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CCRS8 leads to eosinophil migration
and regulates neutrophil migration
In murine allergic enteritis
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. Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular

. and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice
received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an
egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor
(CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS
analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced

. eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared

: to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5,

. were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8

. in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists

. totreat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may

. promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic

. target for AE, despite the potential to reduce eosinophil accumulation. This study advances our

. knowledge to establish effective anti-inflammatory strategies in AE treatment.

. The prevalence of food allergy appears to have increased over the past decade. Food allergy causes clinical symp-
- toms systemically and/or locally in cutaneous, respiratory, ocular, and gastrointestinal tissues'~. Gastrointestinal
. forms of food allergy, which include allergic enteritis and colitis, are observed most frequently in pediatric
. patients with cow’s milk, or soy allergy, and also in adult patients allergic to other foods, including eggs of hens
and wheat*°. Biopsies have shown varying degrees of villous atrophy, tissue edema, crypt abscess formation, and
. eosinophil infiltration in the inflamed tissues of patients with allergic enteritis and colitis®. In addition to eosino-
. phils, infiltration of lymphocytes, neutrophils, and/or mast cells has also been observed®’”. However, compared to
. other clinical phenotypes of food allergy, such as atopic dermatitis, allergic asthma, urticaria and anaphylaxis, the
. pathological mechanism underlying allergic enteritis is not well understood.
: We previously established a murine model of allergic enteritis (AE) using ovalbumin (OVA, a major allergen
. of egg white) as model allergen®. To this end, BALB/c mice were sensitized intraperitoneally (i.p.) by injection
. with OVA in alum and challenged by intake of an egg white (EW) diet. The OVA-sensitized mice on the EW-diet
- exhibited clinical symptoms, e.g., weight loss, decrease in body temperature, and inflammation in the small intes-
. tine®’. To elucidate the molecular and cellular mechanism underlying AE, in this study, we performed a microar-
© ray gene analysis using the described model. Microarray analysis showed that, among many others, the gene
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Figure 1. Immunization schedule. BALB/c mice were i.e. sensitized with OVA plus ALUM twice at a two-weeK’s
interval. (A) In order to perform microarray analysis, two weeks after the last sensitization, the mice were fed
EW-diet or casein diet for three days. (B) In the majority of experiments, two weeks after the last sensitization,
the mice were fed EW diet for seven days.

expression of CC chemokine receptor 8 (CCR8) and its ligands, CC chemokine ligand 1 (CCL1, known as 1309 in
human and TCA3 in mice) was upregulated in inflamed intestinal tissues of AE mice.

Leukocyte trafficking is controlled by tissue-specific expression of chemokines and chemokine receptor
expression on the cell surface of leukocytes'®!!. CCR8 expression has been detected in various types of immune
cells, including diverse subsets of T cells (Th1 cells, Th2 cells, and T-reg cells), monocytes, dendritic cells (DCs),
macrophages and epithelial cells, in a tissue and inflammatory status-dependent manner'*-"’. Several studies
showed an essential role of the CCR8/CCLL axis in the recruitment of Th2 cells and the development of inflam-
mation in murine models of allergic asthma or atopic dermatitis'®-?%. Based on these studies, the potential of
CCRS8 antagonists to treat allergic asthma has been discussed®*?. However, the importance of CCR8 in allergic
asthma has been debated, since additional studies have shown a dispensable role of CCR8 in the recruitment of
Th2 cells into inflamed respiratory tissues of experimental mice?’~%’.

CCR8 also induced homing of skin IL-10 producing T cells to the inflamed tissue®. Yabe et al. showed that
CCRS8 regulates migration of DCs from the skin to the draining lymph nodes in inflammation related to contact
allergy (Type IV allergy)?.. The role of CCRS in the development of AE remains to be elucidated. In the pres-
ent study, we aimed to assess the role of CCR8 in the development of AE using CCR8KO mice. We found that
the absence of CCR8 engagement reduces expression of CCL11 (eotaxin-1) and eosinophil accumulation but
enhances neutrophil accumulation in the AE tissues.

Materials and Methods

Animals. BALB/c mice and CCR8KO mice (C.129P2-Ccr8'™!¥%) on BALB/c N8 background®! were bred
and maintained under pathogen free conditions in the animal facility of the Paul-Ehrlich-Institut. Animal exper-
iments were performed in compliance with national law approved by local authority: Regierungsprasidium
Darmstadt (the Darmstadt Regional Administrative Council, Germany). License number is F107/1020.

Induction of AE.  Mice (female, 6 to 8 weeks old) were sensitized with 10 g of OVA (grade V, Merck KGaA,
Darmstadt, Germany) and 1 mg of ALUM (Thermo Fisher Scientific, Darmstadt, Germany) in 500 ul of PBS, or
treated only with PBS or Alum by i.p. injection twice at a two-week interval®. Two weeks after the second sensiti-
zation, the mice were fed an EW-diet for 7 days as the longest. The EW diet is a pellet-based diet containing 100%
EW as source of 20% of the protein®. The diets were prepared at ssniff Spezialdidten GmbH (Soest, Germany).

Microarray analysis. BALB/c mice were sensitized with OVA plus ALUM twice at two-week intervals
and fed EW-diet, or a control casein (CN) diet containing a cow CN as source of 20% of the protein (ssniff
Spezialdidten GmbH) for 3 days (see immunization schedule in Fig. 1A). The jejuna were harvested from the
mice and homogenized in Trizol reagent (Thermo Fisher Scientific, Bonn, Germany) for RNA extraction. RNA
amplification, labelling, cRNA microarray hybridization, gene expression analyses and bioinformatics analyses
were performed at Miltenyi Biotec Genomic Services (Bergisch Galdbach, Germany). To produce Cy3-labeled
cDNA, RNA samples were amplified and labeled using the Agilent Low Input Quick Amp Labelling kit (Agilent
Technologies, California, USA). The Cy3-labeled fragmented cDNA (1.65 ug) was hybridized overnight (17 hours,
65°C) to an Agilent Whole Mouse Genome Oligo Microarrays 4 x 44K using the Agilent Gene Expression
Hybridization kit (Agilent Technologies). Finally, the microarrays were washed, and fluorescence signals of the
hybridized Agilent Microarrays were detected using Agilent’s Microarray Scanner System. The Agilent Feature
Extraction Software (FES) was used to read out and process the microarray image files. For determination of dif-
ferential gene expression, FES derived output data files were analyzed using the Rosetta Resolver gene expression
data analysis system (Rosetta Biosoftware, Washington DC, USA).

In bioinformatics analyses, the intensity data was background corrected and quantile normalization was con-
ducted between the arrays. The normalized intensities were log2 transformed and used as a basis for further
analysis. Significant expression differences between sample groups were determined by a two-sided t-test with
equal variance on the normalized log2 intensity data. The statistical tests were complemented by a non-statistical
quantification of the mean expression difference between the conditions. The mean distances between the
sample groups were computed (the mean log2 normalized intensity data for each group was subtracted from
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one another). The fold change and log2-ration values between the samples were appended to the t-test results.
Additional to an adjusted p-value <0.05, genes selected as reliable candidates were required to show an at least
2-fold average expression difference between the groups.

Measuring serum levels of antibodies. The serum levels of OVA-specific IgE, IgG1 and IgG2a Abs were
measured by ELISA as reported previously®. Briefly, ELISA antibodies are listed in Table S3. Microtiter plates
(Sarstedt, Niimbrecht, Germany) were coated with 100 ug/ml of OVA in 50 mM sodium carbonate buffer (pH
9.6) at 4°C overnight. After blocking with 5% BSA, serum samples were applied to the wells and IgE binding was
detected by biotin-conjugated rat anti-mouse IgE antibodies (R35-72, BD Bioscience, Heidelberg, Germany) and
HRPO-conjugated streptavidin (BD Bioscience). For detection of IgG1 and IgG2a antibodies, HRPO-conjugated
goat anti-mouse IgG1 and HRPO-conjugated rabbit anti-mouse IgG2a antibodies were used (Thermo Fisher
Scientific). The peroxidase substrate was 3, 3/, 5, 5'-tetramethylbenzidine (BD Bioscience).

Measuring T-cell cytokine production. Mesenteric lymph nodes (MLN) and spleens were isolated from
OVA-sensitized mice on day 7 of EW-diet. CD4" T-cells were isolated from MLNs and spleen using an isolation
kit (Miltenyi Biotec). CD4™ T-cells (1.0 x 10° cells/ml) and mitomycin-treated syngenic splenocytes (2.0 x 10°
cells/ml) were stimulated with 1.0 mg/ml of LPS free OVA for 72 h. The concentrations of IL-4 and IL-5 in the
culture supernatant were determined using ELISA. Antibodies used in cytokine ELISA are listed in Table S3.

Measuring T-cell frequency in spleens and MLNs. MLNs and spleens were isolated from
OVA-sensitized and/or EW-diet-fed mice. CD4" T-cells in the tissue’s cell suspension were stained with
PE-conjugated anti-mouse CD4 mAb, APC-conjugated anti-mouse CD25 mAb and PE-Cy5-conjugated
anti-mouse Foxp3 mAb after FcR-blocking using anti-CD16/CD32 monoclonal antibody (Thermo Fisher
Scientific). Cell permeabilization for Foxp3 staining was performed using the Anti-mouse/Rat Foxp3 Staining
set (Thermo Fisher Scientific). Data was analyzed using LSR II flow cytometer and FlowJo Engine v3.04910 (BD
Bioscience). Antibodies used in FACS analysis are listed in Table S4.

Analysis of eosinophil and neutrophil frequency in intestinal lamina propria cells. Intestinal lam-
ina propria cells were prepared according to a protocol described by Weigmann et al. with slight modifications®.
BALB/c mice were sensitized with OVA plus ALUM twice at two-week intervals and fed EW-diet for 3 days (see
immunization schedule in Fig. 1B). Small intestines were harvested from OVA-sensitized, or non-sensitized mice
on day 7 of EW-diet. After removal of Peyer s patches, intestines were cut into 4-5 cm pieces, wash with cold PBS,
and opened longitudinally. The tissues were then cut into 1 cm. pieces, and treated with HBSS (Thermo Fisher
Scientific) containing 5mM DTT (Molekula, Dorset, UK) at 37 °C for 20 min, and HBSS containing 5mM EDTA
and 10 mM HEPES at 37 °C for 20 min. Remaining pieces were washed with HBSS containing 10 mM HEPES at
37°C for 10 min, and digested in PBS containing 500 ug/ml Collagenase D (Merck KGaA, Darmstadt, Germany),
500 pug/ml DNase I (Merck KGaA) and 0.5 U/ml Dispase II (Merck KGaA). After washing with PBS, the cells were
treated with anti-CD16/CD32 mAb, Fixable Viability Dye eFluor 450 (Thermo Fisher Scientific), and stained with
FITC-conjugated anti-CD45 mAb and eFluor 660-conjugated anti-CD170 (SiglecF) mADb to identify eosinophils,
or with FITC-conjugated anti-CD45 mAb, PE-Cy5-conjugated anti-CD11b mAb and PE-conjugated anti-Ly6G
mAb to identify neutrophils. Antibodies used in FACS are listed in Table S4.

Measuring cytokine, chemokine and mMCP1 concentrations in intestinal tissue homogenates.
Longitudinal sections of intestinal tissue (5cm) were taken from the jejunum as described above. Peyer’s patches
were removed. The tissue was washed with cold PBS and frozen in liquid nitrogen. Tissues were minced using a
mortar and pistil until obtain a fine powder. The powder was resuspended in 300 pl of cold PBS containing protease
inhibitors, centrifuged at 12.000 g for 20 min, and the supernatant transferred into a fresh tube. Protein concentration
was determined by BCA assay (Thermo Fisher Scientific) and adjusted to 5.0 mg/ml. Concentrations of CCL1,
CCL11, CCLS, IL-5, IL-13, IL-33 and mMCP1 in the homogenate were determined by ELISA. Antibodies used in
the ELISA are listed in Table S3.

Histological analysis. Longitudinal sections of intestinal tissue (2 cm) were taken from jejunum (9.5 cm dis-
tal to the duodenum). The tissues were fixed in 4% formalin and embedded in paraffin. Sections 5um thick were
prepared and stained with hematoxylin and eosin (H&E) for morphologic analysis and detection of eosinophils.
In addition, Eosinophil-Mast Cell Stain Kit (Teomics, USA) was used to visualize eosinophils.

Statistical analysis. Comparison of mean values between different groups was performed by student t-test
in GraphPad Prism 7 (San Diego, USA), or by ANOVA followed by Dunnett’s test in IBM SPSS statistics (Chicago,
USA). p values < 0.05, and < 0.01 were designated with * and ** respectively, and considered significant.

Results

CCL1 expression is upregulated in the inflamed intestinal tissues of AE mice. First, a microarray
analysis on inflamed intestinal tissues of AE mice was performed in order to identify the molecules involved
in the development of AE. BALB/c WT mice were i.p. sensitized with OVA in combination with ALUM, and
challenged by feeding an EW-diet for 3 days to trigger AE or on a casein (CN) diet as control (see immunization
schedule in Fig. 1A). Microarray analysis showed that the gene expression of CCL1 and CCL8 was highly up-reg-
ulated in the jejunum of OVA-sensitized and EW-diet fed (OVA/EW) WT mice (41.66 and 47.91 folds respec-
tively) when compared to that in the OVA-sensitized and casein-diet fed mice, i.e., the control group (OVA/CN
WT mice; Fig. 2A and Table S1).
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Figure 2. Expression of CCLI in inflamed tissues of AE mice. (A) BALB/c mice (n=3/group) were i.p.
sensitized with OVA plus ALUM twice at a two-week’s interval. Two weeks after the last sensitization, the mice
were fed EW-diet or casein diet for 3 days. The jejunums were harvested from the mice and the levels of gene
expression in the tissues were assessed by microarray analysis. (B) The jejunums were harvested from mice
(n=3-4/group), which were sensitized with OVA plus ALUM, or treated with ALUM only, or non-sensitized,
and fed EW-diet for 7 days. The concentrations of CCL1 in homogenates of the tissues were measured by ELISA.
Each symbol represents an individual mouse. The data are pooled of two independent experiments. OVA/EW;
OVA-sensitized and EW-diet fed, ALUM/EW; ALUM-treated and EW-diet fed, NC/EW; non-treated and EW-
diet fed. *¥p < 0.01.

CCL1 binds to CCRS8 specifically, whereas CCL8 binds to CCR4 and CCR5 in addition with CCR8'!!. The
enhanced gene expression of CCR8 and the presence of CCR8 expressing cells were detected in the jejunum of
OVA/EW WT mice (Table S2 and Fig. S1). To verify the results of the microarray analysis, the protein concentra-
tion of CCL1 was measured in intestinal homogenates of OVA/EW WT mice, ALUM/EW mice, or non-sensitized
and EW-diet-fed (NC/EW) WT mice. Increased concentrations of CCL1 in OVA/EW WT mice were then
detected, when compared to those in NC/EW WT mice or OVA/CN WT mice (Fig. 2B).

CCR8 deficiency reduced eosinophil accumulation, but enhanced neutrophil accumulation in
AE tissues. To determine if CCRS is involved in the development of clinical symptoms and AE, we used
CCR8KO mice. WT and CCR8KO mice were sensitized with OVA in combination with ALUM and fed on an
EW-diet for 7 days (see immunization schedule in Fig. 1B). During the EW diet, OVA/EW WT mice significantly
reduced body weight and temperature, when compared to NC/EW mice (Fig. S2A-C). OVA/EW CCR8KO also
reduced body weight and temperature. However, the levels of reduction in OVA/EW CCR8KO tended to be lower
than those of OVA/EW WT mice. The results suggest that CCR8 is partially involved in the development of clin-
ical symptoms induced by allergenic diet.

Next, we isolated jejunum tissues from the mice for histological analysis. HE-stained tissues showed that
OVA/EW WT and OVA/EW CCR8KO mice developed inflammation, which is characterized by irregular villi,
a thickened muscular layer, crypt elongation, and accumulation of granulocytes in the lamina propria (Fig. 3).
A histology scoring analysis, which is based on grade of accumulation of granulocytes, villi morphology, and
presence or absence of edema, indicated that inflammation levels were higher in OVA/EW WT mice, compared
to OVA/EW CCR8KO mice (Table S5). Morphological changes were not observed in the tissues of non-sensitized
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Figure 3. Development of AE in CCR8KO mice. WT mice and CCR8KO mice were i.p. sensitized with OVA
plus ALUM, or treated only with PBS, and fed EW-diet for 7 days. The jejunums were harvested from the mice,
and stained with H&E. All images were taken in same magnification. OVA/EW; OVA-sensitized and EW-diet
fed, NC/EW; non-sensitized and EW-diet fed. The data are representative for three independent experiments.

mice, NC/EW WT and NC/EW CCR8KO mice (Fig. 3). Animals that received ALUM alone and were fed an
EW-diet did not develop AE neither®. Interestingly, immunohistochemical analysis revealed that the profile of
granulocyte accumulation was different in the different groups. OVA/EW W'T mice presented intensive infiltra-
tion of eosinophils and neutrophils (Figs 4A and S3), while OVA/EW CCR8KO mice showed reduced accumula-
tion of eosinophils, but increased accumulation of neutrophils (Figs 4A and S3). The numbers of mast cells were
similar in both OVA/EW WT and OVA/EW CCR8KO mice (Fig. $4).

To verify the results of the histological analysis, FACS analysis was performed using lamina propria cells;
the samples were prepared using the small intestine tissues of WT or CCR8KO mice. OVA/EW WT mice and
OVA/EW CCRB8KO mice exhibited longer length of small intestines, compared to their NC/EW control animals
(Fig. S5A). The length of intestines and the numbers of isolated lamina propria cells from OVA/EW WT mice
and OVA/EW CCR8KO mice were comparable (Fig. S5A,B). However, (i) a decreased frequency of eosinophils
(CD11b"SiglecF* cells) and (ii) an increased frequency of neutrophils (CD11b*SiglecF Ly6G™ cells) among
the lamina propria leukocytes (CD45" cells) was observed in OVA/EW CCR8KO mice, compared to that in
OVA/EW WT mice (Fig. 5A,B). FACS analysis also showed presence of Ly6G~SSC"¢" and Ly6G*+SSChish cells
in CD11b"*SiglecF* eosinophil population (Fig. 5A). A previous study reported that CD11b*SiglecF"Ly6G™*
cells is an eosinophil subpopulation, although the cells express Ly6G, a neutrophil marker®. The frequencies of
CD11b*SiglecF*Ly6G~SSC"" and CD11b*SiglecFLy6GTSSC#" cells tended to be lower in OVA/EW CCR8KO
mice, compared to OVA/EW WT mice (Fig. 5B).
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Figure 4. Reduced eosinophil accumulation in CCR8KO mice. WT mice and CCR8KO mice were i.p.
sensitized with OVA plus ALUM, or treated only with PBS, and fed EW-diet for 7 days. (A) The harvested
jejunums were stained with vital new red solution to visualize eosinophils. Arrows indicate eosinophils in
the inflamed tissues of OVA/EW WT and CCR8KO mice. The data are representative for two independent
experiments.

In addition, we tried to quantify the number of eosinophils and neutrophils in the small intestines, based on
the cell frequency given by FACS analyses and the length of small intestines isolated from mice, or the numbers of
lamina propria cells isolated from the small intestines. The results indicate that the numbers of eosinophils were
reduced, whereas those of neutrophils were increased in OVA/EW CCR8KO mice (Fig. S5C,D). The number of
leukocyte common antigen (CD45) positive cells in lamina propria cells were comparable in OVA/EW WT mice
and OVA/EW CCR8KO mice (Fig. S5E). The result suggests the differential involvement of CCR8 in eosinophil
and neutrophil migration to the inflamed tissues in AE.

CCRS8 deficiency partly affect Th2 immune response but no IL-5 production by T-cells. A pre-
vious study showed reduced eosinophil accumulation in allergen-induced airway inflammation of CCR8KO
mice due to defective Th2 immune response®*. To determine whether CCRS8 influences the development of adap-
tive immunity in a murine model of AE, we assessed T-cell and antibody responses in WT and CCR8KO mice.
Mesenteric lymph node (MLN)-derived T-cells and splenic T-cells from OVA/EW WT and OVA/EW CCR8KO
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Figure 5. Reduced frequency of eosinophils and increased frequency of neutrophils in the inflamed intestinal
tissues of CCR8KO mice. WT and CCR8KO mice (n = 4/group) were sensitized with OVA plus ALUM, and
fed EW-diet for 7 days. The jejunums were harvested from the mice, and subjected to enzymatic treatment
for preparation of lamina propria cells. (A) Eosinophils (CD11b"SiglecF*Ly6G™~ and CD11b"SiglecF*Ly6G*
cells) and neutrophils (CD11b*SiglecF~Ly6G™ cells) in lamina propria CD45" cells population were analyzed
by FACS. (B) The frequencies of eosinophils and neutrophils in lamina propria CD457 cells population were
analyzed by FACS. The data in Fig. 5B are shown as mean = standard deviation for each group (bars). All data
are representative for three independent experiments. *p < 0.05, **p < 0.01.

mice produced similar levels of IL-4, and IL-5, Th2 cytokines that induce IgE production and eosinophil matura-
tion/migration respectively in response to OVA (Fig. 6A,B). The frequencies of CD4" T-cells in MLNs and spleens
were comparable between OVA/EW WT and OVA/EW CCR8KO mice (p =0.689 and p = 0.154, respectively)
(Fig. 6C). There was also no significant difference in the frequency of T-reg cells (CD4" CD25" Fox p 3" cells) in
MLNs and spleens between OVA/EW WT and OVA/EW CCR8KO mice (p=0.079 and p = 0.988, respectively),
although the frequency was higher in NC/EW WT mice, compared to NC/EW CCR8KO mice (Fig. 6D). In
addition, serum levels of OVA-specific IgE, IgG1, and IgG2a antibodies were comparable in both groups of mice
on day 7 of EW-diet (p=0.149, p=0.146, and p = 0.378, respectively), although CCR8KO mice showed lower
IgE and IgG2a levels before beginning the EW-diet (Fig. 7A-C). Increased levels of mMCP1, a marker of mast
cells activation, were similarly detected in the sera of OVA/EW WT and OVA/EW CCR8KO mice (Fig. 7D).
The results suggest that the absence of CCR8 does not influence on the development of Th2-mediated immune
responses.
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Figure 6. Comparable T-cell frequency and responses in WT and CCR8KO mice. WT and CCR8KO mice were
sensitized with OVA plus ALUM and fed EW-diet for 7 days. CD4" T-cells were isolated from the mesenteric
lymph nodes (MLN) and spleen. CD4* T-cells (1.0 x 10° cells/ml) were co-cultured with mitomycin-treated
syngenic splenocytes (2.0 x 106 cells/ml) in the presence of 1 mg/ml of OVA for 72 hours. Concentrations of IL-4
and IL-5 in the cell culture supernatants of CD4" T-cells isolated from (A) MLN, or (B) spleen were measured
by ELISA. The data are representative for two independent experiments using n = 3/group. The data are shown
as mean =+ standard deviation for each group (bars). (C) The frequency of CD4" T-cells and (D) the frequency
of Treg (CD4" CD25* Fox p3*) cells in MLN and spleen was determined by FACS. The data are pooled of three
independent experiments using n =2-4/group. *p < 0.05.

CCR8 deficiency reduced CCL11 expression in AE tissues. In addition to IL-5, several chemokines
e.g., CCL11, CCL24, and CCL26 can directly induce eosinophil migration!®!!. Among them, enhanced gene
expression of CCL11 in the intestinal tissues of OVA/EW WT mice was detected by microarray analysis (see
Table S2). Therefore, we assessed whether the absence of CCR8 influences protein expression of CCL11 in the
intestinal tissues of WT and CCR8KO mice. Notably, CCL11 concentrations were significantly lower in the tissue
homogenates of OVA/EW CCR8KO mice, when compared to those in the tissue homogenates of OVA/EW WT
mice (Fig. 8A). These results suggest that CCR8 is involved in CCL11 expression in AE sites.

In addition to the eosinophil chemoattractants, CCL8, a ligand of CCR8 potentially involved in eosinophil
migration by recruiting IL-5-producing Th2 cells*. However, CCL8 concentrations were comparable between the
tissue homogenates of OVA/EW WT and OVA/EW CCR8KO mice, suggesting that CCL8 is not crucially engaged
in the eosinophil recruitment in AE (Fig. 8B).
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Figure 7. Comparable levels of OVA-specific antibody responses in WT and CCR8KO mice. WT and CCR8KO
mice (n=3-5/group) were i.p. sensitized with OVA plus ALUM, and fed EW-diet for 7 days. The serum levels
of (A) IgE, (B) IgG1 and (C) IgG2a Abs specific for OVA and (D) mMCP1 on days -7 and 7 of EW-diet were
measured by ELISA. Each symbol represents an individual mouse. The data are pooled of three independent
experiments. *p < 0.05, **p < 0.01.

Next, in order to analyze the expression of cytokines in the intestinal tissues, we measured Th2 type associ-
ated cytokines IL-5, IL-13, and IL-33 levels in intestinal tissues homogenates of OVA/EW WT and OVA/EW
CCR8KO mice. The concentrations of IL-5 were comparable in the homogenates of OVA/EW WT, OVA/EW
CCRB8KO mice and their control NC/EW animals (Fig. 8C). In addition, the concentrations of IL-13 (Fig. 8D)
and IL-33 (Fig. 8E) were similar in the homogenates of mice from OVA/EW WT and OVA/EW CCR8KO mice.
Furthermore, the concentration of mMCP1 in the intestinal tissue homogenates (Fig. 8F) and the number of
intestinal mast cells (Fig. S4) were comparable in OVA/EW WT and OVA/EW CCR8KO mice, suggesting that
mast cell activation was similar in the intestinal tissues of both type of mice.

Discussion
Eosinophils have long been observed in the inflamed tissues of allergic patients and have been proved to be thera-
peutic targets in allergic diseases®*’. Therefore, it is essential to identify which chemokine receptor and its ligands
that contribute to the migration of eosinophils to allergic inflammatory sites. CCR3/CCL11 and IL-5 receptor/
IL-5 are well known to act in eosinophil migration to peripheral tissues, including the gastrointestinal tract®®%.
In this study, we have found a contribution of CCR8 in eosinophil migration to the inflamed AE tissues. However,
unlike CCR3 and IL-5R, CCR8 seems to be only indirectly involved in eosinophil migration by inducing CCL11
expression. It is consistent with a previous study by Islam et al. showing that CCL11 expression was reduced in
the skin of allergen-sensitized CCR8KO mice*. Furthermore, we have found that CCR8 deficiency influences
neutrophil migration. CCR8KO mice showed increased neutrophil accumulation and developed AE, although
eosinophil accumulation in the intestinal tissues was reduced. There is increasing evidence that neutrophils play
an important role in the pathogenesis of allergic inflammation by mediating direct tissue injury or by releasing
pro-inflammatory mediators*. Increased neutrophil numbers have also been detected in AE patients®. The poten-
tial of CCR8 antagonists has been considered to treat allergic asthma, since several studies have shown a role
for CCRS in the recruitment of Th2 cells and in the development of inflammation in murine models of allergic
asthma?>?*1. However, our results suggest that CCRS is not a suitable target in AE treatment.

Diverse roles for CCR8 in allergic asthma have been reported so far: e.g., involvement in the development of
systemic Th2-type immune response and migration of Th2 cells, or regulatory T-cells, into the inflamed airway
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Figure 8. Reduced expression of CCL11 in the inflamed intestinal tissues of CCR8KO mice. WT and CCR8KO
mice (n=3-5/group) were i.p. sensitized with OVA plus ALUM, or non-sensitized, and fed EW-diet for 7 days.
Small intestines were harvested from the mice. The concentrations of (A) CCL11, (B) CCL8, (C) IL-5, (D)
IL-13, (E) IL-33 and (F) mMCP1 in the intestinal tissue homogenates were measured by ELISA. Each symbol
represents an individual mouse. The data are pooled of three independent experiments. *p < 0.05., **p < 0.01.

tissues'®2%42, Using models of Schistosoma mansoni soluble egg antigen-induced granuloma formation, as well as
OVA and cockroach antigen-induced asthma, Chensue et al. have shown that eosinophil recruitment is reduced
in CCR8KO mice*. This reduction in eosinophil recruitment in inflamed airway tissues was explained by a sys-
temic reduction in IL-5 concentration due to defective development of Th2-type immune responses. Islam et al.
have shown that CCR8 recruits IL-5 expressing Th2 cells in atopic dermatitis using CCR8KO mice®*. However,
we detected IL-5 production in splenic and MLN T-cells from OVA/EW WT and OVA/EW CCR8KO mice com-
parably. In addition, IL-5 concentrations in intestinal tissue homogenates of both mice were comparable. The fre-
quency of regulatory T cells was comparable in spleens and MLNs of both mice. These results suggest that a defect
in systemic Th2-type immune response or induction of regulatory T cells is not the main mechanism underlying
reduced eosinophil accumulation in the inflamed tissues of CCR8KO mice.

Several studies have shown that histamine released from mast cells induces CCL11 expression in epithelial
cells of allergen-challenged skin and lung. However, it is very unlikely that CCR8 is involved in mast cell acti-
vation and, subsequently, in CCL11 expression by epithelial cells. This postulation is supported by the fact that
the number of mast cells and the concentration of mMCP1, a marker of mast cell activation, were comparable
in intestinal tissues of OVA/EW WT and OVA/EW CCR8KO mice. In addition to epithelial cells, type 2 innate
lymphoid cells (ILC2) could be a source of CCL11*. ILC2 have been associated with the allergic sensitization
to foods due to their capacity to produce high amounts of IL-5 and IL-13 in intestinal mucosa*%. IL-33 has been
reported to induce activation of ILC2**°. However, it is also unlikely that CCR8 influences the induction or
activation of ILC2, since the concentrations of IL-5, IL-13, and IL-33, which are associated with ILC2 activation
and function, were comparable in the intestinal tissue homogenates of OVA/EW WT and OVA/EW CCR8KO
mice. Alternatively, intestinal macrophages could act as CCL11 producing cells. Waddell et al. have shown that
F4/80 positive cells are the producer of CCL11 in inflamed colon using a murine model of colitis*®. In our study,
we found that OVA/EW WT mice exhibited higher numbers of macrophages (CD68 positive cells) in villi of
their small intestines, compared to OVA/EW CCR8KO mice (Fig. S6). However, immunohistochemical analysis
showed that the CD68 positive cells do not express CCR8 (Fig. S7), suggesting macrophages are not the producer
of CCL11. CCL11 producing cells in the inflamed small intestines still need to be identified.

FACS analysis showed that the total frequencies of CD11b*SiglecF*Ly6G~ and CD11b*SiglecF*Ly6G™ cells
were reduced in CCR8KO mice. Ly6G is a marker of neutrophils and used to identify the cells*’*3. However,
Percopo et al. have shown the CD11b*SiglecF*Ly6G™ cells are eosinophil subpopulation®®. Several studies
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have shown that eosinophils tend to present higher side scatter (SSC: a parameter for cell density) than neu-
trophils*”*%. Our study is consisted with the previous studies, as SSC of CD11b"SiglecF*Ly6G™ cells and
CD11b"SiglecF*Ly6G™ cells were similar, and tended to be higher than that of CD11b*SiglecF Ly6G™ cells (neu-
trophils) (see Fig. 5A). Further analysis is necessary whether functions (e.g. cytokine and chemokine production)
of CD11b*SiglecF'Ly6G~ and CD11b*SiglecF*Ly6G™ cells are also similar in AE.

It was unexpected that CCR8 deficiency accelerated neutrophil accumulation in the intestinal tissues. In stud-
ies on the allergic asthma using CCR8KO mice, such accelerated neutrophil accumulation has not been reported.
CCR8 deficiency might enhance expression of neutrophil chemoattractants, such as IL-8, leukotriene B4 (LTB4),
and formyl-methionyl-leucyl-phenylalanine (fMLP), in intestinal tissues. The accelerated neutrophil accumula-
tion may also be explained by a consequence of higher growth factor availability due to the less accumulation of
eosinophils in CCR8KO mice. For instance, granulocyte-macrophage colony-stimulating factor stimulates both
eosinophils and neutrophils and enhances survival of these cells***. Interestingly, Cheng et al. have shown that
CCL11 expression counter-regulates accumulation of neutrophils in a murine model of endotoxemia®!. It sug-
gests that reduced CCL11 expression could lead to the enhanced neutrophil accumulation in the intestinal tissues
of OVA/EW CCR8KO mice.

OVA/EW CCRB8KO mice tended to exhibit lower levels of clinical symptoms, i.e. reduction of body weight
and temperature, compared to OVA/EW WT mice. The development of clinical symptoms upon i.p. sensitization
with OVA and feeding of the EW diet is induced by FceRI-engaged mechanism in BALB/c mice (manuscript in
preparation.). CCR8KO mice showed lower IgE levels before beginning the EW-diet, which could reduce the
development of clinical symptoms.

A limitation of our study is that, we used BALB/c WT mice as controls, which were bred separately from
CCR8KO mice, but not the littermate controls of the gene modified animals. We bred WT controls and CCR8KO
mice in the same room. However, in addition to strain differences, breeding and maintenance in separated
cages (even in the same room) could be factors altering gut microbiota composition in animals®2. The intestinal
immune system is connected with the vast diversity of microbiome present in the gut®®. Therefore, we could not
exclude a possibility that altered gut microbiota influenced on the levels of granulocyte accumulation and inflam-
mation in CCR8KO mice.

In summary, we have identified a chemokine receptor that leads to eosinophil recruitment in AE sites. To our
knowledge, this is the first study to show a contribution of CCRS8 in eosinophil recruitment in intestinal tissues.
However, our study also suggests a potential involvement of CCR8 in the regulation of neutrophil recruitment
in AE tissues. In the future study, it would be necessary to assess whether CCR8 antagonists enhance neutrophil
accumulation in AE. The findings in our study will have important implications to elucidate pathological mecha-
nism for AE and to establish AE treatments that target chemokine receptors.

Data Availability

The datasets generated during the current study are available upon reasonable request.
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