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SUMMARY

Broadly neutralizing antibodies (bNAbs) represent a
promising approach to prevent and treat HIV-1 infec-
tion. However, viral escape through mutation of the
HIV-1 envelope glycoprotein (Env) limits clinical
applications. Here we describe 1-18, a new VH1-46-
encoded CD4 binding site (CD4bs) bNAb with
outstanding breadth (97%) and potency (GeoMean
IC50 = 0.048 mg/mL). Notably, 1-18 is not susceptible
to typical CD4bs escape mutations and effectively
overcomes HIV-1 resistance to other CD4bs bNAbs.
Moreover, mutational antigenic profiling uncovered
restricted pathways of HIV-1 escape. Of most prom-
ise for therapeutic use, even 1-18 alone fully sup-
pressed viremia in HIV-1-infected humanized mice
without selecting for resistant viral variants. A 2.5-Å
cryo-EM structure of a 1-18-BG505SOSIP.664 Env
complex revealed that these characteristics are likely
facilitated by a heavy-chain insertion and increased
inter-protomer contacts. The ability of 1-18 to effec-
tively restrict HIV-1 escape pathways provides a new
option to successfully prevent and treat HIV-1
infection.
Cell 180, 471–489, Fe
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INTRODUCTION

Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 en-

velope protein (Env) can prevent infection in animal models

and are under investigation for passive immunization in clinical

trials (Balazs et al., 2011; Gautam et al., 2016; Julg and Barouch,

2019; Moldt et al., 2012; Shingai et al., 2014). Moreover, bNAbs

have been demonstrated to suppress viremia and delay viral

rebound after interruption of antiretroviral therapy (ART) in HIV-

1-infected individuals (Bar et al., 2016; Bar-On et al., 2018; Cas-

key et al., 2015, 2017; Lynch et al., 2015a; Mendoza et al., 2018;

Scheid et al., 2016). Although these results highlight the signifi-

cant clinical potential of bNAbs, pre-existing or de novo HIV-1

resistance cause treatment failure and can strongly limit bNAb

applications in humans (Bar et al., 2016; Bar-On et al., 2018;

Caskey et al., 2015, 2017; Lynch et al., 2015a; Mendoza et al.,

2018; Scheid et al., 2016). Strategies to prevent and overcome

viral escape are therefore critical to effectively implement

bNAb-mediated approaches for HIV-1 prevention and therapy

(Caskey et al., 2019; Gruell and Klein, 2018).

In recent years, potent bNAbs have been isolated from HIV-1-

infected donors that target distinct vulnerable epitopes on the

Env trimer. These epitopes include the CD4 binding site

(CD4bs), the V1/V2 loop, the V3 loop glycan patch, the mem-

brane-proximal external region (MPER), and the interface
bruary 6, 2020 ª 2020 The Authors. Published by Elsevier Inc. 471
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Identification of Broad and Potent Antibodies in Donor IDC561

(A) Identification of the elite neutralizer IDC561.

(B) Single BG505SOSIP.664- (top) or YU2gp140-reactive (bottom) B cells were sorted, and antibody sequences were amplified using OPT5/oPR primers. Left pie

charts showing the numbers of heavy-chain sequences identified, with clonal sequences indicated in light blue; right pie charts showing the numbers of clonal

heavy-chain sequences, with individual clones represented by slices. Antibodies of members of clones in dark blue and green were tested. A black line indicates

clones identified by both HIV-1 Env-sorting strategies.

(legend continued on next page)
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between the gp120 and gp41 subunits (Gama and Koup, 2018;

Sok and Burton, 2018; Walker and Burton, 2018). Among these

sites, the CD4bs is of particular interest because CD4 serves

as the primary receptor for viral entry (Kwong et al., 1998; Mad-

don et al., 1986; Zhou et al., 2007).

Most potent CD4bs bNAbs are characterized by use of the

immunoglobulin heavy-chain gene segment IGVH1-2*02, high

levels of somatic hypermutation, a five-residue complemen-

tarity-determining region 3 of the light chain (CDRL3), and

mimicry of the CD4-Env interaction (West et al., 2012; Zhou

et al., 2010, 2013, 2015). Named after the prototypical anti-

body, these antibodies are referred to as VRC01-class bNAbs

(Wu et al., 2010). Additional members of this class include

3BNC117, NIH45-46, N49-P7, N6, and VRC07-523 (Huang

et al., 2016a; Rudicell et al., 2014; Sajadi et al., 2018; Scheid

et al., 2011). Other bNAbs that mimic CD4 binding are derived

from the VH1-46 gene segment. However, compared with VH1-

2-derived bNAbs, the VH1-46 bNAbs reported to date have

lower potencies and breadth, which limits their potential for

clinical use (Bonsignori et al., 2016; Gao et al., 2014; Scheid

et al., 2011). For example, CH235.12, one of the best VH1-

46-derived CD4bs antibodies, is less broad and more than

10-fold less potent than the VRC01-class bNAb N6 when

tested against a large panel of HIV-1 strains (Bonsignori

et al., 2016).

Accordingly, all CD4bs bNAbs that have advanced into clinical

testing are members of the VRC01 class (3BNC117, N6, VRC01,

and VRC07-523) (Bar et al., 2016; Bar-On et al., 2018; Caskey

et al., 2015, 2019; Cohen et al., 2018a; Crowell et al., 2019; Gau-

dinski et al., 2018, 2019; Gruell and Klein, 2018; Ledgerwood

et al., 2015; Lynch et al., 2015a; Mayer et al., 2017; Mendoza

et al., 2018; Riddler et al., 2018; Scheid et al., 2016). However,

although escape from VRC01 has been associated with a reduc-

tion in viral fitness (Lynch et al., 2015b), the effects of VRC01-

class monotherapy are only transient and associated with emer-

gence of viral escape variants (Bar et al., 2016; Caskey et al.,

2015; Horwitz et al., 2013; Klein et al., 2012; Lynch et al.,

2015a; Scheid et al., 2016).

Here we describe bNAb 1-18, a VH1-46-derived CD4bs anti-

body that exceeds the potency and breadth of most classical

VH1-46- and VH1-2-derived bNAbs. The structural basis of its

high activity was revealed by a single-particle cryoelectron mi-

croscopy (cryo-EM) structure of a 1-18 Fab-BG505SOSIP.664

Env trimer complex solved at 2.5-Å resolution. Of particular inter-

est, comparedwith 3BNC117 and VRC01, the twomost clinically

advanced CD4bs bNAbs, 1-18 effectively restricts viral escape

and maintains both neutralizing activity against VRC01-class

escape variants and full viral suppression when tested in HIV-

1YU2-infected humanized mice. Therefore, 1-18 is a highly prom-

ising candidate for antibody-mediated strategies to effectively

treat and prevent HIV-1 infection.
(C) Monoclonal antibodies were produced from members of 33 clones (clone

correspond to the left panel and show antibodies binding to YU2gp140 or BG5

respectively.

(D) Phylogenetic tree of clone 4 members. Boxes indicate GeoMean IC50 and brea

indicate antibodies 1-18, 1-55, and 2-12, respectively.

See also Figures S1 and S2 and Tables S1, S2, S3, and S4.
RESULTS

Identification of Potent VH1-46-Derived bNAbs
To identify individuals with elite HIV-1-neutralizing activity, we

screened HIV-1-infected subjects. From each individual, purified

serum or plasma immunoglobulin G (IgG) was tested for neutral-

izing activity in a TZM-bl cell assay against a multiclade

screening panel of 12 HIV-1 pseudoviruses (deCamp et al.,

2014; Sarzotti-Kelsoe et al., 2014; Figure 1A). We identified

IDC561, a clade B-infected long-term non-progressor (Walker

and Yu, 2013), as ranking among the top 1% of a cohort of

2,274 individuals (HIV-1-neutralizing activity at a geometric

mean IC50 [50% inhibitory concentration] of 41.7 mg IgG/mL; Fig-

ures 1A and S1A–S1C). To characterize the epitope specificity of

the IgG response, we performed neutralization fingerprinting and

detected VRC01-like activity (Doria-Rose et al., 2017; Fig-

ure S1D). However, virus obtained from IDC561 was sensitive

to 3BNC117 and N6, suggesting that the HIV-1-neutralizing an-

tibodies in IDC561 differ from VRC01-class antibodies

(Figure S1E).

To identify antibodies that accounted for the potent neutral-

izing activity of IDC561, we performed single-cell sorting of

Env-reactive B cells that bound to native-like BG505SOSIP.664

(Sanders et al., 2013; Sliepen et al., 2015) (0.08% of IgG+ B cells)

or to YU2gp140 (Scheid et al., 2009; Yang et al., 2000) (0.72% of

IgG+ B cells) (Figure 1B). Using a new amplification strategy

with primer sets optimized for precise detection of highly

mutated IgG gene segments (OPT5/oPR; Kreer et al., 2019),

we obtained and analyzed 812 IgG heavy-chain sequences

(BG505SOSIP.664, n = 445; YU2gp140, n = 367) (Figure 1B).

Compared with the total IgG+ B cell reservoir of IDC561, Env-

reactive B cells carried slightly longer CDRH3s (median length

of 17 versus 16 amino acids, p < 0.001), had higher levels of so-

matic mutation (median VH gene nucleotide germline identity of

88.4% versus 95.3%, p < 0.001), and were enriched for the VH

gene segments 1-46, 1-69, and 4-4 (Figures S1F–S1H). Among

Env-reactive B cells, we identified 80 B cell clones with two or

more members (Figure 1B).

Following production of monoclonal antibodies (Table S1),

binding of both BG505SOSIP.664 and YU2gp140 was detected by

ELISA for 70% of the tested antibody clones (Figure 1C; Table

S2). The antibodies of most clones showed no or minimal

neutralizing activity when analyzed against the 12-strain global

panel, suggesting that they play a limited role in the serum

activity of IDC561 (Figure 1C; Table S3A). In contrast, all tested

members (23 antibodies) of B cell clone 4 (comprising subclones

4.1–4.4) neutralized 92%–100%of viruses in the screening panel

with remarkable potency (GeoMean IC50 of 0.032–0.198 mg/mL;

Figure 1D; Table S3A). B cell clone 4, derived from the VH1-46

and VK3-20 gene segments, included members with different

CDRH3 lengths of 18 (subclones 4.1 and 4.2), 20 (subclone
4 comprised subclones 4.1–4.4) (left). Boxes in the middle and on the right

05SOSIP.664 or neutralizing more than 90% of the global panel HIV-1 strains,

dth against the global panel. aa, amino acids. Black, gray, and green asterisks
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4.4), or 21 (subclone 4.3) amino acids (Table S1). Subclone 4.1

showed the highest breadth and potency and was characterized

by a six-amino-acid CDRH1 insertion that lengthened the

CDRH1 from 8 to 14 amino acids (Figure 1D; Tables S1 and

S4). We conclude that antibodies of the VH1-46-derived B cell

clone 4 are highly potent, broadly active, and likely mediate the

neutralizing serum activity of the elite neutralizer IDC561.

1-18: A CD4bs bNAb with Near-Universal Breadth and
Outstanding Potency
We selected antibodies 561_01_18 and 561_01_55 (hereafter

referred to as 1-18 and 1-55), two representative members of

clone 4.1, for further analyses (Figure 2A). Both antibodies are

highlymutated, with heavy and light chain V gene germline nucle-

otide sequence identities of 68% and 78%–79%, respectively

(Figure 2A; Table S4). Notably, the neutralizing activities of 1-18

and serum IgG of IDC561 against 42 pseudoviruses strongly

correlated, suggesting that members of clone 4.1 are main con-

tributors to the serum activity of IDC561 (Figure S2A). To deter-

mine binding of 1-18 and 1-55 to the BG505SOSIP.664 trimer in

the presence of other HIV-1 bNAbs, we performed competition

ELISAs and detected interference with 3BNC117, N6, and

VRC01 (Figures 2A; S2B). However, compared with these

VRC01-class CD4bs antibodies, a different binding pattern was

detected for 1-18 and 1-55when tested by ELISA against several

Env proteins. For example, whereas 3BNC117, N6, and VRC01

bound similarly to YU2gp120, YU2gp140, and BALgp140 and were

reactive to the V1-V3 loop-deficient gp120 variant RSC3 (Wu

et al., 2010), bNAbs 1-18 and 1-55 showed lower (YU2gp120,
YU2gp140, and BALgp140) or no (RSC3) binding to these proteins

(Figure S2C). Therefore, 1-18 and 1-55 target the CD4bs but

recognize this epitope differently than VRC01-class antibodies.

We next evaluated the neutralizing activity of 1-18 in detail. In

comparisonwith four bNAbs in advanced stages of clinical inves-

tigation (3BNC117, VRC01, 10-1074, and PGT121), 1-18 demon-

strated superior activity with high potency (GeoMean IC50 of

0.035 mg/mL, GeoMean IC80 [80% inhibitory concentration] of

0.155 mg/mL) against all viruses of the 12-strain global screening

panel (deCamp et al., 2014; Figure 2B; Table S3A). Although 1-18

competedwithotherCD4bsbNAbs for binding toBG505SOSIP.664

by ELISA, no reduction in neutralizing activity was detectedwhen

1-18 and 3BNC117 were combined (Figure S2D). To confirm the

results of the screeningpanel,weevaluated theactivity of 1-18on

extended pseudovirus panels. Overall, 1-18 ranked among the

best bNAbs that are currently available (Figure 2C). When tested

against a 119-strain multiclade panel, 1-18 showed highly

potent activity (GeoMean IC50 of 0.048 mg/mL, GeoMean IC80
Figure 2. bNAb 1-18 Demonstrates Highly Potent and Near-Pan HIV-1-

(A) Characteristics of antibodies 1-18 and 1-55.

(B) Activity of 1-18 against the global panel compared with bNAbs in advanced s

bNAb. Data for 3BNC117, VRC01, 10-1074, and PGT121 were derived from CAT

(C) Activity of 1-18 compared with a selection of bNAbs against an identical set o

determined in the same laboratory as for 1-18.

(D) Activity against the 119-pseudovirus multiclade panel. Data for 3BNC117, VR

(E) Activity against patient-derived bulk culture outgrowth virus.

(F) Activity of 1-18 compared with N6 against the 119-pseudovirus multiclade pa

In (D)–(F), IC50 values are shown at the top and IC80 values at the bottom. See a
of 0.183 mg/mL) with a breadth of 97% (Figure 2D; Table S5A).

In addition, 1-18 demonstrated high potency (GeoMean IC50 of

0.074 mg/mL, GeoMean IC80 of 0.279 mg/mL) and breadth

(90%) when tested against a 100-strain clade C panel (Table

S5B). Finally, we determined the activity of 1-18 against cul-

ture-derivedprimaryHIV-1 strains that aregenerallymoredifficult

to neutralize thanpseudoviruses (Cohenet al., 2018b). Against vi-

ruses obtained from 51 HIV-1-infected individuals, 1-18 demon-

strated higher breadth and/or potency (GeoMean IC50 of 0.56 mg/

mL, GeoMean IC80 of 1.57 mg/mL, 96% breadth) than 3BNC117,

VRC01, 10-1074, and PGDM1400 (Figure 2E; Table S5C) and

was superior to the near-pan-neutralizing VH1-2-derived CD4bs

bNAb N6 (Huang et al., 2016a; Figure 2F; Table S5C).

We conclude that 1-18 is a highly broad and potent VH1-46-

derived antibody that rivals or exceeds the activity of CD4bs

bNAbs described to date.

1-18 Targets the CD4bs and Regions of the Adjacent
gp120 Protomer
To characterize Env recognition by the 1-18 family of bNAbs, we

solved cryo-EM structures of 1-18 and 1-55 Fabs in complex

with soluble native-like Env trimers and the V3-targeting bNAb

10-1074 at resolutions of 2.5 Å (1-18 complexed with

BG505SOSIP.664) and 3.9 Å (1-55 complexed with RC1, a de-

signed immunogen that is a derivative of BG505SOSIP.664; Esco-

lano et al., 2019) (Figures 3A and S3; Table S6). Notably, at 2.5-Å

resolution, the 1-18 complex is the highest resolution view yet

obtained of an HIV-1 Env trimer (Figure S3A; Table S6). Both

complexes contained three 1-18 family Fabs and three 10-

1074 Fabs interacting with three-fold symmetry with a SOSIP-

Env trimer. 1-18 and 1-55 recognized the CD4bs similarly to

other VH1-46-derived bNAbs, including 8ANC131 and

CH235.12 (Bonsignori et al., 2016; Zhou et al., 2015), with inter-

actions encompassing contacts with the N276gp120 and

N197gp120 glycans, the CD4bs loop via the CDRH2, the V5

loop via the CDRH2, and loop D via the CDRL3 (Figures 3A,

3B, S4A, and S4B). However, in addition, 1-18 contacts Env by

residue F54HC, which is buried in the gp120 ‘Phe43 pocket’,

and by residue R64HC, whichmakes a salt bridge with V5 residue

D457gp120 (Figure S4B). These interactions mimic analogous

gp120 contacts made by CD4 residues F43CD4 and K35CD4,

respectively, and the VH1-2-derived bNAb N6 also buries an ar-

omatic residue (Y54HC) in the ‘Phe43 pocket’ (Huang et al.,

2016a; Kwong et al., 1998; Figure S4B).

In addition to the canonical VH1-46 contacts, 1-18 contains a

six-residue insertion in its CDRH1, resulting in a negatively

charged 25DDDPYTDDD33 motif that interacts with the adjacent
Neutralizing Activity

tages of clinical testing, individually sorted by increasing IC50 values for each

NAP (Yoon et al., 2015).

f 109 pseudovirus strains (Yoon et al., 2015). For N6, neutralization data were

C01, 10-1074, and PGT121 were derived from CATNAP (Yoon et al., 2015).

nel and patient-derived bulk culture outgrowth viruses.

lso Figure S2 and Tables S3 and S5.

Cell 180, 471–489, February 6, 2020 475



A B

VH VL

A316 (53%)

RC1 SOSIP.664
3.9 Å

BG505 SOSIP.664
2.5 Å

gp120

gp41

-4 4

kT/e

K207 (99%)

1-18 3BNC117

gp1201 BSA (Å2)
270gp1202 BSA (Å2) 170

1,0901,260

gp1201
gp1202

Total BSA (Å2) 1,530

gp41

1,260

2.5 Å
cryo-EM

4.4 Å
cryo-EM

VRC01

100
1,190

1,290

3.4 Å
X-ray

5V8M6UDJ 5FYJ
X1193.c1BG505BG505

1-55
RC1

6UDK
3.9 Å

cryo-EM
1,300
260

1,560

202

R304 (93%)

Y318 (86%)

VHVL

1-18

1-18 CDRH1

1-55

VHVL

10-1074

Method
Resolution

PDB ID
Trimer
bNAb

R308 (64%*)
S306 (77%)

V3 loop (gp1202)
N197 glycan

N276 glycan

V5 Loop

CD4 bd. loop

Loop D

CDRH1

VH VL

VHVL

10-1074

1201
gp12

gp41

2

gp1202

1-18
1-18

CDRH1
1-18

DC

E
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(legend continued on next page)
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gp120 protomer (Figures 3B–3D). At the adjacent protomer, four

Asp residues in the 1-18 CDRH1 (D25HC, D27HC, D31HC, and

D32HC) plus T30HC form coordinated interactions around the

highly conserved Env residue K207gp120 (Figure 3C). In addition,

the increased length of the 1-18 CDRH1 places Y29HC in a posi-

tion to interact with residues in the V3 loop on the adjacent

protomer (S306gp120, R308gp120, A316gp120, and Y318gp120) (Fig-

ure 3C). Although not all of the Asp residues in the 1-18 CDRH1

contact positively charged residues on gp120, the Asp-rich

insertion may have been selected to carry an overall negative

charge that is electrostatically attracted to the positively charged

patch within the V3 loop on the adjacent protomer (Figure 3D),

which could drive formation of an initial Env-antibody complex

(Schreiber et al., 1996). Although other CD4bs bNAbs include

Asp-containing insertions in either the CDRH1 or heavy-chain

framework region 3 (FWRH3) that interact with the positively

charged gp120 patch (Lee et al., 2017; Liu et al., 2019; Xu

et al., 2018; Figure S4C), the number of Asp in the CDRH1 of

1-18 and the extent of their interaction to Env have not been

described before. Notably, gp120 residues contacted by the

1-18 CDRH1 contribute to the CD4 and/or co-receptor binding

sites (Liu et al., 2017; Rizzuto et al., 1998; Shaik et al., 2019),

and most residues are highly conserved (Figure 3C). Demon-

strating their importance for viral function, mutations in some

of these residues have been shown to substantially reduce infec-

tivity (de Taeye et al., 2015; Liu et al., 2017).

To evaluate the relevance of the CDRH1 insertion for the

neutralizing activity of 1-18, we engineered 1-18Dins, a 1-18

variant lacking the insertion. When tested against the 12-strain

global panel, 1-18Dins showed significantly reduced potency

compared with 1-18 (GeoMean IC50 values of 0.114 mg/mL

[1-18Dins] and 0.035 mg/mL [1-18], respectively; p = 0.012; Table

S3B). In addition, we investigated antibody 561_02_12 (referred

to as 2-12), a member of clone 4 that developed in individual

IDC561 but does not have a CDRH1 insertion. Compared with

1-18, antibody 2-12 showed lower breadth on extended pseudo-

virus panels (119-strain multiclade panel: 1-18, 97% breadth;

2-12, 87%breadth; 100-strain cladeCpanel: 1-18, 90%breadth;

2-12, 74%breadth; Tables S5A andS5B). Analysis of the neutral-

ization panel data (West et al., 2013) indicated reduced potency

of 2-12 against viruses carrying H364gp120 in the CD4 binding

loop. In contrast, 1-18 is less affected by this variation, suggest-

ing a higher tolerance for structural variations in this site.

Compared with the epitopes of the CD4bs bNAbs 3BNC117

and VRC01 (Lee et al., 2017; Stewart-Jones et al., 2016), 1-18

and 1-55 bury more surface area on both the primary gp120

epitope and the adjacent protomer, another potential mecha-

nism for their increased breadth and potency (Chuang et al.,

2019; Figure 3E). Finally, the slightly higher neutralizing activity

of 1-18 compared with 1-55 might be explained by variations
(C) Close up of interactions of 1-18 CDRH1 residues with residues on secondary

The percent conservation among Env sequences of gp1202 residues contacted

servation percentage in the 500 viruses that have residue 308.

(D) Electrostatic surface representation of the Env region contacted by the 1-18

(E) Buried surface areas from CD4bs bNAb contacts on the primary (gp1201) and s

the indicated Env strains.

See also Figures S3 and S4 and Table S6.
in glycan accommodation (Figure S4D). We conclude that 1-18

mediates exceptional HIV-1-neutralizing activity by an increase

in buried surface on gp120, primarily through increased inter-

protomer contacts mediated by its unique CDRH1.

1-18 Is Not Affected by Typical VRC01-Class Escape
Mutations
Todetermine howknownEnv escapemutations affect the neutral-

izing activityof1-18,weevaluated the sensitivity ofHIV-1YU2pseu-

dovirus variants. As expected, removal of potential N-linked

glycosylation sites (PNGSs) in the V2 (N160gp120) and V3

(N301gp120, N332gp120) loops mediated resistance to the V1/V2-

directedbNAbsPG16andPDGM1400and theV3-directedbNAbs

10-1074 and PGT128, respectively (Mouquet et al., 2012; Pejchal

et al., 2011; Sok et al., 2014; Walker et al., 2009, 2011), but did not

affect neutralization by 1-18 or other CD4bs bNAbs (Figure 4).

Similarly, removal of a PNGS adjacent to the CD4bs (N276gp120)

reduced sensitivity to the gp120-gp41 interface bNAb 8ANC195

(Scharf et al., 2014) but had no effect on 1-18 (Figure 4).

VH-restricted CD4bs bNAbs typically interact with loop D res-

idues N279gp120 and/or N280gp120, and changes in these resi-

dues have been associated with viral rebound from CD4bs

therapy (Diskin et al., 2013; Horwitz et al., 2013; Julg et al.,

2017; Klein et al., 2012; Lynch et al., 2015a). When we tested

HIV-1YU2 variants with mutations at these residues, we observed

reduced or abrogated sensitivity to VRC01-class bNAbs and to

the VH1-46-derived CD4bs bNAb 8ANC131 (Figure 4). In

contrast, these mutations had no or only minimal effects on

1-18 (Figure 4). Maintained neutralizing activity against these

variants might be mediated by increased contacts of 1-18’s

extended CDRH1 that formed compensatory interactions, allevi-

ating the necessity for loop D contacts normally required by

CD4bs antibodies. Additionally, the portion of 1-18’s CDRL3

that contacts loop D utilizes a glycine-rich 92GGT94 motif rather

than the 92SST94 motif in 8ANC131. This could accommodate

mutations in loop D (N279K, N280Y) through increased flexibility.

Finally, the 7-Å shift in CDRL2 location between 1-18 and

8ANC131 could allow greater accommodation of a glycan at

N279gp120 in two HIV-1YU2 variants (A281T and T278I/A281T).

Mutations in the b23 and b24 strands surrounding the V5 loop

(gp120 residues 451-471) were associated with viral resistance

against 8ANC131 but were tolerated by 1-18 (Figure 4). V5 loop

residue D457gp120 interacts with 1-18 R64HC, a somatic mutation

from the VH1-46 germline that is present in 1-18 but not in

8ANC131. We hypothesize that the R64HC-D457gp120 salt bridge

is a crucial interaction between 1-18 and gp120 that potentially al-

lows it to toleratecommon routesofEnvescapewithin theV5 loop.

We conclude that 1-18 maintains full activity against viruses

carrying mutations associated with viral resistance against other

CD4bs bNAbs in vitro.
gp120. Hydrogen bonds and electrostatic contacts are shown as dotted lines.

by CDRH1 is indicated in parentheses (West et al., 2013). * denotes the con-

CDRH1.

econdary (gp1202) protomers. Env trimer structures are SOSIP.664 versions of
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Figure 4. 1-18 Overcomes Typical bNAb Escape Mutations In Vitro

The top row shows bNAb IC50 values against the YU2 wild-type pseudovirus. The panels show the change in bNAb sensitivity (fold change of IC50) for YU2

pseudovirus mutants compared with the wild type.
Mutational Antigenic Profiling of 1-18 Reveals
Restricted HIV-1 Escape
To identify potential pathways of viral escape from 1-18, we used

mutational antigenic profiling with libraries of HIV-1BG505 variants

containing all single amino acid substitutions within the ecto-

and transmembrane domains of Env (Figure S5; Dingens et al.,

2017; Haddox et al., 2018). In this assay, the effects of Env mu-

tations on antibody resistance are quantitatively determined by

deep sequencing of cells that become infected in the presence

versus the absence of an antibody.

1-18 only selected escape mutants at a small number of resi-

dues, all of which were outside of the canonical CD4bs. In

contrast to 3BNC117 and VRC01 (Dingens et al., 2019), we

observed no statistically significant escape from 1-18 in loop D

and the CD4 binding loop (Figures 5A–5C and S5). Rather,
478 Cell 180, 471–489, February 6, 2020
1-18-mediated selection was localized to the V3 loop and

the stem of the V1/V2 loop of gp120 (Figure 5C). Among the

four sites of significant escape, three residues (K207gp120,

R304gp120, and Y318gp120) interact with the CDRH1 of 1-18 (Fig-

ure 5C). The fourth residue, C119gp120, generally forms a disul-

fide bond with C205gp120 at the stem of the V1/V2 loop. Thus,

mutations at residue C119gp120 may reduce 1-18 accessibility

to the highly conserved K207gp120 by disordering the V1/V2

loop structure (Leonard et al., 1990; van Anken et al., 2008).

Mutational antigenic profiling allows identification of the stron-

gest escape mutations for each antibody (Figures 5A–5C and

S5E). Importantly, although VRC01 escape mutations were

associated with a 3- to more than 175-fold increase in the anti-

body IC50 values for HIV-1BG505 pseudovirus variants (Dingens

et al., 2019), the effects weremuch less pronounced for potential
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1-18 escape mutants (Figure 5D). When we evaluated

HIV-1BG505 pseudoviruses carrying single mutations at the six

residues with the highest level of 1-18-mediated selection, the

sensitivity to 1-18 was reduced by less than 2.3-fold for 5 of

the 6 tested viruses (Figure 5D). The sixth virus, carrying an

A316E mutation, showed a 3.2-fold decrease in sensitivity (IC50

increased to 0.098 mg/mL) (Figure 5D). Therefore, all tested po-

tential escape variants remained highly 1-18-sensitive when

evaluated as pseudoviruses. To determine the ease of viral

escape, we compared the effects of the 40 strongest mutations

from antigenic profiling of 1-18 with those of VRC01, 3BNC117,

10-1074, or the combination of 3BNC117 and 10-1074 (Dingens

et al., 2019). The levels of escape observed for 1-18 were lower

than those for the single bNAbs and similar to the combination of

3BNC117 and 10-1074 (Figure 5E).

Overall, mutational antigenic profiling of 1-18 revealed a

strong limitation of HIV-1BG505 escape via single amino acid mu-

tations, with no evidence of selection at the canonical CD4bs

that is critical for resistance against VRC01-class bNAbs.

Full Suppression of Viremia by 1-18Monotherapy In Vivo

To determine the antiviral activity of 1-18 in vivo, we used

HIV-1YU2-infected humanized mice that can maintain stable

viremia with a rate of HIV-1 diversification similar to what is

observed in humans (Gruell and Klein, 2017; Ince et al., 2010;

Klein et al., 2012; Zhang et al., 2002; Figure S6A).

Following a 1-mg loading dose of antibody administered sub-

cutaneously (s.c.), we treated HIV-1YU2-infected mice (n = 6–10

per group) twice a week with s.c. injections of 0.5 mg per bNAb

for 4–8 weeks (Figure 6A). Treatment with 3BNC117, VRC01, or

the combination of both bNAbs resulted in mean viral load re-

ductions of 0.5, 0.5, and 0.7 log10 copies/mL, respectively.

However, these effects were only transient, and viral rebound

occurred within the first 2 weeks in most animals, indicating

rapid viral escape (Figure 6A). Indeed, when plasma single-

genome sequencing (SGS) (Salazar-Gonzalez et al., 2008)

was performed at week 4 after the start of treatment, 79 of

82 isolated viruses from 16 mice showed mutations in the

VRC01 and 3BNC117 target sites in loop D and/or the b23/

V5 loop regions of gp120 (Figures 6B and 7A; Tables

S7A–S7C).

In contrast to the transient effects of 3BNC117 and VRC01,

monotherapy of HIV-1YU2-infected humanizedmicewith 1-18 re-

sulted in sustained viral suppression over a period of 8 weeks in

all treated animals (average drop of 1.7 log10 copies/mL; Fig-
Figure 5. Restricted Pathways of Escape from 1-18 Identified by Muta

(A) Line plots indicate the HIV-1BG505 library excess fraction surviving antibody neu

than 1-18 in all panels are from Dingens et al. (2019). Regions in gray are detaile

(B) HIV-1BG505 escape profiles, with letter heights indicating the excess fraction su

1-18 (cryo-EM). Asterisks indicate residues with statistically significant antibody

(C) The BG505SOSIP.664 trimer, colored according to the maximum excess fractio

defined contacts are shown as spheres, and the CDRH1 is highlighted by the

indicated on the right.

(D) The top row indicates IC50 of 1-18 against the BG505T332N pseudovirus, and

mutations in the six residues showing the highest excess fraction surviving 1-18

(E) Excess fraction surviving for the 40mutations with the largest effect sizes for ea

respective amino acid mutation.

See also Figure S5.
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ure 6A). Moreover, in all but one mouse, viremia dropped to

levels below the level of quantitation (384 copies/mL) by day

35. From the one mouse (1069) that had quantifiable levels of

viremia but was suppressed (drop of 1.9 log10 copies/mL), we

analyzed HIV-1 env sequences at week 4 (Figures 6A and 6B).

We detected no recurrent mutations at contact residues of

1-18 or typical CD4bs bNAbs, and pseudoviruses derived from

these sequences remained sensitive to 1-18 (Figure 6B; Table

S7D). These results were confirmed in an independent repeat

experiment for 1-18 as well as for 1-55, another member of clone

4.1 (Figure S6B). Although five of six 1-18-treated mice in this

experiment were fully suppressed, one mouse (1730) continued

to show high HIV-1 RNA copy numbers (Figure S6B). However,

all env sequences obtained from this mouse carried large V4

loop deletions as well as early stop codons (Figure S6C). Thus,

despite detectable rebound of viremia in 1 of 18 mice treated

with 1-18 or 1-55, no functional escape viruses were observed

by SGS and evaluation of pseudoviruses.

Effective clinical application of bNAbs depends on favorable

safety and pharmacokinetic profiles. Following a single injection

of 1-18 or 1-55, their decline in serum of immunodeficient mice

was slower compared with VRC01-class bNAbs and more

similar to 10-1074, which has a longer half-life than 3BNC117

and VRC01 in humans (Bar-On et al., 2018; Caskey et al.,

2015, 2017; Ledgerwood et al., 2015; Lynch et al., 2015a; Men-

doza et al., 2018; Figure S6D). In addition, whereas some bNAbs

demonstrate binding to self-antigens (Haynes et al., 2005), we

found no indication for autoreactivity of 1-18 or 1-55 when tested

against HEp-2 cells (Figure S6E).

In summary, we conclude that 1-18 has exceptional antiviral

in vivo activity against HIV-1YU2. This activity is superior to the

CD4bs antibodies 3BNC117 and VRC01, which are currently be-

ing evaluated in clinical trials. Importantly, single bNAb therapy

with 1-18 is sufficient to effectively prevent development of viral

escape variants that rapidly emerge during HIV-1YU2 monother-

apy with other bNAbs (Horwitz et al., 2013; Klein et al., 2012).

1-18 Overcomes VRC01-Class Escape Mutations In Vivo

To confirm that mutations occurring during 3BNC117 and/or

VRC01 therapy conferred antibody resistance, we generated

30 pseudoviruses derived from day 28 env sequences of 11

VRC01-class-treated mice. We found 23 viral variants that

were fully resistant to the administered antibodies (IC50 >

25 mg/mL) or showed increased VRC01-class resistance (>5-

fold increase in IC50 values). Notably, however, all of these
tional Antigenic Profiling

tralization, averaged across all mutations at each site. Data for antibodies other

d in (B).

rviving for each mutation. Circles indicate HIV-1BG505 residues interacting with

escape.

n surviving 1-18 at each site, with 1-18 shown in blue. In the inset, structurally

rectangle. Interactions of the CDRH1 with the adjacent gp120 protomer are

the panels show fold change in IC50 for BG505T332N pseudovirus variants with

neutralization. Circles indicate interactions as in (B).

ch antibody. Circles indicate the number of nucleotide changes required for the
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Figure 6. Full Suppression of Viremia by 1-18 Monotherapy In Vivo

(A) HIV-1 RNA plasma copies (top) and log10 viral load changes compared with baseline (day -1) (bottom). Dashed lines in the top panels indicate the quantitation

limit of accuracy (384 copies/mL), and data points in white indicate viral loads of less than 384 copies/mL. Red lines show average log10 viral load changes

compared with baseline.

(B) Env sequences obtained from day 28 plasma RNA of indicated mice by SGS. Letters indicate amino acid mutations compared with wild-type YU2 shown on

top. Residues are numbered according to HIV-1HXB2.

See also Figure S6 and Table S7.
pseudoviruses remained sensitive to 1-18 in vitro (Figure 7B;

Table S7).

To determine whether 1-18 can overcome escape from

VRC01-class bNAbs in vivo, we added bNAb 1-18 therapy

(1-mg loading dose s.c. followed by 0.5 mg s.c. twice weekly)

to 3BNC117- and/or VRC01-pretreated animals while continuing
3BNC117 and/or VRC01 administrations (Figure 7C). Despite

circulating VRC01-class-resistant viral variants, 1-18 effectively

reduced viremia and maintained viral suppression in 17 of 18

mice (Figure 7C). Following interruption of bNAb therapy, viral

rebound occurred in all fully suppressed mice when Env-

reactive antibody plasma concentrations declined to a median
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of 0.1 mg/mL (Figure 7D). To determine whether declining 1-18

levels resulted in selection of 1-18-resistant escape variants,

we performed plasma SGS of rebound viruses 8 weeks after

treatment interruption (day 114) (Figure 7E). Although we found

novel mutations compared with day 0 and day 28 in 39 of 60 se-

quences from 12 mice, there was no recurrent pattern of muta-

tions that developed after 1-18 therapy (Figure 7E). Indeed, all

20 sequences tested as pseudoviruses were demonstrated to

be fully sensitive to 1-18 (Figure 7E; Table S7).

We conclude that bNAb 1-18 effectively overcomes VRC01-

class resistance in vivo and maintains viral suppression without

the development of 1-18-resistant HIV-1YU2 variants.

DISCUSSION

Implementation of HIV-1-neutralizing antibodies for clinical prac-

tice requires antibodies with specific characteristics. These

include safety, a favorable pharmacokinetic profile, and broad

and highly potent neutralizing activity to effectively target the

remarkable diversity of HIV-1 (Caskey et al., 2019). In addition,

as for any drug against HIV-1, viral escape represents one of

the biggest challenges for clinical application. This became

evident when (1) single bNAbs were used for therapy and

HIV-1 resistance developed within a few weeks (Bar et al.,

2016; Caskey et al., 2015, 2017; Klein et al., 2012; Lynch et al.,

2015a; Scheid et al., 2016), and (2) antibody combinations re-

sulted in improved viral control by preventing early development

of resistance (Bar-On et al., 2018; Klein et al., 2012; Mendoza

et al., 2018). Therefore, restriction of HIV-1 escapewill be an anti-

body-dependent feature of utmost importance for successful

bNAb applications.

VRC01-class antibodies targeting the functionally critical

CD4bs have broad and potent neutralizing activity but fail to pre-

vent viral escape in vivo (Bar et al., 2016; Caskey et al., 2015;

Horwitz et al., 2013; Klein et al., 2012; Lynch et al., 2015a; Scheid

et al., 2016). Through a combination of functional in vitro map-

ping and in vivo therapy of HIV-1-infected humanized mice, we

demonstrated that the VH1-46-derived CD4bs bNAb 1-18 effec-

tively restricts development of HIV-1 resistance. Contrasting

other CD4bs bNAbs, we did not identify single amino acid muta-

tions resulting in 1-18 resistance in two viral strains of different

clades (BG505, clade A; YU2, clade B). Most importantly, in

the setting of viral replication and diversification in HIV-1YU2-in-
Figure 7. bNAb 1-18 Overcomes VRC01-Class Escape In Vivo

(A) Pie charts indicate the number of plasma env sequences obtained from HIV-1Y
3BNC117+VRC01. Icons are as inFigure 6A.Outer bars indicatemutations in loopD

(B) IC50s of 1-18 SGS-derived day 28 env sequence pseudoviruses with mutatio

(C) Addition of 1-18 treatment on day 28 to HIV-1YU2-infected humanizedmice tha

(Figure 6A). The previous treatment regimen was continued. HIV-1 RNA plasma co

(day 28) at the bottom. Dashed lines in the top panels indicate the quantitation lim

less than 384 copies/mL. Red lines show average log10 viral load changes comp

(D) HIV-1 RNA plasma copies (left y axis) and plasma bNAb levels determined by B

as indicated in (C). Only mice that could be followed for 58 days are included. Dash

White circles show viral loads of less than 384 copies/mL, and gray circles indic

(E) Plasma SGS-derived env sequences obtained on day 114. Black bars indicate

bars indicate mutations only found on day 114 within individual mice. Number

corresponding pseudoviruses (right).

See also Table S7.
fected humanized mice, 1-18 monotherapy resulted in effective

and sustained viral suppression. Notably, the in vivo activity of

1-18 was not affected by VRC01-class-resistant viral variants.

Thus, despite mutations in up to two sites associated with

escape from CD4bs antibodies, 1-18 effectively suppressed

viremia and restricted the development of additional escape

mutations.

In our cryo-EM analysis of a 1-18-BG505 complex, the high-

est-resolution HIV-1 Env trimer structure obtained to date

(2.5 Å), the details of 1-18 recognition of Env were determined.

The structure demonstrated that 1-18 combines favorable fea-

tures found in potent VH1-2 bNAbs that likely contribute to its

exceptional potency and breadth. These characteristics include

(1) an aromatic residue that mimics residue Phe43 of CD4 to

target the ‘Phe43gp120 pocket’, as seen in bNAb N6 (Huang

et al., 2016a); (2) contacts with the adjacent gp120 protomer,

as seen for bNAb 3BNC117 (Lee et al., 2017; Lyumkis et al.,

2013) but with increased buried surface area (via its six-residue

insertion in CDRH1); and (3) a larger buried surface area on

gp120 than other VH1-2 bNAbs: 1,530 Å2 compared with

1,260 Å2 (VRC01) and 1,290 Å2 (3BNC117). Finally, 1-18’s unique

mode of binding enables it to make additional contacts with

conserved residues on gp120 not found in other CD4bs bNAbs,

allowing 1-18 to rely less on classical CD4bs bNAb contacts and

making viral escape more difficult. These characteristics may

explain 1-18’s exceptional potency, breadth, and resistance to

viral escape. Notably, functional antigenic mapping demon-

strated that 1-18-mediated selection was focused on contact

residues within the CDRH1. Moreover, the lack of the CDRH1

insertion in antibodies 1-18Dins and 2-12 was associated with

reduced neutralizing activity compared with 1-18.

Despite the remarkable neutralization breadth of 1-18

(covering 256 of 271 evaluated primary viruses and pseudovi-

ruses), a small number of viruses was found to be 1-18 resistant.

However, sequence analysis (West et al., 2013) did not identify

single residues that were associated with 1-18 resistance. In

addition, we analyzed viruses from individual IDC561, from

whom 1-18 was identified. Although viremia was controlled in

the absence of ART for more than 15 years, it was detectable

by the time of 1-18 isolation. Indeed, viruses obtained at this

time showed resistance against 1-18 and clonal members (Fig-

ure S7). Remarkably, however, their CD4bs sequences pre-

sented with highly infrequent amino acid residues (Figure S7).
U2-infected humanized mice on day 28 of treatment with 3BNC117, VRC01, or

and/or theb23strand/V5 loop. *+G471Emutation. **+DT462&DN463mutations.

ns as indicated in (A).

t showed viral rebound during 3BNC117, VRC01, or 3BNC117+VRC01 therapy

pies are shown at the top and log10 viral load changes compared with baseline

it of accuracy (384 copies/mL), and data points in white indicate viral loads of

ared with baseline (day 28).

G505SOSIP.664-ELISA (right y axis) after interruption of bNAb therapy on day 56

ed lines indicate the HIV-1 RNA quantitation limit of accuracy (384 copies/mL).

ate antibody levels of less than 1 mg/mL.

amino acid mutations compared with the YU2 wild-type found previously; red

ing is according to HIV-1YU2. Boxes indicate IC50 values of 1-18 against the
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For example, among 2,351 clade B env sequences in the Los

Alamos HIV Sequence Database, only 0.8% carried a glycine

at the loop D residue 281gp120, and not a single virus had a glu-

tamic acid at position 474gp120 (Figure S7). Similarly, uncommon

amino acids were found in other loop D (282gp120) and V5 loop

(471gp120) positions as well as at residue 208gp120, which neigh-

bors K207gp120 that strongly interacts with the CDRH1 of 1-18

(Figure S7). Taking the results from profiling escape pathways

in vitro together with the lack of viral escape in humanizedmouse

experiments, the occurrence of multiple uncommon amino acid

residues in 1-18-resistant viruses suggests a restricted escape

pathway from 1-18 that may require accumulation of multiple

rare mutations.

Current strategies to combine bNAbs are based on the use

of antibodies targeting non-overlapping epitopes (Bar-On

et al., 2018; Barouch et al., 2013; Huang et al., 2016b; Klein

et al., 2012; Mendoza et al., 2018; Shingai et al., 2013; Xu

et al., 2017). To this end, the combination of 1-18with bNAbs tar-

geting other epitopes (e.g., the MPER antibody DH511.2_K3,

which neutralizes 100% of tested clade C viruses; Williams

et al., 2017) may be a promising option. Because themost potent

knownCD4bs bNAbs are of the VRC01-class, synergistic effects

by combinations of these antibodies are not expected. However,

given their different binding, neutralization, and escape patterns,

a combination of 1-18 with VRC01-class CD4bs bNAbs may be

highly beneficial. The capacity of 1-18 to overcome VRC01-class

escape mutations in vivo as well as a calculated breadth of more

than 99% when 1-18 is combined with VRC01-class bNAbs

(e.g., N6 or 3BNC117) offers new possibilities of bNAb combina-

tions, such as a dual anti-CD4bs therapy. Finally, CD4bs bNAbs

have been demonstrated to induce escape variants with

reduced viral fitness (Lynch et al., 2015b; Otsuka et al., 2018;

Sather et al., 2012). Applying double CD4bs-targeting pressure

may force the virus to more extensively mutate this functionally

critical epitope and, therefore, result in impaired viral variants

and prolonged viral control.

In summary, by combining outstanding neutralizing activity

and a high barrier for viral escape, 1-18 provides a new option

for highly effective treatment and prevention of HIV-1 infection.
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HiTrap MabSelect Protein A column GE Life Sciences Cat#8408255

ABTS solution Thermo Fisher Cat#002024
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Platinum Taq Green Hot Start DNA Polymerase Thermo Fisher Cat#11966034

KAPA HiFI HotStart ReadyMix (2X) Roche Cat#KK2602
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Phytohemagglutinin PHA-M Sigma-Aldrich Cat#L8902
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Fetal bovine serum (FBS) Sigma-Aldrich Cat#F9665
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Hygromycin B Thermo Fisher Cat#10687-010

Bright-Glo Luciferase Assay System Promega Cat#E2650
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YU2 Env expression plasmid M.S. Seaman, BIDMC N/A

pBG505.T332N Env expression plasmid Rogier W. Sanders,
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N/A
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Ye et al., 2013
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EZ Link Sulfo NHS Biotin and Labeling Kit Thermo Fisher Cat#21326

QuikChange II XL Site-Directed Mutagenesis Kit Agilent Cat#200521

Q5 Site-Directed Mutagenesis Kit New England Biolabs Cat#E0554S

Nextera DNA Library Prep Kit Illumina Cat#FC-121-1031

Nextera Index Kit Illumina Cat#FC-121-1012
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MinElute Virus Spin Kit QIAGEN Cat#57704

CD4+ T Cell Isolation Kit, human Miltenyi Biotec Cat#130-096-533

CD8 MicroBeads, human Miltenyi Biotec Cat#130-045-201

CD34 MicroBeads, human Miltenyi Biotec Cat#130-046-703

CD19 MicroBeads, human Miltenyi Biotec Cat#130-050-301

Superdex-200 Increase 10/300 Column GE Life Sciences Cat#28990944

HiLoad Superdex-200 16/60 Column GE Life Sciences Cat#28989335

IGHV 1-46*1 sequence GenBank X92343.1
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Florian

Klein (florian.klein@uk-koeln.de). Nucleotide sequences of all generated antibodies were deposited at GenBank, and expression

plasmids for 1-18, 1-55, 2-12, and clonal members will be shared upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Blood and leukapheresis samples were obtained under protocols approved by the Institutional Review Board of the University of Co-

logne (protocols 13-364 and 16-054) and the local IRBs. All participants provided written informed consent. Participants of the

neutralization screening cohort are recruited at hospitals and/or private practices in Germany (Cologne, Essen, and Frankfurt),

Cameroon (Yaoundé), Nepal (Kathmandu), and Tanzania (Mbeya). At the time of leukapheresis, IDC561 was a 48-year-old male

who was diagnosed with HIV-1 infection 21 years earlier. He was recruited at the University Hospital Cologne. PBMCs for bulk viral

outgrowth cultures were obtained from individuals recruited in Germany (Cologne).

Mouse Models
NOD.Cg-Rag1tm1momIl2rgtm1Wjl/SzJ (NRG) mice were purchased at The Jackson Laboratory and bred and maintained at the Decen-

tralized Animal Husbandry Network (Dezentrales Tierhaltungsnetzwerk) of the University of Cologne under specific pathogen-free

(SPF) conditions with 12-hour light/dark cycles. For breeding purposes,micewere providedwith ssniff 1124 breeding feed; for exper-

imental purposes, mice were provided with ssniff 1543 maintenance feed. Humanized mice were generated as previously described

with modifications (Klein et al., 2012). In brief, human CD34+ hematopoietic stem cells were isolated from cord blood and perfused

placental tissues using CD34 microbeads (Miltenyi Biotec). Collection of cord blood and placental tissues was conducted under a

protocol approved by the Institutional Review Board of the University of Cologne (16-110), and all donors provided written informed

consent. NRG mice were sublethally irradiated within 5 days of birth and intrahepatically injected with purified human CD34+ stem

cells 4 to 6 hours later. Success of humanization was determined approximately 12 weeks later by FACS analysis of blood for human

PBMCs. All mouse experiments were authorized by the State Agency for Nature, Environmental Protection, and Consumer Protec-

tion North Rhine-Westphalia (LANUV).

Cell Lines
HEK293T cells (American Type Culture Collection) were maintained at 37�C and 5% CO2 in Dulbecco’s Modified Eagle Medium

(DMEM, Thermo Fisher) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich), 1 mM sodium pyruvate, 2 mM L-gluta-

mine, and 1x antibiotic-antimycotic (all from Thermo Fisher). TZM-bl cells (Platt et al., 1998) were maintained at 37�C in 5% CO2

in DMEM supplemented with 10%FBS, 1mM sodium pyruvate, 2 mM L-glutamine, 50 mg/ml gentamicin (Merck), and 25mMHEPES

(Millipore). 293-6E cells (National Research Council of Canada) were maintained at 37�C and 6% CO2 in FreeStyle Expression Me-

dium (Thermo Fisher) and kept under constant shaking at 90-120 rpm. Expi293 cells (Thermo Fisher) weremaintained at 37�Cand 8%

CO2 in Expi293 Expressionmedium (Thermo Fisher) and kept under constant shaking at 130 rpm. CHO cells weremaintained at 37�C
and 5% CO2 in ProCHO-5 media (Lonza) supplemented with 0.1 M HEPES, 1x GlutaMAX, 1x MEM NEAA, 1 mM sodium pyruvate,

and 0.5 mg/ml hygromycin B (all from Thermo Fisher). SupT1-R5 cells (Didigu et al., 2014) were maintained at 37�C and 5% CO2 in

RPMI 1640 supplemented with 300 mg/l L-glutamine (Thermo Fisher), 10% FBS (Sigma-Aldrich), and 1% penicillin/streptomycin

(Thermo Fisher). The sex of HEK293T, TZM-bl, 293-6E, Expi293, and CHO cell lines is female, and the sex of SupT1-R5 cells is

male. Cell lines were not specifically authenticated.
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METHOD DETAILS

Clinical Samples
Peripheral bloodmononuclear cells (PBMCs) were isolated by density-gradient centrifugation and stored at�150�C in 90% FBS and

10% DMSO (Sigma-Aldrich) until further use. Plasma and serum samples were stored at �80�C until further use.

Serum and Plasma IgG Isolation
Serum and plasma samples were heat-inactivated (56�C for 40 min) and incubated with Protein G Sepharose (GE Life Sciences)

overnight at 4�C. IgGs were eluted from Protein G in chromatography columns using 0.1 M glycine (pH = 3.0) and buffered in 1 M

Tris (pH = 8.0). Subsequently, buffer exchange to PBS and antibody concentration was performed using Amicon 30 kDa spin mem-

branes (Millipore). Purified IgGs were stored at 4�C until further use.

Single Cell Sort
B cells were isolated from PBMCs using the Pan B Cell Isolation Kit, B Cell Isolation Kit II, or IgG+Memory B Cell Isolation Kit (Miltenyi

Biotec). Isolated cells were labeled with anti-human CD19-AF700 (BD), anti-human IgG-APC (BD), DAPI (Thermo Fisher), and the

respective HIV-1 Env bait for 30 minutes on ice. BG505SOSIP.664-GFP or biotinylated YU2gp140 that was labeled with Streptavidin-

PE (BD) were used as HIV-1 Env baits. Env-reactive CD19+IgG+DAPI- single cells were sorted into 96-well plates containing 4 ml

of lysis buffer (0.5x PBS, 10mMDTT (Thermo Fisher), 2 U/ml RNasin (Promega), and 1 U/ml RNaseOUT (Thermo Fisher)) per well using

a BD FACSAria Fusion. Plates were stored at �80�C until further use.

Single Cell cDNA Synthesis and PCR
Sorted cells were incubated with 0.75 ml Random Hexamer Primer (Thermo Fisher), 0.5 ml NP-40 (Thermo Fisher), and 5.6 ml RNase-

free H2O for 1 min at 65�C. Subsequently, 3 ml of 5x RT Buffer (Thermo Fisher), 0.5 ml dNTPs mix (25 mM, Thermo Fisher), 1 ml DTT

(100 mM, Sigma Aldrich), 2.05 ml of RNase-free H2O, 0.1 ml RNasin (40 U/ml, Promega), 0.1 ml RNaseOUT (40 U/ml, Promega), and

0.25 ml Superscript IV (200 U/ml, Thermo Fisher) were added and samples were incubated at 42�C for 10 min, 25�C for 10 min,

50�C for 10 min, and 94�C for 5 min. Antibody sequences for single cell analysis were amplified by semi-nested PCRs using Platinum

Taq DNA Polymerase or Platinum Taq Green Hot Start DNA Polymerase (Thermo Fisher) and previously described primers, including

the novel OPT5/oPR-primer set optimized for detection of highly mutated IgG sequences (Kreer et al., 2019), using the OPT5/oPR-

primer mix and CG_RT 50-AGGTGTGCACGCCGCTGGTC (Ozawa et al., 2006) for the 1st PCR, and the OPT5/oPR-primer mix and

IgG_Internal RT 50-GTTCGGGGAAGTAGTCCTTGAC (Tiller et al., 2008) for the 2nd PCR. First-round PCR was run at 94�C for

2min; followed by 50 cycles of 94�C for 30 s, 55�C for 30 s, and 72�C for 55 s. Second-round PCRwas run at 94�C for 2min; followed

by 50 cycles of 94�C for 30 s, 55�C for 30 s, and 72�C for 45 s. Second-round PCR products were sequenced by Sanger sequencing

and used for further sequence analyses.

Antibody Sequence Analysis
Sequences with amean Phred scoreR 28 and aminimal length of 240 nucleotides were annotatedwith IgBLAST (Ye et al., 2013) and

trimmed from framework region (FWR) 1 of the variable region to the end of the J gene. Base calls with a Phred score < 16 were

masked and sequences with > 15 masked nucleotides, frameshifts, or stop codons were excluded from further analyses. To analyze

the sequences for potential clonalities, all productive heavy chain sequences were grouped by identical V genes and the pairwise

Levenshtein distance of their CDRH3s was determined. Individual sequences were grouped into clones when they shared the

same V gene and had aminimal CDRH3 identity of 75%. After 10 roundswith a randomized input of sequences, the result that yielded

the lowest number of unassigned (non-clonal) sequences was selected for further analyses. All clones were re-validated manually by

the investigators in order to identify shared mutations. Sequences that were initially assigned to different clones but shared the same

VDJ genes and amino acid and/or silent nucleotide mutations were subsequently grouped into subclones. Nucleotide sequence

identity to germline was calculated using IgBLAST. The maximum-likelihood phylogenetic tree in Figure 1D was generated using

nucleotide sequences of heavy-chain V genes (FWRH1-FWRH3) of subclones 4.1, 4.2, 4.3, and 4.4 (n = 86 sequences) and of the

IGHV1-46*01 Homo sapiens allele (GenBank X92343.1). All sequences were aligned using ClustalW (Geneious R10; cost matrix:

IUB; gap open cost: 15; gap extend cost: 6.66) and the maximum-likelihood phylogenetic tree was calculated using PhyML with

1,000 bootstrap replicates (Guindon et al., 2010) (substitution model: general time reversible [GTR]; Geneious R10). The best-scoring

tree was then rooted to IGHV1-46*01.

Antibody Cloning and Production
For cloning of single cell-derived antibodies, the 1st PCR product of single cell-PCRwas used as template and amplified usingQ5Hot

Start High Fidelity DNA Polymerase (New England Biolabs) and specific forward- and reverse primers that resembled the respective

nucleotide sequence of the V- and J-regions (Tiller et al., 2008) with expression vector overhangs for subsequent sequence and liga-

tion independent cloning (SLIC). PCR was run at 98�C for 30 s; 35 cycles of 98�C for 10 s, 65�C for 30 s, and 72�C for 30 s; and 72�C
for 2 min. 561_01_18_DINS was generated by cloning a synthesized (Eurofins Genomics) heavy-chain variable region DNA fragment

of 1-18 lacking the CDRH1 insertion (28PYTDDD33). PCR products or synthesized DNA fragments were cloned into human antibody
Cell 180, 471–489.e1–e11, February 6, 2020 e6



expression vectors (IgG1, kappa, or lambda chain) by SLIC assembly as previously described (von Boehmer et al., 2016). Antibodies

were produced in 293-6E cells (National Research Council Canada) by transfection using 25 kDa branched polyethylenimine (PEI)

(Sigma-Aldrich). Cells were maintained at 37�C and 6% CO2 in FreeStyle 293 Expression Medium (Thermo Fisher) and 0.2% peni-

cillin/streptomycin (Thermo Fisher). 5-7 days after transfection, culture supernatants were harvested, filtered, and incubated with

Protein G Sepharose (GE Life Sciences) overnight at 4�C. Antibodies were eluted from chromatography columns using 0.1 M glycine

(pH = 3.0) and buffered in 1 M Tris (pH = 8.0). Subsequent buffer exchange to PBS and antibody concentration was performed using

Amicon 30 kDa spin membranes (Millipore). Antibodies were filter-sterilized using Ultrafree-CL or Ultrafree-MC 0.22 mmmembranes

(Millipore) and stored at 4�C.

Pseudovirus Production
Pseudoviruses for the 12-strain global screening panel and f61 finger printing panel were produced in HEK293T cells by co-trans-

fection with pSG3DEnv plasmid as described previously (Doria-Rose et al., 2017; Hraber et al., 2017; Sarzotti-Kelsoe et al., 2014;

Seaman et al., 2010). Single genome sequencing (SGS)-derived pseudoviruses were generated by co-transfection of SGS-derived

CMV promoter-Env products and pSG3DEnv as previously described (Kirchherr et al., 2007). For sequences obtained from mice,

env/rev cassettes were amplified from the first-round SGS PCR product using primers env1Atopo 50-CACCGGCTTAGGCATCTCC

TATGGCAGGAAGAA and envB3in 50-CACCTTAGGCATCTCCTATGGCAGGAAGAAG. Pseudoviruses were only produced from

sequences containing no ambiguities. For patient-derived sequences, env/rev cassettes were amplified from the first-round SGS

product using primers env1Atopo and Rev19 50-ACTTTTTGACCACTTGCCACCCAT. CMV promoter and env/rev overlap PCR

was performed using primers CMVenv 50-AGTAATCAATTACGGGGTCATTAGTTCAT and Rev19. Mouse-derived sequences were

amplified using the Platinum Taq High Fidelity Polymerase (Thermo Fisher), patient-derived sequences using the Phusion Hot Start

Flex Polymerase (New England Biolabs).

Neutralization Assays
Neutralization assays were performed as previously described (Sarzotti-Kelsoe et al., 2014). In brief, pseudoviruses and dilution se-

ries of antibodies or purified IgG were mixed and co-incubated at 37�C for 1 h, followed by the addition of TZM-bl cells at a final

concentration of 104 cells per well on a 96-well plate in 250 ml medium supplemented with DEAE-dextran at a final concentration

of 10 mg/ml. Following a 2-day incubation at 37�C and 5% CO2, 150 ml of culture supernatant was removed and 100 ml luciferase

assay reagent was added. After a 2 min incubation, 150 ml of lysate was transferred to a black microtiter assay plate and lumines-

cence was determined using a luminometer. After subtracting background relative luminescence units (RLUs) of non-infected

TZM-bl cells, 50%and 80% inhibitory concentrations (IC50s and IC80s) were determined as the antibody/IgG concentrations resulting

in a 50%/80%RLU reduction compared to untreated virus control wells. Murine leukemia virus (MuLV)-pseudotyped virus was used

to determine unspecific activity. Initial screening of isolated antibody clonal members was performed using a single dilution series per

antibody. Antibodies or purified serum IgG in all further neutralization assays were tested in duplicates. For screening assays, assays

against culture-derived viruses, assays of pseudovirus mutant variants, and assays of IDC561-derived pseudoviruses, biolumines-

cence was determined after adding a luciferin/lysis-buffer (10 mM MgCl2, 0.3 mM ATP, 0.5 mM Coenzyme A, 17 mM IGEPAL

(all Sigma-Aldrich), and 1mMD-Luciferin (GoldBio) in Tris-HCL). For assays against the 119-pseudovirus panel, the 100-pseudovirus

clade C panel, and the f61 panel, bioluminescence was determined after adding Bright-Glo reagent (Promega).

Neutralization Fingerprinting Panel-Based Antibody Epitope Prediction
Computational epitope prediction of serum IgG neutralizing activity was conducted as previously described (Doria-Rose et al., 2017).

In brief, neutralizing serum IgG activity was determined against the 20 pseudoviruses included in the f61 fingerprinting panel by a

TZM-bl cell neutralization assay as described above. The determined IgG neutralization fingerprint is compared to the fingerprint

of 10 bNAbs picked as reference for their specific epitope, and the prevalence of these reference antibody epitope specificities is

computationally predicted and assigned a delineation score between 0 (low) and 1 (high).

HIV-1 Envelope Protein Production and Purification
YU2gp120, YU2gp140 (foldon trimer), and BaLgp140 (foldon trimer) (Pietzsch et al., 2010) were produced in 293-6E cells after transfection

with polyethylenimine. Proteins were purified from culture supernatants using Ni-NTA Agarose beads (Macherey-Nagel) according to

the manufacturer’s instructions and stored at �80�C until further use after buffer exchange to PBS. eOD-GT8 was produced as pre-

viously described (Dosenovic et al., 2019). 93THO527 (Anderson et al., 2000) was produced in 293-6E cells in the presence of kifu-

nensine at a concentration of 1 mg/l.

HIV-1 Env ELISAs
High-binding ELISA plates (Corning) were coatedwith HIV-1 Env antigens at 2 mg/ml in PBS overnight at 4�C.Wells were blockedwith

3%BSA (Sigma Aldrich) in PBS for 60 min at 37�C. HIV-1 antibodies were diluted in PBS and incubated for 60 min at RT, followed by

horseradish peroxidase (HRP)-conjugated anti-human IgG (Jackson ImmunoResearch) diluted 1:1,000 in 3% BSA in PBS for 60 min

at room temperature (RT). Absorbance was determined on a microplate reader (Tecan) after addition of ABTS solution (Thermo

Fisher). Plates were washed with 0.05% Tween 20 (Carl Roth) in PBS between each step.
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Competition ELISAs
Antibodies of interest were biotinylated using the EZ Link Sulfo NHS Biotin and Labeling Kit (Thermo Fisher) according to the man-

ufacturer’s instructions, followed by a buffer exchange to PBS using Amicon 10 kDa centrifugation filter membranes (Millipore). High-

binding ELISA plates (Corning) were coated with anti-6x His tag antibody (Abcam) at 2 mg/ml overnight at 4�C. Wells were blocked

with 3% BSA in PBS for 60 min at 37�C, and incubated with BG505SOSIP.664-His at 2 mg/ml in PBS for 60 min at 37�C. Competing

antibodies were incubated in a 1:3 dilution series starting at a concentration of 32 mg/ml in PBS for 60 min at RT. Biotinylated anti-

bodies of interest were diluted to 0.5 mg/ml in 3% BSA in PBS and incubated for 60 min at RT, followed by peroxidase-streptavidin

(Jackson ImmunoResearch) diluted 1:5,000 in 1%BSA/0.05%Tween 20 in PBS. Absorbance at 415 nmwas determined on a micro-

plate reader (Tecan) after addition of ABTS solution (Thermo Fisher). Plates were washed with 0.05% Tween 20 in PBS between

each step.

Generation of HIV-1YU2 and HIV-1BG505 Pseudovirus Mutants
Point mutations were introduced into HIV-1YU2 and HIV-1BG505 envelope expression plasmids using either the QuikChange II XL Site-

DirectedMutagenesis Kit (Agilent) or the Q5 Site-DirectedMutagenesis Kit (New England Biolabs). Pseudoviruses were produced as

described above.

Recombinant HIV-1 Production
Replication-competent recombinant HIV-1 (YU2 env in NL4-3 backbone (Zhang et al., 2002)) was produced by transfection of

HEK293T cells using FuGENE 6 Transfection Reagent (Promega). Harvested viral supernatants were stored at �80�C to �150�C.

HIV-1-Infected Humanized Mice and Viral Load Measurements
Humanized NRG mice were challenged with replication-competent HIV-1 intraperitoneally. HIV-1-infected mice were treated using

0.22 mm-filtered monoclonal antibodies diluted in PBS, starting 25–26 days after viral challenge. Antibodies were injected subcuta-

neously. Following a 1-mg loading dose per antibody, doses of 0.5 mg per antibody were injected every 3-4 days. Plasma RNA was

extracted from EDTA plasma samples using the MinElute Virus Mini Spin Kit (QIAGEN), including an on-column DNase I (QIAGEN)

digestion step. Viral loads were determined by quantitative real-time PCR using pol-specific primers 50-TAATGGCAGCAATTT

CACCA and 50-GAATGCCAAATTCCTGCTTGA, and 50-/56-FAM/CCCACCAACARGCRGCCTTAACTG/ZenDQ/ as probe, as

previously described (Horwitz et al., 2013). qPCR was performed on a LightCycler 480 II (Roche) using the Taqman RNA-to-Ct 1-

Step-Kit (Thermo Fisher). An HIV-1YU2 standard produced by infection of SupT1-R5 cells was included for every PCR run, and

HIV-1 copy number of the standard was determined using the quantitative cobas 6800 HIV-1 kit (Roche). The limit of accuracy of

the qPCRwas determined as 384 copies/ml. Log10 changes for viral loads < 384 copies/ml were calculated by assigning a copy num-

ber of 383 copies/ml.

Humanized Mouse Plasma RNA-Derived Single Genome Sequencing
Single genome sequencing has been described previously (Salazar-Gonzalez et al., 2008). Plasma RNA was extracted using the

MinElute Virus Spin Kit (QIAGEN), including a DNase I (QIAGEN) digestion step. cDNA was generated from plasma RNA using the

antisense primer YB383 50-TTTTTTTTTTTTTTTTTTTTTTTTRAAGCAC (Horwitz et al., 2017) and Superscript IV (Thermo Fisher) ac-

cording to the manufacturer’s protocol, followed by incubation with 0.25 U/ml RNase H (Thermo Fisher) at 37�C for 20 min. Env

cDNA was subsequently amplified by nested PCR at dilutions that yield < 30% positive PCR reactions so that > 80% of positive re-

actions would be amplified from a single virion (based on Poisson distribution). First-round PCRwas conducted using primers YB383

50-TTTTTTTTTTTTTTTTTTTTTTTTRAAGCAC and YB50 50-GGCTTAGGCATCTCCTATGGCAGGAAGAA, and run at 94�C for 2 min;

35 cycles of 94�C for 30 s, 55�C for 30 s, and 72�C for 4 min; and 72�C for 15 min. 1 mL of first-round PCR product was used as tem-

plate for the second-round PCR that was conducted using primers YB49 50-TAGAAAGAGCAGAAGACAGTGGCAATGA and YB52 50-
GGTGTGTAGTTCTGCCAATCAGGGAAGWAGCCTTGTG, and run at 94�C for 2 min; 45 cycles of 94�C for 30 s, 55�C for 30 s, and

72�C for 4min; and 72�C for 15min. PCRwas performed using the Platinum TaqGreen Hot Start DNA Polymerase (Thermo Fisher) or

Phusion Hot Start Flex DNA Polymerase (New England Biolabs).

Illumina Dye Sequencing of Humanized Mouse SGS-Derived env Amplicons
Libraries of purified PCR products were prepared for Illumina dye sequencing as described before with modifications (Kryazhimskiy

et al., 2014; Schoofs et al., 2016). In brief, PCR products were cleaved by tagmentation using the Nextera DNA Library Prep Kit

(Illumina). Indices (Nextera Index Kit, Illumina) were added by limited cycle PCR using the KAPA HiFi HotStart ReadyMix (Roche),

followed by adaptor addition (P1, 50-AATGATACGGCGACCACCGA; P2, 50-CAAGCAGAAGACGGCATACGA) by limited cycle

PCR using the KAPA HiFi HotStart ReadyMix. PCR products were purified using AMPure XP beads (Beckman Coulter), pooled,

and sequenced using the MiSeq 300-cycle Nano Kit v2 (Illumina) spiked with approximately 10% PhiX. Paired-end reads were

assembled as previously described (Gaebler et al., 2019). For further analyses, a consensus sequence was generated and nucleo-

tides with < 75% identity across reads were defined as ambiguities. Only full-length envelope sequences with high base call quality,

less than 10 ambiguities, and no early stop-codons (unless due to ambiguities) were analyzed. Otherwise acceptable sequences

showing ambiguities resulting in stop-codons or a frameshift were corrected manually.
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Human Plasma RNA-Derived Single Genome Sequencing
Plasma RNA was extracted using the MinElute Virus Spin Kit (QIAGEN), including a DNase I (QIAGEN) digestion step. cDNA was

generated using the antisense primer envB3out 50-TTGCTACTTGTGATTGCTCCATGT and SuperScript III Reverse Transcriptase

(Thermo Fisher), followed by an RNase H digest (Thermo Fisher). Env cDNA was subsequently amplified as described previously

with modifications (Mendoza et al., 2018; Salazar-Gonzalez et al., 2008). PCR was performed using the Phusion Hot Start Flex

DNA Polymerase (New England Biolabs). First-round PCR was run at 98�C for 45 s; 35 cycles of 98�C for 15 s, 55�C for 30 s, and

72�C for 4 min; and 72�C for 15 min. 1 mL of first-round PCR product was used as template for the second-round PCR which was

run at 98�C for 45 s; 45 cycles of 98�C for 15 s, 55�C for 30 s, and 72�C for 4 min; and 72�C for 15 min. Purified PCR products

were sequenced using Sanger sequencing and analyzed using Geneious software (Geneious).

Bulk Viral Outgrowth Cultures
CD4+ T cells were isolated from PBMCs of HIV-1-infected individuals using the CD4+ T cell isolation MACS kit (Miltenyi Biotec) and

stimulated by co-culture with irradiated (50 Gy) healthy donor PBMCs in T cell medium (RPMI 1640 supplemented with 300 mg/l

L-glutamine (Thermo Fisher), 10% FBS (Sigma-Aldrich), and 1% penicillin/streptomycin (Thermo Fisher)) in the presence of

1 mg/ml PHA-M (Sigma-Aldrich) and 100 U/ml interleukin-2 (IL-2) (Miltenyi Biotec). One day later, medium was changed to T cell me-

dium supplemented with 100 U/ml IL-2 and 5 mg/ml polybrene (Sigma-Aldrich). In addition, healthy donor PBMCs were added that

had been stimulated for two days in T cell medium supplemented with 1 mg/ml PHA-M and 100 U/ml IL-2. Before addition, donor

PBMCswere depleted of CD8+ T cells using CD8MACSmicrobeads (Miltenyi Biotec). Additional CD8+ T cell-depleted donor PBMCs

were added weekly. Culture supernatants were monitored for p24 production using the Architect HIV Ag/Ab combo assay (Abbott),

and p24-positive culture supernatants were stored at �80�C to �150�C after harvesting.

In vivo Antibody Pharmacokinetic Analysis
NOD.Cg-Rag1tm1mom Il2rgtm1Wjl/SzJ mice (The Jackson Laboratory) aged 33-42 weeks were intravenously injected (tail vein) with

0.5 mg of purified antibody in PBS. Total serum concentrations of human IgG were determined by ELISA as previously described

with minor modifications (Klein et al., 2012). In brief, high-binding ELISA plates (Corning) were coated with anti-human IgG (Jackson

ImmunoResearch) at a concentration of 2.5 mg/ml overnight at RT. Subsequently, wells were blocked with blocking buffer (2% BSA

(Carl Roth), 1 mM EDTA (Thermo Fisher), and 0.1% Tween 20 (Carl Roth) in PBS). To generate a standard curve, human IgG1 kappa

purified frommyeloma plasma (Sigma-Aldrich) was diluted in PBS. Serial dilutions of the IgG standard (in duplicates) and serum sam-

ples in PBS were incubated for 90 min at RT, followed by HRP-conjugated anti-human IgG (Jackson ImmunoResearch) diluted

1:1,000 in blocking buffer for 90min at RT. Following the addition of ABTS (Thermo Fisher), optical density at 415 nmwas determined

using a microplate reader (Tecan). Plates were washed with 0.05% Tween 20 in PBS between each step. Serum samples obtained

before the antibody injection confirmed baseline absence of human serum IgG.

For determination of bNAb-levels following treatment interruption in HIV-1-infected humanized mice, high-binding ELISA plates

(Corning) were coated overnight with BG505SOSIP.664 at a concentration of 2 mg/ml at 4�C. Subsequently, wells were blocked with

3% BSA in PBS for 5 h at RT. Plasma samples were inactivated in 1% Triton X-100 (Carl Roth) for 1 h at RT. Triton X-100-treated

1-18 diluted in PBS was used as standard in duplicates. Serial dilutions of plasma samples in PBS and standard were incubated

for 90 min at RT, followed by HRP-conjugated anti-human IgG (Jackson ImmunoResearch) diluted 1:2,000 in 3% BSA in PBS for

90 min at RT. Following the addition of ABTS (Thermo Fisher), optical density at 415 nm was determined using a microplate reader

(Tecan). Plates were washed with 0.05% Tween 20 in PBS between each step.

HEp-2 Cell Assay
HEp-2 cell autoreactivity analysis was performed using the NOVA Lite Hep-2 ANA Kit (Inova Diagnostics) according to the manufac-

turer’s instructions using monoclonal antibodies at a concentration of 100 mg/ml in PBS. Images were acquired using a DMI 6000

B fluorescence microscope (Leica) with 3 s exposure at 100% intensity and gain 10.

Unbiased B Cell Repertoire Analyses
B cells were isolated from PBMCs using CD19 microbeads (Miltenyi Biotec) and stained with DAPI (Thermo Fisher), CD20-AF 700,

IgG-APC, IgD-Pe-Cy7, IgM-FITC, and CD27-PE (all BD Biosciences) for 30 min on ice. 200,000 CD20+IgG+IgM-IgD-CD27- B cells

were sorted into FBS (Sigma-Aldrich) using a BD FACSAria Fusion, and RNA of sorted B cells was isolated with the RNeasy Micro

Kit (QIAGEN). cDNAwas generated by template-switch reverse transcription according to the SMARTer RACE 50/30 manual using the

SMARTScribe Reverse Transcriptase (Takara) with a template-switch oligo including an 18-nucleotide unique molecular identifier.

Heavy-chain variable regions were amplified with an IgG-specific nested PCR and amplicons were used for library preparation

and MiSeq 2x300 bp sequencing (Illumina). Raw NGS reads were pre-processed and assembled to final sequences as previously

described (Ehrhardt et al., 2019).

Mutational Antigenic Profiling
Mutational antigenic profiling has been previously described (Dingens et al., 2017, 2019). Briefly, 5x105 infectious units of two inde-

pendently generated HIV-1BG505 mutant virus libraries (Haddox et al., 2018) were neutralized with both 4 mg/ml or 8 mg/ml of 1-18 for
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one hour. Neutralized libraries were then used to infect 1x106 SupT1.CCR5 cells in R10 (RPMI (GE Life Sciences) supplemented with

10% FBS, 2 mM L-glutamine, and 100 U/ml of penicillin and streptomycin) containing 100 mg/ml DEAE-dextran. Three hours post

infection, the cells were resuspended in 1 mL R10. At twelve hours post infection, the non-integrated viral cDNA was isolated

from cells via a miniprep. Each mutant virus library was also subjected to a mock selection, and four 10-fold serial dilutions of

each mutant virus library were infected into 1x106 cells to serve as an infectivity standard curve from which the overall fraction of

the library that survived antibody neutralization was quantified using qPCR (Dingens et al., 2019). Viral cDNA from antibody- and

mock-selected samples was then sequenced on an Illumina MiSeq using the previously described barcoded subamplicon

sequencing approach (Haddox et al., 2016). Details on the analysis of the resulting data are provided in the Quantification and Sta-

tistical Analysis and Data and Code Availability subsections below.

Protein Expression and Purification for Cryo-EM Structures
1-18 IgG was expressed by transient transfection in Expi293 cells (Thermo Fisher) and purified from transfected cell supernatants

using a HiTrap MabSelect Protein A column (GE Life Sciences). Fab fragments were isolated as described (Diskin et al., 2011) after

papain cleavage of 1-18 IgG, removal of Fc by protein A chromatography, and then purification by size exclusion chromatography

(SEC) on a Superdex-200 Increase 10/300 column (GE Life Sciences) equilibrated with TBS (20 mM Tris pH 8.0, 150 mM NaCl). 1-55

Fab was expressed as a light-chain C-terminal His6-tagged Fab by transient transfection in 293-6E cells (National Research Council

of Canada) and purified from supernatants using Ni2+-NTA affinity chromatography (GE Life Sciences) followed by SEC purification

with a Superdex-200 Increase 10/300 column equilibrated with TBS. All Fabs were stored at 4�C.
BG505SOSIP.664 trimer was stably expressed in Chinese hamster ovary cells (kind gift of J.P. Moore and A. Cupo) as described

(Chung et al., 2014) and purified from cell culture supernatant over a 2G12 immunoaffinity column followed by SEC purification on

a Superdex-200 16/60 column (GE Life Sciences) equilibrated with TBS. RC1SOSIP.664 was expressed by transient transfection in

293-6E cells and purified as described (Escolano et al., 2019). Individual SEC fractions of each SOSIP trimer were stored at 4�C.

Cryo-EM Sample Preparation
1-18 or 1-55 Fab and 10-1074 Fab were incubated with BG505SOSIP.664 or RC1 in a 3:3:1 molar ratio per protomer overnight at room

temperature and then purified by SEC on a Superdex-200 Increase 10/300 column. Fab–Env complexes were concentrated to

2.2 mg/ml (1-18 complex) or 0.75 mg/mL (1-55 complex) in TBS, and 3 mL was added to a Quantifoil grid (R2/2 Cu 400 mesh for

the 1-18 complex and R1.2/1.3 Cu 300mesh for 1-55 complex; ElectronMicroscopy Services) that had been freshly glow-discharged

using a PELCO easiGLOW (Ted Pella). Samples were vitrified in 100% liquid ethane using a Mark IV Vitrobot (Thermo Fisher) after

blotting for 3-3.5 s with Whatman No. 1 filter paper at 22�C and 100% humidity.

Cryo-EM Data Collection and Processing
For the 1-18–BG505–10-1074 complex, micrographs were collected on a Titan Krios transmission electron microscope (Thermo

Fisher) operating at 300 kV using EPU automated software (Thermo Fisher). Movies were obtained on aGatan K2 Summit direct elec-

tron detector operating in counting mode at a nominal magnification of 130,000x (1.057 Å/pixel calibrated) using a defocus range

of �1 to �2.6 mm. Movies were collected with an 8 s exposure time with a rate of 8 e-/pix/s, which resulted in a total dose of

~60 e-/Å2 over 40 fractions. Movies were motion corrected including dose-weighting using Motioncor2 (Zheng et al., 2017) within

Relion-3 (Zivanov et al., 2018). The non-dose-weighted images were used for CTF estimation using Gctf (Zhang, 2016), and micro-

graphs with power spectra that showed poor CTF fits or signs of crystalline ice were discarded. Particles were then picked in a refer-

ence-free manner using the Laplacian-of-Gaussian auto-picking function in Relion-3. A total of 352,598 particles were extracted,

binned 4x4 (4.23 Å/pixel), and subjected to reference-free 2D classification in Relion-3. Particles corresponding to good classes

were re-extracted and un-binned (1.057 Å/pixel). An ab initio volume was generated in cryoSPARC (Punjani et al., 2017) from micro-

graphs that were collected from the same grid in a Talos Arctica that was used as an initial model for homogeneous 3D-refinement in

Relion 3 (assuming C1 symmetry). Particles were then subjected to 3D classification (C1 symmetry), and classes with low-resolution

features were removed. Selected classes that appeared 3-fold symmetric were thus subjected to homogeneous 3D refinement

assuming C3 symmetry with a soft mask applied that did not include the Fab CHCL domains. Per-particle motion correction and

CTF refinement were performed in Relion-3, followed by a final homogeneous 3D refinement. A masked post-processed volume

of 230,924 particles resulted in a gold-standard FSC (GSFSC) calculation of 2.5 Å (Scheres and Chen, 2012).

For the 1-55–RC1–10-1074 complex, data collection on a Thermo Fisher 200 kV Talos Arctica cryo-electron microscope equipped

with a Falcon 3EC camera, and 10-1074 interactions with RC1 were previously described (Escolano et al., 2019). For analysis of the

1-55–RC1 interaction, we reprocessed the data using Relion-3, following a similar procedure as described above for the 1-18–

BG505–10-1074 complex. Compared to the original reconstruction, per-particle motion correction and CTF refinement were done

in Relion-3, followed by a final homogeneous 3D refinement. A masked post-processed volume of 110,126 particles resulted in a

GSFSC calculation of 3.9 Å.

Structure Modeling and Refinement
Initial coordinates were generated by docking individual chains from reference structures into cryo-EM density using UCSF Chimera

(Goddard et al., 2007). The following PDB coordinates were used: gp120: 5T3Z; gp41: 6MTJ; 10-1074: 5T3Z; 1-18 and 1-55: 4RWY.
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These initial models were then refined into cryo-EMmaps using one round of rigid body refinement followed by real space refinement.

Sequence-updated models were built manually in Coot (Emsley et al., 2010) and then refined using iterative rounds of refinement in

Coot and Phenix (Adams et al., 2010). Glycans were modeled at PNGSs in Coot using ‘blurred’ maps processed with a variety of

B-factors (Terwilliger et al., 2018). Water molecules were added to the 1-18–BG505–10-1074 model based on local density and dis-

tance to hydrogen bonding partners. Validation of model coordinates was performed using MolProbity (Chen et al., 2010) and is re-

ported in Table S6.

Structural Analyses
Structural figures were made using PyMOL (Version 1.8.2.1 Schrodinger, LLC) or UCSF Chimera (Goddard et al., 2007). Electrostatic

calculations were done using the APBS and PDB2PQR servers (Unni et al., 2011). Buried surface areas (BSAs) were calculated using

the PDBePISA server (Krissinel andHenrick, 2007). Local resolutionmapswere calculated using the Local Res program embedded in

Relion-3 (Kucukelbir et al., 2014).

QUANTIFICATION AND STATISTICAL ANALYSIS

The mutational antigenic profiling data were analyzed with dms_tools2 version 2.5.1 (https://jbloomlab.github.io/dms_tools2/;

Bloom, 2015). The fraction surviving and excess fraction surviving statistics have been previously described (Dingens et al., 2019;

Doud et al., 2018) and are documented at https://jbloomlab.github.io/dms_tools2/fracsurvive.html. Sequencing wild-type DNA

plasmid served as the error control during the calculation of the fraction surviving. The HIV Antibody Database (West et al., 2013)

was used for the calculation of Env conservation in 1-18 contact residues and for the analysis of neutralization panel data. Clade

B reference sequences were obtained through the Los Alamos National Laboratory HIV Database (Filtered Web Alignment,

https://www.hiv.lanl.gov/). Median germline nucleotide identity and CDRH3 lengths of HIV-1 Env-reactive and total IgG+ B cells of

IDC561 were compared using the Mann-Whitney U-test in Python 3 using the ‘‘stats’’ module in the ‘‘scipy’’ package. For the cor-

relation of the neutralizing activity of 1-18 and serum IgG of IDC561, spearman’s rank correlation coefficient was calculated in Prism

(GraphPad). The neutralizing activity of 1-18 and 1-18Dins was compared using theWilcoxonmatched-pairs signed rank test in Prism

(GraphPad).

DATA AND CODE AVAILABILITY

Heavy and light chain sequences of tested monoclonal antibodies have been deposited at GenBank (accession numbers

MN867951 - MN868062). SGS-derived HIV-1 env obtained from HIV-1YU2-infected humanized mice and from individual IDC561

have been deposited at GenBank (accession numbers MN870987 - MN871327 and MN871328 - MN871333, respectively). Density

maps and atomic coordinates for the 1-18–BG505–10-1074 and 1-55–RC1–10-1074 complexes were deposited in the Electron Mi-

croscopy Data Bank (EMDB) and Protein Data Bank (PDB) with accession numbers EMD-20739 and PDB 6UDJ (1-18 complex) and

EMD-20740 and PDB 6UDK (1-55 complex). The entire mutational antigenic profiling analysis is available at https://github.com/

jbloomlab/MAP_118, and the accompanying Illumina sequencing data is on the NCBI SRA with accession numbers

SRX6752366 - SRX6752371.
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Figure S1. Clinical Characteristics, Neutralizing IgG Activity, and B Cell Repertoire of Individual IDC561, Related to Figure 1

(A) Clinical characteristics of IDC561 at the time of leukapheresis from which monoclonal antibodies were isolated.

(B) Plasma HIV-1 RNA copies (left y axis) and CD4+ T cell counts (right y axis). Arrows indicate sample collections. Monoclonal antibodies were isolated from the

last indicated sampling time point. Dashed line indicates HIV-1 RNA quantification limit.

(C) Neutralizing activity of IDC561 serum IgG against global panel.

(D) Neutralizing activity of IDC561 serum IgG against f61 fingerprinting panel and BG505T332N (left, colors as in C). Right panels show delineation scores of f61

panel-based computational epitope mapping.

(E) Neutralizing activity of IDC561 serum IgG and monoclonal bNAbs against outgrowth culture-derived viruses from bulk CD4+ T cells obtained at indicated time

points (colors as in C).

(F–H) Comparison of total B cell repertoire of IDC561 and Env-reactive B cells, indicating (F) CDRH3 lengths, (G) VH gene germline identity, and (H) VH allele

distribution. Dashed lines indicate medians.
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Figure S2. Neutralization and ELISA Binding Profiles, Related to Figures 1 and 2

(A) Left panel indicates neutralizing activity of 1-18 (left y axis) compared to serum IgG of donor IDC561 (right y axis) against the global pseudovirus panel (left x

axis) and a 30-strain YU2 pseudovirus mutant panel (right x axis), with pseudoviruses indicated on the x axis. Right panel indicates correlation and calculated

Spearman’s rho.

(B) Competition ELISAs indicating binding of 1-18 (left) and 1-55 (right) to BG505SOSIP.664 following an incubation with increasing concentrations of the indicated

competing antibodies.

(C) ELISAs of 1-18, 1-55, and additional CD4bs antibodies against the indicated HIV-1 Env antigens. Circles show means and error bars indicate standard

deviation.

(D) Neutralizing activity of 1-18, 3BNC117, and the combination of both (mixed at a 1:1 ratio) against the global pseudovirus panel and YU2. Single antibodies

were tested up to a concentration of 1 mg/ml, the combination up to a concentration of 2 mg/ml (total IgG amount).
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Figure S3. Cryo-EM Data Collection and Processing, Related to Figure 3

(A–B) A micrograph with examples of picked particles, selected two-dimensional class averages, an orientation distribution image, a local resolution graphic, a

GSFSC resolution plot, and representative densities for protein and N-linked glycan regions are shown for the (A) 1-18–BG505–10-1074 and (B) 1-55–RC1–10-

1074 complexes.
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Figure S4. Structural Interaction Details of 1-18- and 1-55-Env Complexes, Related to Figure 3

(A) Alignment of 1-18 heavy (top) and light (bottom) chain sequences to germline. Residues interacting with BG505SOSIP.664 are indicated by circles. Interacting

residues mutated from the germline sequences are indicated in red.

(legend continued on next page)



(B) Comparison of Env-interactions of 1-18, the CD4bs bNAbs N6 and 8ANC131, and CD4 at four sites: D368gp120, Loop D, the ‘Phe43 pocket’, and the V5 loop.

Heavy chains are shown in darker colors than light chains. PDB codes are indicated on the left.

(C) Comparison of Env-interactions of bNAbs with Asp-rich insertions in CDRH1 or FWRH3 contacting the adjacent gp120 protomer. Each SOSIP.664 trimer is

shown as semi-transparent surface with the primary gp120 protomer in white and the adjacent gp120 in gray. VHVL regions are shown in teal with insertions in red.

PDB code, insertion location, and insertion sequence are listed.

(D) Differences between Fabs of 1-18 and 1-55. One 1-18 VHVL (dark green surface) is shown bound to one gp120 (gray cartoon). Locations of residues varying

between 1-18 and 1-55 are highlighted in magenta. Glycans at positions N197gp120 and N276gp120 are shown as red sticks. 1-55 Fabs were based on earlier

sequence variants and contained primer-induced mutations at the start and end of the V genes (for a total of 2 aa [VH] and 4 aa [VK] mutations).
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Figure S5. Mutational Antigenic Profiling: Fractions Surviving, Correlation between Replicates, and Determination of Sites of Significant

Escape, Related to Figure 5

(A) Antibody concentration during selection, batch of mutant virus library, and fraction of library surviving antibody selection for each biological replicate.

(B–D) Correlation between biological replicate selections of average excess fraction surviving at each site in the presence of (B) 1-18, (C) VRC01, and (D)

3BNC117.

(E) Distribution of average fraction surviving at each site for each antibody (blue bars). The yellow line overlays the gamma distribution fit using robust regression to

site fraction surviving data. Dotted linesmark sites that fall beyond this distribution at a false discovery rate of 0.01. Number of sites beyond this cutoff is labeled in

green and individual sites are listed at the bottom. Data for 3BNC117 and VRC01 are from Dingens et al. (2019).
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Figure S6. 1-18 and 1-55 Antiviral Activity in HIV-1YU2-Infected Humanized Mice, Pharmacokinetics, and Autoreactive Properties, Related to

Figures 6 and 7

(A) Absolute HIV-1 RNA copies (top) and log10 viral load changes (bottom) in untreated HIV-1YU2-infected humanizedmice. Red line shows average log10 viral load

change compared to baseline. Dashed line in top panel indicates quantitation limit of accuracy (384 copies/ml).

(B) Absolute HIV-1 RNA copies (top) and log10 viral load changes (bottom) in HIV-1YU2-infected humanized mice treated with 1-55 (left) or 1-18 (right). Grey

shading indicates duration of bNAb therapy. Dashed lines in top panels indicate quantitation limit of accuracy (384 copies/ml). Data points in white indicate viral

loads < 384 copies/ml. Red lines show average log10 viral load change compared to baseline.

(legend continued on next page)



(C) Alignment of plasma SGS-derived env sequences from mouse 1730 obtained on day 0 (top) and day 28 (bottom) based on nucleotide sequences. Indicated

changes are amino acid mutations (black bars), mutations resulting in frameshifts (red hash), and nucleotide deletions (black horizontal lines) compared to YU2

wild-type sequence. Amino acid numbering on top is based on HIV-1YU2, and indicated mutations are numbered based on HIV-1HXB2.

(D) Serum human IgG levels in NRG mice after intravenous injection of 0.5 mg of antibody on day 0 (left). Data are represented as mean ± standard deviation,

respectively.

(E) HEp-2 cell reactivity using the indicated monoclonal antibodies at a concentration of 100 mg/ml.



Figure S7. Plasma SGS-Derived env Sequences Obtained from Donor IDC561, Related to Figures 1 and S1

(A) Letter heights indicate amino acid frequency among 2,351 clade B sequences obtained from the Los Alamos National Laboratory (LANL) database (top).

Bottom panels show selected sites of plasma SGS-derived env sequences obtained from IDC561 from the leukapheresis sample fromwhich 1-18 and 1-55 were

isolated. Boxes indicate amino acids for which IDC561 consensus sequence is represented in % 1% (red) or 1%–5% (blue) of the LANL clade B sequences.

Numbering relative to HIV-1HXB2 reference strain.

(B) Neutralization sensitivity of pseudoviruses based on IDC561 sequences indicated in (A). Maximum percent inhibition (MPI) determined when tested at

maximum concentrations of 500 mg/ml (purified IgG) or 25 mg/ml (monoclonal antibodies). Plasma IgG was obtained at the time of leukapheresis from which 1-18

was isolated.
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