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Zusammenfassung

Das diffuse Verhalten von Makromolekülen in Lösung ist ein Schlüsselfaktor in der
Kinetik von makromolekularen Bindungs und Anordnungs Prozessen, und wichtig
in der theoretischen Beschreibung vieler Experimente. Experimente an Proteinlö-
sungen mit hohen Dichten haben ergeben, dass sich die Diffusionsdynamik stärker
verlangsamt als von der kolloidalen Theorie für nicht interagierende harte Kugeln
erwartet. Es hat sich auch gezeigt, dass die Rotationsdiffusionsanisotropie bei hohen
Dichten größer ist als in verdünnten Lösungen. Proteinlösungen bei hohen Dichten
sind eine komplexe Flüssigkeit, die sich von der in der hydrodynamischen Theorie
verwendeten Annahme der einfachen Flüssigkeit unterscheidet. Daher sind Metho-
den zur genauen Berechnung des Translations- und Rotationsdiffusionstensors sowie
Simulationsalgorithmen zur Untersuchung von Lösungen mit hoher Dichte wichtig.

Simulationen stellen ein leistungsstarkes Werkzeug zur Untersuchung der Diffu-
sion in komplexen Flüssigkeiten dar. Sie können verwendet werden, um die makros-
kopischen und mikroskopischen Auswirkungen komplexer Flüssigkeiten auf das Dif-
fusionsverhalten zu untersuchen.

Es existieren bereits einfache Algorithmen, um Diffusion zu simulieren und um
die Diffusionskoeffizienten aus Simulationen zu bestimmen. Die translatorische Dif-
fusion von Molekülen in einfachen und komplexen Flüssigkeiten kann mit hoher
Genauigkeit aus Simulationen bestimmt werden. Dies ist bei der Rotationsdiffusion
noch nicht der Fall. Bestehende Algorithmen zur Berechnung der Rotationsdiffu-
sionskoeffizienten aus Simulationen machen Annahmen über die Form des Proteins
oder funktionieren nur für das kurzzeit Verhalten. Für die Simulation des diffusen
Verhaltens von Makromolekülen gibt es heute zwei Möglichkeiten. Ein atomistischen
Integrator mit expliziten Lösungsmittelmolekülen oder Coarse-Grained (CG) Simu-
lationen mit impliziten Lösungsmittel. CG Simulationen mit impliziten Lösungsmit-
teln werden auch als Brownsche-Dynamik (BD) Simulationen bezeichnet. Für die
CG Simulationen wird häufig der Ermak-McCammon-Algorithmus verwendet, um
die zugrunde liegende Langevin-Gleichung zu lösen. Der Algorithmus ist eine Er-
weiterung des Euler-Maruyama-Integrators um Translation und Rotation in drei Di-
mensionen. Dieser Algorithmus bildet die Gleichgewichtswahrscheinlichkeit nur für
kurze Zeitschritte korrekt ab und der Integrationsfehler hängt linear vom Zeitschritt
ab. Es hat sich gezeigt, dass Monte Carlo basierte Algorithmen bei entsprechen-
der Parametrisierung BD für die translationale Dynamik erzeugen können. Der
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Vorteil eines Monte Carlo basierten Algorithmus besteht darin, dass er die korrekte
Gleichgewichtsverteilung unabhängig vom gewählten Zeitschritt reproduziert. Dies
ermöglicht im Gegenzug größere Zeitschritte in Simulationen zu benutzen. Das Ziel
dieser Arbeit ist die Entwicklung neuer Methoden zur genauen Bestimmung des
Rotationsdiffusionskoeffizienten aus Simulationen und die Erweiterung bestehender
Monte-Carlo-Algorithmen um Rotationsdynamik.

Das erste Projekt beschäftigt sich mit der Frage, wie man die Rotationsdiffu-
sionskoeffizienten aus Simulationen genau bestimmen kann. Wir entwickeln eine
Quaternionen basierten Algorithmus zur Berechnung des Rotationsdiffusionstensors
aus Simulationen und eine Theorie für die Auswirkungen von periodischen Randbe-
dingungen (PBC) auf den Rotationsdiffusionskoeffizienten in atomistischen Simula-
tionen.

Unser Verfahren zur Berechnung von Rotationsdiffusionskoeffizienten basiert auf
den Quaternion-Kovarianzen von Favro für ein frei rotierendes starres Molekül.
Die Kovarianzen sind nur im Hauptachsen System (PCS) des Rotationsdiffusion-
stensors gültig. Die Kovarianzen können für ein beliebiges Referenzkoordinaten-
system (RCS), zum Beispiel einer Simulation, verallgemeinert werden, wenn man
die Hauptachsen des Rotationsdiffusionstensors im RCS kennt. Wir zeigen, dass
keine Vorkenntnisse über den Diffusionstensor und seine Hauptachsen erforderlich
sind, um die generalisierten Kovarianzen aus Simulationen mit gängigen RMSD-
Verfahren zu berechnen. Wir entwickeln zwei Methoden, um die aus Simulationen
berechneten Kovarianzen an unsere verallgemeinerten Gleichungen zu fitten. In
der ersten Methode minimieren wir die Summe der quadrierten Fehlerabweichungen
zwischen Modell- und Simulationsdaten. Für diese sechsdimensionale Optimierung
verwenden wir einen Simulated Annealing Algorithmus. Alternativ kann der Ro-
tationsdiffusionstensor auch aus einer Eigenwertzerlegung der Kovarianz nach der
Integration bestimmt werden. Um die Auswirkungen von Rauschen in der Integra-
tion zu minimieren, wenden wir zunächst eine Laplace-Transformation an, um die
Kovarianzen zu glätten. Für rauschfreie Daten sollte der resultierende Rotationsd-
iffusionskoeffizient unabhängig vom Wert der Laplace-Variable sein. In der Praxis
werden jedoch die besten Ergebnisse mit einem Wert erzielt, der nahe der inversen
Autokorrelationzeit der Drehbewegung ist.

Der Fit der Quaternionen-Kovarianzen geht davon aus, dass die Simulations-
box unendlich groß ist und dass nichts den hydrodynamischen Fluss beeinflusst.
Aus praktischen Gründen verwenden Simulationen oft periodische Randbedingun-
gen (PBC), um ein sich unendlich wiederholendes System anstelle eines unendlich
verdünnten Systems zu simulieren. PBC verlangen, dass der Nettofluss über die
Grenzen der Simulationsbox hinweg Null ist, was den hydrodynamischen Fluss stark
einschränkt. Es hat sich gezeigt, dass PBC die translatorische Diffusion bei kleinen
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Simulationsboxen verlangsamen. Mit unserem Algorithmus untersuchen wir, ob
dieser Effekt auch bei der Rotationsdiffusion vorhanden ist. Darüber hinaus en-
twickeln wir eine Theorie über die Wirkung von PBC auf die Rotationsdiffusion.
Wir modellieren die hydrodynamische Strömung um eine Kugel in einem unendlichen
periodischen Gitter und leiten ein einfaches sphärisches Couette-Modell ab, um die
Volumenabhängigkeit des Rotationsdiffusionstensors zu beschreiben. Unsere The-
orie sagt voraus, dass die PBC auch die Rotationsdiffusion für kleine Simulations-
boxen verlangsamt, wenn auch nicht so stark wie bei der Translationsdiffusion. Die
Reduzierung der Rotationsdiffusion hängt nur vom Boxenvolumen ab und nicht von
der Form des Makromoleküls oder der Form der Simulationsbox. Das heißt, unsere
Theorie kann verwendet werden, um den Rotationsdiffusionskoeffizienten in einer
unendlichen Verdünnung aus Simulationen unter PBC zu berechnen.

Die Berechnung von Kovarianzen aus Simulationsdaten ist ein bekannt schwieriges
Problem und molekulardynamische Simulationen sind sehr rechenintensiv. Um den
Fehler zu minimieren, verwenden wir daher immer alle verfügbaren Simulations-
daten, um die Quaternionen Kovarianzen zu berechnen. Um den Fehler der Kovar-
ianzen abzuschätzen, verwenden wir reine Rotation BD Simulationen mit unserem
geschätzten Diffusionstensor als Input. Wir leiten den Rotations-Algorithmus aus
den Quaternionen Kovarianzen ab.

Um unsere Theorie der Wirkung von PBC auf die Rotationsdiffusion und un-
sere Methode zur Bestimmung des Rotationsdiffusionstensors zu testen wenden wir
sie auf voll atomistische Molekulardynamik (MD) Simulationen an und vergleichen
sie mit hydrodynamischen Theorie- und Literaturwerten. Wir simulieren Pferde-
herzmyoglobin und B-DNA. Die B-DNA hat eine zylindrische Form und dient als
Modell für ein Makromolekül mit einer großen Anisotropie. Wir simulieren Myo-
globin in einer ≈ 150 mM NaCl-Lösung mit GROMACS 5 in einer rhombischen
Dodekaeder-Box bei fünf verschiedenen Boxvolumen, von 206 nm3 bis 516 nm3. Wir
simulieren B-DNA in einer ≈ 150 mM NaCl-Lösung mit GROMACS 2016 in einer
kubischen Box bei drei verschiedenen Boxvolumen, von 233 nm3 bis 580 nm3. Für
jedes Makromolekül und jede Boxgröße haben wir mindestens fünf Simulationen
mit einer Dauer von 1µs bis 3µs durchgeführt. Die Fehler der Kovarianzen wur-
den durch wiederholte rein rotierende BD Simulationen mit unserem gefitten Dif-
fusionstensor als Input ermittelt. Die Variation der Hauptachsen wurde mit Hilfe
der Frobenius-Norm zwischen Rotationsdiffusionstensoren, von Fits der BD Sim-
ulationen im Vergleich zu unserer Fit der MD-Simulationsdaten, bestimmt. Die
berechneten Rotationsdiffusionskoeffizienten für Myoglobin und B-DNA stimmen
sowohl mit der hydrodynamischen Theorie als auch mit den Experimenten hervor-
ragend vereinbar. Unsere Schätzung der harmonischen mittleren Relaxationszeit,
beider Moleküle, liegt innerhalb des Fehlers der Literaturwerte. Aus den Simulatio-
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nen bei verschiedenen Simulationvolumen zeigen wir auch, dass die Rotationsdiffu-
sion mit abnehmenden Simulationsvolumen verlangsamt wird. Unter Verwendung
der Stokes-Einstein-Relation ist unsere Schätzung des Rotationsdiffusionstensors bei
unendlicher Verdünnung in ausgezeichneter Übereinstimmung mit Literaturwerten.
Auch zuvor veröffentlichte Simulationsdaten von GB3 und Ubiquitin bei unter-
schiedlichen Simulationsvolumen, Formen der Simulationsbox und Wassermodellen
folgen unseren Vorhersagen.

Im zweiten Projekt dieser Arbeit entwickeln wir einen neuartigen BD Algorith-
mus, der die Gleichgewichtsverteilung unabhängig vom gewählten Zeitschritt repro-
duziert. Unser Algorithmus ist eine Erweiterung bestehender Monte-Carlo-basierter
Algorithmen für isotrope Partikel um Rotationsdynamik. Außerdem entwickeln wir
eine Erweiterung für positionsabhängige Translationsdiffusions. Im weiteren Ver-
lauf der Arbeit nennen wir diese Algorithmen Brownsche Dynamik Monte-Carlo
(BDMC). Wir entwickeln zusätzlich eine Generalisierung, um BDMC Algorithmen
für verschiedene Akzeptanz- und Übergangswahrscheinlichkeiten abzuleiten.

Für die Translationsfunktion hat die Übergangswahrscheinlichkeit einen freien
Parameter a. Der Parameter a ist so gewählt, dass die mittlere quadratische Ver-
schiebung (MSD) eines einzelnen Monte-Carlo-Schrittes und der MSD von BD nach
einer Zeit ∆t übereinstimmen. Daher definiert der Translationsdiffusionskoeffizient
und der Zeitschritt ∆t den Parameter a. Für anisotrope Makromoleküle sind die
Translationsbewegungen nur im PCS des translatorischen Diffusionstensors definiert.
Das Äquivalent zu dem MSD für Rotationen sind die Kovarianzen von Favro. Daher
konstruieren wir unsere Drehbewegungen im Quaternionenraum. Die kleinen Rota-
tionen im Quaternionenraum werden durch die Wahl eines Zufallsvektors innerhalb
der Einheitskugel erzeugt. Der entsprechende Vektor repräsentiert die Drehachsen
und die Länge des Vektors bestimmt den Drehwinkel. Der Zufallsvektor wird um
drei Variablen ai i = (1, 2, 3) skaliert. Eine Variable für jede Achse. Die drei
Variablen ai sind so gewählt, dass die Quaternion-Kovarianzen nach einem Schritt
gleich den erwarteten Quaternion-Kovarianzen für einen gegebenen Rotationsdiffu-
sionstensor und Zeitschritt ∆t sind. Der Einfachheit halber verwenden wir eine
Kurzzeit Approximation der Quaternionen Kovarianzen im PCS des Rotationsdiffu-
sionstensors. Für eine Simulation anisotroper Makromoleküle werden die Rotations-
und Translationsbewegungen in den jeweiligen PCS gezogen. Um die rotierenden
und translatorischen Monte-Carlo-Schritte zu kombinieren, muss man beide in einem
gemeinsamen RCS anwenden. In einer Simulation müssen wir daher die Orientierung
im RCS mit Bezug auf das jeweilige PCS des translatorischen und rotatorischen
Diffusionstensors speichern. In einer einzigen Monte-Carlo-Bewegung muss eine
Translations- und Rotationsbewegung durchgeführt werden. Um ein detailliertes
Gleichgewicht zu gewährleisten, muss die Reihenfolge, in der Translation und Ro-
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tation angewendet werden, zufällig gewählt werden. Für Multipartikelsimulationen
muss der Monte-Carlo-Sweep alle Partikel einmal berühren, um die gesamte Sim-
ulation in einem Zeitschritt voranzutreiben. Um ein detailliertes Gleichgewicht zu
gewährleisten, muss die Reihenfolge, in der die Partikel bewegt werden, zufällig
festgelegt werden.

Bisherige BDMCAlgorithmen verwendeten nur die Metropolis-Hastings Akzeptanz-
funktion und eine Gleichverteilung als Übersetzungswahrscheinlichkeit. Metropolis-
Hastings ist nicht die einzige Akzeptanzfunktion, die detailliertes Gleichgewicht er-
füllt. Wir berechnen den Fehler des ersten, zweiten und dritten Moments der Gleich-
gewichtsverteilung in Abhängigkeit vom Parameter a der Übersetzungswahrschein-
lichkeit für ein eindimensionales Teilchen unter konstanter Kraft. Mit Metropolis-
Hastings sind die ersten drei Momente genau auf die dritte Ordnung. Die Glauber-
Akzeptanzfunktion, eine gängige Alternative zu Metropolis-Hastings, ist eine Ord-
nung genauer als Metropolis-Hastings. Wir entwickeln auch eine neue Akzeptanz-
funktion, die in den ersten drei Momenten bis zur sechsten Ordnung genau ist.

Viele Probleme in der statistischen Mechanik erfordern positionsabhängige Dif-
fusionskoeffizienten. Wir verwenden eine Gaußsche Übersetzungswahrscheinlichkeit,
die von einem Parameter a und dem positionsabhängigen Diffusionskoeffizienten ab-
hängt, um ein neues effektives Potenzial V zu definieren. Das Potenzial V hängt
nur von der Übersetzungswahrscheinlichkeit ab. Es kann daher mit jeder Akzep-
tanzfunktion verwendet werden.

Wir testen unsere Algorithmen an Spielzeugmodellen des harmonischen Oszilla-
tors und vergleichen sie mit den Euler-Maruyama und BAOAB Algorithmen. Unsere
BDMC Algorithmen sind in der Lage, die korrekte Gleichgewichtsverteilung unab-
hängig vom gewählten Integrationszeitschritt zu reproduzieren. Die berechneten
Autokorrelationszeiten der Energie sind auch in guter Übereinstimmung mit den the-
oretischen Werten unter Verwendung akzeptabler Zeitschritte. Der kleinste Fehler
in der Autokorrelationszeit erreichen wir mit der uniforme Übersetzungsverteilung
und unser eigenen Akzeptanzfunktion. Der Fehler der Autokorrelationszeit skaliert
annähernd mit einem Faktor zwei. Das heißt, wenn der Zeitschritt halbiert wird,
reduziert sich der Fehler um den Faktor vier. Sie schlägt sogar traditionelle Inte-
gratoren wie den Euler-Maruyama und BAOAB. Der größte Fehler wird mit einer
Gaußschen Übersetzungsverteilung und der Akzeptanzfunktion Metropolis-Hastings
erzeugt. Für die positionsabhängige Diffusion transformieren wir den harmonis-
chen Oszillator mit konstantem Diffusionskoeffizienten in ein Koordinatensystem
mit einem positionsabhängigen Diffusionskoeffizienten. In diesem Beispiel können
unsere BDMC-Algorithmen die Gleichgewichtsverteilung unabhängig vom gewählten
Zeitschritt reproduzieren. Die Autokorrelationszeit hat jedoch einen größeren Fehler
für die BDMC Algorithmen als für den Euler-Maruyama und BAOAB Integrator.
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Der Fehler skaliert mit einem Faktor 0.8 für unsere Algorithmen.
Wir haben auch die Bindungsraten und Dissoziationskonstanten für die UIM-

1-Ubiquitin- und CUE-Ubiquitin-Komplexe berechnet. Als Kraftfeld benutzen wir
das KimHummer (KH) CG Proteinmodell. Das KH Kraftfeld ersetzt Aminosäuren
durch einzelne Interaktionsstellen an der Cα -Position und verwendet starre Kör-
per für die Proteine. Wir haben beide Komplexe für ein breites Spektrum von
Zeitschritten von 0.05 ps bis 100 ps simuliert. Um zu bestimmen, ob ein Komplex
gebunden oder ungebunden ist, verwenden wir Transition-Based-Assignment (TBA)
auf einem zweidimensionalen Reaktionsweg, der aus der Gesamtenergie und dem
Mindestabstand zwischen zwei beliebigen Aminosäuren der beiden Reaktionspart-
ner besteht. In TBA definieren wir eine Übergangsregion, in der zunächst unklar ist,
ob ein Komplex gebunden oder ungebunden ist. Ein Filter wird dann verwendet,
um basierend auf der Geschichte der Trajektorie zu entscheiden, ob eine Konfig-
uration in der Übergangszone gebunden oder ungebunden ist. Die Simulationen
werden unter PBC durchgeführt, bei denen die Dissoziationskonstante Simulations-
boxvolumen abhängig ist. Daher haben wir jeden Komplex bei mehreren Volumen
simuliert, um die Dissoziationskonstante bei unendlichem Volumen zu erhalten. Für
die Dissoziationskonstante sind unsere Schätzungen aus Simulationen in ausgeze-
ichneter Übereinstimmung mit Experimenten. Diese Ergebnisse sind unabhängig,
wenn wir die Dissoziationskonstanten aus den Bindungsraten oder der zu binden-
den Wahrscheinlichkeit berechnen. Unsere geschätzten On-Raten von ≈ 1010 sind
überraschend schnell. Es sollte jedoch beachtet werden, dass wir erwarten, dass die
Raten schneller sind als in einem reinen atomaren Kraftfeld, da das KH Kraftfeld
viel glatter ist. In Anbetracht der Vielzahl von Funktionen, die Ubiquitin in der
Zelle ausführt, wäre es außerdem von Vorteil, wenn es eine schnelle On-Rate hat.

Im letzten Projekt dieser Arbeit beschreiben wir die Implementierung einer
neuen Monte-Carlo-Engine die auf dem KH Proteinmodell basiert. Die Monte-
Carlo-Engine ist in zwei Programme aufgeteilt: Complexes++ und pycomplexes.
Das erste ist ein allgemeines Werkzeug für Monte-Carlo-Simulationen von CG Protein-
modellen, geschrieben in C++14. pycomplexes ist eine in Python geschriebene Toolbox,
die Eingabedateien für Complexes++ mit dem KH Modell erzeugt. Diese Trennung er-
möglicht die Monte-Carlo-Engine allgemein und flexibel zu halten. In Complexes++ sind
zwei thermodynamischen Ensembles, die NVT und NΠT, zusammen mit Replica-Exchange
Monte-Carlo implementiert. Die Algorithmen für den Replikataustausch sind für beide
Ensembles und für Hamiltonian-Replica-Exchange implementiert. Der zuvor beschriebene
neue BDMC Algorithmus ist ebenfalls implementiert. Das KH Modell kann kurze flex-
ible Aminosäureketten und größere starre Aminosäureketten beschreiben. Die flexiblen
Aminosäureketten existieren, um ein realistisches Modell eines Linker von mehrere starre
Strukturen zu haben. Das Originalmodell für die flexiblen Ketten wurde mit einer En-
ergiefunktion implementiert, die denen von voll atomistischen Kraftfeldern ähnelt. Wir er-
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setzen die flexiblen Gliederketten durch ein effektives Potential basierend auf dem Gaußschen
Polymerkettenmodell. Wir haben auch einen Algorithmus zum Erzeugen repräsentativer
Konfigurationen für die flexiblen Ketten nach einer Simulation entwickelt. Complexes++
verwendet OpenMP und MPI sowie gängige Algorithmen in der Molekulardynamik um
auf Laptops und Supercomputern optimal zu laufen. Am Ende zeigen Benchmarks ver-
schiedenster Systeme mit bis zu einer Million Aminosäuren.

Zusammenfassend lässt sich sagen, dass wir in dieser Arbeit zeigen, wie man den voll-
ständigen anisotropen Rotationsdiffusionstensor aus Simulation genau abschätzen kann,
wobei finite Größeneffekte berücksichtigt werden. Wir entwickeln auch einen neuartigen
Brownsche-Dynamik-Algorithmus basierend auf Monte-Carlo-Algorithmen. Der Brownsche-
Dynamik-Algorithmus ist in einer neuen Monte-Carlo-Engine für Coarse-Grained Protein-
modelle implementiert, die als Complexes++ bezeichnet wird.
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Summary

The diffusive behavior of macromolecules in solution is a key factor in the kinetics of
macromolecular binding and assembly, and in the theoretical description of many experi-
ments. Experiments on high-density protein solutions have found that a slow down of the
diffusion dynamics is larger than expected from colloidal theory for non-interaction hard-
spheres. It has also been shown that the rotational diffusion anisotropy in high-density
protein solutions is larger than in dilute ones. High-density protein solutions are a complex
fluid that is different from the neat fluid assumption used in the hydrodynamic theory.
It is therefore important to have methods to accurately calculate the translational and
rotational diffusion tensor from simulations as well as simulation algorithms to explore
high-density solutions.

Simulations provide a powerful tool to study diffusion in complex fluids. They can be
used to study the macroscopic and microscopic effects of complex fluids on the diffusive
behavior. There has been already a lot of work done to accurately simulate diffusion and
to determine the diffusion coefficients from simulations.

The translational diffusion of molecules in simple and complex liquids can be deter-
mined with high accuracy from simulations. This is not yet the case for rotational diffu-
sion. Existing algorithms to calculate the rotational diffusion coefficients from simulations
make assumptions about the shape of the protein or only work at short times. For the
simulation of diffusive behavior of macromolecules two options exist today. An all-atom
integrator with explicit solvent molecules or coarse-grained (CG) simulations with an im-
plicit solvent. CG simulations of dynamic behavior with implicit solvent are also called
Brownian dynamics (BD) simulations. For the CG simulations the Ermak-McCammon
algorithm is often used to solve the underlying Langevin equation. The algorithm is an
extension of the Euler-Maruyama integrator to include translation and rotation in three
dimensions. This algorithm only correctly reproduces the equilibrium probability for short
time-steps and the error depends linearly on the time-step. It has been shown that Monte
Carlo based algorithms can produce BD for translational dynamics, when appropriately
parametrized. The advantage of Monte Carlo based algorithm is that they will reproduce
the correct equilibrium distribution independent of the chosen time-step. This in return
allows choosing larger time-steps in simulations. The aim of this thesis is to develop novel
methods to accurately determine the rotational diffusion coefficient from simulations and
extend existing Monte Carlo algorithms to include rotational dynamics.

The first project addresses the question of how to accurately determine the rotational
diffusion coefficients from simulations. We develop a quaternion based method to calculate
the rotational diffusion tensor from simulations and a theory for the effects of periodic
boundary conditions (PBC) on the rotational diffusion coefficient in simulations.

xvii
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Our method for calculating rotational diffusion coefficients is based on the quaternion
covariances from Favro for a freely rotating rigid molecule. The covariances as formulated
by Favro are only valid in the principal coordinate system (PCS) of the rotation diffusion
tensor. The covariances can be generalized for an arbitrary reference coordinate system
(RCS), i.e., a simulation, given the principle axes of the rotational diffusion tensor in
the RCS. We show that no prior knowledge of the diffusion tensor and its principal axes
is required to calculate the generalized covariances from simulations using common root-
mean-square distance (RMSD) procedures. We develop two methods to fit the covariances
calculated from simulations to our generalized equations to fit the rotational diffusion
tensor. In the first method we minimize the sum of the squared error deviations between
model and simulation data. For this six dimensional optimization we use a simulated
annealing algorithm. Alternatively the rotational diffusion tensor can also be determined
from a eigenvalue decomposition of covariance after integration. To minimize the effects
of sampling noise in the integration we first apply a Laplace-transformation to smooth the
covariances at large times. For ideal sampling the resulting rotational diffusion coefficient
should be independent of the value of the Laplace variable. In practice, however, the best
results are achieved using a value close to the inverse autocorrelation time of the rotational
motion.

The fit of the quaternion covariances assume that the simulation box is infinitely large
and nothing influences the hydrodynamic flow. However, simulations often use PBC, to
simulate an infinitely repeating system instead of an infinitely diluted system, for prac-
tical reasons. The PBC require that the net flux of across simulation box boundaries is
zero, severely limiting the hydrodynamic flow. It has been shown that PBC slow down
translational diffusion for small box sizes. We use our algorithm to investigate if this
effect is also present in rotational diffusion. In addition, we develop a theory of the effect
of PBC on rotational diffusion. We model the hydrodynamic flow around a sphere in an
infinite periodic grid and derive a simple spherical Couette-model to describe the volume
dependency of the rotational diffusion tensor. Our theory predicts that PBC also slow
down rotational diffusion for small boxes albeit not as much as for translation diffusion.
The reduction in rotational diffusion only depends on the box volume and not the shape of
the macromolecule or simulation box. Our theory can be used to calculate the rotational
diffusion coefficient in an infinite dilution from simulations under PBC.

Calculating covariances from simulation data is a notoriously difficult problem and
molecular dynamics simulations are very compute intensive. To minimize the error we,
therefore, always use all available simulation data to calculate quaternion covariances.
To estimate the error of the covariances we use purely rotational BD simulations with
our estimated diffusion tensor as input. We derive the rotational BD algorithm from the
quaternion covariances.

To test our theory of the effect of PBC on the rotational diffusion and our method
for the determination of the rotational diffusion tensor we apply it to all-atom molecu-
lar dynamics (MD) simulations and compare against hydrodynamic theory and literature
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values. We simulated horse heart myoglobin and B-DNA in neat solutions. The B-DNA
has a cylindrical shape and serves as a model of a macromolecule with large anisotropy.
We simulated myoglobin in an ≈ 150 mM NaCl solution using GROMACS 5 in a rhombic
dodecahedron box at five different box volumes, from 206 nm3 to 516 nm3. We simulated
B-DNA in an ≈ 150 mM NaCl solution with GROMACS 2016 in a cubic box at three
different box volumes, from 233 nm3 to 580 nm3. For each macromolecule and box size we
ran a minimum of five simulations each between 1µs to 3µs long. The errors of the co-
variances have been determined using repeated purely rotational BD simulations with our
fit as input. The variation of the principal axes have been determined using the Frobenius
norm between two rotational diffusion tensors, from fits of to the BD simulations compared
with our fit of the MD simulation data. The calculated rotational diffusion coefficients for
both myoglobin and B-DNA are in excellent agreement both with hydrodynamic theory
and experiments. For both our estimate of the harmonic mean relaxation time is within
the error of literature values. From the simulations at different box sizes we can also show
that the rotational diffusion is indeed slowed down with decreasing box size. Using the
Stokes-Einstein relation our estimate of the rotational diffusion tensor at infinite dilution
is in excellent agreement with experimental values. Also previously published simulation
data of the third IgG-binding domain of Protein G (GB3) and ubiquitin at different box
volumes, shapes and water models follows our predictions.

In the second project of this thesis, we develop a novel BD algorithm that reproduces
the equilibrium distribution independent of the chosen time-step. Our algorithm is an
extension of existing Monte Carlo based algorithms for isotropic particles. We also devel-
oped an extension for position-dependent translational diffusion. In the remainder of the
thesis, we call these methods Brownian dynamics Monte Carlo (BDMC) algorithms. We
develop a framework to derive BDMC algorithms for different acceptance functions and
transition probabilities.

The quaternion covariances from Favro can be used to add rotational moves to BDMC
algorithms. For the translational moves, the transition probability has one free parameter
a. The parameter a is chosen such that the mean square displacement (MSD) of a single
Monte Carlo step and the MSD of BD after a time ∆t are equal. Therefore, the translation
diffusion coefficient and the time-step ∆t define a. For anisotropic macromolecules the
translational moves are only defined in the PCS of the translational diffusion tensor. The
equivalent of the MSD for rotations are the covariances of Favro. Hence, we construct
our rotational moves in quaternion space. The small rotations in quaternion space are
generated by choosing a random vector within the unit-sphere. The corresponding unit-
vector represents the rotation axes and the length of the vector encodes the rotation angle.
The random vector is scaled by three variables ai, i = (1, 2, 3). One for each axes. The
three variables ai are chosen such that quaternion covariances after one step equals the
expected quaternion covariances for a given rotational diffusion tensor and time-step ∆t.
For simplicity we use a short-time approximation of the quaternion covariances in the
PCS of the rotational diffusion tensor. For a simulation of anisotropic macromolecules



xx CONTENTS

the rotational and translational moves are drawn in the respective PCS. To combine the
rotational and translational Monte Carlo steps one has to apply both in a common RCS.
In a simulation we therefore need to add book-keeping steps that store the orientation in
the RCS with reference to the respective PCS of the translational and rotational diffusion
tensor. For a Monte Carlo step to represent an increment of time both a translation
and rotation move have to be applied. To ensure detailed balance the order in which to
apply translation and rotation is randomly selected. For multi-particle simulations the
Monte Carlo sweep has to touch all particles exactly once to advance the whole simulation
by a time-step. To ensure detailed balance the order in which particles are moved is
randomized.

Previous BDMC algorithms only used the Metropolis-Hastings acceptance function
and a uniform distribution as translation probability. The Metropolis-Hastings acceptance
function is not the only function that fulfills detailed balance. We calculate the error
of the first, second and third moment of the equilibrium distribution depending on the
parameter a of the translation probability for a one-dimensional particle under constant
force. Using Metropolis-Hastings the first three moments are accurate to order three. The
Glauber acceptance function, a common alternative to Metropolis-Hastings, is one order
more accurate than the Metropolis-Hastings acceptance function. We also develop a novel
acceptance function that is accurate up to sixth order in the first three moments.

Many problems in statistical mechanics require position-dependent diffusion coeffi-
cients. We use a Gaussian translation probability that depends on a parameter a and the
position-dependent diffusion coefficient to define a new effective potential V . The poten-
tial V only depends on the translation probability. It can, therefore, be used with any
acceptance function.

We test our algorithms on toy models of the harmonic oscillator and compare it to the
Euler-Maruyama and BAOAB algorithms. Our BDMC algorithms are able to reproduce
the correct equilibrium distribution independent of the chosen integration time-step. The
calculated autocorrelation times of the energy are also in good agreement with theory
values at reasonable time-steps. The smallest error in the autocorrelation time is achieved
with the uniform translation distribution and our own acceptance function. The error of
the autocorrelation time than scales approximately with a factor two. Meaning when the
time-step is halfed the error reduces by a factor four. It even beats traditional integra-
tors like the Euler-Maruyama and BAOAB. The largest error is produced with a Gaussian
translation distribution and the Metropolis-Hastings acceptance function. For the position
dependent diffusion we transform the harmonic oscillator with constant diffusion coeffi-
cient into a coordinate system with a position-dependent diffusion coefficient. In this toy
example our BDMC algorithms can reproduce the equilibrium distribution independent of
the chosen time-step. However, the autocorrelation time has a larger error for the BDMC
algorithms than for the Euler-Maruyama and BAOAB integrator. The error scales with a
factor 0.8 for our algorithms.

We also calculated the binding rates and dissociation constant for the UIM-1-ubiquitin
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and CUE-ubiquitin complexes. As a forcefield, we use the Kim-Hummer (KH) CG protein
model. The KH forcefield replaces amino acids with single interaction sites at the Cα
position and uses rigid bodies for proteins. We simulated both complexes for a wide range
of time-steps from 0.05 ps to 100 ps. To determine if a complex is bound or unbound we
use transition based assignment (TBA) on the two-dimensional reaction path consisting of
the total energy and the minimal distance between any two amino acids of the two reaction
partners. In TBA we define a transition region in which it is initially unclear if a complex
is bound or unbound. A filter is then used to decide based on the history of the trajectory
if a configuration in the transition region is bound or unbound. The simulations are done
under PBC for which the dissociation constant is box volume dependent. We also calculate
the dissociation constant from the binding rates to double check our rates. Therefore, we
simulated each complex at multiple box sizes to get the dissociation constant at infinite
box size. For the dissociation constant, our estimates from simulations are in excellent
agreement with experiments. These results are independent if we calculate the dissociation
constants from the binding rates or the probability to be bound. Our estimated on-rates
of ≈ 1010 are surprisingly fast. It should be noted though that we expect the rates to
be faster than in an all-atom forcefield because the KH forcefield is much smoother. In
addition considering the multitude of functions, ubiquitin performs in the cell it would be
beneficial for it to have a fast on-rate.

In the last project of this thesis, we describe the implementation of a new Monte Carlo
engine that is based on the KH protein model. The Monte Carlo engine is split into two
programs Complexes++ and pycomplexes. The first is a general tool for Monte Carlo
simulations of CG protein models written in C++14. pycomplexes is a toolbox written in
Python that generates input files for Complexes++ using the KH model. This separation
allows the Monte Carlo engine to be extensible and flexible while maintaining sensible
defaults to quickly set up a simulation. In Complexes++ two thermodynamic ensembles,
the NVT and NΠT, are implemented together with replica exchange Monte Carlo for
enhanced sampling. The replica exchange algorithms are implemented for both ensembles
and for Hamiltonian replica exchange. The previously described novel BDMC algorithm is
also implemented. The KH model can describe short flexible amino acid chains and larger
rigid structures. The flexible amino acid chains exist to have a realistic model of a linker
for multiple rigid structures. The original model for the flexible chains was implemented
with an energy function similar to all-atom forcefields. We replace the flexible linker
chains with an effective potential based on the Gaussian polymer chain model. We also
developed an algorithm to generate representative configurations for the flexible chains
after a simulation. The Complexes++ program is optimized to run well on laptops and
supercomputer, using OpenMP and MPI, and uses established algorithms so that the total
run-time scales linearly with the number of beads. In the end, we show benchmarks of a
variety of different systems with up to one million amino acids.

In summary, in this thesis we show how to accurately estimate the full anisotropic
rotational diffusion tensor from simulation, taking into account finite-size effects. We also
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develop a novel Brownian dynamics algorithm based on the Monte Carlo method. The
Brownian dynamics algorithm is implemented in a new Monte Carlo engine for coarse-
grained protein models called Complexes++.



Chapter 1
Introduction

The diffusive behavior of macromolecules in solution is a key factor in the kinetics of
macromolecular binding and assembly [86, 99, 137, 140, 186]. The association of two
proteins is an ubiquitous event in cells. Often one of the reaction partners is free to
move through the intra- and extracellular environment and must find its partner through
diffusion. When the post-diffusional binding is much faster than the diffusional association
the reaction is diffusion limited. Reactions with an association rate larger than 105 M−1s−1

are diffusion limited [5, 182], see Figure 1.1. Reactions with a lower association rate are
limited by conformational change.

Figure 1.1: Spectrum of association rate constants. The red vertical line marks the
start of the diffusion controlled regime. (Reprinted with permission from ref. [5]
and [182], Copyright 2008 Wiley Interscience.)

Diffusion also features prominently in the theoretical description of many experiments.
For example rotational dynamics are used in light scattering [168], nuclear magnetic reso-
nance (NMR) [23, 26, 45, 61, 110, 116, 206, 224, 229, 230], fluorescence anisotropy decay
and fluorescence resonance energy transfer (FRET) [83, 107, 118, 201], or dielectric spec-
troscopy [231]. Therefore, it is important to accurately calculate diffusive dynamics, and

1
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simulate diffusion at large length- and time-scales to analyze experiments more accurately
and better understand biological processes.

Recent NMR experiments on high-density solutions of proteins [164, 165] show a larger
rotational diffusion anisotropy compared to proteins in dilute solutions, consistent with
the behavior expected from steric clashes seen in molecular dynamics (MD) simulations
[130, 133, 238]. Experiments on crowded protein solutions have found a reduction in
protein self-diffusion by up to 20% [166]. The reduction in self-diffusion has been predicted
by colloidal theory of non-interacting hard spheres [215]. However, experimental evidence
and simulations show that the colloidal model underestimates the slowdown of diffusion
in high density protein solutions [138, 223, 238]. These experiments show the need to
develop a method for the accurate determination of diffusion coefficients in simulations of
complex liquids.

Diffusion is closely linked to Brownian motion. Diffusion is generally used to describe
the net movement of molecules due to a chemical gradient. When the chemical gradient is
zero there is no net movement. However the individual molecules are still randomly mov-
ing. This is called Brownian motion. Einstein showed in his 1905 paper [48] that Brownian
motion can be described as the random motion of molecules suspended in a liquid. His
theory showed how Avogrado’s number is connected to the mean square displacement
(MSD). Using a different derivation Langevin [112, 152] obtained the same equation as
Einstein for Avogrado’s number. Later Perrin proofed experimentally that Einsteins the-
ory of Brownian motion is correct by calculating Avogrado’s number [155]. The work of
Einstein only concerned translational diffusion. Perrin later worked on rotational diffusion
[153, 154]. His theory was later extended by Furry [57], and Favro [51].

All-atom and coarse-grained (CG) simulations have long been used to study diffusional
behavior [9, 39, 43, 46, 59, 68, 79, 123, 130, 133, 138, 141, 219, 221–223, 228, 232, 236, 238].
Simulations are well suited to investigate diffusion as they allow to study macroscopic
effects [130, 221–223, 236], like protein concentration, as well as microscopic effects [9,
138, 238], like protein-protein interactions, influencing diffusive behavior. Translational
diffusion coefficients can be determined with high accuracy from simulations of simple and
complex fluids [46, 68, 219, 221, 222, 236]. Determining the rotational diffusion tensor of
a molecule or molecular assembly from MD trajectories is non trivial. Current methods to
calculate rotational diffusion tensors using the second order rotational correlation function
have focused on isotropic macromolecules or macromolecules with small anisotropies [192,
232]. The focus of recent quaternion-based algorithms has also been on small anisotropy or
on estimates of the full anisotropic rotational diffusion tensor from the rotational dynamics
at short times [31, 32]. The method of Wang and Case has been extended by Roe and
Cheatham [163] to calculate fully anisotropic rotational diffusion.

Simulations of neat fluids and lipid membranes [219, 221, 222] are known to suffer from
large finite-size effects due to the commonly used periodic boundary conditions (PBC).
This effect is caused by the severe constraints on the hydrodynamic flow due to the PBC.
PBC requires that the net flux at the boundary of the system is zero. The hydrodynamic
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correction is determined by the difference between the Stokes friction in an infinite system
and in a system under PBC. For a particle in a neat fluid, the hydrodynamic correction
predicts that the translational diffusion coefficient is underestimated. The correction de-
pends only on the box size and shape and not on the shape or diffusion coefficient of the
particle [46, 221, 236]. We expect that rotational diffusion will similarly be affected by the
PBC. However, it is an open question if the effect is as strong as for translational diffusion.

glsMD simulations currently allow to study molecular systems on times-scales up to
tens of µs and are limited in size to the nm range. The largest all-atom simulation today
consisted of 1/10th of the volume of the Mycoplasma Genitalium cell contained 100 mil-
lion atoms and was run for 20 ns [238]. The longest continuous simulations today reach
the millisecond range [185]. However, they require specialized hardware [184, 185]. It
is possible to acquire insights into dynamics on the millisecond range and longer using
commodity hardware with Markov state models [101, 159, 187], master equation models
[80, 194–196], and transition path sampling [80, 140]. These models require prior insight
into the system and are computationally intensive. Protein-interaction can be studied on
the milliseconds to second time-scale and on a µm length-scale using Brownian dynamics
(BD) simulations. They allow to generate continuous trajectories that are multiple mil-
liseconds long. BD simulations have been used to study proteins in crowded environments
[43, 130, 132], to understand how shape influences diffusion [9], to simulate an accurate en-
vironment of the cytoplasm [130], to explore shape and binding site effects on the binding
kinetics [139], and te determine binding rates and constants for arbitrary protein com-
plexes [59, 120, 160, 180, 182, 239]. The Ermak-McCammon [49] algorithm is commonly
used to integrate the Langevin equation for anisotropic rigid bodies. The algorithm is
an extension of the Euler-Maruyama [128] algorithm to translation and rotation in three
dimensions. It is known that the error of the Euler-Maruyama algorithm depends linearly
on the chosen time-step [204]. It has been shown that Monte Carlo simulations generate
dynamics that are similar to BD. The trial distribution is chosen carefully to reproduce
BD for a given diffusion coefficient [95, 104, 169, 179]. Monte Carlo based algorithm have
the advantage that they reproduce the equilibrium distribution independent of the chosen
time-step. Current algorithms describe only translational motion and are therefore lim-
ited to isotropic particles. To use Monte Carlo based algorithms for anisotropic particles
rotational moves have to be included as well.

BD algorithms are often used in conjunction with CG protein models. The CG mod-
els used with BD algorithms represent amino acids as single interaction site, called beads,
and replace the solvent molecules with a continuum model [43, 59, 96, 130, 133]. The hy-
drodynamic interactions of the solvent with the simulated macromolecules are described
by the diffusion coefficients. The diffusion coefficients are often predetermined using hy-
drodynamic theory. The theory to calculate the diffusion coefficients assumes the macro-
molecules are rigid and therefore the macromolecules can be treated as rigid bodies, fur-
ther reducing the computational effort. It should be noted that CG protein models, e.g.
MARTINI, exist that lump together multiple atoms into one interaction site but keep
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the explicit solvent molecules and internal dynamics [126, 127]. In this thesis we use the
Complexes protein model [96]. This model is known as the Kim-Hummer (KH) model in
the literature. In this thesis we will only refer to the KH-model when referring to the spe-
cific parametrization developed by Kim and Hummer [96], for the definition of the energy
function we refer to it as the Complexes protein model.

In this thesis we estimate the full anisotropic rotational diffusion coefficients from fully
atomistic MD simulations, and the finite-size effects of rotational diffusion under PBC in
Chapter 3. To simulate BD with accurate equilibrium distributions we will develop a
novel Monte Carlo based algorithm in Chapter 4. Our algorithm uses quaternions for
the rotation moves to accurately simulate rotation dynamics. The new algorithm will be
implemented in a new program called Complexes++, see Chapter 5. In Complexes++
we implemented the Complexes protein model [96] together with a new algorithm for the
flexible domains. Each chapter will include example applications of the methods that have
been developed. Initially, we will present the simulation methods used in this thesis.



Chapter 2

Fundamentals

In this chapter we will describe the essential established concepts that lay the foundation
of our work.

2.1 Forcefields

There exist many different forcefields to describe biomolecules. They vary in the level
of detail, the potential energy term, and how they are parameterized. Forcefields like
CHARMM36 [20, 121, 122] and Amber99sb*-idln [17, 78, 113, 225] are all-atom forcefields
and provide a very high level of detail in classical simulations. However, due to the
high level of detail, these forcefields are computationally expensive to evaluate. Therefore
they are well suited for problems on short timescales, up to hundreds of microseconds,
e.g. conformational change [156]. For protein-protein binding problems or membrane
remodeling CG forcefields like the Complexes model [96] and MARTINI [126, 127] are
better suited. The Complexes model is also known as the Kim-Hummer (KH) model
in the literature. This model replaces amino acids with single beads centered at the
Cα atom. The MARTINI model uses a 4:1 mapping where it replaces four atoms in an
all-atom description with a single MARTINI atom. Even though CG forcefields use a
less detailed description of the biomolecule they have a lower overall error due to better
sampling of conformation space, see Figure 2.1. The choice between an all-atom and a CG
forcefield depends on the biological question and the available computation time. In this
work the Amber99sb*-idln and AMBER Parmbsc1 [87] forcefields for proteins and DNA,
respectively, and the Complexes model have been used.

2.1.1 All-Atom Forcefields

All-atom forcefields allow an accurate description of the dynamic and thermodynam-
ics of biomolecules using classical mechanics. Approximating the motion of nuclei of
biomolecules with classical mechanics means that there is no unique forcefield. As we only
use AMBER forcefields for our all-atom simulations we will explain it in more detail. The
forcefields from the AMBER family [17, 35, 78, 87, 113, 225] consist of terms for bonded
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Figure 2.1: Sketch of sampling and systematic error for protein folding and protein-
protein for forcefields with different accuracy. A smaller circle corresponds to a lower
total error. The systematic error is dominated by the forcefield and energy surface.
The sampling error is dominated by the available computation time. (Based on an
image by Jürgen Köfinger.)

and pairwise non-bonded interactions [35, 225]

U(~x) =Uangles + Udihedrals + Ubond︸ ︷︷ ︸
bonded interactions

(2.1)

+ ULennard Jones + UCoulomb︸ ︷︷ ︸
nonbonded interactions

.

To model the fluctuating angle θ between neighboring bonded atoms a harmonic angle
potential is used

Uangles =
∑

angles
Kθ(θ − θeq)2, (2.2)

with θeq the equilibrium angle, and Kθ spring constant.

The dihedral angle potential between four consecutive bonded atoms is described by
a periodic function

Udihedrals =
∑

dihedrals

Vn
2 [1 + cos(nφ− γ)]. (2.3)

The integer n here gives the periodicity of the potential, and Vn the associated barrier
height. The value of n and Vn depends on the atom types for the atoms used to calculate
the dihedral. There may be more than one n, Vn pair for the same atom sequence. The
results for each pair are summed up. Eq 2.3 is also used to model planar topologies using
so called improper dihedrals.
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Bonded interations are modeled using a harmonic spring

Ubonds =
∑

bonds
Kr(r − req)2, (2.4)

with the spring constant Kr. The potentials are usually so stiff that the resulting bond
vibrations are unrealistic. Bond vibrations barely couple with other degrees of freedom
and are not of interest for most phenomena studied by MD simulations. Therefore the
bonds are often constrained to the equilibrium bond distance in simulations.

The Lennard Jones (LJ) term consists of the attractive van der Waals and Pauli
repulsion terms. The van der Waals interactions are known to scale well with r−6. The
Pauli repulsion are calculated as r−12 for computational efficiency.

ULennard Jones =
∑
i<j

4εij


(
σij
rij

)12

︸ ︷︷ ︸
Pauli Repulsion

−
(
σij
rij

)6

︸ ︷︷ ︸
van der Waals attraction

 (2.5)

The parameters εij and σij depend on pairs of atom types. The LJ potential is fully
determined by position of its minimum, located at a distance 21/6σij , and the value at
the minimum −εij . The values for σ and ε are determined for single atom types during
parametrization. Both are combined using arithmetic or geometric averages to calculate
σij and εij . In the AMBER family forcefields the LJ interaction are only evaluated for
atoms in different molecules or for atoms separated by at least three bonds in the same
molecule.

The electrostatic interactions are computed using the Coulomb potential

UCoulomb =
∑
i<j

qiqj
4πε0rij

, (2.6)

with qi the charge and ε0 the vacuum permittivity. The electrostatic interaction are
long-ranged and cannot be cut-off. When using PBC the particle mesh Ewald summation
[38, 50] can be used to calculate eq 2.6. The Ewald summation decomposes the summation
of pairwise interactions in a periodic system into a real space and a Fourier part. The
charges can be evaluated in Fourier space in a grid, resulting in computational efficiency
of O(n logn), with n being the total number of particles.

2.1.2 Complexes Forcefield

The Complexes model is a coarse-grained forcefield that describes proteins and large
macromolecular structures at three hierarchical levels [96]. The Complexes model is known
as the KH model in the literature. Beads are the first level. Beads are interaction sites
that are used to evaluate potentials and represent a single amino acid, centered on the Cα
atoms. The second level are domains. Domains are collections of beads that define how
the bead positions are propagated in a simulation. The Complexes model has rigid and
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flexible domains. The third level are topologies. A topology is a collection of connected
domains. Typically rigid domains and flexible domains are connected to model a loosely
connected protein complex. In this thesis, the general expression of the forcefield will
be referred to as the Complexes model, when specific values for forcefield parameters are
given we refer to them explicitly, e.g. as the KH-model. In the following, the bead model
and pair potential for different beads and different domains will be explained.

Beads

Beads are the interaction sites at which the forcefield and additional restraint potentials
are evaluated. In the Complexes model, amino acids are modeled as single beads centered
on the Cα atoms. As energy function, a LJ like potential is used for effective interactions
of native and non-native contacts and a Coulomb term with an exponential screening term
for the electrostatics. The potential energies are by convention calculated in units of kBT ,
with T = 300 K as the reference temperature.

The LJ like potential ULJ , between beads i and j, consists of four different branches
to model attractive and repulsive interactions

ULJ(r, σij , εij) =



4εij
[(σij

r

)12 −
(σij
r

)6] if εij < 0

4εij
[(σij

r

)12 −
(σij
r

)6]+ 2εij if εij > 0 and r < 21/6σij

−4εij
[(σij

r

)12 −
(σij
r

)6] if εij > 0 and r > 21/6σij

.01
(σij
r

)12 if εij = 0,

(2.7)

with r the distance between the beads, the bead type pair parameters σij and εij for the
contact distance and interaction energy, respectively. For εij < 0 this is the standard LJ
potential, see Figure 2.2. For εij > 0 this potential is purely repulsive, see Figure 2.2. In the
case of εij = 0 the potential is a hard wall slightly shorter than the LJ minimum of 21/6σij

to avoid overlaps if additional potentials are attractive and have singularities at r = 0, for
example electrostatic potentials. At contact r = σij this potential gives equal contributions
from attractive and repulsive pairs with opposite sign. The parameters εij are derived from
the knowledge-based statistical contact potentials eij by Miyazawa and Jernigan [136].
The contact distances σij are determined as weighted average σij = (σi + σj)/2 from the
individual amino acids diameters, Table 2.1. Note that in the original paper these values
have been incorrectly labeled as radii [96].

Table 2.1: Van-der-Waals diameters of amino acids in Å[96].
Ala Arg Asn Asp Cys Gln Glu Gly His Ile
5.0 6.6 5.7 5.6 5.5 6.0 5.9 4.5 6.1 6.2

Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
6.2 6.4 6.2 6.4 5.6 5.2 5.6 6.8 6.5 5.9

The Miyazawa and Jernigan (MJ) contact potentials have to be scaled to account for
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Figure 2.2: Modified LJ potential, eq 2.7, used in the Complexes model in reduced
units. The attractive branch εij < 0 is shown in blue, the repulsive part εij > 0 is
shown in orange and the branch for εij = 0 in green. The gray dashed line shows
the minima at 21/6 of the attractive branch.

the added electrostatic interactions and the preference of residue-residue to residue-solvent
interactions have to be balanced. In the Complexes model, this is done by scaling with a
parameter λ for the electrostatic interaction and shifting the interaction with a parameter
e0 for the residue-residue to residue-solvent interactions with

εij = λ(eij − e0). (2.8)

For the KH model the values λ = 0.159 and e0 = −2.27 kBT have been used, based on
parametrizations to reproduce the experimentally determined second virial coefficient of
hen egg lysozyme and the dissociation constant Kd of the UIM-1-ubiquitin complex [96].
In recent years there have been efforts to optimize the εij parameters to reproduce the
binding affinity of a large variety of weak binding protein complexes [90].

The electrostatic potential consists of Coulomb interactions with an ionic-screening
term

UEL(r) = qiqje
2

4πε0Delr︸ ︷︷ ︸
coulomb

exp
(−r
ξ

)
︸ ︷︷ ︸

ionic-screening

1
kBT

, (2.9)

with e the elementary charge, ε0 the vacuum permittivity, Del the dielectric constant and
ξ the Debye-length. The scaling factor of 1/kBT is used to convert the electrostatic energy
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into units of kBT . Bead charges are set according to the amino acid type corresponding
to a pH of 7. Arginine and lysine are charged with +e, histidine with +1

2e, due to its
isoelectric point and aspartate and glutamine with −e. Charges for other amino acids are
set to 0. The ionic-screening term is used to set the salt concentration of the environment
using the Debye length

ξ =
√
εrε0kBT

e2NA2I , (2.10)

where εr the absolute permittivity, and I the ionic strength. For a typical salt concentra-
tion of 100 mM NaCl ξ is about 10Å.

Domains and Topologies

Proteins and multiprotein complexes consist of multiple units that are connected and
behave as a single unit for a short time period. Parts of the complex are rigid, like α-
helices and β-sheets can be considered to be rigid to study protein association, while others
can be unstructured, loops connecting rigid domains. Domains are used to appropriately
model the different parts in a complex. To model the two different described behaviors the
Complexes model has rigid and flexible domains. The domains in a complex are connected
using a harmonic potential

UBond(x) = 1
2k(x− x0)2, (2.11)

where k = 378 kcal mol−1Å−2 [94] is the spring constant and x0 = 3.81 Å [17] is the Cα -
Cα distance. The complex that is build by connecting domains is called a topology. The
total energy in the Complexes model is not a straight forward sum over all bead pairs.
Instead one has to sum over the pairs of

UTotal =
∑

A,B∈Domain Pairs

UInner +
∑

i∈A,j∈B
ULJ(|ri − rj |) + UEL(|ri − rj)

+
∑

connections
UBond.

(2.12)

Rigid Domain Rigid domains are the simplest form of a domain and the most versatile
at the same time. As the name suggests in a rigid domain the internal coordinates of the
beads in the domain do not change over time. Rigid domains are so versatile because they
can be used to model very different things. The obvious cases are rigid protein parts like
an α-helix or a β-sheet. The inner energy of rigid domains is zero, UInner = 0. While not
described in the original Complexes model it is possible to describe a rigid domain at an
even coarser level by grouping together amino acids. Using such a CG description requires
finding new forcefield parameters for the interactions but this versatility makes it possible
to set up simulations that incorporate experimental data with an appropriately modeled
experimental uncertainties and prior knowledge.
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Flexible Domains The flexible domains are modeled as bead polymers. The inner
energy consists of the LJ eq 2.7, electrostatic potential eq 2.9 between bead pairs more than
three beads apart, and contributions from bond stretching potentials for pseudobonds,
angle potentials for pseudoangles and torsion potentials for pseudotorsion

UInner =
∑
|i−j|≥4

ULJ + UEL +
∑

bonds
Ubond +

∑
angles

Uangle +
∑

torsionangles
Utorsion. (2.13)

The bond potential is a harmonic potential

Ubond = 1
2k(r − r0)2, (2.14)

with r the Cα−Cα distance, r0 = 3.81 Å the reference distance and k = 378 kcal mol−1Å−2

the spring constant [94]. The pseudoangle potentials is a double well potential [19]

exp[−γUangle(θ)] = exp[−γ(kα(θ − θα) + εα)] + exp[−γkβ(θ − θβ)2], (2.15)

where θ is the angle between Cα−Cα−Cα, the constants are γ = 0.1 mol kcal−1, εα =
4.3 kcal mol−1, θα = 1.6 rad, θβ = 2.27 rad, kα = 106.4 kcal mol−1rad−2 and
kβ = 23.6 kcal mol−1rad−2. This potential accounts for the helical and extended pseu-
doangles. The torsion potential is given by [94]

Utorsion(φ) =
4∑

n=1
[1 + cos(nφ− δn)]Vn, (2.16)

where φ is the torsion angle of the middle two beads in Cα−Cα−Cα−Cα. The constants
δn and Vn are taken from Karanicolas and Brooks [94].

2.2 Molecular Dynamics

In molecular dynamics (MD) simulation the time evolution of Newton’s equations of mo-
tion

~F (~x) = ~a ·m = ~̈x ·m (2.17)

are evaluated, with m the mass, ~a the acceleration, ~x the position, and the forces ~F as the
negative gradient of the potential energy U(x)

~F (~x) = −∇U(~x). (2.18)
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There exist several algorithms for the numerical integration of eq 2.17. In this work we
use the leap frog integrator [73, 217]

~xi+1 = ~xi + ~vidt+ 1
2~ai∆t

2 (2.19)

~vi+1 = ~vi + 1
2(~ai + ~ai+1)∆t, (2.20)

with ~xi, ~vi,~ai the coordinates, velocity and acceleration at step i, respectively. Other
commonly used integrators are the Verlet [220] and Velocity-Verlet [200] integrator. All
of these algorithms are symplectic integrators [212]. While this class of integrators does
not preserve the Hamiltonian exactly, there exists a “shadow” Hamiltonian that is pre-
served and remains close to the original Hamiltonian. Here close mean that for ∆t → 0
the “shadow” Hamiltonian approaches the real Hamiltonian [60, 190, 210, 237]. Other
commonly used integrators like the Runge-Kutta integrators [105, 176] do not have this
property.

A straightforward integration of the Hamiltonian with eq 2.19 will yield an ensemble
in the microcanonical NVE ensemble. Experimental conditions are best described by the
isothermal-isobaric NPT ensemble. Therefore we need to couple our system to a heat and
pressure bath using a thermostat and barostat, respectively. For a thermostat, we use the
velocity re-scaling algorithm [29]. This thermostat is based on the Berendsen thermostat
[16]. The Berendsen thermostat re-scales to impulses to match a target temperature T0

d~pi
dt =

N∑
j

Fij (|~qi − ~qj |)−
~pi
τT

[α− 1] , (2.21)

with a scaling factor α = K0/K, K0 the kinetic energy at T0, K kinetic energy at the
current temperature, and τT a relaxation time constant. Eq 2.21 enforces the total kinetic
energy to be equal to the kinetic energy at T0. In the velocity re-scaling algorithm α is
not constant during the simulation, instead

α = Kt

K
(2.22)

with Kt being chosen at each time-step from the canonical equilibrium distribution for
the kinetic energy

P (Kt)dKt ∝ K

(
Nf
2 −1

)
t e−βKtdKt, (2.23)

with Nf the number of degrees of freedom, and β = 1/kBT the inverse temperature. To
generate the values Kt we could either sample directly from eq 2.23 or we can evolve the
kintetic energy in time using a stochastic integrator

dK = (K0 −K) dt
τT

+ 2
√
KKt

Nf

dW
√
τt
, (2.24)
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with dW Wiener noise. During a simulation before re-scaling the velocities we calculate
the current kinetic energy by evolving it in time using eq 2.24, and calculating the scaling
factor α. Therefore using the velocity re-scaling algorithm we have added the current
temperature as an additional degree of freedom. Other commonly used thermostats are
the Andersen thermostat [6] and Nosé-Hoover chains [76, 142].

For pressure coupling, we are using the Parrinello-Rahman algorithm [151]. Like the
velocity re-scaling algorithm, it adds an additional degrees of freedom, the volume and
shape of the simulation box. The first algorithm to introduce the volume as a free variable
was developed by Andersen [6] and later generalized to anisotropic volume fluctuations
by Parrinello and Rahman [151]. The pressure tensor P in MD simulations is calculated
using the second virial theorem

P = 2
V

(Ekin − Ξ) (2.25)

with

Ekin = 1
2

N∑
i

mi~vi~v
T
i and (2.26)

Ξ = −1
2
∑
i<j

rijF (rij). (2.27)

The pressure depends on the pairwise distance rij and velicities ~vi. MD simulations often
use a finite simulation box and PBC, see Section 2.5, in which the distance between two
particles changes when the simulation box changes. The simulation box is described by
three vectors ~a,~b,~c, that can be written as a matrix H = (~a,~b,~c). The position ~ri of an
atom is now written using a vector ~si = (ξi, ηi, ζi)T and H as

~ri = H~si = ξi~a+ ηi~b+ ζi~c (2.28)

with 0 ≤ ξi, ηi, ζi ≤ 1. The square of the pairwise distance is

r2
ij = (~si − ~sj)G (~si − ~sj) . (2.29)

with G = HTH. Therefore, changes in the simulation box H result in a change of
pressure. Parrinello and Rahman [151] derived equations of motion for ~s and H

~̈si = −
∑
i 6=j

m−1
i

V̇ (~si)
rij

(~si − ~sj)−G−1Ġ~̇si, (2.30)

Ḧ = VW−1Ḣ−1(P − Pref) (2.31)

with Pref the reference pressure, W a matrix parameter that determines the strength of
the pressure coupling, and V the volume of the simulation box. This barostat modifies
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the Hamiltonian

H = Epot + Ekin +
∑
i

PiiV +
∑
ij

1
2Wij

(
Ḣij

)2
. (2.32)

The last term constributes a constant of 9/2kBT at equilibrium. For a large number of
atoms N � 1 the Hamiltonian is equal to the enthalpy

H ≈ Epot + Ekin +
∑
i

PiiV (2.33)

= E + PV. (2.34)

Therefore, the equations of motion, eq 2.30, generate an NPT ensemble.
The largest possible time-step ∆t that can be chosen in a simulation depends on the

fastest motion in the system. In macromolecules, the fastest motion is the vibration of
atomic bonds which is on the order of femtoseconds. Typical biological processes examined
with MD are on the order of nanoseconds to tens of microseconds. On those timescales,
the bonds are essentially stiff. Therefore it is beneficial to constrain atomic bonds and use
a larger time-step. ∆t is chosen between 2 and 4 fs. SHAKE [177] was the first developed
constraint algorithm for MD. It acts as an additional term on the positions in a Velocity-
Verlet integrator. It was later changed to act on the velocities to be easier usable with
barostats and thermostats. This algorithm is called RATTLE [7]. In this thesis, we use
the LINear Constraint Solver (LINCS) algorithm [71, 72]. The LINCS algorithm is up to
four times faster than SHAKE and can be easily parallelized.

2.3 Brownian Dynamics

Brownian dynamics (BD) describes the random motion of a macromolecule suspended in
a liquid. BD can be described by extending Newtons equations of motion with a friction
force −γẋ, to account for the jostling of the liquid particles with the protein, and a random
force R(t), to account for the occasional high-velocity collision [243],

mẍ(t) = −∇U(x)− γẋ+
√

2γkBTR(t). (2.35)

Eq 2.35 is known as the Langevin equation. For proteins the friction term is often small
enough to be neglected. To estimate how small the friction term needs to be we use the
Fourier transform of eq 2.35

(mω − γ)ωx̃ = −Ũ(x) + R̃. (2.36)

Eq 2.36 shows that the friction term becomes negligible if mω � γ. To estimate when
this is the case for proteins we use the Einstein relation γ = kBT

D [48], order of magnitude
values for kBT = 10−21kgm2s−2 at room temperature, the diffusion constant of water in
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water D = 10−9m2s−1 [218] and the atomic mass m = 10−27kg. We find that mω = γ for

1
ω
≈ 1 fs. (2.37)

Therefore for processes that occur at a timescale � 1 fs the friction term is negligible and
we can use the overdamped Langevin equation

ẋ(t) = −∇U(x) D

kBT
+
√

2DR(t). (2.38)

The time evolution of the probability P (x, t) that a particle is at position x at time t
for a particle that follows eq 2.38 can be described with a Fokker-Planck equation

∂

∂t
P (x, t) = − ∂

∂x
[−∇U(x)P (x, t)] +D

∂2

∂x2P (x, t). (2.39)

Eq 2.39 can only be solved for special cases. Let us consider the case of a constant drift
−∇U(x) = −νx, with force constant ν, boundary conditions limx→±∞ = 0, and initial
conditions P (x, 0) = δ(x− x0). The corresponding solution of eq 2.39 is

P (x, t) = 1√
2Dt

exp
[
−(x− x0 − νt)2

2Dt

]
. (2.40)

This is a moving and broadening Gaussian profile.
Simulations using eq 2.35 or eq 2.38 are also called BD simulations. In BD simula-

tions the solute is implicitly modeled through the diffusion coefficient. Therefore BD are
computationally less expensive than MD simulations. A widely used integrator for the
Langevin equation is the Euler-Maruyama integrator [128]

xi+1 = xi + F (xi)
D

kBT
dt+

√
2D∆tRt (2.41)

with Rt being Gaussian random number of unit variance and zero mean. A recently
discovered simple extension of Euler-Maruyama integrator is the BAOAB integrator [111]

xi+1 = xi + F (xi)
D

kBT
dt+

√
2D∆t12(Rt +Rt−1). (2.42)

The BAOAB integrator numerically more stable than the Euler-Maruyama and reproduces
the correct equilibrium distribution for many problems. Note that both integrators can be
extended to N dimensions in the special case that the N ×N translation diffusion tensor
is diagonal.

An extension of the Euler-Maruyama integrator to 3 dimensions for rotational and
translational diffusion is the Ermak-McCammon [49] integrator. The displacement vector
∆~xi for a particle i in a system of N particles is

∆~xi = dt
N∑
j=1

(
∂DT,ij

∂~xj
+ DT,ij

kBT
· ~Fi

)
+ ~Ri, (2.43)
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with DT,ij the 3 × 3 hydrodynamic diffusion tensor between particles i and j, ~Fi is the
systematic force acting on particle i, and Ri is the random displacement vector for particle
i samples at each simulation step from a Gaussian distribution of zero mean and covariance
〈RiRj〉 = 2DT,ijdt for all i, j. The rotation dynamics of particle i are described by a
similar equation, in which the translational diffusion tensor is replaced by the rotational
tensor and the forces are replaced by torques [59].

2.4 Monte Carlo Simulations

This introduction to Monte Carlo simulations loosely follows the derivation from “Statis-
tical Mechanics: Theory and Molecular Simulation” by Mark Tuckerman [212].

An expectation value I of an observable f(x) in equilibrium statistical mechanics is
defined using ensemble averages

I =
∫

dx f(x)π(x), (2.44)

where x is a 3N -dimensional vector, π(x) is a probability density function, and N the
number of particles. We can estimate the expectation value using

IM = 1
M

M∑
i=1

f(xi), (2.45)

where x1, . . . , xM are M random vectors sampled from π(x). The central limit theorem
guarantees that for a sufficiently large M both values are equal [212]

lim
M→∞

IM = I. (2.46)

The random vectors xi are often not drawn directly from π(x) because it is computationally
too expensive. Two less computationally expensive alternatives to compute eq 2.44 are
importance sampling and Markov chain Monte Carlo (MCMC). Here we will only explain
MCMC.

In importance sampling instead of sampling from π(x) we sample from a distribution
h(x) by rewriting eq 2.44 as

I =
∫

dx
[
f(x)π(x)
h(x)

]
h(x) (2.47)

=
∫

dx ψ(x)h(x). (2.48)

h(x) is called the importance function. The importance function should be chosen so that
it is easier to sample than π(x).

In MCMC the random vectors xi are generated sequentially x1 → x2 → · · · → xM

with a rule to generate xi+1 from xi. Such a sequence of vectors is called a Markov chain.
Let R(x|y) be the rule to generate a vector x from a given vector y. In physical systems,
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R(x|y) is the probability to move from a state x to a state y. For R(x|y) to sample the
desired equilibrium distribution π(x) it is sufficient that the detailed balance condition

R(x|y)π(y) = R(y|x)π(x). (2.49)

is fulfilled. We will later proof why this condition is sufficient to guarantee that we sample
from π(x). We now have to find expressions for R(x|y). To do so, we define

R(x|y) = T (x|y)A(x|y), (2.50)

with T (x|y) the probability to generate a move from y to x and A(x|y) the probability to
accept this move. T (x|y) has to fulfill the normalization condition

1 =
∫

dxT (x|y) (2.51)

and be symmetric

T (x|y) = T (y|x). (2.52)

Substituting eq 2.50 into eq 2.49 we obtain

A(x|y) = π(x)
π(y)A(y|x). (2.53)

Eq 2.53 defines the condition that A(x|y) has to fulfill so that detailed balance, eq 2.49,
is preserved. One solution of eq 2.53 is [134]

A(x|y) = min
[
1, π(x)
π(y)

]
= min

[
1, e−∆U/kBT

]
, (2.54)

with π(x) ∝ e−U(x)/kBT the Boltzmann distribution, and ∆U = U(x) − U(y) the energy
difference between state x and y. Eq 2.54 is known in the literature as the Metropolis-
function. The algorithm to generate the Markov chain is as follows. Generate trial move
x′i+1 according to T (xi+1|xi) and evaluate e−(U(x′i+1)−U(xi))/kBT . If e−(U(x′i+1)−U(xi))/kBT ≥
1 than the move is accepted with probability 1. If, however e−(U(x′i+1)−U(xi))/kBT < 1
a random number ξ ∈ [0, 1) is drawn. If e−(U(x′i+1)−U(xi))/kBT > ξ the move is accepted
otherwise it is rejected. Note that when a move is rejected than xi+1 = xi and the old state
is recorded again in the Markov chain. The Metropolis algorithm was later generalized by
Hastings for none symmetric trial probabilities T (x|y) 6= T (y|x) [69].

Every point xi in the Markov chain has a probability πi associated with it. We will
use eq 2.49 to show that

lim
i→∞

πi(x) = π(x). (2.55)

We are using a recursive proof that if πi(x) = π(x) for one i this is also true for πi+1. πi+1
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is a combination of the probability to make a step from any y to x and the probability to
have a step to any y from x rejected

πi+1(x) =
∫

dy A(x|y)T (x|y)πi(x) + πi(x)
∫

dy [1−A(y|x)]T (y|x). (2.56)

Assuming that there is at least one i for which π(x) = πi(x) we show that π(x) is a fixed
point of eq 2.56

πi+1(x) =
∫

dy A(x|y)T (x|y)π(x) + π(x)
∫

dy[1−A(y|x)]T (y|x) (2.57)

=
∫

dy

π(x)T (y|x) +A(x|y)T (x|y)π(x)−A(y|x)T (y|x)π(y)︸ ︷︷ ︸
=0

 (2.58)

= π(x)
∫

dy T (y|x) (2.59)

= π(x) (2.60)

For the third equality we used eqs 2.49 and 2.50, and for the fourth we used eq 2.51.
Therefore random vectors from the Markov chain x1 → x2 → · · · → xn are sampled from
π(x).

Monte Carlo simulations do not naturally have a time associated with the generated
configurations. By convention, the “time” in Monte Carlo simulations is counted in units
sweeps. A sweep consists of N trial moves if N is the number of particles in the simulation.
The N particles that are moved are chosen at random, therefore a single particle can be
moved multiple times during a sweep.

2.5 Periodic Boundary Conditions

Simulations of biomolecules are often done using periodic boundary conditions (PBC)
[55, 212]. Under PBC all atoms are placed inside of a unit cell, which is surrounded by
translated, and space-filling copies of itself. These copies are commonly known as periodic
images. If an atom crosses the boundary it is replaced by an equivalent atom from a
periodic image on the opposite boundary, see Figure 2.3. The unit cell of the simulation
can either be a cuboid, truncated octahedron,or a rhombic dodecahedron. Cuboid unit
cells are easy to implement efficiently but the rhombic dodecahedron only has 71 % of
the volume of a cube with the same image distance. Saving about 29% of computation
time when simulating spherical molecules with explicit solvent. The distance between any
two atoms is determined using the minimum image convention (MIC). The MIC states
that the distance between any two atoms is the minimum distance between any of the
neighboring images, Figure 2.3. PBC has known finite size effects for some hydrodynamic
observables like the translational and rotational diffusion coefficient, that can be minimized
by enlarging the box [46, 115, 221, 222, 236].
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A B

Figure 2.3: Simulation box containing two atoms (red and green) is shown in the
center with its eight periodic images (lighter shades) in 2D. A) The green atom is
moved across the box boundary and replaced by the atom from the periodic image
below the simulation box. The new position of the atom is shown in blue outline for
the periodic images and a solid circle for the new position in the simulation box. B)
All distances between green and red atom and the respective neighboring images.
The purple line is the minimum image distance. Image adapted from wikipedia and
licensed under CC share alike.

2.6 Replica Exchange Simulations

Single trajectories often do require a long time to sample a large conformation space. To
sample as much of conformation space as possible practitioners often employ enhanced
sampling schemes. The simplest scheme is to run multiple simulations in parallel with
identical initial configurations but different initial conditions, e.g., different seeds for the
random number generator (RNG). Because the simulation run in parallel the set of sim-
ulation covers a larger amount of phase space in the same time compared to a single
simulation. In the last decades many more sophisticated enhanced sampling schemes
have been developed. In this thesis we will use Replica Exchange Monte Carlo (REMC)
[15, 197, 199, 212]. Other popular schemes include metadynamics [106], generalized sim-
ulated annealing [211], and Bayesian inference of ensembles [82].

Replica exchange simulations have been shown to enhance sampling in biological sys-
tems [150, 170]. In replica exchange simulations M independent simulations of a system,
which are further referred to as replicas, are run simultaneously and coordinates between
systems are exchanged periodically. The replicas are identical except for a physical control
variable like the temperature or pressure. The assumption of replica exchange is that by
tuning the physical control parameter high energy barriers can be easier overcome in some
replicas (e.g. high temperatures) and through the periodic exchange also other replicas
(e.g. low temperatures) are able to sample states with high energy barriers between them.
For example, if the temperature is the control parameter and T1 is the temperature at

https://commons.wikimedia.org/wiki/File:Limiteperiodicite.svg
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which the equilibrium distribution is to be sampled than higher temperature replicas can
easily cross barriers in the potential energy landscape. The low-temperature replicas in
Figure 2.4 only sample the energy minima, while the high-temperature replicas are able
to cross barriers and explore the full phase space.

x

U(
x)

T0

T1

T2

T3

T4

Figure 2.4: Schematic of the different energy levels accessible at different temper-
ature using REMC. The temperatures in the schematic are increasing Ti < Ti+1.
At low temperatures the simulations are confined to the minima, and at higher
temperatures the full phase space can be explored.

In a replica exchange simulation, the individual replicas are propagated in either with
an MD or a Monte Carlo algorithm. Periodically a pair of replicas is selected and a move
is attempted. To derive the trial move and acceptance function for temperature replica
exchange let M be the number of replicas with temperatures TM > TM−1 > · · · > T1, and
r(1), . . . , r(M) the configurations of the replicas. The probability for a configuration ri is

fj (ri) = exp (−βiU(ri))
Q(N,V, Ti)

, (2.61)

where βi is the inverse temperature of replica i, Q is the partition function, N the number
of degrees of freedom and V the volume. During an exchange attempt between replicas i
and j the positions are exchanged (ri, rj)→ (r̃i, r̃j), where r̃i = rj and r̃j = ri. This move
is symmetric

T (ri|rj) = T (rj |rj). (2.62)
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Therefore the acceptance function becomes [66]

A(ri|rj) = min
[
1, fi(rj)fj(ri)
fi(ri)fj(rj)

]
(2.63)

= min
[
1, e(βi−βj)[U(ri)−U(rj)]

]
. (2.64)

Besides temperature replica exchange more replica exchange protocols have been de-
veloped. Two commonly used once are pressure replica exchange [144] and Hamiltonian
replica exchange [28]. For pressure replica exchange the acceptance function is

A(ri|rj) = min (1, exp ((βi − βj)(U(ri)− U(rj)) + (βiPi − βjPj)(Vi − Vj))) , (2.65)

with Pi the pressure of replica i and Vi the volume of replica i. For Hamiltonian replica
exchange the acceptance function is

A(ri|rj) = min (1, exp (βi(Ui(ri)− Ui(rj)) + βj(Uj(rj)− Uj(ri)))) , (2.66)

with Ui the energy function of replica i. In Hamiltonian replica exchange the potential
energy function is changed from UA to UB using a one dimensional scaling factor λ, for
example

Ui(r) = λiUA(r) + (1− λi)UB(r). (2.67)

The descriptions of the replica exchange algorithms do not specify which replicas are
exchanged in an attempt. To increase the probability to accept an exchange we only
attempt to exchange neighboring replicas [28]. An alternative would be to randomly
select a pair i, j, see Figure 2.5 for how configurations are exchanged between replicas in
both schemes. During an exchange, not all neighboring pairs are attempted to exchange,
this is because of the exchange between replica i and i+ 1 also depends on replica i− 1.
Therefore attempts are only done between even pairs when the attempt number is even
and odd pairs otherwise. A pair i, i+ 1 is called even/odd if i is even and vice versa.

0

1

2

3

4

t1 t2 t1 t2

0

1

2

3

4A B

Figure 2.5: Two different exchange protocols for replica exchange simulations. A
shows the odd/even pair protocol, where only neighboring replicas are exchanged.
B shows the all to all protocol, where exchanges are attempted between random
replicas. t1 and t2 are exchange attempts.
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2.7 Rotational Dynamics

Based on the work of Fury [57] explicit expressions for the rotational dynamics of rigid
bodies using Cayley-Klein parameters [64] have been derived by Favro [51]. In this thesis
we are describing the rotational motion of a rigid body using quaternions or, more precisely,
column vectors of the so-called Euler parameters [64, 119], q = (q0, q1, q2, q3)T , with
q2

0 + q2
1 + q2

2 + q2
3 = 1 and T indicating the matrix transpose. Quaternions are closely

related to Caley-Klein parameters and allow use to directly copy the expressions derived
by Favro. The quaternion coefficients are related to the rotation axes ~v and angle φ
through q = (cos(φ/2), sin(φ/2)~v). A quaternion q = (1, ε, 0, 0) with ε → 0 therefore
corresponds to an infinitesimal rotation about the x axis by an angle ε/2. Quaternions
can be directly converted into rotation matrices [64]

Q =


1− 2(q2

2 + q3
2) 2(q0q3 − q1q2) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1− 2(q1
2 + q3

2) 2(q0q1 − q2q3)
2(q0q2 − q1q3) 2(q2q3 + q0q1) 1− 2(q1

2 + q2
2)

 . (2.68)

The rotational dynamics of a freely rotating rigid body are completely determined
by its rotational diffusion tensor. Let the quaternion q(t) describe the orientation of the
rigid body in the principal coordinate system (PCS) as a function of time t. In the PCS,
the rotational diffusion tensor is diagonal, DR = diag(DR,1, DR,2, DR,3). For rotational
diffusion of a rigid body that is aligned with the PCS at time 0, q(0) = (1, 0, 0, 0)T ,
Favro [51] derived explicit expressions for the average quaternion covariance coefficients
〈qi(t)qj(t)〉 as a function of time,

〈q2
0(t)〉 = 1

4
(
1 + e−3DRt

(
eDR,1t + eDR,2t + eDR,3t

))
(2.69)

〈q2
1(t)〉 = 1

4
(
1 + e−3DRt

(
eDR,1t − eDR,3t − eDR,2t

))
(2.70)

〈q2
2(t)〉 = 1

4
(
1 + e−3DRt

(
eDR,2t − eDR,1t − eDR,3t

))
(2.71)

〈q2
3(t)〉 = 1

4
(
1 + e−3DRt

(
eDR,3t − eDR,2t − eDR,1t

))
(2.72)

〈qi(t)qj(t)〉 = 0 for i 6= j, (2.73)

where DR = TrDR/3 = (DR,1 + DR,2 + DR,3)/3. The average 〈· · · 〉 is over repeated
initializations of the stochastic trajectories or, equivalently, different starting points on a
long equilibrium trajectory, appropriately rotated into the PCS. Note that Favro derived
eqs 2.69 to 2.73 using the Caley-Klein parameters, which have a close relationship to
quaternions. Therefore we adopted Favro’s results to quaternions.

In the theoretical description of experiments the rotation correlation functions Ci(t) =
〈Pi(~v(t)·~v(0))〉 = 〈Pi(cos(θ(t)))〉 are commonly used, which can be calculated from eqs 2.69
to 2.73. Here Pi is the Legendre polynomial of order i, ~v(t) = (v1(t), v2(t), v3(t))T is a unit
vector, ~v ·~v = 1, associated with a rigid molecule as a function of time t. The dot product
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~v(t) · ~v(0) = ~vT (t)~v(0) is the cosine of the angle this vector has rotated as a function of t.
For P1 and P2 analytical results are known by the work of Favro [51] and Woessner [229].

〈P1(~v(t) · ~v(0))〉 =
(
v2

1e
DR,1t + v2

2e
DR,2t + v2

3e
DR,3t

)
e−3DRt (2.74)

and

〈P2(~v(t) · ~v(0))〉 = 3
∑
i

v2
i+1v

2
i+2e

−3(DR+DR,i)t

+
(
1− 3(v2

1v
2
2 + v2

2v
2
3 + v2

3v
2
1)
)
e−6DRt cosh (2t∆)

−
∑
iDR,i

(
1− 3v4

i − 6v2
i+1v

2
i+2
)
e−6DRt sinh (2t∆)

2∆ , (2.75)

with DR,i, i ∈ [1, 2, 3] the elements of the diagonal rotation diffusion tensor,

DR = 1
3(DR,1 +DR,2 +DR,3), and (2.76)

∆ =
(
D2
R,1 +D2

R,2 +D2
R,3 −DR,1DR,2 −DR,1DR,3 −DR,2DR,3

)1/2
. (2.77)

For an isotropic molecule, DR,1 = DR,2 = DR,3 = DR, eqs 2.74 and 2.75 simplify to

〈P1(~v(t) · ~v(0))〉 = exp(−2DRt), (2.78)

and

〈P2(~v(t) · ~v(0))〉 = exp(−6DRt), (2.79)

respectively. LetU(t) be the rotation matrix that describes the orientation of the molecule,
withU(0) = I, and ~v(t) a unit vector attached to the rigid molecule. Then ~v(t) = U(t)~v(0)
and the expectation value becomes

〈P1(~v(t) · ~v(0))〉 = ~vT (0)〈U(t)〉~v(0). (2.80)

If one uses polar angles to represent the unit vector, v1 = cosφ sin θ, v2 = sinφ sin θ, and
v3 = cos θ, and eq 2.68 to write the rotation matrix in terms of quaternions. By averaging
uniformly over all orientations of ~v(0), using u2

0 + u2
1 + u2

2 + u2
3 = 1 and eq 2.69, one finds

〈〈P1(~v(t) · ~v(0))〉〉 = 1
4π

∫ π

0
sin θ dθ

∫ 2π

0
dφ~vT (0)〈U(t)〉~v(0)

=
〈

1− 4
3(u2

1 + u2
2 + u2

3)
〉

=
〈1

3(4u2
0(t)− 1)

〉
= 1

3
(
eD1t + eD2t + eD3t

)
e−3Dt (2.81)

where 〈〈. . .〉〉 indicates an average over the orientation of ~v(0) in the reference frame of the
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molecule and over repeated Brownian dynamics trajectories. For an isotropic molecule,
D1 = D2 = D3 = D, eq 2.81 yields the expected single-exponential decay eq 2.78. Inte-
grating eq 2.81, we obtain

τ1 =
∫ ∞

0
dt〈P1(~v(t) · ~v(0))〉 =

∫ ∞
0

dt
〈

4u2
0(t)− 1

〉
/3

= 1
3

(
1

DR,1 +DR,2
+ 1
DR,2 +DR,3

+ 1
DR,3 +DR,1

)
. (2.82)

For the second-order correlation function P2(cos θ) averaged isotropically over orientations
of ~v, one finds

〈〈P2(~v(t) · ~v(0))〉〉 = 1
5
〈

16u4
0(t)− 12u2

0(t) + 1
〉

= 1
5
(
e−3(D+D1)t + e−3(D+D2)t

+ e−3(D+D3)t + 2e−6Dt cosh(2t∆)
)
. (2.83)

using eqs 2.69 to 2.73, 3.13 and 3.14. For an isotropic molecule one recovers the expected
single-exponential decay eq 2.79. Integrating eq 2.83, we obtain the rotational correlation
time

τ2 =
∫ ∞

0
dt 〈〈P2(~v(t) · ~v(0))〉〉

= 1
15

( 1
D +D1

+ 1
D +D2

+ 1
D +D3

+ D1 +D2 +D3
D1D2 +D2D3 +D3D1

)
(2.84)

for an arbitrary rotation diffusion tensor. In the limit of isotropic diffusion eq 2.79 can be
used to estimate the hydrodynamic radius using

Rh = (3kBTτ2/4πη)1/3, (2.85)

which follows from τ2 = 1/(6D) and D = kBT (8πηRh3)−1, with η the viscosity.
In experiments, the rotational correlation time is often reported in terms of the har-

monic mean relaxation time [209]

τc = 1
6D = 1

2(D1 +D2 +D3) . (2.86)

To first order in the differences between the Di and D = TrD/3, τc agrees with the
correlation time τ2 of P2(~vT (t) · ~v(0)), eq 2.84.



Chapter 3
Accurate Calculation of Rotation Dynamics

3.1 Introduction
In this chapter, we will develop a novel algorithm to calculate fully anisotropic rotational
diffusion tensors from simulations. The algorithm is based on fitting the time-dependent
covariances (eqs 2.69 to 2.73) that fully describe the rotational motion of a free rigid body.
The quaternion covariances can be directly calculated from simulations. The rotational
diffusion tensor is determined by a fit to the time-dependent quaternion covariances, or
directly by Laplace transformation and matrix diagonalization. To quantify uncertainties
in the fit, we derive analytical expressions for the uncertainties and compare them with
Brownian dynamics simulations of anisotropic rotational diffusion. Using our algorithm
we also show that rotational diffusion depends on simulation box size when using PBC
similar to translational diffusion (eq 3.23). We remove the box-size dependence of the
rotational diffusion coefficients by adding a hydrodynamic correction term kBT/6ηV to
the apparent diffusion coefficient in the periodic box. We test the fitting algorithm and
finite-size correction on all-atom MD simulations of horse heart myoglobin and a B-DNA
dodecamer at various box sizes.

3.2 Theory

3.2.1 Quaternion Covariance in a Reference Coordinate
System.

The quaternion covariances from Favro (eqs 2.69 to 2.73) are only valid in the PCS of
the rotational diffusion tensor. The PCS is not commonly known. For a quaternion
u(t) that describes the orientation in an arbitrary reference coordinate system (RCS) the
covariance matrix [〈u(t)uT(t)〉]ij = 〈ui(t)uj(t)〉 is in general not diagonal. However there
exists a transformation V

q(t) = V u(t), (3.1)

to rotate the RCS into the PCS, so that the covariance matrix of q(t) is diagonal. Here,
V u(t) is the matrix product of a 4× 4 matrix representing a member of the group SO(4)

25
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with a 4-component vector. Because V corresponds to a rotation in three dimensions, it
can be written as

V =


1 0 0 0
0
0 R

0

 , (3.2)

where R is a 3× 3 rotation matrix representing an element of the group SO(3). Both the
V and R matrices are orthogonal with determinant one,

V TV = V V T = 1 and (3.3)

RTR = RRT = I, (3.4)

with 1 and I the 4×4 and 3×3 identity matrices, respectively. Using eq 3.1, the covariance
matrix coefficients can be written as

〈q(t)qT(t)〉 = V 〈u(t)uT(t)〉V T . (3.5)

〈u(t)uT(t)〉 is symmetric by construction, 〈q(t)qT(t)〉 is diagonal according to eqs 2.69
to 2.73, and V is an element of SO(4) by definition. Therefore, V T is the matrix of
eigenvectors of 〈u(t)uT(t)〉, i.e.,

〈u(t)uT(t)〉V T = V TΛ(t) (3.6)

with Λ(t) = diag[λ0(t), λ1(t), λ2(t), λ3(t)] = 〈q(t)qT(t)〉 the diagonal matrix of correspond-
ing eigenvalues. The transformation V thus rotates the RCS into the PCS.

For an ideal Brownian rotor, for which eqs 2.69 to 2.73 hold exactly in the PCS, a
matrix of type V is expected to diagonalizes the full covariance matrix. By contrast, if
Brownian rotational diffusion is only an approximation to a more complex dynamics, or
simply because of sampling noise, the 〈u(t)uT(t)〉 matrices require the more general form
of an SO(4) transformation for full diagonalization. To limit the transformation to SO(3)
rotations, we impose the form of V according to eq 3.2 and diagonalize only the 3 × 3
covariance matrix C(t) with elements Cij(t) = 〈ui(t)uj(t)〉 (i = 1, 2, 3), i.e., ignoring the
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elements of the covariance matrix involving the “privileged” u0(t). Obtaining

V 〈u(t)uT(t)〉V T =


1 0 0 0
0
0 R

0




C00(t) c0(t)T

c0(t) C(t)




1 0 0 0
0
0 RT

0

 (3.7)

=


C00(t) cT0 (t)RT

Rc0(t) RC(t)RT

 ,

whereRT is the matrix of orthonormal eigenvectors of C(t). For ideal Brownian rotations,
the eigenvalues follow eqs 2.70 to 2.72, and R will be independent of time t. Since RT

rotates a vector from the PCS into the RCS,

RT


1
0
0

 ,RT


0
1
0

 , and RT


0
0
1


are the principal axes in the RCS. Therefore, the row vectors in the matrix R of eigenvec-
tors of C(t) give the principal axes.

3.2.2 Calculating Rotational Covariance Matrix from
Simulation Trajectories.

Common tools for superposition of two molecular structures provide rotation matrices.
Therefore, it is convenient to express the coefficients ui(t)uj(t) of the covariance ma-
trix 〈u(t)uT(t)〉 in terms of a rotation matrix. Let U be the root-mean-square distance
(RMSD) superposition matrix that rotates the macromolecule of interest into the (prede-
fined) reference orientation. By inverting the relationship, eq 2.68, between quaternions
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and rotation matrices we arrive at explicit expressions for the covariance coefficients.

u0u0 = (1 + U11 + U22 + U33)/4 (3.8)

u0u1 = (U23 − U32)/4

u0u2 = (U31 − U13)/4

u0u3 = (U12 − U21)/4

u1u1 = (1 + U11 − U22 − U33)/4

u1u2 = (U12 + U21)/4

u1u3 = (U13 + U31)/4

u2u2 = (1− U11 + U22 − U33)/4

u2u3 = (U23 + U32)/4

u3u3 = (1− U11 − U22 + U33)/4.

The remaining coefficients follow from the symmetry of the covariance matrix. Note we
have to use the transpose of Q in eq 2.68 due to the definition of R in eq 3.1.

We calculate 〈u(t)uT(t)〉 from a single long MD trajectory by calculating all orienta-
tions of the trajectory with respect to a reference structure and averaging the rotations.
To obtain the average covariance matrix 〈u(t)uT(t)〉 we have to determine the orientation
with respect to a structure at time τ that is different from the initial orientation (i.e.,
into the RCS). Let S(τ + t) be the 3× 3 rotation matrix that rotates the macromolecular
structure at time τ + t into optimal superposition with the reference. S(τ + t) can be
broken up into a rotation S(τ) to move to the RCS at time τ and another rotation U(t; τ)
to then establish optimal superposition at time t+ τ ,

S(τ + t) = U(t; τ)S(τ). (3.9)

Because SST = STS = I, we can solve for the rotation matrix U(t; τ) describing the
orientation of the molecule at time τ + t with t ≥ 0, starting in the RCS at time τ ,

U(t; τ) = S(τ + t)ST(τ). (3.10)

The sums of coefficients Uij(t; τ) in eq 3.8 provide the coefficients ui(t; τ)uj(t; τ) at time
t for the trajectory segment starting at time τ . The average time-dependent covariance
matrix at time t is obtained from a trajectory by repeating this procedure for all Nτ

starting times τ and averaging over them,

〈ui(t)uj(t)〉 = 1
Nτ

Nτ∑
τ

ui(t; τ)uj(t; τ), (3.11)

where Nτ is the number of snapshots up to time τ .
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3.2.3 Estimating the Rotational Diffusion Tensor from
Trajectories

To obtain the optimal rotational diffusion tensor we use a least-squares fit to the co-
variance matrix 〈u(t)uT(t)〉 obtained from simulations. The statistical variances s2

ij(t) of
〈u(t)uT(t)〉 are given by

s2
ij(t) = 〈u2

i (t)u2
j (t)〉 − 〈u2

i (t)〉〈u2
j (t)〉. (3.12)

Estimates of the fourth moments 〈u2
i (t)u2

j (t)〉 from trajectory data are problematic be-
cause they are themselves subject to large uncertainties. Therefore, we replace the fourth
moments with analytic expressions 〈u2

i (t)u2
j (t)〉id for ideal rotational diffusion with given

diffusion coefficients and PCS. For the fourth-order correlations, Favro [51] obtained

〈q4
1(t)〉 = 1

8

(
1 + 3

2e
−3DRt

(
eDR,1t − eDR,2t − eDR,3t

)
+ 1

2e
−3DRt

(
e−3DR,1t − e−3DR,2t − e−3DR,3t

)
+ e−6DRt cosh(2t∆)

)
(3.13)

and

〈q2
1(t)q2

2(t)〉 = 1
8

(
1
3 −

1
2e
−3DRt

(
eDR,3t − e−3DR,3t

)
+ e−6DRt

(
∆−1(DR,3 −DR) sinh(2t∆)

− 1
3 cosh(2t∆)

))
, (3.14)

where

∆ =
(
D2
R,1 +D2

R,2 +D2
R,3 −DR,1DR,2 −DR,1DR,3 −DR,2DR,3

)1/2
. (3.15)

The other 〈q2
i (t)q2

j (t)〉 can be found by permutations of the indices. Averages over products
of odd powers of the qi vanish due to symmetry. We transform 〈q2

i (t)q2
j (t)〉 from the PCS

into the RCS with R in eq 3.7

〈u2
i (t)u2

j (t)〉id =
〈( 3∑

k=1
Rk,iqk

)( 3∑
l=1

Rl,iql

)( 3∑
m=1

Rm,jqm

)( 3∑
n=1

Rn,jqn

)〉

=
3∑

k=1
〈q2
i (t)q2

j (t)〉R2
kiR

2
kj+

3∑
m<n

〈q2
i (t)q2

j (t)〉
(
R2
miR

2
ni +R2

mjR
2
nj + 4RmiRniRmjRnj

)
. (3.16)
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The sum of the squared deviations between model and simulation data, scaled by the
inverse of the expected errors, becomes

χ2 =
∑
t

3∑
i,j=1
i≤j

([
RT 〈q(t)qT(t)〉R

]
ij
− 〈ui(t)uj(t)〉

)2

s2
ij(t)

(3.17)

=
∑
t

3∑
i,j=1
i≤j

([
RT 〈q(t)qT(t)〉R

]
ij
− 〈ui(t)uj(t)〉

)2

〈u2
i (t)u2

j (t)〉 − 〈u2
i (t)〉〈u2

j (t)〉id
, (3.18)

where the first sum is over the different lag times t used for analysis and the product of
q quaternions involves only elements 1 to 3, excluding q0. We then determine the full
diffusion tensor by minimizing eq 3.17 with respect to the diagonal elements DR,1, DR,2

and DR,3, and the rotation matrix R defining the PCS. In this work we use simulated
annealing for this six-dimensional optimization. This approach ignores possible effects of
nonideal rotational diffusion.

As an alternative way to calculate the rotational diffusion tensor we use the Laplace
transform τ ′ of the covariance matrix coefficients

τ ′ij(s) = 4
∫ ∞

0
dt (〈ui(t)uj(t)〉 − 〈ui(∞)uj(∞)〉) e−st

=
∫ ∞

0
dt (4〈ui(t)uj(t)〉 − δij) e−st (3.19)

With i, j ∈ [1, 2, 3]. Diagonalizing τ ′(s) yields three eigenvalues µ1(s) ≥ µ2(s) ≥ µ3(s)
and a matrix of eigenvectors RT that corresponds to the transposed rotation matrix in
eq 3.7 and thus contains the principal axes of the rotational diffusion tensor as column
vectors. We use eqs 2.69 to 2.73 to calculate the diffusion coefficients DR,1, DR,2 and DR,3

from the s dependent eigenvalues µi(s)

DR,1 = − 1
µ1 + µ2

+ 1
µ2 + µ3

− 1
µ3 + µ1

− s

2 (3.20)

DR,2 = − 1
µ1 + µ2

− 1
µ2 + µ3

+ 1
µ3 + µ1

− s

2 (3.21)

DR,3 = + 1
µ1 + µ2

− 1
µ2 + µ3

− 1
µ3 + µ1

− s

2 . (3.22)

We expect the right-hand side of eqs 3.20 to 3.22 to be independent of s for ideal rota-
tional dynamics without noise. In practice these assumptions are generally not fulfilled.
Therefore, we use the reciprocal of characteristic time for rotational diffusion s ≈ 1/τ1

to estimate DR,1, DR,2 and DR,3. τ1 is independent of the RCS and can calculate by
integrating u2

0(t), see eq 2.82.
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3.2.4 Finite-Size Effects in Rotational Diffusion

PBC are a severe constraint on the hydrodynamic flow. For translational diffusion in an
cubic simulation box of length L we can determine the apparent diffusion coefficient DPDC

using [46, 236]

DPBC = D0 −
2.837

kBT/6πηL
, (3.23)

where, D0 is the infinite box-size diffusion coeffient, η is the shear viscosity, kB is the
Boltzmann constant, and T the absolute temperature. The apparent diffusion coefficient
is reduced because the velocity field of the hydrodynamic flow generated by a particle
moving in a periodically replicated box has to satisfy PBC. We illustrate this effect for

PBCx
y

z

ωω

infinite

Figure 3.1: Effect of PBC on the hydrodynamic flow around a rotating sphere.
(Left) Unrestricted rotational flow in infinite space. (Right) Fluid flow in a cubic
box of length L under PBC. The sphere of radius Rh = 0.3L rotates at constant
angular velocity ω around the z axis. The velocity field of the surrounding fluid is
shown as arrows at the mid-plane, z = 0, and at z = L/2. The unrestricted velocity
field is the “rotlet” v(r) = (Rh/r)3ω × r where ω = (0, 0, ω)T . The vertical blue
arrow indicates the axis of rotation ω. For visualization under PBC, the simple-
cubic lattice sum of rotlets evaluated using Ewald summation [4] is shown, not the
full solution of the Stokes equation for no-slip boundary conditions on the surface
of the rotating sphere [242].

a hydrodynamic flow generated by a rotating particle in a periodically replicated box
in Figure 3.1, there we compare the hydrodynamic flow around a sphere rotating about
the z axis in infinite space and in a cube under PBC. Under PBC the tangential flow
vanishes on the four faces at x = ±L/2 and y = ±L/2 that are aligned with the rotation
axis, which amounts to a no-slip-like boundary condition. We therefore expect additional
friction for macromolecules in tight simulation boxes. It has been shown by Zuzovsky et al.
[242] that for lattices of rotating spheres with no-slip boundary condition the reciprocal of
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the rotational friction coefficient ζr depends, to the lowest order, linearly on the volume
fraction,

1/ζr = 1− vmol/V, (3.24)

where vmol = 4πRh3/3 is the hydrodynamic volume expressed in terms of the hydro-
dynamic radius Rh of the rotating sphere. For this Zuzovsky et al. [242] generalized
Hasimoto’s [68] calculation and performed detailed analytical and numerical calculations
for simple cubic (sc), face-centered cubic (fcc), and body-centered cubic (bcc) lattices of
rotating spheres [75, 157, 242]. The Wigner-Seitz cells of these three Bravais lattices cor-
respond to simple cubic (sc), rhombic dodecahedral (fcc), and truncated octahedral (bcc)
simulation boxes, respectively.

This dependence of the rotational friction on the relative volume of a rotating sphere
can be recovered from a simple hydrodynamic model of spherical Couette flow between two
counter-rotating concentric spheres with no-slip boundary conditions. Adapting Fushiki’s
approach for translational diffusion [58], we replace the simulation box volume by a
Wigner-Seitz sphere of equal volume, i.e., with radius R = (3V/4π)1/3. In the Stokes
regime of laminar flow [67], ζr of the inner sphere of radius Rh increases by a factor
(1 − (Rh/R)3)−1 over the infinite-system value obtained in the limit R → ∞. This re-
sult agrees with the detailed calculations [75, 157, 242] to lowest order in the volume
fraction. Assuming the same box-size dependence of the rotational diffusion coefficient
on the rotational friction coefficient also for aspherical particles simulated under PBC,
and DR = kBT/ζ

r, the expected rotational diffusion coefficient DR,PBC observed in a
simulation depends on box volume as

DR,PBC =
(

1− vmol
V

)
DR,0 =

(
1− 4πRh3

3V

)
DR,0 (3.25)

where DR,0 is the infinite-system rotational diffusion coefficient and vmol = 4πRh3/3 is
the effective volume of the rotating particle. In this model Rh is the hydrodynamic radius
of the macromolecule. For large, near-spherical macromolecules, the rotational diffusion
coefficient is expected to satisfy the Stokes-Einstein relation, DR,0 = kBT (8πηRh3)−1,
which further simplifies the box-size dependence, eq 3.25, to

DR,PBC =
(

1− 4πRh3

3V

)
kBT

8πηRh3 = DR,0 −
kBT

6ηV . (3.26)

Eq 3.25 shows that the apparent rotational diffusion coefficient depends linearly on the
inverse box volume V −1 with intercept DR,0, and eq 3.26 shows that the slope depends
solely on temperature and viscosity.
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3.2.5 Rotational Brownian Dynamics Algorithm

To verify the calculated rotational diffusion tensors we test whether the values from our
simulations are within the expected distribution. To calculate the expected distribution of
rotational diffusion coefficients and rotation axes we use BD simulations of the rotational
dynamics. To develop a BD algorithm we consider the short time approximation of the
covariance coefficients in the PCS

〈q2
i (t)〉 = 1

2DR,it+O(t2), (3.27)

for i = 1, 2, 3, and 〈qi(t)qj(t)〉 = 0 for i 6= j. The short time approximation for the
privileged q0 is

〈q0(∆t)2〉 = 1− (DR,1 +DR,2 +DR,3)∆t
2 +O(t2). (3.28)

Akin to purely translational BD algorithms we set

q̃i(∆t) =
(
DR,i∆t

2

)1/2
gi (3.29)

for i = 1, 2, 3, with gi uncorrelated Gaussian random numbers of zero mean and unit
variance, but keep the privileged q0 as

q̃0(∆t) =
(

1− (DR,1 +DR,2 +DR,3)∆t
2

)1/2
(3.30)

ensuring that on average q̃ is normalized to one on first order in time〈 3∑
i=0

(q̃i(∆t))2
〉
≈ 1− ∆t2

4
(
D2
R,1 +D2

R,2 +D2
R,3 +DR,1DR,2 +DR,2DR,3 +DR,3DR,1

)
.

(3.31)

To guarantee that the normalization condition is fulfilled at every time-step the quater-
nions q̃(∆t) are normalized

q′i(∆t) = q̃i(∆t)
( 3∑
i=0

(q̃i(∆t))2
)−1/2

. (3.32)

Lastly the quaternion q′(∆t) has to be multiplied with the quaternion at time t to advance
the trajectory

q(t+ ∆t) = q(t)q′(∆t). (3.33)
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As initial orientation we choose q(0) = (1, 0, 0, 0)T to follow the rotational motion of the
molecule in the PCS at time t = 0. The quaternion product q(t)q′(∆t) is defined as

q′′0 = q′0 q0 − q′1 q1 − q′2 q2 − q′3 q3 (3.34)

q′′1 = q′1 q0 + q′0 q1 + q′3 q2 − q′2 q3

q′′2 = q′2 q0 − q′3 q1 + q′0 q2 + q′1 q3

q′′3 = q′3 q0 + q′2 q1 − q′1 q2 + q′0 q3

with q′′ = q(t+ ∆t) being the new orientation, q′ = q′(∆t) the change in orientation, and
q = q(t) the old orientation at each time-step.

3.3 Methods

3.3.1 Anisotropic Tetrahedron

To test the fitting algorithm we created a 500 ns rotational Brownian dynamics trajectory
of a tetrahedron with a rotational diffusion tensor of D = diag(20, 10, 5) ns−1. We used
the rotational Brownian dynamics algorithm described in Section 3.2.5 with an integration
time-step of ∆t = 10 fs to generate a trajectory in orientational space. We then applied
each orientation to the tetrahedron and stored the resulting 105 structures in a trajectory
file.

3.3.2 Molecular Dynamics Simulations of the
Dickerson-Drew DNA Dodecamer

We calculated the rotational diffusion tensor of the Dickerson-Drew dodecamer B-DNA
double helix (PDB code 1DUF [208]). As input, we used multiple all-atom molecular
dynamics trajectories at different box volumes. The simulations were run with GROMACS
2016.3 [3] using the AMBER Parmbsc1 forcefield [87] in a cubic box with TIP3P water
molecules [89] and ≈150 mM NaCl [91] at a temperature [29] of 298.15 K and a pressure
[151] of 1 bar, at a time-step of 2 fs. Exact initial box volumes and trajectory lengths are
listed in Table 3.1.

Set V [nm3] L [nm] d [nm] Trajectory Length [µs]
B1 233 6.162 1 5 × 1.4
B2 365 7.147 1.5 5 × 1.9
B3 580 8.343 2 10 × 1.0

Table 3.1: Different simulation box sizes, corresponding simulation times, and set
names for B-DNA. All trajectories at the same box size have the same length. L is
the edge-length of the cubic (V = L3) boxes. d is the shortest distance between the
solute to any box edge.
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3.3.3 Molecular Dynamics Simulations of Myoglobin

We calculated the rotational diffusion tensor of CO-bound horse-heart myoglobin (PDB
code 1DWR [33]). As input, we used multiple all-atom molecular dynamics trajectories
at different volumes. The simulations were done with GROMACS 5.1.4 [3] using the
Amber99sb*-idln forcefield [17, 78, 113] and the Giammona-Case force field for the CO-
bound heme [62] in a rhombic dodecahedron box with water molecules [89] and ≈150 mM
NaCl [92] at a temperature [29] of 293 K and a pressure [151] of 1 bar, at a time-step of
2 fs. Exact initial box volumes and trajectory lengths are listed in Table 3.2.

Set V [nm3] L [nm] d [nm] Trajectory Length [µs]
M1 206 4.064 0.8 5 × 1.4
M2 240 4.274 1 10 × 2.3
M3 293 4.565 1.25 5 × 1.1
M4 366 4.920 1.5 5 × 2.4
M5 516 5.516 2 5 × 2.9

Table 3.2: Different simulation box sizes, corresponding simulation times, and set
names for myoglobin. All trajectories at the same box size have the same length.
L is the edge-length of the rhombic dodecahedral box (V = 16L3/3

√
3). d is the

shortest distance between the solute to any box edge.

3.3.4 Hydrodynamics

We compared the MD rotational diffusion tensors of B-DNA and myoglobin to correspond-
ing hydrodynamic estimates using HYDROPRO [147]. We used atomic-level models with
a hydrodynamic bead radius of 0.29 nm for the heavy atoms of B-DNA and myoglobin.
For the B-DNA we used a viscosity for TIP3P water of 0.321(16) mPa s at 298.15 K [218].
We did correct the viscosity to account for the 150 mM NaCl. For myoglobin we used a
viscosity for TIP3P water of 0.326(16) mPa s at 293 K. To obtain the viscosity at 293 K
we used a linear extrapolation of the temperature-dependent viscosity of TIP3P water
reported by Mao and Zhang [125]. To account for the variability of the molecules we
calculated the rotational diffusion tensor as an average, over an ensemble of structures
selected from the MD simulations of B-DNA and myoglobin.

3.3.5 Calculating the Covariance Matrix

To calculate the orientations with respect to the RCS, we used the qcprot RMSD alignment
algorithm [117, 205] implemented in MDAnalysis [65, 135]. As a reference structure, we
used the average structure in the simulations, which for B-DNA was obtained by RMSD
aligning the inner five base pairs and averaging the simulation structures iteratively to
convergence. The first frame was used for the initial alignment. For myoglobin, we used
the Cα backbone atoms in the recursive RMSD alignment. To ensure that the fitted
rotational diffusion tensor is independent of the RCS, as defined by the reference structure
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in the RMSD alignment, we verified that the results did not change when different frames
of the trajectory were used to define the RCS. The references structure was determined
from the simulations in simulation set B1 for B-DNA and simulating setM2 for myoglobin.

3.3.6 Fitting the Covariance Matrix

We used a simulated annealing algorithm to minimize χ2 in eq 3.17. The annealing algo-
rithm alternated between optimizing the rotational diffusion coefficients Di and the PCS
every 20 iterations. The Monte Carlo move widths in the rotational diffusion coefficients
were decremented in 0.005 % steps from 5 % to a minimum of 0.5 % of the current value
during cooling. To search for the optimal orientation, the PCS was rotated about a random
axis by a random angle whose range was reduced from 90◦ at the beginning to a mini-
mum of 1◦ in 0.5◦ steps during cooling. For the system studied here, 5000 iteration cycles
were found to lead to well-converged results. To find the global minimum, we used the
minimum of 10 independent annealing runs. The annealing algorithm was implemented
Python [54] with time-critical functions like eq 3.17 using Numba [108] and NumPy [146]
for optimal performance. The implementation of the simulated annealing algorithm has
been published in the pydiffusion Python package [114].

3.3.7 Error Estimates

To estimate the statistical error of the rotational diffusion tensor, we used 100 rotational
BD simulations. The simulations were of equal length as the corresponding MD simulations
and used the best-fit rotational diffusion tensor as input. From each Brownian dynamics
simulation, we calculated the time-dependent quaternion covariance matrices, and from
these determined the rotational diffusion tensors. The rotational BD algorithm has been
implemented in Cython [12]. The implementation has been published in the pydiffusion
Python package [114].

From these simulations, we also estimated the number N of independent samples.
The factor N should bring the variances ŝ2

ij(t) of repeated estimates of the quaternion
covariances into agreement with the analytical estimates s2

ij(t) for ideal diffusion, as given
in eq 3.12,

Nŝ2
ij(t) ≈ s2

ij(t). (3.35)

Applying this relation to the variance ŝ2
ij(t) determined from rotational BD simulation

allows us to estimate N .
To compare two rotational diffusion tensors, D and D′, we used the Frobenius norm,

σ = |D −D′| =

∑
i,j

(
Dij −D′ij

)2
1/2

. (3.36)

As a test statistic, we used the normalized distribution p(σ) of σ values obtained for
the difference between the input and fitted rotational diffusion tensors in the rotational
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BD simulations. The complement of the cumulative distribution,
∫∞
σ dσ′ p(σ′), provides

an estimate of the probability of observing a deviation as large as σ or larger purely by
chance.

3.4 Results and Discussion

3.4.1 Anisotropic Tetrahedron

To test if we can determine the correct rotational diffusion tensor for ideal Brownian
rotation we used a tetrahedron trajectory, generated with known rotational diffusion tensor
of high anisotropy D = diag(20, 10, 5). The largest error of the estimated rotational
diffusion coefficient is 4 % in the slowest axes, Table 3.3. Therefore our annealing algorithm
can recover anisotropic diffusion coefficients from simulation data.

Input Fit
D1 20 20.51
D2 10 9.96
D3 5 5.03

Table 3.3: Comparison of input rotational diffusion coefficients used in a rotational
Brownian dynamics simulation of a tetrahedral molecule, and the rotational diffusion
tensor estimated from a fit to the resulting 500 ns trajectory.

3.4.2 Quaternion Covariances and Rotational Correlation
Function

Figures 3.2 and 3.3 show the raw quaternion covariances in the RCS. For the B-DNA,
Figure 3.2, the diagonal covariance coefficients 〈qi(t)2〉 are similar for all box volumes in
the first 5 ns. At later times differences become visible. The off-diagonal elements are
similar only for the first 3 ns. The overall shapes of the off-diagonal elements are similar
though. The off-diagonal elements contain information about the rotation axes, therefore
we expect this similarity because we chose the same reference structure for all simulations.
For myoglobin, Figure 3.3 the covariance coefficients diverge earlier. There is also no clear
trend at short times for the off-diagonal elements. Suggesting that our chosen reference
structure was already closely orientated to the PCS and that the differences are due to
noise.

Figure 3.4 shows the correlation functions 〈〈P1(cos(θ(t)))〉〉. The average P1 correlation
function was calculated directly from the variance of the scalar quaternion component q0,
eq 2.80. Both for myoglobin and B-DNA, increasing the box size accelerates the rotational
dynamics.
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Figure 3.2: Quaternion covariances of B-DNA from MD simulations at three differ-
ent volumes of the periodic boundary box. Colors increase in brightness from the
smallest volume 233 nm3 (dark blue) to the largest volume 580 nm3 (yellow).
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Figure 3.3: Quaternion covariances of myoglobin from MD simulations at five dif-
ferent volumes of the periodic boundary box. Colors increase in brightness from the
smallest volume 206 nm3 (dark blue) to the largest volume 516 nm3 (yellow).

3.4.3 Rotational Diffusion Tensor

A fit of the quaternion covariances together with the hydrodynamic estimate and com-
parison of the rotation axes is shown in Figure 3.5. We fitted the average quaternion
covariance obtained from from 0 to 24.9 ns, sampled at 5 ps intervals. We used simula-
tion set B1 and M2 for B-DNA and myoglobin, respectively. Fitting the time-dependent
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Figure 3.4: Orientational correlation function 〈〈P1(cos(θ(t)))〉〉 for myoglobin and
B-DNA averaged over all MD trajectories and orientations of the reference vector
for small (dark blue) to large simulation boxes (yellow).

quaternion covariance matrices led to an improvement of χ2 for myoglobin from χ2 = 67
for the hydrodynamic rotational diffusion tensor to χ2 = 11 for the fitted rotational tensor.
For B-DNA we also see an improvement, from χ2 = 13 for the hydrodynamic rotational
diffusion tensor to χ2 = 7 for the fitted rotational diffusion tensor. The components
〈ui(t)uj(t)〉 calculated for the best-fit rotational diffusion tensor agree very well with the
covariances calculated from the MD trajectories, see Figs. 3.5 and 3.7. The fitted rota-
tional diffusion coefficients Di are remarkably close to the hydrodynamic estimates, see
Figure 3.6. The principal rotation axes from simulation and hydrodynamics calculation
agree very well, see Figure 3.5 A and B. All three rotation axes are in good correspondence,
with hydrodynamic axes 2 and 3 being nearly degenerate for B-DNA and all three axes
being nearly degenerate for myoglobin. The main axis 1 of rotation points along the long
axis of the DNA and agrees with experiment [23].

The correlation time τc eq 2.86 of the Dickerson-Drew dodecamer from experiment
[45] is 5 ns, which is in excellent agreement with our simulation results of τc = 4.8 ns af-
ter scaling by a factor of 2.7, the ratio of the viscosity of water and TIP3P water. The
corresponding hydrodynamic estimate is 4.6 ns. The simulation estimate for the P2 cor-
relation time is τ2 = 4.6 ns. An experimental harmonic mean relaxation time [224] of
τc = 9.7(3) ns for myoglobin compares well with the 10.4 ns obtained both from hydrody-
namics and simulations, after scaling by a factor of 2.7 to account for the lower viscosity
of TIP3P water. Considering the combined uncertainties in the experiment, the viscosity
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Figure 3.5: Rotational diffusion tensors of B-DNA and myoglobin obtained from MD
simulation trajectories compared to hydrodynamic calculations. Average structure
of B-DNA (A) and myoglobin (C) with principal axes of the rotational diffusion
tensor, scaled by the respective principal values Di of the rotational diffusion tensor,
from hydrodynamic estimates (orange) and least-χ2 fit (blue). Numbers indicate the
order of the axes. Time-dependent covariance matrix coefficients of B-DNA (B) and
myoglobin (D) from simulations (black dashed lines), a numerical fit (blue), and the
HYDROPRO [147] hydrodynamic estimate (orange). The expected standard error
of the mean based on the Brownian dynamics simulations using the best-fit model
as input is shown as light blue shaded area. The dashed blue line is the theoretical
expected standard error of the mean for the best-fit tensor based on eq 3.35, with
an independent sample size estimated as N ≈ 2000 and N ≈ 2400 for B-DNA and
myoglobin, respectively. Data shown here is from simulating set B1 for B-DNA and
M2 for myoglobin.

correction, and the fit of the rotational diffusion tensor, the agreement is excellent for both
molecules. Note that we do not correct the shear-viscosity for the 150 mM NaCl present
in the simulation.

The rotational motion of the B-DNA is well described by a cylindrical rotational
diffusion tensor. Using a fit with an imposed cylindrical symmetry, D2 = D3, does not
lead to significant changes in χ2 for the B-DNA. We estimated a diffusion anisotropy
2D1/(D2 +D3) of 1.87(7). This is slightly lower than the experimental value of 2.1(4) but
still within the combined uncertainties of simulation and experiment. The corresponding
hydrodynamic estimate is 1.86. The error of the diffusion anisotropy estimate from our
simulations has been calculated from one hundred Brownian dynamics simulations of the
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Figure 3.6: Principal values Di of the rotational diffusion tensor for myoglobin
(left) and B-DNA (right) from a least-χ2 fit to the observed quaternion covariance
matrices (blue dots). The distribution of rotational diffusion coefficients from 100
Brownian dynamics simulations, using the best-fit rotational diffusion tensor as
input, is shown as blue shaded area with markers for the minimum, maximum,
and mean values. The ranges of the hydrodynamic estimates based on the viscosity
of pure TIP3P water with a 5 % error are shown as orange bars. In the respective
upper right corners myoglobin and B-DNA are shown aligned with the PCS together
with the rotation axes as identified from fits to the quaternion covariance (blue)
and hydrodynamic estimates (orange). Note that the plotted rotational diffusion
coefficients have not been corrected for the low TIP3P water viscosity. Data shown
here is from simulating the set B1 for B-DNA and M2 for myoglobin.

same length as the MD simulations.

3.4.4 Goodness of Fit

To access the goodness of fit we use the rotational BD simulations to calculate the residuals
of the covariances. The residuals are rarely larger than one standard deviation both for
B-DNA and myoglobin and agree well with the analytical result, see Figure 3.7. As shown
in Figure 3.7, diagonal and off-diagonal elements of the covariance matrix have errors of the
same magnitude at fixed time t. We scaled the analytical estimate of the standard errors
of the mean of the covariance matrix, eq 3.12, by the effective sample size N according to
eq 3.35. We estimate N ≈ 2000 and N ≈ 2400, for B-DNA and myloglobin, respectively,
as shown in Figure 3.7. The corresponding time per sample is 10× 1µs/2000 = 5 ns and
10 × 2.3µs/2400 = 9.6 ns for B-DNA and myoglobin, respectively. This corresponds well
with experimental rotational correlation times.

The Frobenius norm, eq 3.36, of the different rotational diffusion tensors, see Fig-
ure 3.8A, is a more quantitative comparison that takes into account exchanges in the
order of the principal values. As a reference, the distribution of the norm σ of the differ-
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A

B

Figure 3.7: Residuals of the quaternion covariance matrix coefficients for the least-χ2

fit (solid blue lines) and the hydrodynamics estimate (solid orange lines) for B-DNA
(A) and myoglobin (B). The expected standard errors of the mean based on the
best-fit model are shown as dashed blue lines, after scaling by 1/N , where N is the
estimated effective sample size. The standard errors of the mean from rotational
Brownian dynamics simulations are shown in light blue shading. For B-DNA the
residuals for a fit of a cylindrical rotational diffusion tensor are shown as a red dotted
line.

ence between input and fitted rotational diffusion tensors was calculated from repeated
rotational BD simulations of equal lengths to the MD simulations. Using this reference,
the probability to obtain, purely by chance, a value of σ that exceeds the Frobenius norm
of the difference between the hydrodynamic and fitted rotational diffusion tensors is 47 %
for B-DNA and 23 % for myoglobin. We compared the χ2 values of the fit of the rota-
tional diffusion model to the rotational BD simulations with the χ2 value from the MD
simulations in Figure 3.8B. With the χ2 value of the fit well within the distribution for
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Figure 3.8: Goodness of fit. (A) Distribution of the Frobenius norm σ of difference
tensors between the best-fit rotational diffusion tensor and the fitted tensors from
repeated rotational BD simulations, which used the best-fit MD rotational diffusion
tensor as input. The dashed vertical line indicates the corresponding Frobenius norm
between the best-fit tensor and the hydrodynamic estimate. (B) Distribution of χ2

values from fits to repeated rotational BD simulations. For reference, the dashed
vertical line shows the χ2 value of the fit to the molecular dynamics simulations.
(C) Distribution of χ2 value without a fit, as obtained from the repeated rotational
BD simulations. For reference, the dashed vertical line shows the χ2 value of the
hydrodynamic estimate. Its width reflects uncertainties in the viscosity of pure
TIP3P water of 5 %.

B-DNA, the rotational dynamics in the MD simulations is well explained by the best-fit
rotational diffusion tensor. For myoglobin, the χ2 value of the fit is slightly outside of the
distribution. Because myoglobin has a nearly isotropic diffusion tensor all three princi-
pal axes are nearly degenerate and it is much more likely that our results are influenced
by noise. Therefore we conclude that the simulations are well explained by the best-fit
rotational diffusion tensor.

Figure 3.8C compares the distribution of χ2 values without fitting the rotational dif-
fusion model. For B-DNA this plot shows that the χ2 value of the hydrodynamic, despite
being larger than that of the fit, is indeed in the expected range. This finding is consistent
with the results for the Frobenius norm in Figure 3.8B. For myoglobin Figure 3.8C shows
that the hydrodynamic model is different from the MD fitted rotational diffusion tensor.
This discrepancy can also be seen in Figure 3.5C where the second and third rotation
axes are visibly different from the hydrodynamic model. Given the low anisotropy, and
therefore near degeneracy of the principal axes, for myoglobin, it is to be expected that
exact determination of the rotational diffusion coefficient together with the principal axes
is difficult.

3.4.5 Rotational Diffusion Tensor from Laplace Transform

Figure 3.9 shows the dependence of the principal values D1, D2, and D3 on s in the range
from 1 to 1/(200 ns) calculated from integrating the Laplace transform eqs 3.19 to 3.22.
For the B-DNA, all three coefficients converge to values close to those of the least-χ2 fit.
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For myoglobin only D1 and D2 converge to the least-χ2 fit. The second coefficient the
Laplace transform predicts a value of 12 % less than the least-χ2 fit.
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Figure 3.9: Principal values Di of rotational diffusion tensor of myoglobin (left) and
B-DNA (right) calculated directly from the Laplace transforms of the covariance
matrix elements, eqs 3.19 to 3.22, for different values of s. The coefficients are colored
according to their axes (black for D1, red for D2 and gold for D3). The horizontal
dashed lines show the least-χ2 fit and the vertical black dashed line indicates s =
1/τ1.

3.4.6 Boxsize Dependency

From the rotational diffusion tensors calculated for B-DNA and myoglobin we calculated
the invariant mean rotational diffusion coefficientDR,PBC = (DR,1+DR,2+DR,3)/3 for each
box size, Table 3.4. Figure 3.10 shows the dependence of the mean rotational diffusion
coefficients of B-DNA and myoglobin on the inverse box volume. For both systems the
apparent rotational diffusion coefficient DR,PBC decreases linearly with 1/V . Also shown
are single-parameter fits of eq 3.26. All fitted values including errors are listed in Table 3.4.

The hydrodynamic radius Rh is sufficient to explain the values of DR,PBC and the
dependence on the box volume. For myoglobin and the B-DNA, we obtained values of
Rh = 2.15(3) nm and Rh = 1.72(3) nm, respectively. These calculated values of Rh are
in excellent agreement with the NMR experimental values of 2.12(2) nm for horse-heart
myoglobin [224, 227] and 1.71 nm for the Drew-Dickerson B-DNA dodecamer [45]. We
calculated Rh from second-order rotational correlation times τ2 using eq 2.85 with water
viscosities of η = 1.0016 mPa s and η = 0.975 mPa s at 20 ◦C and at 21 ◦C, respectively.

We can remove the box volume dependency by adding kBT/6η, according to eq 3.26,
to the mean rotational diffusion coefficients. For myoglobin, the correction removes the
box-size dependence. For B-DNA, the data suggest a residual box size dependence, albeit
within the statistical errors. A possible cause for the small deviations is the near-cylindrical
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V [nm3] DR,1 DR,2 DR,3 DPBC DR,0
B-DNA 233 0.129(3) 0.073(2) 0.066(2) 0.089(2) 0.098(1)

365 0.136(4) 0.077(3) 0.071(2) 0.095(3) 0.101(2)
580 0.143(3) 0.078(2) 0.076(2) 0.099(3) 0.103(2)
∞b 0.142(3) 0.082(2) 0.077(2) 0.100(3)

Myoglobin 206 0.041(1) 0.038(1) 0.038(1) 0.039(1) 0.049(1)
240 0.047(1) 0.040(1) 0.035(1) 0.0414(5) 0.0499(5)
293 0.0453(13) 0.041(1) 0.039(1) 0.042(1) 0.049(1)
366 0.051(1) 0.042(1) 0.038(1) 0.043(1) 0.0495(7)
516 0.0506(6) 0.0469(6) 0.0452(6) 0.0476(6) 0.0516(7)
∞b 0.055(1) 0.049(1) 0.045(1) 0.0500(4)

Table 3.4: Rotational diffusion coefficients of B-DNA and myoglobin for different
simulation box volumes. Eigenvalues DR,PBC,i of uncorrected rotational diffusion
tensors of myoglobin and B-DNA, and mean rotational diffusion coefficients before
and after correction with eq 3.26 , DR,PBC and DR,0, respectively. Comparisons
to experiment require corrections for the low viscosity of TIP3P water, DW

R,0 =
DR,oη

TIP3P/ηW , with ηTIP3P ≈ 0.32 mPa s[218] and ηW ≈ 0.9 mPa s. All rotational
diffusion coefficients are given in units of ns−1. Numbers in parentheses indicate
uncertainties in the last significant digit (standard error of the mean). Extrapolation
to infinite box size was done by a one-parameter fit of the intercept DR,0 in eq 3.26.
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Figure 3.10: Mean rotational diffusion coefficients DR,PBC from MD simulations of
myoglobin and B-DNA as a function of the inverse box volume. Results obtained
from the quaternion covariances averaged over all trajectories are shown as blue filled
circles. Error bars indicate SEM, as estimated from repeated BD simulations using
the best-fit model as input. Two-parameter (Rh, DR,0) straight-line fits of eq 3.25
are shown as blue dashed lines. One-parameter (DR,0) fits of eq 3.26 are shown as
blue solid lines. Individual estimates of the infinite-system value DR,0 from eq 3.26
are shown as open gray circles. Global estimates of DR,0 from eq 3.26 are shown as
horizontal gray dashed lines.
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shape of B-DNA, which deviates noticeably from the sphere assumed in our hydrodynamic
model.

To investigate the dependence on molecule shape, Figure 3.11 shows the eigenvalues
DR,PBC,i (i = 1, 2, 3) of the rotational diffusion tensors. The eigenvalues are in good
agreement with eq 3.26, i.e., DR,i ≈ DR,PBC,i + kBT/6ηV , albeit with larger scatter than
the mean rotational diffusion coefficients in Figure 3.10.
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Figure 3.11: Inverse box-volume dependence of the eigenvalues DR,PBC,i of the ro-
tational diffusion tensors of myoglobin and B-DNA. Values of DR,PBC,i are shown
as filled circles with the SEM as error bars. Two-parameter (Rh, DR,0) straight-line
fits of eq 3.25 are shown as dashed lines. Single-parameter (DR,0) fits of eq 3.26 are
shown as solid lines.

The simulation results published by Takemura and Kitao for the third IgG-binding
domain of Protein G (GB3) [203] and ubiquitin [203] at different box volumes and with
different water models also follow our predictions eq 3.26. The rotational diffusion coeffi-
cients of GB3 were calculated from the simulation data as DR = 1/6τ2, values for τ2 are
listed in Table 5 of ref 203. The mean rotational diffusion coefficient DR,PBC of ubiquitin
for different box volumes and water model was calculated from τ2 with data from Take-
mura and Kitao [202]. When using a solvent viscosity of bulk water value of 0.85 mPa s,
because the SPC/Eb water model developed by Takemura and Kitao [203] captures the
experimental translational diffusion coefficient, eq 3.26 can explain the simulation results
of GB3 without fitting, Figure 3.12. For the experimental rotational diffusion coefficient,
we used a value measured by NMR [61] and corrected for D2O and temperature [232].
Ubiquitin [202] with three different water models follow the hydrodynamic model with a
single hydrodynamic radius independent of water model as well, Figure 3.12. The abso-
lute values of DR,PBC for the different water models can be explained by a single Rh value
using eq 3.26 with DR,0,wat = kBT (8πηwatRh

3)−1. For the SPC, SPC/E, and TIP3P water
models, we used viscosities of ηwat = 0.43 mPa s [70], 0.73 mPa s[218], and 0.32 mPa s [218],
respectively. The hydrodynamic radius Rh = 1.56(1) nm from our fit is in the range of
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the experimental values of 1.57 nm from size-exclusion chromatography [214] and 1.65 nm
from NMR [109, 207]. Note that the ubiquitin simulation data [202] include variations not
only in box size, but also in box shape, from cubic to rectangular.
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Figure 3.12: (Left) Mean rotational diffusion coefficient DR,PBC of ubiquitin for
different box volumes and water models. Data taken from Takemura and Kitao [202].
The solid lines are the result of a global single-parameter fit of Rh using eq 3.26.
(Right) Rotational diffusion coefficients for protein GB3 calculated by Takemura
and Kitao [203] (symbols). The predictions (solid green line) of the hydrodynamic
model eq 3.26 using as input, without fit, the NMR value of DR [61, 232] (horizontal
dashed line).

3.5 Conclusion

In this chapter, we presented an algorithm to calculate the rotational diffusion tensor and
principal axes for arbitrarily shaped bodies from molecular dynamics simulations, and
showed that rotational diffusion is effected by PBC.

We demonstrated using MD simulation trajectories that our is able to reproduce ex-
perimental values and prediction from hydrodynamic theory for neat solvents. By for-
mulating the problems in terms of quaternions the expressions we used are relatively
simple and compact. The rotational diffusion tensor can be calculated from trajectory
data using a straightforward χ2 minimization or a using a Laplace transform. In practice,
the straightforward χ2 minimization led to an accurate and robust rotational diffusion
tensor estimates. For the myoglobin and B-DNA test cases, the results are in excellent
agreement with hydrodynamics calculations using HYDROPRO [147] and with experi-
ment [23, 45, 224]. Therefore we can indeed estimate fully asymmetric rotational diffusion
tensors from MD simulation trajectories. Since the algorithm is based on the theory of
rigid-body motion, its application is not limited to all-atom simulations but it can be
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applied to Brownian dynamics simulations and other CG simulations that include dynam-
ics information [130, 133]. Our algorithm will also work in regimes where rotational and
translational diffusion are coupled. A description in terms of the 6 × 6 diffusion matrix
is not required because even for coupled rotation and translation the Green’s function of
the rotational dynamics alone, in an isotropic and homogeneous medium, reduces to that
of the ideal Brownian rotor [13, 103].

Analysis of our simulations at different box volumes as well as literature values showed
that rotational diffusion is affected by PBC. In the simplest form, eq 3.26, the infinite-
system value is obtained by adding kBT/6ηV to the simulation estimate. We also de-
veloped a correction eq 3.26 that is independent of the size of the molecule. Our model
assumes that the simulation box is spherical in shape. We expect that for rectangular
boxes our simple correction is not correct anymore, similar to translational diffusion [221].
The same is true for highly anisotropic molecules. We noticed for the anisotropic B-DNA
that our model still gives a good qualitative description of the behavior but our fit is not
as good as for myoglobin. For myoglobin in a box of typical size filled with TIP3P water,
the relative correction is about 20 % of the infinite-system value. Including finite-size
corrections thus becomes important when MD simulations are used for quantitative com-
parisons to experiments sensitive to rotational dynamics, such as NMR or fluorescence.
We showed here that MD simulations, after finite-size correction, produce hydrodynamic
radii in excellent agreement with experiment.



Chapter 4

Brownian Dynamics Monte Carlo Integrators

4.1 Introduction
Langevin integrators for BD, like the Euler-Maruyama integrator eq 2.41, do not sample
the equilibrium distribution. Markov chain Monte Carlo (MCMC) algorithms sample the
equilibrium distribution by design and have been shown to simulate BD for isotropic par-
ticles [95, 104, 169, 179]. The MCMC algorithms adopted for BD will be called Brownian
dynamics Monte Carlo (BDMC) for the remainder of this thesis. BDMC algorithms utilize
that repeated convolutions of compact distributions tend towards Gaussians, according to
the central limit theorem. To connect MCMC simulations with BD one has to match the
width of the emerging Gaussian to that of the diffusion process. Therefore, the BDMC
algorithm reproduces the correct equilibrium distribution and dynamics.

In this chapter, we extend the existing BDMC algorithms to include rotations and
position-dependent diffusion. Adding rotational BD allows BDMC algorithms to be used
with arbitrarily shaped molecules. Similar to translational BD we construct a rotational
move in quaternion space that is connected to the quaternion covariances, eqs 2.69 to 2.73.
We show that rotational BD can be reproduced in MCMC simulations using our rotational
trial move. We will also look at the effect of different acceptance function for the Monte
Carlo algorithm with respect to the dynamics, and extend the BDMC algorithms to sim-
ulate systems with position-dependent diffusion constants.

We will show two possible applications of our algorithm. The first is an application for
a harmonic oscillator toy model with and without position-dependent diffusion coefficient.
The second system is to calculate the binding rates of the UIM-1-ubiquitin and CUE-
ubiquitin complexes using the KH protein model [96].

4.2 Theory

4.2.1 Brownian Dynamic Monte Carlo

Monte Carlo simulations dynamics correspond to to BD if the step-size is chosen correctly
[95, 104, 169, 179]. To find the correct step-size for a given trial probability T (x|y), to
generate a step from y to x, and acceptance function A(x|y), to accept a trial step, we

49
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look at the mean square displacement (MSD) of a single Monte Carlo step under constant
force ∆U = −Fx. For an arbitrary trial function and acceptance function, the MSD at
any point y is given by

MSD =
〈

(x− 〈x〉)2
〉

(4.1)

=
∫
dx x2 [T (x|y)A(x|y) + δ(x− y)(1−A(x|y))] , (4.2)

with δ(x) Dirac’s delta function. The term δ(x− y)(1−A(x|y)) represents the probability
that the step was rejected. Using a uniform box distribution as the trial probability, with
width 2a,

T (x|y) =


1
2a if |x− y| ≤ a

0 otherwise.
(4.3)

and the Metropolis acceptance function for sampling from the Boltzmann distribution
[134]

A(x|y) = min
[
1, exp

(
−U(x)− U(y)

kBT

)]
, (4.4)

with U(x) the potential energy at position x. Without loss of generality we assume y = 0.
Then the MSD, eq 4.1, simplifies to

MSD =
∫ a

−a
dx x2 1

2a min
[
1, exp

(
Fx

kBT

)]
= a2

3 +O(a3). (4.5)

In the second equality the integral has been approximated for small step-sizes a� 1. The
MSD of a Brownian process in one dimension with a diffusion coefficient D and a time-step
dt is [48]

MSD(dt) = 2DTdt, (4.6)

with DT the one dimensional translational diffusion constant. Replacing the left hand side
of eq 4.6 with the results of eq 4.5 gives an expression for the step-size depending on the
diffusion coefficient and time-step

a =
√

6DTdt. (4.7)

This result can be extended to three dimensions in the coordinate system in which the
translational diffusion tensor is diagonal.

This derivation is only valid for translational moves and dynamics. For rotations
the quaternion covariance of Fravo [51] fully determines the diffusive behavior of rigid
bodies. To connect rotational trials moves to the quaternion covariances we construct a
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rotational move in quaternion space. From the BD rotational diffusion algorithm developed
in Chapter 3 it is known that small rotations in quaternion space can be generated using

q̃i(dt) = aigi, i = 1, 2, 3 (4.8)

q̃0(dt) =
(

1−
3∑
i=1

a2
i

)1/2

, (4.9)

with gi being uncorrelated Gaussian random numbers of zero mean and unit variance.
This algorithm ensures that on average the generated quaternions are normalized〈 3∑

i=0
(q̃i(dt))2

〉
≈ 1. (4.10)

It is recommended to enforce the normalization condition for every generated quaternion

q′i(dt) = q̃i(dt)
( 3∑
i=0

q̃i(dt)2
)−1/2

. (4.11)

A similar algorithm is possible if gi are uniformly distributed random numbers between -1
and 1. In this case, we replace eq 4.9 with

q̃0(dt) =
(

1− 1
3

3∑
i=1

a2
i

)1/2

. (4.12)

It should be noted that in both cases there exists an upper limit for ai such that q̃0(dt) is not
an imaginary number. The quaternion covariance, eqs 2.69 to 2.73, can be approximated
at short times dt� 1

〈q2
0(dt)〉 = 1− dt

2 (DR,1 +DR,2 +DR,3) +O(dt2) (4.13)

〈q2
i (dt)〉 = 1

2DR,idt+O(dt2) for i = 1, 2, 3 (4.14)

〈qi(dt)qj(dt)〉 = 0 for i 6= j. (4.15)

This approximation, eq 4.13, corresponds to the trial move for rotations with Gaussian
random numbers and ai = (DR,it/2)1/2. For the rotation trial move with uniform random
numbers the step-size is

ai =
(3

2DR,idt

)1/2
. (4.16)

A possible improvement of the previous algorithms would be to use the full quaternion
covariance to calculate the step-width for any time-step t. In Figure 4.1 we compare the full
quaternion covariance with its short time approximation for an isotropic rotation diffusion
tensor DR = [0.1, 0.1, 0.1]1/s. For a time-step dt = 0.1 s the error of the approximation is
about 1 %. Cautiously one would choose a time-step one or two orders of magnitude below
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the value of the rotational diffusion coefficients. Eq 4.13 is also computationally cheaper
than using the full quaternion covariance which would require the expensive calculations
of three exponential functions.
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Figure 4.1: Quaternion Covariance (blue) and the short time approximation (orange)
for 〈q2

1(dt)〉 with DR = [0.1, 0.1, 0.1]1/s. Also shown are the time-step at which the
difference between the exact solution and the approximation is 1%, and the largest
usable time-step so that q̃0(dt) ∈ R.

4.2.2 Combined Translation and Rotation Brownian
Dynamics Monte Carlo

To simulate translation and rotation together we have to consider that the our derived
algorithms are only valid in the respective PCS, i.e. the respective diffusion tensors are
diagonal. Therefore, to simulate both the translation and rotation trial steps have to
be rotated from their respective PCSinto a shared RCS and the implementation has to
include book-keeping to remember the current orientation in respect to the PCS at start
of the simulation. To explain the necessary book-keeping we introduce:

• qt is the quaternion describing the orientation in the rotation diffusion PCS at time
t.

• Qt is a rotation matrix describing the orientation in the rotation diffusion PCS at
time t.
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• QRCS
t is a rotation matrix describing the orientation in the RCS at time t.

• MR is the transformation from the rotation diffusion PCS to the RCS at time 0.

• MT is the transform from translation diffusion PCS to the RCS at time 0.

For a simulation MR and MT have to be known beforehand, Qt has to be continuously
updated, and Qref

t can be calculated

QRCS
t = MRQt

(
MR

)T
. (4.17)

In the translation step the displacement vector dx′ is calculated in the translation PCS
and converted into the RCS before being applied

dx = QRCS
t MTdx′. (4.18)

The displacement can be directly applied to the current coordinates. In the rotation step
the small rotation dq is calculated in the rotation PCS and the orientation in the rotation
PCS is updated qt = qt−1dq. Afterwards the new rotation is converted into the RCS
using eq 4.17. To minimize numerical errors applying the new orientation it is beneficial
rotate the coordinates from the initial positions, centered at the origin, with QRCS

t and
then translate them by the current center of geometry.

Special care has to be taken to ensure that BDMC simulations fulfill detailed balance
and that sweeps correspond to a time-step. During a trial move in a BDMC simulation,
the protein has to be rotated and translated. To ensure detailed balance we randomly
choose with equal probability if the protein is first rotated or translated. For a Monte
Carlo sweep to be counted as a single time-step a sweep has to generate a trial move for
all N proteins. To ensure detailed balance we randomly choose with equal probability the
order in which proteins are updated.

4.2.3 Brownian Dynamics Monte Carlo with Gaussian
Trial probabilities

Because Langevin integrators use the Gaussian distribution to generate random displace-
ments an obvious improvement to the Brownian dynamics Monte Carlo algorithm could
be to use a Gaussian distribution for the trial probability

T (x|y) =
(
2πa2

)−1/2
e−

(x−y)2

2a2 , (4.19)

here a is the width of the Gaussian distribution. With this trial probability the MSD of
a single Monte Carlo trial step, eq 4.1, is

MSD = a2. (4.20)
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Therefore the relationship between step-size, diffusion coefficient and time-step for trans-
lation is

a =
√

2DTdt (4.21)

and for rotation

ai =
√
DR,idt

2 (4.22)

4.2.4 Alternative Acceptance Function

So far we only considered the Metropolis acceptance function. The question arises if the
Metropolis acceptance function is the optimal choice. An alternative to the Metropolis
acceptance function is the Glauber acceptance function [63]

A(x|y) = 1

1 + e
U(y)−U(x)

kBT

. (4.23)

This acceptance function is also known as the Barker rule [10] in the literature.

As a measure for the accuracy of the simulation we look at the first, second and third
moment of the probability distribution for a Monte Carlo step under constant force. For
BD with diffusion coefficientD starting from x = 0 and evolving for time dt under constant
force F , these moments are 〈x〉 = DFdt, 〈(x− 〈x〉)2〉 = 2Ddt, and 〈(x− 〈x〉)3〉 = 0. The
general equation for the n-th moment is

〈(x− 〈x〉)n〉 =
∫
dx xnA(−Fx|0)T (x|0), (4.24)

Our assumption is that a better reproduction of the moments will also yield a better
description of the dynamics. The error of dynamic observables, like the MSD and quater-
nion covariance is determined by the fourth order moments. Therefore a better accuracy
in higher order moments should yield a faster convergence of dynamic observables. We use
a uniform box distribution as the trial probability eq 4.3 and want to know the accuracy
of the moments with respect to the step-size a. For Metropolis, eq 4.4, we obtain,

µ = 〈x〉 = −Fa
2

6 + F 2a3

16 +O(a4) (4.25)

〈(x− µ)2〉 = a2

3 −
Fa3

8 +O(a4) (4.26)

〈(x− µ)3〉 = Fa4

15 +O(a5). (4.27)

Here the second central moment is correct to order O(a3) and the third central moment
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is correct to order O(a4). For Glauber, eq 4.23, we obtain,

µ = 〈x〉 = Fa2

12 −
F 3a4

240 +O(a5) (4.28)

〈(x− µ)2〉 = a2

6 −
F 2a4

144 +O(a5) (4.29)

〈(x− µ)3〉 = Fa4

120 +O(a5). (4.30)

Where both the second and third central moment are correct to order O(a4).

Metropolis and Glauber are not the only possible acceptance function that fulfill de-
tailed balance

A(x|y) = π(x)
π(y)A(y|x). (4.31)

For convenience we use ∆U = U(x) − U(y) as the variable for the acceptance function
A(∆U), the Boltzmann distribution as equilibrium probability π(x) = 1/Z exp(−U(x)

kBT
),

with Z the partition function, and rewrite equation 4.31 as

A(∆U) = e−β∆UA(−∆U) (4.32)

A(∆U)e−1/2β∆U = e−1/2β∆UA(−∆U). (4.33)

The Ansatz

A(∆U) =
(
h2
2 ∆U2 + h0

)
e−

β∆U
2 , (4.34)

with free parameters h0 and h2, fulfills condition eq 2.53 and therefore preserves detailed
balance. If we approximate the resulting moments for a� 1 we obtain,

µ = 〈x〉 = a2Fh0
6 + a4F 3

(
h0
240 + h2

20

)
+O(a6) (4.35)

〈(x− µ)2〉 = a2h0
3 + a4F 2

(
h2
10 −

h2
0

36 + h0
40

)
+O(a6) (4.36)

〈(x− µ)3〉 = a4F

(
h0
10 −

h2
0

6

)
+O(a6). (4.37)

To achieve an accuracy to order O(a6) the free parameters have to be chosen so that all
fourth order terms are zero. The only non trivial solution is h0 = 3/5 and h2 = −1/20.
Leading to an acceptance function

A(∆U) =
(

3
5 −

∆U2

40

)
e−

∆U
2 . (4.38)

Because this solution can have values larger than 1 or smaller than zero, Figure 4.2, the
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probability has to be clamped to stay between zero and one

A(∆U) =


1 for ∆U < U ′(
−∆U2

40 + 3
5

)
e−

∆U
2 for |∆U | < |U ′|

e−∆U otherwise

, (4.39)

with U ′ = −1.13124207139993 the solution of
(
−∆U2

40 + 3
5

)
e−

∆U
2 = 1. To ensure that

detailed balance is fulfilled the function applied to clamp eq 4.38 has to fulfill detailed
balance as well and it has to be clamped symmetrically around zero. Note that we have
here clamped using the Metropolis acceptance function.
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Figure 4.2: Optimized acceptance function eq 4.38 (blue) and the clamped proba-
bility eq 4.39 (green).

In the derivation of eq 4.39 we used a uniform distribution for the trial probability. The
question arises if the Gaussian distribution can also be used to derive a similar acceptance
function. Using a Gaussian probability for the first three moments we obtain

µ = 〈x〉 = a2Fh0
2 + a4F 3

(
h0
16 + 3h2

4

)
+O(a6) (4.40)

〈(x− µ)2〉 = a2h0 + a4F 2
(

3h2
2 − h2

0
4 + 3h0

8

)
+O(a6) (4.41)

〈(x− µ)3〉 = 3h0
2 Fa4(−h0 + 1) +O(a6) (4.42)

with a the standard deviation of the normal distribution. The only non trivial solution to
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remove the fourth order terms is h0 = 1 and h2 = −1/12

A(∆U) =
(
−∆U2

24 + 1
)
e−

∆U
2 . (4.43)

This equation also has the problem that it can have values below zero and above one.
Unfortunately, eq 4.43 is equal one at ∆U = 0 making it impossible clamp the probability
symmetrically around zero. It is therefore not possible to construct an explicit optimized
acceptance function for a Gaussian trial probability. Note that eq 4.39 can still be used
with a Gaussian trial probability.

For both the Glauber, eq 4.23 and the derived optimal acceptance function eq 4.39
the approximations for the second moment can be used to determine the step-size a of the
box distribution to reproduce BD for translation, and rotation Table 4.1.

Translation Metropolis Glauber Optimal
Uniform

√
6Ddt

√
12Ddt

√
10Ddt

Gaussian
√

2Ddt
√

4Ddt
√

10
3 Ddt

Rotation Metropolis Glauber Optimal
Uniform

√
3
2DR,idt

√
3DR,idt

√
5
2DR,idt

Gaussian
√

1
2DR,idt

√
DR,idt

√
5
6DR,idt

Table 4.1: MC trial-move width a for translation and rotation and different ac-
ceptance functions. Trial displacements are uniformly distributed in the interval
[−a, a].

4.2.5 Effective Time-Step

In the derivation of the BDMC algorithm we assumed that trial moves are small and
therefore ∆U ≈ 0. A side effect of this assumption is that the trial move size is optimized
for an average acceptance rate of accideal = A(∆U = 0). This assumption is not necessarily
true for large trial moves, yielding a distortion of the dynamics. We suggest to calculate
dynamic observables with an effective time-step dte

dte = dt
accsim
accideal

, (4.44)

where accsim is the observed acceptance rate. For the Metropolis acceptance function and
translational diffusion, it has been shown that re-scaling the time-step dt by accsim/accideal

improves the accuracy of dynamic observables [179].
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4.2.6 Position Dependent Diffusion Brownian Dynamic
Monte Carlo

For some applications of BD it is useful to use a position dependent diffusion coefficient
[81]. In the derivation of Monte Carlo from the detailed balance condition, eq 2.49, with
the separation of the transition probability into a probability to accept a step A(x|y) and
a probability to generate a step T (x|y) we find that the acceptance function A(x|y) and
A(y|x) are connected via [69]

A(x|y) = r(x|y)A(y|x) with (4.45)

r(x|y) = T (y|x)π(x)
T (x|y)π(y) . (4.46)

If we make the Ansatz that T (x|y) is a Gaussian probability with the variance depending
on a position dependent diffusion coefficient D(x)

T (x|y) = (4πaD(y))−1/2e
− (x−y)2

4aD(y) , (4.47)

with a the step-size. Then we get

r(x|y) =
(
D(y)
D(x)

)1/2
e
−β[U(x)−U(y)]− (x−y)2

4aD(y) + (x−y)2
4aD(x) (4.48)

= exp
[
− β[U(x)− U(y)] + 1

2 log
(
D(y)
D(x)

)

+ (x− y)2

4a

( 1
D(y) −

1
D(x)

)]
(4.49)

= exp [V (x, y, a)] . (4.50)

V (x, y, a) is a new effective potential that can be used with the previously defined ac-
ceptance function, instead of −∆U/kBT . Because V (x, y, a) is derived from a general
expression independent of the acceptance function it fulfills detailed balance.

To connect the step-size a to the chosen time-step dt the same approach as before can
be used. We calculate the MSD for a single Monte Carlo step at position x and compare it
with the expected analytical result at x. The resulting values for the step-size are shown in
Table 4.2. Here the step-size is only depending on the time-step because the local diffusion
coefficient is part of the trial probability.

Metropolis Glauber Optimal
a 1 2 5/3

Table 4.2: Move width a to choose for BDMC with the position-dependent diffusion
and Gaussian trial moves, eq 4.47, for different acceptance functions.

This algorithm can be generalized to dimensions larger than one if we work in the
coordinate system in which the diffusion tensor is diagonal. In n dimensions, we make
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multivariate trial moves

T (x|y) = (4πdt)−n/2|D(y)|−1/2 exp
(
−z

T (D(y))−1z

4dt

)
(4.51)

where z = x−y andD(y) is the covariance matrix and |D| is the determinant of the local
diffusion tensor. To make a move in n dimensions we first evaluate D(y) to determine the
diffusion coefficient along each of the principal directions and then make Gaussian trial
moves in each of the principal directions according to eq 4.47 with the parameter a chosen
according to Table 4.2

4.3 Methods

4.3.1 Harmonic Oscillator

As a simple toy model to test the BDMC algorithms we use a harmonic oscillator U(x) =
1
2kx

2 with spring constant k. For comparison to our algorithm we use the Euler-Maruyama
eq 2.41 , and BAOAB eq 2.42 integrators. For simplicity the values of D, k and kBT have
been set to one.

To evaluate how well the equilibrium distribution is reproduced, we compare the sim-
ulation result to the analytical MSD,

MSD(t) = kBT

k

[
1− e−

2kD
kBT

t
]

(4.52)

The MSD has been calculated for different time-steps from 0.0001 s to 0.25 s at t = 10 s.
For each time-step and algorithm 100000 simulations have been performed.

To evaluate how well the dynamics are reproduced, we calculated the autocorrelation
time τ of the positions

ACFx(t) = e−t/τ (4.53)

τ = kBT

Dk
. (4.54)

To estimate the autocorrelation time we averaged the autocorrelation function (ACF) of
forty trajectories each 1000 s long, and fitted a straight line to the logarithm of the ACF
using a least squares fit. This procedure was repeated fifty times to obtain a mean, and
error of the mean. To asses the systematic deviation of different algorithms from the
expected solution τ0 we fit the calculated difference τ − τ0 with respect to the time-step
to

τ − τ0 = αdtγ (4.55)

with the fit parameter α and γ. For our system τ0 = 1.
Our BDMC algorithms, the Euler-Maruyama, and BAOAB integrators have been im-
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plemented in julia v0.6 [21].

4.3.2 Position Dependent Diffusion

To validate the position dependent diffusion algorithm and the effective potential V (x, y, a)
we transformed the harmonic oscillator into a new coordinate z, where D is position
dependent, with the following transformation

z(x) = 2 exp
(
x

2

)
(4.56)

x(z) = 2 log
(
z

2

)
. (4.57)

The potential and diffusion coefficient in z can be determined with [18]

U(z) = U(x(z)) + kBT ln |dz/dx| (4.58)

D(z) = D(x(z))(dz/dx)2, (4.59)

yielding

D(z) = z2

4 (4.60)

U(z) = 2 log
(2
z

)2
+ log

(
z

2

)
. (4.61)

Because the transformation preserves the dynamics we will perform the simulations in
z-space and analyze the MSD and autocorrelation time after transforming the trajectories
back into x. After the back transformation the simulation procedures to calculate the
MSD and autocorrelation time are the same as for the harmonic oscillator. Because the
diffusion is position dependent the Euler-Maruyama integrator changes to [178]

xi+1 = xi +
[
F (xi)D(xi) +D′(xi)

]
dt+

√
2D(xi)dtkBTRt, (4.62)

with D′(x) being the derivative of the diffusion coefficient. We adjusted the BAOAB
integrator in the same way as the Euler-Maruyama integrator by adding the derivative of
the diffusion coefficient

xi+1 = xi +
[
F (xi)D(xi) + 3

4D
′(xi)

]
dt+

√
2D(xi)dtkBT

1
2(Rt +Rt−1), (4.63)

We determined the factor 3
4 for the derivative of D empirically by minimizing the error

of the equilibrium probability for a wide range of time-steps. This algorithm is called
“xBAOAB” in this thesis.

The BDMC algorithms for position-dependent diffusion, and the Euler-Maruyama and
BAOAB integrator have been implemented in julia v0.6 [21].



4.3. METHODS 61

4.3.3 Binding of the Vps27 UIM-1-ubiquitin complex

We looked at the binding kinetics of the Vps27 UIM-1-ubiquitin complex. For the simu-
lations we took the PDB structure 1Q0W [198] and placed the two proteins into a cubic
box, separated by a distance of 75 Å. We used 6 different box sizes with edge-lengths 125,
150, 175, 200, 225 and 300 Å. The diffusion tensor, used in the simulation, was calculated
with HYDROPRO [147] for each protein using the ’shell’ model, with the recommended
bead radii of 4.8 Å, using a temperature of 300 K and a viscosity of 1 mPa s. Translation
diffusion coefficient of UIM-1 in the reference frame of the crystal struture

DT =


1.9× 10−1 1.3× 10−2 6.4× 10−4

1.3× 10−2 1.7× 10−1 1.1× 10−3

6.5× 10−4 1.1× 10−3 1.6× 10−1

nm2ns−1. (4.64)

Rotational diffusion coefficient of UIM-1 in the reference frame of the crystal struture

DR =


1.2× 10−1 4.4× 10−2 4.5× 10−3

4.4× 10−2 7.4× 10−2 2.6× 10−3

4.5× 10−3 2.6× 10−3 4.9× 10−2

ns−1 (4.65)

The translation diffusion coefficient of ubiquitin in the reference frame of the crystal stru-
ture

DT =


1.3× 10−1 3.8× 10−3 −5.5× 10−4

3.8× 10−3 1.3× 10−1 −4.3× 10−4

−5.4× 10−4 −4.5× 10−4 1.3× 10−1

nm2ns−1 (4.66)

Rotational diffusion coefficient of ubiquitin in the reference frame of the crystal struture

DR =


3.8× 10−2 4.6× 10−3 −4.4× 10−4

4.6× 10−3 3.0× 10−2 −4.7× 10−4

−4.4× 10−4 −4.7× 10−4 2.8× 10−2

ns−1 (4.67)

As forcefield we used the KH model [96] with the complexes-pp simulation engine. Sim-
ulations have been performed with a uniform trial probability, and all three acceptance
function, Metropolis, Glauber, and Dynamic, and with six different integration time-steps
of 0.05, 0.1, 1, 10, 20, and 100 ps. For each unique combination of integration time-step,
acceptance function, and box size we ran 100 individual simulations each 8µs long at a
temperature of 300 K and a Debye length of 10 Å corresponding to a salt concentration of
100 mM NaCl. Structures were recorded every 400 ps. For the simulations with a 300 Å
edge-length we simulated for 40µs and only with a time-step of 1 ps or larger. All simula-
tions start from the same initial configuration with different random number seeds. The
first 80 ns of each simulation is equilibration and is discarded from further analysis. To test
the influence of electrostatic interaction on the binding rates we repeated all simulations
described above also with the Debye length set to 1 Å.
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Figure 4.3: Probability density of the UIM-1-ubiquitin complex for the minimal
distance between two Cα atoms and the total energy. The bound, unbound and
transition region are marked as well.

The bound and unbound state for the UIM-1-ubiquitin complex are defined using the
potential energy and the minimum distance between two Cα atoms, Figure 4.3. To reduce
noise due do frequent recrossing at state boundaries we use transition based assignment
(TBA) [27]. In TBA an additional transition region is defined where it is initially not clear
in which state the system is. All time continuous paths in the transition region are initially
assumed to be transition paths. A transition path connects two states without visiting
another in between. In an assignment step, the conformations on the transition paths are
assigned to their respective states. The first half is assigned to the initial state and the
second half to the final state. Any path in the transition region that is not a transition
path will be assigned to the initial state. See Figure 4.4 for a sketch representation of the
algorithm. The state assignment is shown in Figure 4.3. Note that this definition makes
no distinction between specifically and non-specifically bound states.

Using the state assignments after applying the TBA filter we calculate the rates kij
from state i to j using the observed transitions Nij . Detailed balance, and microscopic
time reversibility, require that for a long trajectory the transition matrix is symmetric. To
enforce detailed balance, we symmetrize the matrix of transitions N sym

ij = 1/2(Nij +Nji).
Let Ti be the total time the system spends in state i. The rates are calculated as

kij =
N sym
ij

Ti
(4.68)
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A

B

A

B

TBA
Figure 4.4: Example of state assignment of conformations on a transition path
with TBA. The two states are called A and B with their corresponding regions
colored blue and red. Anything between is the transition region. The left side shows
candidate transition paths before TBA. The right side shows the state assignment
along the candidate transition paths after TBA.

for i 6= j and

kii = −
N∑
j=1
j 6=i

kij (4.69)

for i = j. This estimator has been recently shown to be the maximum likelihood estimator
for kij [195]. We estimate the error of the rates using bootstrapping with fifty samples
from the one hundred trajectories for each unique combination of time-step and acceptance
function. Each bootstrap sample contains fifty trajectories. To convert the pseudo first-
order on-rate into kon we use eq 4.71, and eq 4.44 to correct for the effective time-step.

The binding kinetics of the two-state model, with the reactants A and B, follow a
pseudo first order rate equation

A+B
k′on⇀↽
koff

AB, (4.70)

where koff is the off-rate, k′on is a pseudo first-order on-rate, and AB is the bound state.
The true on-rate can be determined with [149]

kon = k′on
[B] = k′on

V NA

pA
, (4.71)

with [B] denoting the concentration of reactant B, NA the Avogadro constant, V = (VBox−
Vex) the volume accessible to the unbound components, VBox the simulation box volume,
Vex the excluded volume of the bound state, and pA the probability to be unbound. Here
we approximated the concentration [B] = pB

NAV
using the activity of B. To determine Vex

and the dissociation constant Kd we can use that the fraction bound pAB is given by

pAB = [A]
[A] +Kd

(4.72)

= −pAB + 1
KdNAV − pAB + 1 . (4.73)
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In the second equality we used [A] = 1−pAB
NAV

. This equation can be solved for pAB

pAB = KdNA (VBox − Vex)
2 −

√
KdNA (VBox − Vex) (KdNA (VBox − Vex) + 4)

2 + 1. (4.74)

Now we can determine Kd and Vex from a global fit of eq 4.74 to the observed values of
pAB at different box volumes. An alternative is to use the concentrations of the reactants
and products, and the rates

Kd = (1− pAB)2

pAB

1
NAV

(4.75)

= koff
kon

. (4.76)

It should be noted that due to the definition of kon and koff calculating Kd from the
fraction bound and rates yield exactly the same results. Therefore eq 4.75 can be used to
test if the rates have been calculated correctly.

To check the if the Kd values are persevered by our BDMC algorithms we also set up
a normal Monte Carlo simulation for each simulation box size with all three acceptance
functions. The rotation angle was chosen uniformly between −π and π, the translation was
chosen uniformly between −3 Å and 3 Å, 20000 configurations have been recorded with
every fourth simulation frame saved to file. For the simulation with a box edge-length
of 300 Å 100000 configurations have been recorded. For this comparison, every structure
with an energy below −2 kT was counted as bound [96]. To estimate an error of any
equilibrium observable value the same bootstrapping procedure as for the rate calculation
was used.

The trajectories have been analyzed with scripts building on the following Python
libraries: MDAnalysis,[65, 135] NumPy,[216] SciPy,[88] datreant,[44] pandas,[131] and
matplotlib[84].

4.3.4 Binding of the CUE-ubiquitin complex

We simulated the binding kinetics of the CUE-ubiquitin complex. For the simulations
we took the PDB structure 1OTR [93] and placed the two proteins into a cubic box,
separated by a distance of 75 Å. We used 6 different box sizes with edge-lengths 125, 150,
175, 200, 225 and 300 Å. The diffusion tensor, used in the simulation, was calculated with
HYDROPRO [147] for each protein using the ’shell’ model, with the recommended bead
radii of 4.8 Å, using a temperature of 300K and a viscosity of 1 mPa s. For the translation
diffusion coefficient of CUE in the reference frame of the crystal struture we obtain

DT =


5.9× 10−2 −1.2× 10−2 9.5× 10−5

−1.2× 10−2 4.0× 10−2 −8.4× 10−5

9.4× 10−5 −8.4× 10−5 3.5× 10−2

nm2ns−1. (4.77)
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For the rotational diffusion coefficient of CUE in the reference frame of the crystal struture
we obtain

DR =


3.9× 10−2 4.6× 10−4 6.0× 10−3

4.6× 10−4 3.1× 10−2 2.7× 10−4

6.0× 10−3 2.7× 10−4 3.4× 10−2

ns−1 (4.78)

For the translation diffusion coefficient of ubiquitin in the reference frame of the crystal
struture we obtain

DT =


1.5× 10−1 −7.8× 10−3 8.3× 10−4

−7.8× 10−3 1.4× 10−1 −4.2× 10−5

8.3× 10−4 −3.6× 10−5 1.4× 10−1

nm2ns−1 (4.79)

For the rotational diffusion coefficient of ubiquitin in the reference frame of the crystal
struture we obtain

DR =


1.4× 10−1 7.4× 10−4 5.2× 10−3

7.3× 10−4 1.3× 10−1 3.8× 10−4

5.2× 10−3 3.7× 10−4 1.3× 10−1

ns−1 (4.80)

Other simulation parameters and the analysis are the same as for the UIM-1-ubiquitin
complex. We use the total energy of the system and the minimal distance between any
two Cα atoms of CUE and ubiquitin to define transition-, unbound- and bound-states,
identical to the UIM-1-ubiquitin complex, see Figure 4.5.

4.4 Results

4.4.1 Harmonic Oscillator

In the case of a harmonic oscillator the BDMC algorithms and the BAOAB integrator
are able to correctly reproduce the MSD, using the Euler-Maruyama integrator the MSD
grows linearly with the time-step, see Figure 4.6A. For time-steps dt ≤ 0.01 all algorithm
reproduce the correct MSD. With exception of the Metropolis acceptance function all al-
gorithms predict the correct autocorrelation time for dt < 0.005. The BDMC algorithms
using the Metropolis acceptance function converge to the correct autocorrelation time for
time-steps dt < 0.0001. At larger time-steps all algorithms show systematic deviations
from the expected value, Figure 4.6B. The Euler-Maruyama and BAOAB methods have
the smallest drift. The BDMC algorithm with the smallest drift uses the optimal accep-
tance function and a uniform trial function. The version with the largest error uses the
Metropolis acceptance function and the Gaussian trial probability. Re-scaling the auto-
correlation time with eq 4.44 yields a large improvement of the autocorrelation times,
Figure 4.6C. The BDMC with uniform trial probability now yields results as good as the
BAOAB integrator for large time-steps as well.
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Figure 4.5: Probability density of the CUE-ubiquitin complex for the minimal dis-
tance between two Cα atoms and the total energy.
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Figure 4.6: MSD (left), autocorrelation time (middle) and autocorrelation time
scaled by ratio of acceptance rate to ideal acceptance rate, see eq 4.44, (right) of
the harmonic oscillator calculated with BDMC algorithm using different acceptance
function and trial probabilities, Euler-Maruyama, and BAOAB integrator. The
BDMC algorithms using a Gaussian trial probability and uniform trial probability
are shown in red and blue shades, respectively. For the BDMC algorithms three
difference acceptance function, Metropolis, Glauber, and the optimal have been
used. Error bars denote standard error of the mean. Lines for the autocorrelation
time show a fit to eq 4.55. The autocorrelation time was scaled using eq 4.44.

From the simulation results of the autocorrelation functions we fit eq 4.55 to estimate
the accuracy of the BDMC algorithms. γ indicates the order of the error τ − τ0 ≈ O(dtγ),
see Table 4.3. The fit has been performed using all simulations from dt = 0.0001 to
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dt = 0.25. The Euler-Maruyama and BAOAB integrators have a value of γ ≈ 1. Using the
Metropolis acceptance function we get γ ≈ 1/2 independent of the trial probability before
and after correcting the autocorrelation times. For the optimal acceptance function with
the uniform trial function γ changes from 1 to 2, after correcting the autocorrelation times.
The pre-factor α is significantly smaller though leading to an overall smaller error. Other
BDMC algorithms have γ ≈ 1 before and after correcting the autocorrelation times. The
pre-factor α is decreased for all BDMC algorithms after correction of the autocorrelation
times.

T (x|y) A(x|y) α γ α′ γ′

Uniform Metropolis 0.94(1) 0.56(1) 0.20(1) 0.53(1)
Glauber 1.41(5) 1.06(5) 0.39(5) 1.14(5)
Optimal 1.40(8) 1.32(8) 0.83(58) 2.12(58)

Gaussian Metropolis 1.32(1) 0.58(1) 0.55(1) 0.56(1)
Glauber 2.18(5) 1.00(5) 1.12(4) 0.97(4)
Optimal 1.95(7) 1.11(7) 1.05(6) 1.11(6)

Euler-Maruyama 0.50(3) 0.95(3)
BAOAB 0.27(7) 1.01(7)

Table 4.3: Parameter of the fit to eq 4.55 for the autocorrelation times. All available
data was used for the fit. Values in parentheses denote the standard deviation of
the fit parameter. α′ and γ′ denote the fit values before scaling the autocorrelation
time using eq 4.44.

4.4.2 Position Dependent Diffusion

For the position dependent diffusion of the harmonic oscillator the MSD in the back
mapped system, eq 4.60, is correctly reproduced with any BDMC algorithm, Figure 4.7.
The xBAOAB integrator now has noticeable deviations from the expected MSD for dt >
0.1. The Euler-Maruyama integrator performs the worst again to reproduce the MSD.
It can only predict the correct MSD for dt < 0.01. The autocorrelation-time can be
reproduced by all algorithms for sufficiently small dt. The BDMC algorithms experience a
larger deviation for large time-steps than the xBAOAB and Euler-Maruyama integrators.
For the Euler-Maruyama integrator calculating a autocorrelation time was impossible for
time-steps larger than dt = 0.17 due to numerical instabilities. For the BDMC algorithms
the autocorrelation times are systematically larger than the expected value for a time-step
of dt = 0.01 and larger. With a time-step of dt = 0.001 the BDMC algorithms are also
able to reproduce the expected autocorrelation time. Re-scaling the autocorrelation time
with eq 4.44 yields again a large improvement.

Estimating the overall error for the position dependent diffusion from a fit of the
autocorrelation times to eq 4.55 shows that the γ values are very similar before and after
correcting the autocorrelation times for the BDMC algorithms, Table 4.4. Correcting the
autocorrelation times results in a reduction of the pre-factor α for all BDMC algorithms.
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Figure 4.7: MSD (left) and autocorrelation time (middle) and autocorrelation time
scaled by ratio of acceptance rate to ideal acceptance rate, see eq 4.44, (right) of
the position dependent diffusion model eq 4.60 after conversion to x for different ac-
ceptance function using the BDMC algorithm, and Euler-Maruyama, and xBAOAB
integrators. The position dependent BDMC algorithms using a Gaussian trial prob-
ability are shown in red shades. Error bars denote the standard error of the mean.
Lines for the autocorrelation time show a fit to eq 4.55.

The Euler-Maruyama integrator has again a value of γ ≈ 1. For the xBAOAB integrator
we obtain γ ≈ 1/2.

T (x|y) A(x|y) α γ α′ γ′

Gaussian Metropolis 1.28(1) 0.54(1) 2.73(4) 0.60(4)
Glauber 2.36(4) 0.76(4) 4.45(5) 0.83(5)
Optimal 2.10(6) 0.78(6) 3.76(6) 0.86(6)

Euler-Maruyama 0.73(4) 0.92(4)
xBAOAB 0.07(2) 0.63(2)

Table 4.4: Parameter of the fit to eq 4.55 for the autocorrelation times. All available
data was used for the fit. Values in parentheses denote the standard deviation of
the fit parameter. α′ and γ′ denote the fit values before scaling the autocorrelation
time using eq 4.44.

4.4.3 Binding of the Vps27 UIM-1-ubiquitin complex

We simulated the UIM-1-ubiquitin complex for different time-steps, box sizes, and ac-
ceptance functions, and calculated the rates and dissociation constants. The lifetime
distribution of the bound and unbound state in the UIM-1-ubiquitin complex follows a
single exponential decay after applying the TBA filter, Figure 4.8. The transition times
are much shorter than the lifetimes of the unbound and bound states. It is noticeable that
before the TBA filter is applied the bound and unbound state experience an unusually
large amount of short lived states. These short lived states are an indication for frequent
recrossing. The TBA filter removes the nonphysical amount of short lived states and the
resulting lifetime distributions look similar to a waiting time distributions ∼ λe−λt, with λ
the inverse of the half-life time. For the largest time-step, unusually long lived states start
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to appear. These long lived states are an indicator that our assumption ∆U ≈ 0 is not
true any longer. Therefore we need to use an effective time-step,eq 4.44, when analyzing
the rates.
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Figure 4.8: The cumulative distribution function of the lifetimes of the bound, and
unbound states before (top) and after (bottom) applying the TBA filter for different
time-steps and acceptance functions (rows). The distribution of transition times is
shown in green. The box size was fixed at 150 Å.

The on- and off-rates are remarkably independent of the integration time-step, see
Figure 4.9. For the on-rate more than three orders of magnitude change in the time-step,
from 50 fs to 50 000 fs, results in a difference of on-rates of 12 % for the Metropolis and
Glauber acceptance function and 50 % for the Dynamic acceptance function. For the off-
rate, the increase is 50 % independent of the acceptance function. For small time-steps,
the calculated rates using different acceptance functions agree within the error. For the on-
rate differences between the acceptance functions exist for time-steps dt > 10 ps. The on-
and off-rates are stable with respect to the simulation box size, Figure 4.10. The pseudo
on-rate experiences a decrease with increasing box-size as expected because it takes longer
for the two diffusing reactants to come together. When we disable electrostatic interactions
the on-rate decreases by one order of magnitude and the off-rate increases by one order of
magnitude, Figure 4.11. Electrostatic interactions therefore play an important role in the
formation of the bound state. The fast on-rates we observed before are therefore a result
of a electrostatically guided binding process.

To determineKd we fitted eq 4.74 to the fraction bound averaged over acceptance func-
tion and time-steps for different box volumes, Figure 4.12. The fit yields Kd = 536(21)µM
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Figure 4.9: UIM-1-ubiquitin off-rates (left), on-rates (middle), and pseudo on-rates
(right) for different time-steps and acceptance functions (Metropolis: pentagon,
Glauber: square, Optimal: diamond). The box size was fixed at 150 Å. Error bars
denote the standard error of the mean.
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Figure 4.10: UIM-1-ubiquitin off-rates (left), on-rates (middle), and pseudo on-rates
(right) for different box sizes and acceptance functions. The time-step was fixed at
dt = 50 fs. Error bars denote the standard error of the mean.
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Figure 4.11: Results for binding simulations without electrostatic interactions. Off-
rates (left), on-rates (middle), and pseudo on-rates (right) for different time-steps
and acceptance functions. The box size was fixed at 150 Å. Error bars denote the
standard error of the mean.

and Vex = 1.07(7)×10−21 Liter. This value agrees well with almost all fits of eq 4.74 to in-
dividual simulations using different time-steps and acceptance function, Figure 4.12 right.
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Figure 4.12: (Left) Fraction bound averaged over acceptance function and time-steps
for different simulation box volumes fitted to eq 4.74. (Right) Kd values from fits
of simulations for time-step sizes for each acceptance function. The experimental
value [198] is shown as dashed gray line and global fit of Kd black dotted line with
the standard deviation of the fit as shaded area.

Our value is of by a factor ~2 from the experimental value of 280µM [198]. The Kd value
can also be calculated as an equilibrium probability from a single simulation using eq 4.75.
In Figure 4.13 the Kd values are shown calculated directly from the probabilities and rates.
For all used acceptance functions the Kd values agree well with the global fit. Therefore
the BDMC algorithm also preserves the equilibrium for the UIM-1-ubiquitin complex.

We used three properties to check if the BDMC algorithms preserve equilibrium prop-
erties: the energy fluctuations, Kd, and the probability pAB to be bound, Figure 4.14. For
all observables and acceptance functions the observables agree within the error margin.
For this analysis the criteria for a configuration to be bound was solely based on the total
energy of the system.

4.4.4 Binding of the CUE-ubiquitin complex

We simulated the CUE-ubiquitin complex for different time-steps, box sizes, and accep-
tance functions, and calculated the rates and dissociation constants. The on- and off-rates
of the CUE-ubiquitin complex are again remarkably constant with regard to changes in
integration time-step and box size, see Figs. 4.15 and 4.16. Over all tested time-steps the
calculated rates are on the same order of magnitude. Increasing time-step by three orders
of magnitude results increase by a factor 2-2.5 for all rates. The effect of the box size
of the rates is even less except for the pseudo first-order on-rate k′on that is expected to
be box size dependent. Similar to the UIM-1-ubiquitin complex the choice of acceptance
function has a minimal influence on the rates.

We also calculated the equilibrium dissociation constant, see Figure 4.17. The fit of



72 CHAPTER 4. BROWNIAN DYNAMICS MONTE CARLO INTEGRATORS

15 20 25 30
Box Size [nm]

0

200

400

600
K d

 [
M

]

Experiment

Equilibrium
Kinetic

Metropolis
Glauber
Optimal

10 1 100 101 102

Time-Step [ps]

0

200

400

600

K d
 [

M
]

Figure 4.13: UIM-1-ubiquitin dissociation constant Kd calculated from the rates
(left) and the equilibrium probabilities (right) for different time-steps and acceptance
functions. The box size was fixed at 150 Å. Error bars denote the standard error of
the mean. Experimental value of Kd = 280µM [198] and the value of the global fit
are also shown. The shaded area indicates the standard deviation of the global fit.
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Figure 4.14: Energy fluctuations, dissociation constant Kd, and probability pAB
to be bound for the Brownian dynamics Monte Carlo (blue shades) and Monte
Carlo (purple shades) for different acceptance functions and simulation box sizes.
Errorbars show the standard deviation from bootstrap samples. Experimental value
of Kd = 280µM [198] is shown with the global fit estimate and the shaded area
indicates the standard deviation of the fit.

eq 4.74 yieldsKd = 120(11)µM and an excluded volume off Vex = 1.5(1)×10−21 Liter. This
is close to the experimental value of Kd = 160µM [93]. The Kd values are independent of
the time-step as expected, Figure 4.17 (right).
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Figure 4.15: CUE-ubiquitin off-rates (left), on-rates (middle), and pseudo on-rates
(right) for different time-steps and acceptance functions. The box edge length was
150 Å. Error bars denote the standard error of the mean.
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Figure 4.16: CUE-uiquitin off-rates (left), on-rates (middle), and pseudo on-rates
(right) for different box sizes and acceptance functions. The time-step was fixed at
dt = 50 fs. Error bars denote the standard error of the mean.

4.5 Conclusion

We have generalized the existing BDMC algorithm for anisotropic particles, different ac-
ceptance function, and trial-move probabilities. Our tests using a harmonic oscillator
show that dynamic observables agree well with common Langevin integrators. Compared
to the Langevin integrators the BDMC algorithms do not suffer an error in the equilib-
rium distribution for large time-steps. We developed a new acceptance function that is
optimized to reduce the error in of higher moments in the probability distribution of a
Brownian particle under constant force. Using our new acceptance function we are able
to more accurately reproduce dynamical properties of the harmonic oscillator than with
the Metropolis and Glauber acceptance function. We showed how the BDMC method can
also be extended for position-dependent diffusion. For the position-dependent diffusion
the error in dynamic observables is larger than for common Langevin integrators, however
the BDMC algorithms can also be used if gradients of the energy or the position dependent
diffusion coefficients are not known. We have also implemented the BDMC algorithm for
anisotropic particles for a CG protein model. Our results show that the dissociation con-
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Figure 4.17: CUE-ubiquitin dissociation constant Kd calculated from the fraction
bound (left) and binding rates (right). Error bars denote the standard error of the
mean. Experimental value of Kd = 160µM [93] and the value of the global fit to
eq 4.74 are also shown. The shaded area indicates the standard deviation of the
global fit. The box edge length was 150 Å.

stant, an equilibrium property, calculated from on and off-rates agrees well with estimates
calculated from the equilibrium density. It should be noted that with the standard KH
model our on-rates are high. The rates we calculated are likely higher than they would
be in an all-atom forcefield simulations due to the smoothened landscape. The rates are
also reduced when disabling electrostatic interactions indicating that the binding process
is guided by them. The estimates of on- and off-rates are remarkably stable with regard
to the chosen time-step. A disadvantage of BDMC algorithms is that only local moves
are possible and the widths of different move types have to be properly balanced to pro-
duce proper BD. It should be noted that results with the Metropolis acceptance function
show that the dynamics of isotropic particles can be calculated with existing Monte Carlo
programs if the parameters of the trial move are chosen correspondingly.



Chapter 5

Complexes++: A General Monte Carlo Engine

5.1 Introduction
Complexes is a hierarchical CG protein model. It has been previously implemented with
a Monte Carlo engine to generate structures of protein complexes [96] and is commonly
refereed to as the KH model in the literature. Since the original publication, the forcefield
has been used in a large variety of applications, including studies of the binding kinetics of
the HIV-1 capsid proteins [183, 241], the kinetic behavior of proteins in crowded environ-
ments [42, 97, 98, 167], the folding of knotted protein [2, 36, 37, 188, 189, 191], enhancing
the structural resolution of experiments [11, 30, 100, 173, 174], to study protein-protein in-
teractions [124, 145, 162], protein design [233], docking [53], and multi-enzyme complexes
[52, 77, 172, 175]. The model has also been extended to simulate intrinsically disordered
proteins and ligand-ligand phase separation of disordered proteins [42].

Originally the Complexes forcefield was implemented in FORTRAN77. In the mean-
time parts of the forcefield have been ported to run on GPU [213] and implemented in
LAMMPS [77, 158]. Here we present a new implementation of the simulation engine, called
“Complexes++”, written in C++14, and a helper application, called “pycomplexes”, writ-
ten in Python, to set up and visualize simulations. It implements the original hierarchical
model and adds several new features, including additional functional forms interaction
potentials, easier simulation setup, and more thermodynamic ensembles among others.

5.2 Gaussian Chain Flexible Domain
A compelling feature of the original Complexes implementation [96] was the explicit treat-
ment of flexible chains in protein complexes. These chains served as an anchor to link rigid
domains together. In the remainder of this thesis we call a flexible protein chain a linker.
In the original paper [96] a peptide chain model using bond, angle and dihedral potentials
similar to MD forcefields [78] has been used. The advantage of such a model is that amino
acids are modeled explicitly and can interact with the rigid domains. A drawback of using
this model with a Monte Carlo scheme is that movements of the whole chain are small.
As a result the chain diffuses slowly through configuration space and the overall diffusion
of attached rigid domains is limited by the linker instead of the translation and rotation

75
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step-size chosen for the rigid domains. While such an explicit model can work for smaller
protein complexes [173] it makes simulations of larger complexes [100] difficult.

A linker model that has a limited influence on the diffusion of the rigid domains
would be better suited to efficiently sample configuration space. It has been shown that
for a linker only the length is important and not the exact dynamics [175]. We therefore
assume that the linker only has to hold two rigid domains close and has no other functional
purpose. We replace the explicit peptide chain with a potential of mean force (PMF) that
only depends on the distance between the two rigid domains and the number of amino
acids in the linker, i.e., the linker length. This PMF potential acts as a restraint potential
ensuring that the distance distribution between two rigid domains is physically correct.
Because no explicit beads are involved the diffusion of the rigid domains is not influenced by
the linker. We use a Gaussian chain polymer model to develop a suitable PMF. Gaussian
chains have been previously used to model flexible linkers in FRET experiments [143].

In a Gaussian chain the beads are point particles connected by harmonic springs. The
average distance b between two beads determines the spring constant. In one dimension
the probability for two beads i and j to have a distance distance rij is

P (rij) =
(

3
2π〈R2

ij〉

)3/2

exp
(
−

3r2
ij

2〈R2
ij〉

)
, rij > 0, (5.1)

For a three dimensional chain the distances Rij = |~rj−~ri| between two beads, irrespective
of the direction, is distributed according to [234]

P (Rij) = 4πR2
ij

(
3

2π〈R2
ij〉

)3/2

exp
(
−

3R2
ij

2〈R2
ij〉

)
, Rij > 0, (5.2)

where 〈R2
ij〉 = b2(j − i) is the mean squared distances between beads i and j. The factor

4πR2
ijdR is the volume element of a shell with width dR and radius Rij . The average

end-to-end distance for a Gaussian chain with N beads is√
〈R2

1N 〉 =
√
Nb. (5.3)

To construct a PMF for the Gaussian chain model we look at the exponential term in
eq 5.1. It is similar to the Boltzmann distribution for a harmonic oscillator with spring
constant 3/(b2(j − i))

V (~ri, ~rj) = 3
2b2

1
(j − i) |~ri − ~rj |

2 ≈ − ln(P (ri−j)). (5.4)

From this the PMF between the ends of a Gaussian chain of length N follows as

PMF (~r1, ~rN ) = 3
2b2

1
N − 1 |~r1 − ~rN |2. (5.5)

To compare the distribution of end-to-end distances obtained from eq 5.5 we run a Monte
Carlo simulation for a linker of length N = 200 and a bond length b = 3.81 Å [19], see
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Figure 5.1. The distribution of end-to-end distances created using the PMF agrees well
with the expected distribution of the Gaussian polymer model. The agreement of the
PMF with the expected distribution is independent of the length N . This PMF has been
previously used to model proteins and ribonucleic acid (RNA) [85].
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Figure 5.1: Cumulative distribution function (top) and probability density function
(bottom) of the end-to-end distance R for a Gaussian chain of length N = 200 and
bond length b = 3.81 Å. The distributions for the ideal Gaussian chain are shown
in orange. Results from an ensemble of 1 million distances obtained from a Monte
Carlo simulation using eq 5.5 are shown in blue. The value of the mean end-to-end
distance, eq 5.3, is marked in green.

The final PMF that we use is between two beads of the two connected rigid domains.
These two beads have to be added to the length N of the linker. Therefore the final PMF
for a linker of length N is

PMF (~r0, ~rN+1) = 3
2b2

1
N + 1(~r0 − ~rN+1)2, (5.6)

with ~r0 and ~rN+1 being the two beads of the rigid domains that are connected by the
linker.

Generating Explicit Beads for Linker Model

While the PMF eq 5.5 is good for fast exploration of phase space it does not provide explicit
positions for linker beads. However, some applications, like the comparison of simulations
to small angle x-ray scattering (SAXS) measurements [100, 173] for example, require to
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have explicit beads for the linker domains. We now describe an iterative algorithm to
generate positions for the linker beads given fixed positions for the first and last bead of
the linker. Given the positions of bead N and 1 a single bead N − 1 can be generated

N 1

N-1

Figure 5.2: Example of distances drawn for a new bead N − 1 (green) between
to fixed endpoints (orange) of a Gaussian linker of length N in two dimensions.
The red circle is the distance between the beads N and N − 1. This distance is
randomly chosen from eq 5.2. The bead N − 1 can be placed anywhere on this
circle. The distance between bead 1 and N − 1 now has to be chosen so that circle
(indicated as blue cone) drawn around bead 1 intersects with the first circle (red).
In two dimensions this restricts the positions of the new bead to the two intersection
points. In three dimensions it would be restricted to a circle.

with the following algorithm:

1. Randomly choose a distance dstart between bead N and N −1 distributed according
to eq 5.2. This distance defines a sphere around bead N on which bead N − 1 will
be placed. ( Figure 5.2, red circle)

2. Choose a distance dend between bead 1 and N − 1 so that the sphere around bead
1 intersects with the sphere calculated in step 1. (Figure 5.2, blue cone)

3. Choose a random point on the intersection of the red and blue sphere to place the
bead N − 1 (Figure 5.2, green bead). In three dimensions the intersection is a circle
so a random angle θ has to be drawn.

To grow the next bead, with index N − 2, simply repeat the algorithm with bead N − 1
as new starting point to choose the random distance RN−1,N−2. Repeat this algorithm
until all beads are generated. This algorithm gives the three distances between the beads
and orientation that uniquely determine where a new bead should be placed. To calculate
the actual coordinates in the coordinate system of the simulation we use the following
algorithm.

1. Determine the axis ~z′ along the vector ~rN − ~r1.
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Figure 5.3: Schematic for calculating the position of bead ~rN−1 given the positions
of ~rN , ~r1, the distances d, dstart, dend and an angle φ (not shown). The coordinate
system (~x, ~y, ~z) is our reference coordinate system. The coordinate system (~x′, ~y′, ~z′)
is used to calculate ~rN−1.

2. Determine perpendicular axes ~x′ =
(−z′1−z′2

z′0
, 1, 1

)T
and normalize. Permutate in

elements of ~x′ if z′0 = 0.

3. Determine ~y′ = ~x′ × ~z′, with × the cross product.

4. Determine angle φ using the law of cosines cos(φ) = d2
start+d2−d2

end
2dstartd

, with d = |~rn−~r1|
see Figure 5.3.

5. Calculate ~rN−1 in the coordinate system spanned by (~x′, ~y′, ~z′) from the spherical
coordinates given by (dstart, θ, φ), see Figure 5.3.

6. Convert ~rN−1 into reference coordinate system (~x, ~y, ~z).

Linker configurations generated using the above two algorithms will include overlaps be-
tween neighboring beads, see Figure 5.4. To avoid overlaps and generate more extended
configurations it is sufficient to add overlap checks in step 1 and 3 in the first algorithm
algorithm and redraw distances if two beads are to close to each other.

Relaxation of Gaussian Polymer Chain

The structures produced by the Gaussian chain growing algorithms are not physical. The
distances between beads vary by a standard deviation of 1 Å with a mean of 5 Å in a
single chain when the chain is grown with overlap checks. The fluctuation in typical
protein structures is less than a hundredth of an Å with a mean distance of 3.81 Å [19].
For the generation of more physical bead coordinates, it is, therefore, necessary to relax
the structures generated by the previous algorithm. For the relaxation, the linker energy
eq 2.13 of the KH forcefield [96] can be used in combination with a Monte Carlo algorithm.
As acceptance function we use Metropolis eq 2.54 with a temperature of 300 K. For
trial moves the position of individual beads is changed. The start and end bead are
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A B

Figure 5.4: Gaussian chain with (left) and without (right) overlap check. Example
configuration for a alanine chain of length 200 with a bond-length of b =3.81 Å. All
beads are drawn with a diameter of 3.81 Å. Both configurations have the same start
and end bead.

treated as fixed. For a linker of length N the probability to pick a bead is uniform
between all N − 2 beads that are allowed to move. A sweep consists of N − 2 trial
moves. Note we only do displacements of the beads and no angular or dihedral trial
moves. Because the structure is only supposed to be relaxed it is not necessary to generate
structures from an equilibrium distribution and therefore detailed balance does not need
to be strictly preserved. Therefore, we adjust the step-width after each sweep to achieve
a target acceptance ratio of 30 %. If after a sweep the acceptance ratio is larger than 30
% the step-width is increased by 10 % and decreased if the acceptance ratio is below 30
%.

Energy contributions for each term contributing to the total energy of the linker from
a relaxation run for a chain of 200 beads is shown in Figure 5.5. In the beginning, the
energy is dominated by the bond potential, this is due to the fact that average bond-length
is larger than 3.81 Å. The bond lengths are fully relaxed after around 200 sweeps. The
angle potentials start to relax around sweep 50 when the bond energy has already dropped
by a factor of two. The angle potential is fully relaxed after around 1000 sweeps. The last
potential to relax are the torsion angles. After about 500 sweeps the torsion angles start
to see a more pronounced decrease after 3000 sweeps when the other two potentials haven
been fully relaxed. The energy difference in the torsion potential from the beginning of
the simulation to the final structure is significantly less than for the other two terms in the
energy. There are two contributions to this behavior: The starting structures generated



5.2. GAUSSIAN CHAIN FLEXIBLE DOMAIN 81

100 101 102 103

# sweep

102

103

104

105

To
ta

l E
ne

rg
y 

[k
T]

Bond Energy
Angle Energy
Torsion Energy
Total Energy

Figure 5.5: Energies of a nonoverlapping Gaussian chain during relaxation. The
chain is 200 beads long and the initial structure was generated using the Gaussian
chain model with no overlaps. The acceptance rate during the Monte Carlo simula-
tion was set to target 30 %. The bond energy is shown in blue, the angle energy in
orange, the torsion energy in green and the total energy in red.

by the Gaussian chain algorithm trapped in a local minima and the simple displacement
trial moves of the beads are not efficient for relaxing this potential function.

A B C D

Figure 5.6: Linker configuration before relaxation (A) and after using only the bond
potential (B), using the bond and angle potential (C), and using the bond, angle
and torsion potential (D). All relaxation runs used the same initial structure (A).

The structures generated by relaxing an initial configuration from the Gaussian chain
algorithm can be seen in Figure 5.6. For comparison, single structures have been generated
with the full potential, only the bond potential, and the bond and angle potential. The
structures have all been generated from the same initial structure and relaxation runs
where 1000 sweeps long. The bond potential alone has the biggest visual influence on the
structure by achieving a more uniform bond distance. The addition of the angle potential
also gives a visual improvement. Differentiating the bond and angle potential structure
from the structure with the full potential is difficult as both are very similar. The full
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potential adds correct torsion angles in comparison to the other structures.

Comparison of Unfolded Proteins and Linker Model

To understand how well the model describes unfolded protein regions we will compare the
radius of gyration RG, as a measure of compactness, of our model with experimental data.
For unfolded proteins the RG has been determined experimentally in dependence on the
protein length with denaturants [102]

〈RG〉 = R0N
ν , (5.7)

with R0 = 1.927+0.271
−0.238Å and ν = 0.598 ± 0.028. The radius of gyration of the Gaussian

chain model is

〈RG〉 =
√

1
6
N(N + 2)
N + 1 b ≈

√
1
6N

1/2b. (5.8)

This scaling behavior is slightly different with ν = 0.5 and R0 = 1.555 Å. Therefore it is
unlikely that the Gaussian polymer without overlap checks reproduces the RG values of a
denatured protein for any number of beads. To compare the RG scaling behavior of the
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Figure 5.7: Radius of Gyration computed for a linker with different number of
amino acids. For each length 1000 structures have been generated with overlap
check (orange), without (blue), and full relaxation (green). Error bars denote the
standard deviation. The experimental RG scaling law for denatured proteins [102]
is shown as gray line.
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linker growth algorithm to the scaling of denatured proteins we generate 1000 different
structures for a linker of 25 to 200 beads length. To get the values of a truly free chain for
each simulation, the linker was padded with 25 beads in the front and end so that only the
middle N beads have been used to calculate the RG. The bond-length was set to 3.81 Å
[19]. Start and end points have been placed at the optimal end-to-end distance, eq 5.3.
Results are shown in Figure 5.7. As anticipated without an overlap check the RG values
are systematically different. But with overlap checks enabled, the Gaussian polymer is
within one standard of the experimental values if N < 50.

It should be noted that for intrinsically disordered proteins it has been shown that
the RG with denaturants is larger than of the protein observed in natural conditions
[24, 56, 193, 240]. Therefore our Gaussian polymer model is a good enough description for
the flexible domains. A similar model has been employed to study intrinsically disordered
proteins [42].

5.3 Implementation

The Complexes model described in Section 2.1.2 has been implemented in a C++14
program Complexes++ and a Python tool pycomplexes. Complexes++ implements the
Monte Carlo engine and pycomplexes is a helper library and command line interface (CLI)
tool to setup simulations and visualize them, see Figure 5.8. The Monte Carlo integrator
accepts input files in the CPLX format and configuration files for simulations. The split
enforces that a well defined file format exists that uniquely defines a simulation. We have
decided to use the YAML standard [14] for the CPLX files. A library to write YAML files
exists for many programming languages allowing easier integration into existing workflow
without forcing a specific programming language onto the user unlike other tools [47, 181].
In this chapter, the Monte Carlo engine and helper tools are described separately.

Assign rigid and 

gaussian domains
run simulation

complexes-pp -c 3FRT.config

Beads centered at Cα-atoms

Figure 5.8: Example use case how to go from a single known structure to an ensemble
of structures using Complexes++. To prepare the simulation, domain types have to be
assigned to amino acids and a CPLX file has to be generated.
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5.3.1 Monte Carlo Engine Complexes++

Complexes++ is a Monte Carlo simulation engine implementing the Complexes protein
model. The program is written in modern C++14 with a focus on being extensible. The
program contains an extensible Monte Carlo engine, the modified LJ potential, eq 2.7
and other pair-potentials, the Monte Carlo movements for different domain types, and
a cell-list algorithm [55] to speed up the energy evaluations. It has been developed in
collaboration with Berenger Bramas from the Max Planck Computing and Data Facility.

Flexible and Extensible Core Algorithms

The core algorithms of the Monte Carlo engine have the ability to add new trial moves
for domains and to add new Monte Carlo algorithms for different statistical ensembles
or enhanced sampling techniques. This extensibility is achieved through a combination
of run-time polymorphism and use of modern C++14. With run-time polymorphism
multiple data types have the same application programming interface (API) and can be
used interchangeably. In C++ a data type can either be a class definition or a builtin type
like floating point numbers. Run-time polymorphism means that the exact type stored in a
variable is only known when the program is executed. Using run-time polymorphism leads
to a flexible implementation because it allows writing the core algorithms, like the Monte
Carlo integration scheme, independent of the exact domain type chosen for a simulation.
It also leads to an extensible implementation because new data-types can directly be used
in the code as long as they have the same API. Therefore allowing to add new features
with minimal changes to the code. In Complexes++, this technique is used to implement
domain trial moves, Monte Carlo algorithms, evaluation of pair-potentials, and a cell-list
algorithm.

class AbstractMcAlgo {
// setting the method as '=0' tells C++ that this method has no
// implementation in the abstract class virtual void
sweep() = 0;

};

class NVT : public AbstractMcAlgo { void sweep() { // ... } };

class NPT : public AbstractMcAlgo { void sweep() { // ... } };

void monteCarlo(std::unique_ptr<AbstractMcAlgo> algo, int nsweeps) {
for (int i = 0; i < nsweeps; ++i) {

algo->sweep();
}

}

Listing 1: Extensible interface for a Monte Carlo algorithm. The comment “...”
indicates other implementation details.
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In C++ run-time polymorphism is implemented through abstract classes and inher-
itance. An abstract class does not define exact implementations for all its methods. A
method is a function of a class. These methods are called virtual in C++ and define a
common API that is shared by all classes that inherit from the abstract class. In Com-
plexes++ abstract classes are marked with the preposition “Abstract”. Any class that
inherits from an abstract class only has to implement the methods for which no definition
exists. C++ will enforce at compile time that the methods marked as virtual without
an implementation are defined in the inherited class. As an example take the simplified
extensible implementation of the Monte Carlo algorithm, see Listing 1. The abstract class
AbstractMcAlgo defines a virtual method sweep that has no implementation. The method
sweep is used by the monteCarlo function to update all domains by one sweep. Specific
Monte Carlo algorithms can now be implemented by inheriting from AbstractMcAlgo and
defining the sweep. Therefore, allowing to define two Monte Carlo algorithms for different
thermodynamic ensembles and have the monteCarlo function be independent of the used
ensemble. One common concern of run-time polymorphism is that it has a performance
penalty during runtime. The most performance critical part of Complexes++ is the en-
ergy evaluation. We ensure that this penalty is minimal through careful benchmarks and
design of the cell-list algorithm and the pair-potential API.

The most interesting abstract classes to add new features to Complexes++ are AbstractDomain,
AbstractPairKernel, AbstractConnection, AbstractInteractionGrid and AbstractMcAlgo.
See Figure 5.9 for a schematic how these classes interact with each other during a simula-
tion.

Exchange Algorithm

MPI Exchange Algoritm

Exchange

Exchange MPI

Simulation
<config.yaml>

Cutoff Interactions

Full

Cutoff - Sparse

Cutoff - Dense

OpenMP

Topology
<structure.cplx>

Abstract Domain

Rigid

Pair Interaction

Lennard Jones

WCA

Softcore

Inastemp

Abstract

Connection

Harmonic

Gaussian

Flat

Figure 5.9: Schematic of the classes used in the Complexes++ program and how they
interact with each other (arrows). Abstract classes and their explicit implementations are
shown as colored boxes. Nested boxes show different implementations of an abstract class.
Names are as in the code.

Monte Carlo Algorithm

The implementation of Monte Carlo algorithm in Complexes++ follows closely the exam-
ple shown in Listing 1. The main logic to run a Monte Carlo simulation is implemented in
AbstractMcAlgo with a virtual method called sweep to implement a sweep. At the time
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of writing Complexes++ implements sweep functions for the NVT and NΠT ensemble,
where Π is the osmotic pressure, [55] and an algorithm for BDMC, Chapter 4. In the
remainder of this thesis we will refer to the NΠT ensemble as the NPT ensemble. In
addition three different acceptance functions, Metropolis [134], Glauber [63] and Optimal,
Chapter 4, have been implemented as well. All three Monte Carlo algorithms work with
all acceptance functions.

The sweeps are defined differently for all three Monte Carlo algorithms. In the NVT
ensemble domains are chosen randomly from a uniform distribution. If N is the number
of domains than a sweep will make N trial moves and select a random domain with
probability 1/N for each trial. In the NPT ensemble trial moves are generated for the
domains and the volume. To account for the additional volume move a sweep consists of
N + 1 trial moves. At each trial, the probability to make a volume move is 1/(N + 1).
If a domain move was chosen the domain to be moved is chosen randomly with a 1/N
probability. For the volume moves the domains are re-scaled so that the centroid of the
domain is scaled by 3

√
(V + dV )/V . In the BDMC sweep, trial moves are guaranteed to

update every domain to ensure all domains are propagated in time. The order in which
domains are updated is randomized every sweep.

Boundary Conditions

Complexes++ implements PBC [55] for the centroids of all domains. Under these con-
ditions, the centroid of all domains is placed inside of the unit-cell. Complexes++ only
implements rectangular unit-cells. Because Complexes++ keeps the centroid of a domain
within the box it can happen that some beads are outside of the box.

Complexes++ determines the distance between two beads via the minimum image
convention (MIC) [55]. Complexes++ uses an efficient implementation to calculate the
minimum image distance, Algorithm 1. This algorithm is an extension of a fast algorithm
[40], where the while-loop ensures it works for any distance, i.e, if a trial move displaces a
domain by more than one periodic image. To keep the number of iterations of the while-
loop as small as possible Complexes++ ensures that the centroid of a domain are inside
the unit-cell.

Replica Exchange Algorithms

Complexes++ implements replica exchange algorithms (see Section 2.6 for enhanced sam-
pling). Replica simulations require that multiple simulations are started. Complexes++
requires that every replica is started in its own folder. Multiple simulations can be started
with the –multidir flag and a list of the folders containing individual replicas. The
–multidir option alone only tells Complexes++ to simulate multiple replicas. To activate
the exchange the two flags –replex and –replex-accept have to be used as well. –replex
states after how many sweeps an exchange should be attempted. –replex-accept stets
the exchange function to be used to change between the NVT, NΠT ensembles and Hamil-
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ALGORITHM 1: Algorithm to efficiently convert the distance between two
beads to the minimum image distance it domain centers are inside of the sim-
ulation box.

1 function mic(distance[3], box[3])
2 for i=0; i<3; ++i do
3 while distance[i] > .5 * box[i] do
4 distance[i] -= box[i]
5 end
6 while distance[i] < .5 * box[i] do
7 distance[i] += box[i]
8 end
9 end

10 return distance;

tonian replica exchange. In Complexes++ exchange attempts are done with neighboring
replicas using the odd-even scheme.

The replica exchange simulations are also implemented in an extensible manner. Be-
cause the different replica exchange algorithms implemented require different variables to
be changed between the replicas, Complexes++ only exchanges the coordinates of the
beads and box dimensions during an exchange. The currently implemented algorithms
only require to change the acceptance function such that new replica simulation protocols
like Bayesian ensemble refinement [82] can be added easily.

Random Numbers

Complexes++ uses pseudo random numbers to generate trial moves and accept moves.
As a pseudo RNG it is using the Mersenne Twister [129] implementation in the C++
standard library. The Mersenne Twister is a reasonable choice for Monte Carlo simulations
and produced better results than previously employed linear congruent generators [34].
Because the RNG cannot be safely used in a multi-threaded program like Complexes++
it uses a different instance of the RNG for each thread. The individual RNG instances
are seeded from random numbers from an initial RNG instance during setup. To achieve
reproduceability Complexes++ requires the user to provide an explicit seed for the initial
RNG. This requirement ensures that two runs with the same input are identical on the
same computation node.

Pair-Interactions Potentials

In Complexes++ pair-potentials are called pair-kernels following a common terminology
used in computer science. The parameters of all available pair-kernels are given in the
forcefield class. The parameters σij and εij are set according to the respective bead types
and shared between the pair-kernels. During a simulation pair-kernels can be chosen for
each individual domain type pair present in the simulation, allowing to fine tune the
interactions. The LJ like potential eq 2.7 in combination with the electrostatic potential
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eq 2.9, and several other potentials have been implemented. One additional potential is
the Weeks-Chandler-Anderson (WCA) potential [226]

UWCA(r, σij , εij) =

−εij if r < 21/6σij

4εij
[(σij

r

)12 −
(σij
r

)6] if εij > 0.
(5.9)

A smoothened LJ potential that smoothly decays to zero, with a cutoff distance b, is
implemented with the following smoothing term

Fsmooth(r, a, b) =


1 if r/σij < a

0 if r/σij > b

(b2−(r/σij)2)2(b2+2(r/σij)2−3a2)
(b−a)3 otherwise ,

(5.10)

with a = 1.4 Å and b = 1.8 Å being the bound in which the potential decays to 0. The
value for a and b are hard coded. A purely repulsive potential with

Urepulsive =
(
σij
r

)12
(5.11)

is also implemented. We also added a soft-core potential [8] that allows to tune how soft
the beads are and therefore if they can overlap. The soft-core potential is a modification
of the LJ like potential without the hard core,

USC(rij) = 4εij

( σ6
ij

ασ6
ij + (rij − s)6

)2

−
(

σ6
ij

ασ6
ij + (rij − s)6

) , (5.12)

with α the parameter to tune the softness of the beads, and s =
(

6√2− 6√2− α
)
σij a

shift parameter to ensure that the minimum is always at 6√2 independent of α. The other
branches of the LJ like potential can be obtained by applying the same modifications. α
can be changed in the range of zero to one, with α = 1 allowing full overlap of the beads
as USC(r = 0) = 0 and α = 0 recovering the LJ like potential USC(r = 0) = ∞, eq 2.7.
Because this potential explicitly allows overlaps the electrostatics potential also has to be
changed to remove the divergence at r = 0. For this we use the potential between two
Gaussian charge distributions [235]

Uel(rij) = qiqj
4πε0D

erf
(
rij
√
λij
)

rij
exp

(
−rij
ζ

) 1
kBT

(5.13)

with λij = λiλj
λi+λj and λi the charge radius of bead i. The charge radii are specified in a

forcefield for every bead type. In the standard Complexes++ forcefield all radii are set to
one.

The different pair-kernels are implemented with a common abstract base class
AbstractPairKernel. The LJ like and WCA potential have been implemented using
Inastemp, a portable single instruction multiple data (SIMD) library [25].
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Bead and Domain Implementation

No specific bead class exists in Complexes++, instead, domains contain all information
specific to the beads as several lists. This design scheme follows the “struct of arrays”
pattern [1] used to optimize memory access. For the beads a domain stores the coordinates
in a m_xyz field, the charges in m_charges and the bead types in m_beads. These three
fields are the only information needed to evaluate the potential energy with the pair-
potential functions. Domains are also implemented with run-time polymorphism in an
AbstractDomain class that contains information about the beads and coordinates. Derived
classes only need to implement trial moves.

In addition to bead information, a domain also contains a unique id and a type id that
are defined at runtime. The type id is used to find the corresponding pair-kernel when
evaluating the energy with a different domain. Choosing a pair-kernel for domain type
pairs and using a struct of arrays pattern allows evaluating the pair-kernel for groups of
beads. This pattern can be efficiently implemented using Inastemp [25]. Because the eval-
uation of the pair-kernel is the most expensive calculation of Complexes++ this pattern
ensures that Complexes++ has good performance while using run-time polymorphism.
The type ids are also used to create domains with the same type of move but different
parametrizations for it. For example, the rigid domains have two parameters for trans-
lation and rotation. Having the final parametrization set at runtime allows creating two
distinct rigid domain types for different proteins. This flexibility is useful for simulations
with a mixture of small and large domains. The translation and rotation of larger domains
can be chosen smaller to increase the acceptance rate for their moves and small domains
can be set to large translation and rotation. To achieve an optimal phase space exploration
rate.

In Complexes++ two domain types are implemented, a rigid type and a Brownian
type. For the Monte Carlo moves the rigid domains can be translated by an arbitrary
vector, each component is chosen randomly from the range [−a,+a], with a the maximal
displacement. The rotations are generated by choosing a random rotation axes in the
unit cube and a random rotation angle [55]. This causes that rotation axes along the
edges are more likely chosen. Because the move still obeys detailed balance it does not
affect generated ensembles. In each trial move the probability to make a translation or a
rotation move is one half. The Brownian domains implement the translation and rotation
algorithm for the BDMC, Chapter 4.

Flexible Linkers and Connection Potentials

As described in Section 5.2 the flexible linker domains are replaced with effective potentials
from a Gaussian chain polymer model. For this Complexes++ implements connection
potentials in a Connection class. A connection contains the ids of the two domains that
are connected and the corresponding bead ids in the domains. For each domain, a list
of connections is stored in the class. So if domains i and j are connected both contain
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the same connection. This duplication of data makes it easier to find the corresponding
connections for a domain during the energy calculation. This compromise was chosen as
it is expected that the number of connections is significantly smaller the number of beads.
Currently implemented connection potentials are a flat potential (zero everywhere), a
harmonic potential, and a Gaussian chain PMF potential, eq 5.6.

Cell-List Algorithm

The other important part of the performance of Complexes++ is the cell-list algorithm [55]
used to reduce the number of interactions needed to evaluate. Cell-list algorithms reduce
the computation time to calculate the full energy from O(N2) to O(N) with N being the
number of beads in a simulation. Because beads linked together as domains the algorithm
stores for every cell continues intervals of beads that are in the corresponding cell. Every
bead in a domain is given a unique id defined by the order in which they appear in the input
files. The interval will therefore only store the id of the first bead entering the cell and the
length of beads in the cell. For domains that are larger than a single cell it can happen that
two different intervals are in a cell, see the red domain in Figure 5.10 that has two intervals
in the cell (1, 4). In that case, the cell will store two intervals for the same domain. An
interval is stored in the CoInterval class, Listing 2. Each cell stores a list of CoInterval
instances. As an example of the data stored for a list take the cell (1, 4) containing
the red domain in Figure 5.10. Our implementation is different from conventional cell-

class CoCell {
// The list of intervals inside the current
cell std::vector<CoInterval> m_intervals;
// ...

};

class CoInterval {
// The domain related to the current interval
int m_domainId;
// The position of the first element of the element-list
int m_beginingOfInterval;
// The number of elements in the current interval
int m_nbElementsInInterval;
// ...

};

Listing 2: Definition of the CoCell and CoInterval class used in the cell list algorithm
implemented in Complexes++. The comment “...” indicates other implementation
details.

list implementations in standard MD codes. In conventional implementations the linkage
between beads is not considered. We however explicitly store information about the linkage
of beads (i.e. belonging to the same domain) to reduce the computational complexity of



5.3. IMPLEMENTATION 91

Figure 5.10: Example configuration for two domains (blue and red) in a 2D grid.
Numbers on the top and left are used to index cells.

the energy evaluation. After moving a domain we can immediately calculate on which
cells we have to evaluate the energy and which beads are affected.

To calculate the complete potential energy between all domains we iterate over all cells
in the cell-list, see Algorithm 2. For each cell we then iterate over the list of CoIntervals.
During a Monte Carlo move only a single domain will be moved. We therefore do not
need to recalculate the complete potential energy. Instead we need iterate over the cells
occupied by the moved domain and update the energy difference appropriately, replacing
the outer most loop in Algorithm 2 with a loop over only the cell currently occupied by
the domain. The last step further reduces the computational effort to calculate energies
during a simulation.

The interface to the cell-list algorithm to calculate pair-interactions has also been
implemented without references to the underlying algorithm and can be exchanged with
different algorithms. In Complexes++, there are two data-structures available for the
cutoff grid. The dense data structure is allocated cell objects for all cells in a simulation
box and offers efficient computation of neighboring cells. The memory consumption of this
data structure scales with (LBox/LCell)3, where LBox is the edge-length of the simulation
box and LCell is the edge-length of a cell, see Figure 5.11. This data structure is optimal for
dense simulations. The sparse data structure uses a hash-map to only allocate cells that
are occupied by beads. The memory consumption of this data structure scales with the
number of beads in a simulation and is independent of the box size. It is suited for sparse
simulations. The high-level interface is also agnostic to the underlying cell-list algorithm
allowing to chose a completely different algorithm if desired.

Task-based parallelism

Monte Carlo algorithms have two parts which can be parallelized, the energy calculation
and the trial move generation. The trial move generation in Complexes++ is not compu-
tationally expensive and a minuscule amount of time is spend on it. We therefore optimize
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ALGORITHM 2: Cell list algorithm to calculate all pair-interactions.
1 function computeEnergy(Cells[K], Domains[M])
2 energy = 0
3 // Compute energy (particle to particle interactions)
4 for cell in Cells do
5 for target in cell do
6 for source in cell do
7 if source.domainId 6= target.domainId then
8 target_dom = Domains[target.domainId]
9 source_dom = Domains[source.domainId]

10 energy += kernel(target_dom, source_dom, target, source)
11 end
12 end
13 for nb_cell in cell.neighbors() do
14 for source in nb_cell do
15 if source.domainId 6= target.domainId then
16 target_dom = Domains[target.domainId]
17 source_dom = Domains[source.domainId]
18 energy += kernel(target_dom, source_dom, target,

source)
19 end
20 end
21 end
22 end
23 end
24 return energy
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Figure 5.11: Memory consumption of the dense (blue) and sparse (orange) cell-list
data-structures with a constant number of beads and constant size of the simulation
box. The cutoff is set to 12 Å. The gray line marks one gigabyte.

the energy calculation for the single replica simulations. In replica exchange Monte Carlo
all replicas can be executed in parallel with few synchronization points to exchange co-
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ordinates. Ideally, the single replica and replica exchange simulation can use the same
parallelization scheme. It has to be taken into account that replicas can be unbalanced or
change during a simulation if a phase transition occurs (from gas to liquid, for example).
Another requirement was that it should be possible to always use the maximum number
of available central processing unit (CPU) cores independent of the number of replicas.
Therefore a single replica can use multiple threads and in the case that more replicas than
available threads are simulated the different replicas have a scheduler queue.

In Complexes++ this problem is solved using the task API in OpenMP [22]. Tasks are
generated based on either domains or cell-lists (if activated), meaning tasks are small and
plentiful. At the beginning of the energy calculation, the number of tasks is distributed
equally to the available threads. If a thread finishes early it can steal tasks from other
threads. Allowing threads to be always busy and balancing load when different replicas
have different work loads. The replica exchange simulations can run in parallel. To make
better use of available resources on common HPC clusters we have implemented an MPI
version to spread replicas to multiple nodes.

CPLX File Format

The input for Complexes++ simulation is stored in a CPLX file similar to the tpr files in
GROMACS. The CPLX file contains all information about the domains and pair-kernels
to simulate, with the exception of the parameters for the Monte Carlo algorithm. The
CPLX file format is based on YAML [14] and divided into four sections box, definitions,
topologies, and forcefield.

The box section contains the dimensions of the rectangular simulation box as a YAML
list. The length in each dimension is given in Å.

The definitions section defines the type of domains that are used in the simulation and
the pair-kernels used to calculate the energy between domains. The definitions section
is separated into two sub sections to define the final domain-types and their interactions
between them, called domains and pair-interactions respectively. The domains section
contains a dictionary with the entry names being the domain names and the definition for
the domain. A definition contains the type of move the domain can make, either rigid or
Brownian, and the parameters for the move. Allowing to define several rigid bodies in a
simulation that have different rotation and translation parameters. The definitions can be
used for systems with a mixture of large and small rigid bodies to model the corresponding
mobility. The pair-interaction section defines which pair-interaction potential to choose
for each combination of domain types defined in domains. In the definition, one can
define more domain types than will be used in a simulation. Allowing to create standard
definitions (like the KH forcefield) for different applications. See Listing 3 for an example
definition using two domain types A and EM. Here the EM type is set to not move at
all and interacts with A domains using the WCA potential. This definition could be used
to fit any domain of type A into a domain defined by EM, e.g., electron densities from
cryo electron microscopy experiments.



94 CHAPTER 5. COMPLEXES++: A GENERAL MONTE CARLO ENGINE

definitions:
domains:

A:
defaults: {rotation: 2, translation: 1}
move: rigid

EM:
defaults: {rotation: 0, translation: 0}

move: rigid
pair-interaction:

- domain-type-pair: [A, EM] function: WCA
- domain-type-pair: [A, A] function: LJH
- domain-type-pair: [EM, EM] function: None

Listing 3: Complexes++ domain definitions for a simulation with two domain types A
and EM. Both domain types move as rigid bodies but they have different pair-interaction
potentials with each other.

The topologies section defines the actual domains that are used in the simulation.
It consists of a YAML list of topology entries. Each topology entry contains domain
definitions and connections between domains of the same topology. A domain contains
the following fields: beads, chain-ids, charges, coordinates, nbeads, type, mc-moves, meta-
data, name. Here the type field specifies the domain type, which has to be defined in the
definitions section. Domains have to be numbered consecutively and uniquely across all
topologies.

The forcefield section contains definitions for the available bead types as well as the
energy and diameter pair-parameters.

5.3.2 Preprocessor pycomplexes

pycomplexes is a Python library and CLI program that includes several tools to help
setup simulations for Complexes++ and analyze them later. The CPLX format accepted
by Complexes++ is versatile complex and gives the user a lot of freedom in setting up
simulations. A lot of simulation setups do not need to leverage the full flexibility of
Complexes++ and therefore pycomplexes includes a tool called convert that takes as
input a simplified format, called a TOP file, for describing simulations and generating
CPLX files from it. As part of the conversion, the script will automatically choose charges
and interaction energies based on amino acid type. As interaction energies, the user can
choose either the KH model or the unaltered MJ model. The charges are set according to
the KH model in both cases. The interaction potential is chosen based on domain type,
so far allowed are rigid, gaussian and brownian. The rigid and brownian domain type use
the modified Lennard Jones potential, eq 2.7. For the gaussian domains positions of the
Cα beads will be stored in the CPLX as rigid domains that do not move and a connection
potential, eq 5.5, will be used between the two rigid domains connected by the gaussian
domain. To define a domain in the TOP file the type and a selection of beads have to be
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box: [100, 100, 100]
topology:

protein-name:
coordinate-file: structure.pdb
move: true
domains:

A:
type: rigid
selection: 'namd CA and segid A'

link:
type: gaussian
selection: 'name CA and segid L'
start_connection: [A, 'segid A and resid 10']
end_connection: [B, 'segid B and resid 10']

B:
type: rigid
selection: 'name CA and segid B'

Listing 4: TOP file for a simulation for two rigid domains connected by a Gaussian
domain. All selections are written in the atom selection language used by MDAnal-
ysis.

specified. For the gaussian domain, in addition, the beads of the rigid domains connected
by the gaussian domain have to be specified as well. The convert script could ignore known
beads for a gaussian domain in the structure but keeping the information in the CPLX file
allows to generate explicit linker positions in the post processing, i.e., with the addlinker
tool.

The structures and selections are read and parsed using MDAnalysis [65, 135]. In the
molecular dynamics community there exists a large variety of structure file formats and
they are often not well defined or popular programs write and accept ill formatted files,
MDAnalysis helps to read a large variety of different formats with an easy to understand
atom selection language.

In addition to the convert command pycomplexes also include a variety of other
commands to help the user setup and visualize simulations. As of the time of writing the
other implemented commands are

• equilibration Update coordinates stored in a CPLX from a trajectory.

• forcefield Convert a forcefield using scaling parameters λ and e0, see eq 2.8.

• visualize Create VMD scripts from simulations.

• demux generates input files for the GROMACS tool trjcat to generate time-continuous
trajectories from replica exchange simulations.

• addlinker generates explicit linker conformations for a simulation with Gaussian
linkers.
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Add Explicit Linker Beads in Post-Processing
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Figure 5.12: (Left) Total energy for a linker chain of varying length, between 20
and 500 beads. (Middle) Energy fluctuations from 10 sweeps during the simulation.
Fluctuations are calculated as standard deviation. (Right) Runtime for the linker
relaxation depending on the linker length. The orange line marks quadratic scaling
behavior in this log-log plot.

The Complexes++ Monte Carlo engine treats the linker domains as harmonic springs
and does not calculate explicit positions for them. The calculation of explicit bead posi-
tions can be done with the addlinker command of pycomplexes. The linker beads are
generated as explained in Section 5.2. To quantify the current implementation we have
generated and relaxes linkers for 5 different numbers of beads [20, 50, 100, 200, 500]. Inter-
estingly the number of sweeps needed to find a relaxed structure seems to be independent
of the length of the linker, Figure 5.12 (Left). This allows to use a general limit on the
number of sweeps for relaxation runs independently on the linker length. Looking at the
fluctuations in the energy between sweeps we notice that the energy has stabilized after
around 100 sweeps for all linkers, Figure 5.12 (Middle). The magnitude of fluctuations is
again independent of the linker length, therefore the fluctuations can be used to imple-
ment an adaptive stop criterion for the relaxation. Here we determined the fluctuations
as the standard deviation for the potential energy of ten sweeps. Suggesting from these
simulations would be to stop after the fluctuations are below 50 kT. The current imple-
mentation of the linker relaxation evaluates the full potential energy for a move, leading
to a quadratic run-time for the relaxation algorithm, Figure 5.12 (Right).

5.3.3 Benchmarks

For the benchmarks we use three different structures, Table 5.1. The structures differ in
size, from small and compact to large and elongated, to show how Complexes++ per-
forms with respect to number of threads in relation to protein size and cell-size. For all
benchmarks, if not further specified, the volume density N/V is set to 0.1 , the number of
proteins in a simulation is 128 , the cell-size is set to 12 Å, the number of sweeps is 5000,
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Name R [Å] N Reference
6LYZ 22 129 Diamond [41]
1HE8 48 749 Pacold et al. [148]
4HPQ 167 1282 Ragusa et al. [161]

Table 5.1: Properties of test structures for benchmarks. N is the number of amino
acids and R is the radius of the smallest sphere encompassing the structure.

the temperature is set to 300 K, the Metropolis acceptance function is used, the Debye
length is 10 Å, the dielectric constant is 80 and we use the KH model.

The first benchmark demonstrates the scaling behavior of the cell-list algorithm with
increasing number of beads using a single thread, Figure 5.13. The number of protein
copies in the simulation was varied between 2 and 1024. The largest simulation contained
more than one million beads. For all three studies structures, the runtime increases linearly
with the number of proteins in the simulation. If the runtime is scaled by the number of
beads in the simulation it becomes clear that the overall performance is correlated with
the number of beads and that the scaling is linear and independent of domain size.
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Figure 5.13: Scaling behavior of Complexes++ with increasing number of proteins
(left) or number or beads (right) in a simulation. The dashed gray line indicates linear
growth in this log-log plot. All simulations have been performed using a single thread.

The performance only scales well with the number of used threads for large structures
and a small number of threads, as expected due to the use of a cell-list algorithm to mini-
mize the number of energy evaluations. In Figure 5.14 it can be seen that the performance
only increases up to around eight threads independent of the number of proteins in the
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simulation. When we normalize the runtime with respect to a single thread, Figure 5.15,
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Figure 5.14: Runtime of single replica simulations using an increasing number of
threads. The dashed lines mark one minute and one hour.

it becomes clear that for small proteins like 6LYZ using more than one thread will result in
a performance degradation. For the two larger proteins we see a doubling of performance
when using eight threads per replica compared to single thread runs. When more threads
are used the performance is degrading. As a rule of thumb from these simulations the
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Figure 5.15: Relative performance of Complexes++ with increasing number of threads.
The performance has been scaled with respect to the single threaded performance.

standard for simulations should be one thread per replica as an initial choice, especially
for small systems. It can be beneficial to allocate more threads per replica but using
a full computation node for a single replica is likely to result in less than optimal per-
formance. Note that these results are for single-replica simulations only. When running
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multiple-replica simulations Complexes++ can make use of more threads and nodes. For
multiple-replica simulations the performance can be optimized when taking care that the
number of threads per replica is around eight in our homogeneous benchmark simulations,
see Figure 5.16.
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Figure 5.16: MPI execution of replica exchange simulations of the 4HPQ structure
using 1 - 32 nodes. The number of threads per replica is varied from one (yellow)
to eight (dark blue) in powers of two. Three sets of simulations with a different
number of replicas, 64 (cricle), 128 (triangle), and 256 (square), have been run.

Another aspect for single-replica performance besides the number of used threads is
the cell-list data structure. For a single replica with 128 proteins the choice of cell-list
data structure has a significant impact on runtime, Figure 5.17. In general the dense
data-structure has a better performance than sparse, with the exception for the 4HPQ
structure at a density of 0.004 with 10 threads, and 6LYZ with a density of 0.13 and 40
threads. When comparing the relative performance between sparse and dense the dense
data structure is around 30-40% faster than sparse for large structures and around 10%
for small structures, Figure 5.18

The memory consumption between the different data structures varies greatly though,
Figure 5.19. With the sparse option, the cell-list is usually in the order of a few megabytes,
while dense can consume up to two 20 gigabytes in our testing, Figure 5.19. The choice
of cell-list data-structure should be taken into account when setting up multiple-replica
simulations on the same node to keep the memory requirement of all replicas below the
available memory on the node, i.e. the user has trade-off if he using the sparse cell-list
with more replicas will result in better sampling of configuration space than using the
dense cell-list at the same wall time.

We have also run simulations with a heterogeneous mixture of 41 different proteins.
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Figure 5.17: Total runtime of single-replica simulations for the dense (blue) and
sparse (orange) cell-list data structures at different volume densities N/V . The
number of threads has been varied between 10 and 40.
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Figure 5.18: Relative performance of the sparse data-structure to the dense data-
structure for the cell-list algorithm. A value below one means the dense data-
structure is faster.

The proteins and their quantities have been taken from McGuffee and Elcock [130], we
only selected proteins that could be directly parsed from the Protein Data Bank (PDB),
i.e., no alternative locations for residues, and that only contain residues included in the
KH model. The system used a box edge-length of 400 nm and a total of 611 proteins.
The cell-list box-length was set to 3 nm. For this system, Complexes++ can make more
efficient use of multi-threading. The peak-performance is at 20 threads with a speed-up
of ∼ 7. Optimal scaling is only achieved up to 10 threads, Figure 5.20.

Single replica and MPI benchmarks have been performed on the CORBA cluster of the
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Figure 5.19: Total memory consumption of the cell-list for the dense (blue) and
sparse (orange) data structures at different volume densities N/V . The number of
threads has been varied between 10 and 40.
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Figure 5.20: (Left) Runtime of heterogeneous protein mixture for a different number
of threads. (Right) Number of sweeps per hour for a different number of threads.

MPG. A node consists of two Intel Xeon “Skylake” processors with 20 cores @ 2.4 Ghz per
processor, and 96-192 GB of memory. Cell-list algorithm benchmarks have been performed
on the DRACO cluster of the MPG. A node consists of two Intel Xeon E5-2698 processors
with 16 cores @ 2.3 Ghz per processor, and 128 Gigabyte of memory.
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5.4 Summary
Complexes++ is a new Monte-Carlo simulation engine with an efficient and extensible
implementation of the original KH forcefield model. We ensured in development that it
can run efficiently on a laptop as well as on a high-performance cluster. We have replaced
the polymer model for flexible domains with a Gaussian chain model to efficiently sample
configuration space of connected rigid domains. To generate linkers we have also added a
post-processing tool. We extended the original KH model by adding new potential energy
terms to choose, an NPT ensemble, and different replica exchange algorithms. Defining a
simulation for Complexes++ is a non-trivial process. Due to the complexity of the systems
of interest. The program gives the user a lot of control over the simulation. To enable
an easier simulation setup for less experienced users we developed the pycomplexes helper
tool.



Chapter 6
Conclusion & Outlook

In this thesis, we developed novel methods to understand the role of diffusion in molecular
systems. In Chapter 3 we showed that the quaternion covariance equations from Favro
can be directly fitted to simulation data without further assumptions, allowing us to fit
anisotropic rotation diffusion tensors more accurate. We found that similar to translation
diffusion the rotation diffusion tensor is influenced by PBC and derived a correction. Using
our algorithm and box-size correction facilitates an accurate comparison of experiments
and simulations. Similar to the work of Hoffmann et al. [74] such comparisons can be
used to improve existing forcefields. Recent simulations of high density protein solutions
have shown that the translation and rotational diffusion coefficient are slowed down more
then expected from non-interacting hard-sphere colloidal theory [223]. This effect is due
to protein-protein interactions [138]. It would be interesting to test whether a simple
reduction of the diffusion tensor at high densities in CG simulations is enough to capture
all effects observed in all-atom simulations. Because rotational diffusion is used in the
theoretical description of many experiments it would also be possible to use accurate
estimates of the rotational diffusion from MD simulations to improve experimental results.
Because our algorithm works with MD simulations and does not not rely on neat solvent
behavior it can be used to study macromolecules in complex liquids, like dense protein
solutions of a single protein type or a mixture similar to the environment in the cell.
In combination, our results enable us to compare MD simulations to a broader range of
experiments and to investigate the diffusion behavior of protein solutions with complex
solvents.

In Chapter 4 we have developed a novel BD algorithm that is based on the Monte
Carlo method. It builds upon the known similarity of Monte Carlo simulation to Brownian
dynamics for isotropic particles. We generalized the derivation of the correct step-size to
link Monte Carlo to a time-step and diffusion coefficient to arbitrary acceptance and trial
function. We developed a novel acceptance function to reduce the error in dynamical
observables using a BDMC algorithm. We could show that our algorithm can be extended
to problems with position-dependent diffusion coefficients, a phenomenon that often occurs
in the analysis of protein dynamics in reduced coordinates. Lastly, we included rotational
moves for arbitrarily shaped macromolecules. In combination these extensions mean that
the BDMC algorithm can be applied for many different BD problems. Because the BDMC
algorithm only evaluates potentials it can yield better performance and be applied to
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problems where force calculation is computationally expensive. For our one-dimensional
model systems problems the BAOAB integrator showed exceptional accuracy even at
large time-steps. The BAOAB integrator is a simple modification of the Euler-Maruyama
integrator that could also be applied to the Ermak-McCammon integrator. One should
test if such a modification would make traditional BD simulations stable with larger time-
steps. So far we have tested our algorithm for one dimensional model systems or two
particle systems. It would be interesting to see how well the algorithm works for many
particle systems. We assume that it will achieve better performance for high density
protein solutions than the traditional Ermak-McCammon integrator [49]. Our results
are further evidence that the Monte Carlo method can be used to determine dynamic
properties in addition to equilibrium properties. The framework we developed to correlate
diffusion with the trial step size can be used for different system and acceptance functions
to extend existing Monte Carlo algorithms and engines to include dynamic calculations.

In Chapter 5 we developed Complexes++, a new Monte-Carlo simulation engine. Com-
plexes++ implements the KH forcefield, a hierarchical CG protein model, and the new
BDMC algorithms and several enhanced sampling routines. Great care was taken to en-
sure that the engine is optimized to run efficiently on laptops and high-performance cluster
systems. The program allows great flexibility in setting up different simulations and is
at the same time easy to use. To achieve both goals two programs have been developed
in the end. The general purpose Monte Carlo engine Complexes++ and the Python pro-
gram pycomplexes. The later is targeted to be easy to use and sets sensible defaults for
a simulation. The addition of new interaction potentials and connection potentials will
allow to tackle new scientific questions and perform large-scale multi complex simulation
[130, 171, 238]. Because of the good scaling of complexes it would be interesting to study
how well the KH model describes dense protein solution that appear in cells. For the BD
simulations it is known that the diffusion coefficients have to be scaled with the density
[132]. However, most existing theories are based on non-sticky polymer model. An in-
teresting addition to the code would be a new enhanced sampling algorithms like BioEN
[82]. The KH model has been extensively used and extended in the literature and we are
sure that the new code will allow the scientific community to make use of the model and
for appropriating it to develop new simulation protocols.
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