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A B S T R A C T

Precise knowledge on the binding sites of an RNA-binding protein (RBP) is key to understanding the complex
post-transcriptional regulation of gene expression. This information can be obtained from individual-nucleotide
resolution UV crosslinking and immunoprecipitation (iCLIP) experiments. Here, we present a complete data
analysis workflow to reliably detect RBP binding sites from iCLIP data. The workflow covers all steps from the
initial quality control of the sequencing reads up to peak calling and quantification of RBP binding. For each tool,
we explain the specific requirements for iCLIP data analysis and suggest optimised parameter settings.

1. Introduction

The precise spatial and temporal regulation of gene expression is
essential for cellular function. Post-transcriptional regulation acts on all
steps of RNA processing, including splicing, 3 end processing, nuclear
export, translation and mRNA decay. Key players are RNA-binding
proteins (RBPs) that determine the fate and function of each transcript
in the cell. Many RBPs recognise their target mRNAs via specific
binding sites, which harbour characteristic RNA sequence motifs and/
or structural RNA folds. A comprehensive knowledge of the binding
sites of a given RBP throughout the transcriptome allows to discover its
RNA binding specificity and to unravel its molecular mode of action.

Starting with UV crosslinking and immunoprecipitation (CLIP) in
2003 [1], a range of high-throughput techniques have been introduced
to identify the in vivo binding sites of an RBP of interest [2]. Mod-
ifications of the protocol include the use of photoreactive ribonucleo-
side analogues (PAR-CLIP) [3] and affinity purification under dena-
turing conditions (CRAC) [4]. By increasing on both resolution and
sensitivity, ‘individual-nucleotide resolution CLIP’ (iCLIP) has proven as
a powerful tool to precisely map and quantify RBP binding sites
throughout the transcriptome [5]. This method achieves nucleotide
resolution on the RBP crosslink sites by capturing cDNAs that truncate
at the crosslinked peptide during reverse transcription (see 1.1 below).
The same truncation principle was adopted in further CLIP variants,

such as ‘enhanced CLIP’ (eCLIP) [6] and ‘infrared-CLIP’ (irCLIP) [7]. In
addition, the iCLIP protocol was evolved to measure N6-methyladeno-
sine (m6A) RNA modifications using ‘m6A iCLIP’ (miCLIP) [8].

1.1. A brief description of the iCLIP experiment

In order to obtain a snapshot of the in vivo RNA binding pattern of
an RBP, the iCLIP experiment initiates with the UV irradiation of living
cells to covalently crosslink immediate contacts between proteins and
nucleic acids (Fig. 1A). A partial RNase digestion is then employed to
restrict the RNA fragment lengths to a defined range. This has to be
carefully optimised, as overdigestion can constrain the detected binding
sites [9]. The crosslinked protein-RNA complexes are then im-
munoprecipitated with a specific antibody against the RBP of interest,
and the RBP is subsequently removed from the RNA by proteinase di-
gestion. Importantly, this leaves a small polypeptide which triggers
truncation of the reverse transcription, thereby inheriting the positional
information of the crosslink site into the resulting cDNAs. The cDNAs
are captured and amplified for high-throughput sequencing (see 1.2
below).

In the new iCLIP2 protocol [38], several steps have been optimised
to improve the quality and complexity of the iCLIP libraries. Bringing
together features of several CLIP variants [6,7], the iCLIP2 library
preparation includes two separate linker ligation reactions, a PCR pre-
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amplification step to minimise sample loss, and bead-based size selec-
tion of the cDNAs. In addition, the barcode sequences have been ex-
tended to account for larger library sizes and increased sequencing
depths (see below).

For more details on the experimental procedure and the improved
library preparation steps in iCLIP2, please refer to [10] and Buchbender
et al. [38].

1.2. The iCLIP read structure

Since reverse transcription truncates at the crosslinked polypeptide
on the RNA, the produced cDNAs start exactly one position downstream
of the crosslinked nucleotide in the RNA. During the iCLIP library pre-
paration, specific linker sequences are ligated to either end of the cDNAs
for high-throughput sequencing (adding a total of 155 nucleotides [nt]
to the cDNAs). The layout preserves the strand information, such that
the sequencing read corresponds to the strand of the bound RNA frag-
ment. The 5 linker additionally harbours a fixed stretch with an ex-
perimental barcode and a bipartite unique molecular identifier (UMI)
sequence, which are the first nucleotides of each sequencing read
(Fig. 1B). The format of this stretch is NNNXXXXNN in the original iCLIP
protocol (where N and X are nucleotides of the UMI and the experi-
mental barcode, respectively), and was extended to NNNNNXXXXXXNNNN
in the iCLIP2 protocol. More details on the oligonucleotide design as
well as a list of recommended barcode sequences with the associated IDs
can be found in [10] and Buchbender et al. [38].

For a standard iCLIP experiment, single-end sequencing with a read
length of 70–100 nt is generally sufficient for capturing the necessary
information.1 Due to the experimental barcode in the read sequence,

several iCLIP libraries can be multiplexed in one sequencing run. The
required read number per sample depends on the expected binding
behaviour of the RBP, including the number of binding sites and the
extent of background binding, the complexity of the cDNA library and
the intended sensitivity for weak binding sites and lowly expressed
transcripts, among others. For instance, for human RBPs binding to
mature mRNAs, good libraries may start from 1 million reads, whereas
at least 10 million reads are advisable for most RBPs binding to pre-
mRNA.

2. Computational requirements

2.1. External software

The iCLIP analysis pipeline uses Linux bash as well as R code for
post-processing, downstream analyses and visualisations. In addition,
the following external tools and dependencies need to be installed
(version numbers in brackets were used for the example described in
this manuscript):

• FastQC (version 0.11.5) [11] (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/)
• FASTX-Toolkit (version 0.0.14) [12] (http://hannonlab.cshl.
edu/fastx_toolkit/)
• seqtk (version 1.3) [13] (https://github.com/lh3/seqtk)
• Flexbar (version 3.4.0) [14] (https://github.com/seqan/flexbar)
• STAR (version 2.5.4b) [15] (https://github.com/alexdobin/STAR)
• UMI-tools (version 0.5.5) [16] (https://github.com/
CGATOxford/UMI-tools)
• SAMtools (version 1.5) [17] (https://github.com/samtools/
samtools)
• BEDTools (version 2.27.1) [18] (https://github.com/arq5x/
bedtools2)
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Fig. 1. Overview of the iCLIP experiment (A) Experimental workflow. UV irradiation of living cells covalently crosslinks proteins and nucleic acids in immediate
contact. Upon cell lysis, a partial RNase digestion shortens the RNA molecules, followed by immunoprecipitation of the crosslinked protein-RNA complexes.
Proteinase K digestion leaves a small peptide at the crosslink site, which results in truncation of reverse transcription. The resulting cDNAs are captured and subjected
to high-throughput sequencing. (B) Structure of an iCLIP read. The read starts with a fixed stretch harbouring the bipartide UMI and the experimental barcode
(NNNXXXXNN layout from the original iCLIP protocol). The 9-nt barcode and UMI stretch at the read starts as well as potential adapter sequences at read ends need to
be trimmed before mapping.

1 A possible exception are RBPs that are expected to bind within repetitive
regions, for which longer reads or paired-end sequencing may increase the
chance for unique mapping.
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• kentUtils (version v365) [19] (https://github.com/ENCODE-
DCC/kentUtils)
• iCLIPro (version 0.1.1) [20] (http://www.biolab.si/iCLIPro/doc/)
• PureCLIP (version 1.3.0) [21] (https://github.com/skrakau/
PureCLIP)
• R (version 3.5.1) [22] (https://www.R-project.org/)
• R package GenomicRanges (version 1.34.0) [23] (https://www.
bioconductor.org/packages/release/bioc/html/GenomicRanges.
html)
• R package rtracklayer (version 1.42.1) [24] (https://www.
bioconductor.org/packages/release/bioc/html/rtracklayer.html)
• R package ggplot2 (version 3.1.0) [25] (https://ggplot2.tidyverse.
org/)

In addition to the stand-alone versions, most tools have been in-
tegrated into the European Galaxy server (https://usegalaxy.eu/) [26].

2.2. Memory requirements

The provided Linux bash and R code as well as all external tools
mentioned in Section 2.1 generally run on any Unix/Linux distribution.
For all processing steps until peak calling (Chapters 3-4), our example
code was run on a Debian GNU/Linux 9 distribution on a server with 64
cores / 128 threads, dual AMD EPYC 7501 processor and 1024 GB of
main memory. Depending on the species/genome used for the experi-
ments, STAR might need a substantial amount of RAM to map the iCLIP
reads (e.g. ~48 GB in the case of human data). Besides, extracting good
quality reads might also become RAM-consuming if the data set is large,
i.e. 300 million reads or more.

2.3. Code and data availability

The code in this manuscript is available in separate script files in
Supplementary Data 1 (bash code) and Supplementary Data 2 and 3
(R code). As a showcase example to demonstrate the pipeline, we used a
previously published iCLIP dataset for the splicing factor U2AF2 (also
known as U2AF65)[27]. The demultiplexed fastq files of the four
replicates are available in GEO under the accession numbers

GSM2650195, GSM2650196, GSM2650197 and GSM2650198.

3. Basic read processing

This section describes all steps from the raw sequencing reads to
genomic mapping and for collecting several statistics and quality
checks. An overview of the pipeline is shown in Fig. 2. The code for all
steps in this chapter can be found in Supplementary Data 1.

3.1. Settings

Before starting the analysis, a number of parameters need to be
defined:

• barcodes.fasta: A fasta file of barcode sequences that were
used in the experiment. Each barcode consists of the two UMIs
flanking the experimental barcode, such as:
> sample1
NNNGGTTNN

• adapter.seq: Sequence of the 3 adapter that was used for iCLIP
library preparation. Usually AGATCGGAAGAGCGGTTCAG. For details,
see [10] and Buchbender et al. [38].
• (x,y,z): Symbols to denote the lengths of the UMI and experimental
barcode regions in the following descriptions (x= length of the first
UMI segment, y = length of the experimental barcode, z = length
of the second UMI segment).
• readLength: Read length from high-throughput sequencing.
• minReadLength: Minimum length to retain reads after trimming.
Usually set to 15 nt.
• maxReadLength: Maximum possible read length after trimming.
Equals to read length minus UMI and experimental barcode regions
(readLength - (x + y + z)).
• minBaseQuality: Minimum quality (Phred score per base) in the
barcode region to ensure high confidence for demultiplexing and
deduplication. Often set to 10.
• genomeMappingIndex: STAR genome index specific to the or-
ganism used in the experiment.
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Fig. 2. Analysis overview. Workflow summarising the processing (grey) and quality control (QC, white) steps together with the major file types produced (orange).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Quality control

3.2.1. General quality check
The starting point of the pipeline is a file of sequencing reads in

fastq file format (or in a compacted version as fastq.gz), which
includes the reads of all samples that were multiplexed in the sequen-
cing run. The quality of the sequencing run can be checked using
FastQC [11]:

fastqc ––extract ––nogroup ––outdir <outdir>
<data.fastq.gz>

Among the quality measures reported by FastQC, we mainly focus
on Per Base Sequence Quality and Per Base Sequence Content:

• Especially for longer reads, the Per Base Sequence Quality (Phred
score) can drop towards the end of the reads. In case of extremely
low qualities, we recommend trimming the 3 ends of reads.
• The Per Base Sequence Content over all iCLIP reads shows the UMI
(here positions 1-3 and 8-9) and the experimental barcode (here
positions 4-7; Fig. 3). The pattern from position 10 onward reflects
the RNA binding preference of the RBP, and consequently varies
between the studied proteins. Keep in mind that because this picture
looks different from standard RNA-sequencing data, FastQC might
red-flag some of its checks, but these failed check are not necessarily
meaningful in the context of iCLIP data.

3.2.2. Quality filter on the barcode region
If no major problems are reported by FastQC, the reads are filtered

for a minimum quality in the barcode region (see 1.2). We explicitly
filter for the quality in this region, since sequencing errors in the ex-
perimental barcode can result in a misassignment of reads between li-
braries of a multiplexed sequencing run. Since the quality filter is only
applied to a defined segment of the reads, this step has to be customised
by either using bash commands or a combination of tools as follows:

First, fastx_trimmer of the FASTX-Toolkit [12] can be used to
trim the reads to the barcode region of length barcodeLength
= + +x y z . Using fastq_quality_filter of the FASTX-Toolkit,
these barcode regions are only kept if all positions (-p 100) have a
minimum Phred score of minBaseQuality (typically set to 10). Using
a short bash command, the IDs of the retained sequences are written to
a temporary file tmp/data.qualFilteredIDs.list.

zcat <data.fastq.gz>|
fastx_trimmer -l barcodeLength |
fastq_quality_filter -q minBaseQuality -p 100 |
awk 'FNR%4==1{print$1}' | sed 's/@//'>
<tmp/data.qualFilteredIDs.list>

Based on the read IDs, seqtk subseq [13] is used to extract the
respective reads (in complete length) from the original data file
data.fastq.gz. Depending on the sequencing platform used, read
IDs may contain whitespaces or other special characters which will
results in truncation of the IDs during mapping. In order to circumvent
this, these need to be removed. In our example, we replace whitespaces
and slashes by # using sed.

seqtk subseq<data.fastz.gz>
<tmp/data.qualFilteredIDs.list>|
sed 's/ /#/g; s/\//#/g' | gzip>
<data.filtered.fastq.gz>

Optionally, the result of the quality filter can be checked by re-
running FastQC.

3.2.3. Barcode frequencies
In order to assess the relative abundance of all samples and to check

for potential contamination, all experimental barcodes are extracted
from the full data set. Based on the length x of the first UMI segment
and the length y of the experimental barcode, the following bash code
returns all occurring y-mers in the positions of the experimental bar-
code, sorted by their frequency.

zcat<data.filtered.fastq.gz>|
awk -v umi1_len=x -v exp_bc_len=y '{if (FNR%4==2)
print substr($1,(umi1_len+1),exp_bc_len)}' | sort |
uniq -c | sort -k1,1rn> <exp_barcodes.detected>

We recommend to check that all expected barcodes appear among
the top hits and to ensure that no additional barcodes are over-
represented. To this end, we visualise the frequency of twice as many
barcodes as have been multiplexed in the sequencing run (here: 2 *
#expectedBarcodes= 8; Fig. 4A). Similarly, barplots can be used to
show the frequency of all unexpected barcodes and their shortest
Hamming distance to any of the expected barcodes (Fig. 4B). In an
uncontaminated iCLIP library, the expected barcodes commonly out-
number the other possible barcodes by at least 10fold. The most fre-
quently occurring unexpected barcodes usually differ in just one posi-
tion (Hamming distance = 1), most likely arising from amplification or
sequencing errors in the barcode region.

All unexpected barcodes will be removed during demultiplexing
(see Section 3.3). Nonetheless, it is important to follow up on the source
of contamination and if applicable, to take counteractive measures. An
effective intervention to avoid carry-over between experiments is a
strict spatial separation, ideally in distinct rooms, of pre- and post-
amplification steps during iCLIP library preparation [10]. At later
stages, technical problems, such as high error rates in the first cycles of
sequencing, can also impair the accuracy of the barcode readout.

3.3. Demultiplexing, adapter and barcode trimming

Following initial quality control and quality filtering, demultiplexing
and adapter trimming are performed on the quality-filtered data using
Flexbar [14]. In addition to separating the reads of the different samples,
this step extracts the barcode region from the 5 end of the reads
(––barcode-trim-end LTAIL), and trims adapters from the 3 end if
present (––adapter-trim-end RIGHT). We recommend not allowing any
mismatches for barcode matching (set by ––barcode-error-rate 0),
while an error rate of 0.1 is acceptable for trimming adapter
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(––adapter-seq adapter.seq ––adapter-error-rate 0.1). In
order to remove all adapter traces, even if only the very first nucleo-
tides of them were sequenced, we commonly require just 1 nt of
overlap between the read 3 end and the beginning of the adapter
(––adapter-min-overlap 1). Since very short sequences are likely
to overlap by chance, this stringent setting means that many reads will be
trimmed by a few extra bases, but ensures that even the shortest remaining
adapter fragments are trimmed off. Only trimmed reads with a remaining
length of at least minReadLength are kept for further analysis.

Demultiplexing, adapter trimming and barcode removal can either
be done separately or in one step. For the latter, we commonly use
Flexbar with the following parameters:

flexbar -r <data.filtered.fastq.gz>
––zip-output GZ
––barcodes barcodes.fasta
––barcode-unassigned
––barcode-trim-end LTAIL
––barcode-error-rate 0
––adapter-seq adapter.seq
––adapter-trim-end RIGHT
––adapter-error-rate 0.1
––adapter-min-overlap 1
––min-read-length minReadLength
––umi-tags

Using this command, data.filtered.fastq.gz is split into sepa-
rate fastq files based on the barcodes and sample names specified in
barcodes.fasta. The log output will report the number of reads as-
signed to each sample, the number of unassigned reads as well as the
number of reads removed after adapter trimming due to the
minReadLength cutoff. Reads not assigned to any barcode will be
written to a separate file if ––barcode-unassigned is specified.
––umi-tags captures the UMI sequence (defined as N positions in
barcodes.fasta) and adds it to the ID of each read. This allows to
preserve the UMI information during genomic mapping, as it is required
for the subsequent deduplication step, i.e. the removal of
PCR duplicates.

As mentioned in Section 3.2.2, whitespaces and other special characters
can lead to truncation of the read IDs during mapping and should therefore
be removed before. In the case that read IDs should remain unchanged, the
fastq.gz files after Flexbar demultiplexing can be re-processed to bring
the UMIs forward within the read IDs. A bash and awk code implementing
this optional step can be found in the Supplementary material.

Following demultiplexing and trimming, we recommend running
FastQC again to make sure that all samples contain reads of sufficient
quality. Furthermore, the length distribution of the reads in each
sample can be checked using tools of the FASTX-Toolkit as follows:

1. Transform fastq files of all samples into fasta files:
zcat<sampleX.fastq.gz>| fastq_to_fasta -n -r |
gzip><sampleX.fasta.gz>

2. Create a histogram of the length distribution using fasta files:
fasta_clipping_histogram.pl<sampleX.fasta.gz>
<sampleX.readlength.png>

Alternatively, running Flexbar with parameter ––length-dist
returns a tab-delimited text file of the read length distribution for each
sample. This can be used in R to produce similar custom-made plots as
shown in Fig. 5.

3.4. Genomic mapping

After demultiplexing, the individual fastq files for each sample
are mapped to a reference genome. Here, we used
GRCh38.p7.genome.fa, downloaded from ftp://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_human/release_25/GRCh38.p7.genome.
fa.gz. We suggest to use the splice-aware alignment software STAR [15]
for genomic mapping. A gene annotation file annotation.gtf can be
provided optionally using options ––sjdbGTFfile and ––sjdbOverhang.
Here, gencode.v25.chr_patch_hapl_scaff.annotation.gtf was
used and downloaded from ftp://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode_human/release_25/gencode.v25.chr_patch_hapl_scaff.annotation.
gtf.gz. For details on available parameters, see the STAR user manual. Most
importantly, soft-clipping has to be turned off on the 5 end of reads
(––alignEndsType Extend5pOfRead1). This is essential to preserve
the information on the crosslinked nucleotide in the bound RNA, which
corresponds precisely to the position upstream of the start of the iCLIP
cDNA.

Following the ENCODE [28] standard option for RNA sequencing
(as specified in the STAR user manual), we recommend allowing up to
4% mismatched bases (––outFilterMismatchNoverReadLmax
0.04 ––outFilterMismatchNmax 999). Furthermore, only
uniquely mapped reads2 are kept for further analyses
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Fig. 4. Frequency of y-mers in the position of the experimental barcode. Assuming #expectedBarcodes is the number of expected experimental barcodes, (A)
shows the 2 * #expectedBarcodes most frequently found experimental barcodes, while (B) shows all remaining experimental barcodes. The dashed line indicates
the average frequency of all experimental barcodes, colours indicate the shortest Hamming distance to the expected barcodes.

2 A common practice for multi-mapping reads is to assign them randomly to
one of the possible locations. This impairs accurate duplicate removal based on
UMIs. We therefore restrict all analyses to uniquely mapping reads.
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(––outFilterMultimapNmax 1). The fraction of uniquely mappable
reads depends on the organism as well as the RBP of interest, i.e. the
sequence composition of typical binding regions of this protein. For a
human RBP binding to non-repetitive regions, unique mapping rates of
80 90% are good to excellent, whereas rates below 70% are considered
poor.

An example STAR call is as follows:

STAR ––runMode alignReads
––genomeDir genomeMappingIndex
––outFilterMismatchNoverReadLmax 0.04
––outFilterMismatchNmax 999
––outFilterMultimapNmax 1
––alignEndsType Extend5pOfRead1
––sjdbGTFfile annotation.gtf
––sjdbOverhang maxReadLength-1
––outReadsUnmapped Fastx
––outSJfilterReads Unique
––readFilesCommand zcat
––outSAMtype BAM SortedByCoordinate
––readFilesIn<sampleX.fastq.gz>

By default, the output will be written to
Aligned.sortedByCoord.out.bam. For simplicity, we will rename
this file to sampleX.bam. The mapping statistics for all samples can be
visualised as shown in Fig. 6.

4. Conversion into crosslink events

4.1. Duplicate removal (deduplication)

Due to the PCR amplification during iCLIP library preparation and the
limiting amounts of starting material, technical duplicates can make up a
substantial fraction of iCLIP datasets and need to be removed. A sequencing
read is considered a technical duplicate of another read if they map to the
same coordinates in the genome and harbour identical UMIs. In this case,
they most likely originate from the same co-purified RNA fragment and
have been multiplied during the PCR reaction. In contrast, two reads are
counted as independent crosslink events (‘biological duplicates’) if they map
to the same location, but have different UMIs. Alternative approaches to
remove duplicates already at the fastq level are inferior, since sequence
variations from PCR or sequencing errors will be masked [29].

We suggest removing technical duplicates using UMI-tools [16]:

umi_tools dedup -I<sampleX.bam>
-L<sampleX.duprm.log>
-S<sampleX.duprm.bam>
––extract-umi-method read_id
––method unique

UMI-tools will use the input file sampleX.bam and its corre-
sponding index file sampleX.bam.bai and write the output without
technical duplicates to sampleX.duprm.bam. The index file
sampleX.bam.bai can easily be prepared using SAMtools [17]:

samtools index <sampleX.bam>

By setting the option ––extract-umi-method read_id, UMI-tools
will look for the UMI in the read ID. The parameter ––method defines
which reads are considered duplicates. ––method directional
identifies clusters of connected UMIs (based on Hamming distance),
while ––method unique only collapses duplicate reads with identical
UMIs. While ––method directional is UMI-tools’s default
method to define duplicates, it may lead to wrong assignments and
excess removal. For instance, very high-complexity iCLIP libraries
may contain hardly any duplicates and, thus, closely connected UMIs

occur with low but similar frequencies. In this case, only collapsing
reads with identical UMIs will be beneficial. In contrast, highly over-
amplified libraries might benefit from the use of the directional
duplicate removal. Generally, if the libraries are not strongly over-
amplified, we recommend ––method unique to avoid incorrect du-
plicate removal. In the example used throughout the manuscript,
––method directional was used. See the UMI-tools user manual
for more details and Section 4.3.1 for the expected number of dupli-
cates. The code for this and all following steps in this chapter can be
found in Supplementary Data 1.

4.2. Extraction of crosslinked nucleotides

After genomic mapping and deduplication, the mapped reads are
transformed into crosslink events. As outlined above, the iCLIP se-
quencing reads start precisely at the position where the cDNAs trun-
cated during reverse transcription (see 1.2). Unlike for other types of
RNA sequencing, we therefore want to retain only the position up-
stream of the 5 end of the reads (referred to as ‘crosslinked nucleotide’).

In order to perform this transformation with standard tools, we
propose the following workflow: First, the bam files are converted to
bed files3 using bedtools bamtobed of the BEDTools suit [18]. The
bed files are then shifted by one base pair into 5 direction, such that
afterwards only the 5 position of the new intervals can be extracted and
piled up. The shift can be performed using bedtools shift, while the
subsequent extraction and pile-up of the 5 ends of the intervals can be
done using bedtools genomecov. The latter needs to be run sepa-
rately for each strand.

The described procedure outputs the crosslink events as coverage
tracks, which specify the number of crosslink events on each cross-
linked nucleotide along the genome. These are stored e.g. in bedgraph
file format. If wanted, the bedgraph coverage files can be further
normalised to the overall library size (e.g. reads per million [RPM]) by
providing a scaling factor to bedtools genomecov.

For some of the steps, a file of chromosome sizes is needed, with at
least two columns specifying the chromosome name and its length.
Such a file, named genome.fasta.fai, can easily be prepared using
SAMtools [17] on the genome fasta file:

samtools faidx <genome.fasta>

co
un

ts
 (

10
7 )

0

0.5

1.0

1.5

<
 1

5 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

read length

sample1

Fig. 5. Read length distribution after trimming. In an ideal experiment, the
majority of reads are still full-length, i.e. they did not contain adapter sequence
and hence were not shortened during trimming.

3 When inspecting the files, please keep in mind that bed and bedgraph files
are UCSC file formats which represent genomic coordinates as 0-based half-
open intervals. In contrast, sam files, the human-readable version of bam files,
use 1-based closed intervals. For more information on the UCSC file formats, see
https://genome.ucsc.edu/FAQ/FAQformat.html.
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Alternatively, a file of chromosome sizes is generated automatically
when creating the STAR index. Its default name is
chrNameLength.txt. In the following, we will refer to the file of
chromosome sizes by chromo.sizes.

The following code implements the workflow described above:

1. Convert all read locations to intervals in bed file format:

bedtools bamtobed -i<sampleX.duprm.bam>>
<sampleX.bed>

2. Shift intervals depending on the strand by 1 bp upstream:

bedtools shift -m 1 -p -1 -i <sampleX.bed>
-g <chromo.sizes>><sampleX.shifted.bed>

3. Extract the 5 end of the shifted intervals and pile up into coverage
track in bedgraph file format (separately for each strand)

bedtools genomecov -bg -strand + -5
-i<sampleX.shifted.bed>
-g<chromo.sizes>>
<sampleX.plus.bedgraph>

bedtools genomecov -bg -strand - -5
-i<sampleX.shifted.bed>
-g<chromo.sizes>>
<sampleX.minus.bedgraph>

4. For RPM-normalised coverage tracks, use additional parameter
-scale with 1,000,000/#mappedReads, where #mappedReads is
the total number of mapped reads in a given sample remaining after
duplicate removal.

5. Optionally, the bedgraph files can be converted to bw files using
bedGraphToBigWig of the kentUtils suite [19]:

bedGraphToBigWig <sampleX.strand.bedgraph>
<chromo.sizes><sampleX.strand.bw>

Depending on the system and the version of bedGraphToBigWig,
it might be necessary to sort the bedgraph files before converting
them to bw files. This can be done with the following commands:

export LC_COLLATE=C
sort -k1,1 -k2,2n<sampleX.strand.bedgraph>>
<sampleX.strand.sorted.bedgraph>

4.3. Diagnostic plots and measures of library complexity

4.3.1. Summary of duplicate removal
The amount of technical PCR duplicates removed during dedupli-

cation reflects the quality of an iCLIP library and may inform on po-
tential overamplification.

The following metrics inform on library complexity (visualised in
Fig. 7):

• Number of uniquely mapped reads, which can be extracted from the
STAR [15] log files.
• Number of crosslink events, i.e. reads after duplicate removal:

cat<sampleX.plus.bedgraph>
<sampleX.minus.bedgraph>|
awk 'BEGIN{totalcount=0}{totalcount+=(($3-$2)*$4)}

END{print totalcount}‘

• Number of crosslinked nucleotides, i.e. positions harbouring cross-
linked nucleotides (if both strands are covered, count as 2):

cat<sampleX.plus.bedgraph>
<sampleX.minus.bedgraph>|
awk 'BEGIN{totalpos=0}{totalpos+=($3-$2)}

END{print totalpos}'

• Number of stacked crosslink events, i.e. crosslink events on positions
with >1 crosslink event:

cat<sampleX.plus.bedgraph>
<sampleX.minus.bedgraph>|
awk 'BEGIN{totalstackedcount=0}

{if($4>1) totalstackedcount+=(($3-$2)*$4)}
END{print totalstackedcount}'

• Number of nucleotides with stacked crosslink events, i.e. positions
with >1 crosslink event:

cat<sampleX.plus.bedgraph>
<sampleX.minus.bedgraph>|
awk 'BEGIN{totalstackedpos=0}

{if($4>1) totalstackedpos+=($3-$2)}
END{print totalstackedpos}'

The numbers of uniquely mapped reads and crosslink events can be
used to calculate the removed reads, i.e. the number of technical PCR
duplicates. Often, this is given as a percentage of all uniquely mapped
reads. In the example shown in Fig. 7, the percentage of removed PCR
duplicates is between 17% and 25%.

When looking at different iCLIP libraries, we find strong variations in
the duplication level. Nonetheless, whether to discard a library usually de-
pends on the studied protein and the intended downstream analyses. Even if
the majority of reads consists of PCR duplicates, an iCLIP sample can still
capture the binding behaviour of an RBPwell if sufficient reads remain. This
is exemplified in a comparison of U2AF2 iCLIP signal at 3 splice sites based
on three different iCLIP datasets [27,30] with broad differences in dupli-
cation level (<25% to 70%) and read numbers after duplicate removal (18
million to 72 million reads; see Fig. 13C below).

4.3.2. Reads with insertions and deletions
The iCLIP protocol relies on truncation of the reverse transcription

reaction which is predominant under standard conditions [31,2]. In the
case of residual read-through events, the resulting reads often contain
crosslink-induced mutations (CIMS) at the site of protein-RNA cross-
linking, mainly in the form of insertions and deletions [32]. Although
the real number of read-through reads cannot be determined, the
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frequency of insertions/deletions in the uniquely mapped reads can be
used as a proxy to compare the incidence of read-through between
iCLIP libraries (Fig. 8).

In the following code example, insertions or deletions are counted
with bash commands from the CIGAR strings in the sam files. The
latter are created from sampleX.duprm.bam using SAMtools:

samtools view <sampleX.duprm.bam>
-o <sampleX.duprm.sam>

• Number of reads mapped with deletions:
cut -f6 <sampleX.duprm.sam> | grep D | wc -l

• Number of reads mapped with insertions:
cut -f6 <sampleX.duprm.sam> | grep I | wc -l

4.3.3. iCLIPro analysis
A typical iCLIP experiment will result in the detection of RNA

fragments of different lengths. The general assumption is that the se-
quencing reads accumulate downstream of the crosslink site [5], irre-
spective of the individual length of the underlying RNA fragment.
However, previous studies found that for some iCLIP libraries, this in-
terpretation may not hold, such as in case of substantial read-through or
RNase overdigestion [20,9]. In the latter situation, sequence constraints
of the employed RNases may result in an increased accumulation of
read ends in certain positions. As a consequence, if certain read lengths
are underrepresented in the library, this results in an incomplete cov-
erage of the associated binding sites. In this case, repeating the

experiment to obtain a new iCLIP library is advisable.
The tool iCLIPro [20] can be used to detect coinciding read starts,

centres or ends with respect to different fragment lengths. For a detailed
description of the tool, please see [20]. Assuming a minimal read length
of 15 nt and a maximal read length of 20 nt, a possible call of iCLIPro
is as follows (keep in mind, while 15 nt is often set as minimal read
length, a maximal read length of 20 nt is rather short and just used here
for simplicity):

iCLIPro -r 50 -b 300 -f 30 -g "L15:15,L16:16,L17:17,
L18:18,L19:19,R:20" -p "L15-R,L16-R,L17-R,L18-R,
L19-R" -o <outdir> <sampleX.duprm.bam>

An example iCLIPro output is shown in Supplementary Fig. 1.
Moreover, the same U2AF2 iCLIP dataset that we used in our present
manuscript is shown in Fig. 4C of Hauer et al. [20] as an example of a
‘good’ dataset and compared to other datasets with apparent biases.

5. Identification of RBP binding sites

A key step in iCLIP data analysis is the identification of bona fide
RBP binding sites from the observed crosslink events. Substantial
challenges arise from the strong dependence of the iCLIP signals on the
underlying transcript abundance, which can range over several orders
of magnitude. Moreover, datasets are prone to variable noise levels,
which are influenced by the RNA binding behaviour of the studied RBP,
but also by technical aspects, such as the efficiency of the
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immunoprecipitation. Once the RBP binding sites are defined, it is
critical to correct for these biases to allow for a quantification of RBP
binding (see Chapter 7). It is important to keep in mind that a clear
definition of binding sites may not always be the best way to proceed,
for instance for RBPs that show a widespread, promiscuous RNA
binding [33]. This may also hold true for particularly noisy datasets,
e.g. due to insufficient antibody specificity. In such cases, an analysis at
the level of total crosslink events could be considered, such as testing
the distribution of crosslink events across different transcript regions or
relative to specific functional transcript positions, such as splice sites.

As a first step, we identify sites with significant crosslink signal in
the iCLIP data, also known as ‘peak calling’. The most common strategy
is to fit a probability distribution to the crosslink event counts (e.g. a
Poisson or negative binomial distribution) to identify sites that arise
above the background signal with at least a given significance level (for
more details on approaches and considerations, see a recent review by
Chakrabarti et al. [29]). Various tools are available to perform peak
calling on different types of CLIP data. Among these, CLIPper [34] was
developed for the publicly available eCLIP datasets from the ENCODE
consortium. In the following section, we use PureCLIP [21] which
specifically models the characteristics and intrinsic biases of the trun-
cation-based iCLIP and eCLIP data.

5.1. Peak calling with PureCLIP

In order to reliably detect positions with significant crosslink signal,
PureCLIP trains a hidden Markov model based on the diagnostic
truncation sites, i.e. the crosslink sites, and the complete RBP-bound
fragments. In order to correct for UV crosslinking biases, the model
allows to incorporate crosslink-associated motifs which preferentially
respond to UV irradiation and thereby often lead to false-positives [9].
In its latest version 1.3, PureCLIP also works with two replicate ex-
periments.

PureCLIP takes as input the bam file of the deduplicated reads and the
associated bai index file. The latter can be prepared using SAMtools [17]
as described in Chapter 4.1. In order to boost the sensitivity of peak de-
tection, we commonly merge replicate experiments for the peak calling step
[30,35] (and subsequently separate them again to assess reproducibility, see
Section 6.1). Since the latest PureCLIP version 1.3 allows two replicates,
the data can be pooled to two larger datasets of roughly equal size. bam files
can be combined using

samtools merge -f <merged.bam>
-b<list_of_bam_files>

In addition, PureCLIP requires a genome.fasta file of the re-
ference genome. Option -ld allows for higher precision to compute
emission probabilities with the drawback of higher memory consump-
tion (and run time).

As output, PureCLIP provides individual ‘crosslink sites’, i.e. positions
with enriched crosslink events. Since RBPs rarely bind to isolated nucleo-
tides, adjacent crosslink sites within a certain distance (option -nt; default:
8 nt) are further merged into ‘binding regions’. The parameters -o (here:

-o PureCLIP.crosslink_sites.bed) and -or (here: -or
PureCLIP.crosslink_regions.bed) specify the names of the output
files for individual ‘crosslink sites’ and ‘binding regions’.

PureCLIP can be run with the following command:

pureclip -i<merged.bam>
-bai<merged.bam.bai>
-g<genome.fasta>
-ld -nt 8
-o<PureCLIP.crosslink_sites.bed>
-or<PureCLIP.crosslink_regions.bed>

5.2. Postprocessing of binding sites

As mentioned above, PureCLIP merges adjacent crosslink sites
within a certain distance into binding regions. It is anticipated that the
width of these binding regions reflects the RNA binding footprint of the
studied RBP. However, widths can vary considerably between different
binding regions, which can impair their comparability in downstream
analyses. For many applications, it is therefore advisable to resize the
binding regions to obtain binding sites of a uniform width. The chosen
width depends on the expected width of the RBP’s footprint, which
often relies on prior knowledge, such as the type of RNA binding do-
mains. Estimates can also be deduced from the data, e.g. based on visual
inspection of the RBP crosslink events in the genome browser, the
spread of crosslink events around the maxima of the binding regions or
the local k-mer enrichment (Fig. 9A,B). In the case of U2AF2, we
decided for 9-nt binding sites (i.e. 4 nt on either side of the summit
position), which could accommodate the two adjacent RRM binding
events [30].

In order to obtain equal-sized RBP binding sites, we suggest the
following postprocessing steps. The code to perform the described
procedure is detailed in Supplementary Data 2.

1. Starting from the PureCLIP output, the crosslink sites, i.e. positions
with enriched crosslink events, are first clustered into regions. The
maximum distance between crosslink sites to be clustered together into
one region is chosen such that no binding sites will overlap after
resizing. Practically, in our example, this means that when crosslink
sites will later be extended by 4 nt to either side to obtain 9-nt binding
sites, clustering together all crosslink sites with a distance 8 nt en-
sures that binding sites after resizing can touch but not overlap
(reduce(peaks_sc, min.gapwidth=8), see Supplementary Data 2).

2. Next, all regions shorter than 3 nt are removed with the intention to
focus on binding sites with substantial signal over a minimum
genomic region.

3. In the following step, equal-sized binding sites are assured by (i)
extending too short binding sites and (ii) decomposing too long
binding sites:
• Binding sites which are too short after merging ( 8 nt) are centred
on the position with the maximum signal and extended by 4 nt to
either side of the maximum.
• Binding sites which already have the correct width (9 nt) are
centred on the position with the maximum signal.
• Binding sites which are too long after merging (>9 nt) are split up
into disjunctive binding sites of width 9 nt, such that binding sites
with the highest summit signal are chosen first. We iteratively
place all possible non-overlapping binding sites of width 9 nt,
whose centre position is contained in the merged region.

4. Finally, we require at least three positions with crosslink signal
within one binding site to assure sufficient support of the binding
site.

In our example, peak calling with PureCLIP followed by the described
postprocessing steps yielded a total of 358,747 U2AF2 binding sites. An
example region with the U2AF2 crosslink events in the four replicate
experiments, the PureCLIP output and the derived U2AF2 binding
sites after postprocessing is shown in Fig. 9C.

6. Downstream analyses

This chapter describes common downstream analyses of the com-
puted RBP binding sites, including the reproducibility between re-
plicate experiments and the assignment to transcript regions. Example
code for the major steps is provided in Supplementary Data 3.
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6.1. Reproducibility of binding sites

As outlined in Chapter 5, we identify the binding sites based on the
merge of all replicates to augment the signal for peak calling and
postprocessing. This is followed up by a reproducibility filter to ensure
that each binding site is sufficiently supported in the individual re-
plicates. To this end, we compare the number of crosslink events that
fall within a given binding site in each replicates in a quantitative
manner (see below). As an alternative strategy to test the reproduci-
bility of the identified binding sites, peak calling can also be performed
separately on each replicate and the results then intersected in a qua-
litative comparison [29].

For implementation of the quantitative approach, we recommend
the following procedure:

• Peak calling is performed on the merged signal from all replicates to
increase the sensitivity, as described in Chapter 5.
• For each binding site, the number of crosslink events per replicate is
determined. For a good-quality replicate, the resulting count data
typically approximate a negative-binomial distribution (Fig. 10). In
the case of low-quality replicates, the distribution will be skewed
towards lower count values.
• In order to integrate replicates of varying size, we determine the
required minimum number of crosslink events individually for each
replicate. The replicate-specific threshold is chosen based on a given
percentile in the distribution of crosslink counts within the binding
sites (Fig. 10A). In the present example, we used the count

corresponding to the 10% percentile, meaning that only binding
sites with the 90% highest signal enter from each replicate. More
stringent thresholds are highlighted for comparison. We additionally
applied a lower boundary to ensure that the determined threshold
does not drop below a certain value (here: two crosslink events)
even in low-read replicates, for which the 10% quantile would
overestimate the signal.
• Finally, the minimum level of support that is demanded for a given
binding site can be set depending on the number of available re-
plicates and the stringency requirement of the study. In the present
example, a binding site was deemed reproducible if the respective
thresholds were met in at least three out of four replicates.

In our example, the reproducibility filter removed a total of 15.1%
of the initially computed binding sites (54,340 out of 358,747;
Fig. 10B).

6.2. Annotation of genes and transcript regions

6.2.1. Gene assignment
Once the RBP binding sites are accurately defined, they are typically

overlapped with existing gene annotations. It is important to note that
depending on the source, annotations can differ in scope and reliability.
For instance, ENSEMBL/GENCODE reports the full spectrum of putative
isoforms [36], whereas NCBI RefSeq annotation provides a manually
curated selection of transcripts [37]. In order to minimise redundancies,
it can be useful to filter the annotations prior to any analysis. Here, we
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use gene annotations from GENCODE on the human genome that were
filtered for gene support level 2 and a transcript support level 3
(Supplementary Data 3).

Next, the RBP binding sites are overlaid with the filtered gene an-
notations to assign each binding site to its host gene. Binding sites that
do not overlap with any gene are defined as ‘intergenic’. Due to the
width of the binding sites and adjacent or overlapping annotations,
binding sites can overlap with more than one gene. This can be resolved
by several means. In a conservative approach, these binding sites are
assigned to an additional category ‘ambiguous’ or completely removed.
Alternatively, a predefined hierarchy can be applied, such that for in-
stance, protein-coding genes are prioritised over non-coding RNA
genes. However, care needs to be taken when deciding on these rules
e.g. based on the expected behaviour of the studied RBP, as the choice
can skew the resulting distribution. In the present example, overlapping
annotations were not prevalent, and thus, we simply removed those
binding sites.

Following the unique assignment of binding sites to distinct genes,
we can visualise the target spectrum of the studied RBP (Fig. 11). In our
case, we observed that U2AF2 mainly binds to protein-coding genes.

6.2.2. Assignment to transcript regions
The annotations for most transcripts discriminate between introns

and exons. In the case of protein-coding genes, the latter are further
divided into 5 untranslated region (UTR), coding sequence and 3 UTR.
In many cases, the transcript region that is preferentially bound by an
RBP hints to its potential function. For instance, a binding preference
within introns is compatible with a role in pre-mRNA processing, while
many translational regulators bind in the 3 UTRs of their target mRNAs.

In more complex organisms like human, the majority of pre-mRNAs
are alternatively spliced into multiple transcript isoforms. In most cases,
it is difficult to trace back which transcript isoform was harbouring the
RBP binding site. In a simplified approach, the binding sites are com-
monly assigned to distinct transcript regions. For this task, overlapping
annotations need to be resolved. One solution is to choose a single

reference isoform for each gene, such as the longest processed transcript
or the most highly expressed according to orthogonal RNA-Seq data. If
more than one transcript are considered per gene, ambiguous categories
or hierarchies can be used, as before.

In our example, we follow a majority vote-based approach, such
that a binding site is assigned to the type of transcript region that was
most often overlapping. In the case of ties, we apply a hierarchy based
on the most prevalent transcript regions. Using this approach, a total of
266,751 binding sites within protein-coding genes could be assigned to
a specific transcript region in our example (Fig. 12).

7. Estimation of binding site strength

The iCLIP signal is proportional to the binding site strength, but also
to the abundance of the underlying transcript. It is therefore immanent
to account for expression differences when comparing between binding
sites. One possibility is to use orthogonal information from RNA-Seq
data, which are commonly used to measure gene expression. The suit-
ability of these data depends on the RBP of interest. For instance,
poly(A)+ RNA-seq usually works well for cytoplasmic RBPs, whereas
for a splicing regulator like U2AF2, neither poly(A)+ nor total
RNA-Seq accurately informs about intronic regions in pre-mRNAs.

We suggest an alternative approach, in which the background iCLIP
signal in the surrounding transcript region is taken as an expression
proxy. The underlying assumption is that the dispersed background
signal reflects low-affinity binding which should be largely invariant
between transcripts and therefore scale with the underlying transcript
abundance. Thus, the iCLIP signal in the binding site is normalised to
this background signal to obtain the ‘signal-to-background ratio’ (SBR).

The SBR procedure critically depends on the choice of the region
that is used to calculate the background signal. For instance, since in-
trons and exons have a very different half-life in the cell, the back-
ground region should not cross exon-intron boundaries. Moreover, on
protein-coding transcripts, the background signal tends to be generally
lower within the open reading frame, possibly due to clearance of low-
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affinity binding sites by translating ribosomes.
In the following, we describe how we commonly derive background

regions for U2AF2. Keep in mind that other RBPs may require different
considerations.

1. Since U2AF2 is expected to bind to introns, each binding site is

assigned to its ‘hosting intron’. In order to simplify the analysis, we
first filter the GENCODE annotation for transcripts with gene sup-
port level 2 and a transcript support level 3. For binding sites
overlapping with more than one intron, we choose the intersection
of all possible hosting introns.

2. Within the hosting intron, we calculate the background signal by
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summing up all crosslink events that do not fall into a binding site.
Since we frequently observe that the iCLIP signal may reach beyond
the curated 9-nt window, we remove an extended binding site re-
gion (±5 nt).

3. For the normalised background signal, the sum of background
crosslink events is divided by the width of the background region.
Since a minimum background signal is required to obtain reliable
estimates on binding site strength, we only move forward with
binding sites in background regions with a normalised signal >0.3
(i.e. at least 20 background crosslink events per 100 nt on average).

4. Finally, the ‘signal-to-background ratio’ (SBR) is calculated for each
binding site as the number of crosslink events inside the binding site
over the normalised background signal.

In our example, we tested the performance of the SBR normalisation
by comparing raw iCLIP signal and SBR values of binding sites in genes
with increasing expression levels (Fig. 13). As expected, the mean
number of crosslink events per binding site continuously rises with the
underlying transcript abundance. The SBR normalisation compensates
for this bias, resulting in an even distribution of the estimated binding
site strengths across transcripts with different abundances. The SBR
metric thereby facilitates comparisons between binding sites on dif-
ferent transcripts. We previously applied variations of this procedure to
estimate the binding site strengths and to rank binding sites for motif
analyses [30,35].

Variant of the normalisation strategy:
In a related approach, the local background signal can be used to

integrate the iCLIP signal from multiple regions in a metaprofile. Here,
we normalise the signal on all nucleotide positions in the respective
region, irrespective of whether they fall within or outside of a binding
site. The normalisation accounts for differences in library size, balances
out expression level differences of the underlying transcripts and en-
sures that all regions enter the metaprofile on a comparable scale.

In order to illustrate this approach, we generated a metaprofile of
summed crosslink events of U2AF2 binding in a 300-nt window up-
stream of exons (also known as ‘RNAmap’; Fig. 13C). We compared the
dataset that we used in the present manuscript with two previously
published U2AF2 iCLIP datasets [30]. To facilitate a direct comparison,
we normalised the iCLIP signal separately within each dataset as fol-
lows: First, all regions were assigned to their hosting intron based on
protein-coding transcripts (GENCODE annotation, gene support
level 2, transcript support level 3). Introns were required to be 300
nt long and with 100 crosslink events in the 300 nt upstream of the 3
splice site to assure decent coverage (n = 21,813, 17,893 and 3,001
introns for dataset 1, 2 and 3, respectively). If multiple introns fulfilled
these criteria and overlapped, the one with most signal in the 300 nt
upstream of the 3 splice site was used. Within each intron, the crosslink
events on all positions were then normalised by the total intron signal
over intron length and multiplied by a scaling constant to obtain values
in a reasonable range. Finally, the regions were aligned at the 3 splice
site, and the normalised crosslink events were summed up on each
positions and scaled for the number of contributing introns.

Importantly, after normalisation, the three datasets generate almost
identical peaks of U2AF2 enrichment upstream of 3 splice sites
(Fig. 13C). This is particularly notable for dataset 3, in which just 3,001
introns harboured sufficient U2AF2 iCLIP signal to enter the analysis,
compared to 21,813 and 17,893 introns in the other two datasets. The
example analysis highlights how normalisation to the background
signal allows for comparisons between datasets, even if major differ-
ences in library size and duplication level are present.
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