, we chose l = 1, as the governing equations showed the past of source variable exchanges
maximum information at time lag 1. The active information for the destination systems showed a minimal
increase of AI from 0.2270 nats with time lag 1 to 0.2278 nats with 1 to 10 time lags. Hence, to reduce the
computational complexity we chose the value of embedding dimension k to be 1. From the governing
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equations, the interaction time delay of 1 is chosen as the source transfers maximum information exchange
at a time delay of 1.

Before applying the TE-binning estimator, Knuth’s method for detecting the optimal number of bins
was applied to the data. However, as the data consist of various coupling strengths (C), the optimal
number of bins varies for a particular coupling coefficient. For consistency, we kept the bin width constant
throughout all the values of coupling coefficient C but allowed variations for different length of time series.

Figure 1 shows the information exchange from x to y for different coupling coefficients C and varying
time series lengths. The IF-linear robustly measures a nonzero information exchange from y to x and
zero information exchange from x to y for time series lengths n & 500 time units. As expected from the
governing equations, the information exchange increases from y to x with the coupling strength [37].
We also plotted the error bars which represent two standard deviations of IF-linear estimation for the
respective time series length (see [26] for details of the significance test). With time series of 200 time
units, relying on the error bars, one can distinguish the asymmetry in the information exchange between
systems x and y. The TE-linear estimator also shows the asymmetry in the interactions between x and y.
The results are also stable with all the time series lengths. The error bar represents two standard deviations
of 100 permuted surrogates for TE estimations (refer to [40] for details into the significance test for TE).
As in the previous case, the strength of the association from y to x also increases with the increase in the
coupling coefficient.
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Figure 1. Information exchange in the unidirectional coupled linear system (Equation (3)) with various
time series lengths (n) measured by (a) the IF-linear method (nats/time) and (b–e) with different variants of
the TE measure (in nats). Error bars represent two standard deviations of the permuted surrogate samples.
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Among the nonparametric estimators, TE-binning is able to reproduce the information exchange
from y to x with a time length n = 5000 and n = 3000 time units (with a total number of 12 and 14 bins,
respectively). However, it overestimates the TE from x to y. This overestimation may be attributed to the
rough estimation of the joint pdf. Moreover, the assumption of a uniform bin width corresponds to biased
entropy estimation. With the large overlapping error bars, it is difficult to distinguish the information
exchange direction. The TE-kernel estimator (kernel width = 1) is also able to detect the asymmetry in
the coupling between x and y and also the strength of the association. However, with a time series length
n . 500 time units, spurious information exchange is detected from x to y. Nevertheless, the error bars
from x to y with time series length n . 500 time units cross zero nats, and hence, no significant information
exchange takes place. Furthermore, various kernel widths from 0.5 to 2 were tested, and the results are
consistent between the kernel widths from 1 to 2. The better performance of TE-kernel might be attributed
to the smoother estimation of the pdf when compared with the TE-binning. Similarly, the TE-kraskov
estimator (20 nearest neighbors) is able to show the one-way coupling and also the strength of the coupling
with the time series n & 500 time units. Below 500 time units, permutation surrogate improves to access
the direction of information exchange. The TE-kraskov estimator ess tested between 4 to 60 neighbors, and
the results are consistent from 20 to 60 nearest neighbors.

The estimations of information exchange are sensitive to the autocorrelation of the time series [30].
Hence, we calculated and compared the autocorrelations for various systems. For this system, the time
lag-1 autocorrelation of the system x was around 0.5, and the autocorrelation of the system y was around
0.7. The presented results show that both parametric methods provide robust results along with the
nonparametric TE-kernel and TE-kraskov estimators above the time series length of 500 time units. In
addition, with permutation surrogates, even with time series length of 200 time units, the directionality of
the information exchange is retrieved. The TE-binning method produced unreliable results.

3.1.2. Bidirectional Coupled Linear Autoregressive System

Often in climate systems, subsystems mutually exchange information. However, sometimes the
interaction strength from one system might be stronger than the interaction in the opposite direction.
Hence, it is very important that the methods mentioned in Section 2 not only detect the interactions
but also quantify their relative strength. Therefore, as an example, we considered the system with
governing equations:

xn+1 = 0.1xn + Cyxyn + N(0, 1),

yn+1 = Cxyxn + 0.1yn + N(0, 1),
(4)

where N(0, 1) is Gaussian noise with zero mean and unit variance and Cyx∈[0,1] and Cxy = 1
2 Cyx.

We initialized the system with (x0, y0) = (0, 0). From the governing equations, a bidirectional
information exchange exists and the relative information exchange from y to x is stronger than from
x to y, since Cyx = 2Cxy. For the TE estimations, the AI values of this system are similar to those of the
unidirectional coupled autoregressive system. Hence, for this system, we considered the embedding
dimensions k and l to be 1. From the governing equations, the interaction time delay of 1 was chosen as
the source transfers maximum information exchange at a time delay of 1.

The measured information exchange with different estimators for the system with governing
Equation (4) is shown in Figure 2. The IF-linear shows a bidirectional information exchange. Further,
it is able to quantify the strength of the information exchange between x and y realistically for all
time series length; in other words, as the coupling coefficients increases, the information exchange
increases bidirectionally, and importantly, the strength of association from y to x is stronger than vice
versa. This measured property would be very useful in climate applications to accurately quantify the
strength of the associations among the subsystems. The TE-linear reproduced the bidirectional information
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exchange for all the time series lengths as well. Further, the strength of the information exchange is also
accurately captured.
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Figure 2. Information exchange in the bidirectional coupled linear system (Equation (4)) with various time
series lengths (n) measured by (a) the IF-linear method (nats/time) and (b–e) with different variants of the
TE measure (in nats). Error bars represent two standard deviations of the permuted surrogate samples.

The TE-binning estimator is able to reproduce the bidirectional information exchange with a time
length of n = 5000 and n = 3000 time units (with a total number of 10 and 13 bins, respectively).
However, with time series length less than 1000 time units, spurious detections are noted. Furthermore,
with overlapping error bars, the detection of the directionality of information exchange from y to x and
from x to y is difficult. The TE kernel estimator provides robust bidirectional information exchange
(kernel width = 1) but shows spurious results for time series length of 200 time units, especially for weaker
couplings. However, at weaker couplings, the error bars assist in detecting the direction of information
exchange. Similarly, the TE-kraskov (10 nearest neighbors) estimator is able to show the bidirectional
coupling and also the strength of the information exchange for all time series lengths. The results are
consistent between 10 to 60 nearest neighbors.

In summary, both the parametric methods produced stable results and also the nonparametric
TE-kernel and TE-kraskov estimators showed consistent results for almost all time series lengths.
The autocorrelations for this system were 0.2 and 0.4 with time lags of 1 and 2, respectively, for x and
y. Unlike the previous example with unidirectional coupling, the results were relatively robust even
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with 200 points. This might be associated with the weaker autocorrelation magnitude in the bidirectional
coupled system as compared to the unidirectional coupled linear system. This sensitivity of TE estimations
on the autocorrelations was reported in [30].

3.1.3. Nonlinear Unidirectional Coupled Anticipatory System

Often in climate science, the relation among the subsystems is nonlinear, and it is very important
to identify these associations and quantify their strength. Hence, in this section, we considered a special
case of a nonlinear system called anticipatory system. Systems in which the response somehow predicts
or anticipates the drive dynamics are known as anticipatory systems [45,46]. For example, the authors
of [47] discussed the climate change paradigm illustrating on a systemic framework grounded in the
concept of anticipatory system in which the anthroposphere acts as an anticipatory system anticipating
and governing the climate dynamics. In the current study, we considered a one way coupled nonlinear
anticipation system proposed by [48] with the following equations:

xn+1 = f (xn),

yn+1 = (1− ε) f (yn) + εgα(xn),
(5)

where f (x) = 4x(1− x) is the chaotic logistic map and gα(xn) = (1− α) f (x) + α f ( f (x)). For this system,
ε = 0.3 is chosen. For ε > 0.3, the system is synchronized. The response y is strongly coupled to
the driver, but it retains its independence. The function gα(xn) = (1− α) f (x) + α f ( f (x)) includes a
tunable parameter α (coupling coefficient). When α = 0, the y system is driven towards the x system and
when α = 1, the y system is driven towards the future of the system x. We initialized the system with
(x0, y0) = (0.4, 0.1). For the TE calculations, the source embedding dimension l = 1 is chosen based on the
governing equations, while the AI for the destination system shows a maximum value at time lag 1 and
then a decrement for higher lags. Hence, k is chosen to be 1. From the governing equations, the interaction
time delay of 1 is chosen as the source transfers maximum information exchange at a time delay of 1.

Figure 3 represents information exchange for the system with governing Equation (5). The IF-linear
shows an information exchange from x to y at all coupling coefficients except for the values 0.4 to 0.7
and no information exchange from y to x except at coupling coefficient 0.2 for the time series length of
5000 time units. Similarly, at lower time series lengths, this asymmetry is captured; however, at coupling
coefficients values from 0.4 to 0.7, it is difficult to distinguish the information flow directionality even
with the error bars. With longer time series, IF-linear successfully detects the unidirectional information
exchange, and this result is reported in [26]. Even though one can argue that IF-linear has been developed
strictly for linear systems, it qualitatively detects the asymmetry in the information exchange for this
anticipatory system. Liang [26] presented a detailed description of how IF-linear is able to retrieve the
properties of this anticipation system through linearization. This property of IF-linear is remarkable, as
it is easy to apply given two time series. Moreover, unlike nonparametric TE, IF-linear does not depend
on free tuning parameters, which is an added value for its application and also computationally efficient.
The TE-linear fails to detect the direction of information exchange at all time series lengths for this system,
in fact, the directionality is reversed. It is worth noting that the implementation of TE-linear does not
involve any linearization, unlike IF-linear.

The TE-binning estimator (10 bins) shows information exchange from x to y at a time series length
of 5000 time units. At higher coupling coefficients, nonzero information exchange is detected from y
to x. With a time series length less than 1000 time units, unrealistic nonzero information exchange is
detected from y to x at all coupling coefficients. The TE-kernel estimator (kernel width = 0.5) also detects
the one-way coupling between x and y (consistently between 0.25 to 1 kernel widths) at all time series
lengths. However, at greater coupling coefficients, spurious information exchange is detected from y to x at
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all-time series lengths with kernel width greater than 0.5. The TE-kraskov estimator (4 nearest neighbors)
shows exactly the unidirectional coupling between x to y (consistently between 4 to 60 neighbors) at all
time series lengths. The better estimation of TE-kraskov might be attributed to the adaptive data efficient
discretization as well as bias correction [41]. However, with TE-kraskov, a very slow convergence of
information exchange with increasing time series length is noted. This behavior was reported in the study
by [49]. In summary, for this system, IF-linear is able to detect the asymmetry in the information exchange
while TE-linear fails. The nonparametric TE-kraskov estimator provides reliable results for all time series
lengths. While the asymmetry in coupling is captured by TE-kernel and TE-binning, unrealistic nonzero
information exchange is detected at higher coupling coefficients from system y to x.
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Figure 3. Information exchange in the unidirectional coupled nonlinear anticipatory system (Equation (5))
with various time series lengths (n) measured by (a) the IF-linear method (nats/time) and (b–e) with
different variants of the TE measure (in nats). Error bars represent two standard deviations of the permuted
surrogate samples.

3.1.4. Bidirectional Coupled Non-Linear System

In this section, we extend our analysis from a unidirectional nonlinear coupled system to a
bidirectionally coupled nonlinear system. For this purpose, we considered Heńon maps which were
motivated by the Lorenz equations. The Heńon map captures the stretching and folding dynamics of
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chaotic systems such as the Lorenz system which mimic the atmospheric behavior. We considered two
identically coupled Heńon maps with the following governing equations [50]:

xn+1 = 1.4− x2
n + 0.3xn−1 + Cyx(x2

n − y2
n),

yn+1 = 1.4− y2
n + 0.3yn−1 + Cxy(y2

n − x2
n),

(6)

where the coupling coefficients Cyx and Cxy ∈[0,0.4]. For the TE calculations, the source embedding
dimension l = 1 was chosen based on the governing equations. The AI for the destination system shows a
maximum value at first two time lags and then a decrement for higher time lags. Hence, we considered the
embedding dimension k = 1. From the governing equations, the interaction time delay of 1 was chosen
as the source transfers maximum information exchange at a time delay of 1. For this system, the region
outside the coupling interval [0.3,0.3] corresponds to synchronization.

Figure 4 represents information exchange for the system with governing Equation (6) for a time length
of 5000 time units. The IF-linear shows an information exchange from x to y at coupling coefficient Cyx

from 0.1 to 0.25 and Cxy from 0.1 to 0.2. Further, it shows an information exchange from system y to x
at coupling coefficient Cyx from 0.1 to 0.3 and Cxy from 0.1 to 0.2. A similar behavior was also observed
with the TE-linear estimator, but at a lower coupling coefficient below the synchronization, TE-linear fails.
The nonparametric TE-binning (consistently between 10 to 20 bins) and TE-kernel (consistently between
0.25 to 1 kernel widths) shows an information exchange between x and y with couplings below [0.3,0.3].
Furthermore, the strength of the information exchange increases from x to y as the coupling strength Cxy

increases and vice versa. This symmetric behavior is expected as the two Heńon systems are identically
coupled. This was also shown by [51]. Similar patterns with the TE-kraskov estimator (4 nearest neighbors)
are also seen (consistently between 4 to 60 neighbors). We also tested the information exchange for this
system with a time series length of 500 time units (figure not shown). It was observed that the spatial
patterns of the information exchange exhibit similar spatial patterns as those in Figure 4 but less clearly
established for TE-binning, TE-kernel, and TE-kraskov estimators. However, the TE-binning estimation
overestimates the information exchange when compared with TE-kernel and TE-kraskov. In summary, for
this system, both the parametric methods failed to detect the bidirectional nonlinear interactions, while
the nonparametric TE-kernel and TE-kraskov estimators showed consistent results for time series lengths
n = 5000 and n = 500 time units.

From the above-discussed idealized systems, considering the dependencies of TE nonparametric
estimations on the free parameters, instead of relying on any single estimator, we propose to use
a composite of TE-kernel and TE-kraskov estimators for nonlinear systems. Furthermore, the free
parameters, i.e., kernel width and the number of nearest neighbors are to be tuned until both the estimators
consistently show a significant information exchange. For the linear systems in addition to TE-kernel and
TE-kraskov along with the tuning of free parameters, linear estimators (IF-linear and TE-linear) shall be
used simultaneously.
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Figure 4. Information exchange in the bidirectional coupled nonlinear system (Equation (6)) with time
series length of 500 time units measured by (a,b) the IF-linear method (nats/time) and (c–j) with different
variants of the TE measure (in nats).
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3.1.5. Two-Scale Lorenz-96 Model

So far, we had investigated information exchange in idealized linear and nonlinear coupled systems
where the dynamics of the system is known or expected. In this section, we consider a simple conceptual
model of atmosphere-like multiscale dynamics, namely, the Lorenz-96 system [29] which consists of
coupled fast and slow subsystems. This model was originally introduced to mimic multiscale midlatitude
weather. Furthermore, it has been extensively used in the study of the influence of multiple spatiotemporal
scales on the predictability of atmospheric flows [3,52]. Although the equations in Lorenz-96 are known and
identically coupled, the interaction behavior of Lorenz-96 is hard to expect, as its dynamics is dominated
by the interplay between the fast and slow subsystems. Hence, to detect the direction of information
exchange, we applied the methods discussed in Section 2 to the Lorenz-96 system. The Lorenz-96 system
has the following governing equations:

dxi
dt

= xi−1(xi+1 − xi−2)− xi + F− hc
b

n

∑
j=1

yj,i,

dyj,i

dt
= cbyj+1,i(yj−1,i − yj+2,i)− cyj,i +

hc
b

xi.

(7)

It consists of m slow variables xi coupled to m× n fast variables yj,i. Furthermore, the two systems
are coupled by coupling constant h, scaling constants b and c, and F is a constant forcing. Here, i = 1, ....m
and j = 1, ....n. Both the xi and yj,i have periodic boundary conditions, i.e., xm+1 = x1; x0 = xm

and yn+1,i = y1,i+1; y0,i = yn,i−1. The conventional parameter values F = 8 and m = 40 are chosen.
Furthermore, the values of n, b, and c are chosen to be 4, 10, and 10, respectively. This setup leads to
a two-scale model where the fast variables fluctuate 10 times faster than the slow ones. The coupling
parameter h is varied from 0 to 1 with an increment of 0.1. For more details of the system, refer to [52]. For
this system, we chose embedding dimensions l = m = 1 based on the peak AI values at time lag 1 for TE
calculation. From the governing equations, the interaction time delay of 1 is chosen as the source transfers
maximum information exchange at a time delay of 1.

Figure 5 represents information exchange for the system with governing Equation (7) for various
time series lengths. The IF-linear indicates that there exists a bidirectional information exchange between
the slow system and the fast system. Furthermore, the magnitude of information exchange from the fast
system to the slow system is stronger than vice versa. The TE-linear shows that a greater amount of
information is exchanged from the fast system to the slow system at low couplings. At higher couplings,
the information converges to zero in both directions. However, as the IF-linear and TE-linear fail for
strong nonlinear systems, we do not draw any conclusions from these results as the Lorenz-96 is a highly
nonlinear system.

The TE-binning estimation (10 bins) shows information exchange from x to y, i.e., the slow system to
the fast system. Moreover, weak information exchange is detected from y to x. The TE-kernel estimator
(kernel width = 0.5) and TE-kraskov estimator (4 nearest neighbors) also show that the information
exchange is dominant from the slow system to the fast system than vice versa. From the composite use of
TE-kraskov and TE-kernel along with the parameter tuning, we see a bidirectional information exchange
between the systems x and y. Moreover, the system x leads the system y, i.e., the slow system leads the fast
system. The authors of [52], in their study, also noted that there exists a bidirectional influence between the
fast and slow system as revealed from the spatial patterns of the system trajectories. They also found that
the fast system is conditioned by the slow system especially at lower couplings, i.e., the system dynamics is
dominated by the slow system. From Figure 5, the nonlinear methods show that the information exchange
decreases as the coupling coefficient increases; this requires a further detailed investigation.
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Figure 5. Information exchange in the Lorenz-96 system (Equation (7)) with various time series lengths (n)
measured by (a,b) the IF-linear method (nats/time) and (c–e) with different variants of the transfer entropy
(TE) measure (in nats). Error bars represent two standard deviations of the permuted surrogate samples.

3.2. Application to Climate Phenomena

3.2.1. Information Exchange between Indian and Pacific Ocean

The El Niño Southern Oscillation (ENSO) is an important large-scale coupled atmosphere–ocean
phenomenon which has a remote influence on sea surface temperatures in other ocean basins [17].
An atmospheric bridge is one of the mechanisms through which this influence is mediated [53,54].
ENSO oscillations are characterized by changes in the sea surface temperature (SST) patterns over the
equatorial Pacific Ocean. Among many measures, the Niño 4 and Niño 3 indices measure the ENSO
oscillation strength and phase. Another important climate variability called the Indian Ocean dipole (IOD)
occurs in the Indian Ocean and is known to have an influence on Indian summer monsoon and on rainfall
over Australia, Indonesia, and East Africa [53,55–57]. A positive phase of IOD represents a cooling in the
eastern part of the Indian Ocean and warming in the western part of the Indian Ocean and vice versa.
The strength and phase of the IOD are measured through the IOD index.

Earlier studies stated that IOD might arise due to the internal atmosphere–ocean coupling of the Indian
Ocean [58]. However, the ENSO forcing is one of the factors responsible for causing IOD, and furthermore,
a co-evolution of ENSO and IOD events are noted [59–62]. ENSO and IOD are known to interact with each
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other through the Walker circulation in the atmosphere [63]. It is also observed that the IOD could also
contribute to the development phase of ENSO through feedbacks [63,64]. Although the ENSO and IOD
co-evolve during some years, there is still no consensus about their linkage. The author of [26] investigated
the interaction of the Niño 4 index on the Indian Ocean SST and also the IOD index on the Pacific Ocean
SST. In his study, the patterns of information flow from the Niño 4 index to Indian Ocean SST revealed an
Indian Ocean dipole-like structure over the Indian Ocean basin. Furthermore, an ENSO-type pattern is
also obtained over the Pacific Basin when the IOD index is applied to the Pacific Ocean SST. In our study,
we applied the linear and nonlinear estimators to robustly measure the interaction mechanism between
ENSO and IOD.

Here, the IOD and ENSO relationship was investigated with all the information exchange measures
discussed above. The monthly time series of the Niño 4 index and Indian ocean dipole index were obtained
from NOAA ESRL and JAMSTEC, respectively, for the period of 1958–2010 (i.e., 633 months). The lag-1
autocorrelation of Niño 4 is 0.8 and an IOD index of magnitude 0.9. Hence, a time series length longer
than 500 time units is recommended to apply the methods mentioned in the previous examples. As the
available length of the indices is 633 months, it is expected that information exchange detection and
quantification could be robustly estimated by the information exchange methods mentioned in Section 2.
However, detecting interaction delays might need a greater amount of time series while estimating TE [65].
Hence, we cross-checked if our interaction delays are physically consistent with the existing literature.
As data input, the SST reanalysis named COBE-SST2 Sea Surface Temperature and Ice [66] was obtained
from NOAA for the same period. Before applying the information exchange methods, the indices were
deseasonalized, and the linear trend was removed to fulfill the stationarity criteria for TE [30] and
IF-linear estimations.

Table 1 gives the information exchange between the two indices as quantified by the various methods.
A permutation technique, under which the surrogates preserve the tuples p(xn+1, xk

n, yl
n) for TE estimation

is used to determine the significant information exchange within 95% confidence interval (100 samples).
For more details into the technique, refer to [40]. The significance test for IF-linear follows [26]. Moreover,
based on the AI, we chose the destination embedding k = 1 due to the minimal increase from time lag 1 to
time lag 10 months for both IOD and Niño 4 , while we scanned for the time interaction delay at which
maximum information is exchanged from the source to the destination [31]. The parametric methods show
significant information exchange from the Niño 4 index to IOD at a lag of 2 to 3 months, while significant
information is exchanged from IOD to the Niño 4 index with a time lag of 0 and between 10 and 14 months.
The instantaneous relation between the IOD and Niño 4 has been observed throughout the historical
records. However, it is interesting to note that significant instantaneous information is exchanged from
IOD to the Niño 4 index and not vice versa. This relation could be attributed to the feedback of the IOD
on the Pacific Ocean due to the wind anomalies induced by ENSO over the Indian Ocean [59]. The time
lagged information exchange results suggest that ENSO events tend to influence the IOD [67], and then the
induced IOD tends to provide feedback to the ENSO [64,68]. The nonparametric TE-kernel and TE-kraskov
estimators also exhibit a similar behavior except the TE-binning estimator. The free parameters are tuned
and tested rigorously for numerical consistency.
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Table 1. Information exchange between the Niño 4 (N4) and the Indian Ocean dipole (IOD) index (* refers
to significant information exchange).

Method N4 to IOD (lag=3) IOD to N4 (lag=0) IOD to N4 (lag=7) Units

IF-linear 1.0 * 1.2 * 1.1 * nats/month ×10−2

TE-linear 0.7 * 1.3 * 1.4 * nats ×10−2

TE-binning 0.5 * 0.9 * 0.7 nats ×10−2

TE-kernel 0.3 * 1.5 * 1.6 * nats ×10−2

TE-kraskov 0.1 * 1.1 * 0.9 * nats ×10−2

We further investigated the patterns over the respective oceans at the time of maximum influence of
the indices. Figure 6 shows significant information exchange from the Niño 4 index to the Indian Ocean
SST at a lag of 3 months. The IF-linear shows the influence of Niño 4 on the Indian Ocean, especially on
the Southeastern Indian Ocean, suggesting an information exchange from the Pacific Ocean to the Indian
Ocean. The TE-linear also shows a significant exchange of information from the Pacific Ocean to the Indian
Ocean with a maximum value of TE-linear near the Southeast Indian Ocean. While the TE-kernel also
replicatef a similar pattern, the TE-binning estimator produced a spurious pattern. The results were also
checked for consistency with various kernel widths ranging between 0.25 and 2. The TE-binning estimator
could not reveal a similar pattern with various bin widths. The TE-kraskov estimation also revealed an
information exchange from the Pacific Ocean to the Indian Ocean and was consistent within the range
between 20 and 60 nearest neighbors.

The significant information exchange pattern from IOD to the Pacific Ocean at a lag of six is
represented in Figure 7. The IF-linear shows an information exchange over the central Pacific Ocean,
suggesting an information exchange from the Indian Ocean to the Pacific Ocean. The TE-linear also
shows that information is exchanged from the Indian Ocean to the Pacific Ocean with maximum values of
TE occurring near the central Pacific Ocean. The TE-kernel and TE-kraskov estimators show nonlinear
interactions near the East Pacific with numerical consistency from 0.25 to 2 kernel widths and 20 to
60 nearest neighbors, respectively, while the TE-binning produce spurious patterns without any numerical
consistency for all varying bin widths. These nonlinear interactions need further investigation.

As the current example is a large-scale process and the variables are expected to be near-Gaussian,
and as all the estimators (except TE-binning) showed a bidirectional information exchange, it could
be concluded that a bidirectional information exchange exists between the Pacific and Indian Ocean
SST. However, as mentioned earlier, we limited our investigation to two-dimensional systems, here
between ENSO and IOD. In real-world climate systems, there could always be an unobserved influence
of another system on the information exchange estimations. Hence, care is to be taken before drawing
any conclusions; furthermore, the information exchange magnitudes are quite smaller compared with the
idealized test cases.
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Figure 6. Information exchange from the Niño 4 Index to the Indian Ocean sea surface temperatures for the
period of 1958–2010 measured by (a) the IF-linear method (nats/time) and (b–e) with different variants of
the TE measure (in nats ×10−1).
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Figure 7. Information exchange from the Indian Ocean dipole Index to the Pacific Ocean sea surface
temperatures for the period of 1958–2010 measured by (a) the IF-linear method (nats/time) and (b–e) with
different variants of the TE measure (in nats ×10−1).

3.2.2. Information Exchange between Nao and European Near-Surface Temperatures

The North Atlantic Oscillation (NAO) is one of the dominant modes in the climate system which
influences the European climate and many parts of the Northern Atlantic [69]. The NAO characterizes the
strength of the subtropical high and polar low. The NAO is measured through the NAO index, which is
obtained by the normalized pressure difference between the stations located in the Azores and Iceland [70].
A positive NAO represents a deeper low over Iceland and stronger subtropical high than normal and
vice versa.

There have been several studies suggesting the influence of the NAO on the winter temperatures
over Europe [71,72]. One of the physical mechanisms in which the NAO influences the temperatures
is by the advection of the heat by anomalous mean flow [71]. Another mechanism through which the
temperatures are affected is through modulation of radiation by the cloud cover [72] through altering
the storm track directions. In the current study, we investigated the information exchange from NAO to
winter temperatures over Europe and checked if all the methods reproduce this relation.

The NAO index and the near-surface air temperatures (T) were obtained from the CRU database [73]
held at the British Atmospheric Data Centre, RAL, UK for the period of 1901 to 2016. December, January,
and February temperatures were chosen as the winter months. The total time series length of 348 months
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was considered. The autocorrelation of NAO is of magnitude 0.1 with a time lag of 1 month, and surface air
temperature autocorrelation is about 0.05 with a time lag of 1 month. Because of the low autocorrelations,
we expected the methods mentioned in Section 2 to be robust with given time series length. Moreover, the
AI for T and NAO showed a minimal increase from time lag 1 to time lag 10, and hence, k = 1 was chosen,
while we scanned for an interaction delay at which the source exchanges maximum information exchange.
The PRUDENCE regions [74] over Europe were selected, and spatial mean air temperatures over different
regions were used to detect the information exchange.

Table 2 shows the information exchange between the NAO and T over two PRUDENCE regions
(the British Isles and Scandinavia). The parametric IF-linear shows significant information exchange
from T over the British Isles to the NAO index at an interaction delay of zero days. The TE estimators
show a significant information exchange bidirectionally between NAO and T over the British Isles except
for the TE-binning estimator. For Scandinavia, IF-linear shows information exchange from NAO to T,
while TE estimators show bidirectional information exchange. Over other PRUDENCE regions, similar
bidirectional information exchange ess observed except for the Mediterranean region. These results seem
to be implausible, as one would not expect any information exchange from T over Europe to the NAO
index. This unrealistic estimation of information exchange could have arisen from a common influence
by a hidden third variable. Earlier studies have observed the sensitivity of TE estimation to a hidden
variable [75]. From previous literature, a possible influence on NAO might arise from the variations in
sea surface temperatures, sea ice, volcanic activity, and solar activity [76], which also influence the T
over Europe.

Table 2. Information exchange between North Atlantic Oscillation (NAO) and winter near-surface
temperatures (* refers to significant information exchange).

Method NAO to TS TS to NAO Units Region

IF-linear 0.02 0.09 * nats/month British Isles
TE-linear 0.318 * 0.314 * nats British Isles
TE-kernel 0.4 * 0.38 * nats British Isles

TE-kraskov 0.3 * 0.2 * nats British Isles
IF-linear 0.08 * 0.05 nats/month Scandinavia
TE-linear 0.14 * 0.14 * nats Scandinavia
TE-kernel 0.24 * 0.2 * nats Scandinavia

TE-kraskov 0.16 * 0.17 * nats Scandinavia

4. Conclusions

This work targeted detecting and quantifying interactions in climate phenomena through asymmetric
methods from information theory, IF, and TE. However, due to the difficulty in their estimations, we
initially tested various estimators of these methods to idealized systems and then to two important climate
phenomena. We limited our discussions only to two-dimensional systems.

The parametric estimators assuming linearity, such as the rigorously derived IF-linear and
axiomatically proposed TE-linear, detected and reliably quantified the unidirectional and bidirectional
information exchange in the idealized linear systems. IF-linear was able to detect the unidirectional
information exchange for the tested unidirectional nonlinear system, whereas the TE-linear failed to do
so. For the bidirectional nonlinear Heńon maps, both linear estimators failed to detect and quantify the
information exchange. Hence, care has to be taken if linear information exchange measures is applied in
climate system diagnosis, especially if the system variables have non-Gaussian distributions. However,
these two estimators, IF-linear and TE-linear, were robust and reliable for the discussed linear systems
and, in addition, IF-linear also for a weakly nonlinear system. For all the idealized systems discussed
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here, the nonlinear implementation of IF might reveal the interactions, but since we focused on climate
applications given time series with an unknown dynamical model, we used IF-linear, which does not
require system dynamics.

Among the nonparametric estimators, the TE-binning failed to be useful as a robust estimator. Even
though the TE-kernel and TE-kraskov passed the idealized tests, their implementations had to be tuned
to get consistent numerical results. Slow convergence of information exchange with the TE-kraskov
estimator with increase in time series length was also noted. Therefore, we concluded that both reliable
nonparametric estimators should be jointly applied and their implementation should be optimized for
consistent results before any quantitative interpretation of the investigated nonlinear system is drawn.
This conclusion is conditioned on the availability of long enough data time series. The composite use
of TE-kernel and TE-kraskov showed that the dynamics of the Lorenz-96 model is dominated by the
slow subsystem.

For real climate applications, i.e., information exchange between the Indian and Pacific Oceans, the
parametric and reliable nonparametric estimators showed a significant bidirectional information exchange.
Moreover, the time lag of significant information exchange from Pacific to the Indian Ocean was about 2
to 3 months. An instantaneous information exchange from the Indian to Pacific Ocean was detected and
also with a time lag of about 10 to 12 months. The respective spatial patterns over the Indian and Pacific
Oceans revealed a significant bidirectional information exchange. Hence, given the consistent estimations,
we concludef that a bidirectional information exchange exists between the Pacific and Indian Oceans, as
expected from literature [64,67,68]. However, given the limitations of TE and IF-linear, a possibility of a
hidden influence by another system cannot be ruled out. This requires further analysis.

For the relation of NAO and European winter air temperatures, the estimators showed significant
bidirectional information exchange. The process mechanism from NAO to European temperature is
often discussed in the literature [71,72]. However, the measured information exchange from European
temperatures to the NAO cannot be explained by a straightforward process chain. This indicates an
influence from a third hidden variable as a common driver.

Thus, even though TE and IF-linear are useful measures which allow for quantification of interactions
and their directionality, their limitations and the system at hand need to be taken into account carefully
before drawing any conclusions from their estimations. Hence, we propose a composite use of the
information theory methods with parameter testing for various applications, for example, as a robust
model evaluation framework. While this study was limited in investigating the relationship between two
systems, in the future study, the authors plan to investigate interaction measures based on information
theory in higher-dimensional climate system networks.
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Abbreviations

The following abbreviations are used in this manuscript:

TE Transfer Entropy
IF Information Flow
MI Mutual Information
CMI Conditional Mutual Information
AI Active Information storage
C Coupling Coefficient
NAO North Atlantic Oscillation
ENSO El-Niño Southern Oscillation
SST Sea Surface Temperature
IOD Indian Ocean dipole
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