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Purpose: Artificial intelligence (AI) has accelerated novel discoveries across multiple

disciplines including medicine. Clinical medicine suffers from a lack of AI-based

applications, potentially due to lack of awareness of AI methodology. Future collaboration

between computer scientists and clinicians is critical to maximize the benefits of

transformative technology in this field for patients. To illustrate, we describe AI-based

advances in the diagnosis and management of gliomas, the most common primary

central nervous system (CNS) malignancy.

Methods: Presented is a succinct description of foundational concepts of AI

approaches and their relevance to clinical medicine, geared toward clinicians without

computer science backgrounds. We also review novel AI approaches in the diagnosis

and management of glioma.

Results: Novel AI approaches in gliomas have been developed to predict the grading

and genomics from imaging, automate the diagnosis from histopathology, and provide

insight into prognosis.

Conclusion: Novel AI approaches offer acceptable performance in gliomas. Further

investigation is necessary to improve the methodology and determine the full clinical

utility of these novel approaches.

Keywords: glioma, artificial intelligence, neural network, deep neural network, convolution neural network,

support vector machines

INTRODUCTION

Gliomas are the most common primary intracranial neoplasm (1), and comprise 1.8% of human
malignancies and 2.3% of cancer deaths (2). World Health Organization (WHO) histopathological
classification includes four grades: grades I and II are considered low-grade gliomas (LGG)
and grades III and IV (glioblastoma-GBM) are considered high-grade gliomas (HGG) (3, 4).
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The resilience of gliomas derives from their infiltrative behavior,
aggressive biology, genomics, and presence of the blood-brain
barrier which reduces the effect of systemic chemotherapy
(5). Treatment planning entails initial diagnosis, degree of
infiltration, localization and segmentation, genomics, cell biology
and clinical/imaging data. Post-treatment evaluation focuses
on tumor progression/recurrence. Traditionally, these data are
compiled manually by skilled physicians. In the future, artificial
intelligence (AI) will augment clinical decision making in the
management of oncologic patients, and usher in an era of
personalized medicine. An example today is IBM Watson for
oncology, a prototypic cloud-based AI, which helps physicians
with treatment planning by analyzing extensive clinical, genetic
and imaging databases (6–8).

Novel AI approaches such as deep learning (DL), neural
networks (NN) and convolutional neural networks (CNN),
have facilitated automated extraction of salient clinical data
for treatment planning and post-treatment monitoring. Herein,
we present a succinct description of foundational concepts
of AI approaches and their relevance to clinical medicine.
This is geared toward clinicians without computer science
backgrounds. Also, we review novel AI approaches in the
diagnosis and management of glioma. Finally, we discuss the
future impact of AI on glioma diagnosis, genomics, perioperative
planning, prognosis and post-treatment surveillance and its
future challenges.

ARTIFICIAL INTELLIGENCE

Succinctly, AI aims to create processes that analyze their
environment and perform actions to optimize success toward
a pre-determined goal. Machine learning is a sub-type of
artificial intelligence focused on developing algorithms that can
identify patterns within data without explicit specification. These
algorithms can be classified into supervised and unsupervised
learning (9). In supervised machine learning, the algorithm is
trained on a human-labeled dataset, then the algorithm provides
classification or regression on unlabeled data (e.g., for prediction
of clinical outcomes). The rate-limiting step is a large human
labeled dataset. The most common supervised machine learning
techniques are linear and logistic regression, support vector
machines (SVMs), naive Bayes, decision trees, and random forest
methods. In unsupervised machine learning, algorithms identify
hidden patterns for unlabeled datasets that are unknown to
humans. The most common unsupervised machine learning
methods include K-means, mean shift, affinity propagation,
hierarchical clustering, Gaussian mixture modeling, and self-
organizing maps. In machine learning, the input data for the
above-mentioned algorithms are called features, which can be
numerical or nominal values.

As an example, common features of neuroimaging data are
location, size, shape, and signal intensity. In addition to these
features, machine-learning algorithms are able to develop new
inputs which are not readily visible to human eyes, including
texture information, signal intensity gradient and skewness. Two
main machine-learning algorithms, the SVM and the artificial

FIGURE 1 | The relationship between the most common AI methods in

medicine. SMV, Support Vector Machine; RF, Random forest algorithm; GBM,

Gradient Boosting Machines; XGB, XGBoost.

neural network (ANN), have been applied to analysis of imaging
data (Figure 1).

SVM and random forest are relatively simple supervised
machine learning algorithms that are useful for classifying an
object into different categories. The SVM algorithm designs
a decision surface in a high-dimensional space (hyper-plane)
(Figure 2). SVM works well when the margin of separation
between classes is maximized (10). Random forest algorithms
develop multiple decision trees and merge them together to get
a more accurate prediction. It is one of the most common AI
algorithms and can be used for both classification (dividing pieces
of data into different categories) and regression (predicting a
quantitative response from a predictor variable) (Figure 3).

The ANN is a more complex machine learning algorithm
with many variations that in rough terms attempt to mimic
the functionality of biological neural networks. This algorithm
is consistent with different nodes of input, hidden and output
layers, each layer with a more abstract level of processing
compared to the one prior. In the classical variant of ANN
known as the multilayer perceptron, the nodes (“neurons”)
within each successive layer are all connected to each other
between the layers. Each neuron takes the inputs (weighted
individually) from the previous layer and performs relatively
simple mathematical operations to produce an output. The
network can be trained (e.g., to use different weighting schemes)
to fit a particular dataset by the use of learning algorithms. The
ANN is very flexible for handling different types of data, but
it is prone to data-overfitting and requires vast computational
resources (Figure 4) (10). Another important disadvantage to
neural network approaches is the lack of transparency in the
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FIGURE 2 | A hyperplane separating two classes of data points in 2D space (A, blue line). A hyperplane separating two classes of data points in 3D space (B, blue

sheet). Separation in more dimensions is also performed but it is difficult to be presented on a 2D manuscript. The support vectors are data that are closer to the

hyperplane. The larger the margin between the hyperplanes, the better the classification (C,D).

“hidden layers” of neural networks, and the logic behind the
mathematical transformations of each layer may not be readily
understood. This is in contrast to other AI methods such as
random forests, which allow full transparency due to access to
the whole “tree” of information (although the decision trees can
be rather complex). The lack of transparency inherent to some
neural networks has been likened to a “black box”: the clinician
cannot fully appreciate how exactly the AI arrives at a solution.

Deep learning is a variant of ANN that adds complexity
by using multiple (“deep”) layers of an artificial neural
network. The capability to implement deep learning methods
using graphics processing units (GPU) and theoretical work
over the past decade revived interest in neural networks
and demonstrated the sophisticated capabilities of machine
learning across many applications. The architecture of
a neural network can vary in its complexity, resulting
in a wide assortment of ANNs that can be used in
deep learning. The standard neural network is termed
“feedforward” as the hierarchy of data flows in only the
forward direction (Figure 5).

The convolution neural network (CNN) is another type
of ANN in which imaging data is processed into reduced
representations of features using mathematical transformations
(most fundamentally, kernel convolution, followed by additional
methods for dimensionality reduction), thereby enabling efficient

FIGURE 3 | Random forest algorithms by developing multiple decision trees

and merging them get more accurate predictions.

deep learning. These and other innovations have improved the
abilities of machine learning in the field of image processing
(Figure 6) (10).
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FIGURE 4 | Artificial neural network with a single hidden layer. There is

complete connection between layers. Blue circles: Input layer. Red circles:

Hidden layer. Yellow circle: Output layer.

FIGURE 5 | Deep feedforward neural network with two hidden layers. Blue

circles: Input layer. Red circles: Hidden layer. Yellow circle: Output layer.

TRANSFER LEARNING

Transfer learning is a machine learning method in which an
already developed model for a task is reused as the starting point
for a model on a second task. The advantage of using these pre-
trained models is reducing the time of training. Currently, many
of these pre-trained models are provided by major AI companies
(e.g., GoogLeNet and AlexNet) which can be used to develop new
AI applications.

PERFORMANCE ANALYSIS

As with other medical tests, AI algorithms can be evaluated
by common biostatistical parameters, including sensitivity,
specificity, positive/negative predictive values, and accuracy.

Besides these parameters, performance can be evaluated with
more dedicated tests. One of the most commonly used
statistical tests for analyzing the performance of “classification
modules” is the Receiver Operating Characteristic (ROC) Curve
which shows the performance of a classification model at
all classification thresholds. This model mainly depends on
the true positive and false positive rates. In this test, the
Area Under the ROC Curve (AUC) is the main indicator of
the classification algorithm, represented as a value between
0 and 1. The closer this number to one, the better the
performance of the classification algorithm. The “Dice score”
is another common test used to evaluate the performance of
image segmentation algorithms. This test compares a human-
segmented image with the AI-segmented one and measures
how similar they are. It is the size of the overlap of the two
segmentations divided by the total size of the two objects.
More sophisticated algorithms will require increasingly intricate
metrics for evaluation of their performance and assessment of the
suitability for clinical application.

APPLICATION OF AI IN THE
MANAGEMENT OF GLIOMAS

Grading Prediction by Imaging
Predicting tumor grade on imaging using AI is approaching
and may play an important role in future practice. The
differentiation of LGG andHGG is crucial for treatment planning
and prognosis. Traditionally, this task has been accomplished
using anatomic images. LGGs (WHO grade I & II) usually
do not show contrast enhancement and are without increased
perfusion on MR perfusion sequences. Grade III gliomas may
show punctate nodular enhancement and mildly increased
perfusion. GBM (WHO grade IV) shows avid rim enhancement,
marked hyper-perfusion and central necrosis (11–13). While
these coarse imaging features that are appreciated by clinicians
have reasonable predictive value, AI algorithms that can assess
features not readily observed by humans may improve the
differentiation of LGG vs. HGG.

Different techniques of machine learning applied to various
imaging modalities have been studied for glioma grading. On the
simple end of the spectrum, logistic regression classifiers have
been developed to predict grade based on texture features in
34 GBMs and 73 LGG. This model achieved accuracy of 93%,
a sensitivity of 97%, a negative predictive value of 99%, and an
AUC of 0.94 in differentiating LGG vs. GBM (12). In comparison
to LGG, HGGs have more complex anatomical morphology
and BOLD-fMRI features. SVM has been employed to predict
glioma grading based on resting-state functional MRI images,
although these are not typically acquired in clinical practice.
This model achieved accuracy of 89% in grading prediction
(14). In another study, the SVM classifiers were developed to
diagnose low-grade vs. high-grade and grade III vs. IV gliomas.
SVM models detected 30 and 28 optimal features for classifying
LGGs from HGGs and grades III from IV, respectively. The
AUC was 0.987 for classifying LGGs from HGGs, and 0.992 for
classifying grades III from IV (15). In a study of 130 gliomas,
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FIGURE 6 | A Convolution Neural Network (CNN) by multiple pooling and convolution steps before a deep neural network is now the most common AI algorithm for

image analysis.

an artificial neural network used 41 features based on 2D T1-
weighted MRI images. The algorithm was able to differentiate
LGG vs. HGG with an accuracy of 90.3%, mean sensitivity of
87.8% and mean specificity of 92.5%. The AUC was 0.9486 (16).
Ranjith et al. (17) differentiated LGG (only WHO grade II) from
high-HGG (WHO grade III and IV) using MRI spectroscopy
and machine algorithms in 38 patients (including multilayer
perceptron, support vector machine, random forest, and locally
weighted learning). They reported a AUC of more than 0.8 in
three algorithms; with the best AUC using the random forest
algorithm (0.911) and the best sensitivity using locally weighted
learning (86%).

By using deep learning algorithms and transfer learning,
researchers were able to predict glioma grading from T1-
weighted, contrast-enhanced images before surgery in 113
patients with the high performance of the GoogLeNet and
AlexNet software. They showed that the performance of
transferred learning algorithms outperformed the trained CNN
algorithm. Overall, the performance of GoogLeNet was better
than AlexNet. The mean value of validation accuracy, test
accuracy and test AUC of GoogLeNet was 0.867, 0.909, and
0.939, respectively. For AlexNet, the mean value of validation
accuracy, test accuracy and test AUCwere 0.866, 0.855, and 0.895,
respectively (18). In this study, grades II and III were considered
as low-grade and grade IV as high-grade.

In summary, these studies suggest grade prediction based on
imaging features is feasible by AI algorithms. In comparison
to humans, the machine learning algorithms are capable of
using large numbers of imaging features which may improve
the grading prediction power. It is still unclear if automated
grading can change clinical management. Comparison of the
various studies is difficult since a universal definition of HGG
and LGG by imaging characteristics was not used. In addition,
it is unclear which machine learning algorithm works best.
In one study, 25 common machine-learning algorithms were
compared to predict glioma grading; the SVM exhibited superior
performance to other classifiers. In this study, grade II, III and
IV were considered as high-grade which makes comparison with
other studies challenging (19).

Genetic Information
Clinicians have attempted to estimate histopathologic features
and glioma genomics, which provide important classifications of
the tumor that guide treatment and prognosis, from non-invasive
imaging studies with the use of AI. Traditionally, the diagnosis of
glioma depends on the histopathological examination, but this
practice has changed in recent decades due to advancement in
genetic studies. CurrentWHO classification of CNSmalignancies
is in part based on genetic mutations. For example, the
classification of astrocytomas and oligodendrogliomas depends
on the mutation status of IDH1/2, ATRX loss, and p53
mutations (in astrocytomas), and co-deletion of 1p and 19q (in
oligodendrogliomas). In other tumors, such as midline gliomas,
the presence of the H3K27M mutation can redefine the grade
of a tumor from a low-grade (by histo-anatomic diagnosis) to
a grade IV entity known as “diffuse midline glioma, H3K27M-
mutant.” Through the advancement of imaging modalities, it
is possible to predict the pattern of genetic mutation based on
the evaluation of the radiologic features. AI has a major impact
on this “radiomics” approach. Radiomics describes a broad
set of computational methods that extract quantitative features
from radiographic images that are often beyond the ability of
human eyes to see (20, 21). Notably, most of the radiomics
approaches depend on the hand-engineered features including
size, shape, location, texture, intensity and peri-tumoral features;
however, these approaches are limited in the information they
can evaluate. In this context, several researchers have developed
machine learning-based algorithms to predict genetic mutations
from the imaging. So far, most of the research was dedicated
to predict the isocitrate dehydrogenase (IDH) mutations, O
(6)-methylguanine-DNA methyltransferase (MGMT) promoter
methylation, and co-deletion of chromosome arms 1p/19q with
better results in comparison to hand-engineered radiomics (22).
These genetic features are often associated with better treatment
response and survival rates (23–31).

Akkus et al. (32) trained a CNN algorithm based on T1
post contrast and T2 sequences and was able to predict the
co-deletion of chromosome arms 1p/19q with a sensitivity of
93.3%, specificity of 82.2%, and accuracy of 87.7%. By using a
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residual convolutional neural network for each MR sequence
including the FLAIR, T2, T1 pre-, and post-contrast, other
researchers predicted the presence of IDH mutation with an
accuracy of 85.7% without including the patients’ age and 89.1%
after including the age factor (33). Wu et al. (34) utilized
126 glioma patients, 704 radiomic features and eight classical
machine learning methods in an effort to predict IDH genotype
in diffuse gliomas before surgery. They reported high predictive
performance with a random forest algorithm (accuracy 0.885 ±

0.041, AUC 0.931 ± 0.036) but low predictive performance with
a neural network (accuracy 0.829 ± 0.064, AUC 0.878 ± 0.052).
They concluded that a random forest algorithm is suitable for
IDH genomic prediction before surgery of glioma. Random forest
algorithms also have been tested on grade III and IV gliomas
for prediction of IDH mutation with an accuracy of 89% and
AUC of 0.9231 (35). Deep learning based radiomics algorithms
has been used to extract data from imaging for prediction of
IDH1 mutations in LGG with 6 convolutional layers of 4,096
neurons resulting in an AUC of 92% (36). Other researchers have
developed a machine learning based algorithm to estimate the
chance of IDH1 mutations in LGG with an AUC of 0.95 (34).

By developing deep learning models, researchers were able
to predict the chance of MGMT methylation in GBM with
accuracy as high as 95% (37, 38). In a study on archive images
of patients with LGG and HGG, researchers developed a deep
learning convolutional neural network and were able to estimate
codeletion of chromosome arms 1p/19q, IDH1 mutation, and
MGMT methylation with an accuracy of 92, 94, and 83%,
respectively (39). Liu et al. (40) have used the combined model
of CNN features and a support-vector-machine classifier to
automatically predict genotypes of midline gliomas (H3 K27M
mutation) with an accuracy of 94.8% to predict the mutation.

In summary, prediction of tumor genomics from imaging
data is feasible by application of AI algorithm radiomics. The
advantages of AI are its ability to detect multiple radiologic
features which are too numerous and too subtle for the human
eye. Most reported algorithms achieved high performance
with accuracy above 80–90%. So far, the majority of genetic
studies utilize imaging data to predict gene mutations. Machine
learning algorithms have also been used to extract data from
genetic databases. These algorithms were able to classify the
patients with GBM into different clusters and predict the
prognosis and treatment response (41). Accuracy of about 89%
has been reported with the application of neural network-
based classifiers to help differentiate the transcriptional subtypes
of GBM (e.g., mesenchymal, classical, proneural, and neural
subtypes) (42). AI algorithms are a promising approach to
help analyze gene expression and predict the histopathology of
GBM subtypes.

Pre-operative Planning
The 3D volumetric measurement of the viable/enhancing
tumoral component and peripheral edema is essential for
surgical planning and post-operative follow-up. Manual 3D
segmentation methods are time-consuming (43). AI has been
used for tumor segmentation (44, 45). To differentiate voxels
representing viable neoplasm vs. edema vs. normal brain tissue,

several machine-learning algorithms have been used. So far,
the most promising techniques are SVM, random forest and
CNNs. The CNN models have the best performance (22,
46–49). In one study a tumor localization network (a fully
convolutional network in conjunction with transfer learning
technology) was used to localize the tumor (50). This two-step
protocol was faster than and at least as accurate as the prior
reported methods in the literature (50). A 3D U-Net CNN
has also been used for automated segmentation of gliomas on
18F-fluoroethyl-tyrosine (18F-FET) PET with 88% sensitivity,
99% specificity, a 78% positive predictive value, and a 99%
negative predictive value (51). In another study, a multipathway
convolutional neural network and fully connected conditional
random field were implemented for 3D FLAIR images for
segmentation of a LGG with a Dice similarity coefficient of
0.85 (52). Additionally, SMV has been used to differentiate
viable HGG from peri-tumoral edema in a study containing
9 patients with HGG: the SMV was able to differentiate
viable “non-enhancing” tumor from peripheral edema with a
misclassification error of 8.4%.When SVM output was smoothed
using a mean filter, the misclassification error was reduced to
2.4 % (53). Automated algorithms have been developed by using
random forest models combined with voxel texture features on
contrast-enhanced T1 and FLAIR MRI for glioma segmentation.
This model had an overall moderate accuracy with better
performance to segment high-grade enhancing neoplasm and
edema in comparison to non-enhancing LGG or necrosis (54).

Gliomas, specifically GBM, are infiltrative neoplasms. They
often invade the tissues beyond the enhancing area on MRI.
Given the fact that surgical resection of glioma includes resection
of mostly enhancing tissue, non-enhancing tumor can be left
behind. AI can help physicians predict the location of subsequent
recurrence. Currently, an AI algorithm has been developed to
perform this task with AUC of 84% (55).

In summary, different AI techniques can segment tumor,
edema and normal tissue. In this context, the CNNs, SVM,
and random forest algorithms are promising with at least
moderate accuracy.

Intra-Operative Treatment Planning
Gliomas display an infiltrative behavior. Differentiation of
tumor vs. normal tissue is challenging, not only by imaging,
but also during surgery. In this context, intraoperative MRI
scanners have been used at some oncologic centers for this
purpose, although their application is limited by their cost,
availability and logistics. An interesting application of AI has
been introduced to help neurosurgeons resect the maximum
amount of tumor and minimum amount of normal tissue. In
this technique, deep learning methods are used to analyze the
images fromhyperspectral imaging (a non-contact, non-ionizing,
label-free and intraoperative imaging modality) during surgery
with accuracy about 80% to differentiate neoplastic tissue from
adjacent non-tumoral brain tissues (56).

Histopathologic Diagnosis
In classical medical practice, pathologists and clinicians usually
analyze the histopathologic features of the disease. In some
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settings, such as during surgery, the amount of time from
preparation of tissue to diagnosis may be a limiting factor.
The diagnosis depends on pathologist’s expertise and is critical
for the management of the patient, both intraoperatively
and for subsequent treatment (57–59). Considering these
aforementioned restrictions, computational histopathology is
becoming more popular (60, 61). The application of AI to
pathology has been aided by the advent of slide scanners,
which can convert microscopic slides to high-quality image files.
Once digitized, the slides are amenable to computation. In the
future, AI methods may assist neuropathologists with identifying
characteristics of a tumor and allow for interpretation of subtle
histological features that cannot be easily appreciated by humans.

Microscopically, glioma biopsy specimens have the
appearance of a collection of variably pleomorphic neoplastic
glial cells, sometimes mixed with normal brain tissue. Different
tissue architecture (e.g., mixed mesenchymal and glial areas
in gliosarcoma) may be present. Immune cells, blood vessels,
and areas of necrosis may also be seen. The morphology of the
neoplastic glial cells can assist in the classification of the tumor;
in addition, the observation and frequency of mitotic figures
are important for determination of HGG vs. LGG to patients.
Additional pathological features, such as the presence of vascular
endothelial hyperplasia or palisading necrosis, also play a role
in defining HGG. The complex picture provided by sometimes
limited specimens provides a rich substrate for AI approaches
for analysis.

While usually readily identifiable, non-neoplastic cells may
sometimes mimic glioma cells, confounding their differentiation.
For example, reactive astrocytes may appear similar to neoplastic
astrocytes, but are differentiated by the cellular spacing and
nuclear atypia; likewise, prior radiation treatment may result
in abnormal or bizarre-appearing cells that can be challenging
to distinguish from GBM recurrence. Abas et al. (62) used
multiple machine learning methods, such as the SVM and
decision trees, to segment and classify these cells on smear
preparations of glioma. SVM and random forest algorithms
have also been used for nucleus segmentation on histopathologic
images from a glioma database and were more than 98%
accurate for classification of LGG or HGG (63). Beyond cytology,
Yonekura et al. (64) reported that the CNNs could extract
significant features from GBM histopathology slide images with
an accuracy of about 98%. SVM algorithms have been used
for diagnosis and glioma grading (grade II, III, and IV) on
slide images with promising accuracy of about 90% (65). In a
recent study, a machine learning technique (Google Inception V3
convolutional neural network) was used for diagnosis of glioma.
The haemotoxylin and eosin (H&E) stain images from 50 normal
brain, 45 LGG, and 59 HGG were analyzed. The accuracy of
this algorithm was 100% for the diagnosis of HGG vs. normal
brain and 98% for diagnosing glioma (LGG or HGG) vs. normal
brain (66).

In addition to diagnosis and grading, AI can help to predict
prognosis by combining features from paraffin-embedded tissue
specimens and molecular pathology, such as mutations in
IDH1/2 genes and codeletion of chromosomes 1p and 19q.
In a study on 769 gliomas including LGGs (grade II and

III) and HGGs (grade IV), the CNN was able to predict
survival rate with accuracy equal to the manual histologic-
grade baseline models (67). While the application of AI to
the histopathology of gliomas is only in its infancy, such
approaches promise to aid in the evaluation of large tissue
specimens and improve diagnostic accuracy for patients in
the near future. Pathologists may benefit from segmentation
algorithms which rapidly highlight and classify cells (such
as mitotic figures), or which can define regions of increased
cellularity. In the future, it is not inconceivable that AI-assisted
methods may define new pathologic subsets of gliomas with their
own characteristic responsiveness to treatments and prognosis,
and therefore open new avenues in the pathologic examination
of gliomas.

Radiation
AI has the potential to positively impact the field of radiotherapy.
Patient selection, simulation, treatment planning, quality
assurance, and follow-up are the most important steps in
radiotherapy. Simulation of glioma is less challenging than
other visceral malignancies with respiratory motions. Treatment
planning includes identification of glioma and adjacent organs
which may be damaged by radiation, Organs At Risk (OAR).
Segmentation of tumor and OARs are traditionally performed
by automated software with atlas-based segmentation tools
techniques. The atlas-based segmentation tools are accurate
for segmentation of high contrast organs (e.g., lung and bone)
but they are suboptimal for tissues with close densities (soft
tissues). In this context, machine and deep learning techniques
approaches may improve the segmentation and treatment
planning (56).

Post-treatment Follow-Up
Differentiation of post-treatment changes including
radiation necrosis and pseudo-progression vs. true tumor
progression/recurrence is a very common challenge in
neuroradiology. This task is difficult for anatomic images;
therefore, many advanced imaging techniques have been
proposed (e.g., MR spectroscopy, MR perfusion and PET
with difference tracers) with persistent uncertainty. Very few
studies are available involving application of AI to differentiate
post-treatment changes vs. CNS tumor progression. The SVM
classifier has been trained to diagnose pseudo-progression vs.
recurrence in patients with glioma treated with surgery and
chemotherapy. In this study of 31 patients, the sensitivity and
specificity of the classifier for pseudoprogression was 89.91
and 93.72%, respectively with AUC of 0.94; of note, the best
predictor image sequences were DWI and MRP (68). A CNN
has been developed to differentiate true vs. pseudo-progression
in patients with GBM status post resection and chemo-radiation
with acceptable performance and an AUC of 0.83 (69). In one
study, AI was applied for this task with a high performance of
SVM classifiers outperforming two expert neuroradiologists with
an AUC for FLAIR sequence equal to 0.79. The main limitation
in this study is the fact that researchers included the primary and
metastatic CNS tumors in combination (70).
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Outcome Prediction
There are many models to predict the overall survival rate in
patients with glioma. Most of them are based on clinical data,
genetic information, and imaging. Recently, many AI algorithms
have been developed to predict survival rate in these patients,
and potentially have superior accuracy compared to conventional
methods (71). Nie et al. (72) have developed a multi-module
and multi-channel deep survival prediction model for glioma
using CNNs to analyze MRI images (including the T1 post
contrast, DTI and resting state functional MRI) in association
with a SVM (which contains information on tumor histology,
tumor size and patients age) to predict the overall survival of
patients with glioma with an accuracy of 90.66%. In another
study, the Pathway-Associated Sparse Deep Neural Network
(PASNet) outperformed other models to predict the outcome of
GBM with an AUC of 0.66 (73). Machine learning by means of
SVM in combination with whole-tumor rCBV histogram analysis
has been used for outcome prediction of glioma with an AUC
of 0.7 to 0.8 (74). Additionally, SVM algorithms predicted the
outcome of gliomas from MR images with an 80% accuracy of
80% (61). SVM has been used to analyze the anatomic (DTI) and
functional (rs-fMRI) data to predict good outcomes (>650-day
survival) vs. poor outcomes (<650-day) in high-grade glioma
with an accuracy of 75% (75). By developing a convolutional
neural base network, Lao et al. (76) predicted the survival rate
of GBM patients with a C-index of 0.71, which was subsequently
improved after inclusion of the clinical data. C-index is equal to
the AUC and ranges from 0.5 to 1. Values above 0.7 indicate a
good test.

In summary, the overall accuracy of machine learning
methods to predict glioma outcomes from imaging and
clinical data approaches 80%, as evident on the meta-
analysis done by Sarkiss and Germano (71) on 29 studies
(including glioma and brain metastasis). In the future, AI
will help to integrate data from disparate fields (clinical
examination, imaging, and pathology) to guide treatment
and prognosis. One major uncertainty about these prognostic
algorithms is the heterogeneity of the patient population. One
recent study of machine learning on a small heterogeneous
population of glioma using 21 features (demographic,
clinical, genetic, histopathologic data) achieved accuracy of
<70% (77).

FUTURE CHALLENGES

AI may demonstrate a crucial role in patient selection for clinical
trials, specifically with biomarkers and radiomics. Classically, in
glioma clinical trials, the most common biomarkers are the status
of MGMT promoter methylation and IDH mutation but on the
horizon are radiomic markers which can predict the treatment
response to a particular treatment. This would help improve
clinical trial designs with more finely targeted inclusion and
exclusion criteria and potentially improve trial outcome (6, 78–
80). Additionally, there are commercially available AI techniques
for extraction of patient data, to link them to large databases

and to select the best trial and medication for those specific
patients (81).

Several challenges must be addressed before the adaptation
of AI in oncology and specifically, the management of
glioma. Developing accurate AI needs large standardized
and annotated data sets and high-quality ground truth data.
The multi-institutional nature of most clinical trials for
gliomas complicates the ability to acquire uniform data sets
(82). Although AI algorithms use numerous features for
decision making, their analysis processes are not always readily
understood to humans, so many of the previously described
AI algorithms are not amenable to be re-created by other
investigators. There is ongoing research to solve this “black-
box” nature of AI, and in the future, may help to follow
otherwise impenetrable processes step-by-step in transparent
algorithms (39).

Generalizability of the AI algorithms is one of the major
challenges preventing their widespread clinical adaptation. So
far most of the AI applications in oncology and gliomas
have been trained on relatively small patient populations.
Performance of an AI algorithm developed on a small
population is not optimal, especially for the large and
heterogeneous population of gliomas (83). In addition, the
inclusion criteria in the aforementioned glioma studies were
very heterogeneous. Before the clinical adaptation of an
algorithm, it is critical to have a universal definition for
LGG and HGG. Large, standardized datasets from multiple
institutions with clinical, neuroimaging, and neuropathologic
data that cover diverse patient populations are needed to
fully realize the power of AI for the diagnosis and treatment
of gliomas.

Given the inchoate stage of development for AI in
gliomas, there are no comprehensive cost-benefit studies or
prospective studies to confirm that AI can improve patient
outcome. Another obstacle against universal adaptation
of AI in oncology and gliomas is clinician-engineer
interaction. Currently, physicians receive very little training
in computer/data science and most of the computer scientists
are not familiar with the complexity of clinical patient
management (81).

Thus, the abovementioned challenges, as well as many
unanswered legal and ethical questions, must be addressed
before the adaptation of AI in the daily practice of oncologic
centers (84).

CONCLUSION

Many AI approaches have been created to help with glioma
management. AI techniques have been developed to predict
grading from imaging data; survival rates from clinical,
genetic and imaging data; and molecular genetics from
imaging data. AI techniques have also been developed
to automate diagnosis from histopathologic slides to
segment tissues for surgical planning and to monitor the
patients after treatment. Most of these techniques suggest
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acceptable performance, but the application of AI to glioma
diagnosis and treatment has only now begun in earnest.
The promise and performance of these techniques in daily
clinical practice and their effect on patient outcomes warrant
further development.
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