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Abstract

In pathology, tissue images are evaluated using a light microscope, relying on the expertise

and experience of pathologists. There is a great need for computational methods to quantify

and standardize histological observations. Computational quantification methods become

more and more essential to evaluate tissue images. In particular, the distribution of tumor

cells and their microenvironment are of special interest. Here, we systematically investi-

gated tumor cell properties and their spatial neighborhood relations by a new application of

statistical analysis to whole slide images of Hodgkin lymphoma, a tumor arising in lymph

nodes, and inflammation of lymph nodes called lymphadenitis. We considered properties of

more than 400, 000 immunohistochemically stained, CD30-positive cells in 35 whole slide

images of tissue sections from subtypes of the classical Hodgkin lymphoma, nodular sclero-

sis and mixed cellularity, as well as from lymphadenitis. We found that cells of specific mor-

phology exhibited significantly favored and unfavored spatial neighborhood relations of cells

in dependence of their morphology. This information is important to evaluate differences

between Hodgkin lymph nodes infiltrated by tumor cells (Hodgkin lymphoma) and inflamed

lymph nodes, concerning the neighborhood relations of cells and the sizes of cells. The

quantification of neighborhood relations revealed new insights of relations of CD30-positive

cells in different diagnosis cases. The approach is general and can easily be applied to

whole slide image analysis of other tumor types.
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Author summary

In pathology, histological diagnosis is still challenging, in particular, for tumor diseases.

Pathologists diagnose the disease and its stage of development on the basis of evaluation

and interpretation of images of tissue sections. The quantification of experimental data

to support decisions of diagnosis and prognosis, applying bioinformatics methods, is an

important issue. Here, we introduce a new, general approach to analyze tissue images of

tumor and non-tumor patients and to evaluate the distribution of tumor cells in the tissue.

Moreover, we consider neighborhood relations between immunostained cells of different

cell morphology. We focus on a special type of lymph node tumor, the Hodgkin lym-

phoma, exploring the two main types of the classical Hodgkin lymphoma, the nodular

sclerosis and the mixed cellularity, and the non-tumor case, the lymphadenitis, represent-

ing an inflammation of the lymph node. We considered more than 400, 000 cells immu-

nohistochemically stained with CD30 in 35 whole slide images of tissue sections. We

found that cells of specific morphology exhibited significant relations to cells of certain

morphology as spatial nearest neighbor. We could show different neighborhood patterns

of CD30-positive cells between tumor and non-tumor. The approach is general and can

easily be applied to other tumor types.

Introduction

The lymph node is a structured organ with major compartments, such as the subcapsular

sinus, B cell follicles, the T cell zone, trabecular and medullary sinuses, and blood vessels.

Many cells of different type enter the lymph node. They migrate from compartment to com-

partment, interact with each other and with other cells, and show a complex movement in a

stromal cell network [1]. This movement is neither systematically investigated nor understood.

In particular, the movement of tumor cells would be of great interest to comprehend the prog-

ress of the disease.

Hodgkin lymphoma (HL) is a malignant tumor disease of the lymphoid system, which orig-

inates from B-lineage cells at various stages of development [2]. The annual incidence of about

three cases per 100, 000 persons makes HL to one of the most frequent lymphoma of the West-

ern civilization [3, 4]. In the United States, about 185, 000 people were diagnosed with HL in

2011. Currently, more than 9, 000 new cases are estimated per year. The probability to be diag-

nosed with HL for a single person during the life time is 0.2%. 85.3% of the HL patients survive

five years or more, which is a high survival rate compared to other tumor types. Nevertheless,

1, 100 people die of HL per year in the United States, so HL is still a severe disease.

About 11% of all malignant lymphomas are HL. The WHO (World Health Organization)

classification differentiates HL into two main groups [5], classical Hodgkin lymphoma (cHL),

the most common type with about 95% of all cases, and the less frequent nodular lymphocyte

predominant type. Classical Hodgkin lymphoma is further subdivided into four types. The

nodular sclerosis type (NScHL) is the most common type with 60 − 70% of all cHL cases. In

NScHL, at least one nodule formed by sclerotic bands, which contains malignant tissue, is

present. With roughly 25%, mixed cellularity cHL (MCcHL) is the second frequent type of

cHL. The two other subtypes named lymphocyte-depleted and lymphocyte-rich cHL are rare.

They will not be considered in this study.

On cellular level, HL has some unusual characteristics compared to other tumors. The

malignant morphologically huge pleomorphic cells called Hodgkin and Reed-Sternberg (HRS)

cells originate mainly from B cell pre-cursor cells of the germinal center. In rare cases, HRS
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cells originate from T cells. Whereas Hodgkin cells are mononucleated, Reed-Sternberg cells

are multinucleated (Fig 1).

HRS cells exhibit a broad morphological spectrum. In contrast to other tumor types, for

cHL, only 1 to 2% of the tissue of the lymph node is covered by tumor cells. The majority of

the tumor microenvironment consists of reactive cells of the immune system, including lym-

phocytes, macrophages, eosinophiles, mast cells, plasma cells, and stromal cells. In conse-

quence, no solid tumor is present, but an inflammatory heterogeneous microenvironment.

HRS cells actively influence their environment via rearrangement of cytokines and chemo-

kines [6]. Quantified knowledge of the distribution and movement of tumor cells is necessary

to understand the progress of the disease.

For diagnosis, tissue sections are cut and immunohistochemically stained. The visualization

of HRS cells by specific staining based on CD30 antibody in combination with microscopy is

routinely applied for diagnosis of lymphoma, see subsection Image processing in section Mate-
rials and Methods for more detail. Computer-aided analysis of tissue sections becomes essen-

tial for diagnosis and prediction of the disease’s progress. All this led to the emerging field of

digital pathology, see [7–9]. Nowadays, beside traditional microscopy, digital scanners allow

the digitization of whole object slides to whole slide images (WSI). Nevertheless, WSI are rarely

Fig 1. Reed-Sternberg cells. Cells with CD30 immunostaining are colored red. There is one trinucleated HRS cell in the left part and one

binucleated HRS cell in the middle upper part. The cell nuclei colored blue are stained using hematoxylin.

https://doi.org/10.1371/journal.pcbi.1007516.g001
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used in diagnostic work-flows, because it would require a costly infrastructure to automate the

WSI retrieval process. Another aspect is that, the visual evaluation of a pathologist is strongly

dependent from the display used. Although a few institutions have already implemented a digi-

tal workflow, see for example [10, 11], the majority of pathologists still evaluate tissue sections

in the microscope.

For WSI analysis, Kothari et al. applied a quantitative analysis of WSI to explore kidney

renal clear cell carcinoma cases [12]. In previous work, we have investigated the quantification

of CD30-positive pixels in cHL WSI [13]. These tissue sections have shown a high variability

regarding the CD30-positive pixel count, which most likely has been an effect of the various

progression states of the disease. Therefore, a classification based on pixel quantification has

not been able to distinguish between the disease types, MCcHL and NScHL, and the non-

tumor type, lymphadenitis.

Malignant cells have been reported to develop abnormal, irregularly shaped nuclei [14, 15].

To separate and label benign and malignant tissues, morphologic features, such as gray-level

texture features, color-based features, Law’s Texture Energy-based features, Tamura’s features,

and wavelet features, have been applied [16–20]. These texture-based methods consider the

neighborhood of cells, applying the gray scale co-occurrence matrix, the wavelet transforma-

tion, and Fourier transformation, see [21] for a detailed overview. Various imaging approaches

have been applied to analyze and classify malignant tissues for Barrett’s cancer and prostate

cancer, respectively [19, 22]. These previous approaches have analyzed color, texture, and

object features, but no morphological shape features of tumor cells. Image texture analysis has

been also applied to breast tissue images to determine the region of interest to follow up micro-

array experiments [23, 24]. Other work concerns heterogeneity assessment of tissue sections in

WSI to label breast cancer histopathological digital images [25].

Currently, more and more deep learning methods are applied in digital pathology, e.g. con-

volutional neural networks, see, for example, [26–28] for more information and use cases.

Deep learning methods provide a very effective and versatile way for the analysis and classifica-

tion of tumor images. The drawbacks of these methods are the necessity of large training sets

and the loss of traceability and, thus, the lack of full interpretability of the results.

In the diagnostic processes, a systematic computational analysis is not yet regularly

applied [29]. There are no statistical studies available that investigate morphological proper-

ties and neighborhood relations of tumor cells in the lymph node. The aim of the present

study was to draw conclusions about migration of HRS cells by systematically analyzing the

distribution of HRS cells in the tissue as a function of their size and shape. This includes also

non-tumor cells, which are CD30-positive and represent activated lymphocytes. An inflam-

mation of the lymph node called lymphadenitis (LA) often contains such activated lympho-

cytes. It is so far not possible to perform life imaging of human lymph nodes affected by HL,

and a corresponding mouse model of HL does not exist. Since histological sections represent

snapshots of the tumor development, including migration, we explored features in the WSI,

such as the number, distance, and neighborhood relationship of tumor cells, applying statis-

tical methods.

We wanted to answer following questions. Do HRS cells come in close spatial contact to

communicate and cooperate with each other? Is the close spatial neighborhood somehow

related to the morphology of the cells? Can we draw conclusions regarding the movement of

HRS cells? We applied following hypotheses.

• To yield statistically significant neighborhood relations, we can apply a classification of cells

to one of eight classes according to empirically defined specific thresholds for the morpho-

logical features eccentricity, solidity, and size.
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• The morphology of the next neighbor of a CD30-positive cell depends statistically significant

on the morphology of the cell itself.

• The cell morphology of a tumor cell is important to understand its role in the spatial organi-

zation and the spread of classical Hodgkin lymphoma.

• The size of CD30-positive cells is larger in classical Hodgkin lymphoma than in lymphadenitis.

• The majority of HRS cells in classical Hodgkin lymphoma have large diameters, i.e., diame-

ters larger than 30 μm.

• HRS cells of elongated shape are moving.

• Frayed cells are more communicating than non-frayed cells.

• Next neighbor relations of CD30-positive cells in tissue of patients with lymphadenitis and

classical Hodgkin lymphoma are not random.

• CD30-positive cells cluster in classical Hodgkin lymphoma and lymphadenitis.

• The neighborhood relations of CD30-positive cells show differences between lymphadenitis

and the subtypes nodular sclerosis and mixed cellularity of classical Hodgkin lymphoma.

To the best of our knowledge, these questions have not been addressed so far, neither for

HL nor for other tumor types.

Results and discussion

Here, we use abbreviations we describe in more detail in section Materials and Methods. We

define a profile class (PC) for each cell, according to the size and morphology of the cell. We

call the PC of the nearest neighbor of a cell as neighbor profile class (NPC).

Small cells occur much more frequent than large cells

Fig 2 shows the fraction of PC averaged over the 35 images. PC = 0 is the most frequently

occurring PC with 38.63%, describing small, round cells followed by PC = 4 with 25.47%,

standing for also small, but frayed cells. Only very few cells, 0.75%, were large and elongated

(PC = 3). Overall, PC = 1, 3, 5, and 7, describing large cells, were less frequent than the PC = 0,

2, 4, and 6, describing small cells. For disease-specific numbers for the fractions of PC, see S1

Table.

For NScHL and MCcHL, the fractions of large cells were 17.36% and 11.06%, respectively,

whereas for LA only 8.10%, see Fig 3. The small cell profiles built the majority of the cells with

82.64% in NScHL, 88.94% in MCcHL, and 91.90% in LA.

Because cHL is commonly characterized by the occurrence of large HRS cells, we expected

to find many large cells, at least in images diagnosed as cHL. Surprisingly, the measured differ-

ence in the numbers of large PC in cHL and LA were not sufficiently significant to distinguish

between cHL and inflammation.

The diameters of cells differ in classical Hodgkin lymphoma and

lymphadenitis

CD30-positive cells of the classical HL, NScHL and MCcHL, which are most likely HRS cells,

vary in size between 20 and 60 μm [30–32], whereas the size of CD30-positive cells of LA,

which originate from activated lymphocytes, was between 10 and 30 μm [33–35]. Based on the

distribution of the cell diameters of CD30–positive cells (Fig 4), we assumed the majority of
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Fig 2. Fractions of cells. The fractions of cells classified according to the PC = 0 to PC = 7 averaged over the 35 images.

https://doi.org/10.1371/journal.pcbi.1007516.g002

Fig 3. The fractions of small and large cells. The fractions of small (PC = 0, 2, 4, 6) and large (PC = 1, 3, 5, 7) PC as function of the diagnosis.

The error bars show the standard deviation. The fraction of large PC in images of NScHL, MCcHL, and LA were statistically indistinguishable.

https://doi.org/10.1371/journal.pcbi.1007516.g003
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cells with a diameter in the range of 12.5 to 15 μm to originate from activated lymphocytes.

Based on the ratio of the distributions at 12.5 to 15 μm, we estimated the proportion of HRS

cells to be 89.8% and 87.0% for NScHL and MCcHL, respectively.

Note that, not all CD30-positive cells are tumor cells, but might be activated lymphocytes

and other kinds of cells. A pathologist would not classify these cells as HRS cells. To make the

results comparable with the literature values in [30–32] obtained by visual inspection of high

resolution electron microscopy images, we used the diameter distribution of LA and subtract

the background of smaller cell profiles for NScHL and MCcHL, see Fig 5. These corrected dis-

tributions for NScHL and MCcHL have both a maximum for diameters in the range of 22.5

and 25 μm. For NScHL, the mean cell diameter was 30.6 μm with a large standard deviation

of 10.2 μm, whereas the mean value for MCcHL was slightly smaller, 28.6 μm with a standard

deviation of 9.3 μm. A large fraction of 9.2% and 5.6% of cells in NScHL and MCcHL, respec-

tively, had a cell diameter greater than 50 μm.

The statistical analysis of a high number of CD30-positive cells offers a complementary

view to a high-quality, visual definition of CD30-positive cells provided in the literature.

Despite the different approaches, the values for the diameters of HRS cells, e.g. see Fig 5, and

the fraction of large HRS cells with diameters greater than 50 μm were in perfect accordance

with the literature [30–32].

Small, round cells favor cells of the same type as neighbors

In Fig 6, the thick red arrow from PC = 6 to NPC = 0 indicates a strong unfavored relation of

small, elongated, frayed profiles with small, round cells in 74% of the images. In 26 of the 35

images, small, round cells were significantly underrepresented in the neighborhood of small,

elongated, frayed PC. This was mutually, indicated by a reversed red arrow (from PC = 0 to

NPC = 6) with a negative score of 69%. Note that, favored and unfavored neighborhood rela-

tions have not to be mutual, see S1 Fig.

In Fig 6, the green arrow from PC = 7 to NPC = 5 expresses the preference of large, elon-

gated, frayed cells to have large, frayed cells in the neighborhood indicated by a positive score

of 57%. Green loop arrows show the preferences of PC = 0 (small, round), PC = 6 (small,

Fig 4. The diameter distribution of cells. The bar chart shows the distribution of the diameters for all diagnoses.

https://doi.org/10.1371/journal.pcbi.1007516.g004
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elongated, frayed), and PC = 5 (large, frayed) for cells of the same type as neighbors. In 89% of

the images, small, round cells (PC = 0) favored cells of the same class as neighbors, NPC = 0,

expressed by a significantly high number of this combination of the two classes in 31 images,

see S2A) Fig. PC that show unfavored neighborhood relations to other classes (PC = 0, PC = 5,

PC = 6) exhibit a favored neighborhood relation to cells of the same type.

Neighborhood relations differ for the three diagnoses

The three networks in Fig 7 illustrate the favored and unfavored neighborhoods of cells for the

three diagnoses NScHL, MCcHL, and LA. The thickness of the arrows is proportional to the

score, see S2 Fig. In all diagnoses, the small, round cells prefer cells of the same type as neigh-

bors, exhibiting high positive scores of 83 to 92%, see S2 Fig. The neighborhood of small,

round cells to other PC is always unfavored, in particular by small, elongated, frayed cells

(PC = 6). No PC was observed to favor the small, round cells. Despite of common characteris-

tics of the networks in Fig 7, significant differences in the neighborhood relation were visible

for all diagnoses.

NScHL: Unfavored neighborhood relations of cells to other PC is less noticeable, see Fig 7A).

Only two red arrows indicate a negative score of more than 50%. Small, round cells

(PC = 0) show unfavored neighborhood relations to small, frayed, elongated cells (PC = 6)

and vice versa. There exists a preferred neighborhood relation between large, frayed, elon-

gated cells (PC = 7) and large, frayed cells (PC = 5).

MCcHL: As for NScHL, cells of PC = 7 (large, elongated, frayed) favor cells of PC = 5 (large,

frayed), see Fig 7B). In contrast to MCcHL, small, round cells, PC = 0, were not preferred in

their neighborhood.

Fig 5. The corrected diameter distribution of cells. The bars show the relative fractions of HRS cells for the diagnoses NScHL and MCcHL,

respectively. The relative fractions were corrected for the background of activated lymphocytes, see text.

https://doi.org/10.1371/journal.pcbi.1007516.g005
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LA: Fig 7C) shows many unfavored neighborhood relations between PC. For example, cells of

PC = 0 (small, round) do not favor PC = 5 (large, frayed), PC = 6 (small, elongated, frayed),

and PC = 7 (large, elongated, frayed). Half of the profile classes (PC = 0, 5, 6, 7) have favored

neighborhood relations to cells of their own type. However, the preferred neighborhood

relation, PC = 5, NPC = 7, which is noticeable for NScHL and MCcHL, is absent in LA.

Small, round cells have large distances to their preferred neighbor

In NScHL, the cells have a smallest mean distance of 37.9 ± 6.1 μm, see Table 1. It increases to

42.7 ± 11.9 μm and 48.3 ± 18.1 μm for MCcHL and LA, respectively. Within the large standard

deviations, the differences in the mean distances are not statistically significant.

Compared to the theoretically expected distribution for randomly located cells, the distribu-

tion of distances to the nearest neighbor was shifted towards small values and had a much

more narrow shape, see S3, S4 and S5 Figs. This observation was valid for all 35 images and

indicates a significant clustering of the CD30–positive cells independent of the medical diag-

nosis. The result has been verified by a graph-theoretical analysis of network properties of the

corresponding cell graphs [36].

We asked whether the strong preference of small, round cells, PC = 0, to cluster together

could be influenced by an attraction between these cells. For the majority of images, the ratio

between the mean distances of small, round nearest neighbors and those of two nearest neigh-

bors of arbitrary PC was greater than 1, see S6 Fig. Pairs of small, round cells showed large dis-

tances between them, with mean distances up to 50% enlarged, so that an attraction between

Fig 6. Neighborhood relations for all diagnoses. Each node represents one of the eight PC. Arrows are drawn

between nodes if the absolute value of the score of neighborhood relation exceeds 50% of the maximally possible value.

Green and red arrows represent favored and unfavored neighborhood relations, respectively. The thickness of the

arrows correlates with the absolute value of the score. Thick green and red arrows stand for large positive and large

negative scores, respectively.

https://doi.org/10.1371/journal.pcbi.1007516.g006

Bioinformatics analysis of neighborhood preferences of tumor cells in Hodgkin lymphoma

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007516 January 21, 2020 9 / 21

https://doi.org/10.1371/journal.pcbi.1007516.g006
https://doi.org/10.1371/journal.pcbi.1007516


these cells becomes unlikely. But, the preferred location of small, round cells in tissue regions

that are not easily accessible by other cell types could be a possible explanation. The high motil-

ity combined with the small size of PC = 0 cells may lead to an aggressive ability to colonize

healthy tissue regions with still sparse populations of CD30–positive cells.

Fig 7. Disease-specific neighborhood relations. Networks of neighborhood relations A) in NScHL, B) in MCcHL and

C) in LA. Each node represents one of the eight PC. The thickness of the arrows correlates with the absolute value of

the score. Green and red arrows represent favored and unfavored neighborhood relations, respectively.

https://doi.org/10.1371/journal.pcbi.1007516.g007
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The Pearson correlation coefficient of the mean distance between pairs of PC = NPC = 0

cells and the log-odd value of the significance level of a preference for these pairs were positive,

over all images 0.4. The positive value of the correlation coefficient indicated that, the prefer-

ence of a neighborhood of PC = NPC = 0 cells strongly correlated with a large distance between

the cells.

We found a significantly high number of pairs of PC = NPC = 0 cells in tissue areas of low

cell density, e.g. see Fig 8. A preferential location of small, round cells in sparsely populated tis-

sue regions could explain the large distance between pairs of PC = NPC = 0 cells. Interestingly,

a positive correlation between large distances and neighborhood preferences occurred only for

these pairs, whereas for all other combinations, the correlations were negative. Only in the

cases of pairs of PC = NPC = 0 cells, the preferences of cells of a PC to stay among themselves

were strongly correlated with tendency to keep the distances large to the next neighbors.

Materials and methods

Images

We analyzed 35 two-dimensional histological WSI of human lymph nodes provided by the Dr.

Senckenberg Institute of Pathology, Frankfurt am Main. The anonymized cases were manually

preselected based on quality from a set of about 160 images. Because of many artifacts regard-

ing, for example, the staining or folded tissue, the selection had to be done manually. To

Table 1. Mean distances of PC to the nearest neighbor in images of all diagnoses.

Diagnosis Mean distance [μm]

NScHL 37.9 ± 6.1

MCchl 42.7 ± 11.9

LA 48.3 ± 18.1

https://doi.org/10.1371/journal.pcbi.1007516.t001

Fig 8. Neighborhood of small, round cells in a low density area. An exemplary subsection of an histological image

with diagnosis MCcHL (ID 5722). The green points depict small, round cells (PC = 0) with a nearest neighbor of the

same PC. The red points indicate all remaining PC. The clusters of small, round cells seem to be more often located in

areas of low cell density (black arrows), whereas cell clusters of other PC seem to be more often in areas of higher cell

density (white arrows).

https://doi.org/10.1371/journal.pcbi.1007516.g008
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illustrate examples for artifacts in an image of good quality, see S7 Fig. The two depicted tissue

sections have only small patches of nonspecific staining. In extreme cases, the intensity of the

nonspecific staining is very close to the actively stained regions, and a large fraction of the tis-

sue section is covered by nonspecific staining.

We chose a similar number of images for the three disease types. Overall, more MCcHL

cases than lymphadenitis and NScHL cases were available. Some lymphadenitis cases show an

unusual progression, e.g. an inflammation of the lymph node over a long time period. As the

clinical examination is not sufficient to make the final diagnosis, the lymph node is biopsied

for further histopathological exploration. Then, physicians contacted the Reference- and Con-

sulting Center of Lymph Node and Lymphoma Pathology in Frankfurt am Main.

Additionally, the intensity of the staining was not consistently good in all areas of the

image, such that even a low amount of nonspecific staining reduces the quality of the WSI sig-

nificantly. The selected images cover the three histological diagnoses, NScHL (12 images),

MCcHL (12 images), and LA (11 images). The tissue was CD30-immunohistochemically

stained to visualize the HRS cells and special forms of activated B and T lymphocytes [37].

Overall, we considered more than 400, 000 CD30-positive cells in images with a resolution of

0.25 μm × 0.25 μm per pixel.

Image processing

The images were doubly stained, one staining to visualize the cell nuclei and cytoplasm and

one to label tumor cells. In immunohistologically stained images, the dye is attached to an

antibody, binding to the target protein. For visualization of the cell nuclei, we used the H&E

(hematoxylin & eosin) staining. Hematoxylin is a standard stain that nonspecifically binds to

all negatively charged components of cells and principally colors the nuclei of cells blue or

dark-purple, along with a few other tissues. Since the backbones of the DNA and RNA are the

main fraction of negatively charged biomolecules within the cell, their nuclei are stained most,

but also the cytosol appears in bright blue. Hematoxylin staining increases the contrast of the

image and makes the cell density visible. Eosin binds to positively charged proteins and stains

the cytoplasm and some other structures including extracellular matrix, such as collagen. For a

review on histological staining, we refer to [38].

For identification of HRS cells, CD30 represents a typical marker protein classified by the

Cluster of Differentiation (CD) protocol. The list of CD molecules consists of more than 300

unique cell surface proteins that can be targeted by monoclonal antibodies [39]. CD30 stains

tumor cells of cHL and some other malignant lymphomas, e.g. anaplastic large cell lymphoma.

However, CD30 is not lineage-specific and can stain any kind of activated cells, which means

that reactive bystander lymphocytes can become CD30-positive when they get strongly acti-

vated. Although, cells of other tumors, which are regularly CD30-negative can become

CD30-positive upon activation. The HRS cells of both cHL subtypes are positive for CD30,

whereas the abundant bystander cells are CD30-negative. HRS cells secrete soluble factors,

which attract bystander cells and, thus, shape their direct microenvironment [40]. This is

observed in both cHL subtypes, whereas CD30-positive activated lymphocytes in lymphadeni-

tis do not secrete the respective cytokine and, thus, differ from the malignant HRS cells. In

contrast, the differential diagnosis between cHL and lymphadenitis with activated CD30-posi-

tive lymphocytes by simple morphological examination can be challenging.

Image digitization

For digitization of the tissue samples, we used an Aperio Scanscope device and created SVS

files in the Aperio’s proprietary image format that represents an altered large-tiff format,
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containing multiple layers. The image sizes of our samples vary from 10,000 x 10,000 pixels up

to 90,000 x 90,000 pixels, see S2 Table. The image format also includes a JPEG2000 compres-

sion, resulting in SVS files with a size between 0.5 and 4 GB for images used in this work.

Cell detection and classification

We identified cell profiles of CD30–positive cells by applying the in-house software pipeline

Impro [13, 36]. Impro implements image processing methods, such as the detection of a region

of interest (ROI) and the color deconvolution to separate the stains. Additional methods, such

as the thresholding for the image segmentation and the computation of morphological cell

descriptors, were integrated using established imaging software and libraries like CellProfiler

and the Java Advanced Imaging API (JAI). S8 Fig illustrates schematically the CD30 pipeline

of Impro. CellProfiler [41, 42] is an open-source image processing software focused on cell

detection and images with biological background. It is designed to perform image processing

tasks on high throughput data.

The pipeline neglected small objects of size 109 μm2 or less. The threshold corresponds to

the size of a round cell with a diameter of 11.8 μm. Applying the shape descriptors, eccentricity,

solidity, and area provided by CellProfiler [41], we assigned each cell to one of the previously

manually defined eight profile classes (PC), see Fig 9.

The eccentricity measures the deviation of a fitted ellipse from a circle. Solidity is the frac-

tion of the object pixels in the convex hull of the cell. Together with pathologists, we empiri-

cally defined specific thresholds to distinguish between small and large, round and elongated,

and frayed and not frayed cell profiles, see S3 Table.

Fig 10A) to 10H) illustrate examples for each profile class. Generally, small cell profiles are

not multinucleated and, thus, could be Hodgkin cells or activated lymphocytes, whereas HRS

cells are mostly multinucleated and, thus, classified and represented by big cell profiles. The

size of each figure is 192 × 192 pixels with 0.25 μm per pixel. Thus, each figure has an edge

length of 48 μm and covers an area of 2, 304 μm2.

For each cell profile, we computed the maximal Feret diameter using the CellProfiler mod-

ule MeasureObjectSizeShape. The Feret diameter describes the distance of two parallel tangents

to the cell in a given orientation. The maximal Feret diameter referred in the text as diameter is

the largest value of all possible orientations.

Neighborhood analysis

To detect statistically significant correlations between cells, we studied the spatial neighbor-

hood relationships defined by the Euclidean distance between the centers of gravity of the

Fig 9. Profile classes. The eight profile classes numbered from 0 to 7 and their morphological descriptions.

https://doi.org/10.1371/journal.pcbi.1007516.g009
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cells. We applied a maximal distance of 175 μm (700 pixels). This threshold corresponds to

about ten times the diameter of an average cell, which is assumed to be sufficiently small to

enable intercellular communication based on, e.g. chemokines or cytokines [43]. We com-

puted a neighborhood table, which contains for each cell the PC and the PC of the nearest

neighbor called neighbor profile class (NPC), see Fig 11 for an exemplary subsection of a histo-

logical image (A) and the corresponding neighborhood table (B).

Fig 10. Profile classes examples. Exemplary CD30-positive cells for the eight morphologic profile classes (PC). The

tissue sections display A) for PC 0 a small, round cell, B) for PC 1 a large round cell, C) for PC 2 a small, elongated cell,

D) for PC 3 a large, elongated cell, E) for PC 4 a small, frayed cell, F) for PC 5 a large, frayed cell, G) for PC 6 a small,

elongated, frayed cell, and H) for PC 7 a large, elongated, frayed cell.

https://doi.org/10.1371/journal.pcbi.1007516.g010

Fig 11. Neighborhood table. A) depicts a subsection of a schematic histological image that contains ten cells, four cells of

PC = 0, two cells of PC = 1, and each single cell of PC = 3, 4, 5, 7, respectively. B) gives the neighborhood table that contains

for each cell the PC and the PC of the nearest neighbor called neighbor profile class (NPC).

https://doi.org/10.1371/journal.pcbi.1007516.g011
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Statistical significance

The probability to randomly choose a neighbor, NPC = j, is proportional to the frequency of

the PC, f(PC = j), in the image. In a random choice, the PC of a cell should have no influence

on the selection of the nearest neighbor. We expect to measure a value for the conditional

probability that is within the statistical fluctuation indistinguishable from the relative fre-

quency of the NPC, i.e. P(NPC = j | PC = i)� P(PC = j). For example, the entry for the condi-

tional probability, P(NPC = 0 | PC = 0) = 0.354, in S4(B) Table has to be compared with the

entry for the expected probability, P(PC = 0) = 0.316, in S4(A) Table.

Part (A) of S4 Table exemplifies the measured probability P(PC = i)� f(i) to find a cell of a

certain PC for a given image (ID = 1721). The table contains the relative frequency, f(i), of the

PC i 2 {0, . . ., 7} identified by the row number.

We evaluated whether the deviation of the conditional probability from the expected proba-

bility is statistically significant for a rejection of the null hypothesis of a random selection of

the nearest neighbor. For a set of n cells of PC = i, the probability to have a subset of k cells

with nearest neighbor of NPC = j is given by the binomial distribution

Pðk;NPC ¼ j; PC ¼ iÞ ¼ Bðk j p; nÞ ¼
n

k

 !

pkð1 � pÞn� k;

where p = P(PC = j) is the probability to find a class, j, by chance, i.e. f(j), the relative frequency

of class j. For each image and each combination of morphological classes (PC = i, NPC = j)
with i, j 2 {0, 1, . . ., 7}, we computed the lower and upper endpoint of the prediction interval

by

klow ¼ max k 2 N :
Xk

i¼0

pið1 � pÞn� i
n

i

 !

� a = 2

( )

and

kup ¼ min k 2 N :
Xn

i¼k

pið1 � pÞn� i
n

i

 !

� a = 2

( )

:

We chose a significance level of α = 1%. A measured value k, has a p-value smaller than α
only if k =2 [klow, kup]. A k outside the prediction interval has a significance level of α = 1%,

which is sufficient to reject the null hypothesis of a random selection of the nearest neighbor.

For example, the image with ID = 1721 of diagnosis MCcHL contains 3, 435 cells of PC = 0

from 10, 860 cells in total. We computed the prediction interval [1047, 1125] for the signifi-

cance level α = 1%. We measured a number of k = 1217 pairs of PC = 0 and NPC = 0, which is

above the upper endpoint of the 1% prediction interval. Thus, we can reject the null hypothesis

for the significance level α = 1%. Within a significance smaller than 1%, the small, round cells

are enriched in the neighborhood of other small, round cells (PC = 0), i.e. they prefer the

neighborhood of cells of their own kind. We call such a favored neighborhood relation to be

significantly high (sh).
If the number of measured pairs is smaller than the prediction interval for the significance

level, we call the neighborhood relation to be significantly low (sl). A non-significant (ns) neigh-

borhood relation denotes a number of pairs within the prediction interval. We compiled the

results for each of the 12 images of diagnosis NScHL, 12 images of diagnosis MCcHL, and 11

images of diagnosis LA in an individual significance matrix, e.g. see Table 2.
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The significance matrix in Table 2 exemplifies favored and unfavored neighborhood rela-

tions for image ID = 1721 of diagnosis MCcHL. For example, the column for PC = 0 contains

one entry sh and two entries sl, indicating that PC = 0 favors the neighborhood of cells of the

same class, NPC = 0, but no cells of NPC = 6 and NPC = 7. The empty entries in the column

for PC = 0 show that no favored and unfavored neighborhood relations were found between

cells of PC = 0 and NPC = 1, 2, 3, 4, or 5.

For each of the 64 combinations of morphological classes, we counted the number of

images, in which the combination was sh and sl, respectively. The differences of these numbers

gave an integer score of neighborhood relation for each combination of classes and each diag-

nosis, see S2 Fig. This score of neighborhood relation gives a high positive (negative) value,

when a combination of classes is sh (sl) in the majority of the images. In most cases, the neigh-

borhood relations of cell pairs were symmetrical, e.g. see S1 Fig.

Ethics statement

The manuscript is based on geometric cell graphs, which were computationally generated

from anonymized whole slide images of human tissues and does not contain any individual

person’s data in any form.

Conclusions

With our study we demonstrated how a semi-automatic analysis of WSI of tissue can be

performed. For the first time, a systematic analysis of a high number of more than 400, 000

CD30–positive cells in WSI of lymph node tissue sections of NScHL, MCcHL, and LA was

performed. We provided measured values for the distances between neighbored cells, the cell

diameters of HRS cells in complete lymph node sections, and morphological characteristics for

each cell. The profiles of CD30–positive cells were identified by the imaging pipeline Impro

[13, 36]. Based on morphological cell features, we defined eight morphological PC to classify

the cells and computed the fractions of each PC. The presented study provides valuable infor-

mation about the morphological characteristics and neighborhood relations of CD30-positive

cells in tumor, cHL, and inflammation, LA.

Nevertheless, there are limitations of the method and many points that have to be

improved. Although we considered just two disease types of Hodgkin lymphoma and one

non-tumor type in 2D images and although we had not perfect material to investigate more

images, we were able to perform a statistically sound analysis of CD30-positive cells. The study

produced interesting results, regarding the distribution of CD30-positive cells in tumor and

Table 2. Significance matrix for the image ID = 1721 of the diagnosis MCcHL.

PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7

NPC0 sh sl sl

NPC1 sh sh sh sh sh

NPC2 sh sh sl

NPC3 sh sh sl sh sh

NPC4 sl sl sl sh sl sl

NPC5 sh sh sl sh sh

NPC6 sl

NPC7 sl sh sh sl sh sh

PC is a profile class and NPC a neighbor profile class. The blank entries stand for ns—not significant, sh for significantly high, and sl for significantly low.

https://doi.org/10.1371/journal.pcbi.1007516.t002
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non-tumor tissue, the classification of these cells according to morphological properties, an

analysis of the diameters of CD30-positive cells, and an analysis of favored and unfavored

neighborhood relations of CD30-positive cells based on their morphological classification, all

in dependence of the three considered cases, NScHL, MCcHL, and LA.

The development of different cell forms of HRS cells have been experimentally analyzed in

cell cultures. Re-fusion of divided cells have been demonstrated [44]. The shape of the lymphoid

cells including tumor cells is influenced by different factors. These involve the above mentioned

cell proliferation, cell activation, and cell transformation, which are dynamic processes regulated

and controlled by intrinsic and extrinsic factors. The phases and cell morphology reflecting cell

proliferation are well known, however detailed data confining each dividing step morphologi-

cally of CD30 cells are lacking. Nondividing cells should be round whereas before cell division, a

polarization indicated by cell elongation and finally resulting in two or more smaller round or

irregularly shaped cells will be seen. During cell division, it seems that most cells are stationary.

In G0 phase, the diameter and cell elongation as well as formation of cell processes is influenced

by cell movement. During movement, cell diameters and shapes are dynamically controlled by

intrinsic movement programs. Extrinsic factors of cell movement is controlled and determined

by the microenvironment, as collagen fibers, sinuses, and the consistence of surfaces cells are

moving on. Last but not least, the process of cell activation influences especially the cell diame-

ter. The stronger the activation, the larger the cell looks like, as a result of pathway activations

and enhanced energy consumption. Summing up, all these factors importantly configurate the

appearance of the individual cells. In histological section, a snapshot including all stained cells is

done freezing cell dynamic in time and space. Nevertheless, in this paper definitions of morphol-

ogy and localization of CD30-positive cells is the basis for the bioinformatic computation. So we

differentiated in small round, large round elongated and other cell types, including hypotheti-

cally the above described processes and principles. The results cannot be completely exact,

because a dynamic model exactly reflecting these factors should be the basis of computations.

This test model has to be established in the near future for further validating the results reported

in this investigation. Regarding further developments, the detection of CD30–positive cells in

three dimensions by applying confocal scanning microscopy [45] will be an important aspect

of experimental work. Multi-staining will allow to visualize various important players beside

CD30–positive cells, as e.g. T cells and B cells that are known to interact with malignant cells.

Pattern recognition is and will further be a focus of ongoing research.

Supporting information

S1 Fig. A) Symmetrical neighborhood relation and B) unsymmetrical neighborhood rela-

tion.

(PDF)

S2 Fig. The score matrices for neighborhood relations for every combination of PC and

diagnosis: A) for all 35 histological images, B) for the 12 histological images of diagnosis

NScHL, C) for the 12 histological images of diagnosis MCcHL, and D) for the 11 histologi-

cal images of diagnosis LA.

(PDF)

S3 Fig. Distribution of distances of CD30-positive cells in an image of diagnosis NScHL.

(PDF)

S4 Fig. Distribution of distances of CD30-positive cells in an image of diagnosis LA.

(PDF)

Bioinformatics analysis of neighborhood preferences of tumor cells in Hodgkin lymphoma

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007516 January 21, 2020 17 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007516.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007516.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007516.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007516.s004
https://doi.org/10.1371/journal.pcbi.1007516


S5 Fig. Distribution of distances of CD30-positive cells in an image of diagnosis MScHL.

(PDF)

S6 Fig. The ratio of the mean distance of neighbors of small, round cells to the overall dis-

tance of neighbors of arbitrary type in dependence on the cell density.

(PDF)

S7 Fig. Artifacts in two image sections: The red arrow marks a folded tissue section often

caused by inhomogeneous softness of the tissue or an unevenly worn blade. The blue arrow

marks an artifact originating from enclosed air in the glass slide. Additionally, nonspecific

staining may occur indicated by green arrows.

(PDF)

S8 Fig. The CD30 image pipeline of the in-house Impro software.

(PDF)

S1 Table. Profile class mean fractions and their standard deviations for all 35 images with

respect to the diagnosis.

(PDF)

S2 Table. Image sizes of all 35 images with respect to the diagnosis.

(PDF)

S3 Table. Profile class definitions.

(PDF)

S4 Table. Probabilities and conditional probabilities.

(PDF)

Author Contributions

Conceptualization: Martin-Leo Hansmann, Ina Koch.

Data curation: Jennifer Hannig, Hendrik Schäfer, Jörg Ackermann, Tim Schäfer, Claudia
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4. Küppers R, Engert A, Hansmann M-L. Hodgkin lymphoma. J Clin Invest. 2012; 122(10):3439–3447.

https://doi.org/10.1172/JCI61245 PMID: 23023715

5. Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization Classification of Tumours:

Pathology & Genetics: Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon; 2016.

6. Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A. The classical Hodgkin’s lymphoma microenvi-

ronment and its role in promoting tumour growth and immune escape. J Pathol. 2010; 221(3):248–263.

https://doi.org/10.1002/path.2711 PMID: 20527019

7. Al-Janabi S, Huisman A, Van Diest PJ. Digital pathology: current status and future perspectives. Histo-

pathol. 2012; 61(1):1–9. https://doi.org/10.1111/j.1365-2559.2011.03814.x

8. Belsare A, Mushrif M. Histopathological image analysis using image processing techniques: An over-

view. Signal & Image Processing. 2012; 3(4):23.

9. Fuchs TJ, Buhmann JM. Computational pathology: Challenges and promises for tissue analysis. Com-

puterized Medical Imaging and Graphics. 2011; 35(7):515–530. https://doi.org/10.1016/j.

compmedimag.2011.02.006 PMID: 21481567

10. Stathonikos N, Nguyen TQ, Spoto CP, Verdaasdonk MAM, van Diest PJ. Being fully digital: perspective

of a Dutch academic pathology laboratory. Histopathol. 2019; [Epub ahead of print]. https://doi.org/10.

1111/his.13953

11. Retamero JA, Aneiros-Fernandez J, del Moral RG. Complete Digital Pathology for Routine Histopatho-

logyDiagnosis in a Multicenter Hospital Network. Arch Pathol Lab Med. 2019; [Epub ahead of print].

https://doi.org/10.5858/arpa.2018-0541-OA PMID: 31295015

12. Kothari S, Phan JH, Stokes TH, Wang MD. Pathology imaging informatics for quantitative analysis of

whole-slide images. J Am Med Inf Assoc. 2013; 20(6):1099–1108. https://doi.org/10.1136/amiajnl-

2012-001540
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