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Abstract

Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules

and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has

been linked to embryonic patterning but the mechanism remained unsolved. Here, we show

that Mkrn1 is essential for axis specification and pole plasm assembly by translational acti-

vation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein

(pAbp) and binds specifically to osk 3’ UTR in a region adjacent to A-rich sequences. Using

Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1)

responsive element (BREs) that regulates osk translation. We observe increased associa-

tion of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating

that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially res-

cues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1

controls embryonic patterning and germ cell formation by specifically activating osk transla-

tion, most likely by competing with Bru1 to bind to osk 3’ UTR.

Author summary

To ensure accurate development of the Drosophila embryo, proteins and mRNAs are

positioned at specific sites within the embryo. Many of these factors are produced and

localized during the development of the egg in the mother. One protein essential for

this process that has been heavily studied is Oskar (Osk), which is positioned at the pos-

terior pole. During the localization of osk mRNA, its translation is repressed by the

RNA-binding protein Bruno1 (Bru1), ensuring that Osk protein is not present outside

of the posterior where it is harmful. At the posterior pole, osk mRNA is activated
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through mechanisms that are not yet understood. In this work, we show that the con-

served protein Makorin 1 (Mkrn1) is a novel factor involved in the translational activa-

tion of osk. Mkrn1 binds specifically to osk mRNA, overlapping with a binding site of

Bru1, thus alleviating the association of Bru1 with osk. Moreover, Mkrn1 is stabilized

by poly(A) binding protein (pAbp), a translational activator that binds osk mRNA in

close proximity to one Mkrn1 binding site. Our work thus helps to answer a long-

standing question in the field, providing insight about the function of Mkrn1 and more

generally into embryonic patterning in animals.

Introduction

In the Drosophila embryo, the maternally deposited pole plasm is a site of specialized transla-

tion of mRNAs required for germ cell specification and posterior patterning [1]. Numerous

mRNAs accumulate in the pole plasm during oogenesis and early embryogenesis through sev-

eral different localization mechanisms [2,3]. Among these mRNAs is oskar (osk), which local-

izes during oogenesis to the posterior along a polarized microtubule network [4] and via a

trapping mechanism [5]. Several lines of evidence indicate that osk is the primary determinant

that specifies germ cells and posterior patterning. Ectopic expression of osk at the anterior can

induce a second set of pole cells and a bicaudal embryonic segmentation pattern with mirror-

image posterior segments [6,7]. Mutations such as Bicaudal-D (Bic-D), ik2, and others that

produce a duplicated anterior focus of oskmRNA also produce bicaudal embryos [8–10]. Con-

versely, embryos from females carrying hypomorphic loss-of-function mutations of osk lack

posterior segmentation and pole cells [11]. Mutations in a number of other genes can produce

a similar phenotype, and these are collectively known as posterior-group genes [12]. Some of

these genes (for example cappuccino, chickadee, spire and staufen (stau)) are required for poste-

rior localization of osk. A failure to deploy osk produces the posterior-group phenotype in

these mutants [13,14]. Other posterior-group genes (for example vasa (vas), tudor, nanos
(nos), and aubergine (aub)), produce mRNAs and/or proteins that also accumulate in pole

plasm and operate downstream of osk [15–17].

osk translation is under elaborate temporal and spatial regulation, ensuring that Osk protein

becomes abundant only in the posterior pole plasm and not before stage 9 of oogenesis

[18,19]. A key repressor of osk translation prior to that stage and outside the pole plasm is

Bruno1 (Bru1), which interacts with binding sites called Bru1 response elements (BREs) in the

osk 3’ UTR. Mutations affecting the BREs result in premature and excessive Osk expression

[18–20]. Two mechanisms have been proposed for Bru1-mediated repression of osk transla-

tion. In the first, Bru1 recruits Cup, which inhibits assembly of an active cap-binding complex

by competitively inhibiting eIF4G for binding to eIF4E [21]. The second mechanism involves

oligomerization of oskmRNA into large ribonucleoprotein particles (RNPs) that are inaccessi-

ble to the translational machinery [22–24]. These mechanisms may be connected, in that phys-

ically concentrating oskmRNA molecules in RNPs can enable regulation in trans through

inter-molecular interactions. For instance, Bru1 bound to the 3’ end of one oskmRNA mole-

cule could recruit Cup to eIF4E bound to the 5’ cap structure of another oskmRNA molecule,

thus repressing its translation [25,26]. Importantly, osk translation and oskmRNA localization

are tightly coupled. In nonsense osk alleles or when 3’ UTR elements required for translational

activation are mutated, oskmRNA localizes transiently to the pole plasm but its accumulation

is not maintained [9,27,28].
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While several proteins have been implicated in activating osk translation in the pole plasm

[14,29,30], a comprehensive picture of how this is achieved has not yet emerged. For instance,

it has been proposed that activation of osk translation involves inhibition of Bru1 [24]. Related

to this, a BRE-containing region in the distal part of the osk 3’ UTR (BRE-C) functions in

repression as well as in activation [25]. Nevertheless, the mechanism underlying the dual func-

tion of this element has not yet been solved.

Large-scale in situ hybridization screens have identified many other mRNAs that localize to

the pole plasm [3,31], and some of the corresponding genes could potentially be involved in

osk regulation. To search for new posterior-group genes, we previously expressed shRNAs tar-

geting 51 different mRNAs that accumulate in the pole plasm to determine if doing so pro-

duced defects in posterior patterning or pole cell formation. We observed that a substantial

proportion of embryos produced byMakorin 1 (Mkrn1) knockdown females showed a poste-

rior-group phenotype [32]. Makorin proteins are conserved in plants, fungi, and animals, and

contain a RING-domain as well as one or more C3H-type zinc fingers (ZnF) [33]. The role of

Makorin proteins is somewhat enigmatic despite their widespread evolutionary conservation.

Mammalian MKRN1 has been identified as an E3 ubiquitin ligase that promotes degradation

of target proteins [34–36], but proteomic analysis does not support an association with protea-

some components [37,38]. Furthermore MKRN1’s shorter isoform stimulates translation in

rat forebrain neurons but the mechanism is currently unknown [39].

Here, we analyzed the function of Mkrn1 during oogenesis and early embryogenesis. We

generated several alleles that alter different domains of theMkrn1 coding sequence. Using

these mutants, we found that Mkrn1 is required for accumulation of Osk protein at the poste-

rior pole of the oocyte. We also show that Mkrn1 is not required for oskmRNA localization,

but essential for its translation. Furthermore, we present evidence that Mkrn1 directly binds to

the osk 3’ UTR via its N-terminal zinc finger domain. Using Drosophila S2R+ cells we further

found that binding of Mkrn1 to osk partially overlaps with the BRE-C domain, adjacent to an

A-rich region that recruits pAbp to the osk 3’ UTR [40]. Moreover, the association between

Mkrn1 and oskmRNA is stabilized by the physical association with pAbp. Strikingly, depletion

ofMkrn1 results in an increased level of Bru1 binding to osk 3’ UTR and reduction of bru1
gene dosage partially rescuesMkrn1mutant phenotypes. Based on these data we propose that

Mkrn1 competes with Bru1 for oskmRNA binding, thus positively regulating osk translation

and explaining the specific role of BRE-C in translational activation.

Results

The Drosophila genome includes four Makorin-related genes

In many organisms, up to four distinct genes encoding members of the Makorin family exist,

but only one such gene,Mkrn1, has been annotated in Drosophila. To investigate whether flies

are unusual in this regard, we searched for sequences similar to human MKRN1. This analysis

uncovered four Drosophila genes, Mkrn1, CG5334, CG5347, and CG12477, with substantial

similarity toMKRN1 (S1A Fig). All four predicted polypeptides from these genes contain a

region of approximately 130 amino acids that is highly conserved and contains a RING-

domain as well as C3H-type zinc fingers (ZnF). The proteins are otherwise more divergent

from one another, with the exception that all but CG12477 contain a ZnF domain near the

amino-terminus.

To analyze the differences in their functionalities, we first determined the expression profile

of all four Makorin genes during development. Mkrn1mRNA is expressed at detectable levels

at all developmental stages (Fig 1A) and clearly peaks in early (0–2.5 h) embryos and ovaries.

In contrast, expression of the other threeMakorin genes is undetectable during early
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development but peaks in pupae and adult males (S1B Fig). From these results, we conclude

thatMkrn1 is the gene of the family most predominantly expressed in ovaries and early

embryos and suggest that the three other genes could be specifically expressed in testes.

Mkrn1 mutants reveal essential roles in oogenesis and embryogenesis

To elucidate the role ofMkrn1, we used CRISPR/Cas9 to produce three different mutant

alleles:Mkrn1N, a complete deletion of the coding sequence,Mkrn1S, a frameshift mutation

that is predicted to produce a C-terminally truncated protein of 124 amino acids, including

Fig 1. Mkrn1 alteration affects ovarian development. (A) RelativeMkrn1mRNA levels (normalized to RpL15mRNA) at various stages of development, measured by

quantitative RT-PCR. Error bars depict Stdev, n = 3. (B) Schematic diagram of the proteins encoded by theMkrn1 alleles used to analyze its function in vivo.Mkrn1N is

a null allele and produces no protein. (C-F) Bright-field micrographs of entire ovaries from wild-type andMkrn1mutant flies. Note the reduced size ofMkrn1S and

Mkrn1N ovaries. Scale bars, 500 μm. (G-J) Individual egg chambers stained with the DNA marker DAPI. Fewer stage 10 and older egg chambers are present inMkrn1S

and no late stage egg chambers are present inMkrn1N ovaries. Abscission defects resulting from inappropriate follicle cell migration are frequently observed inMkrn1N

ovaries (J, arrow). Scale bars, 20 μm. (K-N) Individual egg chambers stained with α-Lamin to highlight nuclear membranes. Scale bars, 20 μm. (M) The oocyte nucleus

(marked with an arrow in K, L, and M) remains at the posterior ofMkrn1S oocytes. (N) SomeMkrn1N egg chambers have 16 germline cells whose nuclei are all of

similar size, suggesting a defect in oocyte differentiation. Note also irregularities in the follicle cell monolayer in theMkrn1N egg chamber. (O-Q) Dark-field

photographs of eggs and embryos produced by wild-type andMkrn1mutants Scale bars, 100 μm. (P) Most embryos produced byMkrn1W females have a posterior-

group phenotype. (Q) Eggs produced byMkrn1S females lack dorsal appendages and do not support embryonic development. (R, S) Immunostaining with α-Ftz (red)

and α-Vas (green) reveals segmentation defects and the absence of pole cells inMkrn1W embryos Scale bars, 50 μm. (T, U) Surface images of embryos immunostained

with α-Ftz (red) to better illustrate segmentation defects inMkrn1W embryos. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pgen.1008581.g001
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only ZnF1 among conserved domains, and Mkrn1W, a small in-frame deletion that disrupts

only the ZnF1 domain (Fig 1B). In the strong Mkrn1mutants (Mkrn1S and Mkrn1N), most egg

chambers cease development at or before stage 10 (Fig 1C–1J). The nuclei ofMkrn1S oocytes

that progress as far as stage 9 or later remain at the posterior, failing to migrate to the antero-

dorsal corner (Fig 1M). The very few eggs laid byMkrn1S females have no dorsal appendages

and do not develop (Fig 1Q).Mkrn1N egg chambers do not progress as far as stage 9 and

showed variable defects in early oogenesis including failure of oocyte differentiation (Fig 1N)

and inappropriate follicle cell migration (Fig 1J and 1N). On the other hand, ovaries of females

homozygous for Mkrn1W have a similar morphology to wild-type (Fig 1C and 1D).Mkrn1W

mutant ovaries completed oogenesis and produced fertilizable eggs in similar numbers as

wild-type controls (Fig 1G, 1H, 1K and 1L, Table 1). To examine the role ofMkrn1 in embry-

onic patterning, we compared cuticle preparations of wild-type and Mkrn1W embryos (Fig 1O

and 1P). We found that mostMkrn1W embryos lack posterior segments, a phenotype similar

to oskmutants and to what we previously observed at lower frequency from females expressing

shRNA targetingMkrn1 [32]. To investigate this more closely, we stained wild-type and

Mkrn1W embryos for Fushi tarazu (Ftz) and Vas proteins. In wild-type blastoderm-stage

embryos, Ftz is expressed in seven stripes along the anterior-posterior axis, while in posterior-

group embryos the number of Ftz stripes is usually reduced to four (Fig 1R and 1T, [41]). At

blastoderm stage in wild-type embryos, Vas-positive pole cells are clustered at the posterior

pole [16] (Fig 1R). Consistent with a posterior-group phenotype, we observed four Ftz stripes

in 65% ofMkrn1W embryos (30/46) (Fig 1S and 1U). Most of the remaining embryos had even

fewer Ftz stripes with an additional broad domain of Ftz expression. In addition, 95% of

Mkrn1W embryos (63/66) showed no pole cells by Vas staining (Fig 1S). The posterior pattern-

ing defects result in lethality for most (97%)Mkrn1W embryos. However, the small number of

Mkrn1W embryos that hatch into viable larvae (40/1222, 3.3%, Table 1) can complete develop-

ment to adulthood.

Mkrn1 accumulates in the pole plasm during oogenesis

To examine the distribution of Mkrn1 in the germline, we expressed transgenic Venus- and

FLAG-tagged Mkrn1 using a nos>GAL4 driver. SinceMkrn1 females could be rescued to fer-

tility by germline specific expression of these transgenes (Table 1), we concluded that these

tagged transgenes are functional, and thus inferred that their localization should reflect the

endogenous one. When expressed in ovaries, Venus- or FLAG-tagged Mkrn1 (subsequently

called Mkrn1) becomes detectable in a uniform distribution in germline cells from early

oogenesis. We observed a mild accumulation of Mkrn1 in cytoplasmic particles resembling

Table 1. Expression of tagged Mkrn1 from transgenes rescues oogenesis and viability to embryos produced by Mkrn1 mutant females.

Genotype Eggs laid Hatched Unhatched Hatching %

nos>Gal4/CyO; Mkrn1W/Mkrn1W 1222 40 1182 3.3

FLAG-Mkrn1/nos>Gal4; Mkrn1W/Mkrn1W 2120 1690 430 79.7

Venus-Mkrn1/nos>Gal4; Mkrn1W/Mkrn1W 1180 895 285 75.8

nos>Gal4/CyO; Mkrn1S/Mkrn1S 12 0 12 0.0

FLAG-Mkrn1/nos>Gal4; Mkrn1S/Mkrn1S 750 465 285 62.0

Venus-Mkrn1/nos>Gal4; Mkrn1S/Mkrn1S 1320 1065 255 80.0

nos>Gal4/CyO; Mkrn1N/Mkrn1N 0 0 0 0.0

FLAG-Mkrn1/nos>Gal4; Mkrn1N/Mkrn1N 1030 760 270 73.8

Venus-Mkrn1/nos>Gal4; Mkrn1N/Mkrn1N 1255 1080 175 86.1

https://doi.org/10.1371/journal.pgen.1008581.t001
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Fig 2. Mkrn1 accumulates in pole plasm. (A-C) The three panels show the same egg chambers stained for (A) Venus-

Mkrn1, (B) Stau, and a (C) merged image. Scale bars, 25 μm. Venus-Mkrn1 expression was driven by nos>Gal4.

Colocalization of Venus-Mkrn1 and Stau can be observed in particles that have not yet accumulated at the posterior of

the early stage 8 oocyte. (D-F) The three panels show the same stage 10 egg chamber stained for (D) Venus-Mkrn1, (E)

Stau and (F) a merged image. Scale bars, 25 μm. There is extensive colocalization of Venus-Mkrn1 and Stau in the

Makorin1 controls embryonic patterning by activating oskar translation
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nuage at the outer surface of nurse cell nuclear membranes and in the early oocyte (Fig 2A, 2G

and 2M). In later egg chambers, Mkrn1 remains abundant in nurse cells and is tightly localized

in the pole plasm in the oocyte (Fig 2D, 2J and 2P). Next, we conducted double labeling experi-

ments in wild-type ovaries to determine the degree of colocalization between Mkrn1 and

known pole plasm components. In both, stage 8 and stage 10 oocytes, Mkrn1 co-localizes

extensively with Stau (Fig 2A–2F), oskmRNA (Fig 2G–2L), Osk protein (S2A–S2F Fig), Vas

(S2G–S2L Fig) and Aub (Fig 2M–2R). This close association between Mkrn1 and many impor-

tant pole plasm components suggests that Mkrn1 is an integral component of pole plasm.

To determine whether Mkrn1 depends on the pole plasm assembly pathway for its posterior

localization, we expressed the tagged Mkrn1 transgenes in osk (osk54/Df) and vas (vasPH165/
vas1) mutant backgrounds. We found that loss of osk abolished Mkrn1 localization (S3A Fig).

In contrast, Mkrn1 localized normally to the posterior in vasmutant oocytes (S3B Fig), placing

Mkrn1 between osk and Vas in the pole plasm assembly pathway.

To obtain insights into the link between Mkrn1 and pole cell determination, we collected

embryos from females trans-heterozygous for aMkrn1 allele and for either a vas or osk allele.

Next, we compared the number of pole cells with single heterozygous controls. When hetero-

zygous,Mkrn1W orMkrn1S had little effect on pole cell number. However, either allele reduced

the number of pole cells produced by vas1 heterozygotes, and further by osk54 heterozygotes

(S4 Fig). These data support a genetic interaction betweenMkrn1 and genes involved in

embryonic patterning and pole cell specification.

Mkrn1 ensures correct deployment of specific mRNAs and proteins

involved in embryonic patterning

To address whetherMkrn1mutations may affect the distribution of proteins involved in

embryonic patterning, we performed immunostaining experiments. We found a striking

reduction in posterior accumulation of Osk in oocytes from allMkrn1 alleles (Fig 3A–3D). For

Stau, we observed weaker and more diffuse posterior localization inMkrn1W, as compared to

wild-type (Fig 3E and 3F) and no localized protein inMkrn1S andMkrn1N (Fig 3G and 3H).

On the other hand, Grk localized normally to the antero-dorsal corner ofMkrn1W oocytes (Fig

3I and 3J). InMkrn1S, Grk was observed at reduced levels associated at the posterior with the

mislocalized oocyte nucleus (Fig 3K) and diffusely distributed at a very low level inMkrn1N

(Fig 3L). Posterior localization of Aub and Vas was lost in oocytes of allMkrn1mutant alleles

(Fig 3M–3T). Finally, Orb localization was unaffected inMkrn1W (Fig 3U and 3V), but was

concentrated at the posterior inMkrn1S (Fig 3W). Many Mkrn1N egg chambers included a sin-

gle Orb-positive cell (Fig 3X), indicating that, in these cases, oocyte differentiation had taken

place. Importantly, normal accumulation of all proteins could be restored by nos>GAL4

driven expression of a tagged Mkrn1 transgene (S5 Fig), confirming the specificity of the

Mkrn1 phenotypes.

posterior pole plasm of the oocyte. (G-I) The three panels show the same egg chambers stained for (G) Venus-Mkrn1,

(H) oskmRNA, and (I) a merged image. Scale bars, 25 μm. Colocalization of Venus-Mkrn1 and osk can be observed in

an early stage 8 oocyte where osk has not yet fully localized at the posterior of the oocyte. (J-L) The three panels show

the same stage 10 egg chamber stained for (J) Venus-Mkrn1, (K) osk mRNA and (L) a merged image. Scale bars,

25 μm. There is extensive colocalization of Venus-Mkrn1 and osk mRNA in the posterior pole plasm of the oocyte.

(M-O) The three panels show the same egg chambers stained for (M) Venus-Mkrn1, (N) Aub, and a (O) merged

image. Scale bars, 5 μm. Colocalization of Venus-Mkrn1 and Aub can be observed at the nuage surrounding the nurse

cell nuclei (P-R). The three panels show the same egg chambers stained for (P) Venus-Mkrn1, (Q) Aub, and a (R)

merged image. Scale bars, 20 μm. There is extensive colocalization of Venus-Mkrn1 and Aub in the posterior pole

plasm of the oocyte.

https://doi.org/10.1371/journal.pgen.1008581.g002
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Fig 3. Mkrn1 mutations affect accumulation of proteins involved in axis patterning. (A-D) Posterior accumulation

of Osk is greatly reduced in stage 10Mkrn1W andMkrn1S oocytes as compared with wild-type. Osk is nearly

undetectable inMkrn1N egg chambers. Scale bars, 25 μm. (E-H) Posterior accumulation of Stau is greatly reduced in

stage 10Mkrn1W andMkrn1S oocytes as compared with wild-type. Stau is nearly undetectable inMkrn1N egg

chambers. Scale bars, 25 μm. (I-L) Anterodorsal accumulation of Grk is normal in stage 10Mkrn1W oocytes. Grk

remains associated with the oocyte nucleus and is mislocalized to the posterior in stage 10Mkrn1S oocytes. Grk is

present at uniformly low levels or undetectable levels in all germ cells inMkrn1N egg chambers. Scale bars, (I-K)

20 μm, (L) 25 μm. (M-P) Posterior accumulation of Aub is greatly reduced in stage 10Mkrn1W andMkrn1S oocytes as

compared with wild-type. Aub is present at uniform levels in all germ cells inMkrn1N egg chambers. Scale bars, 20 μm.

(Q-T) Posterior accumulation of Vas is greatly reduced in stage 10Mkrn1W andMkrn1S oocytes as compared with

wild-type. Vas is present at uniform levels in all germ cells inMkrn1N egg chambers. Scale bars, 25 μm. (U-X)
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Mkrn1W oocytes transiently accumulate osk mRNA at the posterior pole

but do not produce Osk protein

To investigate whether the primary effect ofMkrn1W on Osk deployment occurred at the level

of RNA localization or translation, we examined more closely the effects ofMkrn1W on osk
expression. Therefore, we performed in situ hybridization for oskmRNA and immunostaining

for Osk protein on the same samples (Fig 4A). In stage 7 egg chambers, oskmRNA accumula-

tion is robust in both wild-type and Mkrn1W oocytes. Faint expression of Osk protein is occa-

sionally visible in wild-type stage 7 oocytes but never in similarly staged Mkrn1W oocytes. This

difference becomes more pronounced in stages 9 and 10A. While 95% (41/43) of stage 9-10A

Mkrn1W oocytes show posterior accumulation of oskmRNA, only 7% (3/43) ofMkrn1W

oocytes show even a faint posterior signal for Osk protein. All (20/20) similarly-staged wild-

type oocytes show strong posterior accumulation of both oskmRNA and Osk protein (Fig 4A).

Subsequently, posterior accumulation of oskmRNA is lost inMkrn1W oocytes. In 88% of stage

10BMkrn1W oocytes (30/34), oskmRNA remains in a tight focus, but is no longer anchored at

Accumulation of Orb is similar in wild-type andMkrn1W oocytes, but Orb is more concentrated in the posterior of

Mkrn1S oocytes. In early-stageMkrn1N egg chambers there is usually a single Orb-positive cell, indicating that some

steps toward oocyte differentiation are able to take place. Scale bars, (U-W) 20 μm, (X) 25 μm.

https://doi.org/10.1371/journal.pgen.1008581.g003

Fig 4. Translation of osk mRNA is impaired in Mkrn1W ovaries. (A) Fluorescent in situ hybridization for oskmRNA (red) with co-immunostaining for Osk protein

(green) in wild-type andMkrn1W egg chambers. For each genotype and in each column the top and bottom images are of the same egg chamber. In wild-type oocytes

posterior accumulation of oskmRNA and Osk protein is robust and stable from stage 9 onward. InMkrn1W oocytes accumulation of oskmRNA resembles the wild-

type pattern through stage 10A but is not maintained, while Osk protein is rarely detectable at the oocyte posterior at any stage. Scale bars, 25 μm. (B) Western blot

analysis from ovary lysates of various genotypes stained for Osk, pAbp and β-tubulin. Osk protein levels are greatly reduced in allMkrn1mutant alleles. 1 day-old

young females have not yet completed oogenesis and were used as a control forMkrn1S andMkrn1N ovaries which also lack late-stage egg chambers, where Osk is most

abundant. (C) RT-qPCR experiments measuring ovarian oskmRNA levels (normalized to RpL15mRNA) in the same genotypes as (B). mRNA levels of ovaries from

adult females were compared toMkrn1W ovaries. ForMkrn1S andMkrn1N ovaries, mRNA levels of 1 day-old young ovaries was used as normalization. Error bars

depict Stdev, n = 2.

https://doi.org/10.1371/journal.pgen.1008581.g004
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the posterior pole (Fig 4A). osk translation remains repressed with only 6% of stage 10B

Mkrn1W oocytes (2/34) having detectable posterior Osk. In later Mkrn1W oocytes, neither osk
mRNA nor Osk protein is detectable at the posterior. We conclude from these experiments

that Mkrn1 is not directly required for the localization of oskmRNA at the posterior pole but

is necessary for its translation. Consistent with previous observations in other conditions that

abrogate Osk anchoring or translation [9,27,28,42], posterior accumulation of oskmRNA is

not maintained inMkrn1W oocytes because of their failure to accumulate localized Osk pro-

tein. To confirm these results, we compared Osk protein levels by western blot analysis and osk
mRNA levels by quantitative PCR (qPCR). Consistent with our immunostaining experiments,

we observed a pronounced reduction in Osk protein (Fig 4B), but only minor positive or nega-

tive effects on oskmRNA depending on the particular Mkrn1 allele (Fig 4C).

Mkrn1 mutants affect localization of other maternal mRNAs

We further used fluorescent in situ hybridization to investigate the distribution of several

other mRNAs involved in patterning inMkrn1mutants. Consistent with what we observed for

Grk protein, localization of grkmRNA was similar to wild-type inMkrn1W, but grkmRNA

remained at the posterior inMkrn1S oocytes (S6A–S6C Fig). Posterior accumulation of osk,

nos and polar granule component (pgc) mRNAs was also lost inMkrn1W embryos (S6D–S6I

Fig).

Mkrn1 associates with factors involved in osk mRNA regulation

To gain further insights into the molecular pathways underlying Mkrn1 function we sought to

identify potential cofactors. For this purpose, we expressed Myc-tagged Mkrn1 in Drosophila
S2R+ cultured cells and carried out immunoprecipitation (IP) experiments followed by mass

spectrometry analysis. We also repeated this experiment using a version of Mkrn1 carrying a

point mutation in the RING domain (Mkrn1RING), as we noticed that this construct was

expressed at a higher level compared to the wildtype one, which appears to be unstable after

transfection in cells (S7A and S7B Fig). Similar stability characteristics have been reported for

mammalian MKRN1 [34]. Numerous RNA-binding proteins were enriched after IP (S7C and

S7D Fig). Among those, several have been already linked to oskmRNA localization and trans-

lation [21,40,43–45]. To validate these interactions, we performed co-IP experiments in S2R+

cells between Mkrn1RING and various interaction partners in the presence or absence of RNase

T1. Using this approach, we could confirm the interaction of Mkrn1RING with poly(A) binding

protein (pAbp), IGF-II mRNA-binding protein (Imp), eukaryotic initiation factor 4G (eIF4G),

Squid (Sqd) and maternal expression at 31B (Me31B) (S8A–S8E Fig). All of these interactions

persisted upon RNase treatment, suggesting they are direct. We can however not exclude the

possibility that the poly(A) tail, which is not affected by treatment with RNase T1, mediates

these interactions. Interestingly, several of the identified proteins have already been shown to

interact with each other [43,44,46–48]. We also confirmed that interactions between FLAG-

tagged Mkrn1 and pAbp as well as eIF4G also occur in ovaries (Fig 5A and S8F Fig).

Furthermore, we found that the stability of Mkrn1 itself was enhanced upon co-transfection

of pAbp in S2R+ cells (Fig 5B). Mammalian MKRN1 contains a PCI/PINT associated module

2 (PAM2) motif, that is present in several pAbp binding proteins and is required in MKRN1

for binding to PABP [39,49]. We identified a similar motif in DrosophilaMkrn1 (Fig 5C), but

with one variation compared to human (V instead of E at position 9) that likely explains why

this PAM2 motif was not recognized previously. To address the functionality of this motif we

repeated the co-IPs, and found that when this domain was mutated (Mkrn1PAM2, Fig 5C), the

interaction between Mkrn1 and pAbp was compromised in S2R+ cells (Fig 5D). Based on
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these data, we conclude that Mkrn1 exists in one or several complexes that contain factors

involved in the regulation of oskmRNA translation, and stably interacts with pAbp via its

PAM2 motif. If the interaction of Mkrn1 with pAbp is indeed required for the function of

Mkrn1, Mkrn1PAM2 should not be able to rescue the Mkrn1N phenotype. Indeed, we found

that overexpression of Mkrn1PAM2 inMkrn1N ovaries could not rescue Osk protein levels and

Fig 5. Mkrn1 interacts strongly with the poly(A) binding protein. (A) Western blot analysis of co-IP experiments between Venus-Mkrn1 and pAbp. α-Tubulin (lanes 1,

2) and ovaries lacking the Venus-Mkrn1 transgene (lane 4) were used as negative controls. (B) Co-expression of pAbp stabilizes Mkrn1. FLAG-Mkrn1 was co-transfected

with increasing levels of HA-pAbp in S2R+ cells. Left: Proteins were examined using immunoblotting. Right: Intensities of FLAG-Mkrn1 levels were quantified and

normalized to intensities of β-tubulin. The relative intensity was normalized toMkrn1mRNA levels (normalized to RpL15mRNA) analyzed by RT-qPCR. Error bars

depict SEM, n = 9. (C) PAM2 motif alignment in different species. Comparison betweenDrosophila and human PAM2 motif revealed a Glu to Val substitution (orange) in

the consensus sequence. The conserved amino acid sequence to Drosophila (dark purple) is indicated below. The PAM2 motif was mutated using two amino acid

substitutions at positions 90 and 92 to alanine (F90A and P92A). (D) Immunoblot analysis of co-IP experiments between FLAG-Mkrn1 and pAbp in S2R+ cells. The

interaction of pAbp and Mkrn1 is reduced when the PAM2 motif is mutated. (E) Rescue experiments of wild-type or mutant Mkrn1 inMkrn1N mutants. FLAG-Mkrn1 or

FLAG-Myc-Mkrn1PAM2 was overexpressed in ovaries using a nos>Gal4 driver line. Ovarian protein lysates from rescued females were analyzed by immunoblotting

together with wild-type andMkrn1N as controls. While Mkrn1 overexpression could restore Osk protein level to approximately wild-type, Mkrn1PAM2 depicted decreased

protein levels similar toMkrn1N. (F) Egg chambers from (top panel)Mkrn1W, (middle panel) pAbp/+, and (bottom panel) pAbp/+; Mkrn1W females stained with DAPI

and immunostained for Orb, an oocyte marker. pAbp/+; Mkrn1W ovaries show diverse developmental defects. Scale bars, 25 μm except for the lower left panel, where the

scale bar is 50 μm. (G) Time course of fecundity ofMkrn1W and pAbp/CyO; Mkrn1W females.

https://doi.org/10.1371/journal.pgen.1008581.g005
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posterior localization compared to wild-type Mkrn1 (Fig 5E and S9B Fig). Moreover, we

observed a strong modifier effect betweenMkrn1W and pAbpmutations; Mkrn1W homozy-

gotes and pAbp heterozygotes complete oogenesis, but many egg chambers from pAbp/+;
Mkrn1W females show severe defects, including supernumerary germ cells, missing or dupli-

cated oocytes, or more extreme dysmorphologies (Fig 5F). These females can produce eggs,

but only for the first 2–3 days of life (Fig 5G), and these eggs did not support embryonic devel-

opment. We thus conclude that the interaction of Mkrn1 with pAbp is essential for its function

during oogenesis.

Mkrn1 associates specifically with osk mRNA in vivo
The effects we observed on osk translation in lateMkrn1 egg chambers prompted us to test

whether Mkrn1 can interact with oskmRNA. First, to assess whether Mkrn1 can bind to RNA

in general, we immunoprecipitated FLAG-Mkrn1 after transfection of S2R+ cells and UV

crosslinking. Mkrn1-bound RNA was subsequently labeled, and the protein-RNA complexes

were visualized by autoradiography (S10A Fig). While a higher concentration of RNase I (1/50

dilution) resulted in a focused band, a lower concentration (1/5000 dilution) produced a shift

of the Mkrn1-RNA complexes, demonstrating the RNA binding ability of DrosophilaMkrn1.

We next repeated this experiment with various mutations in different Mkrn1 domains (S7A

and S10A Fig). While mutations that alter the RING (Mkrn1RING) or the ZnF2 domain

(Mkrn1ZnF2) behave as wild-type Mkrn1, deletion of the ZnF1 domain (Mkrn1ΔZnF1) resulted

in a reduction of labeled Mkrn1-RNA complexes. These findings demonstrate that Drosophila
Mkrn1 can bind to RNA and the ZnF1 domain is critical for this binding.

To confirm that Mkrn1 binds oskmRNA in vivo, we overexpressed either FLAG-tagged

wild-type Mkrn1 or Mkrn1ΔZnF1 in ovaries and performed RNA IP (RIP) experiments. The

enrichment of different mRNAs was analyzed by qPCR using primers that bind to the 3’ UTRs

of the respective transcripts. Interestingly, we observed that oskmRNA was substantially

enriched in Mkrn1 IPs, but much less so when using Mkrn1ΔZnF1 (Fig 6A and S10B Fig). On

the other hand, bicoid (bcd) and grkmRNAs were not detected above background levels in

either RIP experiment. This provides evidence that Mkrn1 binds specifically to oskmRNA in

ovaries and that its ZnF1 domain is important for this interaction.

To determine precisely where Mkrn1 binds to oskmRNA, we performed individual nucleo-

tide resolution cross-linking and immunoprecipitation (iCLIP), an unbiased approach to iden-

tify RNA-binding sites of a protein of interest [50]. This condition ensured that all Mkrn1

protein-RNA complexes were potentially recoverable in the immunoprecipitations. To this

end, we overexpressed FLAG-tagged Mkrn1 in S2R+ cells and performed iCLIP experiments

(S10C Fig). Since osk is poorly expressed in these cells, we co-transfected a genomic construct

of osk under the control of an actin promoter. We found specific binding sites in a handful of

genes, including osk, ranking at third position in term of read coverage (S10D Fig), in which

Mkrn1 binding sites were located in the distal part of the 3’ UTR (Fig 6B). These sites fall just

upstream of an A-rich sequence that associates with pAbp [40]. Moreover, the binding site of

Mkrn1 partially overlaps with the BRE-C site, which is bound by Bru1 and is required for both

repression and activation of osk translation [25].

To validate the identified Mkrn1 binding sites, we performed RIP experiments in S2R

+ cells using different 3’ UTRs fused to the firefly luciferase coding sequence. We found that

Mkrn1 binds strongly to osk 3’ UTR but not significantly above background levels to grk 3’

UTR (S11A Fig). In addition, deletion of the Mkrn1-bound site identified with iCLIP in cells

(oskΔMkrn1, deletion of nucleotides 955–978 of osk 3’ UTR) greatly reduced the interaction of

Mkrn1 to osk 3’ UTR (Fig 6C and S11B Fig).
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As the Mkrn1 binding site in osk 3’ UTR lies just upstream of the A-rich region (AR), we

wondered whether the AR would also have an impact on Mkrn1 binding. To test this possibil-

ity, we deleted the AR (oskΔAR, deletion of nucleotides 987–1019 of osk 3’ UTR) and examined

Fig 6. Mkrn1 associates specifically with the 3’ UTR of osk mRNA. (A) RIP experiment. Either FLAG-tagged Mkrn1 or Mkrn1ΔZnF1 was overexpressed inMkrn1N

ovaries using nos>GAL4 driver. Enrichment of different transcripts was analyzed by RT-qPCR using primers that bind to the respective 3’ UTRs. Fold enrichment is

presented relative to the control (nos>GAL4 driver alone, ctrl). Error bars depict SEM, n = 3. Multiple t-test was used to analyze significant changes compared to

control RIP. (B) iCLIP results from S2R+ cells showing specific binding of Mkrn1 to osk in a region of the 3’ UTR that partially overlaps with the BRE-C site (yellow).

The peaks (purple) indicate crosslinking events of Mkrn1 to osk. Data of two technical replicates for FLAG-Mkrn1 is shown. The same experiment performed with

FLAG-GFP (ctrl) did not show specific peaks. (C) RIP experiments of FLAG-Mkrn1RING in S2R+ cells. Enrichment of luciferase-osk-3’UTR transcript was analyzed by

RT-qPCR compared to IP experiments with FLAG-GFP. Mkrn1RING Binding to osk 3’ UTR is compromised when introducing a deletion of the Mkrn1 binding site

(oskΔMkrn1, deletion of nucleotides 955–978 of osk 3’ UTR). Error bars depict SEM, n = 4. (D) Binding of Mkrn1RING to luciferase-osk-3’UTR reporter is reduced in S2R

+ cells when using a deletion of the A-rich region of osk 3’ UTR (oskΔAR, deletion of nucleotides 987–1019 of osk 3’ UTR). Fold change illustrates the difference of

pulled-down oskΔAR reporter compared to IP with wild-type osk 3’ UTR. The RIP experiments were normalized to FLAG-tagged GFP. Error bars depict SEM, n = 4.

(E) RIP experiments were performed in either control cells or upon depletion of Imp or pAbp. Enrichment was calculated compared to FLAG-GFP. The relative change

in Mkrn1RING binding to luciferase-osk-3’UTR reporter in knockdown cells compared to LacZ-depleted cells is depicted. Depletion of pAbp compromises binding of

Mkrn1. Error bars depict SEM, n = 3. (F) RIP experiments showing that FLAG-Mkrn1 binding to luciferase-osk-3’UTR is dependent on the ZnF1 domain as well as on

the PAM2 motif. Enrichment was analyzed using RT-qPCR and the relative change in binding compared to RIP of FLAG-Mkrn1 is illustrated. RIP experiments were

performed in S2R+ cells using FLAG-GFP as control. Error bars depict SEM, n� 3.

https://doi.org/10.1371/journal.pgen.1008581.g006
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Mkrn1 binding in S2R+ cells. We observed a decrease of Mkrn1 binding similar to that

observed when deleting the Mkrn1 binding sites (Fig 6D and S11C Fig). Thus, we conclude

that the AR enhances Mkrn1 binding to osk 3’ UTR. As Mkrn1 forms a stable complex with

pAbp, our results further suggest that pAbp binding to the AR stabilizes Mkrn1 and therefore

enhances its interaction with osk. Accordingly, reducing pAbp levels by RNAi, but not the

level of Imp, another Mkrn1 interactor, dramatically decreased Mkrn1 association with osk
mRNA in Drosophila cultured cells (Fig 6E, S11D and S11E Fig). Mutation of the PAM2

domain that enables the interaction with pAbp also resulted in reduced binding to osk 3’ UTR

(Fig 6F and S11F Fig). Consistent with these results, mutating both the ZnF1 domain and the

PAM2 motif led to almost complete loss of Mkrn1 binding to osk 3’ UTR in S2R+ cells. Collec-

tively, our results indicate that Mkrn1 binds specifically to the 3’ end of osk 3’ UTR via its

ZnF1 domain and this association is further stabilized through the interaction with pAbp.

Mkrn1 competes with Bru1 for binding to osk 3’ UTR

Our observation that Mkrn1 binds to the osk BRE-C region prompted us to test whether

Mkrn1 and Bru1 may compete for binding to osk 3’ UTR. To this end, we first examined

whether we can recapitulate Bru1 binding to oskmRNA in S2R+ cells. As Bru1 is normally

not expressed in this cell type, cells were co-transfected with GFP-tagged Bru1 along with the

luciferase-osk-3’UTR reporter. RIP experiments confirmed previous findings that Bru1

strongly associates with osk 3’ UTR (S12A Fig, [18]). We next repeated this experiment upon

knockdown ofMkrn1mRNA. Strikingly, while the protein level of Bru1 was not affected

(S12B Fig), its binding to osk 3’ UTR was significantly increased in Mkrn1-depleted cells (Fig

7A and S12B–S12D Fig). As pAbp is required to stabilize the interaction of Mkrn1 to osk 3’

UTR, we wondered whether it is necessary for modulating Bru1 binding as well. Indeed,

knockdown of pAbp in S2R+ cells resulted in an increased association of Bru1 to osk 3’ UTR

(Fig 7B and S12E Fig).

Next, to assess if these observations made in cultured cells are relevant to Mkrn1 function

in vivo, we repeated RIP experiments using ovarian extracts. Bru1 binding was assessed using

an antibody directed against endogenous Bru1 and its association with oskmRNA was subse-

quently analyzed by qPCR. Similar to S2R+ cells, the interaction of Bru1 with osk was signifi-

cantly increased inMkrn1W mutant ovaries (Fig 7 and S12F Fig). Thus, we conclude that

Mkrn1 restricts Bru1 binding to osk 3’ UTR and this effect is enhanced by the interaction of

Mkrn1 with pAbp.

To further address the relationship between Mkrn1 and Bru1, we examined whether the

Mkrn1W mutation affects Bru1 accumulation during oogenesis. In wild-type ovaries, Bru1 is

expressed in all germline cells and accumulates to a modest degree in the oocyte during early

oogenesis (Fig 7D and 7E, [20]). However, inMkrn1W ovaries, oocyte accumulation of Bru1

during early stages was much more pronounced (Fig 7F and 7G). As oskmRNA accumulates

in early oocytes, this result is consistent with Bru1 having an increased binding affinity for osk
in the absence of Mkrn1, even though Bru1 can also accumulate in the absence of osk RNA

[51].

If Mkrn1 activates osk translation by displacing Bru1, we would predict that lowering bru1
genetic dosage should suppress theMkrn1 phenotype. To test this hypothesis, we used a strong

bru1 allele (bru1QB, [20,52]). We found that removing one copy of bru1 was sufficient to sub-

stantially rescue Osk protein level and posterior localization inMkrn1W female oocytes as ana-

lyzed by immunostainings (Fig 7H–7M). Semi-quantitative analysis of Osk-immunostained

ovaries confirmed a clear suppression of theMkrn1W phenotype by one copy of bru1QB (Fig

7N) that was further confirmed by immunoblotting (Fig 7O). We also observed a higher
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survival rate of embryos produced from Mkrn1W females that were heterozygous for bru1QB,

as compared to controls (620/2058, 30.1% vs 40/1222, 3.3%). Taken together, these experi-

ments demonstrate that Mkrn1 activates osk translation, most likely by displacing Bru1 bind-

ing at the osk 3’ UTR (Fig 8).

Fig 7. Mkrn1 competes with Bru1 for binding to osk mRNA. (A) RIP experiments in either control S2R+ cells, or upon knockdown ofMkrn1. Binding of the

indicated proteins to the luciferase-osk-3’UTR reporter was monitored by RT-qPCR. The relative fold change in recovered RNA uponMkrn1 knockdown is

illustrated, compared to RIP experiments in LacZ-depleted cells. For every RIP experiment, the enrichment was calculated using GFP. Error bars depict SEM,

n� 4. (B) Bru1 binding to luciferase-osk-3’UTR upon pAbp knockdown was analyzed using GFP-RIP with subsequent RT-qPCR. The relative fold change in

binding of GFP-Bru1 to luciferase-osk-3’UTR compared to control knockdown is illustrated. The individual enrichments were normalized to IP experiments

using GFP alone. Error bars depict SEM, n = 3. (C) RIP experiments in either heterozygous (wild-type) or homozygousMkrn1W ovaries using α-Bru1 antibody.

The relative fold change in recovered endogenous oskmRNA in wild-type compared toMkrn1W ovaries is depicted. As control RIP, normal IgG was used for

every condition. Error bars indicate SEM, n = 4. (D-G) Immunostaining experiments showing Bru1 distribution in (D-E) wild-type and (F-G)Mkrn1W early-

stage egg chambers. Note the more prominent accumulation of Bru1 in the oocyte in theMkrn1mutant. Scale bars, (D and F) 25 μm; (E and G) 20 μm. (H-M)

Stage 10 egg chambers of the indicated genotypes immunostained with α-Osk. Posterior accumulation of Osk is restored to a variable degree (K-M) inMkrn1W

oocytes when heterozygous for bru1. Scale bars, 25 μm. (N) Quantification of posterior Osk localization in oocytes depicted in (H-M). The thresholds for weak,

moderate, and strong are arbitrary. The photographs in the H-M panels illustrate what is meant by the different categories. n = 21 for wild-type, n = 52 for

Mkrn1W, n = 100 for bru1/+; Mkrn1W. (O) Immunoblot analysis of protein lysates from ovaries depicted in (D-G). Heterozygous mutation of bru1 led to an

increase of Osk protein levels inMkrn1w ovaries.

https://doi.org/10.1371/journal.pgen.1008581.g007
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Discussion

Our data indicates thatMkrn1 is essential for oogenesis, embryonic patterning, and germ cell

specification. An essential role forMkrn1 in oogenesis has also been recently reported [53]. By

taking advantage of a new allele that specifically disrupts Mkrn1 binding to RNA, we demon-

strate that Mkrn1 exerts its function in embryogenesis and germ cell specification, primarily

via regulating osk translation by antagonizing Bru1 binding.

Control of osk translation has been studied in depth, revealing a complex spatio-temporal

interplay between repressing and activating factors [19]. Relief of translational repression and

activation of osk translation is likely to involve multiple redundant mechanisms. For example,

Bru1 can be phosphorylated on several residues, and phosphomimetic mutations in these resi-

dues inhibit Cup binding in pulldown assays. However, these do not seem to affect transla-

tional repression activity in vivo [24]. Stau, Aub, Orb and pAbp have also been implicated in

activating osk translation [14,29,40,54]. However, it is unlikely that Mkrn1 controls osk transla-

tion by recruiting Stau, as Stau still colocalizes with oskmRNA inMkrn1W oocytes (S12G–

S12I Fig). Instead, we propose that Mkrn1 exerts its positive activity by competing with Bru1

binding to osk 3’ UTR (Fig 8). This is evidenced by the overlap of their binding sites, the

increased association of Bru1 to oskmRNA uponMkrn1 knockdown and by our observation

that reducing bru1 dosage is sufficient to partially alleviate osk translational repression.

Two distinct Bru1 binding regions (AB and C) are present in the osk 3’ UTR and are

required for translational repression. However, the C region has an additional function in

translational activation. Indeed, it was hypothesized that an activator binds the C region to

relieve translational repression [25]. This activator was proposed to either be Bru1 itself, or a

different protein that can bind the BRE-C, which is what we observed for Mkrn1 (Fig 6A). Our

results suggest that the interaction of pAbp with the nearby AR region, and the consequent

Fig 8. Model depicting activation of osk translation via Mkrn1. Mkrn1 is recruited to the osk 3’ UTR and stabilized by pAbp. The

recruitment of Mkrn1 leads to the displacement of Bru1 promoting translational activation at the posterior pole of the oocyte.

https://doi.org/10.1371/journal.pgen.1008581.g008
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stabilization of Mkrn1 binding, contributes to the role of BRE-C in osk translational activation.

Other factors may also be involved. For instance, Bicoid Stability Factor (BSF) binds the C

region in vitro at the 3’ type II Bru1-binding site [55], at a similar site to where Mkrn1 binds

osk. Deletion of this site impacts embryonic patterning, yet depletion of BSF has no effect on

Osk protein expression up to stage 10, indicating that initial activation of osk translation is

effective even in the absence of BSF [55]. In this case, only late stage oocytes display reduced

Osk accumulation. Therefore, it is possible that a concerted action of Mkrn1 and BSF exists at

the osk 3’ UTR site to activate translation and sustain it at later stages.

The binding of Mkrn1 to mRNA seems to be extremely specific. We found that the binding

to osk is dependent on a downstream A-rich sequence and on interaction with pAbp. A few

other targets we identified also display enrichment for downstream AA nucleotides (S13 Fig).

and human MKRN1 has recently been shown to associate preferentially to such sequences

[49]. Relevant to this, Bru1 binds to grk 3’ UTR in addition to osk [56,57], and several proteins

that associate with Mkrn1 also associate with grkmRNA [46,47]. However, we found no evi-

dence that Mkrn1 binds specifically to grk, which lacks poly(A) stretches in the proximity of its

Bru1 binding sites, and consistently, we did not observe a regulatory role of Mkrn1 on Grk

translation.

In addition to pAbp, it is noteworthy that Mkrn1 associates with other proteins previously

implicated in osk localization and translational activation. Its interaction with eIF4G would be

consistent with a role in alleviating Cup-mediated repression, as it could recruit eIF4G to the

cap-binding complex at the expense of Cup. However, we did not observe an interaction

between Mkrn1 and eIF4E (S7C and S7D Fig, S1 and S2 Tables). The association between

Mkrn1 and Imp is also intriguing as the osk 3’ UTR contains 13 copies of a five-nucleotide

motif that interacts with Imp [28]. This region is essential for osk translation but Osk accumu-

lation is unaffected in Impmutants, suggesting the involvement of another factor that binds

these motifs [26,28,46]. In contrast to pAbp, we did not observe alteration of Mkrn1 binding

when Imp was depleted, indicating that Imp is not required to stabilize Mkrn1 on oskmRNA.

The molecular links we uncovered between Mkrn1 and RNA-dependent processes in Dro-
sophila are consistent with recent high-throughput analysis of mammalian MKRN1 interacting

proteins [37,49]. RNA binding proteins, including PABPC1, PABPC4, and eIF4G1, were

highly enriched among the interactors. Moreover, human MKRN1 was also recently shown to

bind to RNA, dependent on the PAM2 motif and the interaction with PABPC1 [49]. In addi-

tion, the short isoform of rat MKRN1 was shown to activate translation but the underlying

mechanism remained unknown [39]. Since in vertebrates MKRN genes are highly expressed in

gonads and early embryos as well, it is possible that similar molecular mechanisms are

employed to regulate gene expression at these stages [33]. Consistent with this, MKRN2 was

recently found to be essential for male fertility in mice [58]. Thus, our study provides a mecha-

nism that explains the role of Mkrn1 in translation and constitutes a solid framework for

future investigations deciphering the roles of vertebrate MKRNs in post-transcriptional con-

trol of gene expression during gametogenesis and early development.

Materials and Methods

Generation of Mkrn1 mutants using CRISPR/Cas9

The guide RNAs used were cloned into expression vector pDFD3-dU63gRNA (Addgene)

according to manufacturer’s instructions. Different guide RNAs were used either alone

(gRNA1 starting at nucleotide 64 ofMkrn1 CDS and gRNA2 starting at nucleotide 363 of

Mkrn1 CDS) or in combination (gRNA3 starting at 387 nt ofMkrn1 gene and gRNA4 starting

at position 2239 nt). vas-Cas9 Drosophila embryos were injected with the purified plasmids
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containing the gRNA (500 ng/μl in H2O) and allowed to develop to adulthood. Each male was

crossed with double balancer females. Genomic PCR from single flies was prepared and tested

for CRISPR/Cas9 induced mutations using the T7 endo I (BioLabs) assay or by PCR using

primers that bind in proximity to the guide RNA targeting site. A list of gRNAs as well as prim-

ers is appended (S3 Table).

Immunostaining and confocal imaging

Ovaries were dissected and fixed in 4% paraformaldehyde in PBS for 20 min at room tempera-

ture (RT). After 4–5 washes in PBST (PBS containing 0.3% Triton-X100) ovaries were permea-

bilized with 1% freshly prepared Triton-X100 in PBS for 1 h. The ovaries were blocked in 2%

BSA/PBST overnight. Dispersed egg chambers were then incubated with the primary antibod-

ies diluted in 2% BSA/PBST at RT for 4 h or overnight at 4˚C. The washed egg chambers were

incubated with conjugated secondary antibodies at 1:500 at RT for 4 h or overnight at 4˚C.

DAPI (1 ng/ml) was added in the last wash to counter-stain the nuclei for 30 min. After 2–3

washes with PBST the mounting medium containing 1% DABCO was added and the samples

were equilibrated for 30 min or overnight. The stained samples were mounted on glass slides

and sealed with nail varnish for microscopy imaging. Rabbit polyclonal antibodies against Vas,

Osk, Aub, Grk were generated in the Lasko lab; rabbit α-Stau is from the St Johnston lab; rab-

bit α-Bru1 is from the Ephrussi lab and rabbit α-pAbp is from the Sonenberg lab; mouse

monoclonal antibodies against Orb, Sqd, and Lamin were purchased from the Developmental

Studies Hybridoma Bank; mouse α-GFP and rabbit α-Flag were purchased from Abcam and

Sigma. Alexa Fluor 488 or 555 conjugated secondary antibodies were purchased from Molecu-

lar Probes, and pre-absorbed with fixed and blocked wild type ovaries to reduce background.

Stained egg chambers were examined using a confocal microscope (Leica). Images were taken

under 40 x oil lens by laser scanning and processed with ImageJ.

In situ hybridization of embryos and ovaries and RNA-protein double

labeling

cDNAs were used as templates for PCR to generate an amplified gene fragment with promoter

sequences on each end. PCR products were purified via agarose gel extraction and used for in
vitro transcription to generate digoxigenin-labeled RNA antisense probes with MAXIscript kit

(Ambion). The length of each probe was about 1000 nt. In situ hybridization experiments were

performed as described [59], using biotinylated α-DIG antibody and streptavidin-HRP fol-

lowed by tyramide conjugation for development of FISH signal. For RNA-protein double

labeling, ovaries or embryos were incubated in primary antibody against the protein of interest

along with biotinylated α-DIG antibody at 4˚C overnight. The tissue was washed, then detec-

tion reagent (fluorochrome-conjugated secondary antibody) along with streptavidin-HRP was

added and incubated at 4˚C overnight. Images were taken with confocal microscope (Leica).

Embryo cuticle preparation and staining

Flies were transferred into egg-laying cages with apple juice agar plates and incubated at 25˚C

in the dark. Embryos were collected when 50–100 eggs had been laid and allowed to age for 24

h at 25˚C. Embryos were collected in a sieve, dechorionated with 50% bleach for 2.5 min,

washed with water, then transferred into PBST buffer (PBS + 0.1% Tween 20). For cuticle

preparations, PBST buffer was removed, then 40–50 μl of Hoyer’s solution was added and

embryos were kept at 4˚C overnight. Embryos in Hoyer’s solution were mounted on a glass

slide, covered with a cover slip and incubated at 60–65˚C overnight. Dark-field images were

taken with Leica DM6000B microscope.
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Staging

Staging experiment was performed as described [60] using D.melanogaster w1118 flies.

Generation of transgenic flies

The constructs were made using Gateway technology (Invitrogen). Full-length wild-type

Mkrn1 cDNA was cloned into the pENTR entry vector using the pENTR/D-TOPO cloning kit

(ThermoFisher). After verifying the sequence by PCR, the insert was subcloned into the

expression vectors containing UASp promoter with different tags (pPVW and pPFW with

Venus and FLAG tags at N-terminal respectively), and (pPWV and pPWF with Venus and

FLAG tags at C-terminal respectively) by LR in vitro recombination. For Mkrn1ΔZnF1 pPFMW

vector was used. Constructs were verified by sequencing and then injected into yw embryos.

Progeny harboring the transgenes were crossed with double balancer flies to establish a variety

of lines, and the insertion sites were mapped to either the second or third chromosome.

Mkrn1 expression was then driven by crossing the transgenic lines with a nos>Gal4 line

(MTD). Expression of tagged Mkrn1 was verified by western blot analysis and immunostain-

ing using anti-GFP (Abcam) or anti-FLAG (Sigma).

Rescue experiment

Flies carrying Venus- or FLAG-Mkrn1 on the second chromosome were crossed with the

nos>Gal4 driver lines in three different Mkrn1 mutant backgrounds (Mkrn1W,Mkrn1S, and

Mkrn1N). Progeny were collected and separated into two groups: (1) Venus- or FLAG-Mkrn1/
nos>Gal4; Mkrn1W (S or N)/ Mkrn1W (S or N) and (2) nos>Gal4/CyO; Mkrn1W (S or N)/
Mkrn1W (S or N). To perform hatching tests the same number of flies from each group was fed

with yeast butter on apple juice plates for 1 d, embryos were collected and incubated at 25˚C

for 48 h to allow completion of hatching. Hatched and unhatched embryos were counted for

each group. The data from several tests in the same group were pooled and the hatching per-

centage was calculated.

Cell line

Drosophila S2R+ are embryonic derived cells obtained from Drosophila Genomics Resource

Center (DGRC, Flybase ID: FBtc0000150).

Cell culture, RNAi, transfection

Drosophila S2R+ cells were grown in Schneider’s medium (Gibco) supplemented with 10%

FBS (Sigma) and 1% Penicillin-Streptomycin (Sigma). For RNAi experiments, PCR templates

for the dsRNA were prepared using T7 Megascript Kit (NEB). S2R+ cells were seeded at the

density of 106 cells/ml in serum-free medium and 15 μg/ml of dsRNA was added to the cells.

After 6 h of cell starvation, serum supplemented medium was added to the cells. dsRNA treat-

ment was repeated after 48 h and cells were collected 24 h after the last treatment. A list of

primers used to create dsRNA templates by PCR is appended (S4 Table). Effectene (Qiagen)

was used to transfect vector constructs in all overexpression experiments following the manu-

facturer’s protocol.

Immunoprecipitations (IPs)

For IP experiments in S2R+ cultured cells, protocol was followed as described [60] with minor

changes: 2 mg of the protein lysates was incubated for 2 h with 10 μl of either Myc-Trap or

GFP-Trap beads (Chromotek). To determine the dependence of interactions on RNA, 50 U of
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RNaseT1 (ThermoFisher) were added to the respective IP. To ensure the activity of RNase T1,

lysates were incubated 10 min at RT prior to the incubation of lysate with antibody.

For IP experiments in ovaries, 150 μl of wet ovaries from 3–5 day old flies expressing

Venus-Mkrn1 was homogenized on ice in 2 ml of cold IP buffer (1 X PBS, 0.4% Triton X-100,

1 mM MgCl2, 5% glycerol), containing protease inhibitors and PMSF. The extracts were

diluted to 1.5 mg protein/ml. Each extract (0.66 ml) was mixed with 24 μg of anti-pAbp Fab

antibody (Smibert lab, [61]), 17 μg of α-eIF4G rabbit antibody, or 15 μl of rabbit anti-α−-

Tubulin antibody (Abcam). When present, 100 μg RNase A (Qiagen) was added to the sam-

ples. Samples were incubated with rotation at 4˚C overnight, then mixed with 30 μl of protein

A agarose beads (wet volume, Invitrogen) and incubated with rotation at RT for 1.5 h. The

beads were washed three times with IP buffer. Bound material on the beads was eluted by boil-

ing for 2 min in 40 μl of SDS loading buffer. 20 μl of the eluted sample, together with input

samples, was used for western blot.

RNA- Immunoprecipitation (RIP)

For RIP, S2R+ cells or ovaries were harvested and lysed in RIP buffer (150 mM NaCl, 50 mM

Tris-HCl pH 7.5, 0.5% NP-40, 1 mM EDTA) supplemented with proteinase inhibitors (1.5 μg/

ml Leupeptin, 1.5 μg/ml Pepstatin, 1.5 μg/ml Aprotinin and 1.5 mM PMSF) and RNase inhibi-

tors (20 U/μl). S2R+ cells were lysed for 20 min at 4˚C, subtracted to 2 cycles of sonication on

a bioruptor (Diagenode) with 30 sec “ON”/“OFF” at low setting and the remaining cell debris

was removed by centrifugation at 21,000 g for 10 min at 4˚C. To remove lipids and cell debris,

ovary lysates were centrifuged 4 times. Protein concentrations were determined using Brad-

ford reagent (BioRad). 2 mg of protein lysate were incubated for 3 h with 2 μg of α-FLAG M2

antibody (Sigma-Aldrich) pre-coupled to 20 μl of protein G Dynabeads (Thermo Fisher Scien-

tific) head-over-tail at 4˚C. For RIP experiments analysing binding of Bru1 in ovaries, either

1 μl of rabbit α-Bru1 (gift from A. Ephrussi) or 2 μg of rabbit IgG (Millipore) were incubated

with ovarian lysate over night at 4˚C. 20 μl of protein G Dynabeads were added for 2 h after

the incubation. For every RIP experiment, beads were washed 4 x for 10 min in RIP buffer at

4˚C.

For immunoprecipitation of GFP-tagged Imp and Bru1 15 μl of GFP-Trap (Chromotek)

were used. Lysates were prepared similar as above using RIPA buffer (140 mM NaCl, 50 mM

Tris pH 7.5, 1 mM EDTA pH 8, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate) sup-

plemented with proteinase and RNase inhibitors. IP was performed for 2 h at 4˚C and subse-

quently washed 4 x for 10 min with RIPA buffer.

RNA was eluted in TRIzol Reagent (ThermoFisher), 10 min at RT and subjected to RNA

isolation and RT-qPCR. To obtain the depicted fold enrichment, individual transcripts were

normalized to either 18S or RpL15 (S5 Table). At least three biological replicates were per-

formed for each experiment. If not stated differently statistical analysis was performed using

one sample t-test.

To analyze IPs, 30% of beads were eluted in 1x SDS buffer (50 mM Tris pH 6.8, 2% SDS,

10% glycerol, 100 mM DTT, 0.05% Bromphenol Blue) at 95˚C for 10 min. Eluted IP proteins

were removed from the beads and analyzed by western blot together with input samples.

Western blotting

Western blotting was performed as described [60]. Primary antibodies used were: mouse α-

Myc 9E10 antibody (1:2000, Enzo Life Sciences); mouse α-FLAG M2 antibody (1:1000, Sigma-

Aldrich); rabbit α-GFP TP401 antibody (1:5000, Acris Antibodies); mouse α-HA F7 (1:1000,

Santa-Cruz) rat α-HA (1:750, Roche); mouse α-β-Tubulin (1:5000, Covance), mouse α-α-
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Tubulin (1:20,000; Sigma), mouse α-GFP (1:500; Molecular probe), mouse α-ubiquitin

(1:1000; Santa Cruz) Fab α-pAbp (2.5 μg in 5 ml), α-eIF4G rabbit antibody (1 μg in 5 ml), rab-

bit α-Osk (1:1000) antibody was a gift from A. Ephrussi.

RNA isolation and measurement of RNA levels

Cells or tissues were harvested in TRIzol Reagent (ThermoFisher) and RNA was isolated

according to the manufacturer’s instructions. DNA was removed with DNaseI treatment

(NEB) and cDNA was prepared with M-MLV Reverse Transcriptase (Promega). The tran-

script levels were quantified using Power SYBR Green PCR Master Mix (ThermoFisher) using

the indicated primer (S5 Table).

LC-MS/MS

To identify binding partners of Mkrn1, either Myc-GFP as control or Myc-Mkrn1 were ectopi-

cally expressed in S2R+ cells. Upon lysis, Myc-GFP or Myc-Mkrn1 were immunoprecipitated

as described above (see IP methods) with small adjustments: The IP buffer was additionally

supplemented with 10 mM N-ethylmaleimide, 1 mM sodium orthovanadate, 5 mM β-glycero-

phosphate and 5 mM sodium fluoride. After IP, samples were eluted in 2x LDS buffer (Life

Technologies) supplemented with 1 mM dithiothreitol for 10 min at 70˚C and incubated with

5.5 mM 2-chloracetamide for 30 min at room temperature in the dark. All samples were pre-

pared in parallel.

Conventional interactome analysis of the IP samples was performed as described before

[62] with the following changes: The enriched proteins were separated by SDS-PAGE with a

4–12% Bis-Tris protein gel (NuPAGE, Thermo Scientific) and stained with Colloidal Blue

Staining Kit (Life Technologies). Subsequently, proteins were in-gel digested using trypsin

and digested peptides were then extracted from the gel. Concentration, clearance and acidifi-

cation of peptides, mass spectrometry analysis, and peptide identification were performed as

described before [62]. For peptide identification in MaxQuant (version 1.5.28), the DROME

database from UniProtKB (release May 2016) was used. For label-free quantification (LFQ) at

least 2 LFQ ratio counts (without fast LFQ) were activated.

The data table of LFQ values resulting from MaxQuant was filtered for potential contami-

nants, reverse binders and protein groups only identified by site. Furthermore, protein groups

with less than two peptides and less than one unique peptide were also removed from further

analysis. After log-transforming all remaining LFQ values, missing values were imputed by

beta distributed random numbers between 0.1% and 1.5% of the lowest measured values. As a

final filtering step, only protein groups having measured values for at least two replicates of at

least one experimental condition were kept for further analysis. All filter and imputing steps

were done with an in-house R script.

Differential protein abundance analysis was performed on log-transformed LFQ values

between two conditions at the time using the R package limma (version 3.34.9, [63]). For each

such comparison, only protein groups found in at least two replicates of at least one condition

were kept and used. To visualize the interactome, the R package ggplot2 [64] was used. All pro-

tein groups with an FDR� 0.05 and a log2 fold change of� 2 were considered significantly

changed.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository with the dataset identifier PXD011802.
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PAM2 motif alignment

Ortholog searches were performed using HaMStR-OneSeq [65]. Human MKRN1 and MKRN2

(UniProt identifiers: Q9UHC7, Q9H000) served as seed proteins and orthologs were searched

within data from the Quest for Orthologs Consortium (release 2017_04, [66]). In order to identify

functionally equivalent proteins, we calculated a unidirectional Feature Architecture Similarity

(FAS) score that compares the domain architecture of the seed protein and the predicted ortholog

[67]. Predicted orthologs with FAS< 0.7 were removed. The multiple sequence alignment of

PAM2 motifs of Makorin orthologs from selected arthropod and vertebrate species was generated

using MAFFT v7.294b L-INS-i [68]. Since the PAM2 motif in all Makorin proteins differs from

the described consensus, a PAM2 hidden Markov model was trained on Makorin PAM2 motifs

and used for a HMMER scan (http://hmmer.org/) of the orthologs. Orthologs include species

name, UniProt identifiers and amino acid (aa) positions of the PAM2 motif within the protein:

Drosophila melanogaster, Q9VP20, 81–95 aa; Anopheles gambiae, Q7QF83, 57–71 aa; Tribolium
castaneum, A0A139WP96, 159–173 aa; Ixodes scapularis, B7QIJ9, 119–133 aa; human, Q9UHC7,

163–177 aa; mouse, Q9QXP6, 163–177 aa; zebrafish, Q4VBT5, 120–134 aa.

Individual-nucleotide resolution UV CrossLinking and ImmunoPrecipitation

(iCLIP) and autoradiography

The iCLIP protocol was performed as in [69] with the following adaptations: S2R+ cells were

crosslinked with 150 mJ/cm2 of UV light and subsequently harvested. Cells were lysed in urea

cracking buffer (50 mM Tris pH 7.5, 6 M urea, 1% SDS, 25% PBS) and sonicated using 2 cycles

with 30 sec “ON”/“OFF” at low setting. Remaining cell debris was removed by centrifugation at

21,000 x g for 10 min at 4˚C. Lysate was diluted 1:5 in IP buffer (150 mM NaCl, 50 mM Tris pH

7.5, 0.5% Tween-20, 0.1 mM EDTA) and incubated with 4 μg of anti-FLAG M2 antibody (Sigma-

Aldrich) pre-coupled to 100 μl of protein G Dynabeads (ThermoFisher Scientific) for 2 h at 4˚C.

After IP, the pulled-down RNA-protein complexes were washed 3x with high salt buffer (1 M

NaCl, 50 mM Tris pH 7.4, 1 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% Na-DOC) and 3x with PNK

buffer (10 mM MgCl2, 20 mM Tris pH 7.6, 0.2% Tween-20). To trim the length of the crosslinked

RNA, on-bead digestion using Turbo DNase (Ambion) and RNase I (Ambion) was performed.

Subsequently, the beads were washed again 3x with high salt buffer and 3x with PNK buffer.

For high-throughput sequencing of iCLIP experiments, libraries of 6 technical replicates for

FLAG-Mkrn1 and 1 replicate for FLAG-GFP (Control) were prepared as described [69]. Bar-

codes used for the libraries are listed in S6 Table. Multiplexed iCLIP libraries were sequenced

as 75-nt single-end reads on an Illumina MiSeq sequencing system.

Sequencing qualities were checked for all reads using FastQC (version 0.11.5) (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). Afterwards, reads were filtered based on

sequencing qualities (Phred score) of the barcode region. Reads with more than one position

with a Phred score< 20 in the experimental barcode (positions 4 to 7 of the reads) or any posi-

tion with a Phred score< 17 in the random barcode (positions 1 to 3 and 8 to 9) were excluded

from subsequent analysis. Remaining reads were de-multiplexed based on the experimental

barcode (positions 4 to 7) using Flexbar (version 3.0.0, [70]) without allowing any mismatch.

All following steps of the analysis were performed on the individual samples after de-multi-

plexing. Remaining adapter sequences were removed from the read ends using Flexbar

(version 3.0.0) with a maximal error rate of 0.1 and a minimal overlap of 1 nt between the

beginning of the adapter and the end of the read. Following adapter trimming, the first 9 nt of

each read containing the experimental and random barcodes were trimmed off and added to

the read name in the fastq files in order to keep this information for downstream analysis.

Reads shorter than 15 nt were removed from further analysis.
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Trimmed and filtered reads were mapped to theDrosophila melanogaster genome (Ensembl

genome assembly version BDGP6) and its annotation (Ensembl release 90, [71]) using STAR

(version 2.5.2b, [72]). When running STAR, up to two mismatches were allowed, soft-clipping

was prohibited at the 5’ ends of reads and only uniquely mapping reads were kept for further

analysis. For further analysis, only unspliced reads were kept and analyzed.

Following mapping, duplicate reads were marked using the dedup function of bamUtil

(version 1.0.13), which defines duplicates as reads whose 5’ ends map to the same position in

the genome (https://github.com/statgen/bamUtil). Subsequently, marked duplicates with iden-

tical random barcodes were removed since they are considered technical duplicates, while bio-

logical duplicates showing unequal random barcodes were kept.

Resulting bam files were sorted and indexed using SAMtools (version 1.3.1, [73]). After-

wards, bedgraph files were created based on bam files, using bamToBed of the BEDTools suite

(version 2.25.0; [74]), considering only the position upstream of the 5’ mapping position of the

read, since this nucleotide is considered as the crosslinked nucleotide. Using bedGraphToBig-

Wig of the UCSC tool suite [74], all bedgraph files were converted into BigWig files [75].

In order to estimate binding site strength and to facilitate comparisons between binding sites

(S10D Fig) we corrected for transcript abundance by representing the crosslink events within a

binding site as a ‘signal-over-background’ ratio (SOB). The respective background was calculated

as the sum of crosslink events outside of binding sites (plus 5 nt to either side) by the merged

length of all exons. 3’ UTR lengths were restricted to 10 nt past the last Mkrn1 binding site or

500 nt if no binding site was present. SOB calculations were performed separately for each repli-

cate and then averaged. No SOB value was assigned for ribosomal genes and genes with a back-

ground of< 10 crosslink events, resulting in SOB values for 184 binding sites in 46 targets.

The sequence content around the predicted Makorin 1 binding sites was estimated by

counting homopolymeric 2-mers (S13 Fig). All 262 binding sites that fall in 3’ UTRs were cen-

tered at their midpoint and a symmetric window was extended 100 nucleotides up- and down-

stream. For each position the mean occurrence of each 2-mer was counted.

The iCLIP data has been deposited to the NCBI’s Gene Expression Omnibus [76] and is

accessible through GEO Series accession number GSE123052 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE123052).

Cloning

To overexpress tagged proteins, the respective coding sequences were amplified and cloned

into Gateway plasmids using AscI and NotI restriction sites for plasmids pPFMW and pAHW.

The coding sequences of Imp, bru1 and pAbp were cloned using KpnI and XbaI into plasmid

pAWG. A list of primers used to introduce the coding sequences as well as to introduce muta-

tions in theMkrn1 coding sequence is appended (S7 Table). To analyze the binding of Mkrn1

to osk, either the 3’ UTR was cloned downstream of Firefly coding sequence or the complete

osk gene was cloned in the same vector backbone of pAc5.1B-EGFP (gift from Elisa Izaurralde,

Addgene plasmid #21181). For both, restriction sites of KpnI and SalI were used. To ensure

the proper usage of the endogenous poly(A) signal the osk 3’ UTR and the osk gene included

220 and 248 nucleotides of the downstream sequence, respectively. The primers used for clon-

ing and to introduce mutations are listed in S8 Table.

Supporting information

S1 Fig. Four Makorin-related genes are expressed in Drosophila melanogaster. (A) Sequence

alignment of human MKRN1 and the four Makorin-related proteins in Drosophila, Mkrn1,

CG5334, CG5347, and CG12477. The ZnF1 domain in Mkrn1 is highlighted green, the PAM2
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motif is highlighted yellow, the RING domain is highlighted red, and the ZnF2 domain is

highlighted light blue. The RING and ZnF2 domains are conserved in all four proteins,

whereas the PAM2 motif is only conserved in CG12477 and CG5347, and ZnF1 is conserved

in CG5334 and CG5347. (B) Relative mRNA levels ofMkrn1 and the three other genes encod-

ing predicted Makorin proteins at various stages of development, as measured by RT-qPCR.

mRNA levels were normalized to Rpl15mRNA. Error bars depict Stdev, n = 3.

(TIF)

S2 Fig. Mkrn1 colocalizes with pole plasm components. All images are from wild-type

oocytes expressing Venus-Mkrn1 or FLAG-Mkrn1 as indicated. Overexpression was per-

formed using a nos>Gal4 driver. (A, D,) Immunostaining with α-FLAG to monitor

FLAG-Mkrn1. (G and J) Immunostaining with α-GFP recognizing Venus-Mkrn1. (B and E)

Immunostaining with α-Osk. (H and K). (C, F, I, L,) Merged images from two preceding pan-

els. Scale bars: (A-C, G-I,) 5 μm; (D-F, J-L) 20 μm.

(TIF)

S3 Fig. Effects of osk and vas mutations on Mkrn1 localization. (A) Posterior accumulation

of either Venus-Mkrn1 or FLAG-Mkrn1 is normal in osk54/+ oocytes but is absent in osk54/Df
(3R)p-XT103 (osk) oocytes. (B) Posterior accumulation of either Venus-Mkrn1 or

FLAG-Mkrn1 is normal in both vas1/+ or vas1/vasPH (vas) oocytes. Scale bars, 50 μm.

(TIF)

S4 Fig. Mkrn1 genetically interacts with osk and vas. Pole cell counts from embryos pro-

duced by females with the indicated genotypes. Embryos from trans-heterozygotes for Mkrn1
and osk or vasmutations have fewer pole cells than those from single heterozygote controls.

Error bars illustrate Stdev, n = 60.

(TIF)

S5 Fig. Transgenic expression of tagged Mkrn1 rescues all Mkrn1 mutant phenotypes.

(A-C) Bright-field micrographs of entire ovaries from (A)Mkrn1N; (B) nos>FLAG-Mkrn1;

Mkrn1N and (C) wild-type females, showing overall rescue of oogenesis. Scale bars, 500 μm.

(D-F) α-Osk immunostaining on (D)Mkrn1W, (E)Mkrn1S, (F)Mkrn1N egg chambers as nega-

tive controls. (G-J) Transgenic expression of tagged Mkrn1 restores posterior localization of

Osk protein inMkrn1W oocytes. (G, H) nos>Venus-Mkrn1; Mkrn1W; (I and J) nos>-
FLAG-Mkrn1; Mkrn1W. (H and J) Immunostaining with α -Osk; (G) Immunostaining with α-

GFP to visualize Venus-Mkrn1; (I) Immunostaining with α-FLAG recognizing FLAG-Mkrn1.

(K-N) Transgenic expression of tagged Mkrn1 restores expression and posterior localization of

Osk protein inMkrn1S oocytes. (K and L) nos>Venus-Mkrn1;Mkrn1S; (M and N) nos>-
FLAG-Mkrn1;Mkrn1S. (L and N) Immunostaining using α-Osk; (K) Immunostaining with α-

GFP recognizing Venus-Mkrn1; (M) Immunostaining using α-FLAG to visualize

FLAG-Mkrn1. (O and P) Transgenic expression of tagged Mkrn1 restores expression and pos-

terior localization of Osk protein inMkrn1N oocytes. (Q-T) Immunostaining experiments

revealing localization of various proteins in nos>Venus-Mkrn1; Mkrn1N oocytes. (Q) α -Stau;

(R) α -Vas; (S) α -Aub; (T) α -Grk. (D-T) Scale bars, 50 μm.

(TIF)

S6 Fig. Mkrn1 mutations affect accumulation of mRNAs involved in axis patterning in

embryos. (A and B) Antero-dorsal accumulation of grkmRNA is similar to wild-type in stage

10Mkrn1W oocytes. Scale bars, 50 μm. (C) grk mRNA remains associated with the oocyte

nucleus and is mislocalized to the posterior in stage 10Mkrn1S oocytes. Scale bars, 50 μm. In
situ hybridization experiments showing posterior accumulation of (D) osk, (E) nos, and (F) pgc
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mRNAs in wild-type embryos. Scale bars, 100 μm. (G-I) Posterior accumulation of these

mRNAs is lost inMkrn1W embryos. Scale bars, 100 μm.

(TIF)

S7 Fig. Interactome of Mkrn1 in S2R+ cells. (A) Schematic diagram of Mkrn1 constructs

with functional domains highlighted. Differenet mutations were introduced into Mkrn1 pro-

tein: Mkrn1RING carries a point mutation that changes histidine 239 to glutamic acid (H239E)

while Mkrn1ΔZnF1 contains a deletion of amino acids 26 to 33. To disrupt the ZnF2 domain

(Mkrn1ZnF2) three point mutations that mutate cysteines to alanines at positions 302, 312 and

318 (C302A, C312A and C318A) were introduced. (B) Immunoblot showing the relative

expression levels of various forms of FLAG-Mkrn1 in S2R+ cells. (C, D) Volcano plots show-

ing the interactome of (C) Myc-Mkrn1 and (D) Myc-Mkrn1RING in S2R+ cells identified using

LC-MS/MS and label-free quantification. For both experiments, 3 technical replicates of Myc-

GFP (ctrl) and Myc-Mkrn1 IP were performed and compared with each other. The enrich-

ment of proteins compared to the control was plotted in a volcano plot using a combined cut-

off of log2 fold change� 2 and an FDR� 0.05. Several proteins of interest are labelled. The

entire list of enriched proteins can be found in S1 and S2 Tables.

(TIF)

S8 Fig. Validation of Mkrn1 interactome. Pulldown experiments to validate binding of

tagged Mkrn1RING with (A) GFP-pAbp, (B) GFP-Imp, (C) Myc-eIF4G (D) Myc-Sqd and (E)

Myc-Me31B. GFP and Myc IPs were performed in the absence or presence of RNase T1 and

enrichment of the proteins was analyzed by immunoblotting. As controls, either GFP alone or

Myc-GFP were used. All co-IP experiments were performed in S2R+ cells. (F) Western blot

depicting co-IP experiments between Venus-Mkrn1 and eIF4G in ovaries. α-tubulin (αtub,

lanes 1, 2) and ovaries lacking the Venus-Mkrn1 transgene (lane 4) were used as negative con-

trols.

(TIF)

S9 Fig. Analysis of the PAM2 motif. Rescue experiments of either Mkrn1 or Mkrn1PAM2 in

Mkrn1N ovaries. FLAG-tagged Mkrn1 transgenes were overexpressed in ovaries using a

nos>Gal4 driver line. Ovaries were stained with α-1B1 (red) and α-Osk (green). Nuclei were

stained using DAPI (blue). Although overexpression of wild-type Mkrn1 could restore Osk

protein at the posterior, Mkrn1PAM2 could not. Scale bar, 50 μm.

(TIF)

S10 Fig. Analysis of the RNA binding ability of Mkrn1. (A) The RNA binding activity of

Mkrn1 is mediated by its ZnF1 domain. Autoradiographs showing association of various

forms of Mkrn1 to RNA. FLAG-tagged GFP was used as a negative control. Crosslinked RNA-

protein complexes were immunoprecipitated with α-FLAG and treated with different dilu-

tions of RNase I (left: 1/50, right: 1/5000). RNA was subsequently radiolabelled and the RNA-

protein complexes were separated by SDS-PAGE. Bound RNA of different sizes is detected by

a smear extending upward from the sharp bands that correspond to the sizes of the

FLAG-Mkrn1 proteins (arrow). (B) Representative immunoblot of RIP experiment shown in

Fig 6A. Either Mkrn1 or Mkrn1ΔZnF1 were overexpressed inMkrn1N ovaries using a nos>Gal4
driver. The proteins were immunoprecipitated using α-FLAG antibody. Note that Mkrn1ΔZnF1

protein runs higher because of the presence of an additional Myc tag. (C) Validation of iCLIP

experiments. Immunoprecipitation of FLAG-Mkrn1 was performed in different conditions.

S2R+ cells were transfected and UV-crosslinked prior to IP experiments. Left: autoradiograph

showing protein-RNA complexes. Right: Signals of lanes 2, 4 and 5 in autoradiograph were cut

and RNAwas subsequently isolated. RNA length was analyzed on a TBE-urea gel. (D) iCLIP
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datasets with Mkrn1-FLAG in S2R+ cells. The x axis displays maximum binding strength per

gene (SOB) and the y axis shows the gene identity. The genes are sorted by SOB with osk
mRNA appearing at the third place. Note that ribosomal genes have been excluded for clarity.

(TIF)

S11 Fig. Mkrn1 binding to osk 3’ UTR is dependent on pAbp. (A) Mkrn1, but not

Mkrn1ΔZnF1 binds to the osk 3’ UTR in S2R+ cells. FLAG-RIP of GFP, Mkrn1 and Mkrn1ΔZnF1

was performed co-expressing either luciferase-grk-3’UTR or luciferase-osk-3’UTR reporter.

Top: qPCR analysis of the RIP experiments. Fold enrichment is illustrated relative to GFP RIP.

Error bars depict SEM, n = 3. Bottom: Immunoblots of a representative RIP experiment. (B-F)

Western blot analysis of a representative FLAG-RIP experiment in S2R+ cells summarized in

Fig 6C–6F. (B) Either FLAG-tagged GFP or Mkrn1RING was overexpressed. RIP experiments

were performed in the presence of a luciferase-osk-3’UTR reporter containing osk 3’ UTR

wild-type sequence or deletion of the Mkrn1 binding site (oskΔMkrn1) (C) FLAG-RIP of GFP or

Mkrn1RING were performed either using the luciferase-osk-3’UTR reporter. Binding was com-

pared between wild-type osk 3’ UTR and a mutation in the AR region (oskΔAR). (D and E) RIP

experiments against FLAG-Mkrn1RING were performed in control (LacZ) condition and com-

pared to (D) Imp or (E) pAbpmRNA knockdown. Right: RT-qPCR analysis of the knockdown

efficiency. Imp and pAbpmRNA levels were normalized to Rpl15mRNA. (F) FLAG-RIP

experiments in S2R+ cells using different Mkrn1 mutants. Representative immunoblot is

depicted.

(TIF)

S12 Fig. Binding of Bru1 to osk 3’UTR is antagonized by Mkrn1. (A) RIP experiments of

GFP alone or GFP-Bru1 in S2R+ cells. Left: qPCR analysis of RIP experiments analyzing the

enrichment of the luciferase-osk-3’UTR transcript. Error bars depict SEM n = 3. Right: Immu-

noblot of one representative IP using α-GFP. (B-F) Immunoblots of representative RIP experi-

ments summarized in Fig 7A–7C. Right: RT-qPCR validation of the respective knockdown.

mRNA levels were normalized to Rpl15mRNA. (B) RIP experiment of either GFP alone or

GFP-Bru1 were performed in control (LacZ) orMkrn1mRNA knockdown condition. (C)

GFP-RIP experiments were performed in control (LacZ) orMkrn1mRNA knockdown condi-

tion for either GFP or GFP-Imp. (D) RIP experiment performed against FLAG-tagged pAbp

or Sqd in LacZ orMkrn1mRNA depleted cells. As control, RIP was performed with FLAG-

tagged GFP. (E) GFP-RIP of either GFP alone or GFP-Bru1 in control (LacZ) or pAbp KD. (F)

Representative immunoblot of a RIP experiment using heterozygous (wild-type) or homozy-

gousMkrn1W ovary lysate against endogenous Bru1. As control RIP, normal rabbit IgG was

used. (G-I) The three panels show the sameMkrn1W stage 10 egg chamber stained for (G)

Stau, (H) oskmRNA and (I) a merged image. There is accumulation of Stau near the pole

plasm and co-localization with oskmRNA. Scale bar, 20 μm.

(TIF)

S13 Fig. Makorin1 binding sites display a slight enrichment of “A” nucleotides. Homopoly-

meric dimers were counted in 200 a nucleotide wide window centered at 262 binding sites

midpoints in 3’ UTRs.

(TIF)

S1 Table. List of identified interaction partners of Myc-Mkrn1 compared to Myc-GFP

using mass spectrometry and limma analysis. All proteins with an FDR� 0.05 05 and log2

fold change� 2 are depicted. (see supplementary file 1)

(XLSX)
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S2 Table. List of identified interaction partners of Myc-Mkrn1RING compared to Myc-

GFP using mass spectrometry and limma analysis. All proteins with an FDR� 0.05 and log2

fold change� 2 are depicted. (see supplementary file 1).

(XLSX)

S3 Table. List of gRNAs used in this study and primers used to validate mutations of the

Mkrn1 gene by CRISPR/ Cas9.

(DOCX)

S4 Table. List of primers used to create PCR templates of dsRNAs.

(DOCX)

S5 Table. List of primers used to in qPCR experiments.

(DOCX)

S6 Table. List of barcodes used to prepare iCLIP libraries from material of S2R+ cells.

(DOCX)

S7 Table. List of primers used to clone CDSs of proteins as well as primers that were used

to introduce mutations in the respective CDS.

(DOCX)

S8 Table. List of primers used to clone osk and grk reporter genes and introduce the muta-

tions analyzed.

(DOCX)
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