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Abstract

Background: Glial cells in the central nervous system play a key role in neuroinflammation and subsequent central
sensitization to pain. They are therefore involved in the development of persistent pain. One of the main sites of
interaction of the immune system with persistent pain has been identified as neuro-immune crosstalk at the glial-
opioid interface. The present study examined a potential association between the DNA methylation of two key
players of glial/opioid intersection and persistent postoperative pain.

Methods: In a cohort of 140 women who had undergone breast cancer surgery, and were assigned based on a 3-
year follow-up to either a persistent or non-persistent pain phenotype, the role of epigenetic regulation of key
players in the glial-opioid interface was assessed. The methylation of genes coding for the Toll-like receptor 4 (TLR4)
as a major mediator of glial contributions to persistent pain or for the μ-opioid receptor (OPRM1) was analyzed and
its association with the pain phenotype was compared with that conferred by global genome-wide DNA
methylation assessed via quantification of the methylation in the retrotransposon LINE1.

Results: Training of machine learning algorithms indicated that the global DNA methylation provided a similar
diagnostic accuracy for persistent pain as previously established non-genetic predictors. However, the diagnosis can
be based on a single DNA based marker. By contrast, the methylation of TLR4 or OPRM1 genes could not contribute
further to the allocation of the patients to the pain-related phenotype groups.

Conclusions: While clearly supporting a predictive utility of epigenetic testing, the present analysis cannot provide
support for specific epigenetic modulation of persistent postoperative pain via methylation of two key genes of the
glial-opioid interface.

Introduction
Persistent pain is a major healthcare problem [1, 2], cur-
rently regarded as resulting from neural plasticity includ-
ing peripheral [3] and central sensitization [4, 5]. The
interaction between neurons and glial cells (e.g., micro-
glia and astrocytes) is critical for the initiation and main-
tenance of persistent pain [6]. Increasing evidence

suggests that activation of glial cells contributes to the
pathogenesis of persistent pain via neuron-glial interac-
tions [7, 8]. The pro-inflammatory effects of the activa-
tion of Toll-like receptors (TLR), positioned at the
neuroimmune interface on glia cells, sensory neurons,
and other cell types can enhance nociceptive processing
leading to exaggerated and unresolved pain [9]. This is
mediated in particular by TLR4 that has been shown to
induce microglial activation and cytokine production
[10]. Moreover, the TLR4 inhibitor (+)-naloxone was
able to reverse established neuropathic pain in a nerve
injury induced in rats [11].
While (+)-naloxone is inactive at opioid receptors, one

of the main sites of interaction of the immune system
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with persistent pain has been identified as neuro-
immune crosstalk at the glial-opioid interface [12, 13].
Indeed, glial cells are involved in opioid actions [14, 15].
For example, the putative toll-like receptor 4 antagonist
ibudilast restored morphine-induced antinociception in
morphine-tolerant rats [16]. Similarly, minocycline at-
tenuated morphine tolerance in mouse models of neuro-
pathic pain by inhibiting microglial activation [14]. This
particular effect on morphine action renders the μ-
opioid receptor a key player in glia-opioid crosstalk since
the vast majority of current opioid analgesics are mainly
μ-opioid receptor agonists.
The involvement of neuroimmune processes in per-

sistent pain is under genetic control [17], suggesting that
it may also be under epigenetic control. Indeed, classical
epigenetic mechanisms including changes in DNA
methylation and histone modifications have been shown
to contribute to the development and treatment respon-
siveness of persistent pain [18]. This was seen at both
single gene and global DNA methylation levels. For ex-
ample, the methylation level of the mu-opioid receptor
gene (OPRM1) has been associated with acute and
chronic postsurgical pain [19]. Similarly, different
methylation levels of LINE1, which is a retrotransposon
of viral provenience spread in approximately half million
copies across the human genome [20–22] and therefore
used as a marker of global DNA methylation, correlated
with different intensity scores of persistent pain [23].
In the present analysis, the methylation status of

TLR4, OPRM1, and LINE1 was assessed for its associ-
ation with the persistence of postsurgical pain. DNA
samples and pain data were available from a cohort of
1000 women who had undergone breast cancer surgery
[24], among whom n = 70 patients had developed per-
sistent postsurgery pain, based on ratings acquired up to
36 months after surgery [25]. The previous analysis of
the same samples had focused on a role of genetic vari-
ants in a selection of pain-relevant genes including the
two selected for the present analysis. Indeed, 21 variants
in 13 different genes were found to be relevant to the as-
signment of a patient to either the persistent pain or the
non-persistent pain phenotype group [26]. OPRM1 vari-
ants but not TLR4 variants had been among the relevant
genetic markers. Considering that in addition to nucleo-
tide sequence changes, the methylation status can also
include the expression of genes, the focus on the glial/
opioid intersection in persistent pain was further pur-
sued in the present epigenetic assessments.

Methods
Patients and pain phenotype
The study followed the Declaration of Helsinki, and both
the Coordinating Ethics Committee (journal number 136/
E6/2006) and the Ethics Committee of the Department of

Surgery (148/E6/05) of the Hospital District of Helsinki
and Uusimaa approved the study protocol. Informed writ-
ten consent was obtained from each patient. The cohort
has been described in detail previously [24, 27]. In brief,
1000 women aged 28–75 years suffering from unilateral
non-metastasized breast cancer were enrolled during the
preoperative visit. They were treated with breast-
conserving surgery or mastectomy, sentinel node biopsy,
and/or axillary clearance. Exclusion criteria were neoadju-
vant therapy [28] and immediate breast reconstruction
surgery. Perioperative analgesia was standardized consist-
ing of preoperative oral acetaminophen, perioperative
remifentanil, and postoperative intravenous oxycodone
during the first 20 postoperative hours, and ibuprofen or a
combination of acetaminophen and codeine during the
first postoperative week; no regional anesthesia was used.
Adjuvant treatments were given according to international
guidelines [27].
As reported previously [25, 29, 30], post-surgical pain

intensity was assessed at months 1, 6, 12, 24, and 36
after surgery using numerical rating scale (NRS) ranging
from 0 (no pain) to 10 (the most severe pain that can be
imagined) [31]. For the diagnosis of persistent pain, NRS
data acquired 12–36 months after the surgery were used.
As discussed previously [32], due to ongoing adjuvant
therapies, this can be considered as more adequately reflect-
ing the clinical setting of breast cancer surgery than the ori-
ginal definition of persistent post-surgical pain, which
proposes a cut-off at 2 months [33]. Persistent pain was de-
fined on the basis of NRS ratings as described previously
[25], i.e., patients were assigned to the “persistent pain” sub-
group if the following conditions applied: NRSmonth36 >
3 and NRSmonth12. month36 > 0 and (NRSmonth36–
NRSmonth24) ≥ 0, whereas patients were assigned to the
“non-persistent pain” group if NRSmonth36 ≤ 3 and
NRSmonth12. month36≤ 3. Applying these criteria to the
cohort of 1000 women led to the diagnosis of persistent pain
in n = 70 patients [25]. For comparison, a similarly sized age
and body mass index (BMI)–matched subsample was drawn
from the patients who had not developed persistent postsur-
gical pain.

Quantification of DNA methylation
DNA methylation levels of CpG sites in OPRM1, TLR4,
and LINE1 were quantified by means of PyrosequencingTM

assays as used in previous assessments of epigenetic influ-
ences on pain [23, 34, 35]. In brief, genomic DNA was ex-
tracted from 200 μl of full blood on a BioRobot EZ1
workstation applying the blood and body fluid spin proto-
col provided in the EZ1 DNA Blood 200 μl Kit (Qiagen,
Hilden, Germany) and eluted in a final concentration of 50
ng/μl. Methylation levels were quantified using Pyrosequen-
cingTM assays described elsewhere in full detail [36–39].
The assays were designed to examine the methylation
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status at (i) four CpG sites in the promoter region of LINE-
1 at bp position − 605, − 593, − 590, and – 583; (ii) six
CpG sites in the promoter region of OPRM1 at bp
position − 60, − 50, − 32, − 25, − 18, and – 14; and
(iii) four CpG sites in the promoter region of TLR4
at bp position − 75, − 67, − 58, and − 51, all relative
to the start codon. PCR reactions were run on a Mas-
tercycler nexus gradient flexlid device (Eppendorf,
Hamburg, Germany) in a 50-μl reaction volume in-
cluding 5-μl bisulfite-treated DNA, mixed with 0.5 μl
MyTaq™ HS DNA polymerase (5 U/μl) (Bioline, Luck-
enwalde, Germany), 10 μl 5× MyTaq reaction buffer,
0.2 μl of each PCR primer (100 μM), and 34.1 μl
HPLC-purified water.
Pyrosquencing™ (Qiagen, Hilden, Germany) took place

as described previously [23]. In brief, 50 μl of the PCR
templates were processed and purified with the Pyro-
Mark Vacuum Prep Worktable (Biotage, Uppsala
Sweden) and subsequently annealed to the sequencing
primer at 80 °C for 2 min as instructed by the manufac-
turer. Sequence analysis took place on a PSQ 96 MA
System using the PyroMark Gold Q96 Reagents (Qiagen,
Hilden, Germany). Pyro Q-CpG methylation software
(version 1.0.9) had been used to determine the nucleo-
tide dispensation order. The methylation values repre-
sent the mean percentage methylation across all CpG
sites, which were measured in duplicate samples within
one run. In addition, each sample was measured in two
independent runs, which were subsequently averaged.
To verify the accuracy of the analysis, each run included
control DNA from the EpiTect PCR Control DNA Set
(Qiagen, Hilden, Germany) that contained both bisulfite
converted 100% methylated, as well as unmethylated,
DNA as positive controls and unconverted unmethylated
DNA as a negative control.

Data analysis
Data analysis was performed using the R software
package (version 3.4.4 for Linux; http://CRAN.R-pro-
ject.org/ [40]) on an Intel Core i9® computer running
on Ubuntu Linux 18.04.1 64-bit). Epigenetic data
comprised methylation status, measured in percent-
age, of d = 6 CpG sites in the OPRM1 gene, d = 4,
CpG sites in the TLR4 gene, and d = 4 CpG sites in
the LINE1 retrotransposon, acquired in n = 70 pa-
tients with persistent pain and n = 70 patients
assigned to the “non-persistent pain” subgroup. From
this 14 × 140-sized data matrix, 15 single values (0.76
%) were missing. Following exploration of the data
distribution, which indicated that no transformation
was needed, and following a negative test for possible
outliers (Grubbs test [41]), gaps in the data space
were closed by means of k-nearest neighbors imputation
of the missing values. This was done using the R libraries

“outliers” (https://cran.r-project.org/package=outliers
[42]) and “DMwR” (https://cran.r-project.org/package=
DMwR [43]).
The data analysis aimed to identify (i) whether there is

an association between the DNA methylation and the
persistence of pain, and (ii) which of the assessed genes
was implicated in this association. The approach was
data-driven and focused on the information about the
pain phenotype conferred by the methylation status of
the two selected genes or the global methylation status.
Specifically, the data analysis followed three main steps.
In the first step, basic statistical assessments were per-
formed including assessment of differences in DNA
methylation between the two pain phenotype groups,
which was done by means of Wilcoxon tests and apply-
ing a correction for multiple testing according to Bonfer-
roni [44]. In addition, Spearman correlations [45] were
calculated among the components of the matrix of CpG
sites and of the original NRS ratings acquired at 1, 6, 12,
24, and 36 months after the surgery. The second step
addressed the emergence of structures in the data space
of DNA methylation patterns that reflected the known
pain phenotype group structure of the patients. The
third step of the analysis aimed at associating the methy-
lation status of particular genes with the membership to
the pain phenotype groups.

Methylation pattern analysis using data structure
detection
The data space was explored for structures in the DNA
methylation patterns that coincided with the known pain
phenotype group structure. Unsupervised machine-
learning was employed for data structure detection. Spe-
cifically, a parameter-free focusing projection method of
a polar swarm, Pswarm, was used that exploits concepts
of self-organization and swarm intelligence. It uses a
swarm of intelligent agents called DataBots, which are
self-organizing artificial “life forms” that carry vectors of
the data. The data space was explored for distance-based
structures. Following successful swarm learning on
methylation data, rescaled into the range [0,…,100],
DataBots carrying items with similar features were
placed close to each other in groups on the projection
grid. The identification of emergent structures in the
learned structure was further enhanced by calculating
the distances between data points using the so-called U-
matrix [46, 47]. Every value (height) in the U-matrix depicts
the average high-dimensional distance of a prototype in
relation to all immediate neighboring prototypes re-
garding grid position. The corresponding visualization
technique is a topographical map facilitating the recog-
nition of data structures or clusters. These calculations
were performed using the R library “DatabionicSwarm”
(https://cran.r-project.org/package=DatabionicSwarm [48]).
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For internal validation, data structures were assessed
again by means of principal component analysis (PCA)
[49]. Specifically, a non-standard implementation of the
PCA was used consisting of the “PC-corr” algorithm
[50]. By automatically testing various data transform-
ation and analyzing the associated group separations,
using quantitative evaluations expressed as p value,
AUC, and AUPR, assessing any types of normalization
and dimension, it permits to find the best results of a
PCA. As it calculates various quality measures for every
combination of PC, normalization, and centering, it allows
the optimal selection of PC for data projection. This ana-
lysis was performed using an R script provided with the
description of the PC-corr analysis (pccorrv2.R, https://
github.com/biomedical-cybernetics/PC-corr_net [50]).

Association analysis of specific gene methylation sites
with pain phenotype group membership
Following the establishment of a data structure support-
ing a segregation of pain phenotype groups on the basis
of the DNA methylation pattern, the contribution of
particular genes or CpG sites to the group separation
was assessed. Firstly, the results of the PCA performed
in the previous analytical step were further explored.
This was addressed by calculating the loadings of the
CpG sites with the PCA components that explained rele-
vant fractions of the total variance in the data.
Secondly, for internal validation, supervised machine

learning methods were applied to narrow the focus on
particular CpG sites respectively carrying genes. Specific-
ally, supervised methods were implemented as (i) classifi-
cation and regression trees [51], (ii) k-nearest neighbors
[52], (iii) support vector machines [53], (iv) multinomial
regression [54], and (v) naïve Bayesian classifiers [55].
Classification and regression trees use a tree data structure
created with conditions on variables (parameters) as verti-
ces and classes (diagnoses) as leaves.
Briefly, tree-structured rule-based classifiers [56]

analyze ordered variables xi, such as the present results
of methylation analyses [scaled 0 - 100 %], by recursively
splitting the data at each node into children nodes, start-
ing at the root node. During learning, the splits are
modified such that misclassification is minimized. The
Gini impurity was used to find optimal (local) dichoto-
mic decisions as used for the classification and regres-
sion tree method (CART) [51]. The calculations were
done using the “rpart” function of the similarly named R
package (B. Ripley; https://cran.r-project.org/package=
rpart). The k-nearest neighbor (kNN) classification [52]
provides a non-parametric method that belongs to the
most frequently used algorithms in data science al-
though it is one of the basic methods in machine learn-
ing. During kNN model building, the entire labeled
training dataset is stored while a test case is placed in

the feature space in the vicinity of the test cases at the
smallest high-dimensional distance. The test case re-
ceives the class label according to the majority vote of
the class labels of the k training cases in its vicinity. The
present analyses were performed in k = 5 and the Eu-
clidean distance as the default of the R package “Ker-
nelKnn” (Mouselimis L, https://cran.r-project.org/
package=KernelKnn). Support vector machines are su-
pervised learning methods that classify data mainly
based on geometrical and statistical approaches
employed for finding an optimum decision surface (hy-
perplane) that can separate the data points of one class
from those belonging to another class in the high-
dimensional feature space [53]. Using a kernel function,
the hyperplane is frequently selected in a way to obtain a
trade-off between minimizing the misclassification rate
and maximizing the distance of the plane to the nearest
properly classified data point. In the present analysis, a
Gaussian kernel with a radial basis was used. The ana-
lyses were done using the R library “kernlab” (https://
cran.r-project.org/package=kernlab [57]). Multinomial
regression provides a method for estimating, from
dichotomous or polychotomous data, the probability of
occurrence of an event as a function of independent
variables [54]. It employs sigmoid data transformation,
such as the logit [58], to obtain a linearization, making
the data accessible to techniques of multiple regression
and its extensions, such as analysis of variance and co-
variance. The method extends logistic regression to the
application on data in which the dependent variable may
have a nominal scale with more than two levels, such as
in the present three-class problem of three clinical olfac-
tory diagnoses. The present implementation consisted of
fitting multinomial log-linear models via neural net-
works as provided in the R library “nnet” (https://cran.r-
project.org/package=nnet [59]). Finally, naïve Bayesian
classifiers were used that provide the probability that a
data point being assigned to a specific class calculated by
application of the Bayes’ theorem [55]. The calculations
were done using the R package “klaR” (https://cran.r-
project.org/package=klaR [60]).
The analyses were performed in cross-validation runs

using 1000 times Monte Carlo [61] to obtain random
splits of the original data set into training (2/3 of the
data) and test (1/3 of the data) data subsets. This was
done using the R library “sampling” (https://cran.r-pro-
ject.org/package=sampling [62]). For all analyses, the
data set was grouped proportionally, with respect to the
two pain phenotypes, randomly split into a training data
subset (2/3 of the patients) and a test data subset (the
remaining 1/3 of the patients). Training of the algo-
rithms with methylation data was performed on the
training data subset, and the trained algorithms were
then used to identify the group membership of the cases
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belonging to the test data subset. As main test perform-
ance measure, the classification accuracy was used, i.e.,
the accuracy at which a patient was assigned to her cor-
rect pain phenotype group.
To comparatively evaluate the importance of the genes

in this task, different combinations of gene-related CpG
sites were used, comprising (i) the CpG sites in all three
genes, (ii) in each gene separately, and (iii) in combina-
tions of two genes each. Thus, supervised machine
learning was used, mainly for knowledge discovery ra-
ther than to create a classifier, i.e., a biomarker, for pre-
diction of persistent pain, for which the methylation
status in only three genes was judged as unlikely to suf-
fice. The underlying idea was that if an algorithm can be
trained with methylation information to identify patients
with persistent pain better than by guessing, the infor-
mation is relevant for the clinical phenotype.
To avoid correct phenotype associations being a result

of overfitting rather than based on methylation informa-
tion, several measures against this weakness of machine
learning algorithms were implemented. Firstly, prior to
the data analysis, the classification algorithms were
tuned with respect to available hyperparameters. For ex-
ample, the number of k in kNN was tested between 3
and 9 and the best performing variant was chosen. Sec-
ondly, analyses were performed in cross-validation runs
using 1000 times Monte Carlo [61] resampling and data
splitting into non-overlapping training and test data sub-
sets. Thirdly, negative control data sets were created by
random permutation of the methylation data in the re-
spective training data subsets of each scenario. The ex-
pectation was that when trained with random and
therefore meaningless data, the algorithm should not
perform better than guessing when applied to the associ-
ation of the pain phenotypes in the test data subsets.
Fourthly, five different classifiers were applied to avoid
the analysis relying on a single method in which occa-
sional overfitting might have occurred.

Results
DNA methylation was quantified from d = 6, 4, or 4
CpG sites located in OPRM1, TLR4, and LINE1, respect-
ively, in n = 70 patients with persistent pain and in n =
70 patients assigned to the “non-persistent pain” pheno-
type group based on the 3-year follow-up data after
breast cancer surgery (Fig. 1a). The demographic data
were the following: age 41–73 years (median 58.5 years),
BMI 18.4–36.2 kg/m2, (median 25.6 kg/m2) in the pain
group; and age 40–73 years, (median 59 years), BMI
19.9–37.2 kg/m2, (median 24.8 kg/m2) in the non-pain
group. A total of 15 values were missing and were im-
puted prior to further data analyses. DNA methylation
was generally lower in TLR4 and OPRM1 than in LINE1;
specifically, the median methylation across all gene-

specific sites and patient subgroups were median [range],
TLR4: 2.04% [0–7.5%], OPRM1: 8.08% [0–39.25%],
LINE1: 77.78% [65.19–100%].
Significant differences in DNA methylation between

the phenotype groups were observed for CpG sites in
OPRM1 and in LINE1 (Fig. 1b). DNA methylation
tended to be lower in the “persistent pain” phenotype
group (Table 1), which agreed with the correlations be-
tween LINE1 methylation and pain ratings which were
negative when statistically significant (Fig. 2). In
addition, while the correlation structure (Fig. 2) indi-
cated correlations of CpG site methylations within
genes, among genes, and between genes and pain rat-
ings, not every variable was correlated with the others.
Interestingly, at OPRM1 CpG sites, the methylation
seemed to be significantly correlated with pain ratings
only when also correlated with the methylation at LINE1
CpG sites. By contrast, the methylation at TLR4 sites
displayed the lowest degree of correlation with the
methylation at the other genes or with pain ratings.

Agreement of DNA methylation patterns with the pain-
related phenotype group structure
Swarm intelligence–based data projection followed by
U-matrix visualization of the cluster structure supported
DNA methylation–derived data structure that reflected
the known pain phenotype group structure. Following
successful swarm learning, DataBots carrying items with
similar features were placed in groups on the projection
grid. The distances visualized on the U-matrix indicated
a large gap in the data space as a range of large so-called
U-heights separating two clusters in which low U-
heights indicated that the points are close to each other
in the data space, indicating structure in the data set
(Fig. 3a). Superimposing onto the cluster structure, the
class labeling into patients with persistent or non-
persistent pain indicated a separation of the two pheno-
type groups by the cluster structure (χ2 = 33.635, df = 1,
p = 6.649 × 10−9).
Results of the PC-corr analysis (see Additional file 1)

supported a non-centered PCA without data transform-
ation as adequate for further group association analyses.
Specifically, although the highest amount of variance
was explained by the first PC (PC1) when using center-
ing (99.83% versus 99.65% without centering), the non-
centered analysis provided higher values of AUC and
AUPR indicating slightly better group segregation.
Therefore, PCA was done on the non-centered data and
further analyses were applied to non-transformed data.
Sample segregation along PC1 had p value < 0.001,
AUC-ROC of 0.7, AUC-PR of 0.6, and explained 99.65%
of the variance. Plotting PC1 against PC2, which with
non-centered and untransformed data explained the sec-
ond largest amount of variance indicated a structure in
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Fig. 1 (See legend on next page.)
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the DNA methylation data that supported the separation
of the two pain-related phenotype groups to which the
patients had been assigned (Fig. 4).

Association of specific gene methylation sites with pain
phenotype group membership
PCA of the non-centered and non-transformed data pro-
vided 11 PCs with eigenvalues exceeding the widely ac-
cepted limit of a value of 1 [66]. However, as reported
above, the first component explained already > 99% of
the total variance (Table 2). It carried loadings mainly
from the methylation data of CpG sites located in
LINE1. The second PC, explaining only 0.15% of the
variance, carried mainly loadings related to methylation
of CpG sites in OPRM1.
Supervised machine learning algorisms trained with

methylation data succeeded in pain phenotype group as-
sociation to different degrees depending on the combi-
nations of gene-related CpG sites used for training.

When trained with the whole set of gene methylation in-
formation, the classification performance ranged be-
tween 71% (CART) and 80% (SVM). In all reduced set
scenarios where LINE1 methylation data were included
in the training, the classification performance was simi-
lar to that obtained when training the algorithms for the
complete information about DNA methylation. More-
over, when performing the training only with LINE1
methylation information, the classification performance
was maintained. By contrast, while classification per-
formance was still better than change when including
OPRM1 methylation in the training data subset, it was
worse than in the LINE1 containing scenarios, whereas
training with TLR4 methylation provided a classification
not better than chance. Indeed, hierarchical clustering of
the decreases in the classification accuracy from the ac-
curacy obtained with the full information identified two
clusters for the different scenarios with respect to gene
subset inclusion (Fig. 5). One cluster comprised similar
classification performance as the full data set and in-
cluded all scenarios where LINE1 methylation informa-
tion was included. By contrast, the second cluster
comprised reduced classification performances and in-
cluded all scenarios without LINE1. Importantly, for all
scenarios when trained with permuted methylation data,
the classification performance of the algorithms was
50%, i.e., like guessing (Table 3).

Discussion
Supporting the hypothesis of an epigenetically modu-
lated component of persistent pain after breast cancer
surgery, the degree of global methylation quantified at
four CpG sites in the retrotransposon LINE1 was corre-
lated with the pain ratings acquired from 6 to 36 months
after breast cancer surgery. The agreement of the data
structure emerging in the degrees of gene methylation,
detected by applying unsupervised data analysis methods
including machine learning with the a priori classification
of the patient cohort into a “persistent” and a “non-per-
sistent pain” phenotypic subgroup, selected as represent-
ing the extreme pain-related phenotypes from a cohort of
1000 women treated surgically for breast cancer, provided
further support to the hypothesis of an epigenetically
modulated component of persistent pain after breast

(See figure on previous page.)
Fig. 1 Methylation at d = 14 CpG sites located in the OPRM1 or TLR4 genes or in the retrotransposon LINE1 (raw data, for numerical results, see
also Table 1). a Raw data are shown separately for group membership to the persistent pain or non-persistent pain phenotype groups. The
widths of the boxes are proportional to the respective numbers of subjects per group. The quartiles and medians (solid horizontal line within the
box) are used to construct a “box and whisker” plot. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5
times the IQR from the 25th percentile and are expected to include 99.3% of the data if normally distributed. The notches indicate the
confidence interval around the median based on median ± 1.57 ∙ IQR/n0.5. b Results of Wilcoxon tests for group differences in the methylation
status at each CpG sites. The bars indicate the obtained p values, rescaled as –log10(p). Uncorrected and corrected significance thresholds are
shown as horizontal lines. A significant difference is found when the bar exceeds the line. The figure has been created using the R software
package (version 3.4.4 for Linux; http://CRAN.R-project.org/ [40])

Table 1 DNA methylation observed at CpG sites in the OPRM1
and TLR4 genes and in the LINE1 retrotransposon used to
quantify global DNA methylation. Means and standard
deviations (SD) are given separately for the “non-persistent pain”
and “persistent pain” phenotype groups

CpG site Non-persistent pain Persistent pain

Mean SD Mean SD

OPRM1 CpG site−60 8.26 2.76 8.3 2.74

OPRM1 CpG site−50 5.5 2.8 3.83 2.39

OPRM1 CpG site−32 11.95 5.21 10.29 3.28

OPRM1 CpG site−25 11.39 4.32 10.12 3.17

OPRM1 CpG site−18 8.1 2.71 7.57 2.99

OPRM1 CpG site−14 6.49 2.7 4.93 3.04

TLR4 CpG site−75 2.77 1.36 2.47 1.39

TLR4 CpG site−67 2.82 1.29 2.82 1.43

TLR4 CpG site−58 2.74 1.08 2.49 1.22

TLR4 CpG site−51 2.8 1.22 2.51 1.21

LINE1 CpG site−605 83.6 4.32 84.07 4.2

LINE1 CpG site−593 81.56 4.75 77.56 1.59

LINE1 CpG site−590 77.47 3.71 76.74 3.07

LINE1 CpG site−583 74.27 4.02 71.66 2.33
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cancer surgery. Additional support for this hypothesis was
provided by the ability of five different supervised algo-
rithms, including machine learning, to assign a patient to
the correct pain-phenotype subgroup based on the

training with the information about the DNA methylation.
This succeeded with an even higher accuracy than that
obtained with a recently proposed rule-based classifier,
created in the same cohort from demographic,

Fig. 2 Explorative analysis of the correlations between the methylation status at d = 14 CpG sites in OPRM1, TLR4, or LINE1 and with the pain
ratings acquired between 1 and 36 months after breast cancer surgery. At the lower left part, the correlations are shown as ellipses. The narrower
the ellipse is drawn, the higher is the correlation coefficient. Positive correlations are indicated by ellipses directed from the lower left corner to
the upper right corner of each cell. Negative correlations are indicated by ellipses drawn in the opposite direction from the upper left to the
lower right corner of each cell. Ellipses are colored according to the color code of Spearman’s ρ [45] shown at the bottom of the panels. At the
upper right parts, the correlations are provided numerically as values of Spearman’s ρ (colored). The corresponding p values are shown in black
numbers below the correlation coefficients; “0” indicates p < 1 × 10−5. The figure has been created using the R software package (version 3.4.4
for Linux; http://CRAN.R-project.org/ [40]) and the library “corrplot” (https://cran.r-project.org/package=corrplot [63])
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psychological, and pain-related, but not genetic or epigen-
etic parameters, which provided a sensitivity and specifi-
city of 82.4 and 55.6%, respectively, and an accuracy of
69% [25] to identify patients with persistent pain. Please
note that the then used definition of persistent pain re-
ports NRS ≥ 4 as a criterion, which is the same as the
presently used NRS > 3 criterion, considering that the
NRS is integer-scaled. For example, the class assignment
based on the epigenotypes, achieved using support vector
machines (Table 3), provided a sensitivity and specificity
of 69.6 and 91.3%, respectively, and an accuracy of 80.4%.
By contrast, when training the artificial intelligence with
permuted epigenetic information, its classification

performance dropped to the level of guessing, supporting
that the classification success was not due to overfitting.
This is promising with respect to using epigenetic infor-
mation as a biomarker for pain persistence. Moreover, a
combination of several kinds of information, genetic, epi-
genetic, clinical, demographic, i.e., a combination of the
previously and presently reported positive results seems a
promising approach to a better biomarker, which, how-
ever, would greatly exceed the present report.
An association of the global DNA methylation status

with persistent pain has previously been suggested by
preclinical and clinical research. For example, in rats
with post nerve injury pain, the genome-wide DNA

Fig. 3 Clustering of subjects based on DNA methylation at CpG sites in OPRM1, TLR4, and LINE1, obtained using unsupervised machine learning.
U-matrix visualization of the data structure found via a projection onto a toroid neuronal grid using a parameter-free polar swarm, Pswarm
consisting of so-called DataBots, which are self-organizing artificial “life forms” that carry vectors of the DNA methylation. a The U-matrix
visualization was colored as a top view of a topographic map with brown (up to snow-covered) heights and green valleys with blue lakes.
Watersheds indicate borderlines between two different clusters. b Superimposing the pain phenotype group structure indicated considerable
coincidence with the cluster separation, which was supported by a significant χ2 test of the cross table of clusters versus pain phenotype groups.
Please note the different meaning of the coloring of the data points in the two panels, cluster in panel a but pain phenotype groups in panel b.
The figure has been created using the R software package (version 3.4.4 for Linux; http://CRAN.R-project.org/ [40]) and the library
“DatabionicSwarm”, https://cran.r-project.org/package=DatabionicSwarm [64])
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methylation in the prefrontal cortex and in T cells was
found to differ among pain phenotype groups, based on
analysis of methylated DNA immunoprecipitation
followed by hybridization to microarrays [68]. Among
the all measured probes, methylation was decreased in
14,298 probes and increased in 9088 in animals with a
spared nerve injury. Also in rats, nerve injury was shown
to cause DNA methylation changes at 8% of the CpG
sites across the whole genome, with prevailing hypome-
thylation outside of CpG islands, based on digital restric-
tion enzyme analysis of methylation in dorsal root
ganglion tissue [69]. Nerve injury caused DNA methyla-
tion changes at 8% of CpG sites with prevailing hypome-
thylation outside of CpG islands, in introns, intergenic
regions, and repetitive sequences. However, it caused
more gains of methylation in the spinal cord and pre-
frontal cortex. In humans, global DNA methylation

differed significantly between patients with low back
pain and controls, based on enzyme-linked immuno-
sorbent assays of white blood cells [70]. Furthermore, in
outpatients treated in a pain unit of tertiary care, signifi-
cant positive correlation between the methylation of
CpG sites located in LINE1 and pain ratings have been
reported [23]. Taken together, the association of higher
or lower pain with higher or lower global DNA methyla-
tion has been inconsistently reported. While in the
present samples, higher methylation of LINE1 was corre-
lated with lower pain ratings, in a previously analyzed
mixed cohort of outpatients of a tertiary care pain treat-
ment unit, the correlation had been positive [23]. In that
study, a methylating effect of opioid treatment had been
proposed based on higher methylation levels in opioid
treated than in non-opioid treated pain patients. This ef-
fect has been reproduced independently [71].

Fig. 4 Data structure found in the input space of d = 14 CpG methylations acquired from patients with either persistent (n = 70) or non-persistent (n = 70)
pain after breast cancer surgery. The data structure has been obtained by means of data projection principal component analysis on the non-normalized
data as suggested by the results of the PC-corr analysis [50]. The PCA plot associated to this analysis shows the sample separation in the first and second
component (PC1 versus PC2) yielded the best explained variance for non-normalized, non-centered PCA. The marginal distribution plots show the
segregation of the pain phenotype groups along the first principal component. The figure has been created using the R software package (version 3.4.4 for
Linux; http://CRAN.R-project.org/ [40]) and the library “ggplot2” (https://cran.r-project.org/package=ggplot2 [65])

Kringel et al. Clinical Epigenetics          (2019) 11:167 Page 10 of 15

http://cran.r-project.org/
https://cran.r-project.org/package=ggplot2


Table 2 Results of the principal component analysis (PCA) performed at non-normalized and non-centered data, as suggested by
the results of the PC-corr analysis [50]. Component loadings of the methylation at CpG sites are shown for PCs with eigenvalues
greater than 1. Most of the variance, however, was explained already by the first principal component, PC1

Component PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Eigenvalue 25066.74 38.56 12.78 8.35 5.67 4.97 4.45 3.5 3.24 2.38 2.13

Explained variance 0.9966 0.00153 0.00051 0.00033 0.00023 0.0002 0.00018 0.00014 0.00013 0.00009 0.00008

Cumulative variance explained 0.9966 0.99808 0.99859 0.99892 0.99914 0.9993 0.99952 0.99966 0.99979 0.99988 0.99997

OPRM1 CpG site−60 − 0.05 − 0.32 0.21 0.1 − 0.43 − 0.05 − 0.11 0.07 − 0.58 − 0.53 0.11

OPRM1 CpG site−50 − 0.03 − 0.3 − 0.03 − 0.2 − 0.36 0.41 0.2 − 0.46 0.36 − 0.18 − 0.41

OPRM1 CpG site−32 − 0.07 − 0.52 0.09 0.22 − 0.25 − 0.58 − 0.06 − 0.16 0.29 0.37 0.15

OPRM1 CpG site−25 − 0.07 − 0.43 − 0.04 0.26 0.19 0.26 0.3 0.64 0.32 − 0.19 0.09

OPRM1 CpG site−18 − 0.05 − 0.36 0.03 − 0.13 0.51 − 0.22 − 0.26 0.03 − 0.19 − 0.05 − 0.65

OPRM1 CpG site−14 − 0.04 − 0.37 − 0.05 − 0.29 0.45 0.21 − 0.13 − 0.38 − 0.05 − 0.09 0.59

TLR4 CpG site−75 − 0.02 − 0.12 0.06 − 0.01 0 0.22 0.05 0.01 − 0.21 0.39 − 0.01

TLR4 CpG site−67 − 0.02 − 0.12 0.09 0.02 − 0.07 0.26 0.01 0.07 − 0.21 0.37 − 0.02

TLR4 CpG site−58 − 0.02 − 0.1 0.08 − 0.01 − 0.08 0.2 0.05 0.09 − 0.22 0.3 − 0.08

TLR4 CpG site−51 − 0.02 − 0.11 0.08 − 0.01 − 0.08 0.22 0.03 0.06 − 0.23 0.34 − 0.01

LINE1 CpG site−605 − 0.53 0.17 0.8 − 0.07 0.12 0.02 0.05 − 0.03 0.16 − 0.04 0.02

LINE1 CpG site−593 − 0.5 − 0.01 − 0.32 − 0.55 − 0.27 − 0.02 − 0.35 0.35 0.12 0.06 0.06

LINE1 CpG site−590 − 0.49 0.08 − 0.28 0.65 0.06 0.25 − 0.37 − 0.22 0 − 0.02 − 0.05

LINE1 CpG site−583 − 0.46 0.01 − 0.31 − 0.04 0.1 − 0.26 0.71 − 0.14 − 0.3 0 − 0.02

Fig. 5 Analysis of the drop in the classification accuracy (Table 3) of five different algorithms (classification and regression trees (CART), k-nearest
neighbors (kNN), support vector machines (SVM), multinomial regression (“regression”), and naïve Bayes adaptive classification) when the
methylation information, originally comprising a total of d = 14 CpG sites located in OPRM1, TLR4, or LINE1, was reduced to two or one genes.
The numbers indicate the difference in classification accuracy, obtained in several training scenarios of reduced sets of gene-specific CpG islands,
to that obtained with the respective algorithm when trained with the full data set. Subsequently, applying hierarchical clustering (Ward [67]) to
these differences, a pattern of two groups of the tested scenarios emerged. In the first cluster (top), the accuracy did not change when using a
reduced data set for training. By contrast, the accuracy dropped in scenarios included in the second cluster (bottom). The figure has been created
using the R software package (version 3.4.4; http://CRAN.R-project.org/ [40]) and the “heatmap.2” function of the R package “gplots” (G.R.
Warnes; https://cran.r-project.org/package=gplots)

Kringel et al. Clinical Epigenetics          (2019) 11:167 Page 11 of 15

http://cran.r-project.org/
https://cran.r-project.org/package=gplots


Nevertheless, the global methylation levels of in median
80% in that study [23] agreed with the presently ob-
served levels. In the present study, the patients had re-
ceived a standardized perioperative treatment with

opioids and none of the patients had been taking opioid
medication either before or after surgery apart from co-
deine during the first postoperative week, a possible
DNA methylation effect of opioids would not have been
restricted to one of the subgroups and is therefore also
unlikely to have caused the observed subgroup differ-
ences; neither can it explain the different direction of the
correlation with pain ratings. In the present assessments,
lower TLR4 methylation would have provided a plausible
association with higher pain intensity; however, TLR4
methylation was not correlated with global or ORRM1
DNA methylation.
While the methylation of OPRM1 sites, as far as sig-

nificantly associated with higher pain ratings, apparently
provided support for epigenetic control of persistent
pain after breast cancer surgery via neuro-immune
crosstalk at the glial-opioid interface, supervised
machine-learned analyses clearly contradicted this inter-
pretation about the role of OPRM1 methylation versus
global DNA methylation. The methylation at single
genes was not needed to assign a patient to the correct
pain-phenotype subgroup, hence, neither OPRM1 nor
TLR4 methylation provided relevant information to train
artificial intelligences to perform this phenotype group
assignment. For example, the classification accuracy of
support vector machines remained completely un-
affected at 80.43 when omitting OPRM1 methylation,
TLR4 methylation, or both, from the training, whereas it
dropped by 15% or more when omitting LINE1 methyla-
tion (Table 3). Thus, the partly correlated methylations
in OPRM1 probably just followed the global DNA
methylation status reflected in LINE1, without indication
that they represented a gene-specific mechanism of the
regulation of postoperative persistent pain.
The interpretation that the observed epigenetic associ-

ations with the development of persistent pain after
breast cancer surgery have to be attributed to the global
methylation not reflecting a specific regulation in
OPRM1 is unlikely to change if more than six CpG sites
in OPRM1 were analyzed. Reanalyzing previously pub-
lished data [23] of the methylation at 22 CpG sites in
OPRM1 indicated that DNA methylation was highly
positively correlated among all 22 sites, with a median
value of Spearman’s ρ of 0.552 (range ρ = 0.256–0.747)
and a median significance level of p = 6.11 × 10−15

(range p = 7.34 × 10−47–0.00077). Hence, it seems un-
likely that the analysis of more sites within OPRM1
would have changed the present results. However, an
epigenetic control via OPRM1 or TLR4 remains possible
via histone modulation, which was not assessed in the
present study. It is known to play a role in pain-related
human phenotypes such as the bladder pain syndrome
[72] or as one of the mechanism via which valproate is
effective in the management of diabetic neuropathy [73].

Table 3 Test performance given as accuracy in percentage for
the correct assignment to the “persistent pain” patient group
(upper part of the table) and as the area under the receiver
operator characteristic (AUC ROC, lower part of the table),
provided by different types of classifiers obtained using
classification and regression trees (CART), k-nearest neighbors
(kNN), support vector machines (SVM), multinomial regression,
and naïve Bayes adaptive classification. The first lines show the
obtained accuracy when all d = 14 CpG sites were included.
Subsequently, several scenarios of reduced sets of gene-specific
CpG islands were used for the training of the algorithms, and it
was assessed how much leaving out a gene from the training
influenced the overall classification accuracy. Furthermore,
possible overfitting was accounted for by repeating the training
with permuted methylation data created as negative control
data sets (AUC ROC omitted). Parameter values were obtained
during 1000 runs using Monte Carlo resampling from the
original data set. The median of the classification accuracies
obtained during the 1000 runs are shown

CART kNN SVM Regression Bayes

Classification accuracy

Training with original data

All 71.74 73.91 80.43 73.91 73.91

OPRM1 56.52 56.52 60.87 60.87 58.7

TLR4 47.83 47.83 47.83 56.52 50

LINE1 72.83 76.09 80.43 76.09 78.26

OPRM1 and TLR4 54.35 54.35 65.22 65.22 58.7

OPRM1 and LINE1 71.74 73.91 80.43 71.74 76.09

TLR4 and LINE1 73.91 76.09 80.43 76.09 78.26

Training with permuted data

All 50 50 50 50 50

OPRM1 50 50 50 50 50

TLR4 50 50 50 50 50

LINE1 50 50 50 50 50

OPRM1 and TLR4 50 50 50 50 50

OPRM1 and LINE1 50 50 50 50 50

TLR4 and LINE1 50 50 50 50 50

ROC areas

Training with original data

All 79.35 73.91 82.61 80.72 80.15

OPRM1 59.78 53.31 61.81 69.19 63.94

TLR4 53.97 54.06 54.49 61.34 55.10

LINE1 79.02 76.09 84.31 82.23 79.96

OPRM1 and TLR4 58.60 53.07 67.86 72.40 61.81

OPRM1 and LINE1 79.49 73.91 81.47 80.15 81.66

TLR4 and LINE1 79.11 78.26 85.07 82.61 80.72
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Furthermore, since DNA methylation is tissue specific
[74], a negative result obtained in DNA extracted from
blood cells does not exclude an epigenetic modulation via
TLR4 or OPRM1 in the central nervous system. Finally,
the hypothesized epigenetic control of neuroimmune
crosstalk in persistent pain remains a possibility via fur-
ther genes involved in the glial-opioid interface [17].
Using a case-control approach and drawing from the pa-

tients belonging to the non-persistent pain group, a simi-
larly sized sample as the subgroup of patients with
persistent pain introduced some limitations in the analysis
via oversampling of cases versus controls. Specifically, the
present sample was taken to compare the epigenotypes of
the subjects with the extreme pain phenotypes of interest,
while intermediate phenotypes were omitted. This is a
standard design which has several variants such as using
matched pairs. Therefore, the numerical values of the pain
phenotype group association accuracy may require revi-
sion when applied to a non-selected cohort. Hence, the re-
ported classification performances of the algorithms are
not presented as a proposal of a diagnostic tool but have
been used in a knowledge-discovery manner, aimed at
identifying DNA locations within preselected genes where
the degree of methylation is distinctive between extreme
pain phenotypes after breast cancer surgery. In addition, in a
larger sample, more cases available for algorithm training
may lead to improved classification performance. However,
while machine-learning often unveils its power in so-called
big data, its definition is purely methodological as it is re-
ferred to as a set of methods that can automatically detect
patterns in data and then use the uncovered patterns to pre-
dict or classify future data, to observe structures such as sub-
groups in the data or to extract information from the data
suitable to derive new knowledge [75–77]. This meets exactly
the present application of machine learning.
The limited, hypothesis-driven selection of two

groups of genes, rather than performing a more com-
prehensive quantification of genome-wide DNA
methylation in many other genes relevant to pain and
its persistence, further emphasizes the knowledge-
discovery focus of the present analysis. The present
analysis was performed in a collaborative EU project
about persistent pain and it explicitly set the “focus
on glial-opioid receptor interface” (project “D” in
Table 1 in [78]). The two gene families were exclu-
sively named in the project reported here. More com-
prehensive assessments of the role of DNA
methylation in persistent pain may use other candi-
date gene approaches in the future. At least 540
genes have been so far demonstrated to be relevant
to pain [79–82]. Those approaches may also address
the DNA methylation across the whole genome with-
out a restriction to prior knowledge about pain-
relevant sites.

Conclusions
Using information on the methylation of CpG sites,
machine-learned analysis indicated that the epigenotypes
provide useful information for the allocation of the pa-
tients to either a “persistent pain” or “non-persistent
pain” phenotype group in a 3-year follow-up after breast
cancer surgery. The global DNA methylation, quantified
at CpG sites located in the retrotransposon LINE1, pro-
vided a similar diagnostic accuracy for persistent pain as
the previously established non-genetic predictors, based
on a single DNA sample. By contrast, the methylation of
TLR4 or OPRM1 genes could not contribute further to
the allocation of the patients to the pain-related pheno-
type groups. Therefore, the present analysis cannot pro-
vide support for specific epigenetic modulation of
persistent postoperative pain via methylation of two key
genes of the glial-opioid interface. Finally, although the
findings regarding the focused hypothesis of a regulation
of persistent pain via methylation of OPRM1 and TLR4
genes were negative, an accuracy of group assignment
approaching 80% by using global epigenetic information
encourages further exploration of DNA methylation as a
possibly important component of a future biomarker for
risk of persistent pain. The analysis emphasizes the need
to include a marker for global DNA methylation in epi-
genetic analyses to prevent that an effect, such as a
group difference, being wrongly attributed to the methy-
lation of a specific gene.
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