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Abstract: Almost all patients with chronic liver diseases (CLD) show altered bone metabolism.
Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients.
Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered
bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients
with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures.
Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients,
which presents with increased mortality. Thus, special care is required to support the healing process.
However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies
(support healing of existing fractures), it is essential to understand the underlying mechanisms
that link disturbed liver function with this bone phenotype. In the present review, we summarize
proposed molecular mechanisms favoring the development of HOD and compromising the healing
of associated fractures, including alterations in vitamin D metabolism and action, disbalances in
transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with
histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator
of nuclear factor kappa B ligand (RANKL)–osteoprotegerin (OPG) system mediated by sclerostin.
Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with
established serum markers.
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1. Hepatic Osteodystrophy—Definition and Prevalence

Current studies show that almost 75% of patients with chronic liver diseases (CLD) sooner or
later suffer from severe osteoporosis [1,2]. Based on this high prevalence, the generic term hepatic
osteodystrophy (HOD) evolved, defining alterations in bone mineral metabolism in patients with
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CLDs [3], eventually resulting in reduced bone mineral densities (BMD) and deterioration of bone
structure, e.g., trabecular architecture or bone geometry. These alterations in bone structure increase the
risk of fragility fractures in patients with HOD [4–8]. In case of a fracture, reconstruction of bone and
handling of surrounding soft tissue represents a great challenge. Poor bone quality complicates classical
fixation of fractures with screws and implants; despite continuous development of new products
(screws, plates and implants, bone cements, etc.), the rate of delayed healings and non-unions remains
high in these patients. Complicated wound healing and altered immune responses additionally raise
the risk of infections. The resulting delay in convalescence affects not only quality of life, but also
long-term prognosis of patients with CLD due to an increased mortality [8,9].

The most widely studied group describes bone metabolic changes during viral liver diseases
(hepatitis B virus (HBV) and hepatitis C virus (HCV)), which strongly depend on the reported
disease stage. While on average 37.9% of patients with chronic viral hepatitis show changes in bone
mineral metabolism, 80.3% of patients with viral cirrhosis develop a severe osteoporosis [10–12].
Metabolic bone disease associated with cholestatic liver diseases is less frequently reported. With an
overall rate of 32.4% of patients with primary biliary cirrhosis (PBC) and 42.3% of patients with
primary sclerosing cholangitis (PSC) being affected, this group has a high prevalence of developing
an osteopenia or osteoporosis [1,13–18]. With alcoholism being an independent factor for the
manifestation of an osteoporosis, overall 35.9% of patients suffering from alcoholic liver disease show
altered bone metabolism and structure [12,19–21]. Less is known about non-alcoholic fatty liver disease
(NAFLD) or non-alcoholic steatohepatitis (NASH). The mean prevalence of HOD in this patient group,
often composed of children, is reported to be 45.7% [22–24]. Approximately every second patient
(49.3%) with hemochromatosis shows altered bone structure (osteopenia or osteoporosis) [25–27].
The same holds for patients with Wilson disease, which have an average HOD rate of 49.3% [28–31].
The described alterations in BMD significantly increase the risk and cumulative incidence of fractures
in these patients, as reported by Tsai et al. investigating almost 4000 cirrhotic patients of mixed
etiologies [6]. Table 1 gives an overview of available studies on HOD.

Regardless of the etiology, prevalence and severity (osteopenia or osteoporosis) of HOD positively
correlates with duration and severity of the liver disease. Especially during end-stage liver disease
and directly after orthotopic liver transplantation (OLT), higher fracture rates are reported, as the
need for immunosuppressive drugs, e.g., glucocorticoids, may additionally harm the bone [48].
However, after successful OLT, when the use of glucocorticoids is reduced and liver function is
reestablished, BMD frequently recovers [49–52].

Table 1. Rate of hepatic osteodystrophy (HOD) in chronic liver disease (CLD) of various etiologies.
CI—confidence interval.

Author, Year Patients (N)
Rate (%) 95% CI Forest Plot

HOD Total

Studies on patients with primary biliary cirrhosis (PBC)

1 Guañabens et al., 1990 [17] 7 20 35.00 9.07–60.93
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Table 1. Cont.

Author, Year Patients (N)
Rate (%) 95% CI Forest Plot

HOD Total

Studies on patients with viral hepatitis
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2. Limitations of Current Diagnostic Tools for HOD

Although deleterious effects of CLD on bone metabolism and structure are frequently reported,
early diagnosis of an altered bone metabolism represents a huge challenge. Radiologic changes in
bone, preferably detected by dual-energy X-ray absorptiometry [53,54], often manifest only when bone
metabolism is affected over a longer period of time and when changes in BMD, e.g., osteopenia and
osteoporosis, are manifested. However, at the point when BMD is decreased, fracture risk is already
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increased [53,54]. Therefore, it is desirable to identify bone metabolic changes as early as possible in
order to prevent or delay loss in BMD.

Osteoblasts and osteoclasts actively secrete factors into the blood. The detection of these serum
markers is established as a marker for bone metabolism. In theory, detection of these serum markers
could help identify changes in bone metabolism prior to manifestation of osteoporosis. However, in the
context of CLD, the established serum markers for bone turnover allow only limited conclusions,
as they often demonstrate the production and degradation of collagen (Figure 1).
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Figure 1. Established serum markers for bone turnover in the context of (A) healthy liver and
(B) diseased liver. Bone resorption markers: tartrate-resistant acid phosphatase isoform 5b (TRAP5b),
matrix metalloproteinase isoforms 2, 9, 13, and 14 (MMPs), cathepsin K (CTSK), pyridinolin (PYD),
desoxypyridinolin (DPD), helical peptide, type I collagen cross-linked C-telopeptide (ICTP), and C- and
N-telopeptide crosslinks of type I collagen (CTX and NTX). Regulators of osteoclastogenesis: receptor
activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG). Bone formation markers:
osteocalcin (OC) bone sialoprotein (BSP), osteopontin (OP), bone-specific alkaline phosphatase (BAP),
hydroxyprolin (HYP), and type I collagen N- and C-terminal propeptides (PINP and PICP/CICP). Marker
for liver/tissue damage: alkaline phosphatase (AP). Dotted arrows indicate expression. Red arrows
indicate altered expression (up or down) in CLD.

2.1. Serum Markers for Bone Formation

Characteristic for collagen-I production are increased levels of hydroxyprolin (HYP), and type
I collagen N- and C-terminal propeptides (PINP and PICP/CICP) in serum [55–58]. These markers
are frequently used to assess bone formation. However, extensive matrix formation in the diseased
liver is also known to increase serum levels of these markers and, thus, lead to false-positive
results. Alternative markers for bone formation are increased serum levels of proteins secreted by
osteoblasts. Available assays are bone-specific alkaline phosphatase (BAP) and osteocalcin (OC).
Quantitative detection methods (ELISA, enzyme immunoassay (EIA), or radioimmunoassay (RIA)) for
other proteins secreted by osteoblasts, e.g., bone sialoprotein (BSP), osteopontin (OP), receptor activator
of nuclear factor kappa B ligand (RANKL), or osteoprotegerin (OPG), are available for experimental
use, but still require validation for use in routine diagnostics. Furthermore, it remains to be elucidated
whether these markers are affected by CLD. Taking, for example, alkaline phosphatase (AP), if not
distinguished between the specific isoforms, it can be upregulated in patients’ serum as a response to
liver/tissue damage (AP) or during bone formation (BAP).
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2.2. Serum Markers for Bone Degradation

Degradation of collagen-I is accompanied by increased levels of pyridinolin (PYD),
desoxypyridinolin (DPD), helical peptide, its cross-linked C-telopeptide (ICTP), and its C- and
N-telopeptide crosslinks (CTXα, CTXβ, and NTX), all either circulating in the blood or secreted
into the urine [55–58]. However, not only is excessive collagen formation characteristic during the
development of fibrotic and cirrhotic liver diseases, but so is its remodeling. Therefore, excessive
matrix degradation in the bone can easily be masked by the diseased liver [59], which limits the use
of these markers. Alternative markers for bone resorption are increased serum levels of proteins
secreted by osteoclasts; a validated assay is available for the quantification of tartrate-resistant acid
phosphatase isoform 5b (TRAP5b) serum levels. Similar to markers representing osteoblast function,
quantitative detection methods for other markers of osteoclast function, e.g., cathepsin K (CTSK) or
matrix metalloproteinase (MMP) isoforms 2, 9, 13, and 14, are available for experimental use, with the
same restrictions; in addition to the lack of validation, it is likely that these markers are affected by
CLD, e.g., as reported for MMPs [60,61].

The described limitations are one reason why HOD is often diagnosed only when changes in BMD
became manifest in osteopenia or osteoporosis and the affected patients experience fragility fractures.
Once developed, HOD is difficult to treat, and special care is required to support healing of existing
fractures, as, in these patients, the process is commonly delayed and rich in complications, which in
turn negatively affects the etiopathology of the associated liver disease [9]. For early diagnosis and
to develop adequate treatment strategies, it is essential to understand the underlying mechanisms
leading to HOD.

3. Common Risk Factors Favoring the Development of HOD

Several factors are associated with HOD, which are, thus, classified as possible risk factors for
disease development. These factors include, among others, age, body mass index (BMI), duration and
severity of the underlying liver disease, malnutrition or dietary deficiencies, overall low BMD with
a history of fragility fractures, genetic predisposition, hormonal status, iron and copper accumulation,
hyperbilirubinemia, alterations in vitamin status, and the effects of the used medication. Table 2 gives
an overview on risk factors and proposed underlying mechanisms.

Table 2. Risk factors for bone loss in CLD. BMD—bone mineral densities; OLT—orthotopic liver
transplantation; PTH—parathyroid hormone; IGF-1—insulin-like growth factor 1; TNF—tumor necrosis
factor; IL-6—interleukin 6.

Risk Factors Proposed Mechanisms Ref.

Age
Independent of CLD, age may cause disbalances in osteoclast and
osteoblast function. This is often associated with altered hormonal

status or epigenetic changes.
[62]

Severity of liver damage
HOD is correlated with severity of the liver disease; HOD is more

common in patients with end-stage liver disease and cirrhosis than
in patients with fibrosis or hepatitis.

[62]

Low body mass index
A low body mass index (BMI) often correlates with low BMD both
in healthy subjects and patients with CLD. A cut-off is usually set at

a BMI below 19 kg/m2.
[63–65]

Dietary deficiencies
Malnutrition or dietary deficiencies frequently occur in patients

with CLD (12% of OLT patients), due to altered nutritional
requirements during ascites or other complications.

[66,67]

Alcohol consumption
Ethanol affects bone directly via a toxic effect on osteoblasts and

indirectly by altering PTH, vitamin D, testosterone, IGF-1, cytokines
(e.g., TNF or IL-6) and cortisol levels.

[68–71]
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Table 2. Cont.

Risk Factors Proposed Mechanisms Ref.

Cigarette consumption
Independent of CLD, smoking affects osteoblast and osteoclast
function, favoring the development of severe osteoporosis and

increasing the risk for fragility fractures.
[62]

Physical exercise
In patients with CLD, exercise levels are often reduced compared to

healthy individuals; thus, the bone receives less
mechanical stimulation.

[72,73]

Muscle wasting
Muscle wasting is very common in patients with CLD. When it

occurs independent of malnutrition, it may be an indicator for the
manifestation of HOD.

[74]

Hormonal status
Early menopause and post-menopausal status additionally favors

bone loss in women. [64]

Hypogonadism may cause osteoporosis independent of CLD.
Parenchymal damage during CLD may cause hypogonadism due to
an altered hypothalamic–pituitary–thyroid function with reduced

release of gonadotrophins and primary gonadal failure.

[75]

Anomalies of vitamin D and
calcium metabolism

CLD patients may have reduced vitamin D (VitD) absorption in
the gut.

[19,76–79]Enterohepatic circulation of VitD might be disturbed in patients
with CLD.

CLD patients frequently show impaired hepatic hydroxylation
of VitD.

CLD patients may have increased urinary VitD excretion.

Reduced tissue sensitivity to VitD may contribute to the
development of HOD.

VitD deficiency may cause hyperparathyroidism which increases
bone turnover. [80,81]

Vitamin K deficiency
Vitamin K (VitK) is required for the formation of osteocalcin and

osteonectin. VitK inhibits osteoclast viability, maturation,
and function.

[82–84]

Growth hormones

IGF-1 levels, which decrease during CLD, were linked to HOD. [85,86]

CLD is associated with a progressive increase in growth hormone
(GH) resistance. [87]

Active transforming growth factor β (TGF-β) is produced in
inflamed liver tissue. [88,89]

In response to damage, liver may produce bone morphogenetic
proteins (BMPs). [90,91]

Iron and copper
Iron may directly affect osteoblast function. An excessive pituitary

iron deposition may favor the development of hypogonadism
independent of the CLD.

[27,92,93]

Increased bilirubin
Increased levels of unconjugated bilirubin (hyper-bilirubinemia)
were associated with a decreased osteoblast function, mediated

possibly via regulation of IGF-1.
[66,94–96]

Genetic factors
Genetic polymorphisms were described which may favor the
development of HOD, including genes encoding vitamin D

receptors or collagen type 1A1.
[97–101]

Medication

Corticosteroids affect bone structure by increasing osteoclasts
activity and by decreasing differentiation, recruitment, and lifespan

of osteoblasts.
[102]

Calcineurin inhibitors are used in conjunction with corticosteroids;
thus, the independent effect of these agents on bone metabolism in

humans is uncertain.
[103]

Antiviral agents, e.g., ribavirin, may directly affect osteoclast and
osteoblast function. [104–106]

Cholestyramine, a bile-acid sequestrant used to treat pruritus or
itching during CLD, was reported to adversely affect the intestinal

absorption of VitD.
[107]

The effect of medication, e.g., diuretics, anticoagulants, and
chemotherapy, used in the treatment of advanced liver disease, on

bone metabolism in humans is uncertain.

These mainly anamnestic factors define the risk of a patient with CLD to develop severe
osteoporosis, but will not give any information on the actual disease status or the onset of the HOD.
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Furthermore, these factors provide only limited information on underlying molecular mechanisms,
required for the identification of therapeutic targets and the development of treatment strategies.

Several of these factors, e.g., age, duration and severity of the underlying CLD,
genetic predisposition, decreased BMD, or a familial history of fragility fractures, cannot be affected by
treatment. Lifestyle-associated factors, e.g., physical exercise, dietary deficiencies, and consumption of
alcohol and cigarettes, however, can be actively influenced by the patients. Thus, patients with CLD
should be encouraged to change their lifestyle in order to reduce the risk and delay the development of
a HOD. Factors involving medication, and altered hormonal or vitamin status can be influenced with
the help of the attending physician. However, improved prevention will require a better understanding
on the underlying molecular mechanisms.

4. Alterations in Vitamin D and Calcium in Patients with CLD

4.1. Vitamin D Metabolism in Patients with CLD

Lipophilic vitamin D (VitD) exists in two natural variants: VitD2 (ergocalciferol—in plants) and
VitD3 (cholecalciferol—in animals). In the human body, VitD is available mainly from cutaneous
synthesis (VitD3) and to a lesser extent from dietary uptake (VitD2 and VitD3) [108]. During cutaneous
synthesis, 7-dehydrocholesterol (7-DHC) converts to pre-VitD3 and VitD3 under ultraviolet B (UVB)
irradiation [109]. In the liver, 7-DHC is not only synthesized from cholesterol by cholesterol
7α-hydroxylase (CYP7A1), but also degraded to cholesterol by 7-dehydrocholesterol reductase
(DHCR7). Mouse models for HOD show increased expression of DHCR7 in the diseased livers,
which causes increased 7-DCH degradation during CLD [110,111]. This finding was confirmed by
analysis of cirrhotic liver tissue of patients [110].

For circulation in the blood, VitD and its metabolites have to bind vitamin-D-binding protein
GC (DBP), which is expressed in the liver. In mice, DBP expression decreases with progression of
CLD [110,111]. Thus, it is assumed that circulation of VitD and its metabolites is impaired in patients
with advanced liver disease.

In the healthy liver, VitD is hydroxylated by VitD 25-hydroxylase (CYP2R1) and sterol
27-hydroxylase (CYP27A1). Expression of both enzymes is reported to be decreased in fibrotic
and cirrhotic livers [110,111]. Zhao et al. showed decreased CYP27A1 levels, but not decreased CYP2R1
levels in patients with liver cirrhosis [79]. The reaction product, calcidiol, also called 25-hydroxyvitamin
D (25(OH)D), is reported to be decreased during CLD [79,110,112]. In the kidneys, 25(OH)D is further
hydroxylated to the biologically active calcitriol, also called 1,25-dihydroxyvitamin D (1,25(OH)2D),
by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) [113,114]. Both 25(OH)D and 1,25(OH)2D may
be further hydroxylated by 25-hydroxyvitamin D 24-hydroxylase (CYP24A1) in order to facilitate
excretion of the products 24,25-dihydroxyvitamin D (24,25(OH)2D) and 1,24,25-trihydroxyvitamin
D (1,24,25(OH)3D). Zhao et al. reported increased CYP24A1 levels in patients with liver cirrhosis,
suggesting not only decreased VitD activation and circulation, but also increased VitD degradation in
these patients [79]. For an overview, see Figure 2.
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Figure 2. Vitamin D (VitD) metabolism in the context of (A) healthy liver and (B) diseased
liver. In the presence of ultraviolet B (UVB) irradiation and heat, 7-dehydrocholesterol (7-DHC)
is processed to VitD in the skin. VitD is sequentially hydroxylated in the liver and the
kidneys to its metabolites calcidiol (25(OH)D), calcitriol (1,25(OH)D), 24,25-dihydroxyvitamin D
(24,25(OH)D), and 1,24,25-trihydroxy-vitamin D (1,24,25(OH)D). Enzymes involved in VitD metabolism:
7-dehydrocholesterol reductase (DHCR7), vitamin D 25-hydroxylase (CYP2R1), sterol 27-hydroxylase
(CYP27A1), 25-hydroxyvitamin D 1-hydroxylase (CYP27B1), and 25-hydroxyvitamin D 24-hydroxylase
(CYP24A1). VitD and its metabolites bind to the vitamin-D-binding protein GC (DBP) for transport
in the blood. Other regulators: calcium (Ca2+), inorganic phosphate (Pi), fibroblast growth factor 23
(FGF-23), and parathyroid hormone (PTH). Dotted arrows indicate expression. Red arrows indicate
altered expression (up or down) in CLD.

4.2. VitD-Dependent Cellular Effects Affected in Patients with CLD

To induce effects in target cells, 1,25(OH)2D needs to bind to the vitamin D receptor (VDR),
which forms heterodimers with related receptors (e.g., the retinoid X receptor) in order to activate
intracellular signaling cascades and to bind to vitamin D response elements (VDREs) [115,116].
So far, little is known about effects of CLD on the cellular sensitivity toward 1,25(OH)2D, e.g.,
by regulating expression of VDR and related receptors, components that are strongly regulated by
genetic polymorphisms [97–101]. In healthy subjects, 1,25(OH)2D supports intestinal absorption of
calcium and phosphate [77]. In patients with CLD, lowered 1,25(OH)2D serum levels may, thus,
impede intestinal absorption of inorganic phosphate (Pi) and calcium and, consequently, induce their
release from bone matrix, favoring the loss of mineralized bone matrix [76].

Other cells highly responsive to 1,25(OH)2D are dendritic and monocytic cells [115].
Reduced activation of these cells may increase the susceptibility toward infections, as observed
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in the CALCITOP-study which shows an increased rate of wound infections in patients with low
1,25(OH)2D (but not 25(OH)D) serum levels [117].

In bone-forming osteoblasts, 1,25(OH)2D enhances the expression of RANKL [118]. Upon binding
to receptor activator of nuclear factor kappa B (RANK) on immune cells, RANKL induces their
differentiation into bone-resorbing osteoclasts [114,119]. Nevertheless, in vivo, VitD and its metabolites
inhibit osteoclastogenesis and, thus, are successfully used as supportive drugs to treat osteoporosis [120].

4.3. Balancing VitD Levels in Patients with CLD

First attempts were done to balance the described VitD deficiencies in order to improve the
bone quality in patients with HOD. At first, oral VitD (VitD3 or VitD2) supplementation appeared to
improve the bone quality in mice [121] and seemed to delay the development of HOD in patients [122].
However, more recent studies showed no significant improvement of BMD in HOD despite improved
25(OH)D serum levels [123,124]. Based on the described alterations in VitD metabolism, the question
raises if it is sufficient to supplement VitD or if supplementation of its metabolites is required. There is
evidence that supplementation of 25(OH)D or 1,25(OH)2D is more efficient than supplementation of
VitD [125]. Considering possible deficiencies in intestinal absorption and blood transport of VitD in
patients with CLD, the route of application also has to be considered. In this case, it is advisable to first
screen for serum levels of VitD and its metabolites to identify possible deficiencies [126,127].

Only a combination of oral VitD and bisphosphonates improved BMD in patients with
CLD [128–131], suggesting that VitD supplementation alone is not sufficient to prevent or delay
loss of BMD in these patients. Indeed, bisphosphonates represent the primary medical intervention to
prevent bone loss in patients with CLD. However, as the review of Danford et al. framed, a benefit
of this treatment in terms of fracture reduction remains to be shown in patients with CLD [132].
Therefore, current studies focus more on a better understanding of the molecular mechanisms that
trigger the alterations in VitD and the linked calcium metabolism observed in patients with CLD.

4.4. Feedback Mechanisms Regulating VitD Levels in Patients with CLD

VitD metabolism is self-regulated through negative feedback mechanisms including calcium
and Pi serum levels, fibroblast growth factor 23 (FGF-23), and parathyroid hormone (PTH) [119,133].
Increased 1,25(OH)2D and Pi serum levels may increase expression of FGF-23 in osteoblasts, which
inhibits expression of PTH in the parathyroid glands [134,135]. It is proposed that binding of 1,25(OH)2D
to VDR on the parathyroid glands can also directly decrease expression of PTH [136]. On the one hand,
increased PTH levels are thought to induce expression of renal CYP27B1 and, thus, favor formation of
1,25(OH)2D [137]. This is one reason why PTH and PTH-related peptide analogs may be used as bone
anabolic drugs [138,139]. For example, in an experimental model of biliary cirrhosis, administration of
PTH 1-34 analog (teriparatide) was able prevent loss of bone mass and structure [140].

Reduced PTH levels on the other hand may increase FGF-23 expression in bone cells [134],
which stimulates bone turnover by enhancing VitD metabolism both positively and negatively via
inhibition of CYP27B1 and induction of CYP24A1 [97]. FGF-23 serum levels are reported to be increased
in patients with CLD [141–143]. This may explain why increased PTH levels are negatively associated
with secondary osteoporosis in these patients [12,143,144] (Figure 2).

In addition to these described mechanisms, 1,25(OH)2D levels can be affected by estrogen,
glucocorticoids, or calcitonin, which regulate expression of PTH either directly or indirectly.
It was reported that estrogen-dependent regulation of PTH requires action of FGF-23 [145].
Glucocorticoids and calcitonin may increase PTH expression by lowering calcium serum levels.
Glucocorticoid therapy may induce intestinal malabsorption and impaired renal re-absorption
of calcium [146]. Calcitonin, primarily known as a pharmacologic inhibitor of bone resorption,
lowers calcium levels by increasing its renal excretion [147,148]. However, in the same line of evidence,
it was observed that decreased calcitonin levels, as observed in patients following thyroidectomy,
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are associated with decreased BMD [149–151]. In contrast to these 1,25(OH)2D-dependent mechanisms,
proteoglycan 4 may directly induce PTH expression [152].

Noteworthy, the non-classical actions of VitD, e.g., regulation of the renin–angiotensin
system, may also play a relevant role in mortality and morbidity of patients with secondary
osteoporosis [153,154]. This cascade leads to a sequential activation of angiotensin II, which likely has
deleterious effects on blood pressure and the vasculature. Thus, decreased levels of 25(OH)D and
1,25(OH)2D are thought to predict hepatic and renal decompensation in these patients [155,156].

5. Alterations in Transforming Growth Factor-β Superfamily in Patients with CLD

5.1. Regulation of Extracellular Matrix Proteins by Members of the Transforming Growth Factor-β Superfamily

In contrast to the progressively decreasing 25(OH)D and 1,25(OH)2D levels, CLD causes
a permanent increase in active transforming growth factor-β (TGF-β) [157]. Its expression is induced
in the context of the fibrogenic response in the liver. By activating hepatic stellate cells and inducing
extracellular matrix (ECM) production, TGF-β triggers fibrotic alterations in the liver in CLD of many
etiologies [158]. The active TGF-β is then distributed in the entire body via the blood stream, which may
affect bone metabolism and fracture healing.

In healthy subjects, TGF-β is by far the most abundant cytokine in bone [159]. TGF-β is secreted in
its latent form by osteoblasts and osteoclasts. Upon secretion, the latent TGF-β is incorporated into the
bone matrix [160,161]. During bone resorption or fracture, osteoclasts activate TGF-β in their resorption
lacuna via proteolytic and acidic hydrolysis [162,163]. The released active TGF-β in bone then functions
as a chemoattractant and growth factor for mesenchymal stem/stromal cells (MSCs) and osteoprogenitor
cells, which express a large variety of high affinity TGF-β family receptors. Of the three TGF-β isoforms
(TGF-β1–3), TGF-β1 has the strongest chemotactic effect toward cells of the osteoblastic lineage in
human. It is thought to regulate not only migration and proliferation, but also to induce expression of
ECM genes, e.g., collagen, fibronectin, and the associated integrin receptors in these cells [161,164–167].
Less is known about TGF-β2, which, upon over-expression in mice bones, stimulates bone metabolism,
eventually causing an osteoporotic phenotype [168]. TGF-β3 is thought to induce MSC differentiation
toward the chondrogenic lineage, an essential step in endochondral ossification as observed in the
developing skeleton or in the fracture callus during long bone repair [169]. Research focusing mainly
on short-term effects of TGF-β on bone cells undoubtedly shows the importance of TGF-β in the
initiation of fracture healing [170]. These local and dose-dependent effects are well described in a dog
model, applying TGF-β ectopically in order to support mechanical fixation, bone ingrowth, and gap
bone formation of unloaded implants [171]. However, patients with CLD frequently have chronically
elevated TGF-β levels. This may disguise the described positive effects of TGF-β in bone, which require
tightly regulated local gradients of the cytokine.

Chronically increased levels of active TGF-β, as observed during CLD, alter the composition of the
ECM matrix, thus affecting bone flexibility [172,173]. By shifting the ECM matrix toward fibronectin,
release of cytokines (including TGF-β) from the bone matrix is induced, which in turn favors osteoclast
formation and activity [164,174]. TGF-β signaling induces expression of native fibronectin and its
splice variant, termed oncofetal fibronectin in CLD [175–177]. This O-glycosylated form of fibronectin
directly interferes with bone formation and, thus, may contribute to the development of HOD [176].
Similarly, TGF-β induces expression of vimentin via the activating transcription factor ATF4, which may
suppress maturation of osteoprogenitor cells and related osteocalcin expression [172] and, thus,
contribute to the development of HOD. In addition, chronically elevated TGF-β1 levels block osteoblast
maturation by interfering with bone morphogenetic protein (BMP) signaling [178]. From the members
of the BMP family, BMP2, 4, 7, and 9 show osteo-inductive properties. Interestingly, BMP7 and 9 are
expressed in liver cells as a response to damage, initially to suppress pro-fibrotic TGF-β effects [90,91].
While BMPs may suppress TGF-β effects in the liver [91,179], the contrary is the case in bone [178].
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Therefore, increased levels of BMPs may not compensate for the inhibitory effects of TGF-β in
bone (Figure 3).

Int. J. Mol. Sci. 2019, 20, x 10 of 29 

 

development of HOD [176]. Similarly, TGF-β induces expression of vimentin via the activating 
transcription factor ATF4, which may suppress maturation of osteoprogenitor cells and related 
osteocalcin expression [172] and, thus, contribute to the development of HOD. In addition, 
chronically elevated TGF-β1 levels block osteoblast maturation by interfering with bone 
morphogenetic protein (BMP) signaling [178]. From the members of the BMP family, BMP2, 4, 7, and 
9 show osteo-inductive properties. Interestingly, BMP7 and 9 are expressed in liver cells as a 
response to damage, initially to suppress pro-fibrotic TGF-β effects [90,91]. While BMPs may 
suppress TGF-β effects in the liver [91,179], the contrary is the case in bone [178]. Therefore, 
increased levels of BMPs may not compensate for the inhibitory effects of TGF-β in bone (Figure 3). 

 

Figure 3. Effects of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) on 
bone in the context of (A) healthy liver and (B) diseased liver. Dotted arrows indicate expression. Red 
arrows indicate altered expression (up or down) in CLD. 

5.2. Regulation of TGF-β and BMP Signaling 

TGF-β and BMP both transduce their signals by binding (usually as homodimers) to a 
tetrameric receptor complex on the cell surface, consisting of two types of serine/threonine kinase 
receptors [180,181]. In human, seven type I receptors (termed activin receptor-like kinase (Alk)-1 
through 7) and five type II receptors were identified, which have to comply with more than 30 
ligands of the TGF-β superfamily. This implies that individual receptors have to bind more than one 
ligand [182]. Furthermore, cell-type-dependent expression patterns of the receptors may explain the 
above-described cell-type-dependent differences in ligand response. Upon ligand binding, 
intracellular signal transduction occurs both canonically (dependent on Smad transcription factors) 
and non-canonically (Smad-independent/mitogen-activated protein kinase (MAPK) signaling). In 
bone cells, canonical TGF-β signaling is mediated via Alk4-, 5-, or 7-dependent phosphorylation of 
Smad2/3, while canonical BMP (BMP2, 4, 7, and 9) signaling is mediated via Alk1-, 2-, 3-, or 
6-dependent phosphorylation of Smad1/5/8. Complex formation with Smad4 allows the activated 
transcription factor complexes to translocate into the nucleus and, thus, regulate target gene 
expression [183]. Canonical signaling cascades are controlled by various regulatory mechanisms, 
including among others inhibition by intra- and extracellular inhibitors, regulation of gene 
expression, post-transcriptional modifications, and intracellular trafficking [184]. Expression of some 
of the regulatory proteins is initiated by the signaling itself, as an internal feedback mechanism, e.g., 
the inhibitory Smad6 and 7, Smad ubiquitination regulatory factors (Smurfs)-1 and 2, Smad anchor 

Figure 3. Effects of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) on
bone in the context of (A) healthy liver and (B) diseased liver. Dotted arrows indicate expression. Red
arrows indicate altered expression (up or down) in CLD.

5.2. Regulation of TGF-β and BMP Signaling

TGF-β and BMP both transduce their signals by binding (usually as homodimers) to
a tetrameric receptor complex on the cell surface, consisting of two types of serine/threonine kinase
receptors [180,181]. In human, seven type I receptors (termed activin receptor-like kinase (Alk)-1
through 7) and five type II receptors were identified, which have to comply with more than 30 ligands
of the TGF-β superfamily. This implies that individual receptors have to bind more than one
ligand [182]. Furthermore, cell-type-dependent expression patterns of the receptors may explain
the above-described cell-type-dependent differences in ligand response. Upon ligand binding,
intracellular signal transduction occurs both canonically (dependent on Smad transcription factors)
and non-canonically (Smad-independent/mitogen-activated protein kinase (MAPK) signaling). In bone
cells, canonical TGF-β signaling is mediated via Alk4-, 5-, or 7-dependent phosphorylation of Smad2/3,
while canonical BMP (BMP2, 4, 7, and 9) signaling is mediated via Alk1-, 2-, 3-, or 6-dependent
phosphorylation of Smad1/5/8. Complex formation with Smad4 allows the activated transcription
factor complexes to translocate into the nucleus and, thus, regulate target gene expression [183].
Canonical signaling cascades are controlled by various regulatory mechanisms, including among others
inhibition by intra- and extracellular inhibitors, regulation of gene expression, post-transcriptional
modifications, and intracellular trafficking [184]. Expression of some of the regulatory proteins is
initiated by the signaling itself, as an internal feedback mechanism, e.g., the inhibitory Smad6 and 7,
Smad ubiquitination regulatory factors (Smurfs)-1 and 2, Smad anchor for receptor activation (SARA),
BMP and activin receptor membrane bound inhibitor (BAMBI), Noggin, v-ski sarcoma viral oncogene
homolog (Ski), and Ski-like oncogene (SnoN) [178]. Membrane bound BAMBI and soluble Noggin
inhibit TGF-β/BMP signaling by competing with the type I receptor for ligand binding [181,185].
The Smad co-factor SARA enhances TGF-β signaling via direct interaction with Smad2, favoring its
recruitment to the TGF-β receptor [181]. Intracellularly, Smad6 specifically interferes with the Smad1/5/8
pathway, while Smad7 is able to blunt both Smad1/5/8- and Smad2/3-mediated signal transduction.
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Mechanistically, inhibitory Smads interact with TGF-β receptors and Smad proteins in order to facilitate
their ubiquitination and degradation with the help of the E3 ubiquitin ligases Smurf-1 and 2 [181].
Ski and SnoN belong to the negative regulators of Smad transcriptional function, antagonizing TGF-β
signaling primarily through transcriptional modulation via recruitment of nuclear transcriptional
co-repressors and histone deacetylases (HDACs) [181].

5.3. HDACs as Possible Secondary Regulators for HOD

As described above, disbalanced TGF-β and BMP signaling may favor development of HOD.
One proposed mechanism is via recruitment and activation of HDACs [178]. Although numerous
HDACs are expressed and active in bone cells, their tight regulation is critical, as different HDACs exert
variant effects on the different cell types (Table 3). For example, expression of HDACs 2, 4, 5, 6, and 7 is
normally increased during osteogenesis [186–191], and deletion/inhibition of HDACs 2, 3, 4, 7, and 5/9
is associated with decreased BMD or altered bone structure [192–204]. A genome-wide association
study even identified HDAC5 as one of 20 loci associated with osteoporosis [205], representing an
independent risk factor for the development of HOD. These reports give evidence that HDACs are
crucial regulators of bone metabolism. The most commonly described mechanism how HDACs (1, 2, 3,
4, 5, 6, 7, and 8) regulate bone metabolism is their direct interaction or interference with transcription
factors involved in osteogenic differentiation, e.g., Runx2, p300, Mef2, Mef2c, NFATc1, Zfp521, or TCF.
This interaction usually represses their transcriptional activity and, thus, decreases expression of
osteogenic marker genes, e.g., collagen or osteocalcin [187,190,191,206–215]. In addition to direct
interaction with Runx2, HDACs 4 and 5 may further decrease transcriptional activity of Runx2 via
post-translational modifications, which favors its degradation [187,210]. Resulting altered expression
of target genes, e.g., OPG, RANKL, or Wnt, may affect terminal differentiation of bone cells.

Expression of HDACs is strongly regulated by factors circulating in the blood of patients with
CLD. For example, in differentiating human osteoblasts, TGF-β induces expression of HDACs 1, 2, 3, 6,
and 11 and blocks expression of HDAC9 [188,189]. On the one hand, a TGF-β-dependent decrease in
HDAC9 keeps MSCs and osteoblasts in a proliferative stage, thus preventing their maturation [189].
TGF-β-dependent increase in HDAC6 activity is associated with structural deterioration of primary cilia,
the mechanosensors of osteoblasts [188]. Thus, increased active TGF-β levels in the blood of patients
with CLD may affect the response of osteoblasts toward mechanical stimulation. Altering primary
cilia structure not only affects sensing of mechanical stimuli, but also alters signal transduction
cascades, including Ca2+, TGF-β, Wnt, and mammalian target of rapamycin (mTOR) [216–218].
HDAC6, being induced by hypoxia and oxidative stress [192], may promote transcriptional activity of
hypoxia-inducible factor α (Hif-1α) early after fracture [219].
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Table 3. Proposed regulatory roles of histone deacetylases (HDACs) in bone metabolism.
MSC—mesenchymal stem/stromal cells; OPG—osteoprotegerin; FGF-21—fibroblast growth factor 21;
MMP—matrix metalloproteinase; Hif-1α—hypoxia-inducible factor α; RANKL—receptor activator of
nuclear factor kappa B ligand; PPARγ—peroxisome proliferator-activated receptor γ;.

HDACs Proposed Mechanisms References
D
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1, 9 Expression is decreased during osteogenic differentiation. [188–190,214,228]

9 Expression is blocked by TGF-β signaling. [188,189]

4, 9 Expression is regulated by microRNAs (miR-17, miR-29b, miR-188). [229–231]

1, 6 Associated with improved skeletal phenotypes. [228,232–234]

2–5, 7–9 Associated with impaired skeletal phenotypes. [192–204]

1, 7 Induce expression of osteoblastic genes, e.g., TNAP. [191,235]

3 Drives MSC differentiation towards adipogenic lineage. [198–201]

3, 4 Favor expression of OPG, FGF-21, MMP3, MMP10, and MMP13. [197,208,223,224,236]

4, 5, 9–11 Increase osteoclast size and demineralization activity, together with
increased expression of c-Fos, NFATc1, and Cathepsin K. [237]

In
cr

ea
se

d
Ex

pr
es

si
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of

2, 4–7 Increased during osteogenic differentiation. [186–191]

1–3, 6, 11 Induced by TGF-β signaling. [188–190,214,228]

1 Induced by mechanical stimulation. [228]

6 Induced by hypoxia and oxidative stress. [192]

4, 5 Associated with impaired skeletal phenotypes. [186,238]

5 Polymorphisms are associated with decreased BMD. [205]

5, 6 Suppress expression of transcription factors, e.g., Runx2 or osterix. [210,220]

1–8 Repress transcriptional activity of, e.g., Runx2, p300, Mef2, Mef2c,
NFATc1, Zfp521, or TCF by direct interaction/binding. [187,190,191,206–215]

4, 5 Deacetylate Runx2, affecting its transcriptional activity. [187,210]

4, 5 Deacetylate Runx2, promoting its degradation. [187,210]

4, 9 Expression is regulated by miRNAs (miR-17, miR-29b, miR-188). [229–231]

4 Its cytoplasmic–nuclear shuttling is regulated by mechanical load. [194]

2 Regulates proliferation, oxidative stress, and apoptosis by (binding)
regulating transcriptional activity of Nrf2/ARE. [239,240]

4 Interaction with PTH regulates expression of genes, e.g., MMP13. [225–227]

6 Promotes Hif-1α transcriptional activity. [219]

2 Favors osteoclastogenesis via Akt-mediated suppression of FoxO1. [241]

2, 6
Interact with glucocorticoid receptor to regulate inflammation and

expression of genes, e.g., osteocalcin or collagen
during osteogenesis.

[220–222,242]

3 Required for bone maintenance during aging. [243]

3 Represses activity of MMP13, proposed regulation via ERK1/2. [223,224]

5 Regulates PTH-driven sclerostin expression in osteocytes via Mef2. [207]

6 Affects structural integrity of primary cilia, the mechanosensory
organelle on osteoblasts, which regulates signaling pathways. [188]

3, 7, 9 Regulate osteoclastogenesis via RANKL, Wnt, and PPARγ. [244–247]

1, 3, 7 Regulate inflammation, proposedly involving STAT and NF-κB. [224,234,248]

9 Promotes proliferation of osteogenic cells, interacting with p53. [189,249]

Both HDAC6 and HDAC2 may interact with the glucocorticoid receptor in order to regulate
expression of osteogenic genes, e.g., osteocalcin, collagen, or osterix, during osteogenesis, a strongly
dose-dependent effect [220–222]. This way, increased glucocorticoid signaling, as expected under
glucocorticoid medication [102], may contribute to impaired osteogenesis in relevant patients.

Decreased levels of HDACs 3 and 4 are associated with increased bone catabolism,
proposedly mediated via increased expression of FGF-21 and MMPs (e.g., MMP3, MMP10,
and MMP13) [196,223–225]. Interaction with PTH, often increased during CLD, may alter
HDAC4-dependent expression of these genes [225–227]. Thus, it is feasible that CLD affects bone
catabolic effects mediated by HDAC4. By interacting with HDAC5 and Mef2, PTH may increase
expression of sclerostin in osteocytes [207], thus preventing formation of mineralized bone matrix.

Diverse small chemical inhibitors for HDAC activity are available; however, their use to support
bone metabolism has to be critically discussed, as they were mainly approved for treatment of patients
with cancer [250–253]. Their use is associated with severe adverse effects that may not legitimate their
application to delay or prevent the development of HOD. Identification of the actual key regulators
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(HDAC isoforms) and better understanding of the underlying molecular mechanisms will help choose
more specific inhibitors or activators with fewer side effects.

6. Sclerostin—A New Player in the Game?

Sclerostin was first identified as relevant for bone formation in studies investigating patients with
sclerosteosis and van Buchem disease. In these patients, sclerosing bone conditions are associated with
functional loss mutations of the gene (SOST) encoding sclerostin [254–256].

For a long time, sclerostin was thought to be exclusively expressed in osteocytes as
a negative feedback inhibitor to prevent excessive bone formation. Sclerostin was first thought
to inhibit BMP-dependent Smad signaling by competing with BMP for receptor binding [257].
However, more recent work revealed that sclerostin, similar to dickkopf 1 (DKK1) and 2 (DKK2),
represses Smad1/5/8 signaling indirectly via inhibition of the Wnt signaling pathway, which is required
for nuclear translocation of Smad1/5/8 [258].

Expression of the key regulators of osteoclastogenesis (macrophage colony-stimulating factor
(M-CSF), RANKL, and OPG) is regulated by the Wnt signaling cascade. Attenuation of Wnt/BMP
signaling by sclerostin affects expression of these genes [259,260]. The resulting imbalances in the
RANKL–OPG system may lead to alterations in BMD due to altered activity of osteoclasts. RANKL,
by binding to its high-affinity receptor (RANK) located on the surface of monocytes and pre-osteoclasts,
drives their differentiation toward mature osteoclasts with bone-resorbing activity [174]. Its secreted
inhibitor OPG is produced by the bone and the liver in healthy subjects, in order to inhibit osteoclast
differentiation [261]. There are reports showing altered levels of OPG and/or RANKL in patients
with CLD [262–264]. However, a correlation between decreased BMD in patients with end-stage liver
disease was observed only with serum OPG or RANKL levels [265,266] (Figure 4D,E).
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Figure 4. Sclerostin as a possible regulator in the development of hepatic osteodystrophy (HOD).
(A) Sclerostin serum levels were determined with the help of Sclerostin TECO® ELISA (TECOmedical
group, Neufahrn, Germany) in patients with healthy and diseased livers. (B) Receiver operating
characteristic (ROC) curve with sclerostin as a marker for HOD. (C) Expression of SOST in healthy and
diseased liver tissues. N ≥ 22, n = 2; statistical comparison with the Mann–Whitney U-test. Proposed
regulatory mechanisms in the context of (D) healthy and (E) diseased liver. Dotted arrows indicate
expression. Red arrows indicate altered expression (up or down) in CLD.

In case of increased RANKL levels, therapy with anti-RANKL antibody (Denosumab, Amgen,
Thousand Oaks, CA, USA), known under the trade names Prolia and Xgeva, may be an interesting
option for these patients [267,268]. Interestingly, in a case report, even amelioration of hepatitis is
described when this treatment was applied to a woman with growth hormone deficiency [269].

We identified increased sclerostin serum levels in patients with CLD (liver cirrhosis) (Figure 4A),
which is in line with reports on patients with alcoholic and non-alcoholic liver disease [270–272].
The work of Guañabens and colleagues suggests that increased sclerostin in diseased liver (PBC) is
mainly located in the bile ducts [273]. In our patients, sclerostin serum levels were correlated with
decreased BMD (Figure 4B). Thus, treatment with the anti-sclerostin antibody (Romosozumab—AMG
785, UCB, Union Chimique Belge, Brussels, Belgium) may be an interesting strategy to fight osteoporosis
in patients with HOD [274,275]. Interestingly, sclerostin was strongly expressed in liver tissues of these
patients (Figure 4C). Possible effects on liver disease, however, are yet to be investigated. Circulating via
the blood stream, increased sclerostin levels may affect bone metabolism and, thus, contribute to the
development of HOD.

7. Summary and Outlook

Studies reporting bone changes in patients with CLD suggest that approximately 75% of patients
with CLD will develop HOD. Once developed, HOD is difficult to treat [9]. When changes in BMD
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and bone structure are manifest, patients are at high risk of developing fragility fracture [7]. In case
of a fracture, convalescence is prolonged and rich in complications, which in turn negatively affects
quality of life and long-term prognosis of these patients [9].

We here demonstrate the challenge toward an early diagnosis of HOD, as many established
serum markers for bone turnover are adversely regulated by the diseased liver. We describe how
acquisition of anamnestic data may predict the risk of a patient to develop HOD, and how, using this
knowledge, patients may delay the development of HOD by modifying lifestyle habits or medication
in consultation with the attending physician.

The development of treatment strategies to prevent, delay, or reverse the development of HOD,
however, requires deeper understanding of the underlying molecular mechanisms. We summarize
current knowledge on potential mechanisms and how they qualify as therapeutic targets. These include
alterations in VitD metabolism and action, disbalances in TGF-β and BMP signaling, altered expression
and action of HDACs, and sclerostin as a regulator of the RANKL–OPG system. MSCs, osteoblasts,
osteocytes, and osteoclasts, via altering their function, all represent interesting targets for the
development of therapeutic strategies for patients with HOD. However, the diversity of the described
risk factors and possible molecular mechanisms emphasize that HOD is a multifactorial disease that
cannot easily be prevented via a simple supplementation of just a single factor, but instead may require
a combinatory therapy.
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Abbreviations

1,24,25(OH)D 1,24,25-trihydroxyvitamin D
1,25(OH)D 1,25-dihydroxyvitamin D, also called calcitriol
24,25(OH)D 24,25-dihydroxyvitamin D
25(OH)D 25-hydroxyvitamin D, also called calcidiol
7-DHC 7-dehydrocholesterol
BAMBI BMP and activin receptor membrane bound inhibitor
BAP bone-specific alkaline phosphatase
BMD bone mineral density
BMI body mass index
BMP bone morphogenetic protein
BSP bone sialoprotein
CLD chronic liver disease
CTSK cathepsin K
CTX C-telopeptide crosslinks of type I collagen
CYP24A1 25-hydroxyvitamin D 24-hydroxylase
CYP27A1 sterol 27-hydroxylase
CYP27B1 25-hydroxyvitamin D-1α-hydroxylase
CYP2R1 vitamin D-25-hydroxylase
CYP7A1 cholesterol 7α-hydroxylase
DBP vitamin-D-binding protein GC
DHCR7 7-dehydrocholesterol reductase
DKK1 dickkopf 1
DKK2 dickkopf 2
DPD desoxypyridinolin
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ECM extracellular matrix
ELISA enzyme-linked immunosorbent assay
EIA (solid-phase) enzyme immunoassay
FGF fibroblast growth factors
GH growth hormone
HBV hepatitis B virus
HCV hepatitis C virus
HDAC histone deacetylase
HOD hepatic osteodystrophy
HYP hydroxyprolin
ICTP type I collagen cross-linked C-telopeptide
IGF-1 insulin-like growth factor 1
M-CSF macrophage colony-stimulating factor
MMP matrix metalloproteinase
MSC mesenchymal stem/stromal cell
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
NTX N-telopeptide crosslinks of type I collagen
OC osteocalcin
OLT orthotopic liver transplantation
OP osteopontin
OPG osteoprotegerin
PBC primary biliary cirrhosis
PDGF platelet-derived growth factor
Pi inorganic phosphate
PICP type I collagen C-terminal propeptide
PINP type I collagen N-terminal propeptide
PPARγ peroxisome proliferator-activated receptor γ
PSC primary sclerosing cholangitis
PTH parathyroid hormone
PYD pyridinolin
RANKL receptor activator of nuclear factor kappa B ligand
RIA radioimmunoassay
SARA Smad anchor for receptor activation
Ski v-ski sarcoma viral oncogene homolog
SnoN Ski-like oncogene
TGF-β transforming growth forming factor-β
TRAP5b tartrate-resistant acid phosphatase isoform 5b
UVB ultraviolet B
VDR vitamin D receptor
VRDE vitamin D response element
VitD vitamin D
VitD2 vitamin D2, also called ergocalciferol
VitD3 vitamin D3, also called cholecalciferol
VitK vitamin K
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Appendix A

The following search terms were used in PubMed and Web of Science (title and abstract):
“hepatic osteodystrophy” 145 hits
“liver disease” and “bone metabolism” 80 hits
“liver disease” and “osteopenia” 137 hits
“liver disease” and “osteoporosis” 447 hits
“liver disease” and “fractures” 225 hits
“hepatitis” and “bone metabolism” 39 hits
“hepatitis” and “osteopenia” 354 hits
“hepatitis” and “osteoporosis” 340 hits
“hepatitis” and “fractures” 193 hits
“liver fibrosis” or “liver cirrhosis” and “bone metabolism” 48 hits
“liver fibrosis” or “liver cirrhosis” and “osteopenia” 460 hits
“liver fibrosis” or “liver cirrhosis” and “osteoporosis” 375 hits
“liver fibrosis” or “liver cirrhosis” and “fractures” 162 hits

After removal of the duplicates, the manuscripts were screened (abstracts). Only manuscripts available in
German and English were considered for further evaluation. Table 1 comprises studies describing human data on
patients with defined liver diseases (mixed etiologies are not included).
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