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Zusammenfassung

Die Quantenchromodynamik (QCD) ist die Feldtheorie, die die starke Wechselwirkung

von Materie beschreibt, wobei die fundamentalen Freiheitsgrade (oder äquivalent Felder)

die fermionischen Quarks sind, die durch die bosonischen Gluonen interagieren. In-

teressanterweise und im Gegensatz zum Rest des Standardmodells enthält dieser For-

malismus nichtlineare Beiträge, die wiederum die Quelle des Begriffs ”Farbeinschluss”

sind. Diese Eigenschaft ist eines der bestimmenden Merkmale von QCD. Insbeson-

dere heißt es, dass es für freie Teilchen strikt unmöglich ist, eine Nettofarbladung zu

haben. Dies ist der Grund, warum in der Außenwelt niemals einzelne Quarks oder

Gluonen beobachtet werden: Sie existieren alle in gebundenen Zuständen innerhalb

der stabileren und Farb-neutralen Hadronen wie Protonen, Neutronen oder Pionen.

Man kann Baryonen unterscheiden, die sich aus drei Valenzquarks mit einer Nettofar-

bladung von Null zusammensetzen (z. B. besteht ein Neutron aus einem Up-Quark mit

einer elektrischen Ladung +2/3 und zwei Down-Quarks mit jeweils einer elektrischen

Ladung −1/3; dies wird manchmal als udd geschrieben) und Mesonen, die gebundene

Zustände von Quarks und Anti-Quarks mit entgegengesetzten Farbladungen sind (z.

B. ud̄, wenn positiv, ūd, wenn negativ, oder eine Überlagerung von beiden, wenn

neutral, (ud̄+ ud̄)/
√

2)).

In dieser Arbeit interessieren wir uns für das Verhalten von Bulk-Fermionen oder

“QCD-Materie”. Das Farbeinschluss-Phänomen ist, wie bereits erwähnt, ein Niedrig-

energie-Phänomen. Bei hohen Energiedichten sagt QCD aufgrund der starken Kop-

plung ein Deconfinement der Farbladung voraus, was das Vorhandensein mehrerer

Phasen der QCD-Materie impliziert. Bei sehr hoher Energie (d. h. bei hohen Tem-

peraturen oder Dichten) wird erwartet, dass QCD-Materie aus einem Gas von Quarks

und Gluonen besteht; diese thermodynamische Phase der Materie wird als Quark-

Gluon-Plasma (QGP) bezeichnet. Bei niedrigeren Energien unterhalb der Farbein-

schlussschwelle sollte die jetzt aus Hadronen zusammengesetzte QCD-Materie als ein

Gas von Hadronen (auch als Hadronenresonanzgas bekannt) wirken. Obwohl dies

nicht das Hauptthema dieser Arbeit sein wird, wird daher erwartet, dass irgendwann

ein Phasenübergang bei einer kritischen Temperatur zwischen dem QGP und dem

Hadronenresonanzgas stattfindet. Die Schwierigkeiten, die bei der Lösung von QCD

aufgrund der Gluon-Selbst-wechselwirkungen auftreten, machten es erforderlich, eine
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Reihe effektiver Modelle zu entwickeln, die genaue Beschreibungen der QCD-Materie

in bestimmten Anwendungsbereichen liefern können.

Es wird angenommen, dass sogenannte Transportmodelle, die sich mit statistischen

Ensembles von Partikeln und ihren Wechselwirkungen untereinander befassen, eine

gute Beschreibung der QCD-Materie liefern, insbesondere in der Hadronengasphase,

die den Schwerpunkt dieser Arbeit bildet. In einem System, in dem sich Teilchen

einer Spezies i mit Verteilungsfunktion fi ausbreiten und interagieren, liefern Trans-

portansätze Lösungen für die relativistische Boltzmann-Gleichung, auf der sie basieren:

pµ
∂fi
∂xµ

+mi
∂(Fµfi)
∂pµ

=
N∑
j

C
[
fi, fj

]
, (1)

wobei Fµ eine externe Kraft und C
[
fi, fj

]
der Kollisionsterm ist, der die Wechsel-

wirkungen mit einer anderen Teilchenart (oder möglicherweise mit sich selbst) ein-

schließt; für ein System mit N Freiheitsgraden erhält man dann entsprechend N solcher

Gleichungen. Dieses große Gleichungssystem wird dann mithilfe von Monte-Carlo-

Simulationen gelöst, bei denen sich Teilchen gemäß der linken Seite der Gleichungen

ausbreiten und über die Wirkungsquerschnitte interagieren, die im Kollisionsintegrale

auf der rechten Seite eine Rolle spielen. Diese Methode kann im Prinzip für eine be-

liebige Anzahl von Freiheitsgraden angewendet werden, sei es partonisch oder hadro-

nisch, solange die zuvor genannten Bedingungen erfüllt sind. Transportansätze haben

den Vorteil, dass das System nicht im Gleichgewicht sein muss. Andererseits bedeutet

die exponentielle Kombinatorik der Erhöhung der Anzahl der Freiheitsgrade, dass

sehr große Mengen phänomenologischer Daten erforderlich sind, um sinnvolle Ergeb-

nisse zu erzielen. Schwerionenkollisionen bei niedrigen Strahlenergien, bei denen die

Erzeugung eines Quark-Gluon-Plasmas unwahrscheinlich ist, können durch ein solches

Modell ebenfalls angemessen beschrieben werden.

Insbesondere verwenden wir in dieser Arbeit das hadronische Transportmodell

SMASH (Simulating Many Accelerated Strongly-interacting Hadrons). Die Haupt-

merkmale des Modells werden erläutert, z. B. das Kollisionskriterium, die berück-

sichtigten Freiheitsgrade und die spezifische Art und Weise, in der die Teilchen mikro-

skopisch miteinander interagieren. Es wurde nachgewiesen, dass SMASH die Ergeb-

nisse der Boltzmann-Gleichung in einem expandierenden Universums reproduziert und

somit die Äquivalenz dieses Transportmodelles und der damit verbundenen kinetischen

Theorie-Ergebnisse zeigt. Besonderes Augenmerk wird darauf gelegt, wie mit SMASH

ein thermischer und chemischer Gleichgewichtszustand erreicht und beschrieben wer-

den kann, der für die Gültigkeit unserer weiteren Berechnungen erforderlich ist.

Das Hauptziel dieser Arbeit sind sogenannte lineare Antwort-Transportkoeffizienten,

die die Relaxation einer Störung in einem gegebenen System beschreiben. Diese

makroskopischen Größen kodieren die mikroskopische QCD-Physik wie die Wech-
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selwirkungsstärke von Bestandteilen und ihre relativen Häufigkeiten und Ladungen

vollständig und eignen sich hervorragend zur Charakterisierung des Mediums. Typis-

cherweise können sie so ausgedrückt werden, dass

Jk = νkXk, (2)

wobei Jk ein Fluss ist, der mit einer Eigenschaft k zusammenhängt, νk der Trans-

portkoeffizient ist und Xk ein Gradient ist, der auf die Eigenschaft k einwirkt. Die

Untersuchung dieser Transportkoeffizienten der heißen und dichten Kernmaterie ist

eines der Hauptziele der Schwerionenphysik, da sie die Nichtgleichgewichtsentwick-

lung des expandierenden Feuerballs steuern. Daher haben sich viele Anstrengungen

auf diesem Gebiet auf die Einschränkung ihrer möglichen Werte konzentriert, um

sowohl QCD-Materie zu charakterisieren als auch robuste Inputs für ein weiteres er-

folgreiches effektives Modell, das der Hydrodynamik, zu liefern. Insbesondere konzen-

trieren wir uns auf das Niedrigenergieregime, das dem Hadrongas entspricht, da die

Eigenschaften dieses Bereichs des Phasendiagramms noch relativ unbekannt sind und

die vorhandenen Berechnungen für die Transportkoeffizienten entweder knapp, wider-

sprüchlich oder in gewissen Umfang begrenzt sind. Das Hauptziel dieser Arbeit ist es

daher, dies durch neue unabhängige Berechnungen dieser Größen zu beleuchten.

Um die Transportkoeffizienten zu berechnen, untersuchen wir im Detail den bekan-

nten Green-Kubo-Formalismus, der Selbstkorrelationen dissipativer Fluktuationen mit

den Transportkoeffizienten in Beziehung setzt. Dieser Formalismus ist sowohl hin-

sichtlich der theoretischen Grundlagen sehr robust als auch hinsichtlich der Rechenan-

forderungen relativ vernünftig, selbst für hochkomplexe Systeme mit vielen Freiheits-

graden. Daher wird dieser Formalismus verwendet, um die meisten der in dieser Ar-

beit vorgestellten Ergebnisse zu liefern. Parallel diskutieren wir auch den Chapman-

Enskog-Formalismus, der darauf abzielt, die Boltzmann-Gleichung zu linearisieren,

um semianalytische Schätzungen der verschiedenen Transportkoeffizienten zu erhalten.

Obwohl diese Methode im Prinzip eine der einfachsten und genauesten Methoden zur

Berechnung dieser Koeffizienten ist, steigen die Komplexität und die Anforderungen

an die Berechnung mit zunehmendem Schwierigkeitsgrades der Systeme exponentiell

an, so dass es in der Regel nicht praktikabel ist, sie für mehr als relativ einfache Sys-

teme zu verwenden (d. h. mit sehr wenigen Teilchen-Arten und Resonanzen). Die

Tatsache, dass man ein halbanalytisches Ergebnis erhält, macht es jedoch zu einem

guten Vergleichs- und Kalibrierungswerkzeug für die Abschätzung des systematischen

Fehlers des Green-Kubo-Formalismus.

Die Hauptergebnisse dieser Arbeit sind die Berechnung von drei Transportkoef-

fizienten, nämlich der Scherviskosität η, der Volumenviskosität ζ und der neu definierten

Querleitfähigkeit (σQQ, σQB, σQS); letzteres ist eine Kombination aus der bekannten

elektrischen Leitfähigkeit und zwei neuen Leitfähigkeiten, insbesondere der baryonisch-
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elektrischen und der seltsam-elektrischen, die Kreuzwirkungen zwischen verschiedenen

Arten von Elementarladungen quantifizieren. Die endgültigen Ausdrücke, die aus dem

Green-Kubo-Formalismus für die Scherviskosität, die Volumenviskosität und die Quer-

leitfähigkeit erhalten werden, sind gegeben durch

η =
V

T

ˆ ∞
0

dt′〈πxy(0), πxy(t′)〉l,

ζ =
V

T

ˆ ∞
0

dt′〈p(0), p(t′)〉l,

σQQ,QB,QS =
V

T

ˆ ∞
0

〈jxQ,B,S(0), jQx (t′)〉ldt′,

(3)

wobei

〈A(t), B(t′)〉l ≡ 〈(A(t)− 〈A〉l)(B(t′)− 〈B〉l)〉l, (4)

V und T sind das Volumen und die Temperatur des Systems, πxy ist eine nicht di-

agonale Komponente des Scherspannungstensors (der dem gleichen Element des En-

ergieimpulstensors im Ruhezustand entspricht), p ist der Druck des Systems, wie durch

die Spur des räumlichen Teils des Energie-Impuls-Tensors gegeben, und jxQ,B,S ist

eine Komponente entweder des elektrischen, baryonischen oder seltsamen Teilchen-

stroms. Der Einfachheit halber definieren wir die Autokorrelations- (oder einfach nur

Korrelations-) Funktionen Cxy ≡ 〈πxy(0), πxy(t)〉l, CΠ ≡ 〈p(0), p(t)〉l und CQQ,QB,QS
j ≡

〈jxQ,B,S(0), jxQ(t′)〉l. Es ist zu beachten, dass diese Formeln erfordern, dass sich das Sys-

tem in einem Gleichgewichtszustand befindet, um anwendbar zu sein, da die Temper-

atur und die gemittelten Schwankungen über lange Zeiträume definiert und konstant

sein müssen.

Wie man aus Gl. (3) erkennt, erfordert die Berechnung der Transportkoeffizienten

die Integration der verschiedenen Korrelations-Funktionen von Null bis Unendlich, was

numerisch ziemlich schwierig ist, da der relative Fehler einer numerischen Berechnung

der Korrelationsfunktion für jede Zeit t notwendigerweise ziemlich schnell zunimmt

und schließlich einen Zustand reines Rauschens erreicht. Um diese Einschränkung zu

umgehen, wird eine gewisse Annahme über die analytische Form der Korrelationsfunk-

tion getroffen. Es wird allgemein angenommen, dass es sich bei verdünnten Systemen

um ein abklingendes Exponential handelt, beispielsweise bei der Scherviskosität,

Cxy(t) = Cxy(0) e−
t
τ , (5)

dabei ist τ die Relaxationszeit des Systems. Es folgt dass

η =
Cxy(0)V τ

T
, (6)

und ähnlich für die anderen Transportkoeffizienten. Man sollte beachten, dass die
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Verwendung dieses Ansatzes und die Charakterisierung des Gleichgewichts, in dem

sich das System befindet, einige systematische Unsicherheiten mit sich bringen, die in

dieser Arbeit diskutiert werden.

Nach vollständigen systematischen Untersuchungen werden die Scherviskosität η,

die Volumenviskosität ζ und die Querleitfähigkeiten (σQQ, σQB, σQS) im Vergleich zu

früheren Berechnungen berechnet und Anmerkungen zu den Eigenschaften der Trans-

portkoeffizienten und deren Abhängigkeiten gemacht. Es wird gezeigt, dass die de-

taillierte mikroskopische Art und Weise, wie Wechselwirkungen zwischen Teilchen in

verschiedenen Modellen durchgeführt werden, einen großen Einfluss auf einige Ko-

effizienten haben kann. Insbesondere erscheint die Implementierung von Resonan-

zlebensdauern für die geeignete Behandlung der Scherviskosität sehr relevant, während

wir sehen, dass die Volumenviskosität Massenänderungsprozesse (beispielsweise durch

Ausbreitung von Resonanzen, aber nicht darauf beschränkt) erfordert, um vollständig

konsistent zu sein. Interessanterweise zeigen die Leitfähigkeiten eine viel geringere

Empfindlichkeit gegenüber der Behandlung von Resonanzen; es wird gezeigt, dass

die Erhöhung der Anzahl der Freiheitsgrade zu Unterschieden in der Temperatur-

abhängigkeit der Leitfähigkeiten führt, sodass zukünftige Berechnungen dieser Größen

auf dem Gitter dazu beitragen könnten, einige Eigenschaften von Hadronentrans-

portansätzen einzuschränken.

In unserem letzten Kapitel nähern wir uns der Beschreibung der Hadronengaseigen-

schaften mit einem etwas anderen Ansatz, indem wir Teilchen mit hohem Impuls pT

durch ein Hadronengas schießen, um zum ersten Mal ein hadronisches Äquivalent

zu den Parametern des Jet Quenchings q̂ und ê zu berechnen. Diese hadronischen

Transportkoeffizienten werden als q̃ und ẽ bezeichnet, und ihr Wert wird berechnet

auf ungefähr drei- bis viermal kleiner als der ihrer QGP-Gegenstücke. Während die

Auswirkungen auf die beobachtbaren Jet-Effekte hieraus geringer sein sollten, ist dies

keineswegs vernachlässigbar. Dies zeigen wir anhand der Winkelverteilung des Im-

pulses (oder der Jet-Form) eines Teilchens mit hohem pT , das durch eine expandierende

Kugel fliegt. Wir weisen abschließend darauf hin, dass es zwar einen heuristischen

Zusammenhang zwischen der Scherviskosität η und dem Querparameter q̂ im QGP

gibt, dies jedoch bei den niedrigeren Temperaturen, die dem Hadronengas entsprechen,

anscheinend nicht der Fall ist.

In dieser Arbeit wird gezeigt, dass die makroskopischen Transportkoeffizienten sehr

empfindlich auf die spezifische mikroskopische Art in der Wechselwirkungen zwischen

Teilchen modelliert werden, reagieren. Um dies umzukehren, können genauere Werte

dieser Koeffizienten aus experimentellen Daten extrahiert werden und dann auch ver-

wendet werden, um dieser Modellierung einige Einschränkungen aufzuerlegen.
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Chapter 1

Introduction

The Standard Model is generally accepted to be the fundamental theory upon which

most of particle physics can be constructed. Indeed, it has so far managed to incor-

porate three of the four known fundamental interactions, namely the electromagnetic,

weak and strong interactions, while the gravitational interaction does remain separate.

The electromagnetic and weak interactions have been combined in the so-called quan-

tum electroweak theory, and the strong interaction, modeled using Quantum Chromo-

Dynamics (QCD), is added to the previous two [1].

Of those three field theories, QCD, which will be the main focus of this thesis, is

without a doubt the one whose solution has proven to be the most elusive1. In this

theory of strong interactions, the fundamental degrees of freedom (or, equivalently,

fields) are the fermionic quarks ψ, which interact through the bosonic gluons Aa. In

such relativistic field theories, all the features of a given model are encapsulated in

the Lagrangian density L, which includes contributions from the kinetic part of the

system (e.g. the propagation of fields) and from its potential parts (e.g. their mass,

interaction with other fields, etc.). In the case of QCD it takes the form

LQCD =
∑
ψ

ψ̄i

(
iγµ(∂µδij −

i

2
gsA

a
µλ

a
ij)−mψδij

)
ψj −

1

4
Ga
µνG

µν
a , (1.1)

Gµν
a =∂µA

ν
a − ∂νAµa + fabcAµbA

ν
c , (1.2)

where γµ are Dirac matrices, gs is the strong coupling constant, λaij are the Gell-

Mann matrices (i.e. the generators of the SU(3) symmetry group), mψ is the mass

of a quark and fabc are the structure constants of SU(3). The sum over ψ goes over

all the known existing quarks (and antiquarks), which currently number to six; by

increasing mass, these are known as the up, down, strange, charm, bottom and top.

Both quarks and gluons also carry a color charge. Quarks carry a single color charge,

1Although this is a completely unbiased statement by the author of these lines, one could be
forgiven to think other fields related to the Standard model also to be deserving of this prized
distinction.
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Figure 1.1: Running coupling constant of QCD αs as a function of the energy scale
Q2, according to various calculation methods; Λ is the QCD scale parameter which
can be understood as a characteristic length. Taken from [2].

which will then be called blue, green or red; similarly, antiquarks carry a charge

which will be either anti-blue, anti-green or anti-red. Gluons carry compositions of

colors and anti-colors, for a total of eight possible combinations, which are summed

over in the previous equation over the latin indices (note that the fermionic color

charge was implicitly summed in the latin index of the Gell-Mann matrices). Some

terms of this Lagrangian also correspond to the various interactions which are possible

within QCD; the second term in the parenthesis for example corresponds to the quark-

antiquark annihilation which produces a gluon. Interestingly and in contrast with the

electroweak sector of the Standard Model, the last term of the Lagrangian contains

additional contributions from the structure constants which lead to purely gluonic

interactions (namely the 3-gluon and 4-gluon vertices). This self interaction between

the bosons makes the treatment of the strong interaction non-linear and leads to a

running of the strong coupling constant which asymptotically tends towards zero at

large energies, but diverges at lower temperatures (see Fig. 1.1), and is thus the source

of the phenomenon called color confinement.

This color confinement is one of the defining characteristics of QCD, as it shapes

the low energy world we live in; specifically, it states that it is strictly impossible

for free-streaming particles to have a net color charge at the energies the universe

currently features. It is the reason why no lone quarks or gluons are ever observed

2



in the outside world: they all exist in confined states within the more stable and

color neutral hadrons such as the proton, neutron or pion. Thus can one distinguish

baryons, which are composed of three valence quarks with a zero net total color charge

(e.g. a neutron is made of an up quark with electric charge +2/3 and two down quarks

each with electric charge −1/3; this is sometimes written as udd), and mesons, which

are bound states of quarks and anti-quarks with opposite color charges (e.g. pions are

then ud̄ if positive, ūd if negative or a superposition of both if neutral (ud̄+ ūd)/
√

2).

1.1 The field of heavy ion collisions

In this work we will be most interested in the behavior of bulk fermions, or “QCD

matter.” The confinement phenomenon is, as stated earlier, a low energy phenomenon;

at high energy densities, QCD predicts a deconfinement of the color charge due to the

weakening of the strong coupling, which then implies the existence of multiple phases

of the QCD matter, which are shown on Fig. 1.2. At very high energy (i.e. at large

temperatures or densities), it is supposed that QCD matter should consist of a gas

of quarks and gluons; this thermodynamic phase of matter is called the quark-gluon

plasma (QGP). At lower energies, below the color confinement threshold, similarly, the

QCD matter, now composed of hadrons, should act as a gas of hadrons (also known as

the hadron resonance gas). Although it will not be the main topic of this thesis, it is

thus expected that at some point, a phase transition should occur between the quark-

gluon plasma and the hadron resonance gas; this transition is generally thought to be

a crossover at zero baryon chemical potential µB, and a first order phase transition

at some unknown larger µB, which means a critical point should exist somewhere in

between the two [3].

In order to observe both of these phases and their interplay, one must first be able

to generate extremely high temperatures and pressures in a controlled environment2,

which is one of the goals that motivated the development and construction of several

modern day particle accelerators. Up to now, only two accelerators exist which have

been proven to be able to reach the energies required for the presence of the QGP:

the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory

and the Large Hadron Collider (LHC) in Geneva, while several others still manage

to reach the energies required for the creation of a hadron gas. Many observations

which first came out of RHIC [5–8] and were later confirmed by the LHC [9–11] were

at first surprising, as it was realized that the QGP produced at these experimental

facilities was not in fact weakly but rather strongly coupled [12, 13]; this picture is

2The temperature conversion factor from mega electron-Volt (MeV) to Kelvin (K) is 1 MeV=
11,600,000K. This means that using these more common units, the temperatures discussed in this
thesis (∼ 75 − 175 MeV) are typically of the order of 1-2 billion K; as a comparison for the reader,
the surface of the sun is at relatively frisky 5778K.
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Figure 1.2: Phase diagram of QCD; the QGP is in the top right part, in orange, and
the hadron gas in blue in the bottom left. Also indicated are approximate locations
for a possible critical point between crossover and first order phase transitions, as well
ultra-dense neutron stars or the state the early universe was in shortly after the Big
Bang. Taken from [4].

thus more consistent with a fluid description, indicating that although the running

coupling constant decreases as the energy increases (see Fig. 1.1), the density of this

phase of matter is still sufficiently high for it not to behave as a gas of almost free

streaming quasi-particles. Due to this strong non-linearity of the underlying theory

of QCD and large coupling constant at the energies which are currently reachable

through experiment, the field of heavy ion physics has thus seen a flourishing of so-

called effective models whose validity regime extend on one or the other side (and

sometimes both, in a limited fashion) of the phase transition. The rest of this section

is dedicated to highlighting some features of prominent models; note that this list is

in no way exhaustive.

Closest to QCD in spirit as well as in form exist a plethora of effective field theories,

in which a Lagrangian formalism similar to the fundamental theory is used, but mod-

ified in such a way as to make them calculable in some (usually quite energetic, but

not always) regime. The most prominent member of this family of models is undoubt-

edly lattice QCD, where a discretization of space and time allow for the computation

of some quantities (most prominently the equation of state) in the region µB/T ≤ 2

[14–16]; in the continuum limit, time and space granularity should converge to the

actual QCD result. Lattice QCD is thus in principle the most fundamental “easily”

computable expression of QCD, but it faces technical obstacles which are almost as

complicated as regular QCD calculations, especially in terms of computing power; to

surmount them, unphysical quark masses and other simplifying assumptions are often

made. Other notable field theory contributions are:

1. The Dyson-Schwinger formalism [17], in which propagators are modified in a spe-
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cific way to produce valid results at any energy, provided one can appropriately

truncate an infinite system of equations,

2. Chiral effective theories [18], in which hadrons rather than quarks and gluons

are the degrees of freedom, the large number of which make precise calculation

complicated,

3. The Color Glass Condensate (or CGC) formalism [19], in which a separation of

energy scales allows to impose a saturation scale on cross-sections; this allows to

approximate nucleons as gluon balls enveloping highly energetic quarks, which

is valid at very early times after a heavy ion collision,

4. The Anti-de Sitter/Conformal Field Theory correspondence, or holography [20],

in which similarities between the weakly coupled 5-dimensional supergravity and

conformal strongly coupled quantum field theories are exploited; aside from the

fact that this duality remains a conjecture, difficulties usually arise when remem-

bering that QCD only approaches conformality at the very highest energies.

Another very successful effective model is that of relativistic hydrodynamics, one

of whose strengths is its ability to correctly reproduce the observed large final state

anisotropic momentum distributions (or “flow”) [21]. In essence, hydrodynamics is

nothing but the application of conservation laws to a system which is assumed to

be locally in equilibrium; in the relativistic case, the energy-momentum tensor T µν

and the particle 4-current Nµ are thus conserved, such that ∂µT
µν = 0 and ∂µN

µ = 0.

Closing the system of equations additionally requires one to define an equation of state

relating the pressure to the energy density and particle current, which then encapsu-

lates all the microscopic interactions. Hydrodynamics is traditionally considered valid

provided that the individual equilibrated parts of the system system are large enough,

i.e. if the Knudsen number Kn =
λmfp
L
� 1 [22], where λmfp is the mean free path

of particles in a cell of size L in the fluid3 (typically this should then happen at large

temperatures, although it is not restricted to the sole QGP phase; high temperature

hadronic gases are also generally thought to be dense enough to be treated with this

formalism). Since hydrodynamic descriptions deal with energy-momentum and parti-

cle current tensors rather than directly with the underlying degrees of freedom, it must

be initialized according to some prescription which needs to come from another initial

condition model (for example the Glauber model for energy deposition [34, 35], or var-

ious implementations of the previously discussed CGC formalism [36–39]), as well as

3Some recent observations of collective phenomena which are usually associated with hydrody-
namic behavior in small systems (i.e. proton-nucleus or even proton-proton collisions) at the LHC
[23–25], along with the apparent ability of hydrodynamics to reproduce such results [26–30], have
caused many in the field to question whether this applicability range should be extended; some theo-
retical expansions, notably through the concepts of hydrodynamic attractors [31, 32] and cavitation
[33], have tried to bridge that gap.
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reconverted into particles (a process known as “particlization”) at some phenomeno-

logically determined fixed temperature or energy density through the Cooper-Frye

formula [22, 40–42]. As such, hydrodynamic models are most often the central part of

so-called hybrid models of heavy ion collisions, which are then composed of an initial

conditions model, the hydrodynamic evolution of the high temperature sector of the

produced medium, the Cooper-Frye particlization and a hadronic afterburner.

These afterburners refer to the last category of models which we will mention and

which are used throughout the bulk of this thesis: transport approaches, which deal

with statistical ensembles of particles and their interactions with each other [43]. In

a system in which particles of a species i with distribution function fi propagate and

interact, transport approaches generally assume the following:

1. The system is dilute enough that only binary collisions are relevant, i.e. in any

sub-region of space of the order of the collision range, there are never more than

two particles. Those binary collisions can be elastic as well as inelastic.

2. The mean free path λmfp is much longer than the collision time; in other words,

the interaction range is assumed to be short. This could be violated for example

if a long-ranged Coulomb potential between particles was considered.

3. The incoming and outgoing particles of a binary collision are uncorrelated, that

is, in terms of distribution functions,

f(t,x1,p1,x2,p2) ' f(t,x1,p1)f(t,x2,p2), (1.3)

where x and p are the position and momenta of the interacting particles. This

is known as the molecular chaos hypothesis.

These conditions are generally known as Boltzmann’s Stosszahlansatz, and are required

for the relativistic Boltzmann equation upon which transport approaches are based

(here written in a covariant form):

pµ
∂fi
∂xµ

+mi
∂(Fµfi)
∂pµ

=
N∑
j

C
[
fi, fj

]
, (1.4)

where Fµ is an external force and C
[
fi, fj

]
is the collision term which encapsulates

the interactions with another particle species (or possibly itself); for a system con-

taining N degrees of freedom, one then correspondingly obtains N such equations.

This large system of equations is then solved using Monte Carlo simulations where

particles propagate according to the left-hand side of the equations and interact via

the cross-sections involved in the writing of the collision integrals on the right-hand

side. This method can in principle be applied for any number of degrees of freedom,
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be they partonic or hadronic, as long as the previously mentioned conditions are ful-

filled. Transport approaches have the advantage of not requiring the system to be in

equilibrium, in contrast with hydrodynamics which require at least local equilibrium

over large enough regions; combined with the fact that these two approaches are valid

in different energy regimes, this makes them complementary in many ways, hence the

prevalence of the previously mentioned hybrid models. On the other hand, the expo-

nential combinatorics of increasing the number of degrees of freedom means very large

amounts of phenomenological data is needed to obtain sensible results. Heavy ion col-

lisions at low beam energies, where the production of a quark-gluon plasma is unlikely,

can also be appropriately described by such a model. Notable transport approaches

include UrQMD [44], GiBUU [45], PHSD [46], BAMPS [47], B3D [226] and finally the

one which will be used in this thesis, SMASH [48], which will be extensively discussed

in Chapter 3.

1.2 Transport coefficients in the hadron gas

In this thesis we will focus our efforts on the region of applicability of SMASH, that

is, the hadron resonance gas at temperatures around and below the phase transition.

Specifically, we will be interested in calculating so-called linear response transport co-

efficients, which describe the relaxation of a perturbation in a given system. Those

macroscopic quantities fully encode the microscopic QCD physics such as the interac-

tion strength of constituents and their relative abundances and charges, making ex-

cellent tools for the characterization of the medium; typically, they can be expressed

such that

Jk = νkXk, (1.5)

where Jk is some flux related to a property k, νk is the transport coefficient and Xk is

a gradient acting on the property k; several ways of calculating transport coefficients

will be detailed in Chapter 2. Studying these transport coefficients of the hot and

dense nuclear matter is one of the main goals of the field heavy-ion collisions, as they

control the non-equilibrium evolution of the expanding fireball, and as such many

efforts in the field have been concentrated on constraining their possible values, both

to characterize QCD matter and to provide robust inputs for hydrodynamical models.

In the following, the various coefficients which will be calculated in this thesis and the

specific reasons they are of interest will be introduced.

1.2.1 Shear viscosity

One of the most well-studied dissipative coefficients is the shear viscosity η and its

associated dimensionless ratio with the entropy density η/s, which measure the ability
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Figure 1.3: Shear viscosity to entropy density ratio vs temperature around the critical
temperature Tc, for various everyday substances and QCD matter. Taken from [65].

of the fluid system to relax towards equilibrium after a shear perturbation [43, 49]. The

interest in shear viscosity surged in the field of heavy ion collisions as measurements

of large anisotropies in the final momentum distributions (or “flow”) were made at

RHIC in the early 2000s, which was then shown to be in very good agreement with

hydrodynamics. Specifically, although ideal hydrodynamics manage to reproduce the

broad features of heavy ion collisions [41, 50], the inclusion of small shear viscous

corrections were shown to be necessary to explain this anisotropy of the radial flow

[26–30] (see Fig. 1.3 for a comparison of the η/s of various substances around their

critical temperature Tc, including early estimates of the QGP viscosity). In conjunction

with this, calculations from the AdS/CFT conjecture showed that in a conformal fluid,

the value of the ratio of shear viscosity to entropy density η/s should take a value of

1/4π (and was conjectured to be an absolute minimum in all systems, although this is

not yet proven; this is sometimes called the KSS bound) [51]. Since QCD approaches

conformality in the limit of large energies, which coincides to a good extent with the

region in which the quark-gluon is expected to be found, this result garnered a lot of

interest, and further reinforced the idea of including shear viscous corrections as a way

to better fit the various observables produced by the experiments.

Phenomenological extractions of the effective value of η/s by fitting relativistic

viscous hydrodynamics to experimental measurements have been carried out [21, 26,

27, 52–54], and have shown that above the phase transition (i.e. at temperatures

above ∼150 MeV), the average η/s is very close but slightly larger than the conjec-

tured ratio in the QGP. The temperature dependence η/s(T ) was also studied within

hydrodynamical [55, 56] and hybrid approaches [57–61]; more recently, quantitative

methods using Bayesian techniques for the analysis of large parameter space dimen-

sionalities were used to determine with a high degree of confidence that the shear

viscosity increases with temperature in this phase [62–64].

The low temperature behavior of the shear viscosity over entropy ratio can be
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constrained by calculations with hadronic degrees of freedom. For zero net baryon

density, the shear viscosity of a hadron gas was studied extensively up to temperatures

of around 160 MeV [66–83], where the hadron gas turns into the quark-gluon plasma.

Around the transition temperature, results from gluodynamics and QCD on a lattice

have also provided estimates of η/s [84–87]. In addition to the temperature, the

dependence η(T, µB) on the baryon chemical potential was also investigated [69, 71,

88]. In parallel, as shown on Fig. 1.3, it is generally known that the shear viscosity to

entropy density ratio reaches a minimum around the phase transition temperatures for

everyday substances; several effective models of QCD have predicted a similar behavior

in the case at hand [73, 75, 89–93], which presents another motivation to study this

coefficient. Importantly, it should be noted that the results of existing studies in the

range of T = 75− 175 MeV and µB = 0− 600 disagree with each other by up to one

order of magnitude, which was also recently addressed in [82], where the authors find

a considerable difference between the results from the UrQMD transport code [78],

and the ones from the B3D transport approach [82, 94]. In Sections 4.1 and 4.2,

by providing an independent computation of η/s(T, µB) in the hadronic phase using

SMASH, the physical origin of this discrepancy is investigated, and, more generally, the

key role of differences in the microscopic treatment of interactions between transport

computations is highlighted.

1.2.2 Bulk viscosity

Since AdS/CFT calculations imply that it is identically zero [51], the bulk viscosity ζ

(and its corresponding dimensionless ratio ζ/s), which can be thought of as the resis-

tance to expansion of a fluid, has not been subject to the same extended treatment as

shear viscosity [41]. It should be pointed out that although bulk viscosity is identically

zero in conformal fluids and that QCD approaches conformality in the limit of high

energies, there is no evidence that the nuclear matter which is produced in accelerators

(even at the highest LHC energies) is formally a conformal fluid. This is especially

true around the phase transition, where calculations from lattice QCD indicate large

enhancements of the bulk viscosity in this regime [95, 96]. Although not exhaustive,

some studies on the effect of bulk viscosity on some observables such as elliptic flow

[97, 98] and particle spectra [99] were however made. More recently, bulk viscosity has

started attracting more attention since it was pointed out by phenomenological studies

in hybrid models that the inclusion of bulk viscosity as decribed by [100] was impor-

tant in some cases to properly reproduce simultaneously the radial and azimuthal flow

anisotropies [101, 102].

On the hadronic side, calculations of the bulk viscosity are notoriously more compli-

cated than those of the shear viscosity (it will be shown in Chapter 4 that the amplitude

of the fluctuations related to bulk viscosity are as much as ∼25 times smaller than
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those related to the shear case), and as such are a lot more scarce. The temperature

dependence of the bulk viscosity of a full hadron gas was computed in [76, 81, 88, 103],

and, similarly to the case of the shear viscosity, results from the various calculations

differ from one another by an order of magnitude or more. Additional calculations

using a simplified pion gas were also performed, providing additional insights on the

behavior of ζ at low energy. Notably, [104] predicted a double bump structure where

the low T maximum was explained from the explicit conformal breaking of the pion

mass, [105] pointed out the importance of inelastic processes while obtaining a diverg-

ing bulk viscosity at T = 0, and finally, [106] further commented that the addition

of a pion chemical potential due to its non-zero mass was also necessary to be fully

consistent with a picture containing only elastic collisions. By providing an additional

independent calculation of ζ and ζ/s in several systems in Section 4.3, some more light

is shed on this as of yet still relatively unconstrained coefficient.

1.2.3 Cross-conductivity

The electrical conductivity describes the response of a medium either to an external

electric field or an uneven distribution of charge density. As opposed to the previously

discussed shear and bulk viscosities, it is only sensitive to transport cross sections

involving charged particles. The electrical conductivity is used in theoretical predic-

tions of the low-mass dilepton yield, which is directly proportional to this coefficient

[107, 108]; it has also been related to the diffusion of magnetic fields in a medium

[109–111] and is an important input to magnetohydrodynamics [112–114], allowing

for a longer duration of the initial magnetic field when non-zero. Although they are

expected to decrease over time, it has recently become more and more apparent that

electric and magnetic fields are very strong during the early phases of a heavy ion

collision. This has produced many explicit calculations of this conductivity, using

hadronic kinetic theory [115], partonic transport models [116, 117], off-shell trans-

port and dynamical quasiparticle models [118–121], holography [88, 122, 123], lattice

QCD [107, 124–126], Dyson-Schwinger calculations [127], semianalytic calculations

within perturbative QCD [128–130], and also taking into account strong magnetic

fields [131, 132].

In the hadronic phase, some semianalytical calculations in pion gases were made

using chiral perturbation theory [75, 111], in a pion gas using a sigma model where

the effect of including medium-modified interactions was studied [133], in a sigma

model with baryonic and mesonic interactions [134], and finally in resonance gas mod-

els [115, 118, 119]. Note that almost none of the previously mentioned calculations

include a dynamical treatment of resonances, and thus this thesis contributes a solid

determination of the electrical conductivity of a realistic hadronic gas which takes into

account these effects.
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Additionally, two new coefficients are introduced: the baryon-electric conductivity,

and the strange-electric conductivity, which, together with the previously discussed

electric conductivity, is dubbed the “cross-conductivity”. Since individual hadrons

carry not only an electrical but also sometimes a baryonic and strange charge, it stands

to reason that the application of an electric field can produce not only an electric, but

also a baryonic or strange current. Although they will be introduced in more detail in

Chapter 2, those two new transport parameters then essentially measure the baryonic

or strange response of a medium when this one is subjected to an external electric

field or uneven charge distributions. Although these coefficients have not been studied

before, similar ideas of inspecting the cross effects of baryon-strange correlations were

proposed in [135, 136], where it was suggested that those correlations could be used as

a signature for the phase transition region. Our own new coefficients can in principle

also be computed in the low temperature region in lattice QCD calculations, so that

one could constrain several unknown parameters of hadronic resonance gas transport

models, such as for example the abundance of degrees of freedom which need to be

included at various temperatures, as well as their cross-sections with each other.

1.2.4 Jet quenching parameters

So-called “hard” interactions between constituent nucleons in experimental collisions

can create partons which exhibit a very large transverse momentum pT . In the case

of proton-proton collisions, these highly off-shell particles then proceed to radiate

gluons in a restricted angle range around their direction of propagation through a

gradual return to an on-shell state via the emission of soft gluons, thus resulting in

collimated particle showers called jets, which are then detected by experimental setups.

In heavy ion collisions, such jets are typically created within the medium, and thus

they must cross some length of it before reaching detectors, which will then suppress

some of their energy through a modification of their radiative properties and through

direct interaction with the medium. The study of this suppression, typically called

jet quenching, is an important way in which the properties of the medium can be

characterized [137, 138].

Since jets, composed of multiple partons, must cross a medium which is fully

dynamic and spans from the high temperatures associated with the QGP to the lower

ones where hadronic degrees of freedom dominate, a fully unified and self consistent

picture of jet quenching physics is still under development, and thus a profusion of

theoretical models of the jet/medium interactions exist, both on the perturbative

[137–167] and non-perturbative levels [168–182]. However, it should be noted that

the vast majority of these studies have only considered the effects of the QGP on

the jet, omitting any possible contributions from hadronic interactions in the lower

temperature region; it has however been shown that the hadronic phase can generate
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Figure 1.4: Jet quenching parameter q̂ vs temperature, as obtained from a cross-model
study. Taken from [187].

a significant suppression of the transverse momentum both in a purely hadronic model

[183] and hybrid approach [184], as well as exhibit qualitative differences in the nuclear

factor and elliptic flow at p⊥ = 2− 6 GeV [185, 186].

In the QGP, the jet quenching can usually be characterized by the transverse and

longitudinal average momentum transfers per unit length squared q̂ and ê, which are

transport coefficents that can be thought of as similar to the diffusion parameter

of a large particle in a fluid, which has been done by many of the previously cited

models. Interestingly, the transverse parameter q̂ has additionally been related to the

shear viscosity η [188], providing an additional tomographic probe into the medium;

one would then expect that the previously mentioned direct calculation of η should

provide a result which is consistent with a calculation of q̂ using the same model.

Recently, a cross-model study [187] has managed to narrow down the value of q̂ at

very high temperatures, which is shown on Fig. 1.4. In the explorative study presented

in Chapter 5, a first estimation and parametrization of the analog hadronic quantities

q̃ and ẽ is provided, and it is shown that although smaller by factors of 3-4 to their

QGP counterparts, they are still large enough to have a significant effect on angular

momentum distributions, an observable which characterizes how energy is spread away

from the jet axis, similar to [189–191]; the transverse parameter q̃’s relation with the

shear viscosity η is subsequently investigated, and comments are made on the validity

of the relations presented in [188] in the hadron gas regime.

12



1.3 Structure of the thesis

This thesis is divided in several chapters, the first of which consisted of a contextual-

ization of the rest, and which we assume the reader, now coming to its end, does not

require to be reminded of yet.

In Chapter 2, two different ways of obtaining most of the previously discussed

transport coefficients (with the exception of the jet quenching parameters) will be

discussed in detail. The first one is the well-known Green-Kubo formalism, which will

be derived from fundamental kinetic theory, while the second is the Chapman-Enskog

formalism which allows for the linearization of the collision term of the previously

discussed Boltzmann equations, thus leading directly to semianalytical relations for

the shear and bulk viscosities as well as for the cross-conductivity; both of these

methods will lead to direct expressions for all of those coefficients. Directly following

is Chapter 3, which is dedicated to an in-depth look at the transport model which is

used to obtain most of the results in this thesis, SMASH, and of all of its relevant

features within the context of this work.

The next two chapters, 4 and 5, contain the bulk of the results which were obtained

in the course of the writing of this thesis. The former concerns itself with the calcu-

lation of the shear and bulk viscosities and of the cross-conductivity, as well as their

temperature and chemical potential dependences in a variety of systems of different

complexities. This will be done using both the Green-Kubo and Chapman-Enskog

formalism, where they will be compared when possible, usually in simpler systems

to provide some degree of calibration to Green-Kubo calculations which can then be

expanded to more complex ones. The latter explores the effects of adding a single

high momentum particle in a hadron gas on angular distributions, or so-called “jet

shapes”, and provides a first calculation of the temperature and particle momentum

dependence of the hadronic jet quenching coefficients q̃ and ẽ.

Finally, in Chapter 6, we summarize our findings and look towards possible ways

of improving or expanding the obtained results in future endeavours.

13



Chapter 2

Theory of transport coefficients

This chapter aims to cover in a non exhaustive way previous theoretical developments

regarding the computation of transport coefficients in systems of varying complexity.

Specifically, we will concentrate on ways to calculate the shear and bulk viscosity,

as well as the so-called cross-conductivity (i.e. the vector of coefficients relating the

movement of electric, baryonic and strange charges with respect to an external electric

field; a more formal definition will be provided in Section 2.1.2).

We will first examine the well-known Green-Kubo formalism, which relates self

correlations of dissipative fluctuations with the transport coefficients. This series of

prescriptions are both very robust in terms of theoretical foundation and relatively

reasonable in terms computational requirements, even for highly complex systems

with many degrees of freedom. As such, this formalism will be used to provide most of

the results presented in Chapter 4. One should note that the use of this prescription

does rely on a series of ansätze and approximations, notably the exponentiality of the

correlation functions and the characterization of the equilibrium in which the system

finds itself. These do introduce some systematic uncertainties, which can and will be

discussed in a general fashion in Sections 3.6 and 4.1, and more specifically to the bulk

viscosity case in Section 4.3.

Second, we will discuss the Chapman-Enskog formalism, which aims to linearize

the Boltzmann equation in order to obtain semi-analytical estimations of the different

transport coefficients. Although this method is in principle one of the most straightfor-

ward and accurate ways of calculating those coefficients, its computational complexity

and requirements grow exponentially as systems get more advanced, so that it is typi-

cally not practical to use it for more than relatively simple systems (i.e. with very few

species and resonances). The fact that one obtains a semi-analytical result however

does mean that this makes it a good comparison and calibration tool for the estima-

tion of the systematic error on the Green-Kubo formalism. It should be noted that

the author of these pages did not explicitly perform these calculations; as such, we

will here present the general features of the formalism but will not go into the details
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required to actually perform it.

2.1 The Green-Kubo formalism

Perhaps one of the simplest and oldest examples of what the Green-Kubo formalism

explains, that is, linking fluctuations to transport coefficients, dates back from the

early 19th century, when Robert Brown was studying the movement of large macro-

molecules (in this case pollen grains) in water. He observed that the smallest particles

appeared to be moving in a random way, in what came to be known as the Brownian

motion. Almost a century later, the mystery of the Brownian motion was resolved,

when the Langevin equation of motion was introduced [192]1

mẍ = −γẋ+R, (2.1)

where m is the mass of the particle, γ some coefficient of friction of the liquid which

slows the particle down and R is a random force which springs from the myriad of

mini-interactions between water molecules and the grain of pollen. Although there

is no way for us to describe R exactly, we can still enumerate some of its statistical

properties.

1. It is on average zero, 〈R〉 = 0.

2. The fluid is uniform, so R has no dependence on x.

3. Since it varies very rapidly and chaotically, it is assumed to be uncorrelated with

itself over times larger than some characteristic time τ , that is

〈R(t)R(t+ δt)〉 = 0 if δt > τ. (2.2)

4. The rate at which correlations decay is independent of time (i.e. the water

remains in the same equilibrium state over time).

Those simple postulates allow us to look at the solution of the Langevin equation and

make some interesting preliminary calculations. The solution of differential Eq. (2.1)

takes the form

ẋ(t) = ẋ(0)e−
γ
m
t +

1

m

ˆ t

0

dt′e−
γ
m

(t−t′)R(t′) (2.3)

1Formally speaking, Einstein did it first some years earlier [193], but the author is convinced the
reader will forgive this breach of formality for the sake of the discussion.

15



We are interested in calculating the average kinetic energy in equilibrium, and thus

we take the limit t→∞ and square both sides of the equation:

lim
t→∞
〈ẋ2(t)〉 = lim

t→∞

1

m2

ˆ t

0

dt′
ˆ t

0

dt′′e−
γ
m

(2t−t′−t′′)〈R(t′)R(t′′)〉. (2.4)

Remembering our previous postulates according to which only the difference t′′ − t′ is

important in the calculation of 〈R(t′)R(t′′)〉, rather than the actual value of t′, we now

substitute r = t− t′′ and s = t′′ − t, perform the r integration and obtain

lim
t→∞
〈ẋ2(t)〉 =

1

2mγ

ˆ ∞
−∞

ds e−
γ
m
s〈R(0)R(s)〉. (2.5)

This can be further simplified by using the equipartition theorem2 〈ẋ2(t)〉 = T/m, as

well as setting the timescale over which the random force is correlated to itself to being

much shorter than the one over which friction has an effect, τ � m/γ, so that

γ =
1

2T

ˆ ∞
−∞

ds 〈R(0)R(s)〉. (2.6)

This last result is a first example of what is known as the fluctuation-dissipation theo-

rem, or Green-Kubo formula; it relates a transport coefficient γ to the self correlation

〈R(0)R(s)〉 of some thermodynamic variable R. In this case, since we cannot really

easily associate a value with R, which is by definition a random force which we did

not overly describe, the usefulness of this first formula is limited. However, as we

shall see in the remainder of this section in quite a bit more detail and rigor, there

are multiple other cases for which this type of Green-Kubo formulas can be derived to

relate well-defined thermodynamic variables to transport coefficients.

The following subsections are loosely based on previous works by Zubarev [194]

and Hosoya et al. [195]. The reader is encouraged to refer to these works for more

details, especially if one wants to know about the quantum mechanics version of the

derivation of this formalism; notably, §15 and §22 in Zubarev and §2 in Hosoya et al.

should be of interest.

2.1.1 Linear response theory

Before discussing the actual calculation of the transport coefficients, we will review in

this section some basic concepts of linear response theory which will be of great use

later on.

We are interested in describing the response of a statistical ensemble to an external

2We use the natural convention of units, in which k = c = 1.
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perturbation. The system is assumed to be described by

H(p, q) = H0(p, q) +H l
t(p, q) (2.7)

where the first term is the undisturbed Hamiltonian of the system and does not de-

pend on time, and the second describes the time dependent interaction energy of the

system with the external forces. The distribution function is defined from the Liouville

equation
∂f

∂t
= {H0 +H l

t , f}, (2.8)

where the curly braces denote the Poisson bracket

{A,B} =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
, (2.9)

where summation over all particles is implicit on the right-hand side. Additionally,

we require that H l
t was absent at t = −∞ so that f must be in a state of equilibrium

at that time. This initial condition and the previous Liouville equation completely

define the distribution function. Although many functions would in principle satisfy

those two requirements, we can narrow the choice by assessing the characteristics of

the considered system. In the present discussion we choose an equilibrium which was

defined by a temperature T , volume V and particle number N , which corresponds to

the canonical distribution, and thus

f(t)|t=−∞ = f0 = Q−1(T, V,N)e−H0/T

Q(T, V,N) =

ˆ
e−H0/TdΓ, dΓ =

dpdq

N !h3N
.

(2.10)

In order to find a solution at all times for f , we first apply the following transfor-

mation

f1 = e−itLf, (2.11)

with L being the differential Liouville operator defined by

itL = {H, f}. (2.12)

The factor e−itL then corresponds to the evolution operator, which acts on any function

of the coordinates p(0) and momenta q(0) at t = 0 into the same function at a later

time as a function of q(t) and p(t). Noting that the equilibrium part of the Hamiltonian

vanishes in Liouville’s equation (2.8), we then get

∂f1

∂t
= {H l

t(t), f1}, H l
t(t) = eitLH l

t . (2.13)
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This second equation is a classical analogue of the Heisenberg representation in quan-

tum mechanics. Following directly from the initial condition given by Eq. (2.10), we

also have

f1(t)|t=−∞ = f0. (2.14)

We write the solution to differential Eq. (2.13) with initial condition (2.14) in the form

of a single integral equation

f1(t) = f0 +

ˆ t

−∞
{H l

t(t
′), f1(t′)}dt′, (2.15)

or

f(t) = f0 +

ˆ t

−∞
ei(t−t

′)L{H l
t , f1(t′)}dt′, (2.16)

If we assume that the perturbation H l
t is small, we can further approximate the

previous result by iteration while taking f0 as the zeroth approximation, so that

f(t) = f0 +

ˆ t

−∞
{H l

t(t
′ − t), f0}dt′. (2.17)

This distribution can also be written in other ways, noting for example that

{H l
t , f0} = −β{H l

t , H0}f0, (2.18)

where we introduced the inverse temperature β = 1/T . We then get

f(t) = f0

(
1− β

ˆ t

−∞
{H l

t(t
′ − t), H0}dt′

)
. (2.19)

This linear approximation in H l
t now allows us to calculate the average value of any

dynamic variable that is a function of p and q, according to the well-known averaging

formula

〈A〉 =

ˆ
A(p, q)f(p, q, t)dΓ. (2.20)

Combining each of Eqs. (2.17) and (2.19) with (2.20), we obtain

〈A〉 = 〈A〉0 +

ˆ t

−∞
〈{A,H l

t(t
′ − t)}〉0dt′, (2.21)

and

〈A〉 =〈A〉0 − β
ˆ t

−∞
〈AḢ l

t(t
′ − t)〉0dt′

=〈A〉0 + β

ˆ t

−∞
〈Ȧ(t− t′)H l

t〉0dt′,
(2.22)
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where

〈. . .〉0 =

ˆ
. . . f0dΓ, (2.23)

is the averaging with respect to the equilibrium distribution, and Ȧ = {A,H0}3. The

last equality of Eq. (2.22) derives from the fact that the product of dynamical variables

in a state of equilibrium only depends on the time difference

〈A(t)B(t′)〉0 = 〈A(t− t′)B〉0 = 〈AB(t′ − t)〉0. (2.26)

Differentiating with respect to time, we get

〈Ȧ(t− t′)H l
t〉0 = −〈AḢ l

t(t
′ − t)〉0. (2.27)

Equations (2.21) and (2.22) are the full classical expressions of the average value of

any dynamical variable if non-equilibrium forces are small; in one form or the other,

this is one of the specific tools which will allow us to recover the Green-Kubo formulas

for transport coefficients.

2.1.2 Cross-conductivity

In this section we will examine the effect of applying an electric field on a statistical

ensemble using the previous formalism. The electric field will take the following shape:

E(t) = E cos ωt eεt = Re{eiωt+εt}. (2.28)

This electric field is spatially uniform and periodic in time, and is assumed to be

switched on adiabatically at t = −∞. Furthermore, we will assume that the charges

are here not under the effect of each other’s potentials and are free-streaming from

collision to collision (i.e. any screening effect caused by the proximity of other particles

is assumed to be small). We start out by writing out the corresponding perturbation

to the hamiltonian:

H l
t = −(E ·P) cos ωt eεt, (2.29)

3The dot notation is here not random, and does in fact correspond in a lot of cases to the time
derivative of the dynamical variable A. Remembering that in classical mechanics the kinetic part of
the hamitonian is ∑

k

1

2
q2k/mk, (2.24)

where the sum goes over all particles in the system (each with a mass mk), and combining with the
definition of the Poisson bracket (2.9), we see that the first term of Eq. (2.9) falls to zero, whereas
the second term contributes

∂A

∂p

∂H0

∂q
=
∂A

∂p

q

m
=
∂A

∂p

∂p

∂t
=
∂A

∂t
(2.25)

summed over particles.
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where we introduced the polarization vector

P =
∑
k

ekxk, (2.30)

which sums over all particles positions xk and electrical charge ek. Let us now re-

member that an electric field acting upon a system of particles will create an electric

current that will be proportional to the field, considering microscopic fluctuations to

vanish on average:

〈JQα (t)〉 = σQQαβ 〈Eβ〉, (2.31)

where α and β run over the 3 dimensions, and

JQα (t) =
∑
k

ejẋjα(t) = Ṗα(t) (2.32)

is the instantaneous electric current. Eq. (2.31) is considered the constitutive relation

of the electrical conductivity σelαβ, in the sense that it is this relation which defines it

as a coefficient. Cöıncidentally, in the previous section we defined a way to calculate

the average of any dynamical variable, provided we know the form of H l
t . Using the

first expression of Eq. (2.22) and Eq. (2.29), we obtain

〈JQα 〉 = 〈JQα 〉0 − β
ˆ t

−∞
〈JQα Ḣ l

t(t
′ − t)〉0dt′

= β

ˆ t

−∞
〈JQα Ṗβ(t′ − t)〉0Eβeiωt−εtdt′,

(2.33)

where we used the fact that on average in equilibrium the electric current vanishes.

Therefore, combining Eqs. (2.31), (2.32) and (2.33), we obtain the electric conductivity:

σQQαβ = β

ˆ t

−∞
〈JQα J

Q
β (t′ − t)〉0eiωt−εtdt′, (2.34)

It is possible to simplify the previous equation in some ways. First of all, let us go

to a more specific case by assuming a static field (ω = 0). Second, we shall assume

that the system is isotropic, i.e. it’s response to an electric field is symmetric in all

directions. Third, the parameter ε can be made as small as desired; we thus take it to

zero, which allows us to flip the time axis, so that

σQQ = β

ˆ ∞
0

〈JQx JQx (t′)〉0dt′. (2.35)

This equation paints a very different picture conceptually than the previous one.

Namely, instead of adiabatically switching on a perturbation at t = −∞, we are now

looking at a system which is in equilibrium, and which, as all equilibrium systems, pro-
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duces small fluctuations from the expectation value due to microscopic processes; this

equation then relates the adiabatic switching off of an arbitrarily small equilibrium

fluctuation to the electric conductivity.

Let us now expand this discussion by noting that the application of an electric

field can also produce associated currents. For example, in a hadron gas or a quark

gluon-plasma, the electrically charged particles also often carry other charges such as

the baryonic or strange charges; additionally, even ensembles of particles which do not

have an electric charge could start moving in a coherent way, provided other charged

particles are allowed to collide with them. As such, we write, similarly as we did for

the electric conductivity in Eq. (2.31), constitutive relations for baryon-electric

〈JBα (t)〉 = σQBαβ 〈Eβ〉 (2.36)

and strange-electric

〈JSα (t)〉 = σQSαβ 〈Eβ〉 (2.37)

conductivities, where we, similarly as in Eq. (2.32), defined the baryon and strange

currents:

JBα (t) =
∑
k

Bjẋjα(t) (2.38)

and

JSα (t) =
∑
k

Sjẋjα(t), (2.39)

where Bj and Sj are respectively the baryonic and strange charge of a particle j.

The union of these 3 quantities σQQ, σQB and σQS, for example in a vector σ =

(σQQ, σQB, σQS), is what will be further on referred to as the cross-conductivity. Fol-

lowing the same steps as we did for the electric conductivity, we obtain

σQB = β

ˆ ∞
0

〈JBx JQx (t′)〉0dt′. (2.40)

and

σQS = β

ˆ ∞
0

〈JSx JQx (t′)〉0dt′. (2.41)

for respectively the baryon-electric and strange-electric conductivities.

2.1.3 Shear and bulk viscosity

The derivation of expressions for the shear and bulk viscosities is closely entertwined,

as both of those quantities (as well as the thermal diffusion) spring from fluctuations

of the same energy-momentum tensor; for the sake of avoiding duplication, we will

carry out both simultaneously.
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In order to calculate the viscosities, we will consider systems which are slightly more

complex than the ones previously discussed, in that instead of consisting of a global

equilibrium which is modified by some external factor, we now look at an ensemble in

which thermodynamical parameters such as temperature or density can only be defined

locally. This is the hydrodynamic picture, in which this set of local parameters describe

the inhomogeneous distributions and their interactions which form the system. The

overarching characteristic of this system is then the energy-momentum conservation

law

∂µT
µν(x, t) = 0, (2.42)

where T µν is the energy-momentum tensor. In an analogous way as what we did in

section (2.1.1), we must first determine the shape for the non-equilibrium distribution

function f . As for all such functions in the classical case, f must satisfy the Liouville

equation (2.8); additionally we will require that

df

dt
= 0. (2.43)

This last condition on the distribution function comes from a picture of separated

scales in our description: we assume that in a small interval of time τf in which such

a non-equilibrium is established, f depends on time only through its parameters, and

comparatively slowly with a macroscopic characteristic time τM � τf at which we will

look at the system. We introduce the time-independent function B(x, t)

B(x, t) = ε

ˆ t

−∞
dt1e

ε(t1−t)F ν(x, t1)T0ν(x, t1), (ε→ +0), (2.44)

where

F ν(x, t) = β(x, t)uν(x, t), (2.45)

with β(x, t) and u(x, t) respectively the local Lorentz invariant inverse temperature

and local velocity of the fluid, for which

uν(x, t1)uν(x, t1) = 1. (2.46)

We show that B(x, t) is independent of t by taking a time derivative

d

dt
B(x, t) = εF ν(x, t)T0ν(x, t)

− ε2

ˆ t

−∞
dt1e

ε(t1−t)F ν(x, t1)T0ν(x, t1),
(2.47)

which is true if both T0ν(x, t) and B(x, t) are finite as ε → +0. Integrating by parts
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gives

B(x, t) = F ν(x, t)T0ν(x, t)

−
ˆ t

−∞
dt1e

ε(t1−t)(Ḟ νT0ν + F νṪ0ν),
(2.48)

Now if we remember the conservation law (2.42), integrate by parts and neglect higher

order terms, we get

ˆ
d3xB(x, t) =

ˆ
d3xF ν(x, t)T0ν(x, t)

−
ˆ
d3x

ˆ t

−∞
dt1e

ε(t1−t)Tµν(x, t)∂
µF ν(x, t)

(2.49)

This last result allows us to write the final form of the distribution function as a

functional of B(x, t), which will also be time independent, such that

f =Q−1 exp
(
−
ˆ
d3xB(x, t)

)
,

Q =

ˆ
dΓ exp

(
−
ˆ
d3xB(x, t)

)
,

(2.50)

with dΓ defined in the same way as in Eq. (2.10). The distribution function as defined

in Eqs. (2.49) and (2.50) contains two parts; an equilibrium part, which corresponds to

the first term on the right-hand side of Eq. (2.49), and a non-equilibrium part, which

contains the thermodynamic forces ∂µF ν . We note that it is possible to start from the

formalism we introduced in Section 2.1.1 to obtain the local equilibrium distribution

of a system with conservation laws

fl =Q−1
l exp

(
−
ˆ
d3xF ν(x, t)T0ν(x, t)

)
,

Ql =

ˆ
dΓ exp

(
−
ˆ
d3xF ν(x, t)T0ν(x, t)

)
,

(2.51)

for which derivation we refer the reader to §§19-20 in Zubarev [194].

If we now move to the case where the thermodynamical forces are small enough that

non-equilibrium processes take place slowly, we can further linearize the distribution

function. We write (2.50) as

f =Q−1e−A+B,

Q =

ˆ
dΓe−A+B,

(2.52)
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where

A =

ˆ
d3xF ν(x, t)T0ν(x, t),

B =

ˆ
d3x

ˆ t

−∞
dt1e

ε(t1−t)Tµν(x, t)∂
µF ν(x, t),

(2.53)

where µ is now summed to generalize the possible influences of the thermodynamic

forces on the distributions. Since we assume those forces to be small, we expand in a

series of B

e−A+B = e−A +Be−A + . . . (2.54)

so that

f ∼= (1 +B − 〈B〉l)fl (2.55)

Following the classical averaging of quantities introduced by Eq. (2.20), we can write a

linear relation for the expectation value of the energy-momentum tensor with respect

to the thermodynamical forces

〈Tµν(x, t)〉 = 〈Tµν(x, t)〉l

+

ˆ
d3x′
ˆ t

−∞
dt′eε(t

′−t)〈Tµν(x, t), Tρσ(x′, t′)〉l∂ρF σ(x′, t′),
(2.56)

with

〈Tµν(x, t), Tρσ(x′, t′)〉l ≡ 〈Tµν(x, t)(Tρσ(x′, t′)− 〈Tρσ〉l)〉l
= 〈(Tµν(x, t)− 〈Tµν〉l)(Tρσ(x′, t′)− 〈Tρσ〉l)〉l

(2.57)

Note that Eq. (2.56) has a similar shape to what we previously saw in the general

case in Eqs. (2.21) and (2.22), as well as in the specific case of the cross-conductivity

with Eq. (2.33), that is, an equilibrium value to which is added a self-correlation of

the averaged quantity.

What remains to be done in order to obtain the shear and bulk viscosity is now

simply to express specific transport coefficients in the form of a constitutive relation

of the form of Eq. (2.31). To this effect, we decompose the energy-momentum tensor

in terms of the four-velocity uµ

T µν = εuµuν − p∆µν + P µuν + P νuµ + πµν . (2.58)
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We introduced the coefficients

ε = uρuσT
ρσ,

p = −1

3
∆ρσT

ρσ,

Pµ = ∆µρuσT
ρσ,

πµν = (∆µρ∆νσ −
1

3
∆µν∆ρσ)T ρσ,

(2.59)

where ∆µν = gµν − uµuν , with gµν being the metric. Note that ∆µν is orthogonal to

uµ (∆µνu
µ = 0), that consequently Pµ and πµν are also perpendicular to the velocity,

and finally that πµν is traceless. In the comoving frame where u = (1, 0, 0, 0), the

coefficients can be written in a way which give them physical meaning:

ε = T00,

p = −1

3
T kk,

Pk = T0k, P0 = 0,

πk` = (δkiδ
j
` −

1

3
δk`δ

j
i)T

i
j,

(2.60)

where the indices run over (i, j, k, ` = 1, 2, 3). In this frame we can in this way define ε

as the energy density, p as the pressure, Pµ as the heat current and πµν as the viscous

shear-stress tensor. From the definition of the local equilibrium (2.51) we see that the

orthogonal parts of T µν will on average fall to zero

〈P µ〉l = 0, 〈πµν〉l = 0. (2.61)

This means that in a local equilibrium, we have

〈T µν〉l = (〈ε〉l + 〈p〉l)uµuν − 〈p〉lgµν . (2.62)

From the definitions of F ν (2.45) and Tµν (2.58), we can rewrite the contraction that

happens between those two quantities in the non-equilibrium part of the distribution

function such that

Tρσ∂
ρF σ = βπρσ∂

ρuσ + βPρ(β
−1∂ρβ +Duρ) + εDβ − βp∂ρuρ, (2.63)

where D = uρ∂ρ, which corresponds to the time derivative in the comoving frame.

Using the ideal fluid equation ∂µ〈T µν〉l = 0, we can express the quantity Dβ as

Dβ = β
∂〈p〉l

∂〈ε〉l∂µuµ
. (2.64)
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Plugging this last result into the previous one, we get

Tρσ∂
ρF σ = βπρσ∂

ρuσ + βPρ(β
−1∂ρβ +Duρ)− βp′∂ρuρ, (2.65)

where we defined

p′(x, t) = p(x, t)− ∂〈p(x, t)〉l
∂〈ε(x, t)〉l

ε(x, t). (2.66)

Let us now look back to Eq. (2.56), which described the full linear response of the

energy-momentum tensor, and more specifically to the correlation part of the integral,

〈Tµν(x, t)Tρσ(x′, t′)〉l. According to Curie’s theorem, linear coupling of tensors is non-

zero only in the case where these tensors have the same rank and parity; using the

decomposition of Tµν (2.58), and the definitions of the coefficients (2.59), we can write

〈p′, p′〉l = LΠ,

〈Pµ, Pν〉l = −LP∆µν ,

〈πµν , πρσ〉l = Lπ
1

2
(∆µρ∆νσ + ∆µσ∆νρ −

2

3
∆µν∆ρσ),

(2.67)

where Lp and Lπ are scalars defined as

LP = −1

3
〈Pα(x, t), Pα(x, t)〉l,

Lπ =
1

5
〈παβ(x, t), παβ(x, t)〉l.

(2.68)

Note that the prefactors 1
3

and 1
5

come from the number of independent elements in

their respective associated sum, that is, for the comoving frame, 3 non-zero indepen-

dent elements in the Pµ vector, and 5 independent elements in the symmetric 3x3

traceless tensor πµν . Assuming that the variations of the thermodynamic forces from

Eq. (2.56) are small with respect to the correlation lengths of LΠ, LP and Lπ, and

remembering that the local equilibrium average of the heat current and shear-stress

tensor are zero, we rewrite the linear response of the energy-stress tensor as 3 con-

stitutive equations respectively for the shear viscosity, thermal conductivity and bulk

viscosity:

〈πµν(x, t)〉 = η
1

2

{
∆µ
ρ∆ν

σ(∂ρuσ(x, t) + ∂σuρ(x, t))

− 2

3
∆µν∆ρσ∂

ρuσ(x, t)
}
,

〈Pµ(x, t)〉 = −κ∆µ
ρ(β−1(x, t)∂ρβ(x, t) +Duρ(x, t)),

〈p(x, t)〉 − 〈p(x, t)〉l = −ζ∂ρuρ(x, t)

(2.69)
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where the transport coefficients have been defined as

η =
β(x, t)

5

ˆ
d3x′
ˆ t

−∞
dt′eε(t

′−t)〈παβ(x, t), παβ(x′, t′)〉l, (2.70)

κ =
β(x, t)

3

ˆ
d3x′
ˆ t

−∞
dt′eε(t

′−t)〈Pα(x, t), Pα(x′, t′)〉l, (2.71)

ζ = β(x, t)

ˆ
d3x′
ˆ t

−∞
dt′eε(t

′−t)〈p′(x, t), p′(x′, t′)〉l. (2.72)

In a similar way as we did for the case of the electric conductivity with Eq. (2.34), let

us now try to simplify these newly found expressions for the shear and bulk viscosities

(we will now drop the thermal conductivity from the discussion, as it will play no

further role in this thesis). First of all, let us once again assume that the system is not

only in equilibrium, but isotropic; this allows us to remove the space dependence of

both equations, the time dependence of the inverse temperature and the summation

over indices in the case of the shear viscosity, so that we only focus on one sub element

of the tensor, πxy. Second, we will take the limit of the parameter ε to zero, and choose

t = 0 as the initial time, which once again allows us to flip the time axis. Finally, let

us make one more simplification to the bulk equation by noting that in the case which

will interest us, the energy density ε is conserved; in that specific case, the second term

of the right-hand side of Eq. (2.66) falls to zero. This yields

η =
V

T

ˆ ∞
0

dt′〈πxy(0), πxy(t′)〉l, (2.73)

ζ =
V

T

ˆ ∞
0

dt′〈p(0), p(t′)〉l. (2.74)

We note that these equations present a very similar picture as did Eq. (2.35) for the

case of electric conductivity; that is, we are once again looking at a system which is in

equilibrium, and study how the adiabatic decay of fluctuations around this equilibrium

relates to transport coefficients. Equations (2.73) and (2.74) (as well as (2.35), (2.40)

and (2.41) from the previous section) will be used throughout Chapter 4 to obtain the

transport coefficients of the hadron gas in a wide parameter space.

2.2 The Chapman-Enskog formalism

The so-called Chapman-Enskog formalism is a way to obtain semi-analytical formulas

for the transport coefficients in gas mixtures which are in the hydrodynamical stage;

we here present a short overview of its defining features and formalism, where we

loosely follow the discussion in §1 from Chapter 5 in [43] and Chapters 2-5 in [75]. It

is based upon two foundations:
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1. The previously introduced relativistic Boltzmann transport equation, which can

be written in a very general form as

pµ
∂f1

∂xµ
+m1

∂(Fµf1)

∂pµ
= C

[
f1, f2

]
, (2.75)

where f1 and f2 are one-particle distribution functions for different particle

species, m1 is the mass of the first of these particle species, and C
[
f1, f2

]
is

the collision term between these two distributions4. The first term on the left-

hand side can be interpreted as the propagation or diffusion term, and the second

one as the influence of any Lorentz invariant external forces Kµ on the statistical

distribution functions; we will assume there are no external forces for most of this

section, until the very end where we will introduce an electric perturbation in

order to get expressions for the cross-conductivities in Section 2.2.3. We rewrite

the Boltzmann equation to separate the explicit comoving time derivative and

orthogonal convective term,

pµuµDf1 + pµ∇µf1 = C
[
f1, f2

]
, (2.77)

with ∇ = ∆µν∂ν and D = uµ∂µ, same as in Eq. (2.63). C
[
f1, f2

]
is the collision

term resulting of the interactions between the two incoming particle species (or,

by extension, with itself if said particle can collide with other particles of the

same species). It can be written in a general way as

C
[
f1, f2

]
=

1

(2π)3

ˆ
dΩdk2vrel

dσ12

dΩ

[
f3f4 − f1f2

]
, (2.78)

where vrel is the relative velocity between the incoming particles dσ12/dΩ is the

differential cross-section and f3,4 are the distribution functions of the outgoing

particles.

2. A well defined hierarchy of scales in the system, which can be written as

L� h� λmfp � R. (2.79)

Starting from the smallest scale, R is defined as the range of the interaction po-

tential within a collision. This is assumed to be much smaller than the mean free

4An even more general form would consider many types of particles interacting with each other,∑
i

(
pµ
∂fi
∂xµ

+mi
∂(Fµfi)
∂pµ

)
=
∑
i,j

C
[
fi, fj

]
, (2.76)

where both i and j run over all particle species; this massive increase in combinatorics is what makes
using this formalism complicated for highly complex gases with many different particles. For the
remainder of the discussion, we will consider the one-particle case.
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path λmfp of particles between collisions, and is essentially the dilute gas approx-

imation in which only binary collisions occur, which is one of the assumptions

made in the derivation of the previously mentioned transport equation. The

length h is assumed to be a charateristic hydrodynamic length in which many

particles are present and many collisions occur, so that all 5 hydrodynamic fields

(i.e. a temperature T , number density n and 3-velocity u) can be locally defined.

The largest scale is the system size L, which is once again assumed to be much

larger than the previous hydrodynamic scale. Dividing (2.79) by a characteristic

thermal velocity v ∼
√
T/m1, we define a series of characteristic timescales in

the system

τL � τh � τmfp � τR. (2.80)

In this picture there are two subsequent processes: a fast (kinetic) stage where

the initial state quickly thermalizes locally due to large number of collisions in

τh, and a slow (hydrodynamic) stage in which all the local equilibriums tend to-

wards a global equilibrium through the interaction of the hydrodynamical fields.

At this scale, it is assumed that only these hydrodynamic fields vary with respect

to the individual positions and momenta of the particles, and as such the distri-

bution functions only depend indirectly upon those, but rather have a functional

dependence on the fields

f(p, q) = f
[
T, n,u

]
(2.81)

Knowledge of these fields at every point in the system (or equivalently at some

position r with all their derivatives) leads to being able to build a so-called

Hilbert-class or normal solution to the distribution function.

The Chapman-Enskog formalism is a straightforward way of obtaining such a nor-

mal solution as an expansion of the previously introduced Knudsen number, which

here corresponds to the ratio λmfp/h = τmfp/τh. It is relatively intuitive to see that

h−1 ∼ |∇ ln f |, and thus we can see that such an expansion is actually equivalent

to an expansion in powers of hydrodynamic gradients. Specifically, we expand the

distribution function using the parameter ε such that

fp = f (0)
p + εf (1)

p + ε2f (2)
p + . . . . (2.82)

The Boltzmann equation (2.77) is rewritten by introducing ∇ → ε∇

pµuµDf1 + εpµ∇µf1 = C
[
f1, f2

]
, (2.83)

and the comoving derivative is redefined as

Dfp = ε(Dfp)
(1) + ε2(Dfp)

(2) + . . . . (2.84)

29



The non-uniformity parameter ε is essentially a book-keeping parameter to keep track

of the order of the expansion and is to be set to 1 at the end of the calculation. It

is used to create a hierarchy of solvable equations by equating similar powers of ε on

both sides of the Boltzmann equation, which read

0 =C
[
f

(0)
1 , f

(0)
2

]
, (2.85)

pµuµ(Df1)(r) + pµ∇µf
(r−1)
1 =

r∑
s=0

(
C
[
f

(s)
1 , f

(r−s)
2

]
+ C

[
f

(r−s)
1 , f

(s)
2

])
, (2.86)

with r ≥ 1 being the order of a given equation. The solution of the zeroth order

equation (2.85) is the well-known Jüttner distribution

f (0)(x, p) =
g

(2πh̄)3

(
exp

(pµuµ(x)− µ(x)

T (x)

)
+ δ

)−1

, (2.87)

where g is the degeneracy of the species, and δ = 0,±1, depending on whether Maxwell-

Boltzmann, Bose-Einstein or Fermi-Dirac statistics should be used.

For the remainder of this discussion, we will focus on the specific case of the Bose-

Einstein statistics, as it describes the case which will be of most use in the remainder

of this thesis, namely, the pion gas at moderate to low temperatures. In this case, the

collision term (2.78) takes the form

C
[
f3, fp

]
=

g3

1 + δ3,p

ˆ
dΓ12,3p

[
f1f2(1 + f3)(1 + fp)− f3fp(1 + f1)(1 + f2)

]
, (2.88)

with 1 + δ3,p being a factor to account for the indistinguishability of particles in the

final state, and

dΓ12,3p ≡
1

2Ep
|T |2

3∏
i=1

dki
(2π)32Ei

(2π)4δ(4)(k1 + k2 + k3 + p). (2.89)

If we now look at the first order equation of (2.86), as an ansatz we parametrize the

solution (with Bose-Einstein statistics) of f
(1)
p such that

f (1)
p = −f (0)

p (1 + f (0)
p )Φ(p), (2.90)

where Φ(p) is an appropriate function that will contain one or another hydrodynamic

gradient, depending on the transport coefficient one wants to compute. Combining

(2.88) and (2.90) and defining νp(x) ≡ f
(0)
p (x), we get

pµuµ(Dfp)
(1) + pµ∇µf

(0)
p =

g

2

ˆ
dΓ12,3p(1 + ν1)(1 + ν2)ν3νp

×
(
Φp + Φ3 − Φ1 − Φ2

)
.

(2.91)
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One sees already in this last formula where the collision term has been linearized

in terms of Φp one of the advantages of the Chapman-Enskog formalism, even only

at first order: the left-hand side now only depends on derivatives of the equilibrium

distribution, and thus does not depend on Φp.

Let us now take a closer look at the left hand side of the Boltmann equation (2.83).

To the first order5, and remembering that the distribution function is assumed to have

a functional dependence on the hydrodynamic fields (2.81), we can write that

(Dfp)
(1) =

∂νp
∂n

(Dn)(1) +
∂νp
∂T

(DT )(1) +
∂νp
∂uµ

(Duµ)(1), (2.92)

where the functionals (Dn)(1), (DT )(1) and (Duµ)(1) can be obtained from conservation

laws using the same ε expansion. They are given by

(Dn)(1) = − n∇µu
µ,

(DT )(1) = − T

cv
∇µu

µ,

(Duµ)(1) =
1

εn+ p
∇µp,

(2.93)

with the local energy density ε and pressure p defined in the same way as in the previous

section (2.59), and where we defined the heat capacity per particle cv = ∂e
∂T

. Using

the definition of the Jüttner distribution (2.87) and the newly found time derivatives

(2.93), we rewrite the first order Boltzmann equation (2.86) as

pµuµp
ν

(
∇νT

T
− ∇νp

εn+ p

)
+ pνT∇ν

µ

T
− pµpν

(
∇µuν −

1

3
∆µν∇σu

σ
)

+Q∇µuµ

= C
[
f

(1)
1 , f

(0)
2

]
+ C

[
f

(0)
1 , f

(1)
2

] (2.94)

where µ is the chemical potential and

Q ≡ −1

3
∆µνpµpν +

1

cv
(pµuµ)2 +

(T 2

cv

∂

∂T

µ

T
− n∂µ

∂n

)
pµuµ. (2.95)

The left-hand side of Eq. (2.94) is now conveniently completely expressed in terms of

various spatial gradients, which finally allows us to relate it to transport coefficients.

Remembering the constitutive relations from the previous section for the shear (2.70)

and bulk (2.72) viscosities, we see that this last equation contains terms which depend

on exactly the same gradients. Thus, we see that the first 2 terms of the left-hand

side of Eq. (2.94) are associated with the thermal conductivity, the third one with

the shear viscosity and the last one with the bulk viscosity. What remains to be

done to get expressions for these coefficients is to choose an appropriate form for the

5The reader can find the derivation of the solution at all orders in §1b of Chater 5 in [43].
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previously introduced adimensional function Φp, such that one can then solve the

system of equations numerically and obtain a value for the coefficients. As the author

of these lines has not performed it directly, we will not be developing this calculation

much further; instead we now give some insight as to the choices which then lead to the

various coefficients of interest6. Note that higher orders give rise to more precise values

for the coefficients, and as such most calculations are then done using a sufficiently

high order of the expansion so that no appreciable difference remains from going to

the next order.

2.2.1 Shear Viscosity

As previously mentioned, the third term of Eq. (2.94) is associated with the shear

viscosity. More specifically, the shear-stress tensor is related to the viscosity via

τij = −2η
(
∇µuν −

1

3
∆µν∇σu

σ
)
. (2.96)

The shear-stress tensor can be expressed in the first order Chapman-Enskog expansion

such that

τij = g

ˆ
d3p

(2π)3
f (1)
p

pipj
Ep

. (2.97)

Thus, choosing a Φp such that

Φp = β3Bij
p

(
∇µuν −

1

3
∆µν∇σu

σ
)
, (2.98)

where Bij
p is a function of the momenta p leads to a closed system of equations from

which one can get the shear viscosity.

2.2.2 Bulk Viscosity

Similarly to the shear viscosity, the bulk viscosity stems directly from the fourth term

of Eq. (2.94). The bulk viscosity is related to the trace of the shear-stress tensor

τ ii = 3ζ∇µuµ. (2.99)

At first order, this trace can be written such that

τ ii = −
ˆ
d3p

p2

Ep
f (1)
p . (2.100)

6See Chapter 5 in [43] and Chapters 2-5 in [75] for a more complete discussion.
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Then, in an analogous way, we choose Φp to be of the form

Φp = βAp∇µuµ, (2.101)

with Ap once again an adimensional function of the momenta p. Solving the system

of equations leads to the bulk viscosity.

2.2.3 Cross-Conductivity

The case of the cross-conductivity is (slightly) more involved, most notably because

the various conductivities do not spring directly from the unperturbed Boltzmann

equation but rather require external forces to be applied to it (i.e. the force term in

Eq. (2.75) is now non-zero). We then apply a small uniform electrical field, which

produces a force term of the form

qpνFµν
∂

∂pµ
fp, (2.102)

where q is the charge of a given species. F µν can be written in terms of the electric

field Eµ

F µν = Eµuν − Eνuµ, (2.103)

for which Eµ is perpendicular to the velocity uµ, and there are thus no time derivatives

involved. The Boltzmann equation is written with the additional term as

pµ
∂fp
∂xµ

+
q

T
np∆

µ
ν pµE

ν = C
[
fp, f3

]
. (2.104)

We now remember the constitutive relation for electrical conductivity7 (2.31) and write

the electric current in a similar form as we did the shear-stress tensor previously

jQ = g

ˆ
d3p

(2π)3Ep
piqf (1)

p . (2.105)

By choosing a Φp which is now proportional to the electric field Eµ rather than to

some specific spatial gradient,

Φp = β3Zp
Eµ

q
, (2.106)

we now possess all the necessary tools to extract the various conductivities.

7The treatment is in all ways similar for the other parts of the cross-conductivity.
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Chapter 3

Modeling the hadron gas: SMASH

Most of the results presented in this thesis depend in one way or another upon some

form of modeling for the hadron gas. As mentioned in Chapter 1, this modeling role is

taken in those instances by a relatively new transport approach, SMASH (Simulating

Many Accelerated Strongly-interacting Hadrons). This model was described in depth

[48], with further implementation details provided in topical follow-up articles [196–

203]. The source code (in C++) is currently available under a free GPL distribution

online [204]. These references are used throughout all sections of this chapter, and will

for brevity not always be repeated.

In essence, SMASH as a transport approach keeps track of every particle in a given

system, propagates them according to their equations of motion and allows them to

interact with each other according to some predefined set of rules that determine

whether a collision between 2 particles occurs or not, and what is produced out of

the reaction. In some sense, it can be thought of as a very elaborate 3D pool table,

which can help as a visualization tool for the reader to keep track of the numerous

components of the model.

Although it is in principle possible to turn on inter-particle potentials in SMASH

(for example the Skyrme potential between nucleons), this work will not make use of

them, as their effect should be very small at the relatively low densities we consider

(with respect to the nuclear density at which these potentials are expected to have a

large impact). Thus all propagation of the particles in this work is strictly linear (in

the geodesic sense of the term in some cases) between collisions with other particles.

3.1 Collision criterion

As they fly along their linear trajectories, particles are bound to encounter others

with which they might interact. The decision to have a given set of particles (usually

two, sometimes more) interact is called the collision criterion. Several such criteria

exist in the literature, each with a set of advantages and inconvenients. The Kodama
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criterion [205], for example, is perfectly covariant even in ultra-relativistic cases, but is

computationally relatively intensive and not very intuitive. Stochastic rates [206–208]

are another example which are numerically challenging and require a granularization

of time (in the form of time steps, for example), but can in principle deal with multi-

particle interactions. SMASH uses yet another criterion, usually called the geometric

or UrQMD collision criterion [44], which is numerically much faster, although it has

larger physical limitations. If the total cross-section between two particles is given by

σtot, then a collision happens if the two corresponding hard spheres overlap:

dtrans ≤
√
σtot
π
, (3.1)

with dtrans the transverse distance between the particles

d2
trans = (ra − rb)

2 − ((ra − rb) · (pa − pb))
2

(pa − pb)
2

, (3.2)

where r and p are the three-positions and three-momenta of particles a and b in the

center of mass frame of the collision. Once a collision has been confirmed, the time of

the collision is taken to be the time of closest approach between the two particles in

the computational frame:

tcoll = −(ra − rb) · (pa/Ea − pb/Eb)

(pa/Ea − pb/Eb)
2

, (3.3)

with E the energy of a particle. In the case of an inelastic collision, the resulting

outgoing particles are placed in the center of mass of the collision, and particles are

simply given new momenta in the case of elastic collisions. The choice of the compu-

tational frame which we mentioned is important, since it determines the ordering of

the collisions; as such, the geometric collision criterion is not covariant, although pre-

liminary comparison with the Kodama criterion yielded unconsequential differences.

Another limitation is that this geometric criterion is only well-defined for binary colli-

sions; high density systems where multi-particle interactions become important should

thus be approached cautiously when using SMASH.

3.2 Initialization

There are currently four different modi which can be used to initialize a given simula-

tion (or event) in SMASH:

1. Collider modus: Two nuclei fly towards each other in an effort to simulate a

heavy ion experiment in a manner as similar as possible to what happens in

real-life colliders;
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2. Box modus: A predetermined set of hadrons are generated in a finite box with

periodic boundary conditions;

3. Sphere modus: A predetermined set of hadrons are generated in a finite sphere

with a permeable boundary;

4. List modus: A full list of initial positions, species, and four-momenta of particles

is fed directly into SMASH; typical use would be as an afterburner after some

hydrodynamic simulation and Cooper-Frye particlization [209, 210].

In this thesis we will be using exclusively the box and sphere modi, and as such will

from now on exclusively describe and refer to those two initialization schemes.

The main difference between these two modes, as one would expect from the name,

is in their initial boundary. The sphere mode has a spherical boundary at radius R

which plays no further role in the subsequent event; its only function is to circum-

scribe a volume 4
3
πR3 in which particles can be deposited. In the following simulation,

particles are free to leave this initial volume, and we thus can study an expanding

and cooling fireball of hadrons which eventually freezes out into free streaming. Ad-

ditionally, the sphere modus allows to modify the metric from the default Minkovski

metric to a Friedmann-Lemâıtre-Robertson-Walker (FLRW) expanding universe met-

ric, which will prove useful in confirming the equivalence of SMASH with solutions of

the Boltzmann equation in Section 3.3.

The box mode, on the other hand, has a cubic boundary of length L, which firstly

serves, similarly to the sphere case, in delimiting a volume L3 where particles are

created, but also subsequently to keep all particles in the simulation inside this same

box by enforcing periodic boundary conditions; this can be used for so-called “infinite

matter” calculations, in which one simulates the behavior of some hadron gas1 in a

controlled environment where the energy density is conserved over the whole volume.

Provided that detailed balance is enforced (see Section 3.5.4), a box simulation will

over long periods attain some state of equilibrium; this will be discussed further in

Section 3.6; precisely for this reason, the box modus will be used throughout Chapter

4 for all calculations involving the Kubo formalism.

Both initialization schemes initialize within their respective volume a number of

particles N = Ntest

∑
iNi, where Ni is the initial number of particles of species i and

Ntest is the number of test particles2. Ni can either be fed directly into SMASH or

1This includes simpler versions such as the pion gas, or any otherwise specified combination of
species; see Section 3.4.1 below for details.

2Test particles are a way of increasing locality in the collisions as well as smoothing out distribution
functions by increasing statistics for spatial or phase-space density calculations; this is notably useful
for calculations which use the previously mentioned inter-particle potentials. If Ntest > 1, then all
cross-sections in the simulation are scaled down, σ → σN−1

test, so that the scattering rate remains the
same. Some experimental observables require to reach saturation of test particles, but the calculation
of transport coefficients is not one of them, as we will show in Fig. 4.5e. Except where explicitly
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left to be calculated automatically according to the thermal expectation (allowing for

Poissonian fluctuations) at a given temperature T and baryonic chemical potential µB,

such that

Ni =
giT

3

2π2
exp

(
BiµB
T

)
m2
i

T 2
K2

(mi

T

)
, (3.4)

where gi is the degeneracy of a species, Bi its baryonic charge and mi its pole mass.

This last method for calculating initial multiplicities is used for all simulations in this

thesis except where specifically noted otherwise, and will be referred to as “thermal

multiplicities” in the following. The N particles are subsequently uniformly spatially

distributed in the initial volume. Each particle is assigned a momentum for which the

amplitude is sampled from the Boltzmann distribution3 at temperature T, and the

direction is sampled uniformly:

w(p) = W exp
(√

p2 +m2/T
)
p2dp sin θdθdφ, (3.5)

where w(p) is a probability to samble the momentum p and W is a normalization

factor. Although the ensemble average of the total momentum ptot is zero, ptot in any

given event is not zero because of the sampling procedure. Thus, to obtain an immobile

system the momenta of every particle j is adjusted according to pj → pj−ptot/N , and

their energy is modified accordingly. This slightly affects the thermal distribution and

can affect the temperature after equilibration, as will be discussed in Section 3.6.

Optionally, both modi offer the possibility of adding a single high energy particle in

the middle of the considered volume4 in an effort to study the effects of a jet crossing

a hadronic medium; Chapter 5 is entirely devoted to this case, and will make use of

both the sphere and box initializations.

3.3 SMASH and the Boltzmann equation

Let us now make a small detour before continuing on with the description of more

and more physical hadron gases. Specifically, we take a look back at the Boltzmann

equation first discussed in Sections 1.1 and 2.2,

kµ
∂f1

∂xµ
+m1

∂(Fµf1)

∂kµ
= C

[
f1, f2

]
. (3.6)

Note that for consistency with [196] upon which this section is built, we exchanged

the notation of the momentum p used in Chapters 1 and 2 to k. While it is beyond

mentioned, Ntest = 1 in the following chapters.
3Other initial distributions are also possible, but this one will be used throughout most of this

thesis; see for example Eq. (3.12) for another off-equilibrium initialization.
4In the case of the box simulation, we let the reader ponder the philosophical implications of

finding the middle of an infinite matter calculation.
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the scope of this work to fully derive this equation, let us have another look at the

previously introduced Stosszahlansatz which determine if the Boltzmann equation can

be applied:

1. The system is dilute enough that only binary collisions are relevant, i.e. in any

sub-region of space of the order of the collision range, there are never more than

two particles. Those binary collisions can be elastic as well as inelastic.

2. The mean free path λmfp is much longer than the collision time; in other words,

the interaction range is assumed to be short. This could be violated for example

if a long-ranged Coulomb potential between particles was considered.

3. The incoming and outgoing particles of a binary collision are uncorrelated, that

is, in terms of distribution functions,

f(t,x1,k1,x2,k2) ' f(t,x1,k1)f(t,x2,k2), (3.7)

where x and k are the position and momenta of the interacting particles. This

is known as the molecular chaos hypothesis.

If we now look back to our previous description of SMASH, we see that all three of those

postulates are very often valid (if not always, in some cases). The first one is true as

long as densities remain relatively low. The second is always true, as all interactions in

SMASH are instantaneous (leading in some edge cases to locality problems as discussed

previously). The last postulate is true as long as the system is large enough to contain

enough sampled particles for the incoming and outgoing particles to have a very large

heat bath to draw a “random” momentum from. Thus, in principle, if initialized using

the same distribution function, SMASH and the Boltzmann equation should produce

equivalent results, the only difference being that SMASH samples the distribution

rather than using it directly. As such, transport models (this is in principle not limited

to SMASH) can be thought of as Monte-Carlo solvers for the Boltzmann equation.

In order to verify this assertion, we need to define a system in which an analytic

solution of the Boltzmann equation is known. Unfortunately, this turns out to be the

exception rather than the rule, as most systems produce deeply non-linear solutions

which do not have easy to compute analytic solutions. This problem was however

recently solved in a very specific expanding-universe scenario [211, 212]. In a non-

Minkovskian space-time, the Boltzmann equation becomes

kµ
∂f1

∂xµ
+ Γiλµk

λkµ
∂f1

∂kµ
= C

[
f1, f2

]
, (3.8)

where Γiλµ are the Christoffel symbols, and where we neglected any external potentials.

The solution which has been found is valid only for massless particles interacting via
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constant total cross-sections in a flat universe which expands according to a Friedmann-

Lemâıtre-Robertson-Walker metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2). (3.9)

with the expansion factor a(t) some monotonically increasing5 function of time. Phys-

ically, this scenario is quite similar to the expansion of the universe in the radiation-

dominated era after the Big Bang. Under these conditions, the Boltzmann equation

takes the reduced form

kµuµuν∂f(t, p) = C
[
f
]
, (3.10)

which is the equation which was solved by the authors of [211, 212]. They choose an

expansion factor

a(t) =

√
1 +

br
l0
t, (3.11)

where l0 = 1/(σn0) is the mean free path at t = 0, σ is the constant cross-section and

n0 the initial particle density, and br is a parameter containing the density fraction

of radiation in the universe; the ratio br/l0 is in some sense a free parameter of the

system for our purposes. For a far-from-equilibrium initial condition

f(t = 0, k) =
256

243

ka

T0

λ exp

(
−4ka

3T0

)
, (3.12)

where λ = exp (µ0/T0) is the fugacity and T0 is analogous to the initial temperature of

the system (remember that temperature is not formally defined outside of equilibrium),

the solution is

f(t, k) = λ
exp

(
− ka
κT0

)
κ4(τ)

[
4κ− 3 +

ka

κ(τ)T0

(1− κ(τ))
]
, (3.13)

where κ(τ) = 1 − exp (−τ/6)/4, and the transformed time τ =
´ t̂

t̂0
a−3(t̂

′
)dt̂
′

with

t̂ = t/l0. Using the previously introduced expansion factor (3.11), we get

τ =
2

br

[
1−

(
1 +

br
l0
t

)− 1
2

]
. (3.14)

Modifying SMASH to actually have a different metric than the Minkovski metric

with which it was designed would be quite a task. However, if we assume the expansion

to be slow enough, we can instead modify the propagation of particles from a flat metric

to the previously discussed expanding-universe metric. If the expansion is slow, we

5It could in principle also be decreasing, but since this would lead to a contracting universe, the
density of the system would increase very quickly, leading to the breakdown of some of the postulates
for the validity of the solutions of the Boltzmann equation to be ensured.
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Figure 3.1: Time evolution of the particle and energy densities (left), and ratio of the
distribution function over the equilibrium Boltzmann distribution versus a measure
of the momentum ka

T0
. Both panels compare SMASH (dots) with the corresponding

analytical expressions (solid lines). Taken from [196].

can granularize time and modify both the position and momenta (which decrease due

to a 1/a(t) redshift) of every particle in the system at small regular time intervals, so

that

xi → xi +H(t), ki → ki −H(t), (3.15)

where k is the physical momentum in the computational frame (as opposed to the

covariant momentum used in the previous equations), and H(t) = ȧ(t)
a(t)

is the Hubble

parameter. Since all collisions are instantaneous and thus have a characteristic time

much smaller than H−1(t), they do not feel the expansion of the universe and we can

neglect any effect this factor might have on the scatterings.

To perform the comparison, we initialize a sphere of radius r0 = 50 fm with N =

1.5×105 massless particles. The ratio br/l0 is fixed to 0.1 and the initial “temperature”

T0 = 0.2 GeV. Since the exterior of the sphere will immediately start to freeze-out,

we only consider the particles located within a sub-sphere of radius rsub = a(t)r0/1.5.

The particle and energy density in this subvolume can be calculated analytically [212]

according to

n =
λ0T

3
0

π2a3
, ε =

3λ0T
4
0

π2a4
. (3.16)

The left panel of Fig. 3.1 shows that even for a single event, SMASH’s results are

in very good accordance with these formulas. The right panel compares the ratio of

the distribution function f(t, k) to the equilibrium distribution at limτ→∞ f(t, k) =

feq(k) = e
− ka
T0 , at computational times 0.1, 2, 4 and 10 fm; going to longer times

would require using larger spheres, since the boundary freeze-out region gets larger

with time. We see that the simulations and the analytical solution are very much in

agreement, thus confirming our previous assertion that SMASH is equivalent in some

regimes to a Monte Carlo solver for the Boltzmann equation.
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3.4 Particle properties

3.4.1 Degrees of freedom

We now come back to the description of more physically accurate hadron gases. Sec-

tion 3.2 mentioned that a certain number of particle species are initialized for every

given event; the complete list of hadrons present in a full SMASH run and some of

their most relevant properties can be found in Tables 3.1 and 3.2, and reflects the

current knowledge of hadrons compiled in the 2018 version of the Particle Data Group

Review [213]. The model assumes isospin symmetry, and as such each particle line

in these tables corresponds to an isospin multiplet with degeneracy g (also counting

anti-particles, which are implicitly included if a multiplet is used), with all particles

in the multiplet having the same pole mass m0 and pole width Γ(m0).

Non hadronic particles such as photons and dileptons are treated perturbatively

by SMASH, but since they will not play any role in this work, we refer the reader to

[198, 201] for more details.

3.4.2 Resonance widths, lifetimes and decays

All particles with a pole width smaller than 10 KeV (i.e. pions, η, kaons, nucleons, and

Λ, Σ, Ξ and Ω baryons, as well as their respective anti-particles) are considered stable

for the time frames of the simulations; all other particles are so-called “resonances”

which propagate in the same way as their stable counterparts, but which will eventually

decay into lighter particles.

SMASH uses the Manley-Saleski treatment to calculate decay widths [214]. Fol-

lowing this, a resonance R with mass m decaying into daughter particles a and b

(themselves also possibly resonances) has a partial width

ΓR→ab = ΓR→ab(m0)
ρab(m)

ρab(m0)
, (3.17)

where the function ρab is defined as

ρab(m) =

ˆ
dmadmbAa(ma)Ab(mb)

|pf |
m

B2
L(|pf |R)F2

ab(m), (3.18)

and the final-state momentum in the center-of-mass frame |pf | is given by

|pf | =
(m2 − (ma +mb)

2)(m2 − (ma −mb)
2)

4m2
, (3.19)

with R the interaction radius, assumed to have a universal value of 1 fm. In Eq. (3.18)

we also introduced the spectral function A, the Blatt-Weisskopf functions B2
L and the
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Unflavored
Mesons

Mass
(GeV)

Width
(GeV)

g

π 0.138 0 3
π(1300) 1.30 0.4 3
π(1800) 1.812 0.208 3

η 0.548 0 1
η′ 0.958 1.96e-4 1

η(1295) 1.294 0.055 1
η(1405) 1.409 0.051 1
η(1475) 1.476 0.085 1

ρ 0.776 0.149 3
ρ(1450) 1.465 0.400 3
ρ(1700) 1.720 0.25 3

σ 0.800 0.400 1

ω 0.783 8.49e-3 1
ω(1420) 1.425 0.215 1
ω(1650) 1.670 0.315 1

f0(980) 0.990 0.060 1
f0(1370) 1.35 0.35 1
f0(1500) 1.507 0.109 1
f0(1710) 1.723 0.139 1

a0(980) 0.989 0.075 3
a0(1450) 1.474 0.265 3

φ 1.019 4.25e-3 1
φ(1680) 1.680 0.15 1

h1(1170) 1.170 0.360 1

b1(1235) 1.2295 0.142 3

a1(1260) 1.23 0.42 3

f2 1.276 0.187 1
f ′2(1525) 1.525 0.073 1
f2(1950) 1.944 0.472 1
f2(2010) 2.010 0.20 1
f2(2300) 2.297 0.15 1
f2(2340) 2.350 0.32 1

f1(1285) 1.2819 0.0227 1
f1(1420) 1.4264 0.054 1

a2(1320) 1.3183 0.107 3

π1(1400) 1.354 0.33 3
π1(1600) 1.662 0.24 3

η2(1645) 1.617 0.181 1

ω3(1670) 1.667 0.168 1

π2(1670) 1.672 0.260 3

ρ3(1690) 1.689 0.161 3

φ3(1850) 1.854 0.087 1

a4(2040) 1.995 0.257 3

f4(2050) 2.018 0.237 1

Strange
Mesons

Mass
(GeV)

Width
(GeV)

g

K 0.494 0 4
K*(892) 0.892 0.050 4
K1(1270) 1.272 0.090 4
K1(1400) 1.403 0.174 4
K*(1410) 1.421 0.236 4
K0*(1430) 1.453 0.27 4
K2*(1430) 1.429 0.104 4
K*(1680) 1.718 0.32 4
K2(1770) 1.773 0.186 4
K3*(1780) 1.819 0.264 4
K2(1820) 1.819 0.264 4
K4*(2045) 2.045 0.198 4

Nucleons Mass
(GeV)

Width
(GeV)

g

N 0.938 0 4
N(1440) 1.440 0.350 4
N(1520) 1.515 0.110 4
N(1535) 1.530 0.150 4
N(1650) 1.650 0.125 4
N(1675) 1.675 0.145 4
N(1680) 1.685 0.120 4
N(1700) 1.720 0.200 4
N(1710) 1.710 0.140 4
N(1720) 1.720 0.250 4
N(1875) 1.875 0.250 4
N(1880) 1.880 0.400 4
N(1895) 1.895 0.120 4
N(1900) 1.900 0.200 4
N(1990) 1.990 0.500 4
N(2060) 2.100 0.400 4
N(2080) 2.000 0.350 4
N(2100) 2.100 0.260 4
N(2120) 2.120 0.300 4
N(2190) 2.180 0.400 4
N(2220) 2.220 0.400 4
N(2250) 2.250 0.470 4

Delta
Baryons

Mass
(GeV)

Width
(GeV)

g

∆ 1.232 0.117 8
∆(1620) 1.610 0.130 8
∆(1700) 1.710 0.300 8
∆(1900) 1.860 0.250 8
∆(1905) 1.880 0.330 8
∆(1910) 1.900 0.300 8
∆(1920) 1.920 0.300 8
∆(1930) 1.950 0.300 8
∆(1950) 1.930 0.280 8

Table 3.1: List of particles and their properties present in SMASH v1.6. The mass
and width columns correspond to the pole mass and width.
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Lambda
Baryons

Mass
(GeV)

Width
(GeV)

g

Λ 1.116 0 2
Λ(1405) 1.405 0.0506 2
Λ(1520) 1.520 0.0156 2
Λ(1600) 1.600 0.1500 2
Λ(1670) 1.670 0.0350 2
Λ(1690) 1.690 0.0600 2
Λ(1800) 1.800 0.3000 2
Λ(1810) 1.810 0.1500 2
Λ(1820) 1.820 0.0800 2
Λ(1830) 1.830 0.0950 2
Λ(1890) 1.890 0.1000 2
Λ(2100) 2.100 0.2000 2
Λ(2110) 2.110 0.2000 2
Λ(2350) 2.350 0.1500 2

Omega
Baryons

Mass
(GeV)

Width
(GeV)

g

Ω− 1.672 0 2

Ω(2250)− 2.252 0.055 2

Sigma
Baryons

Mass
(GeV)

Width
(GeV)

g

Σ 1.189 0 6
Σ(1385) 1.385 0.036 6
Σ(1660) 1.660 0.100 6
Σ(1670) 1.670 0.060 6
Σ(1750) 1.750 0.090 6
Σ(1775) 1.775 0.120 6
Σ(1915) 1.915 0.120 6
Σ(1940) 1.940 0.220 6
Σ(2030) 2.030 0.180 6
Σ(2250) 2.250 0.100 6

Xi
Baryon

Mass
(GeV)

Width
(GeV)

g

Ξ 1.318 0 4
Ξ(1530) 1.533 0.009 4
Ξ(1690) 1.690 0.030 4
Ξ(1820) 1.823 0.024 4
Ξ(1950) 1.950 0.060 4
Ξ(2030) 2.025 0.020 4

Table 3.2: Continued from Table 3.1.

form factor Fab; let us now briefly discuss each of those.

The spectral function of a resonance is in general a probability distribution for this

particle to have a specific mass. Although it can in principle depend on quantities such

as the temperature and density of a system, these medium modifications are currently

neglected (for similar reasons as what was discussed in the previous section, e.g. the

assumed diluteness of the system). All resonances in SMASH follow the relativistic

Breit-Wigner distribution

A(m) =
2N
π

m2Γ(m)

(m2 −m2
0)2 +m2Γ2(m)

, (3.20)

where N is a normalization factor calculated from
´∞

0
A(m)dm = 1 (as a corollary,

note that if a particle has width zero, the integration over the spectral function col-

lapses to a δ function). The total width can be divided in a sum of partial widths for

every possible decay channel; at the pole mass, the width Γ0 = Γ(m0) can be decom-

posed exactly into the different processes according to the so-called branching ratios

Γi(m)/Γ(m), where i denotes an individual decay channel, i.e. the fraction of the total

width originating from the different processes (see Fig. 3.2, for example). Note that

each process has a minimum mass corresponding to the sum of the pole masses of the

daughter particles.

The form of the Blatt-Weisskopf functions [215] depend on the orbital angular
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Figure 3.2: Individual contribution of the various processes to the total N(1440) reso-
nance width. The vertical and horizontal dashed lines correspond respectively to the
pole mass and pole width. Taken from [48].

Decay type λ (GeV)

πρ 0.8
one unstable meson (e.g. ρN) 1.6
one unstable baryon (e.g. π∆) 2.0
two unstable daughters (e.g. ρρ) 0.6
two stable daughters (e.g. ππ) ∞

Table 3.3: Cut-off parameter λ in Eq. (3.23). Adapted from [48].

momentum L of daughters a and b; it is given by

B2
L(x) =

x2L

|gL|2
, (3.21)

where gL is given by the recursion relation [216]

gL+1 = (2L+ 1)gL − x2gL−1, (3.22)

with the two first expressions being g0 = 1 and g1 = 1− ix.

The form factor Fab was not part of the initial Manley-Saleski formalism, but was

rather subsequently added in one of the precursors of SMASH, GiBUU [45], since it

helped improve the description of heavy ion experimental data. It only has an effect

when one or both daughter particles are themselves resonances, and is given by

Fab =
λ4 + 1/4(s−m2

0)2

λ4 + (m2 − 1/2(s+m2
0))

2 , (3.23)

where we used the Mandelstam variable s = (pa + pb)
2. The factor λ, following [45],

takes the values given in Table 3.3.

Now that we have properly described the width of resonances, we can also de-
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fine their lifetime as the inverse total decay width τ = 1/Γ(m). This leads to an

exponential probability to decay P (decay at t) = exp (−t/τ); in SMASH, we sample

this probability at the creation of the resonance to determine the moment at which it

will decay. If it still exists when that time comes (i.e. if it has not collided inelasti-

cally with some other particle in between), a decay channel is randomly chosen from

the allowed channels according to its off-shell branching ratios Γi(m)/Γ(m), and the

daughter particles are created in place of the resonance with appropriate masses and

momenta (see Sec. 3.5.5). Note that the channels are conveniently listed in an input

file and can easily be modified or turned on and off individually6; this will be of use

in Section 3.6 and throughout Chapter 4. Let us further comment that the fact that

resonances propagate in a transport approaches such as SMASH is not trivial, as this

separates it from most approaches that try to directly use the Boltzmann equation.

In the latter, it becomes much more complicated to deal with propagating resonances,

since they do not have a fixed mass; while not impossible, one in principle then needs

to properly implement spectral functions into the propagation terms of the equation;

this was notably done in PHSD [46]. This difference between the approaches will have

very important consequences on the calculation of some of the transport coefficients

which will be the subject of Chapter 4.

3.5 Scatterings

The last core part of the model which remains to be discussed are inter-particle scat-

terings, or, more specifically, how the cross-sections necessary for the application of

the collision criterion (3.1) are obtained, and what these scatterings produce.

3.5.1 2→ 1 processes

The first type of scattering is essentially the reverse process to the resonance decay

which was discussed in the previous section, i.e. the resonance formation. The cross-

section for such 2→ 1 processes is also inspired from GiBUU [45]:

σab→R(s) =
2JR + 1

(2Ja + 1)(2Jb + 1)
Sab

2π2

p2
i

Γab→R(s)AR(
√
s), (3.24)

where J is the spin of a particle, Sab is a symmetry factor (worth 2 if a and b are

of the same species, and 1 otherwise) and pi is the center-of-mass momentum of the

initial particles, calculated in exactly the same way as previously in Eq. (3.19). The

so-called “in-width” Γab→R is closely related to the previously discussed “out-width”

ΓR→ab, with the only difference coming from the fact that in the out-width, one has

6See [204] for a full list of the pole mass branching ratios Γi(m0)/Γ(m0)
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to integrate over the possible mass of potential resonant daughters, whereas this mass

is already known in a scattering involving an existing resonance. Thus, the in-width

is written as

Γab→R =

ΓR→ab, if incoming particles stable,

Γ0
R→ab

|pab|B2
L(|pab|R)Fab(m)

mρab(m0)
, otherwise.

(3.25)

where m =
√
s is the mass of the potential resonance. When a collision happens, a

resonance is formed halfway between the two scattering particles with the appropriate

mass and momentum.

3.5.2 Elastic collisions

There are in SMASH three types of elastic processes. The first one, used to describe

low energy meson-meson and meson-baryon interactions, is through intermediate res-

onance formation and decay (e.g. ππ → ρ → ππ), and has already been discussed in

the previous sections.

The second one is a direct 2→ 2 process used for specific interactions, in which fully

parametrized cross-sections are used. Specifically, elastic parametrizations for nucleon-

nucleon [217], nucleon-antinucleon [44], and all possible kaon-nucleon [45] interactions,

as well as their anti-particle equivalents, are implemented7. When such a process

occurs, both particles keep their position and new momenta are sampled in the center-

of-mass frame.

The last type of elastic process is very similar to the previous one, but is extended

to all combinations of particles; it will be further discussed when we introduce the

Additive Quark Model in section 3.5.7.

3.5.3 Inelastic 2→ 2 processes

SMASH also features a certain number of hardcoded inelastic binary processes; they

can be separated in the following subgroups:

1. Single and double nucleon excitation reactions: NN → N∆, NN → NN?,

NN → N∆?, NN → ∆∆, NN → ∆N? and NN → ∆∆?, where the ? notation

refers to excitations of the nucleon and ∆ baryon,

2. Strangeness and charge exchange reactions: KN → KN , KN → K∆, K−N →
πY , where Y is a Λ, Σ or Ξ baryon,

7One should in principle also add to this list the deuteron-pion [199] and deuteron-nucleon [218]
parametrizations, but since deuterons are not present in the default SMASH simulations (as showcased
by their absence in Tables 3.1 and 3.2) and will not play a role in the remainder of this thesis, we
invite the reader to refer to those publications for further details; reference [199] also contains all
inelastic deuteron-related reactions in SMASH.
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Process AI=1 AI=0

NN → NN(1535) 4.5 91
NN → NN? 4.5 14
NN → Nδ? 15 -
NN → ∆∆ 45 120
NN → ∆N? 7 -
NN → ∆∆? 15 25

Table 3.4: Parameters for matrix elements; the N(1535) gets a higher matrix element
to describe the increased η production in [220]. Updated from [48].

3. Resonant nucleon-antinucleon annihilation: N̄N → h1(1170)ρ.

The nucleon excitation cross-sections can be expressed in a similar form to what

we had in the 2→ 1 case,

σab→cd =
(2Jc + 1)(2Jd + 1)

s|pi|
·
∑
I

(
CI
abC

I
cd

)2 · |M|
2
ab↔cd(s, I)

16π

·
ˆ
Ac(mc)Ad(md)|pf |

(√
s,mc,md

)
dmcdmd,

(3.26)

with C the Clebsch-Gordan factors coupling initial and final state to an isospin I, and

|M|2 the matrix element of the elementary reaction. Here we assume that |M|2 is

independent of the angle of the collision. SMASH uses the one-boson-exchange model

[219] for the NN → N∆ reaction,

|M|2

16π
=

A

2(
√
s−B)C

, (3.27)

where the parameters have the values A = 68, B = 1.104 GeV and C = 1.951. For all

other nucleon processes, similarly to what is done in UrQMD [44], a parametrization

depending on isospin and the masses of the products is used,

|M|2

16π
=

AI
2(m2

c +m2
d)
, (3.28)

where the value of AI is given in Table 3.4.

Although it would in principle be possible to use Eq. (3.26) to get cross-sections for

the strangeness-related reactions, we make use of the fully parametrized cross-sections

which are available for these processes. The charge exchange reactions KN → KN

follow the framework of GiBUU [45], whereas the hyperon reactions K−N → πY are

based on recent expansions in the strangeness production sector of the UrQMD model

[221] and the corresponding experimental cross-sections [222].

Finally, SMASH includes an optional feature that allows for nucleon and anti-
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nucleons to annihilate using only resonances, and not via string excitation, as is typi-

cally the case [44, 45, 223–226] (see Section 3.5.6 for the usual treatment). As will be

discussed in Section 3.6, this is a useful feature in infinite matter calculations. Using

an appropriately parametrized cross-section taken from UrQMD [44], we rely on the

fact that on average, nucleon-antinucleon annihilation produces 5 pions, as suggested

in [227]. Thus we implement the following reaction:

N̄N ↔ h1(1170)ρ (3.29)

In SMASH, the ρ resonance decays exclusively to ππ and the h1(1170) resonance decays

to πρ. We then get, after resonance decays, 5 pions from every N̄N interaction. This

process is reversible in all steps and we recover detailed balance for nucleon-antinucleon

annihilation (see 3.5.4).

3.5.4 Detailed balance

In general, diagram calculations in QCD tell us that a given reaction and its associate

counterreaction have the same matrix element; this is one of multiple ways one can

define the concept of detailed balance. Although we did not mention it directly at

the time, detailed balance is what relates the out-width of a resonance decay to the

cross-section of it’s associated resonance formation. In the case of inelastic 2 → 2

processes, it relates the forward and backward cross-sections, and can be written as

σab→cd
σcd→ab

=
(2Jc + 1)(2Jd + 1)

(2Ja + 1)(2Jb + 1)

Sab
Scd
|pf |(

√
s,mc,md)

|pi|(
√
s,ma,mb)

×
|pf |(

√
s,mc,md)

´
Ac(mc)Ad(md)|pf | (

√
s,mc,md) dmcdmd

p2
i (
√
s,ma,mb)

.

(3.30)

This expression is valid for all previously discussed binary processes, and is used

throughout SMASH to obtain all reverse cross-sections.

3.5.5 2-particle final state

Once a process that produces two particles is underway, be it a decay or a binary

collision, a so-called final state has to be determined using the predetermined produced

particle properties and the available phase space. The way this happens is numerically

non-trivial, and so we provide here an overview.

First, the mass of the products have to be determined. If both are stable, their

mass is fixed and nothing needs to be done. If one of the products is a resonance, its

48



mass is sampled according to

F (m) =

A(m)|pf |(
√
s,m,mstable)B

2
L(|pf |R), for resonance decays,

A(m)|pf |(
√
s,m,mstable), for binary interactions,

(3.31)

where mstable is the known mass of the stable product, and the possible mass of the final

resonance ranges from mmin to
√
s−mstable. If both outgoing particles are resonances,

their masses have to be sampled simultaneously from

F (m1,m2) =

A(m1)A(m2)|pf |(
√
s,m1,m2)B2

L(|pf |R), for resonance decays,

A(m1)A(m2)|pf |(
√
s,m1,m2), for binary interactions.

(3.32)

Note that the different cases presented in Eqs. (3.31) and (3.32) simply correspond to

the integrands of Eqs. (3.18) and (3.26).

Once both masses are known, momenta can be distributed among the outgoing

particles. For resonance decays, this is always done isotropically in the center-of-

mass frame. For binary collisions, it can either be performed according to the same

isotropic picture, or according to some anisotropic parametrizations following Cugnon

et al. [228]. Although these anisotropic distributions are important to reproduce some

experimental data, we will in the next chapters be neglecting them to conserve detailed

balance (see Section 3.6).

Note that in principle SMASH can also deal with 3-particle final states, but since

this feature will not be used in this thesis, we shall not detail it further.

3.5.6 Strings

Strings are a way to model high energy collisions between quarks and hadrons. In

essence, a string excitation gets formed when two particles interacting strongly start

moving away from each other, creating a color flux tube between them. This tube,

or string, if it has enough energy, will eventually break somewhere in the middle and

create a (di)quark-anti(di)quark pair, thus separating the string into two strings. As

long as the energy (sometimes also referred to as mass) of the string is sufficient, this

can happen any number of times, thus potentially creating many quarks and anti-

quarks which subsequently form hadrons, in a process called the string fragmentation.

The following discussion is based in great part on [203], we refer the reader to it for

more information.

3.5.6.1 Excitation

In SMASH, several types of string are treated in different ways, all of which use

PYTHIA (v8.235) to some extent [229, 230]. Specifically, we differentiate between
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Figure 3.3: π−-p cross-section at all center-of-mass energies. The total cross-section is
split into the contributions coming from various channels. Taken from [203].

hard and soft strings. Hard strings arise directly from partonic interactions present in

pQCD calculations, and are based on the pT -ordered multiparton interaction frame-

work [231]; once a hard string process has been selected by SMASH, it is fully handled

by PYTHIA. In the intermediate region where the energy is too large for resonance

formation but too low for pQCD strings (see Fig. 3.3), the so-called soft strings come

as a phenomenological model to fill the gap. Soft strings are excited directly within

SMASH, which essentially means that their mass, three-momentum pCM , longitudi-

nal momentum p‖ and transverse momentum p⊥ are calculated directly in the model,

before being fed to PYTHIA for the fragmentation of the string.

Following UrQMD [44, 232], we then differentiate between four processes:

1. Single diffractive soft strings: In a single diffractive process, one of the two

incoming hadrons is excited into a string X, i.e. by separating into a quark-

diquark string:

A+B → A+X or A+B → X +B.

2. Double diffractive soft strings: In a double diffractive process, after a mo-

mentum exchange via one or more gluons between the two hadrons, both initial

hadrons are excited into strings, i.e. form a quark-diquark string:

A+B → XA +XB.

3. Non diffractive soft strings: In a non-diffractive soft string, the hadrons

exchange a valence quark which carries a fraction of the longitudinal momentum
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Figure 3.4: Left: Proton-proton cross-section at high energies with the various contri-
butions of the subprocesses highlighted. Right: Relative contributions of the subpro-
cesses to the total. Taken from [233].

of their original hadron, a string is formed from each thus modified hadron:

A+B → X1 +X2.

4. Non diffractive hard strings: Finally, non-diffractive hard strings are direct

pQCD quark-quark interactions which are only possible at the highest energies;

there can in principle be as many strings produced as there are quark pairs

present:

A+B → X + . . .

Additionally, we note that the treatment of baryon-antibaryon annihilations does

not fit within this framework. In this case, still following [44, 232], one (anti)quark

from each incoming hadron is selected to annihilate with the other. The remaining

components are separated into two mesonic strings, each with half of
√
s.
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3.5.6.2 Cross-sections

Figure 3.3 shows the total cross-section of pion-proton scatterings; at high energy,

the relevant contributions are exclusively coming from strings and elastic processes8.

Since the total and elastic cross-sections are known experimentally and have high-

energy parametrizations (at least for πN , NN and N̄N ; see Section 3.5.7 for all other

cases), we can determine the inelastic contribution from

σinel = σtot − σel. (3.33)

This inelastic cross-section can then be divided between the various previously de-

scribed subprocesses (see Fig. 3.4). Specifically, the single-diffractive and double-

diffractive cross-sections are known from [233], and the hard non-diffractive cross-

section from pQCD can be used to divide the remaining part of the inelastic cross-

section between soft and hard non-diffractive processes.

Once again, the case of baryon-antibaryon annihilations is somehow distinct. Since

the total and elastic cross-sections are known and only one process exists in this case,

then the full inelastic cross-section can be assigned to it according to (3.33).

3.5.6.3 Fragmentation and particle formation

Once the process is selected according to the previously discussed cross-sections and

excited in the appropriate manner, a string is fragmented into hadrons using PYTHIA.

Internally, the species of the produced hadrons are determined from the flavor of the

(di)quark-anti(di)quark which are produced. Note that some empirical suppression

factors are used for heavier quasi-particles. Each hadron then samples a longitudinal

momentum from the symmetric Lund fragmentation function [229]

f(z) ∝ 1

z
(1− z)a exp

(
−bm

2
T

z

)
, (3.34)

where z is a momentum fraction, mT is the transverse mass of the hadron, and a and

b are free parameters (a = 0.2 and b = 2 GeV−2 for leading baryons, and a = 2 and

b = 0.55 GeV−2 for internal baryons).

Although all hadrons are instantly created in SMASH, in a dynamical picture the

pair production does not happen simultaneously. As shown on Fig. 3.5, the different

(di)quarks and anti(di)quarks each follow their own trajectory in the light cone. Ad-

ditionally, the different string fragments which are depicted take some approximately

constant proper time to recombine. To simulate this effect, we scale down all cross-

sections of the newly formed hadrons by a factor which gradually increases. After a

8Note that a special treatment has to take place in the transision region between resonances and
strings, see Sec. 3.5.8.
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Figure 3.5: Picture of the string fragmentation in the yo-yo model. Taken from [203].

constant proper time (for simplicity) of τ = 1 fm, the cross-sections of all produced

hadrons are back to their nominal values.

3.5.7 Additive Quark Model

The alert reader will have noted that the previously discussed processes, while numer-

ous, do not emcompass the full combinatorics of all possible binary collisions between

the different species listed in tables 3.1 and 3.2, because it is highly non-trivial to

obtain experimental cross-sections for such reactions. The Additive Quark Model

(AQM) [234] is an empirical prescription for the prediction of the cross-sections of

such processes. The AQM cross-section for any reaction is written as

σAQM = 40 ·
(

2

3

)nM
· (1− 0.4xsi ) · (1− 0.4xsj), (3.35)

where nM is the number of colliding mesons and xsi is the ratio of strange to non-

strange quarks in the i-th incoming hadron. Following what is done in UrQMD [44],

we then use this AQM cross-section as a scaling factor to known and physically related

cross-sections. For example, all meson-baryon interactions between particle species i

and j can be scaled from the known πp cross-section σπp, such that

σij =
σAQMij

σAQMπp

σπp. (3.36)

Specifically, in SMASH, elastic and total cross-sections are scaled according to the

contents of Table 3.5.

When an AQM process is selected, it either produces an elastic scattering as de-

scribed in Section 3.5.2, or a string similar to what was done in Section 3.5.6. In the

case of the string excitation, since PYTHIA can only handle collisions between pions

and nucleons, a way of mapping an arbitrary hadron to either of those recognized
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Process Total Elastic

Baryon-Antibaryon, same species p̄p p̄p
Baryon-Antibaryon, diff species n̄p p̄p
Baryon-Baryon, same species pp pp
Baryon-Baryon, diff species np pp
Meson-Baryon π−p π+p
Meson-Meson π+p π+p

Table 3.5: Cross-section scaling for AQM processes.

cases was implemented, both for the excitation and fragmentation steps of the string

routine. Specifically, all baryons with a positive electric charge are mapped onto a

proton, and others are matched to a neutron. Mesons with a positive or vanishing

charge are mapped to a π+, and other to a π−. Before the final fragmentation into

hadrons within PYTHIA, light (anti)quarks are swapped to their original flavor9 and

momenta of all particles are rescaled to reflect the mass difference, thus conserving

energy and all quantum numbers.

3.5.8 Transition region

As can be seen on Fig. 3.3, there exists a certain region in which strings and resonances

both have contributions to the total cross-section. This is known as the transition

region, and needs to be treated as a special case, since the contributions from the

resonances are not implemented in the string model (see Sec. 3.5.6.2). Explicitly,

we define a transition energy window in which the cross-sections of both regimes are

linearly scaled down (with the resonances gradually losing their contribution while

strings are gaining theirs). In general, this window is 1 GeV wide and starts at an

energy corresponding to the sum of the masses of the incoming particles plus 0.9 GeV.

In order to protect the calibrated existing low-energy cross-sections, special treatments

include:

1. πN , from 1.9 to 2.2 GeV,

2. NN, from 4 to 5 GeV,

3. ππ from 1.12 to 2.12 GeV,

4. KN, from 15.15 GeV to 16.15 GeV.

9If no appropriate quark can be found due to annihilation processes, a gluon is split into the
desired pair.
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3.6 Equilibrium and thermodynamics in SMASH

In this section we describe how we define and achieve equilibrium within SMASH, and

how to extract thermodynamic quantities from such a state.

In the following chapters, a system will be considered in equilibrium if a steady

state (allowing for fluctuations) is achieved over long periods in terms of its chemical

composition (i.e. the multiplicity ratios of different particle species remain constant

on average) and in terms of its momentum distribution (i.e. a constant temperature

can be observed). Many of the main results shown in this thesis, i.e. the calculation

of the transport coefficients according to the Green-Kubo formalism as presented in

Chapter 2, require that this equilibrium be strictly enforced over very long periods

(several hundred fm/c); thus, the only initialization scheme in which SMASH can

produce such a steady state is the box calculation described in Section 3.2, since it is

the only one that still conserves energy density over this kind of time frame. In order

for a stable state to be reached in the box, only processes which respect the principle

of detailed balance (see Sec. 3.5.4) can be allowed to take place. This immediately

rules out all string excitations, as well as three-body decays and 2 → 3 processes,

since the geometric criterion simply cannot deal with the reverse reactions of those

processes. It should also be mentioned that all electro-weak decays (of which there

are not many, and all of which have rather small branching ratios) should be turned

off in the list of allowed decays. Finally, all angular distributions for binary processes

must be isotropic, as the anisotropic mode of SMASH currently does not adapt the

incoming cross-section of such collisions in a consistent way with how the final state is

created; in this sense we conserve the symmetry between the isotropy of the geometric

criterion and that of the final state rather than introducing angular distributions (even

though it is expected that these could have an effect on transport coefficients, as will

be discussed in Section 4.2.3).

As we just discussed, in complex systems where inelastic collisions are present, the

chemical composition of the system, its temperature and the chemical potential can

change from the initial state if this one is not directly equilibrated. This is indeed

almost never the case, except for the very simplest systems, since many numerical and

physical effects can contribute to having a system which is close to but not quite in

equilibrium. These effects include:

1. The expectation value of the initial thermal multiplicity is typically a fractional

number. Since SMASH only deals with integer numbers of particles, this can

introduce some biases, especially for rare heavy particles;

2. Resonance multiplicities have to be initialized according to a specific mass, which

is chosen to be their pole mass; this pole mass might however be different from

their average mass at a given temperature, thus creating either too many or too
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few of a specific resonance species on average;

3. The process by which a given event is made immobile discussed in Section 3.2

(i.e. ptot = 0) involves slightly modifying all particles’ momenta, which has the

additional effect of modifying the thermal distribution;

4. Imperfections in the detailed balance of specific reactions (for example due to

a numerical maximum distance of interaction, or similar) can lead to reactions

which are favored in one direction or the other, skewing the multiplicities of their

participants;

5. Poissonian sampling of multiple members of a same multiplet can yield different

numbers of particles; for example, in a given event more π+ than π− could

be created, again leading to slightly skewed dynamics (this last effect is mostly

negligible for systems with many species, but could be more significant in simpler

ones).

One thus needs a way to calculate the actual values of these thermodynamic quantities

in the system after equilibration. The temperature is obtained by fitting momentum

distributions of given particle species:

dN

dp
∝ p2e−

√
p2+m2−µ

T . (3.37)

Note that the extracted temperatures differ slightly from one species to the next. It

is therefore necessary to distinguish between the temperature of a particle species and

the temperature of the system. In concrete terms, we consider the temperature of the

system to be the weighted average of the most abundant stable particles in any system

(in the case of the full hadron gas used throughout the next two chapters, this will

always be pions, kaons and nucleons, where their respective multiplicities are taken as

weights; see left panel of Fig. 3.6).

Although there is in theory a different chemical potential for every particle species,

we will here only be interested in true conserved quantum numbers; specifically, the

baryon chemical potential. For simplicity, it is assumed that the chemical potential

of baryons µB can be approximated by that of nucleons µN , since they are the most

abundant stable baryonic species. It is obtained by using the ratio of the momentum

distributions (Eq. 3.37) of nucleons to that of anti-nucleons, such that

dNN/dp

dNN̄/dp
= exp

(
2µN
T

)
' exp

(
2µB
T

)
. (3.38)

This ratio is flat on average in the region which is used for the temperature determi-

nation. Its momentum average in this region is calculated and used as a proxy for the

baryon chemical potential.
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Figure 3.6: Left: Temperature evolution of different species and of the hadron gas at
a given starting temperature. Right: Temperature evolution of the box over time, for
different initial temperatures. The vertical bar shows which part of the evolution is
considered as in equilibrium in calculations in Section 4.2.

Finally, let us mention that we use the definition of the Gibbs free energy to

calculate the entropy density,

s =
w − µBnB

T
=
ε+ P − µBnB

T
(3.39)

where we introduce the enthalpy w, energy density ε and pressure P . ε and P are

obtained directly from the diagonal components of the averaged energy-momentum

tensor, the temperature T and baryon chemical potential µB from Eqs. (3.37) and

(3.38) and the baryon number density nB by counting baryons and anti-baryons in a

given volume of the system.

As described in Section 3.2, all species are initialized with thermal multiplicities.

The infinite matter simulation is thus left to equilibrate for an appropriate time, and

the chemical equilibrium is checked by verifying that the multiplicities of the individual

species in the box saturate to a stable value (see [48] for examples). Similarly, the

thermal equilibrium requirement is checked by monitoring the temperature of the box

and waiting for it to reach a saturation value (see right panel of Fig. 3.6). We observe

that thermal equilibration typically takes much longer than chemical equilibration.

Equilibration times depend strongly on the complexity of the content of the system,

more degrees of freedom corresponding to longer equilibration times. In the trivial

case of the pion gas presented in Section 4.1, only one species of particles is allowed

to interact elastically. In this setup, the system is almost directly initialized into

chemical and thermal equilibrium, since no particle number changing processes can

occur. For the full hadron gas, the equilibration process however lasts markedly longer,
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especially at low temperatures (which is expected, as the initial density increases fast

as a function of temperature, see Eq. (3.4)). As seen on the right panel of Fig. 3.6,

thermal equilibration times for such a system usually range from a couple hundred fm

at higher temperatures (T = 150 MeV and higher) to several thousand fm at lower

temperatures (T = 100 MeV and lower).

3.7 A note on versioning

The development of SMASH being an ongoing process, it should be mentioned specifi-

cally which version of the code was used. All the information available in this Chapter

refers to SMASH v1.6 [235], which is also the version used for most results in this

thesis. Exceptions to this are the discussions held in sections 4.1 and 4.2, for which

a slightly modified10 version of SMASH v1.011 was used. Along with a slew of minor

changes to cross-sections following updates to the Particle Data Group Review from

2015 [236] to 2018 [213], the main relevant structural changes in SMASH between

these versions concern:

1. The treatment of potentials, which we exclude in all calculations, as mentioned

at the beginning of this chapter;

2. The treatment of strings, which is in any case turned off in Sections 4.1 and 4.2

for the sake of conserving detailed balance, as discussed in Section 3.6;

3. The implementation of the AQM prescription discussed in Section 3.5.7, which

gives a cross-section to all combinations of particles which did not previously

have one. While the inelastic part of the AQM functions through strings and

is thus incompatible with the Green-Kubo calculations performed in Chapter 4

and has to be excluded, the elastic part is very much expected to have an effect

on transport coefficients on its own; some comments are made concerning the

effects of the inclusion of the AQM in Section 4.2.3.

10The modifications essentially concern the baryon-antibaryon treatment into resonances that was
discussed in Section 3.5.3, which were at the time not included in the main version of the code as an
option.

11As the official public release of SMASH happened with v1.5, this version is not directly available
online.
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Chapter 4

Hadronic transport coefficients

In this chapter we will be presenting and discussing many of the main results of this

thesis and the more technical considerations that have to be taken into account in

order to obtain them. Specifically, we will be obtaining results for the shear viscosity,

bulk viscosity and cross-conductivity of hot QCD matter in the hadron gas phase for

a wide range of temperatures and baryon chemical potentials.

4.1 Technical considerations and calibration of Green-

Kubo calculations

Let us start by reminding the reader of the final expressions obtained from the Green-

Kubo formalism in Chapter 2. The shear viscosity, bulk viscosity and cross-conductivity

are given respectively by

η =
V

T

ˆ ∞
0

dt′〈πxy(0), πxy(t′)〉l, , (4.1)

ζ =
V

T

ˆ ∞
0

dt′〈p(0), p(t′)〉l., (4.2)

σQQ,QB,QS =
V

T

ˆ ∞
0

〈jxQ,B,S(0), jQx (t′)〉ldt′, (4.3)

where

〈A(t), B(t′)〉l ≡ 〈(A(t)− 〈A〉l)(B(t′)− 〈B〉l)〉l (4.4)

For convenience, we define the autocorrelation (or simply correlation) functions Cxy ≡
〈πxy(0), πxy(t)〉l, CΠ ≡ 〈p(0), p(t)〉l and CQQ,QB,QS

j ≡ 〈jxQ,B,S(0), jxQ(t′)〉l. As covered

in detail in Chapter 3, we remind the reader that simulations provide us with the

complete phase-space information of all particles in the system, which are in this case

discrete, and given at discrete times. For this discrete situation, we can define the
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previous components of the correlation functions as

T µν(t) =
1

V

N∑
i=1

pµi (t)pνi (t)

p0
i (t)

, (4.5)

jµQ,B,S =
1

V

N∑
i=1

(q, b, s)i
pµi (t)

p0
i (t)

, (4.6)

where N is the total number of particles, pµi is a component of the energy-momentum

4-vector associated with particle i and (q, b, s)i its associated appropriate charge (i.e.

electric, baryonic or strange). Here we use the fact that in the local frame πxy = T xy

and p = T ii. The averaging contained within the correlation functions also has to be

redefined for the discrete times at which the information is available; rather than Eq.

(2.20), it will take the form

C(t) = 〈A(0)A(u∆t)〉l = lim
K→∞

1

K − u

K−u∑
s=0

A(s∆t)A(s∆t+ u∆t), (4.7)

where K is the total number of considered time steps, u is a positive integer with

u < K and ∆t is the time interval between each time step (i.e. the time before which

the information of the system becomes available again).

Let us now look in more detail into the case of the shear viscosity; the remainder

of the discussion in this section is very similar for any transport coefficient, so for

the sake of brevity we will not repeat it for the cases of the bulk viscosity and cross-

conductivity, although we will occasionally refer to some particularities of the one or

the other where necessary.

As one can see from Eq. (4.1), the calculation of the viscosity requires integrating

Cxy from zero to infinity. It is rather straightforward however to see that it is nu-

merically quite challenging to take the limit of K → ∞ in Eq. (4.7). Consequently,

the relative error of any numerical computation of the correlation function necessarily

increases rather quickly with time t ≡ u∆t and eventually reaches a state of pure

noise, as one can see in the thick red curve of Fig. 4.1. To circumvent this limitation,

some assumption is made about the analytical shape of the correlation function.

It is generally assumed [78–80] that for dilute systems, it takes the form of a

decaying exponential,

Cxy(t) = Cxy(0) e−
t
τ , (4.8)

where τ is the relaxation time of the system. For the shear viscosity, it follows that

η =
Cxy(0)V τ

T
. (4.9)

One of the simplest hadron gas systems that one can think of is composed of one
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Figure 4.1: Average volume-
independent correlation function
as a function of time for a system of
particles with constant cross-section
(red, bottom set of curves) and energy-
dependent pion cross-section (black,
top set of curves). Thinner lines are
exponential fits, respectively with
(solid) and without (dashed) a fixed
intercept.
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Figure 4.2: Volume-independent initial
value of the correlation function as a
function of temperature for a system
of particles interacting via the energy-
dependent pion cross-section. Statisti-
cal error bars are smaller than the sym-
bol size.

species of particles that only interacts elastically, either via a constant isotropic cross-

section (like hard spheres1) or through an energy dependent cross-section based on

a single resonance. These systems have been studied extensively and, as briefly dis-

cussed in Chapter 2, their shear viscosity can be extracted analytically by linearizing

the collision term of the Boltzmann equation using the Chapman-Enskog approxima-

tion [80, 237]. As such, this system constitutes the perfect playground for a proof of

concept. The main goal of this first study is the evaluation of the systematic error of

the present calculation by comparing it to a well-known and understood case.

We first take a look at the shape of the correlation function in this simple case.

The thick lines of Fig. 4.1 correspond to the average correlation functions of the two

versions of the test system at T = 150 MeV. In the first (red), massive particles (m =

138 MeV) interact through a constant isotropic cross-section of σ = 20 mb, whereas in

the second (black), the same particles interact through an isotropic energy-dependent

cross-section corresponding to the ρ resonance. In all cases here and further on, the

correlation function is obtained by averaging 1000 simulations of the same system. The

behavior of the correlation function of these two systems is definitely different. While

1Formally speaking, the time of interaction might be slightly different in the hard sphere scenario
vs the SMASH criterion of the time of closest approach; this should however not be an appreciable
difference in the dilute gas limit.
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in the case of the constant cross-section interaction, the behavior is quite close to the

previously mentioned decaying exponential, we observe a slight deviation from it in

the energy-dependent case. This phenomenon is more apparent at high temperatures

and densities; the deviation of the shown curve is thus more pronounced than most

others used in the rest of this thesis, for the purpose of illustration.
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Figure 4.3: Shear viscosity of a sys-
tem of particles interacting via con-
stant cross-section for various fitting
schemes, compared to a semianalytical
Chapman-Enskog calculation. (σ = 20
mb, m = 138 MeV)
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Figure 4.4: Shear viscosity of a sys-
tem of particles (m = 138 MeV)
interacting via the energy-dependent
pion cross-section for various fitting
schemes, compared to a semianalytical
Chapman-Enskog calculation.

For Nspec stable particles, the initial value of the correlation function is given by

taking the continuum limit of

Cxy(0) =

〈∑
i

(pxi )
2(pyi )

2

V 2(p0
i )

2

〉
→

Nspec∑
a=1

gaza
30π2V

ˆ ∞
0

dp
p6

m2
a + p2

exp

(
−
√
m2
a + p2

T

)
,

(4.10)

where i sums over all particles, za = exp(µa/T ) is the fugacity of the species a and

ga its degeneracy factor. Since Cxy(0) is known analytically, it is reasonable to fix

it in the fit of the correlation function. Indeed, Fig. 4.2 shows that a fit using a

floating intercept systematically undershoots the analytical value of Cxy(0) at higher

temperatures. Even though such a fit might lead to a better fit of the original curve,

a precise value for the initial value is required in our final viscosity calculation (4.9).

Therefore, Cxy(0) needs to be fixed.

Let us now turn our attention to the question of how many points to consider when

fitting (i.e. how far to go on the time axis of Fig. 4.1). We tried two different schemes

to this effect. The first one is to consider a fixed interval from t = 0 to t = 5 fm; this

interval is small enough that it always very closely fits the earliest part of the curve.
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The second scheme takes into account that the growth rate of the relative error of

the correlation is much larger at higher temperatures, which is done using a fitting

interval for which the cutoff depends on this relative error. This is illustrated by the

four points which have error bars on both thick curves of Fig. 4.1: they correspond

in each case to the point where the relative statistical error reaches 2%, 4%, 6% and

10%. The plotted fits correspond here in all cases to using all points up to 6% relative

error.

In order to determine which of these cutoffs to use, we now compare the final

shear viscosity yielded by each to an analytical calculation of the shear viscosity of

the two previously mentioned variants of the simple pion gas using the Chapman-

Enskog approximation to solve the Boltzmann equation [75]. Fig. 4.3 shows the effect

of varying the cutoff on shear viscosity in the case of a system interacting through

constant cross sections, whereas Fig. 4.4 shows the same for the case of energy-

dependent interactions. In the second case, resonance lifetimes have been decreased

to zero in SMASH, so that the comparison is carried out between comparable systems

using point-like 2-to-2 interactions2. All calculations use an isotropic cross-section.

As expected from looking at the correlation function on Fig. 4.1, the final effect

of varying the cutoff is rather limited when cross-sections are constant. All proposed

cutoff schemes and values appear to describe well the analytical calculation, with the

largest deviations remaining under 8% in all cases. If one now looks at Fig. 4.4, where

cross-sections are energy dependent, the picture is different. It is here very clear that

there are cases where the sensitivity to the cutoff is large. Cutoffs at 4%, 6% and

10% relative error manage to fit the Chapman-Enskog calculation within systematic

errors. While it appears that in this regime it is still possible to use exponential fits,

one should keep these deviations in mind when using this ansatz, and possibly look

into different ones if deviations become larger.

Now that these considerations have been taken into account, we explore the sys-

tematics of the constant cross-sections case. Fig. 4.5 shows the result of a comparison

between the SMASH infinite matter calculation employing the Green-Kubo formalism

to a 15th order Chapman-Enskog calculation [75]. The first three panels show the

dependence of the shear viscosity on the three physical parameters that appear in this

calculation, namely the temperature (a), the constant elastic cross-section (b) and

the mass of the particles (c), all of these being otherwise kept equal. We remind the

reader that the kinetic theory estimates of η for a system of ultrarelativistic particles

interacting with a constant cross section is η ∼ T/σ [43, 80] and for nonrelativistic

particles is η ∼ (Tm)1/2/σ [75]. We observe that the shear viscosity increases with

temperature and mass, and decreases with cross-section. This behavior is expected,

2We will come back to this non-trivial difference between the calculations later in Sections 4.2.1,
4.2.3, 4.3.2 and 4.4.
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Figure 4.5: Single-species gas systematics. Viscosity of a massive gas interacting
through constant elastic cross-section, as computed in SMASH (symbols) and a
Chapman-Enskog approach (red lines), plotted versus temperature (a), cross-section
(b), mass of the particle (c), time step size between calculations of T xy (d), number
of test particles (e) and density ratio n/n0 (f), where n0 is the particle density at zero
chemical potential. When not mentioned directly on the plot or on an axis, T = 0.15
GeV, σ = 20 mb and m = 0.138 GeV.
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since the relaxation time to equilibrium decreases as the cross section and thus the

number of collisions increases. The dependence on the cross section is very well ap-

proximated by 1/σ, while the precise scaling with T and m follows an intermediate

behavior between the nonrelativistic and ultrarelativistic cases.

The three last panels of Fig. 4.5 refer to the method’s dependence on more techni-

cal parameters. Panel (d) shows that, provided the use of a sufficiently small timestep

size, the result converges to the analytical value. We find that the range of timestep

sizes considered is appropriate; all further calculations use a timestep size of 0.05

fm. Plot (d) shows the effect of including test particles. In this case each physical

particle is divided into multiple ones while correspondingly scaling down each compo-

nents’ cross-section, thus approaching the continuum limit. Very limited effects are

observed. Hence, for simplicity, and since the use of many test particles implies heavy

computational costs, all further calculations are made using only one physical parti-

cle. Note that this result differs from what is found in the literature [80], where the

use of hundreds of test particles is recommended. Since τ is independent from Ntest

in a local collision kernel, it follows that the non-locality of the geometrical collision

criterion could explain differences in viscosity from the number of test particles [238].

The apparent discrepancy can be explained by the fact that we use similarly large

numbers of box calculations instead of test particles for computational convenience.

The last plot (f) explores the effect of altering the density of the system at a constant

temperature. In principle, it is well known that the shear viscosity is independent of

the density [239]. Within our calculation however, it is possible that numerics have an

effect on observables in some limits. Yet, as the last panel shows, these effects prove

to be negligible in most cases, with the exception of very large densities at higher

temperatures. In any case, these non-zero deviations remain small with respect to the

value of the analytical calculation.

This first test scenario shows that, as expected, the results of the method are

mostly unaffected by the variation of non-physical parameters. Thus it is applicable

in a wide range of more complex situations. The maximum deviation from analytical

calculations is observed to be less than 8% for the case of the shear viscosity (this

will can vary for other coefficients, notably the cross-conductivity, see Section 4.4).

Statistical error bars being smaller than the symbol size in all plots, this systematic

error value is assigned to be our total error in all further calculations3 (this is also where

the error bars come from in Fig. 4.4, although we neglected to mention it earlier).

3An exception to this is the calculation of the bulk viscosity in the simple constant cross-section
elastic pion gas; this will be further discussed in Section 4.3.1.
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Figure 4.6: Left: Sketch of the point-like vs resonant picture of interactions. Right:
Shear viscosity vs temperature in a π − ρ gas, for different lifetimes and compared to
the Chapman-Enskog analytical result.

4.2 Shear Viscosity

Now that a firm basis for the calculation has been established, we use it to calculate

the shear viscosity in a succession of systems of increasing complexity.

4.2.1 π − ρ system

We first revisit the system consisting of pions interacting through a ρ resonance which

is described by a Breit-Wigner mass distribution. Remember that the pion pair is

produced isotropically in the rest frame of the resonance.

Analytical calculations of the viscosity of such systems using the Chapman-Enskog

formalism exist [66, 67, 75, 240]. These analytical calculations consider a system of

pions interacting via a cross-section that reproduces the ρ peak, but the resonance

is actually never produced, the outgoing pions being directly created in a point-like

interaction. The left panel of Fig. 4.6 illustrates the schematic difference between the

two descriptions; as one can see, the main difference between the two pictures is the

fact that in SMASH, the ρ resonance has a finite non-zero lifetime.

For the sake of comparison, several modifications have been made in the approach

presented in [75]: 1) only the (I, J) = (1, 1) channel (relevant for the ρ meson) is kept

in the ππ scattering, whereas the isoscalar and isotensor channels are neglected, 2) in

spite of the genuine p-wave scattering in the isovector channel, the differential cross

section is tuned to be isotropic for consistency with SMASH 4, and 3) we implement

4The shear viscosity is inversely proportional to the “transport cross section”, σtr(s) =´
dΩ sin2 θ dσ/dΩ(s, θ) [80]. For an s−wave isotropic interaction one has σtr = 2/3σtot, where

σtot is the total cross section. For a p−wave interaction one has σtr = 2/5σtot. Therefore, the shear
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Figure 4.7: Relaxation time τ and mean-free time τmft versus temperature in a π − ρ
gas, for different lifetimes.

the same squared scattering amplitude from SMASH, but multiplied by a factor 6/9.

This is due to the fact that in [75] an average scattering amplitude for all possible 9

initial states (π±, π0)⊗(π±, π0) was used, whereas in the simulation we consider only 6

of these combinations (more specifically, scatterings between pions of the same charge

are not possible, if including only the ρ meson).

The right panel of Fig. 4.6 shows the effect of this difference on viscosities, as

well as the effect of forcing resonances to decay immediately in our transport model,

which effectively sets the lifetime of the ρ resonance to zero and makes interactions

point-like. This has the effect of bringing the two results much closer together, to the

point where the two calculations are once again in strong agreement.

As shown in Fig. 4.7, the lowering of the shear viscosity when setting the resonance

lifetimes to zero is explained by looking at the relaxation time of the system in both

cases. As one can easily see, the relaxation time appears to be increasingly reduced as

one goes to higher temperatures; this suggests that the lifetime of resonances can have

a large impact on the relaxation time when the lifetime is not negligible with respect to

the mean free time of the particles in the system. This latter case is consistent within

error bars with τ reaching a plateau at high energies. Intuitively, the finite lifetime

of the ρ meson delays the momentum transfer and therefore affects the relaxation

dynamics. Note as well that the time between pion collisions (or mean free time) τmft

remains unaffected by this change in lifetimes.
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Figure 4.8: Shear viscosity to entropy (a) and enthalpy (b) density ratios vs temper-
ature, for various baryochemical potentials.

4.2.2 Full hadron gas

We now proceed to calculate the shear viscosity of a hadron gas as simulated in the

SMASH transport approach. Fig. 4.8 shows both the ratio of shear viscosity to entropy

density (a) and the ratio of shear viscosity to enthalpy density (b). Although the former

is used as an input to hydrodynamic simulations [26, 27], it has been argued that the

latter provides more insight into the transport properties of dense hadronic matter as

this combination appears in the sound attenuation length [22]. Here, both ratios are

displayed. If we first look at the zero baryonic chemical potential curves (which are

identically the same, as expected), we see that they display a decreasing profile at low

temperatures, which corresponds to the expected behavior of a liquid approaching a

phase transition [241]. One also notices that the shear viscosity to entropy/enthalpy

density ratio reaches a plateau around a temperature of 110 MeV, and stays flat until

around 170 MeV, that is, for the whole region around the temperature of 155 MeV

at which the phase transition is situated [3]. The ratios start to increase slowly at

temperatures higher than 170 MeV, but this is also the temperature above which quark

and gluon degrees of freedom are becoming important. In SMASH, the cross-sections

via resonance excitation decrease at high energies and therefore our calculation is only

meaningful in the hadronic region of the phase diagram.

Moving on to non-zero net baryon chemical potential, it appears that the ratio

of shear viscosity to entropy density is relatively independent of µB at every plotted

temperature, at least until values of the chemical potential of approximately 600-650

MeV. On the other hand, the ratio of shear viscosity to enthalpy density displays a

difference when going to higher chemical potential. The difference between the two

viscosity of a p−wave interaction is a factor 5/3 larger than the isotropic scattering.
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Figure 4.9: Shear viscosity (a), entropy and enthalpy densities (b) vs temperature, for
various baryonic chemical potentials.

ratios highlights that the inclusion of the baryonic chemical potential term in the

entropy calculation (see Eq. (3.39)) can at times obscure some trends in the physical

picture.

For future reference and to help shed some light on the various features of Fig. 4.8,

we now plot all components individually, namely the shear viscosity, entropy density

and enthalpy density (Fig. 4.9). Panel (a) of Fig. 4.9 shows the behavior of shear

viscosity, which we find at all values of the chemical potential to be an increasing

function of temperature, as expected. Increasing the chemical potential also raises the

shear viscosity at equal temperature for all temperatures, which is also expected.

The second panel (b) of Fig. 4.9 simultaneously shows entropy and enthalpy den-

sities as functions of temperature. Since both of these quantities depend primarily on

the energy density of the system, it comes as no surprise that increasing the tempera-

ture or baryon chemical potential leads to large increases here as well. Note here that

in this plot one sees very well the effect of including the baryonic chemical potential

in the entropy calculation, with the difference increasing from zero at µB = 0 MeV

to differences of 30% at 600 MeV. This can at least partly explain the shape of the

corresponding curves in Fig. 4.8.

In Fig. 4.10, let us now further decompose the previous results by plotting the shear

relaxation time τ , which comes into play in the calculation of the shear viscosity (see

Eq. (4.9)). One should first note that the overall profile of these curves is relatively

similar to those of Fig. 4.8. This is expected, since as seen on Fig. 4.9, η rises with the

temperature in a way that is approximately matched by the rise in entropy/enthalpy

density, so that the final characteristic shape of η/s or ηT/w is approximately mirroring

the shape of the relaxation time.

Fig. 4.11 shows the same data in a different way: instead of taking temperature
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profiles at approximately constant baryonic chemical potential, the µB dependence of

the shear viscosity to enthalpy ratio is investigated at approximately constant tem-

perature. As one can see, we observe for all temperatures a slightly increasing plateau

at these values of chemical potential; note that within error bars, this calculation is

still consistent with no increase at all. The calculated profile of the shear viscosity to

entropy ratio at fixed temperature with respect to the baryon chemical potential is

actually quite close to what was computed in [71]. Notice that for the current range

of temperatures and baryon chemical potentials, it has been checked that the use of

Fermi-Dirac instead of Boltzmann statistics has a negligible effect on the observables.

As a reference, we include some typical auto-correlation functions at µB = 0

(Fig. 4.12). As one can readily see, the slope of the function gets steeper with rising

temperature; this was directly visible from the previous Fig. 4.10, where we saw the

relaxation time (the inverse of the slope) steadily falling. The slightly non-exponential

behavior that one observes was discussed in more detail in section 4.1 and [242].

4.2.3 Discussion and comparison

In this section, let us first summarize previous calculations of the shear viscosity over

entropy density ratio of a hadron gas and then discuss in detail how they compare

with our results. As mentioned in Chapter 1, the shear viscosity of the hadron gas

is an active subject of discussion within the field of heavy ion collisions, and multi-

ple comparable calculations of its value were performed previously, especially for the

zero baryon chemical potential case. A comparison of these available calculations is

presented in Fig. 4.13. The Demir & Bass [78] calculation uses a similar Green-Kubo
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temperatures are respectively 71.5, 76.4, 89.2, 110, 138 and 171 MeV. The plotting
stops when the relative statistical error reaches 6% in each case, and thus corresponds
to the part of the curve which is fitted.

formalism, but in the context of the UrQMD transport code [44]. The Pratt, Baez

& Kim [82] curve is computed using the B3D code [226], but this time by extracting

the viscosity from Israel-Stewart equations, while obtaining the necessary other trans-

port coefficients from the Kubo formalism. The Romatschke & Pratt [94] one uses

once again the B3D cascade code, with the viscosity η/s being assimilated directly to

the response of the energy-momentum tensor to a velocity gradient. The Rougemont

et al. curve [88] is computed from a holographic correspondence using the Einstein-

Maxwell-Dilaton model. Ozvenchuk et al. [81] use the relaxation time approximation

for η applied to the Parton-Hadron-String Dynamics approach [225]. Moroz [76] is

an analytical calculation of the hadron gas shear viscosity using the relaxation time

approximation and modified UrQMD cross-sections (in this reference the EQCS2s set

was used). The Wiranata et al. [240] calculation use a Chapman-Enskog expansion

to solve the Boltzmann equation using K-matrix parametrizations for cross-sections.

Finally, the χPT curve also uses a Chapman-Enskog expansion but this time by rely-

ing on the lowest-order scattering amplitude from chiral perturbation theory for the

massive pion interaction [75] (see Fig 4.14).

Let us now discuss the comparisons for each result starting from the low tem-

perature region. Chiral perturbation theory [243] is the low-energy effective theory

of QCD describing the dynamics of the pseudo-Goldstone bosons, associated to the

spontaneous symmetry breaking of the chiral symmetry. At lowest order in the chiral

expansion, the effective Lagrangian provides the scattering amplitude for the π − π

scattering [244].
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The LO χPT calculation with massive pions provides a model-independent refer-

ence value for η/s. However, its validity is restricted to very low temperatures where

the system can be approximated to a gas of low-energy pions (up to T ∼ 70 MeV [71]).

At low temperature, SMASH gives values of η/s of the same order of magnitude, but

one should not expect a perfect matching to the LO χPT with our results: in the

former, the I = 1 channel carries an angular dependent differential cross section (the

lowest allowed partial wave is a p-wave) as opposed to isotropic emissions in SMASH

(as mentioned earlier, this accounts for differences of the order of up to 5/3 lower

viscosity in pion dominated systems). Further differences exist between the trans-

port model and χPT calculations. As seen on Fig. 4.14, the dominant π+π− cross

section at these low temperatures (which corresponds to the early part of the curve,
√
s > 0.7−0.8 GeV) is significantly larger in SMASH (especially when going to higher

energies, where χPT cannot describe any kind of resonant interaction), which also

contributes to lower viscosities. The χPT result additionally contributes to the elastic

π±π± scattering, which is not taken into account in the transport model, although it

is expected this will have a more limited effect. Finally, in SMASH the pion scattering

occurs by the formation of an intermediate resonance containing the inherent time

delay due to its lifetime, which is not implemented in the χPT calculation. This was

mentioned in section 4.2.1 and will be explained in more detail later on in this dis-

cussion, although it should remain much smaller than the other effects at such small
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Figure 4.14: Total π+π− cross-section in SMASH, UrQMD and LO χPT, compared
to experimental data.

temperatures (see discussion around Fig. 4.6).

Differences between the SMASH and UrQMD description of ππ cross-sections can

explain the low temperature discrepancy between our calculation and that of Demir

& Bass [78] which used a comparable Green-Kubo method with this other transport

code. Fig. 4.14 is useful in this regard: although both transport approaches describe

reasonably well the experimental data, at low energies SMASH tends to slightly over-

shoot it while UrQMD slightly undershoots it; this results in a cross-section that is

sometimes twice as large in SMASH at low energies. UrQMD also includes a flat

5mb elastic cross-section for all ππ processes, which could have a slight cancellation

effect (although this very small cross-section compared to the much larger inelastic

one should not affect viscosity results so much). Similarly to SMASH, UrQMD does

not account for the p-wave nature of the ρ resonance.

Therefore, a perfect agreement between transport models such as SMASH or the

conceptually similar UrQMD and χPT remains unlikely, and it is then no real surprise

that our results remain lower than these calculations at low temperature. As a corol-

lary, although the result from Demir & Bass appears to agree very well with χPT, this

can be accidental to a certain extent.

The Moroz calculation [76] employs an approach to calculate viscosity analyti-

cally from the relaxation time approximation in the full hadron gas. The calculation

uses a set of improved cross sections from the UrQMD model, including elastic plus

quasielastic processes (EQCS2s set). The cross sections are implemented in analytical

expressions for the shear viscosity obtained from simplifying Boltzmann equation using

the relaxation time approximation, a formalism analog to that presented in Section 2.2.

Although information from resonances is encoded in the cross sections, the collision

kernel only contains elastic processes, and no retardation effects from finite lifetimes
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are considered. It matches quite well the simpler χPT expectation at low tempera-

tures; our results however appear to remain consistently larger than this analytical

curve for temperatures larger than 130 MeV.

Wiranata et al. [240] obtain very similar results (although slightly larger at low

temperature) using the Chapman-Enskog approximation in a four-component mix-

ture of π − K − N − η. These interact through cross-sections computed using K-

matrix parametrizations (which respects the unitarity of the scattering matrix) in-

cluding many resonances with masses going up to 2 GeV. All interactions remain here

once again point-like and no resonance propagation happens.

In Ozvenchuk et al. [81] the relaxation time approximation is used to simplify

the Boltzmann equation and obtain a simple formula for the shear viscosity. Even

when resonance formation is implemented in PHSD simulations, the relaxation time is

identified with the mean-free time extracted from collision rates in a box simulation. In

this approach, the relaxation time contains no feedback from the resonance lifetimes.

Although exact values differ quite a bit, the general consensus appears to confirm

the expectation that the viscosity should generally decrease when approaching a phase

transition. That being said, two tendencies are appearing in this plot: some calcula-

tions are constantly decreasing for the available data in this range of temperatures,

and others appear to saturate at some point and form a plateau at higher temperature;

our calculation is among the latter.

Of note, the calculation by Demir & Bass [78] appears to have a similar behavior

as ours as temperature increases, with the viscosity also saturating at high values

of T . Even though our results are otherwise somewhat smaller, this similarity in the

behavior is striking when compared to the other tendency, which predicts a steadier

decrease to sometimes much lower values around the phase transition. One of the

common points between UrQMD and SMASH is the treatment of interactions through

resonances, which have a non-zero lifetime as illustrated in the left panel of Fig. 4.6.

In contrast, almost all other calculations use point-like interactions for a great portion

of the considered hadronic interactions, if not all. The B3D transport code includes

many long-lived resonances, but simultaneously includes an overall constant cross-

section of σ = 10 mb [226], which introduces many point-like interactions, and is

thus somewhat hybridized in this regard5. Rougemont et al. [88] use the completely

different framework of holography, and is therefore excluded from this categorization.

To understand how resonance lifetimes affect the relaxation dynamics, consider a

5In principle, at the time [78] was published, UrQMD also included a point-like elastic cross-section
extracted from the Additive Quark Model between all particles. However, on inspection, this elastic
cross section turns out to be much smaller than the non-elastic resonance contribution (maximum
of 1.35mb in the largest cases, on average almost an order of magnitude smaller). In consequence,
only a small number of collisions were point-like in this previous version UrQMD; this has since been
updated to provide the same treatment as was described in Section 3.5.7, although no new calculation
of the shear viscosity was performed since.
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system without physically present resonances. The relaxation time is the characteristic

time in which the system approaches equilibrium after a slight departure from it. This

time is of microscopic origin, and it is assumed to be of the order of the collision

time (or the inverse of the scattering rate). Under a shear perturbation, particles with

different momentum will collide redistributing their energy to approach the thermal

distribution. This collision occurs on a time scale of the order of the mean free time,

and therefore the relaxation time should be of the same order. If the lifetime of the

resonances is finite, but much smaller than the mean free time, then the same picture

holds, because the resonance will decay long before the next collision is expected to

happen. Therefore, the transport process is unaffected by the generation of a resonance

if τlifetime � τmft. Again one expects that the relaxation time τ ∼ τmft. On the

other hand however, if the resonance lifetime is comparable to the mean free time (or

larger), then the transport process is blocked until the resonance eventually decays,

because it is only at that instant that the momentum exchange is finally performed.

The relaxation time is thus now limited by the lifetime of the resonance, becoming

independent of τmft, as we have checked numerically for the full hadron box (top right

panel of Fig. 4.15).

This picture breaks down if a sufficient portion of the interactions are point-like.

If our explanation is correct, this breakdown in [82] is caused by the large amount of

elastic point-like collisions, which happen because of the inclusion of a constant 10 mb

cross-section in B3D. To see if the physical picture that we are depicting holds, we apply

the same constant 10 mb isotropic cross-sections to all interactions in SMASH, so that

a significant portion of the collisions will now be point-like. The top left panel (a) of

Fig. 4.15 shows the effect of such an adjustment, and we note two differences. The first

one is that all points are now at a lower value of shear viscosity, which is explained

by the increase in all cross-sections. The second difference is more interesting, and

concerns the profile of the curve: rather than saturating at a given value, it now

decreases constantly for this range of temperatures, which is what we would expect

from a system in which a large part of the interactions is now point-like, so that

the relaxation time is not as strongly affected by the lifetime of unstable particles

anymore6. Alternatively to these constant cross-sections, switching to version 1.6 of

6As shown previously in Fig. 4.6 for a simpler system, the effect of these lifetimes can be significant;
however, note that in the present case, there might also be another cause to the change in the profile
of the curve coming directly from the inclusion of constant cross-sections. Indeed, one can generally
approximate that η/s ∼ 1

s
T
σ ; if σ is fixed, then η/s will decrease if s is more than linearly dependent

on temperature, which it typically is (in massless ideal gases s ∼ T 3 for example). One could check
whether one of these effects is dominant by taking the lifetime of resonances to zero once again.
However, removing all resonance lifetimes in such a complex gas is not easily done, as it completely
breaks the assumption that resonances must propagate in order to conserve the detailed balance of
most reactions, and thus it is unclear whether the obtained gas would be chemically comparable to
the current one.
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SMASH7 allows us to also study the effect of activating the elastic part of the AQM

for exotic cross-sections; as described in Section 3.5.7, this prescription scales known

energy dependent cross-section parametrizations according to the quark content of

incoming particles, such that almost all combinations of particles can now interact. If

one refers to Fig. 3.3 and Table 3.5, the large majority of these newly added cross-

sections (i.e. meson-meson and meson-baryon) have values around 4-7 mb, with the

rarer baryon-baryon collision ∼ 30% higher (not shown here); this essentially means

that on average this AQM cross-section should be slightly larger than half the 10

mb present in B3D. One would thus expect that the inclusion of the AQM should

interpolate between the two previous results, which is shown to be the case for the

viscosity over entropy density ratio in panel (a) of Fig. 4.15. As can be seen in panels (c)

and (d), although the entropy density does slightly decrease when including the AQM

in SMASH v1.6, which can be attributed to slightly different particle lists between the

versions, we see that the bulk of the difference in η/s comes from the large decrease

of the shear viscosity η; this is fully expected as the AQM only affects cross-sections,

which do not have an effect on the calculation of the entropy density.

For further evidence of the importance of resonance lifetimes, let us look at the

relation between the relaxation time τ and the inverse of the scattering rate, the mean-

free time τmft. In the case of no resonances [82] the relaxation time increases linearly

with the collision time, with a proportionality factor of order 1. As seen on panel (b)

of Fig. 4.15, this expectation is fulfilled in SMASH for low temperatures, when the

collision time of particles is much larger than the lifetime of resonances. However, it

breaks down at high temperatures, when the collision time decreases to a value where

the lifetime of resonances is now large enough to impact the relaxation time of the

system, thus forming a plateau around τ ∼ 10 fm. When one includes a large number

of elastic point-like collisions into SMASH, either through the inclusion of a constant

10 mb cross-section for all particles or to a lesser extent the slightly smaller elastic

cross-sections of the AQM, the plateau disappears and we recover a linear dependency

of order 1, even at high temperatures. This is once again in line with the expectations

of our resonance lifetime hypothesis.

As a final remark, let us now consider the case of non-zero baryon chemical poten-

tial, where literature proves to be a lot scarcer, although not inexistent. In this regard

we present two comparisons with other calculations (Fig. 4.16). The first one (a) was

made with the similar calculation from [78] with UrQMD, and the second one (b) from

a holographic approach [88]. In both cases, they observe a difference between the zero

and non-zero baryochemical potential results, with the non-zero case yielding a smaller

viscosity. In our calculation, both cases are constant within errors. This discrepancy

7See 3.7 for a list of notable differences; as the astute reader will already suspect, the only one
which really has a sizable impact is the AQM.
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Figure 4.16: Non-zero chemical potential comparison with other models of shear vis-
cosity. Comparison is possible with a previous Kubo calculation [78] (a), and a result
obtained from holography [88] (b)

might be explained in the case of Demir & Bass by different methods of calculating the

chemical potential term in the entropy (which would also explain why the difference

in their curves is growing with temperature); a potential way of seeing whether this is

a difference in the actual models would be to compare the shear viscosity to enthalpy

ratio instead. The approach in [88] is very different in nature, since it goes beyond the

quasi-particle picture and assumes strong coupling without confinement. Being close

to the holographic result η/s = 1/4π, it is natural that the resulting values of the shear

viscosity to entropy ratio are smaller than in our approach. Still, it is interesting to

note that the decrease for higher baryon chemical potentials is also observed just for

lower values of the chemical potential than in our calculation, where the differences be-

come significant only around µB = 600 MeV. Although not shown here, let us mention

that significant differences in the shear viscosity over entropy density ratio were also

found in [237] between the zero and non-zero baryochemical potential. However, the

use of constant isotropic cross-sections in this calculation instead of energy-dependent

ones strongly limits comparability, as the observed decrease in η/s when including a

non-zero µB can then mainly be attributed to the increase in entropy this provokes.

4.3 Bulk Viscosity

We now turn our attention to the case of the bulk viscosity as calculated using the

Green-Kubo formalism (see Eq. (4.2) and discussion around it at the beginning of the

chapter), for which we first look back to the simple elastically interacting pion gas

before moving on to the full hadron gas.
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Figure 4.17: Sample fluctuations for the shear (left) and bulk (right) cases for a pion
(m = 138 MeV) gas interacting via constant σ = 20 mb cross-sections at a temperature
of 125 MeV in a (20 fm)3 volume. The thick band on the right is the average pressure,
with errors.

4.3.1 Elastic pion gas

In this section we look at the details of the Green-Kubo bulk viscosity calculation in a

system composed of pions which interact through a constant cross-section. Since bulk

viscosity can be thought of as a measure of the resistance to expansion of a system

through phenomena such as the vibration or excitation of particles (in the case of the

hadron gas, we can thus expect large contributions from resonances), it can come as a

surprise that such a simple system would be chosen as a testing ground, as it does not

feature any such phenomena. For this system (and many others), the bulk viscosity is

expected to be identically zero both in the relativistic and zero temperature limits [95],

with some residual signal only perceptible at intermediate energies. Unfortunately, it

is also the only available case for which semi-analytical Chapman-Enskog calculations

exist for the bulk viscosity in a readily comparable state, and so it remains the only

way to calibrate the Green-Kubo calculation.

It is instructive to look at a sample of the measured fluctuations of the pressure in

such a system and to compare it to the off-diagonal energy-momentum fluctuations T xy

associated with shear viscosity, as done on Fig. 4.17. While the two signals can appear

relatively similar at first glance, there are some significant differences between them.

The first is the amplitude of the signal, which is roughly 25 times smaller in the case

of the pressure. Second, and even more importantly, is the fact that pressure does not

oscillate around zero, and thus an average pressure needs to be calculated. This is not

as trivial as one could think, as the average pressure then also introduces a statistical

error which can be non-negligible. While the calculation of the correlation function is

done over 4000 timesteps spanning 200 fm as in the case of the shear viscosity, we find
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Figure 4.18: Bulk correlation function for a pion gas interacting through constant
cross-section σ = 20 fm at various temperatures (left) and system volume (right), as
well as exponential fits, fitting from 0-10fm.

that in order to get results in which the statistical error does not completely wash out

the signal, the averaging of the pressure requires much larger datasets. We determined

that for the studied cases in this chapter, an averaging going over 100 000 timesteps

spanning 5000 fm was sufficient, in the middle of which we perform the previously

mentioned calculation of the correlation function8.

Fig. 4.18 shows a collection of such correlation functions. The left panel illustrates

how a rising temperature leads to an increased steepness of the function (which trans-

lates to shorter relaxation times) as well as the general increase in the statistical error

as time progresses, which is very similar to the previously explored shear viscosity

case. What is quite different in the case of the bulk viscosity however is that even the

initial value CΠ(0) can have a relatively large statistical error, up to 20% in this case,

whereas previously the error on the shear correlation function was never larger than

6% (which would barely be visible, for example in Fig. 4.12). This of course invali-

dates the previously described scheme to determine at which point one should stop the

fitting to a decaying exponential (see discussion around Figs. 4.1-4.4); thus, for the

remainder of the discussion on bulk viscosity, we will simply use fixed points at which

to stop (in the currently discussed pion gas case, the function is fitted using points up

to 5 fm). The right panel of Fig. 4.18 additionally shows that the size of the box used

for the calculation matters. Although the slope remains similar and the multiplication

8Note that in principle, the thermodynamic pressure can be calculated analytically to a high
precision for such a pion gas, which could seem to the reader to be preferable to this numerical
calculation, and for future reference, one obtains similar results as presented here, with of course a
lower statistical error. However, calculating the average pressure using this analytic way is highly
non-trivial for basically any other gas that we will try to study, because of the equilibration processes
discussed in Section 3.6, so that using this leads to being unable to go to more involved cases.
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Figure 4.19: Bulk viscosity of a pion gas interacting through constant σ = 20 fm, as
computed with the Green-Kubo formalism and compared to the 3rd order Chapman-
Enskog calculation. Left: Bulk vs temperature for two different box sizes: “smaller”
corresponds to box lengths, from lower T: 60, 20, 20, 20 and 20 fm, while “larger” has
box lengths, from lower T: 200, 100, 60, 40 and 30 fm. Right: Bulk vs mass of the
pion.

of CΠ(0) with the volume V is also roughly constant, we see that reducing the size of

the box also reduces the relative error, as the size of the fluctuations with respect to

the average pressure diminishes as volume increases. To calculate the bulk viscosity,

one then has to strike a balance between having a system which is large enough for

thermodynamic quantities to be calculated, but small enough that the signal does not

get washed out by the statistical error; note that this volume can also be temperature

dependent.

The bulk viscosity of this system as calculated using the Green-Kubo formalism is

compared to the semi-analytic Chapman-Enskog expansion in Fig. 4.19 for a variety

of temperatures and pion masses. As one can see on the left panel, the agreement is

quite good for temperatures between 100 and 175 MeV, even for smaller system sizes.

At low temperatures, the agreement starts to break down, and, although not shown

here, crumbles completely at even lower temperatures9. A possible explanation for this

could be that for smaller colder systems, the fluctuations caused by individual collisions

become relatively more important, since the density and thus scattering rate is much

lower. This could break one of the assumptions that was made in Chapter 2 to obtain

the final bulk Green-Kubo equation (4.2), which was that thermodynamical forces (or

in this case the corresponding fluctuation) were small; it is as of yet unclear precisely

how small this should be, and it is possible that bulk viscosity is more sensitive to this

9Although we observe the correlation function to still be exponential in nature at these low tem-
peratures, it simply does not reproduce the CE bulk viscosity.
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Figure 4.20: Bulk correlation functions for a full hadron gas, where every curve is
normalized with its initial value.

than its shear counterpart. Thus it is not unlikely that the Green-Kubo formalism

could not be sufficient for the calculation of the bulk viscosity in dilute systems in

which the mass of particles is significant with respect to the temperature. This is

further reinforced by the right panel of Fig. 4.19, in which, at equal volume and

temperature, one sees a disagreement between the Chapman-Enskog and Green-Kubo

pictures as the mass increases; this increase of the mass has both the effect of making

the gas more dilute (since the thermal density depends on the mass) and to make each

collision create fluctuations which are proportionally larger, since individual particles

have more impact.

4.3.2 Full hadron gas

Now that a solid baseline has been established for the calculation of the bulk viscosity

at temperatures between 100 and 175 MeV using a simple pion gas with constant

cross-section, we proceed to the case of the full hadron gas as described by SMASH.

Note that in order to calculate the average pressure of this system, we now require

simulations to provide at least 5000 fm of equilibrum data; this is extremely costly in

terms of computational power, and as such limits the breadth of the exploration of

the parameter space.

Let us first consider the normalized (i.e. divided by their value at t = 0) correlation

functions presented on Fig. 4.20. As is readily visible, these offer a considerably

different picture as what we observed in the previous case in Fig. 4.18. First, the

statistical errors are here much less significant than they previously were. This is

expected, as the introduction of resonances (and thus of mass changing processes)
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Figure 4.21: Bulk correlation functions for pion gas using the ρ resonance for the cross-
section for the cases where the ρ has zero or finite lifetime (left) and for a pion gas
interacting through increasing numbers of resonances (right), at various temperatures;
the second panel normalizes every curve with its initial value.

leads to a massive increase in the magnitude of the fluctuations with respect to the

average pressure, and as such, it should be expected that the error on the pressure

should play a lesser role in this case (see left panel of Fig. 4.21 for a concrete example

using pions). Second, the correlation functions at all temperatures display a somewhat

peculiar shape, as they first observe in the first 2-3 fm a period of rapid decorrelation,

followed later on by a less abrupt exponential decay over relatively long times before

the relative error finally increases to a point where the signal is dominated by noise.

In order to understand whether this non-exponential shape can be understood

physically, we look at a simplified case where pions interact via a rising number of

resonances, such as shown on the Fig. 4.21. First looking at the left panel, which

shows the correlation function of systems in which the lifetime of the ρ has been

taken to zero vs the same system in which it is allowed to propagate, our previous

assertions about the importance of including resonances in bulk calculations take their

full meaning, where both the initial value CΠ(0) and the slope of the correlation

functions are significantly modified; however, the addition of a single resonance does

not appear to produce an inflexion point as we see in Fig. 4.20. This picture changes

in the right panel of Fig. 4.21, where increasing numbers of resonances are included

in the pion cross-section, and are allowed to propagate. We note that, at any given

temperature, as the complexity of the system increases, so does the ”curvature” of

its correlation functions, which start out with a lightly steeper slope than the one

towards which it eventually stabilises. We extrapolate from this picture that as the

proportion of the energy of the system which is contained in resonances grows, so does
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Figure 4.22: Various possible decaying exponential fitting schemes of the correlation
function for a full hadron gas at T = 114 MeV with curves normalized to their initial
value (left) and the resulting bulk viscosity ζ for the different schemes (right).

this early inflexion; note that this picture does not completely rule out the possibility

of this inflexion of the distribution being partly or completely due to numerical factors,

although the fact that the relative error does not increase significantly with time does

lend it some credibility.

The Green-Kubo relation for bulk (4.2) relates the bulk viscosity to the integral of

its correlation function. This correlation function only being known at small times, we

previously used the exponential decay ansatz to extrapolate it and get a final result.

Thus this non-exponentiality of the decay of the correlation function poses a problem

when we try to integrate it, as it is unclear how to proceed without employing such

an ansatz. For simplicity, we continue to use it to provide at least an idea of the

magnitude of the coefficient using this model. To do so, we consider three different

exponential fitting schemes: using a fixed intercept, we use the data points from 0-1 fm

and 0-25 fm, and using a floating intercept we do the same for the 0-25 fm case; these

schemes are illustrated for T = 114 MeV in Fig. 4.22, where the left panels shows

examples of the various fits compared to one of the correlation functions, and the right

panel depicts the corresponding bulk viscosity. The 0-1 fm scheme can be considered

as an absolute minimum case, if one completely neglects the late-time inflexion of

the distribution; the two 0-25 fm schemes can be seen as a maximum case, albeit

not absolute, as the choice to stop the fitting specifically at 25 fm remains somewhat

arbitrary.

Maximum and minimum estimates using these three schemes for the bulk viscosity

to entropy ratio ζ/s can be found on the left panel of Fig. 4.23, whereas the right panel

explores the system size dependence. Both maximum and minimum limits behave in

84



Larger	volumes

Full	hadron	gas	-	Fixed	0-25	fm
Full	hadron	gas	-	Floating	0-25	fm
Full	hadron	gas	-	Fixed	0-1	fm

ζ/
s

0.1

1

10

T	(GeV)
0.08 0.1 0.12 0.14 0.16 0.18

Fitting	0-25fm

Full	hadron	gas	-	larger	boxes
Full	hadron	gas	-	smaller	boxes

ζ/
s

0.1

1

10

T	(GeV)
0.08 0.1 0.12 0.14 0.16 0.18

Figure 4.23: Bulk viscosity over entropy density ratio at various temperatures, ac-
cording to multiple exponential fitting schemes (left) and system size (right). Larger
corresponds, from lower T, to box lengths of L = 100, 60, 40 and 20 fm, and smaller,
similarly, to L = 60, 40, 20 and 10 fm.

roughly the same way, with there being a plateau (or slightly decreasing) region from

T = 114 MeV to T = 172 MeV, and the ratio increasing sharply at lower temperatures.

This last increase however should be considered with some care, as the unphysical

parameter corresponding to the box size still appears to have an influence at the

lowest temperatures; note that this discrepancy at low temperature is also compatible

with the previously discussed possible breakdown of the validity of the Green-Kubo

formalism for the bulk viscosity in cold dilute systems.

4.3.3 Discussion and comparison

In this section we attempt to contextualize the present calculation by testing it against

previous calculations of the bulk viscosity or relations involving it.

In a weakly coupled gas, previous calculations using the Boltzmann equation and

kinetic theory have shown that the relation between shear and bulk viscosity should

be proportional to the squared non-conformality parameter [195, 245, 246]

ζ

η
∝
(
1/3− c2

s

)2
, (4.11)

where we introduced the speed of sound c2
s = dp

de
. Since we now have results for both

shear and bulk viscosities, we only need to calculate this speed of sound within SMASH.

This is done in Fig. 4.24, where we parametrize the dependence of the pressure to

the energy density in order to do so10. The last panel shows that at least in the high

10Although the approximate values at high temperature are relatively similar, our results for the
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Figure 4.25: Comparison of several calculations for ζ/s at µB = 0; see text for details.

temperature plateau region, the proportionality relation between the shear and bulk

viscosity does appear to be verified, which further lends credence to the calculation in

this region.

Finally, a comparison of available calculations for the bulk viscosity to entropy

density ratio is presented in Fig. 4.25. The Moroz [76], Ozvenchuk et al. [81] and

Rougemont et al. [88] curves are calculated in a similar way as previously discussed

around Fig. 4.13 for the shear viscosity. Noronha-Hostler et al. [103] use a hadron

resonance gas model which they supplement with an exponentially increasing density

of Hagedorn states (HS), as well as the small-frequency spectral ansatz presented in

temperature dependence of c2s appears inconsistent with previous calculations of it in UrQMD by
Bravina et al. [247], which shows an increasing rather than decreasing behavior; this could be ex-
plained by the fact that they approximate c2s ' p/e.
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[95] to calculate the bulk viscosity. This calculation is according to the authors to

be taken qualitatively rather than quantitatively, to show the effect of including those

states; as such, the case without HS appears to be quite similar to our own results, with

an approximate plateau being reached from 140 to 170 MeV. As previously, discussed,

the Rougemont et al. calculation is performed in the very different framework of

holography, and as such is hard to compare to our own results; it is interesting to note

that contrarily to almost all the other presented models with the exception of Dobado

et al. [106]), this one uses strong coupling and thus predicts a vanishing bulk viscosity

to entropy density ratio at very low temperatures.

Dobado et al. [106] and Lu et al. [105] both use the previously mentioned chiral

perturbation theory for massive pions (seediscussion around Fig. 4.14) to obtain results

for the bulk viscosity, whose validity is usually restrained to lower temperatures than

what is shown here [71]. Interestingly however, one sees that although both tend to

increase relatively fast in this regime, these two calculations do not really agree with

each other, with Dobado et al. being extremely low, while Lu et al. are only slightly

larger than the prediction of our own calculation. While the calculation of Lu et al.

presents a diverging behavior of ζ at T = 0 which was corrected to the limit of zero bulk

viscosity at low temperature in Dobado et al. using finite pion chemical potentials,

the former also includes number (and thus mass) changing processes, in the form of

the ππ ↔ ππππ scatterings, providing a way for energy to be dissipated into mass

rather than redistributed into purely kinetic exchanges. As this calculation does not

include any kind of resonance, this suggests that bulk viscosity can grow large provided

mass-changing processes are present, rather than resonances, whose propagation then

rather ensures that energy can be dissipated into mass.

Much more comparable to our own are the remaining two calculations. Interest-

ingly, the PHSD calculation from Ozvenchuk et al. [81] agrees relatively well with our

results, which can once again be explained from PHSD also propagating resonances,

and thus including mass changing processes. Using their discrete test particle repre-

sentation, the bulk viscosity is computed from a discretized version of the relaxation

time approximation,

ζ =
1

9TV

∑
i

Γ−1
i

E2
i

(
(1− c2

s)E
2
i −m2

i

)2
, (4.12)

where the sum is taken over all particles in the system, which also includes all the reso-

nances. By contrast, the Moroz calculation uses the relaxation time approximation to

calculate analytically the viscosities of the hadron gas in a similar fashion as to what

was presented with the Chapman-Enskog formalism in Chapter 2. In this framework,

although all resonances are incorporated in the various cross-sections of the collision

term, they do not per se exist as propagating particles in the calculation, and only
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Particle Mass (GeV) Width (GeV) Present in

π 0.138 0 1,1h,1z,2
η 0.548 0 2
σ 0.800 0.400 2
ρ 0.776 0.149 1,1z*,2
K 0.494 0 1,1h,1z,2

K(892) 0.892 0.050 1,1z*,2
N 0.938 0 1,1h,1z,2

N(1440) 1.440 0.350 1,1z*,2
N(1520) 1.515 0.110 2
N(1535) 1.530 0.150 2
N(1650) 1.650 0.125 2

∆ 1.232 0.117 2
Λ 1.116 0 2

Table 4.1: Properties of particles present in the simpler considered hadron gases:
πKN (case 1), πKN − h (case 1h), πKN − z (case 1z) and πKNΛ (case 2); asterisks
(*) denote a resonance which is used for the cross-section interaction but does not
propagate. Many more particles are present in the full hadron gas, see Tables 3.1 and
3.2 for a full list.

binary elastic collisions are considered. In a similar fashion as previously, since reso-

nances are the primary way for energy to be dissipated in something else than kinetic

energy and no other mass changing processes are present, the system thus exhibits a

much lower bulk viscosity in their absence.

4.4 Cross-conductivity

The previously introduced cross-conductivity σQBS = (σQQ, σQB, σQS) is in this sec-

tion computed according to the Green-Kubo formalism (see Eq. (4.3) at the beginning

of the Chapter) following the same general procedure as outlined in Section 4.1. Con-

trarily to the case of bulk viscosity, no additional technical hurdles must in this case

be overcome, and so we can directly present our results.

In the following we will be looking at three different chemical compositions for

the hadron gas, all of which are initialized with thermal multiplicities. The first one

is a simple mixture of pions, kaons and nucleons, and is the simplest example of a

hadron gas containing all three relevant charges (electric, baryonic and strange). In the

following pages we will be investigating cases where this gas interacts as hard spheres

through constant cross-sections (dubbed πKN − h), elastically through resonances

with zero lifetime (πKN − z) and through regular resonance formation (πKN)11.

11The difference between the πKN − z and πKN cases essentially amounts to what is depicted in
the left panel of Fig. 4.6, i.e. pictures in which binary interactions are 2→ 2 vs 2→ 1→ 2 in nature.

88



N
sp
ec
	/	
N

to
ta
l

0

0.2

0.4

0.6

0.8

1

T	(GeV)
0.1 0.125 0.15 0.176

π	K	N	Λ Fullπ	K	N T	(GeV)
0.098 0.124 0.152 0.183

T	(GeV)
0.086 0.114 0.142 0.172
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kaons in dark cyan (second from bottom), nucleons in orange (third from bottom), and
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The second one is a mixture of pions, kaons, nucleons and lambdas (which carry

both baryonic and strange charge), and which interacts through a larger number of

resonances (πKNΛ). The third one consists of the full SMASH simulation, which as

previously mentioned includes all particles included by the PDG 2018 recension [213]

up to masses of ∼ 2.3 GeV. Table 4.1 presents a summary of the present particles and

resonances in the first two gases, and Fig. 4.26 an overview of the chemical composition

of each gas at various temperatures.

4.4.1 Simple systems

As for the cases of shear and bulk viscosity, we first calibrate non-physical parameters

of the Green-Kubo exponential fitting by comparing the result to a semi-analytical

calculation based on the Chapman-Enskog formalism [115, 248, 249]. Specifically, as

shown on the left panel of Fig. 4.27, we calculate the electric, baryonic-electric and

strange-electric conductivities for the previously introduced πKN − h hadronic gas

with a constant cross-section of 30 mb. We see that the agreement is very strong at all

temperatures for the case of the electric and strange-electric conductivities (although

the latter appears to be slightly overestimated by the Green-Kubo procedure). The

baryonic-electric conductivity shows more variation, especially at low temperatures;

this can be attributed in large part to using the same simulations to calculate all three

coefficients, and since nucleons have a much higher mass than pions and kaons, there

are thus much fewer interactions involving baryons compared to the number of colli-

sions involving only mesons, leading to larger potential systematic errors (especially

numerical in this case, as the fluctuations of this correlation function are much smaller
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Figure 4.27: Left: Cross-conductivity of a πKN−h gas interacting through a constant
cross-section of 30 mb, as computed following a Chapman-Enskog approach (dashed
lines) and using the Green-Kubo formalism (dotted lines and symbols). Right: Effect
of setting resonance lifetimes to zero in a similar resonant gas (πKN − z vs πKN ; see
text for details).

than for the other two cases). We use this calibration calculation to establish this

systematic error to 10% for the electric conductivity, 20% for the baryonic-electric con-

ductivity and 15% for the strange-electric conductivity. Statistical errors are smaller

than the symbol size, and are thus neglected for the remainder of this section; all

errors on further figures come from this estimation of the systematic error.

Before proceeding further, we note that in the case of the conductivities, contrarily

to the previously discussed viscosities, the presence of propagating resonances appears

to have a very limited effect on the transport coefficients, as can be seen by com-

paring the πKN − z and πKN cases in the right panel of Fig. 4.27, where for all

conductivities there is no significant difference between the two cases within errors at

every temperature. Remember notably that in the case of the shear viscosity large

effects (up to 50% decrease, see right panel of Fig. 4.6) were observed from setting

the lifetime of resonances to zero. This led to suggesting that the redistribution of

a conserved quantity allowing for the equilibration of a local perturbation might be

effectively blocked within times of the order of the resonance lifetime, which should

have a large effect especially at high temperatures, when the resonance lifetime is large

enough compared to the mean free time between collisions (see Section 4.2.3 for the

full discussion).

This difference in behavior betwen the different transport coefficients can be ex-

plained by looking at the realization of the transport process at the microscopic level.

For the shear viscosity one needs to equilibrate the momentum excess of particles
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(with respect to the fluid’s cell velocity) between different regions. Collisions between

particles isotropize the momentum distribution to reach equilibrium. When this mech-

anism is entirely produced via resonance formation, it is necessary to wait until the

formed resonance decays for the total momentum to be distributed between the decay

products. Large parts of the real transport is only effective at the moment of the decay,

but not before. If the lifetime is larger than the mean-free time, then, on average, it

will dominate the value of the relaxation time τ . Although one would think the case

of the various currents should follow the same logic, there are some differences when

charges enter into play.

If one for example looks specifically at the case of the electric conductivity, from

all possible interaction processes, there are several cases in which the equilibration

(the disappearance of a fluctuation of the electric current) does not need to wait until

the decay of the resonance. An initial fluctuation in the current might vanish at the

interaction point, directly upon the resonance creation. As an example, one can think

of a local electric current fluctuation due to a π+π− pair with an imbalanced total

momentum. At the collision point a ρ0 resonance with non zero momentum is formed.

One might think that the ρ0 is required to decay into a pair with balanced momentum,

to erase the electric current. However, the resonance is charge neutral and the initial

fluctuation is already blurred at its formation, so the lifetime does not play any role

in the relaxation time. We now instead consider a local current created by a charged

and a neutral pion, with a similar momentum but opposed in direction. After they

collide, a nearly static charged ρ meson is formed, which will live for some time. But

again, the local current decreases close to zero at the formation time. In such a simple

hadronic gas, we have many particles of different charges creating local fluctuations

and colliding in many different charge combinations. While the whole situation is

much more complicated and difficult to analyze, we can still convince ourselves by

these examples, that the lifetime of the resonances should here play a relatively minor

role as compared to the shear case.

4.4.2 Exploring the parameter space

We now take our attention to the differences between the three previously discussed

resonant hadronic gases, and the effect of including a non-zero baryon chemical poten-

tial in the full hadron gas. The left panel of Fig. 4.28 takes a closer look at the electric

conductivity for all three gases. All three curves show a decreasing behavior as tem-

perature increases, which eventually levels into a plateau around T = 150 MeV (and

possibly a slight increase onwards for simpler gases; this is consistent with previous

calculations [115, 248]). We observe that as the number of degrees of freedom increases

in the system, the general observed behavior is a decrease at every temperature, with

this decrease being more marked at larger temperatures. This is expected, as adding
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more resonances into the gas mostly amounts to increasing the cross-sections of the

stable particles (i.e. pions, kaons, nucleons and eventually heavier strange particles

such as the Λ). An interesting example of this can be found by looking a the low

temperature end of the three curves: there is a marked decrease when going from the

πKN to the πKNΛ, but not a large difference between the πKNΛ and full hadron

gas. This can be explained by remembering that at such low temperatures, the vast

majority of particles are pions (see Fig. 4.26), and as such the inclusion of the σ

resonance (which is the second largest contribution to the total ππ cross-section after

the ρ) in the πKNΛ gas makes a large difference to the total electric conductivity;

adding all the other resonances contributing to the ππ cross-section in the full hadron

gas still makes a small difference, but its magnitude is much less, since there is simply

not enough energy density in the gas to produce these heavier resonances at this low

temperature.

The right panel of Fig. 4.28 shows the behavior of the electric conductivity when a

non-zero baryon chemical potential is added. As can readily be seen, up to µB = 300

MeV, we observe no significant variation of this conductivity at essentially every tem-

perature in the computed range. This effect is similar to what was obtained previously

in the case of the shear viscosity to entropy density ratio (see Fig. 4.8), and can be

similarly understood: since such an increase in the baryonic chemical potential only

corresponds at these temperatures to a modest modification of the relative densities

of mesons and baryons (with this difference growing larger at low temperatures), with

pions still largely dominating charged particle multiplicities, one should also not ex-

pect massive variations in the electric conductivity for such systems. Note that due

to an observed loss of the exponentiality of the decay of the correlation function for

the different correlations at high µB (likely for the same reason as for the shear vis-

cosity, i.e. that large densities lead to a breakdown of the transport description), we

do not display any results at chemical potentials larger than µB = 300 MeV, as their

trustworthiness would be questionable.

The left panel of Fig. 4.29 shows the baryonic-electric conductivity as a function of

temperature for the same increasingly complex gases. The general trend is in this case

that this conductivity increases with temperature, which is expected as the proportion

of baryons in a gas should increase with temperature, since they have a comparatively

higher mass than mesons (this is something we do observe in Fig. 4.26). Although

large uncertainties blur the picture up to 140 MeV, we once again see an ordering in

the three cases, with the baryonic-electric conductivity decreasing as the complexity

increases, since, as mentioned previously, one of the main effects of increasing the

number of degrees of freedom is to increase the cross-sections of the abundant stable

particles. We observe a clear separation between the full hadron gas case and the

other two simpler cases at temperatures above 160 MeV, with the full hadron gas
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Figure 4.28: Left: Electric conductivity for resonant hadron gases of increasing com-
plexity. Right: Effect of non zero µB on the electric conductivity.

being markedly lower, which can be explained by the fact that at these temperatures

many heavy baryonic resonances which were not included in the simpler gases become

relevant.

We show on the right panel of Fig. 4.29 the effect of including a non zero baryonic

chemical potential on the baryon-electric conductivity, which results in a very strong

increase at low temperatures. This is very much expected, as this coefficient is es-

sentially designed to be sensitive to changes in baryon densities;. Since the relative

baryon and meson densities do not change in a meaningful way at large temperatures

for such a low µB, we obtain only a moderate effect on σBB in this range; at low

temperature however, the relative density of baryons is much more significant (see Eq.

(3.4); this can amount to as much as 20 times as many charged baryons at these low

temperatures), which means that the cross-charge effect of applying an electric current

perturbation is felt much more keenly in the baryon current, hence an increase in the

corresponding conductivity.

Lastly, the strange-electric conductivity as a function of temperature is presented in

the left panel of Fig. 4.30. All three curves exhibit a rapidly increasing behavior at low

temperature, which then appears to slow down as temperature increases, with all three

gases also being fully consistent within uncertainties with reaching a plateau around

120 MeV. This behavior can be understood by looking at the chemical composition

of the gases: at low temperature, the proportion of the light strangely charged kaon

increases very fast with respect to other types of particles, but eventually slows down

because of the inclusion of more and more non-strange heavier particles; a plateau

is reached at larger temperatures when similar numbers of strange and non-strange

particles are added into the system. This coefficient exhibits a much larger response
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Figure 4.29: Left: Baryonic-electric conductivity for resonant hadron gases of increas-
ing complexity. Right: Effect of non zero µB on the baryon-electric conductivity.

to adding large amounts of states into the mixture as the previous ones, as the two

simpler cases remain consistent within error bars at all temperatures. We note that a

small difference at high temperature between the πKN and πKNΛ cases is most likely

due to the introduction of a fourth strange stable particle, the Λ, which becomes more

relevant at these high temperatures and could explain the small dip in the value of

the strange-electric conductivity. The full hadron gas’ conductivity remains resolutely

lower, which could be very helpful to discriminate between sufficient and insufficient

amounts of states in a given hadron gas model if the exact value of this transport

coefficient can be confirmed for example with lattice QCD calculations.

As can be seen on the right panel of Fig. 4.30, we register a slight decrease in the

strange-electric conductivity at every temperature when including a 300 MeV chemical

potential µB, although this decrease is within error bars consistent with there being no

effect at all. The same reasoning as for the electric conductivity can here be applied to

explain this absence of large effect, with the additional note that since the dominant

particle contributing to this coefficient is still the kaon at every temperature, and since

the kaon is a meson, seeing a moderate increase in many non-strange (which are more

numerous - and lighter - than strange ones) could easily result in a slight decrease of

this conductivity.

All three of these conductivities exhibit variations with respect to their hadronic

content at various temperatures. As such, these new observables could for example

be used to constrain the number of degrees of freedom which are relevant in a wide

(T, µB) parameter space by comparing the present results with that of other models,

for example in lattice QCD. Some calculations of the electric conductivity have actually

been performed already on the lattice [107, 124–126]; it should however be noted that
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Figure 4.30: Left: Strange-electric conductivity for resonant hadron gases of increasing
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comparison with these works is currently ambiguous at best, as the calculations in

[124, 125] lack hadronic interactions, those of [126] use unphysical pion masses and

finally Ref. [107] does not include any dynamical quarks (quench approximation);

to the authors’ knowledge, no lattice calculations in which all of these issues have

been adressed simultaneously have computed the electric conductivity in our region of

interest.

4.4.3 Electric conductivity theory comparison

Although comparison to other models could be arduous in the case of the baryon-

electric and strange-electric conductivities since they were first proposed as interesting

quantities in this work, such is not the case for the electric conductivity, for which

some calculations do exist for the hadronic phase; a selection of these are presented in

Fig. 4.31, along with our own results.

The results from Greif et al. [115] use a kinetic approach and a similar approach

to linearize the Boltzmann equation as what we discussed in Section 2.2. Their calcu-

lation uses a gas of pions, kaons and nucleons which are allowed to interact through

energy dependent cross-sections reproducing the Breit-Wigner shape of some common

resonances, as well as many constant cross-sections for elastic processes (see Table 1

in [115]). Although the elastic cross-sections which are present in this calculation and

those which are generated through the AQM in the case of SMASH are not expected

to be the same (or even similar in some cases), this calculation compares advanta-

geously with our own πKN resonant gas, which provides some further (albeit perhaps

anecdotal) support to our previous calibration using the non-resonant πKN gas.
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Ghosn et al. [133] compute the electric conductivity of a pion gas, also using

a similar Chapman-Enskog approach. Although one should not be surprised to see a

pion gas and a full hadron gas have different conductivity, they add to their calculation

a modification of the cross-sections due to in-medium effects, which they show to have

a significant impact, increasing the conductivity by up to 30% around the critical

temperature.

Similar in-medium effects are also considered in the calculation of Steinert et al.

[118, 119], in which they apply an electric field to a full hadron gas as described by

PHSD and compute the conductivity directly from the constitutive relation (2.31).

This result is significantly larger than our own, and it is at this time still not com-

pletely clear why this should be the case, as PHSD and SMASH are both transport

approaches which can to an extent describe the same hadronic phase. It is probable

that the previously mentioned in-medium effects, which can in PHSD modify the spec-

tral function of resonances and particles, are partly responsible for the discrepancy,

as they should tend to increase the conductivity as found in [133]. Additionally, the

applicability of using directly the constitutive relation to calculate the conductivity

might be limited, as thermodynamic ensembles tend to develop an internal reaction

to being subjected to external electric fields [194], in the form of an internal electric

field which then counteracts the external one; the effective electric field felt by parti-

cles might then be significantly different from the one which is applied to the system,

affecting the calculation of the conductivity.

Finally, we shortly discussed the Aarts et al. [124, 125] lattice QCD results at the
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end of the previous section, where we mentioned that the lack of hadronic interactions

casts a doubt at the applicability of their method in this temperature regime; note that

although not shown here, Brandt et al. obtain very similar results with double the

pion mass [126], and Ding et al. [107] do not present any results for the conductivity

below the critical temperature. This discrepancies with the purely hadronic descrip-

tions could explain why their conductivity is so much lower than the other presented

models, although lattice calculations do in principle remain the most fundamental

representation of QCD.
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Chapter 5

Jets in the hadronic phase

In this chapter we study the hadron resonance gas’ transport properties under a some-

what different angle. As briefly discussed in Section 1.2.4, one of the more prominent

subfields of the field of heavy ion collisions is that of “jet quenching,” that is, of how

very highly energetic particles and the shower of particles they radiate are affected by

traversing some length of the QCD medium. As mentioned in Chapter 1, many descrip-

tions currently exist modeling the various mechanisms by which such high transverse

momenta partons (hereafter referred to as high-pT particles or probes) lose energy in

the high temperature QGP phase of the medium, notably through the calculation of

the transverse and longitudinal energy loss transport coefficients q̂ and ê. However,

the actual value of the hadronic counterpart of these coefficients has not yet been suc-

cessfully calculated, which is one of the goals of this exploratory study. This additional

probe into the hadronic medium also allows us to revisit our shear viscosity calcula-

tion, as the transverse energy loss q̂ has been directly related at high temperatures

to this previously discussed transport coefficient [188], and inspect whether this rela-

tion also holds below the phase transition. Finally, we explore angular distributions

of momentum (so-called “jet shapes”) in a simple expanding model to show that the

hadronic medium can indeed have an effect on the jet substructure observables.

In the following sections we will consider both the box and sphere initialization

schemes described in Section 3.2 for the study of high-pT particles within SMASH. For

consistency with the nature of the investigation, string excitation and fragmentation

need to be activated, which in principle breaks the detailed balance requirement for

thermodynamic quantities to be conserved in the box setup. Since we will however

only be interested in what happens at relatively early times (typically less than 10-20

fm), we simply neglect this effect (over such times, the temperature typically will not

decrease by more than 3%).
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Figure 5.1: Transverse (left) and longitudinal (right) momentum vs temperature for
various high-pT particle momenta.

5.1 Energy loss in the hadronic medium

We introduce a high-pT particle in the previously discussed box simulating infinite

matter and analyse only its first interaction with the medium averaged over many

simulations. This is significantly different to what is normally done in the QGP, where

the interaction of such particles with the medium is often modeled through a succession

of small momentum kicks over some distance. The reason for this change is twofold.

First, in a hadronic transport approach, inelastic collisions are not only possible but

frequent (typically in the form of a string excitation, see Fig. 3.3), resulting in the loss

of the original particle and thus making it impossible to continue to follow it. Second,

even in the cases where the first interaction is elastic, it will typically not be in the

form of many relatively small kicks to the particle; in this case, a single collision can

strongly affect the momentum of the high-pT particle, and as such its final longitudinal

momentum can vary a lot, making it difficult to compare subsequent collisions. By

only studying the first collision, the control parameters are kept fixed.

In the QGP phase, q̂ is typically estimated from kinetic theory [250],

q̂ = ρ

ˆ
q2
⊥
dσ

dq2
⊥
dq2
⊥, (5.1)

where ρ is the number density of the system, q⊥ is the transverse momentum transfer

and dσ/dq2
⊥ is the differential cross-section of the particle with the medium. Since in

SMASH the cross-section only depends on the properties of the incoming particles, the

quantity dσ/dq2
⊥ in this definition is consistent with zero, leading to the conclusion

that Eq. (5.1) should not be used in this context. However, this does not mean that
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it is not possible to describe the energy loss in the hadronic medium. At the most

fundamental level, the transverse and longitudinal energy losses are simply

q̂ =
〈q2
⊥〉L
L

, ê =
〈q2
‖〉L
L

, (5.2)

where 〈q2
⊥〉L and 〈q2

‖〉L are the average cumulative transverse and longitudinal mo-

mentum change suffered by a propagating particle in a medium over a length L. As

previously mentioned, this typically assumes that the medium acts through many small

elastic scatterings on the particle; this is not quite valid in the case of the hadron gas,

as we rather usually observe one very large (and likely inelastic) momentum influx. To

account for these differences in the description, we propose the following definitions

for similar quantities denoted as q̃ and ẽ,

q̃ =
〈q2
⊥〉

λmfp
, ẽ =

〈q2
‖〉

λmfp
, (5.3)

where 〈q2
⊥〉 and 〈q2

‖〉 are now the average transverse and longitudinal momentum of the

first collision with the medium, and λmfp is the mean free path of the high-pT particle

before this first interaction.

The left panel of Fig. 5.1 shows the effect of varying the energy of the high-pT par-

ticle on 〈q2
⊥〉, which is shown to increase with temperature at every energy; moreover,

the effect of temperature appears to be markedly more important as the energy of the

particle increases. The right panel shows a similar picture for the longitudinal case,

where we also see 〈q2
‖〉 increase with temperature at every energy; note however that
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in this case there is already a relatively strong temperature dependence even at low

beam energies. Fig. 5.2 shows that the choice of species for the high-pT particle has

a large impact on its mean free path, which mainly comes from the fact that cross-

sections depend quite strongly on the type of particle. Although not shown here, the

temperature dependence of the transverse and longitudinal momenta are as expected

very similar for each species, pointing to a main kinematic effect. In fact, the longitu-

dinal momentum transfer is much smaller than the transverse one due to momentum

conservation. Since the high momentum probe has initially rather high momentum,

there has to be a significant amount maintained in the longitudinal direction, while

any re-distribution into the transverse plane implies a large change since the transverse

momentum is zero before the scattering. The mean free path on the other hand is in

comparison insensitive to the energy of the particle, as expected from the invariance

of the string fragmentation versus the particle species and from the fact that the av-

erage cross-section only slightly varies with the energy of the particle (see for example

Fig. 3.3).

Using this prescription, we explore the temperature and particle energy depen-

dence of q̃ and ẽ for the specific case of a high-pT pion (Fig. 5.3). As one readily

sees, we observe that both q̃ and ẽ increase significantly both with temperature and

particle energy. This parameter space exploration allows us to introduce the following

parametrizations (also shown on the figures) to estimate the value of the hadronic

transverse and longitudinal energy losses at temperatures between 100 and 175 MeV,

for particles with momenta between 1 and 120 GeV:

q̃π(pT , T ) = 5.14 · 10−18 GeV2

fm

( pT
GeV

)0.87( T

MeV

)7.35

, (5.4)

ẽπ(pT , T ) = 9.31 · 10−19 GeV2

fm

( pT
GeV

)0.17( T

MeV

)7.59

. (5.5)

We observe that while both these quantities depend on the momentum of the high-

energy particle, the dependence is much stronger in the case of the transverse coeffi-

cient. These parametrizations can be directly employed in future studies of hadronic

jet quenching.

Although it is not yet completely clear that the hat and tilde definitions are equiv-

alent, we attempt a comparison between numerical values. In the QGP, a cross-model

study [187] (see Fig. 1.4) has recently found that q̂ = 1.9 ± 0.7 GeV2/fm at T=470

MeV and q̂ = 1.2 ± 0.3 GeV2/fm at T=370 MeV [187] for a 10 GeV quark traveling

through the medium. Our approach shows that for a pion with the same energy in

a relatively hot hadronic medium at 150 MeV (i.e. just below the phase transition),

we obtain from (5.4) that q̃ = 0.38 GeV2/fm. This result, while as expected below its

QGP counterpart, does remain significant, as will be discussed in Section 5.2.

In [188] it is suggested that a heuristic connection between η and q̂ can be es-
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Figure 5.3: Medium modification factor q̃ as a function of temperature and high-pT
pion momentum. Lines show the fit of parametrizations (5.4) and (5.5).
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Figure 5.4: Transverse energy loss q̃ as computed from our previous shear viscosity re-
sults; the yellow lines correspond to various probe energies using the (5.4) parametriza-
tion.

tablished. This relation was developed in a context where soft scatterings dominate,

which, as mentioned previously, is far from the case in the hadron gas as described by

SMASH. Specifically, in the case of massless particles, it is shown that

η ≈ 13.5c2
s

T 3ρ

q̂
, (5.6)

where c2
s = dp

de
is the previously introduced speed of sound (see discussion around

Fig. 4.24). Although we are here also not dealing with a massless gas of particles,

in principle this assumption could hold for very high-pT particles, as the mass of the

medium particles would then be negligible with respect to the high momentum of this

probe.

Since our direct results for q̃ are dependent on the probe energy and the shear

viscosity is not, it would be difficult to expect a direct correspondence between the

previously presented parametrization and the transverse energy loss parameter that we

can obtain using the shear viscosity calculated in Chapter 4. However, we still proceed

with the comparison in the spirit of extracting some additional insights. Using the

full hadron gas results (including AQM) that were presented in Fig. 4.15, we thus

proceed to use Eq. (5.6) to provide another calculation of q̃. As one readily sees, the

obtained transport coefficient is very low compared to our previous calculation, with

it being up to three orders of magnitude smaller than the highest values obtained at

high temperature with a very energetic probe. Interestingly, as mentioned, the highest

pT = 120GeV particle should in principle see the gas as essentially massless, which
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Figure 5.5: Illustration of the solid angle around the direction of initial propagation
(red arrow).

makes it the closest conceptually to the framework in which Eq. 5.6 was developed. It

should be noted that in [188] it is mentioned that systems which are strongly coupled

(for example those in which confinement is present, such as the hadron gas) should

exhibit a much larger viscosity than what the heuristic predicts, which is in this case

quite true; it is suggested that this could be a way to ascertain the strength of the

underlying QCD coupling. We additionally note that while the q̃ predicted through the

relation with the shear viscosity does increase with temperature, it does not appear to

match the slope of our very fast rising previous calculation, leading to the observation

that these two methods also do not produce results which are simply proportional to

each other. This means that some additional factors which take into account the hard

scatterings and non-zero masses need to be included for this heuristic to really hold in

the hadronic phase.

5.2 Jet Shapes

Now that we quantified the energy loss of a high-pT particle through the hadron gas and

found it to be smaller than its QGP counterpart, but not to the point of insignificance,

we demonstrate that the hadronic medium has an effect on the angular momentum

distributions of shooting a single high-pT particle through it.

In this section we add a high-pT particle in the middle of the previously described

thermally initialized sphere at a temperature of T = 150 MeV, and measure the

angular distribution at large times, after freeze-out. To some extent, one can consider

this scenario as similar to what would happen to a high-pT particle in the late stages of
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Figure 5.6: Jet shapes as a function of leading particle energy (top left), leading particle
species (top right), medium size (bottom left). The bottom right plot compares the
full hadron gas jet shape to that of a pion gas with constant cross-section.

a heavy ion collision, after the hadronization has taken place: at that point, it crosses

a rapidly cooling and decreasingly dense hadronic medium; the main difference is here

the absence of flow. It is not trivial to predict how flow would affect these distributions

at all energies. On the one hand, such an outwards movement of the particles will lead

to a faster cooling and eventual freeze-out of the sphere; on the other, depending on

the momentum of the high-pT particle, there are some cases in which lower pT particles

would have a larger average cross-section with the medium since they would now be

more likely to be (at least partially) comoving (see Fig. 3.3 at
√
s = 10 GeV or lower,

for example). Thus, while in the high-pT limit our results should represent a maximum

as to what effect can be expected, the situation is not so clear at lower momentum.

We determine the angular momentum distribution, or jet shapes, shown in Fig. 5.6
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by measuring the amount of energy such a high-pT particle adds on average at an

angle θ of its original propagation direction. Specifically, this is done by simulating

both a set of spheres in which this high-pT particle is present and and one in which

it is absent. At a given angle θ1 corresponding to a solid angle Ω (see Fig. 5.5), the

momentum dp/dΩ of the latter is subtracted from the momentum of the first, in what

can be thought of as a background subtraction. We then normalize this by dividing

it by the maximum value it could take, i.e. if all the momentum was still at θ1 = 0

(which corresponds to the case where the particle flies out of the medium without

interacting). This gives us a quantity which can be compared for a wide variety of

scenarios.

The top left panel of Fig. 5.6 explores the energy dependence of the high-pT particle.

As one can readily see, less energetic particles tend to affect the momentum distribution

at wider angles than their more energetic counterparts. This is expected, as we would

indeed think that a 100 GeV particle, even if it does interact with the medium, should

retain or transfer most of its momentum in the initial direction of propagation when

colliding elastically or inelastically with a medium component with energy of the order

of 1-3 GeV. Conversely, using the same considerations, a much larger part of the

momentum is found at wider angles in the case of a 10 GeV particle. The peak around

zero angle, e.g. for the 10 GeV probe, reflects the particles that escape from the

medium without any disturbance.

We see in the top right panel of Fig. 5.6 that various species of particles are differ-

ently affected by the hadronic expansion. This is due to different hadrons having on

average larger or smaller cross-sections with the particles of the medium. Remember-

ing the discussion about the Additive Quark Model in Section 3.5.7, we then see that

the proton, as a baryon, typically has larger cross-section with the medium, and its jet

shape is more skewed towards larger angles; the pion shape is less affected, but still

slightly more so than the strange kaon one, with the smallest average cross-section.

The medium size dependence (here probed through varying the radius of the initial

expanding sphere) is inspected in the bottom left panel of Fig. 5.6. As one would

expect, increasing the size of the medium (and thus the number of possible collisions

between the high-pt and medium particles) generally broadens the angular distribution.

Note that while the size of the hadronic part of the medium in heavy ion collisions is

not precisely known, estimations usually place it between 10 and 15 fm [251].

Finally, the bottom right panel compares shooting a high-pT pion through a full

hadron gas as described by SMASH and through a much simpler pion gas interacting

only through constant cross-sections, which corresponds in essence to the hard spheres

scenario. Although the 30 mb case is much closer to the actual average cross-section

the pion would encounter in a full hadron gas, we see that the angular distribution of

the 100 mb case is in fact much closer to that of the full hadron gas due to the much
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larger density than in the pure pion gas. In order to get an intuition of the degree at

which the 30 mb and 100 mb cases differ, we calculate the proportion of volume at

thermal densities which is occupied by particles in this hard sphere scenario. For an

initial temperature of 150 MeV, we thus see that ∼ 5% of the volume is occupied in the

case of the 30 mb cross-sections, whereas ∼ 33% of space is filled in the case of the 100

mb cross-sections. Although this is a simplified model, it should provide the reader

with some sense of how dense such a hadron gas still is at the time of hadronization.

This explorative investigation shows that the angular distributions can be affected

by the hadronic phase rescatterings in a significant manner. In particular, let us note

that fully reconstructed jets rely on information of particles at much lower transverse

momenta as well. Since the probe hadron would be of similar energy as the medium

particles, making it hard to distinguish it clearly, in our radially expanding sphere

it does not make sense to lower the momenta beyond the displayed 10 GeV. How-

ever hadrons around 2 GeV of energy would certainly be re-shuffled and found at

different angles than without hadronic rescattering, sizeably affecting the tail of the

distributions of observables such as the ‘jet shapes’ computed in [163, 177, 252–255].
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Chapter 6

Summary

In this work we provided additional insights into our understanding of bulk QCD mat-

ter through the study of the transport coefficients which govern the non-equilibrium

microscopical processes of statistical ensembles. Specifically, we focused on the low

energy regime corresponding to the hadron gas, as the properties of this region of the

phase diagram are still relatively unknown, and existing calculations for the trans-

port coefficients are either scarce, contradictory, or somewhat limited in scope; this

thesis’ main goal was thus to shed some light on this by providing new independent

calculations of these quantities.

We subsequently presented two formalisms which can be used to calculate trans-

port coefficients. The first one (which also was the main tool we used in the following

chapters to produce our results) relies on the development of so-called Green-Kubo

formulas, which relate non-equilibrium dissipative fluctuations with transport coeffi-

cients; notably, the off-diagonal components of the energy-momentum tensor are shown

to be related to the shear viscosity, its diagonal components to the bulk viscosity and

fluctuations in the electric current can be related to the electric conductivity. We ad-

ditionally introduced two new conductivities, namely the baryon-electric and strange

electric conductivities, which we dubbed, together with the already known electric

one, the “cross-conductivity”, which encodes information about how electric fluctua-

tions are correlated to changes in electric, baryonic or strange currents, or vice-versa.

The second way of calculating transport coefficient which we discussed consists in lin-

earizing the collision term of the Boltzmann equation through the Chapman-Enskog

formalism. While in principle providing direct semi-analytical results for the trans-

port coefficients, this approach is complicated to implement when more than a few

species are considered, and as such was then mostly used as a tool to calibrate our

Green-Kubo calculations.

The hadron gas model that we used for all calculations, namely the transport

approach SMASH, was then presented. The main features of the model were explained,

such as the collision criterion, the considered degrees of freedom and the specific way
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in which they microscopically interact with each other. It was verified that SMASH

does reproduce analytical results of the Boltzmann equation in an expanding universe

scenario, thus showing the equivalence of this transport approach and the associated

kinetic theory results. A special care was taken to detail the ways in which a state of

thermal and chemical equilibrium (which is necessary for Green-Kubo relations to be

valid) can be reached and described using SMASH.

We then presented the decaying exponential ansatz to help calculate the Green-

Kubo correlation functions, which allows one to solve the integrals at the cost of

introducing some systematic errors. After full systematic studies, the shear viscosity

η, bulk viscosity ζ and cross-conductivities (σQQ, σQB, σQS) were calculated, compared

to previous calculations, and comments on the properties of the transport coefficients

and their dependencies were made. It is shown that the detailed microscopic way

in which interactions between particles are performed in different models can have a

large impact on some coefficients; notably, the implementation of resonance lifetimes

appears critical for the appropriate treatment of the shear viscosity, while we saw

that the bulk viscosity necessitates mass changing processes (for example through

propagating resonances, but not limited to them) to be present in order to be fully

consistent. Interestingly, the conductivities show much less sensitivity to the treatment

of resonances; it is shown that increasing the number of degrees of freedom leads

to differences in the temperature dependence of the conductivities, such that future

calculations of those quantities on the lattice could help constrain some properties of

hadron transport approaches.

Although a significant step in the direction of better understanding the non-

equilibrium properties of the hadron gas, these results can however still definitely

be improved. The largest contributor to the uncertainty of the transport coefficients is

in this case the exponential ansatz which we used throughout Chapter 4; this approx-

imation is in many cases simply not valid anymore, for example in the high density

systems found at very high temperature or chemical potential µB, or even at lower

densities as we saw in the case of the bulk viscosity. Since the errors on the correlation

function increase rapidly at large times, it is as of yet unclear how this calculation

could be performed without such an ansatz. On the side of the hadron gas modeling,

several improvements are also expected to have a significant impact on the calculation

of the shear viscosity. In particular,

1. The inclusion of medium broadening on the spectral functions of resonances could

most definitely have an impact on several of these coefficients. This has already

been shown to increase the electric conductivity in simple systems [133], and a

similar effect was theorized to partly explain the differences between our results

and those obtained using PHSD, another transport approach in which those

medium effects are modelled [119]. Interestingly, the same medium modifications
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to the spectral functions would also effectively reduce the lifetime of resonances

at high temperatures, which, according to our results, would instead decrease the

shear viscosity; It will bin interesting to see such a feature studied in detail, as

different effects can be expected from its inclusion on calculation of the various

coefficients.

2. All the interactions we used in our calculations were isotropic in order to preserve

detailed balance. However, as briefly discussed in the case of the shear viscosity

of a simple π − ρ gas, the inclusion of anisotropies in such interactions can be

expected to produce large effects (in this gas, we argued that the shear viscosity

of such a p−wave would be 5/3 larger than in the isotropic case), and it should

also have an effect on other gases and coefficients.

3. At high temperatures and baryon chemical potential, as density rises, it should be

expected that multiparticle interactions start to be relevant, as the Stosszahlansatz

and thus the applicability of the Boltzmann equation start to break down. Al-

though such interactions are expected to accelerate the reshuffling of momenta

and thus to reduce the value of transport coefficients, the magnitude of the in-

fluence of these non-binary collisions on the linear response coefficients is as of

yet not very well known.

To turn this around, when more precise values of these coefficients are extracted from

experimental data, they can then also be used to impose some constraints on this

modeling.

Finally, in our final chapter we accessed the hadron gas properties through a some-

what different approach by shooting high-pT particles through a hadronic gas, in order

to calculate for the first time a hadronic equivalent to the jet quenching parameters

q̂ and ê. These hadronic transport coefficients are dubbed q̃ and ẽ, and their value

is calculated to be approximately 3 to 4 times smaller than their QGP counterparts;

while effects on jet observables from this should thus be more limited, this is by no

means negligible, which we show by studying the angular distribution of momentum

(or jet shape) of a high-pT particle flying through an expanding sphere. While this

is beyond the scope of this initial study, the logical next step to verifying whether

hadronic considerations are relevant to the jet quenching framework could also be to

performed in full heavy ion simulations, complete with jets that first go through a

QGP phase and then move on to cross a hadronic afterburner, for example within the

JETSCAPE framework [209]. We finally comment that although there is a heuristic

connection between the shear viscosity η and transverse parameter q̂ in the QGP, this

appears not to be the case in the lower temperatures corresponding to the hadron gas,

although a different relationship still might exist.
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