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Abstract: Six dentin adhesives were tested in vitro regarding their cytotoxicity on human fibroblasts.
The adhesives Hybrid Bond, One-up Bond F Plus, AdheSE, Clearfil SE Bond, Optibond Solo Plus
and Syntac were eluted with culture medium as single or sequentially applied adhesive part for
24 h. 75 Petri dishes were produced per group. They were evaluated triangulated, comprising the
quantitative evaluation (105 ones) to determine “viable”, “dead” and “debris” cells with the use of
a cell-counter and the reactivity index was also identified based on the qualitative assessment (420
ones). One-up Bond F Plus, AdheSE and Clearfil SE Bond showed a statistical difference of viable cells
to the cell control. For One-up Bond F Plus, statistically, differences compared to hybrid bond and
Syntac were also found. All the adhesives except One-up Bond F Plus showed significant differences
between single and sequentially applied adhesive part regarding the quantitative evaluation. The test
material showed a moderate grade of cytotoxicity. As a result, a statistically significant difference of
the cytotoxicity between the self-etch and etch-and-rinse adhesives cannot be demonstrated regarding
the qualitative evaluation and the reactivity index, but the differences between sequentially applied
and single applied components can be proved.
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1. Introduction

A growing demand of dentists for quicker work has led to an increasing number of applications
of Self-Etch adhesives. Their application is user-friendly and less technique-sensitive [1]. They
do not require separate conditioning [1–4]. Self-etch adhesive can be categorized according to the
mechanism of clinical application into one-step, which is also called “all-in-one”, or two-step self-etch
adhesives [1,2,5]. The conventional dentin adhesives, which need a conditioning with 37% phosphoric
acid, are etch-and-rinse bonding systems [3–5]. There is also a sub-classification according to the
number of steps, which are provided in the application [6].

Dental adhesives have intraoral direct or indirect contact to gingival and through the dentinal
tubules to pulp tissue [5,7]. It is frequently argued that dental materials that come into contact with
intraoral tissue may have the potential to damage it [5,8–11]. For this reason, it is important to test the
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cytotoxicity of these materials. In general, the test of cytotoxicity of dental material follows a specific
sequence of tests according to the ISO 10993-5 [12]. First, an in vitro screening study is carried out by
means of qualitative evaluation, to rank the test material [12,13]. Within the framework of a screening
study, the reactivity index is also determined [12].

In previous studies, the cytotoxicity of different adhesives is discussed controversially. It is
difficult to compare the evaluation of each study because the investigations considered different
methods and parameters [11,14–35]. This includes that, in many studies, the individual parts of the
adhesives were tested for their cytotoxicity as a single substance and not in the manner actually
performed clinically [11,28–30]. Some dentin adhesives consist of several bottles, for example, primer
and bond. The test of cytotoxicity of these individual bottles is called single applied adhesive part
respectively additive analysis sequentially applied adhesive parts. In addition, the evaluation was
usually only quantitative [11,15,18–25,27–29,31–35]. A combination of quantitative and qualitative
assessments, which is based on ISO 10993-5, is only rarely available in the case of dental adhesives,
which refer exclusively to older adhesives like etch-and-rinse ones [3]. However, it is precisely this
combination that is crucial, if you want to make meaningful conclusions. For self-etching dentin
adhesives, to our knowledge, the triangulated data are not available. Qualitative evaluations including
the ISO 10993-5 [12] recommended grading according to so-called reactivity indices are also rarely
available [36].

The study hypothesis of our screening study:

- Self-etch adhesives show no different cytotoxicity in relation to etch-and-rinse adhesives regarding
the triangulated evaluation.

- Sequentially applied substances have different cytotoxic effects other than single applied
substances regarding the triangulated evaluation.

- Self-etch one step and self-etch two steps adhesives show no different cytotoxicity regarding the
triangulated evaluation.

2. Materials and Methods

2.1. Materials and Cells

Six different dentin adhesives were evaluated; an overview of these test materials is shown in
Table 1. The pH values refer to the manufacturer’s instructions.
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Table 1. Test material and their composition according to manufacturers.

No Group Dentin Adhesives Manufactures pH Components Curing Time

1 Self-etch,
1 step Hybrid Bond Sun medical,

Moriyama, Japan 1.0

Part 1 Hybrid Base:
Monomethacrylate, META, polyfunctional acrylate, water, acetone,
photoinitiators, stabiliser
Part 2 Hybrid Brushes:
Sodium p-toluenesulfinate, aromatic amine

10 s

2 Self-etch,
1 step One-up Bond F Plus Tokuyama, Tokyo,

Japan 1.17–1.26

Part 1 Bonding Agent A:
Dimethacrylate, MMA, MAC-10, water
Part 2 Bonding Agent B:
DMAEMA, HEMA, MMA

10 s

3 Self-etch,
2 steps AdheSE Ivoclar Vivadent,

Schaan, Liechtenstein 2.9

Part 1 Primer:
Dimethacrylate, phosphoric acid acrylate, water, initiators, stabilisers
Part 2 Bond:
Dimethacrylate, HEMA, silicon dioxide, initiators, stabilisers

10 s

4 Self-etch,
2 steps Clearfil SE Bond Kuraray, Okayama,

Japan 2.0

Part 1 Primer:
HEMA, MDP, hydrophilic dimethacrylate, N,N-diethanol-p-toluidine,
water, dl-camphorquinone
Part 2 Bond:
HEMA, MDP, Bis-GMA, hydrophobic dimethacrylate,
N,N-diethanol-p-toluidine, silanated colloidal silica, dl-camphorquinone

10 s

5 Etch-and-rinse,
4 steps Syntac Ivoclar Vivadent,

Schaan, Liechtenstein 2.5

Part 1 Primer:
TEGDMA, PEGDMA, maleic acid, water, acetone, stabilisers
Part 2 Adhesive:
PEGDMA, glutaraldehyde, maleic acid, water
Part 3 Heliobond:
Bis-GMA, TEGDMA, stabilisers, catalysts

20 s

6 Etch-and-rinse,
2 steps Optibond Solo Plus Kerr, West Collins

Orange, USA 2.4 Bis-GMA, HEMA, GPDM, water, ethanol, barium aluminoborosilicate
glass, fumed silicia, sodium hexafluorosilicate, photoinitiator 20 s

7 Control: cell
control 7.44

Bis-GMA = bisphenol A-diglycidyl ether dimethacrylate, DMAEMA = dimethylaminoethyl methacrylate, GPDM= glycerol phosphate dimethacrylate, HEMA = 2-hydroxyethyl
methacrylate, MAC-10 = 11-methacryloxy-1, 1-undecanedicarboxylic acid, MDP = 10-methacryloyloxydecyl dihydrogen phosphate, META= 4-methacryloyloxyetyl trimellitate anhydride,
MMA = methyl methacrylate, PEGDMA = Polyethylene glycol dimethacrylate, TEGDMA = triethylene glycol dimethacrylate.
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Explants of normal human gingival tissue (Ethical approval code: 275/07) were obtained by surgical
periodontal operation. Afterwards, this obtained basic material was stored overnight in the Hanks
balanced salt solution (Gibco-Life Technologies Ltd., Paisley, Scotland) in a refrigerator at 4 ◦C, to cleanse
the explants of blood and granulation tissue. They were supplemented with five millilitres bicarbonate
and an antibiotic additive and cooled to 4 ◦C (Gibco-Life Technologies Ltd., Paisley, Scotland), to get
germ poor conditions as possible. To prepare the human tissue for the test, they were cut with a sharp
scalpel (No. 15, Aesculap, Tuttlingen, Germany) in uniform small pieces of 1 mm3. After that, the
explants were transferred to surface-treated 50-cm3 polystyrene culture bottles and 50-mm-diameter
polystyrene Petri dishes (Falcon, Becton and Dickinson, Heidelberg, Germany). The test tissue was
dried for one to two minutes at room temperature. Afterwards, five millilitres of the culture medium
(BM Eagle–Basal Medium) and 10% calf serum (both materials: Gibco, Paisley, Scotland, UK) were
added to each Petri dish. Because oral human tissue cannot be obtained under sterile conditions,
the germ content has to be reduced as much as possible with antibiotics. Penicillin was applied to every
culture medium. The Petri dishes were incubated in a gas incubator (Nr, Heraeus, Hanau, Germany)
at 37 ◦C with a 4.5% CO2 atmosphere and high humidity (95%). The culture medium was initially
renewed every five to seven days and then after two to three days. The first proliferation of epithelial
and fibroblast cells was present after 18 to 24 days around the explants and after two to three days a
cell monolayer could be observed. For the present investigation, the test series was planned over a
longer period and, therefore, a pure fibroblast culture was used, which was obtained by trypsinisation.
The dentin adhesives were applied in the center to the sterile basses of glass slides under germ poor
conditions. The glass slides with the single adhesive part remained uncured. Meanwhile, successively
applied adhesive parts were cured together with the use of an Elipar II curing light (ESPE, Seefeld,
Germany). The curing times are following the respective instruction for use (Table 1). These prepared
glass slides were weighted and placed centrally into the Petri dishes. After that, the culture medium
was applied into to Petri dishes to achieve a concentration of 0.2 milligram adhesive per one-milliliter
medium. The extraction concentration has already used in earlier research and did not follow the ISO
10993-5 [3]. An eluate was obtained after 24 h. Five milliliters of this eluate were applied to fibroblasts
in Petri dishes, which were 24 h old. They were between the 8th and 18th passage. Then, these Petri
dishes were incubated at 37 ◦C in a 4.5% CO2 atmosphere for 24 h. Finally, the cell cultures were fixed
with 98% pure ethanol and stained with Pappenheim’s panoptic stain. This method has already been
used in earlier research [3,10] and is shown in Figure 1.
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Figure 1. The method of the cytotoxicity assay (1 = biopsy of normal human gingival tissue, 2 = isolation
of fibroblast cells, 3 = cultivation of fibroblast cells, I = different dentin adhesives, II = adhesives were
applied centrally to the sterile bases of glass slides, III = eluate was obtained, 4 = eluate added to fibroblasts
in Petri dishes).
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A total of 525 culture dishes were prepared, which resulted in 75 dishes per dentin adhesive
respectively cell control. All cell cultures within a test series that were created under the influence of
the dentin adhesives were compared with the cell control.

2.2. The Triangulated Parameters Tested

2.2.1. Quantitative Evaluation

A total of 105 Petri dishes respectively 15 ones per group were used for the quantitative assessment,
which were evaluated for “viable”, “dead” and “debris” after 24 h with a cell-counter (Cell-Counter
CASY DT, OLS GmbH and Co KG, Bremen, Germany). It was adjusted after cursor setting for
fibroblasts: viable: 12.8–100 µm; dead: 7.6–12.8 µm; debris: 3.3–7.7 µm. These values for “viable”,
“dead” and “debris” fibroblasts are based on manufacturer recommendations and other studies already
conducted [37].

2.2.2. Qualitative Evaluation

In addition, a total of 420 Petri dishes, which resulted in 60 ones per group, were used for the
qualitative analysis. They were examined at 100–250-fold magnification under a contrasting phase
microscope (Leica, Bensheim, Germany), to identify physiological and pathological cellular changes.
The general morphology, reactions and growth of the fibroblasts of the cells was evaluated, as well as
any vacuolization, detachment and cell lysis that may occur. To document these cellular changes, 420
photos of the cell cultures were taken. One observer performed the assessment of the fibroblasts.

2.2.3. Reactivity Index Evaluation

The reactivity index (Table 2) was determined based on qualitative assessment.

Table 2. Assessment of the reactivity index based on the ISO 10993-5 [12].

Grading Reactivity Condition of All Cultures

0 none Discrete intracytoplasmatic granules, no cell lysis, no reduction of
cell growth

1 slight

Not more than 20% of the cells are round, loosely attached and
without intracytoplasmatic granules, or show changes in
morphology; occasional lysedcells are present; only slight growth
inhibition observable

2 mild
Not more than 50% of the cells are round, devoid of
intracytoplasmatic granules, no extensive cell lysis; not more than
50% growth inhibition observable

3 moderate
Not more than 70% of the cell layers contain rounded cells or are
lysed; cell layers not completely destroyed, but more than 50%
growth inhibition observable

4 severe Nearly complete or complete destruction of the cell layers

2.3. Statistical Analysis

The null hypothesis was tested by means of the Kruskal–Wallis multiple Conover–Iman–Tests
and Bonferroni–Holm with adjusted significance level of alpha = 0.05 (BiAS.11.10, Epsilon,
Frankfurt, Germany).
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3. Results

3.1. Quantitative Result

Significantly less viable cells could be observed for the test materials One-up Bond F Plus
(p = 0.0004), AdheSE (p = 0.01), Clearfil SE Bond (p = 0.002) in relation to the cell control. Comparing
the material groups, hybrid bond (p = 0.04) and Syntac (p = 0.04) showed significantly more viable cells
as One-up Bond F Plus. According to the dead and debris cells, no statistically significant differences
could be found. The values for viable cells with respect to each dentin adhesive and the cell control
have been summarised in Table 3.

Table 3. Mean, Standard deviation (sd), minimum (min.), maximum (max.) and median values of the
six dentin adhesives (viable cells).

No. Dental Adhesive
(1–6) Mean SD Min. Max. Median Significance in Rel.

to No. *

1 Hybrid Bond 104,719,500 81,693,327 41,730,000 426,100,000 89,210,000 2
2 One-up Bond F Plus 55,844,444 27,706,721 9,969,000 96,830,000 64,050,000 1, 5, 7
3 AdheSE 76,550,000 37,983,471 29,010,000 170,300,000 72,060,000 7
4 Clearfil SE Bond 65,363,333 35,215,867 9,440,000 156,600,000 55,865,000 7
5 Syntac 90,745,000 38,932,657 39,580,000 206,700,000 83,495,000 2
6 Optibond Solo Plus 76,741,666 34,392,463 46,080,000 134,900,000 65,000,000 -
7 Cell Control 198,500,00 112,026,113 122,800,000 394,200,000 168,000,000 2, 3, 4

* The numbers indicate which pairs of groups showed a statistically significant difference (alpha = 0.05, Kruskal–Wallis
multiple Conover–Iman–Tests and Bonferroni–Holm (BiAS.11.10, Epsilon, Frankfurt, Germany).

Hybrid bond sequentially applied as manufacturers recommend could be found statistically
significantly less viable (p = 0.008) and more dead cells (p = 0.003) in relation to hybrid brushes solely
(Figure 2). One-up Bond F Plus had no significant differences between sequentially and single applied
adhesive parts (Figure 3). For AdheSE, significantly more viable cells were found for the primer
(p = 0.008) respectively significantly more debris cells for the bond (p = 0.03) used in a single application
in comparison to sequentially applied adhesive parts (Figure 4). Sequentially applied Clearfil SE Bond
showed more dead cells than the Clearfil SE Bond Primer solely (p = 0.04) (Figure 5). The difference
according to the viable cells between Syntac sequentially applied was significant to Syntac Adhesive
(p = 0.005) and Syntac Heliobond (p = 0.002) each single applied (Figure 6).
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Figure 6. Results of Syntac sequentially applied, single applied (Primer, Adhesives, Heliobond) and
Cell control; (Sequentially applied vs. Adhesive * viable: p = 0.005, sequentially applied vs. Heliobond
** viable: p = 0.002; same asterisks show significant differnces in the corresponding groups).

3.2. Qualitative Result

The qualitative evaluation is shown in Tables 4–9. Figures 7–11 showed the characteristic
appearance of the cell cultures in the influence of the different dentin materials. The phenotype of this
cell line has a characteristic morphology, which was observed with the use of light microscopy. This is
characterized by spindle-shaped, long human primary fibroblast cells (pMF) derived from the gingiva
human gingival primary fibroblast cells (HGPFC).
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Table 4. Qualitative evaluation: hybrid bond (No. 1).

Concentration Components Sequentially Applied
Components Single Applied

Hybrid Base Hybrid Brushes

I 0.1–2.0 µL: the most fibroblasts rounded off,
single vital fibroblasts

0.04–2.0 µL: almost all fibroblasts rounded off,
few vital fibroblasts, 98%–100% cell death

0.1–1.0 mg: partly not so dense fibroblast
grass, mitoses present, few retractions,
similar to cell control

II 2.5–5.0 µL: 100% cell death 3.0–5.0 µL: 100% cell death 1.1–3.4 mg: similar to concentration I

Table 5. Qualitative evaluation: One-up Bond F Plus (No. 2).

Concentration Components Sequentially Applied
Components Single Applied

Agent A Agent B

I
1.0–6.0 µL: contact cells to the material all
dead, many dead and rounded cells,
fibroblast lawn less dense than cell control

1.0–4.0 µL: contact cells to the material all dead,
remaining fibroblast lawn appearing normal

1.0–5.0 µL: material intensely distributed,
fibroblast lawn less dense than
cell control

II
7.0–14.0 µL: many rounded cells, few
mitoses, fibroblast lawn much less than
cell control

5.0–8.0 µL: fibroblast lawn less dense than cell
control, rarely mitoses, cell death between 80
and 100%

6.0–10.0 µL: few small vital cells, many
rounded cells, no mitoses, isolated vital
fibroblasts, up to 100% cell death

Table 6. Qualitative evaluation: AdheSE (No. 3).

Concentration Components Sequentially Applied
Components Single Applied

Primer Bond

I
2.5–6.0 µL: vital fibroblasts, mitoses present,
many rounded cells, fibroblast lawn less
dense than cell control

5.0–9.0 µL: rounded cells, fibroblasts intensely
vacuolated, mitoses present, fibroblast lawn less
dense than cell control

3.0–4.0 µL: rounded cells present, few
vital fibroblasts, dense fibroblast lawn on
the Petri dishes margin

II
7.0–12.0 µL: dead cells, rounded fibroblast
up to the petri dishes margin, material
intensely distributed

10.0–14.0 µL: similar to concentration I
5.0–7.0 µL: fibroblasts vacuolated, dead
cells, few small vital fibroblasts, no
mitoses, cell dead between 75 and 100%
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Table 7. Qualitative evaluation: Clearfil SE Bond (No. 4).

Concentration Components Sequentially Applied
Components Single Applied

Primer Bond

I
2.0–3.0 µL: small vital fibroblasts, no mitoses,
dead cells, fibroblasts lawn less than cell control,
material intensely distributed

4.0–5.0 µL: few small vital fibroblasts, no
mitoses, rounded cells, dead cells present,
material intensely distributed

3.0–4.0 µL: small vital fibroblasts,
rounded cells, fibroblast lawn less dense
than cell control

II 4.0–5.0 µL: the most cells rounded, few small
vital fibroblasts, cell death between 80 and 100%

6.0–8.0 µL: rounded cells present, many dead
fibroblasts, fibroblasts lawn much less than cell
control, material intensely distributed

5.0–6.0 µL: small vital fibroblasts,
fibroblasts vacuolated, rounded and
dead cells present, fibroblasts lawn much
less than cell control

Table 8. Qualitative evaluation: Syntac (No. 5).

Concentration Components Sequentially Applied
Components Single Applied

Syntac Primer Syntac Adhesive Syntac Heliobond

I
0.1–1.0 µL: rounded cells present,
vital fibroblasts, fibroblast lawn less
dense than cell control

1.0–6.0 µL: rounded and dead fibroblasts,
many normal fibroblasts

0.2–2.0 µL: whole petri dish with few
small vital fibroblasts and rounded cells,
between 95 and 100% cell death

1.0–5.0 µL: dead cells and rounded cells
present, fibroblast lawn much less dense
than cell control

II 2.0–2.5 µL: the most fibroblast
rounded, 100% cell dead

6.0–12.0 µL: only in the transition zone
fibroblast lawn much less dense, normal
appeared cells, material zone
sequentially grown

3.0–5.0 µL: 100% cell death

6.0–10.0 µL: at the Petri dishes margin
normal vital fibroblasts, many rounded
cells, fibroblast lawn much less dense
than cell control
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Table 9. Qualitative evaluation: Optibond Solo Plus (No. 6).

Concentration Solo Plus

I 1.0–4.0 µL: small vital fibroblasts, many rounded cells, remaining
fibroblast lawn less dense or as dense as the cell control

II 5.0–8.0 µL: rounded cells on the Petri dishes bottom, few vital
fibroblasts at the Petri dishes margin, 95–100% cell dead
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3.3. Reactivity Index Result

The reactivity index showed any statistically significant difference neither between Self-Etch and
Etch-and-Rinse nor between the individual adhesives (Table 10). However, a statistically significant
difference was found for this parameter between each dentin adhesive and the cell control.
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Table 10. Mean, standard deviation (sd), minimum (Min.), maximum (Max.) and median values of
reactivity index.

No. Dental Adhesive
(1–6) Mean SD Min. Max. Median Significance in Rel.

to No. *

1 Hybrid Bond 2.74 1.57 0.00 4.00 3.50 7
2 One-up Bond F Plus 2.98 0.86 1.00 4.00 3.00 7
3 AdheSE 2.96 0.87 1.00 4.00 3.00 7
4 Clearfil SE Bond 2.74 0.83 1.00 4.00 3.00 7
5 Syntac 3.02 0.83 1.00 4.00 3.00 7
6 Optibond Solo Plus 3.23 0.86 2.00 4.00 3.50 7
7 Cell Control 0.00 0.00 0.00 0.00 0.00 1, 2, 3, 4, 5, 6

* The numbers indicate which pairs of groups showed a statistically significant difference (alpha = 0.05, Kruskal-Wallis
multiple Conover-Iman-Tests and Bonferroni- Holm (BiAS.11.10, Epsilon, Frankfurt, Germany).

Hybrid Bond sequentially applied showed a significantly higher reactivity index compared to
Hybrid Brushes single applied (p < 0.1 × 10−6). Each single applied adhesive part One-up Bond F Plus
Agent A (p = 0.1× 10−5) and B (p = 0.02) had just significant differences compared to One-up Bond F Plus
sequentially applied, which was evaluated with a lower reactivity index. It was found a significantly
higher reactivity index for the AdheSE Bond single applied (p = 0.9 × 10−4) in comparison to AdheSE
sequentially applied. Clearfil SE Bond sequentially applied showed a significantly higher reactivity
index in comparison to both adhesive parts (Primer p = 0.0002; Bond p = 0.0009) single applied. A
significantly higher reactivity index was found for Syntac sequentially applied in comparison to Syntac
Primer (p = 0.002).

The null hypothesis H0
1, in which self-etch adhesives showed no differences in relation to

Etch-and-Rinse adhesives, can be accepted, in terms of the quantitative evaluation and the reactivity
index. The null hypothesis H0

1 is discarded regarding the quantitative results.
The null hypothesis H0

2, that sequentially applied substances have different cytotoxic effects other
than single applied substances, can be accepted. Except for One-up Bond F Plus, the null hypothesis is
discarded regarding the quantitative results.

The null hypothesis H0
3, that Self-Etch one step and Self-Etch two steps adhesives show no

different cytotoxicity regarding the triangulated evaluation, can be accepted.

4. Discussion

Dental materials, which are applied for intraoral restorations come into contact with oral tissue
and pulp cells, the cytotoxic effects on these cells are of high clinical importance [5,8,10,11,15,22,24,31].
Many different cell types were used to test the cytotoxicity of materials [10,11,14–36]. We decided
to use primary human gingival fibroblasts, because they are closely related to the original tissue
and thus are much better verifiable and more suitable to test cytotoxicity than cell lines [10,38,39].
Because the human tissue comes from just one donor, it is difficult to draw general conclusions.
According to ISO 10993-5, a primary cell culture model can be used to test the cytotoxicity of dental
material in vitro [12]. But it must be stated, that in vitro screening tests are limited to transfer to
in vivo conditions, thus clinical studies cannot be replaced. In the oral cavity, the cytotoxic effects are
influenced by saliva or microorganisms among other factors. These conditions cannot be created in
an in vitro study. Additionally, it must be stated, that the extraction concentration of 0.2 milligram
adhesive per one-millilitre medium has already used in earlier research and did not follow the ISO
10993-5, because none of the descriptions given in ISO 10993-12 corresponds to dentin adhesives [3].

One important finding of our screening study is that Self-Etch and Etch-and-Rinse adhesives
showed no statistically significant difference in the observed cytotoxic effects in terms of the qualitative
evaluation and the reactivity index. This is in accordance with other studies [14–19]. Self-etch dentin
adhesives showed more cytotoxicity regarding the quantitative evaluation, which is also in line with
previous studies [14,24,26–28]. Contradictory, other studies found that Etch-and-Rinse adhesives were
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more cytotoxic [11,17,20–25]. However, in all of the comparative studies, other methods, materials
and their combinations were used [11,14–28]. It should be noted that in the clinical application of
Etch-and-Rinse adhesives conditioning with 37% phosphoric acid is necessary. This step has not
been tested, because there are already numerous studies regarding this topic [40–42]. The methods
used to evaluate the cytotoxicity are categorized in the assessments of cell damage by morphological
means, measurements of cell damage, of cell growth or of specific aspects of cellular metabolism
according to ISO 10993-5 [12]. Most studies are based on settings, which are recommended by
the ISO 10993-5 under further test procedures to evaluate the cellular metabolism such as MTT or
XTT [14–16,18,20,21,23,24,28–32]. An MTT Assay is limited in the distinction of cells that are necrosis
or altered into apoptosis [10]. In the present observational study, in which the morphological changes
of the cells are evaluated, these differentiations are possible. MTT or XXT Assays require a previously
performed screening according to the ISO 10993-5 [12]. Unfortunately, the number of screenings in this
field is limited. Therefore, our aim was to perform our defined questions in the first step in a triangular
setting with a screening study. According to ISO 10993-5, screening studies are performed when cells
are examined under the microscope for changes in general morphology, vacuolization, detachment
and cell lysis. These cell changes are represented by degrees in the reactivity index. As a quantitative
assessment the measurement of cell numbers, such as dead cells, is recommended by an objective
method [12]. In the present study, these guidelines were implemented by a qualitative evaluation
with the help of a light microscope and the subsequent determination of the reactivity index and the
quantitative assessment by means of cell-counters.

The cytotoxicity of the adhesives is influenced by the individual composition of ingredients.
Significantly involved in this are the concentrations and combinations of the different monomers [43–45].
The cytotoxicity of monomers is ranked from the highest to the lowest: Bis-GMA, UDMA, TEGDMA,
and HEMA [43,46,47]. This is not confirmed in our study regarding the quantitative evaluation
with significantly differences. On the contrary, for One-up Bond F Plus significantly less viable cells
were found compared to Syntac and Hybrid Bond. One-up Bond F Plus contains dimethacrylates
in comparison to Syntac with a combination of TEGDMA, PEGDMA, Bis-GMA and HEMA. Only
AdheSE, Clearfil SE Bond and One-up Bond F Plus showed a statistically significant difference to the
cell control. They also contain dimethacrylates in their components, which has been the subject of
debate in earlier research [24,34,48]. Dentin adhesive systems with higher cytotoxicity might contain
more dimethacrylates of higher toxicity [34], but the dimethacrylates of the test materials are not
described any closer from the manufacturers. Additionally, it must be stated that the dentin adhesives
systems include other ingredients, e.g., different solvents, which contribute to their cytotoxicity [16,45].
In this study, the materials based on acetone, ethanol and water were tested. The water-based One-up
Bond F Plus showed statistically significant less viable cells in relation to the acetone-based Syntac.
Surprisingly, a statistically significant difference between One-up Bond F Plus and water-based Hybrid
Bond was also stated. The other three water-based adhesives showed no significant differences to
the above. As already explained, this might explain that the cytotoxicity is hardly influenced by the
individual composition of the summation of their ingredients [16,45]. Contrary to the quantitative
assessment, every adhesive showed a statistically significant difference to the cell control regarding the
qualitative evaluation including the reactivity index. Thus, all the adhesives showed a cytotoxic effect,
which is in accordance with previous studies [11,15–18,21,27,29,32]. The ranking of the cytotoxicity
of monomers [43,46,47] cannot be confirmed with significant differences by the qualitative results
and the reactivity index. It was reported, that Clearfil SE Bond showed a reactivity index of mild to
moderate [16], which was also confirmed with our results. Syntac showed one of the highest reactivity
indices compared to other test materials. In earlier studies, the cytotoxicity of Syntac was discussed
controversial, because lower [33] and higher cytotoxicity [28,35] were found. It was already established
in existing studies, that the Syntac containing glutaraldehyde has high cytotoxic potency [20,31].
Optibond Solo Plus showed the highest reactivity index, which could be induced by silicia in addition
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to the other ingredients [34]. The pH values of the dentin adhesives showed no significant differences
between them, so that no conclusions can be drawn about their different cytotoxicity.

In terms of quantitative evaluation, all adhesives showed a statistically significant difference
between sequentially and single applied except One-up Bond F Plus. Possibly, the number of individual
components in a bottle might play a role, because the latter dentin adhesive contains only according
to the manufacturer in Agent A four and Agent B three parts. Hybrid Brushes were statistically
significantly less cytotoxic regarding viable and dead cells than the Hybrid Bond sequentially applied.
The hybrid brushes contain no monomers, which might explain the low cytotoxicity. AdheSE Primer
and Clearfil SE Bond Primer single applied were also significantly less cytotoxic than the adhesives
sequentially applied. AdheSE showed this observation in terms of viable, Clearfil SE Bond of dead cells.
Possibly, additional monomers or solvents respectively camphorquinone [34] could be a reason for this
observation. Syntac sequentially applied was significantly less cytotoxic than Syntac Adhesive and
Syntac Heliobond. It might play a role that these single applied adhesive parts have larger proportions
of hydrophobic monomers like Bis-GMA [16] or also contain glutaraldehyde as the Syntac Primer,
which also affected the cytotoxicity of Syntac sequentially applied [49]. Another reason might be the
number of bottles, or indirectly the individual components of them, as already described. Because
such an application comparison is published for the first time, the results cannot be compared with
existing studies in the literature. There were also recognisable differences between the quantitative
and quantitative results regarding the application comparison. One-up Bond F Plus showed a less
reactivity index sequentially applied than the Agents A and B single applied. AdheSE sequentially
applied showed a statistically significant lower reactivity index than AdheSE Bond single applied.
It might be explained by the fact, that the sequentially applied adhesives were polymerized at the
end as recommended by the manufacturers, whereas the single applied adhesive parts were uncured.
In accordance with other studies, cured components show less cytotoxic effects than uncured ones [29].

The differences between quantitative and qualitative results respectively the reactivity index could
be explained by the fact, that the cell-counter was calibrated with a specific setting for fibroblasts.
The grading between “viable” and “dead” was classified only by cell size and conductivity [50].
The differentiation between the process of rounding off and the actual cell death is not possible.
In contrast, the cell cultures were evaluated visually using microscopy, so that such differentiation
can be evaluated in terms of qualitative results. Reactivity indices were determined on the basis of
this. Since the experimental conditions of the quantitative method can best be transferred to further
investigations, we consider this to be the most reliable method for evaluation.

In future research, the evaluation for these adhesives should be extended beyond 48 h and up to a
long-term trial over 30 days, as described as longer extraction times in the ISO 10993-5 [12], like in
other studies [15,21,24,27,35]. In order to further assimilate the cytotoxicity of the individual dentin
adhesives, further investigation methods such as MTT or XTT Assay are planned after the screening.
This investigation can also be supplemented by further screening studies with other adhesives to
confirm the result of the comparison of the cytotoxicity of Self-Etch and Etch-and-Rinse adhesives.

5. Conclusions

In conclusion, the triangulated evaluation showed that the tested dentin adhesives were cytotoxic
to the primary gingival fibroblasts. By limiting an in vitro study, only an adequate measure of the
hazard potential can be provided. However, no differences in the cytotoxicity of the Self-Etch and
Etch-and-Rinse adhesives could be demonstrated regarding the qualitative evaluation and the reactivity
index, but the difference for the quantitative evaluation can be proved. There was also a difference in
the cytotoxicity between sequentially applied and single applied adhesive parts.
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