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S1 Supplementary Information text: Full description of the data 1 

analysis 2 

In this supplementary information, we provide a full description of the different steps of our 3 

data analysis. This includes the arguments for the choice of a particular approach as well as the 4 

sensitivity of the output of each approach to its input parameters. Investigating the sensitivity of a 5 

method increases our understanding of the relationship between input and output variables. 6 

Furthermore, it provides information on the robustness of the approach. 7 

In the following, we consider the four main parts of our analyses: 8 

1. Normalization of expression values and classification of cell populations 9 

2. Determining cell neighbours with the Delaunay Cell Graph (DCG) 10 

3. Correlations of expression levels of neighbouring cells 11 

4. Rule-based simulations of population composition in ICM of early blastocysts 12 

  13 

1. Normalization of expression values and classification of cell populations 14 

The imaging data for the embryos was generated in four batches corresponding to different 15 

imaging sessions and/or stainings. The mounting of the embryos for imaging resulted in a slight 16 

squeezing along the z-axis of the image and hence extension along x and y (Fig S1, Step 3(i)). We 17 

checked for fluorescence intensity decay along the z-axis for each batch. As this decay was minimal 18 

due to the mounting of the embryos, intensity adjustment along z was not performed (Fig 1). 19 

We assumed that the embryos that do not have fully segregated epiblast and primitive 20 

endoderm should be spherical (early and mid blastocysts). Based on this assumption, we calculated 21 

the deviation from sphericity for each of these embryos and rescaled the coordinates of the cell nuclei 22 

to obtain spherical embryos. Embryos with segregated epiblast and primitive endoderm have hatched 23 

from the zona and are elongated (late blastocysts). To rescale the coordinates of these late stage 24 
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embryos, we calculated for each batch the median rescaling factors for x, y and z of the early and mid 25 

blastocysts and applied these to the late blastocysts. 26 

 27 

Fig 1: Fluorescence intensity distribution along the z-axis. Mean level of NANOG (purple) or GATA6 (green) (y-28 

axis) fluorescence intensity in each cell (ICM and TE) versus its z position within the imaged z-stack in each of the 29 

four imaged embryo batches. The z position data are binned in 10 µm intervals. The shaded regions display the 30 

standard error of the mean. Batch, embryo and total cell numbers are indicated. Coloured numbers indicate the 31 

Spearman correlation values between NANOG (purple) and GATA6 (green) levels. Note that all values show a 32 

very weak or weak correlation indicating no evident decay of fluorescence intensity in deeper z positions. 33 

 34 

Plotting the mean GATA6 expression levels versus the mean NANOG expression levels for all 35 

nuclei in the four imaging batches, we observed a shift in the data related to the batch number (Fig S1, 36 

Step 2). To align the data obtained from the four independent sessions, we established thresholds for 37 

NANOG and GATA6 expression for each batch, based on the data distribution in late stage embryos, 38 

where Epiblast (Epi) and Primitive Endoderm (PrE) are completely separated and no double positive 39 

(DP) cells occur. The thresholds were manually adjusted. The criterion was to determine the minimal 40 
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NANOG and GATA6 value, respectively, such that there are no double positive cells in late blastocysts 41 

(see Fig 3).  42 

 43 

 44 

Fig 3: Population thresholds. Raw data for NANOG and GATA6 expression in single cells in arbitrary units (a.u.) 45 

in late embryos for the four batches (black) and the manually set thresholds to determine the four populations 46 

(red). 47 

 48 

Based on the thresholds, we linearly shifted the data of all batches and all stages, such that all 49 

thresholds fall on top of each other. Since the range of the data does not vary much between batches, 50 

we consider such a linear transformation most appropriate. This changes the absolute intensity levels 51 

for each embryo but it does not change the relative intensity values in an embryo, which is the value 52 

that is relevant for our analysis. Based on the thresholds for GATA6 and NANOG, all cells were classified 53 

as double negative (DN: N- and G-), NANOG+/GATA6- (N+G-), NANOG-/GATA6+ (N-G+) and double 54 

positive (DP: N+, G6+). We applied the same method to the Nanog mutant data set to align the 55 

thresholds obtained from the data obtained in the five imaging sessions. 56 

We also tested the k-means clustering used in [1] to determine the thresholds for our WT 57 

embryo data set as well as for the Nanog mutant data sets. Unfortunately, for the mutant data set, the 58 

clustering approach gave unreasonable results, including a large proportion of DN cells. Therefore, we 59 

decided to use the manually adjusted approach that works for both cases.  60 

For the [1] data set, the imaging was performed in small dishes that didn´t require the 61 

mounting of the embryos, hence a rescaling was not required. Instead, the data set was corrected for 62 

the decrease in intensity along z. Furthermore, Saiz et al. employed a k-means clustering for the 63 

population assignment of their data. We took the corrected data set and population assignment from 64 
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[1] to perform our neighbourhood analyses. We noticed that there were some oversaturated nuclei 65 

images and hence excluded all NANOG and GATA6 levels from the distribution that were two standard 66 

deviations away from the respective mean. The remaining analysis was analogous to our data.  67 

 68 

2. Determining cell neighbours with the Delaunay Cell Graph (DCG) 69 

We recently proposed two approaches to model the cell neighbourhood [2]: the Proximity Cell 70 

Graph (PCG), which provides a purely distance-based description of the cell neighbourhood and the 71 

Delaunay Cell Graph (DCG), in which neighbourhood is determined by the Delaunay triangulation. The 72 

Delaunay triangulation and its dual, the Voronoi tessellation, are routinely used to approximate the 73 

nearest neighbours of a cell [2–4]. The Delaunay cell graph (DCG) is given by 𝐷𝐶𝐺(𝑉, 𝐸) where 𝑉 is the 74 

vertex set and 𝐸 is the edge set of the graph. An edge (𝑢, 𝑤) ∈ 𝐸 exists between two vertices 𝑢 ∈ 𝑉 75 

and 𝑤 ∈ 𝑉 if the corresponding points are connected by a line in the Delaunay triangulation and the 76 

Euclidean distance between 𝑢 and 𝑤 is less than a given threshold, which we chose as 30 µm (three 77 

times the average diameter of a cell nucleus). To validate that the distance between the centroids of 78 

two neighbouring cells is at least 10 m, we calculated this distance between all neighbouring cells in 79 

the ICM (and their TE neighbours) for all embryos in data set I and II (Fig 3). These values fall within 80 

the reported segmentation errors obtained with MINS [5], increasing in later embryos. 81 
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82 

Fig 3: Percentage of cells with a distance below 10 m in data set I and II. Each dot represents the percentage 83 

of distances of a cell to all its neighbours that fall below 10 m in one embryo. The horizontal red line represents 84 

the average percentage within each developmental stage (numerical value is also shown). 85 

 86 

In a preliminary study to decide whether to use the Proximity Cell Graph (PCG) and/or the 87 

Delaunay Cell Graph (DCG) in mouse embryos, we generated a number of artificial shapes (ball, oblate 88 

spheroid, prolate spheroid, cuboid and box) and analysed the number of edges versus the number of 89 

vertices. As expected, we found that the number of edges in the PCG increases unreasonably with 90 

increasing number of vertices [2]. Furthermore, by definition, the PCG is completely dependent on the 91 

cut off length. PCG approximation was used in a recent study on a model for early cell lineage 92 

specification in mouse embryos with neighbour type simulations [6]. The authors assume in their 93 

simulations that the cells are non-overlapping spheres with a certain radius and a cut off length 1.2 94 

times the sum of the radii of the two cells. This is essentially if the spheres touch or almost touch. For 95 

a tissue with polygonal cells of different sizes like the ones found in mouse embryos, it is not trivial to 96 

determine an appropriate cut off length to obtain the nearest neighbours. The DCG is less sensitive to 97 

the cut off length and for cells in the centre of the embryo like in the ICM, the cut off length is irrelevant 98 

unless it is unreasonably small. Therefore, we decided to analyse the embryo data using the DCG.  99 
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We employed the DCG on the pre-processed nuclei centre of mass. For a given cell (vertex in 100 

the cell graph), the neighbouring cells are represented by the vertices that are connected through 101 

edges. In all our analyses, the set of neighbouring cells consists of all ICM cells and the TE cells that are 102 

neighbours to at least one ICM cell (Fig S1, Step4). 103 

To evaluate the neighbour assignment of the DCG in the mouse embryos, we compared the 104 

results for the ICM cells of four early, three mid and two late embryos to a manual assignment included 105 

in our data set (Fig 4, and see Sup. Videos 1-3). For the manual assignment, we considered cells as 106 

neighbours if they are touching, identified by the membrane staining. The manual assignment only 107 

provides an indication. Judging the three-dimensional neighbourhood of the cells from slices of two-108 

dimensional images is very difficult and gets even more challenging as the cell density and the 109 

irregularity of the cellular geometry increase with stage. We find that the accuracy of DCG compared 110 

to the manual assignment is 91 % (early), 82% (mid) and 83% (late) (see Table 1). We also found that 111 

0 (early), 3 (mid) and 13 (late) cells were not detected as neighbours by the automatic assignment 112 

compared to the manual assignment due to errors in the segmentation method used (MINS). Hence, 113 

if the cells were segmented correctly, the DCG did not miss a neighbourhood relationship. We conclude 114 

that for all stages, the DCG provides a robust description of the local cell neighbourhood in the ICM 115 

and a satisfactory approximation of which cells are touching. 116 

Table 1: Comparison of DCG neighbours to manual assignment of touching cells 117 

 Early (n=4) Mid (n=3) Late (n=2) 

ICM cells 50 67 79 

DCG neighbours 543 751 1031 

Manual neighbours (touching) 495 617 851 

Accuracy:  

Manual/DCG neighbours 
0.91 0.82 0.83 
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118 

Fig 4: z Sections of early (A), mid (B) and late (C) embryos comparing DGC neighbour assignment and 119 

fluorescent immunostaining. The left panels show membrane and/or nuclear staining. The yellow dots indicate 120 

DCG calculated neighbouring cells of the cell with an encircled number, that number indicates its number of 121 

neighbours; numbers in other cells indicate the number of neighbouring cells of that cell. The right panels show 122 

the original confocal images of the embryos shown, stained for NANOG (magenta), GATA6 (green), DAPI (blue) 123 

and -catenin (membrane, red). Note that the embryos are upside down and not all the neighbours of the 124 

indicated cell are located in the same z section. See Sup. Videos 1-3 for the complete z-stack.  125 

 126 

Sensitivity of the DCG 127 

We investigated the sensitivity of the number of neighbours provided by the DCG with respect 128 

to cell density. We considered a ball of radius 50 µm and randomly filled it with non-overlapping 129 

spheres of radius 5µm to represent the cells. For these simulated cells, we generated the DCG. The 130 

procedure was repeated ten times for cell numbers ranging from 10 to 400 in steps of 10, resulting in 131 



8 
 

cell densities ranging from 1.9x10-5 cells/µm³ to 76.43x10-5 cells/µm³. For comparison, manual 132 

inspection of the ICM cells resulted in a cell density of 4x10-5 cells/µm³ in early embryos and  133 

20x10-5 cells/µm³ in mid embryos. 134 

For the simulated DCGs, we find that for increasing cell density the average number of 135 

neighbours increases and plateaus at around 13 neighbours (Fig 5).  136 

 137 

 138 

Fig 5: The mean number of neighbours derived from the DCG plateaus for high cell densities. Each dot 139 

represents the mean number of neighbours of one simulated DCG. The vertical lines indicate the manually 140 

obtained cell densities in ICM of early (grey) and mid (yellow) blastocysts. 141 

 142 

3. Correlations of expression levels of neighbouring cells 143 

To relate the expression levels of a given cell to the expression levels of all its neighbours (both 144 

TE and ICM), we calculated Spearman’s correlation coefficient of the expression levels of a cell and the 145 

median expression levels of its neighbours. We chose to use median level in the neighbours in 146 

combination with Spearman’s correlation coefficient as we reasoned that this measurement was the 147 

variable, which made the least assumptions about the type of signals that might be regulating the 148 

observed correlations. Furthermore, the median provides a more robust measure than the sum of all 149 

signals as the median goes up slower and is also less sensitive to outliers than the sum. Spearman’s 150 

correlation coefficient does not require normally distributed data.  151 

To determine whether the obtained correlations are statistically significant, we performed a 152 

bootstrap resampling of the correlation coefficients of our data and compared the result with 153 
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correlation coefficients of a null model. For the bootstrapping, we resampled the experimental data to 154 

create 100 different data sets. 155 

 156 

Sensitivity of the correlation analysis: 157 

Spearman’s rank correlation coefficient is the Pearson correlation coefficient after the two 158 

variables have been separately transformed to ranks while retaining their pairing [7]. The value of the 159 

correlation coefficient is affected by a number of factors, in particular the sample size [8]. Therefore, 160 

we explored the sensitivity of the correlation value to the number of cells analysed. We know that for 161 

a random distribution, the correlation value is zero. To test whether this analysis might be affected by 162 

the topological properties of small DCG given the specific constraints on cell number, we used 100 163 

artificially generated DCGs. These artificial DCGs consisted of cell numbers 10 to 400 in steps of 10 and 164 

randomly assigned expression levels to each cell based on the uniform distribution over [0,1]. For each 165 

DCG, we then calculated the correlation value and determined the mean correlation value for DCGs 166 

with the same cell number. We find that if the number of cells analysed increases, the mean correlation 167 

coefficient approaches zero (Fig 6). Hence, if the number of cells is large enough, the correlation 168 

analysis is consistent. 169 

Next, we investigated how the number of cells in the analysis is linked to the deviation of the mean 170 

correlation from zero. Fitting the function 𝑓(𝑥) = −
𝑎

𝑥
− 𝑏 resulted in a=2.19 and b=0.0098. Based on 171 

𝑓(𝑥), we estimated that on average, we need at least 108 cells in the analysis to obtain at most 3% 172 

deviation (Fig 6). Less cells will lead to more noise in the correlation analysis, while more cells will 173 

increase the precision. We chose 3 % as the threshold, since this is the point where the functions levels 174 

off. 175 
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 176 

Fig 6: More than 108 analysed cells results in an average deviation of less than 3%. Mean correlation 177 

coefficients for 100 artificially generated DCGs of 10 to 400 cells in steps of 10 with expression levels drawn from 178 

the uniform distribution over [0,1] (dots). The continuous line indicates the fitted curve 𝑓(𝑥) = −
2.19

𝑥
− 0.0098 179 

and the intersection of 𝑓(𝑥).The 3% threshold is marked by the dashed line. 180 

 181 

The ICM has 20 ± 1 cells in early, 24 ± 1 cells in mid, and 45 ± 4 cells in late embryos. Due to 182 

these small numbers, analysing the correlations individually in each embryo does not provide reliable 183 

results. Hence, we pooled the data for all cells, expecting a reliable result if the number of pooled cells 184 

is at least 108.  185 

 186 

Null model for correlations: 187 

The correlation analysis for the experimental data results in non-zero values. To test whether 188 

these results might be affected by specific constraints on NANOG/GATA6 distributions, we investigated 189 

whether the correlation values are significantly different from those of a null model. For the null model, 190 

we assumed the embryo geometry is given by the experimental data, hence we used the measured 191 

coordinates of the cells. The expression levels of the TE cells were also based on the experimental data. 192 

To assess the effect of NANOG/GATA6 distribution, we generated several different models using 193 

different assignment rules for the NANOG and GATA6 values of the ICM cells: 194 

 Random model 1: The NANOG and GATA6 values of the ICM cells are randomly drawn from 195 

the uniform distribution over [0,1]. 196 

 Random model 2: The values of the ICM of each embryo are shuffled randomly. 197 
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 Random model 3: We generate the distributions for NANOG and GATA6 from all ICM cells of 198 

all embryos at all stages. The values of an ICM cell are randomly drawn from these distributions. 199 

 Random model 4: We generate the distributions for NANOG and GATA6 from all ICM cells of 200 

all embryos of a given stage. This results in six distributions one for each stage for NANOG and GATA6, 201 

respectively. For a cell in the ICM of a given embryo, the values for NANOG and GATA6 are randomly 202 

drawn from the corresponding distribution depending on the stage of the embryo.  203 

 Random model 5: The values of the ICM cells of all embryos in each stage are randomly 204 

shuffled. 205 

 206 

We generated each model for all the embryos in our data set, pooled all the cells in the ICM 207 

from one stage and calculated the correlations of these cells with their neighbours both for NANOG 208 

(Table 2) and GATA6 (Table 3). This procedure was repeated 100 times. We expect very low correlation 209 

values for the random models.  210 

Table 2: Correlation values for different random assignments of NANOG expression (mean ± standard 211 

deviation) 212 

Model Early Mid Late 

Random model 1 -0.0006 ± 0.04 0.15 ± 0.01 0.25 ± 0.003 

Random model 2 0.2 ± 0.04 0.04 ± 0.08 0.3 ± 0.05 

Random model 3 -0.005 ± 0.05 -0.02 ± 0.1 -0.004 ± 0.04 

Random model 4 -0.009 ± 0.04 -0.02 ± 0.1 -0.02 ± 0.04 

Random model 5 0.003 ± 0.06 0.002 ± 0.1 -0.01 ± 0.04 

 213 

 214 

 215 

 216 

 217 

 218 
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Table 3: Correlation values for different random assignments of GATA6 expression (mean ± standard deviation) 219 

Model Early Mid Late 

Random model 1 

(identical to above) 

-0.0006 ± 0.04 0.14 ± 0.01 0.25 ± 0.003 

Random model 2 0.6 ± 0.01 0.4 ± 0.07 0.4 ± 0.04 

Random model 3 -0.005 ± 0.05 0.0003 ± 0.1 -0.0001 ± 0.04 

Random model 4 -0.001 ± 0.05 -0.02 ± 0.1 0.002 ± 0.04 

Random model 5 -0.004 ± 0.05 0.004 ± 0.1 0.006 ± 0.04 

 220 

We find that Random model 2 exhibits larger correlation values than the other models. This 221 

indicates that reshuffling the values of the ICM cell in each embryo individually does not introduce a 222 

sufficient randomization, due to the small number of cells in the ICM. 223 

All the other models show similar results with values close to zero as expected from a random 224 

model. For all subsequent analyses shown in the main text, we used the method of Random model 3 225 

to calculate the null models for the neighbour correlations, rather than models 1, 4 or 5. The main 226 

reasons for this are that Random model 3 relies on the original data (unlike Random model 1) and its 227 

calculation is more straightforward, because we only need to consider two distributions for the data 228 

(one for NANOG and one for GATA6) rather than six as for Random models 4 and 5. 229 

The correlation values for Random model 3 for the different experimental conditions are 230 

summarised in Tables 4 and 5. 231 

 232 

 233 

 234 

 235 

 236 

 237 
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Table 4: Correlation values for Random model 3 for wild-type and NANOG mutant analyses (mean ± standard 238 

deviation) 239 

 Correlations 

Experimental condition Early Mid Late 

Our data (NANOG cell, 

NANOG neighbours) 

-0.005 ± 0.05 -0.02 ± 0.1 0.004 ± 0.04 

Our data (GATA6 cell, 

GATA6 neighbours) 

-0.005 ± 0.05 0.0003 ± 0.1 -0.0001 ± 0.04 

Our data (NANOG cell, 

GATA6 neighbours) 

-0.003 ± 0.04 -0.005 ± 0.1 0.006 ± 0.04 

Our data (GATA6 cell, 

NANOG neighbours) 

-0.002 ± 0.05 -0.02 ± 0.1 -0.0004 ± 0.04 

Saiz data (NANOG cell, 

NANOG neighbours) 

-0.0005 ± 0.03 0.001 ±0.04 -0.0008 ± 0.03 

Saiz data (GATA6 cell, 

GATA6 neighbours) 

-0.002 ± 0.03 -0.008 ± 0.03 0.0001 ± 0.03 

Saiz data (NANOG cell, 

GATA6 neighbours) 

-0.004 ± 0.03 -0.002 ± 0.04 -0.0006 ± 0.03 

Saiz data (GATA6 cell, 

NANOG neighbours) 

-0.004 ± 0.03 -0.0009 ± 0.03 -0.003 ± 0.03 

NANOG mutant analysis, 

WT and heterozygotes 

(GATA6 cell, GATA6 

neighbours) 

-0.0008 ± 0.04 -0.02 ± 0.07 0.2 ± 0.03 

NANOG mutant analysis, 

mutants (GATA6 cell, 

GATA6 neighbours) 

-0.003 ± 0.08 -0.03 ± 0.09 -0.1 ± 0.04 

 240 

 241 
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Table 5: Correlation values for Random model 3 for treated embryos (mean ± standard deviation) 242 

Experimental condition Correlation (no staging) 

Treatment analysis, control (NANOG 

cell, NANOG neighbours) 

-0.003 ± 0.03 

Treatment analysis, control (GATA6 

cell, GATA6 neighbours) 

-0.001 ± 0.04 

Treatment analysis, PD03 (NANOG 

cell, NANOG neighbours) 

-0.003 ± 0.04 

Treatment analysis, PD03 (GATA6 

cell, GATA6 neighbours) 

-0.005 ± 0.04 

 243 

4. Rule-based simulations of population composition in ICM of early blastocysts 244 

To generate the simulations of the four populations, we used the 64 early embryo data sets from 245 

Saiz et al. For each ICM cell, we determined the simulated cell population type based on two rules and 246 

kept the cell centroid and neighbours as obtained from the experimental data. We included the TE 247 

cells that are neighbouring at least one ICM cell with their features obtained from the experimental 248 

data. To obtain the population type for an ICM cell, we assigned it N+ or N- and G6+ or G6- expression 249 

according to these two rules: 250 

1) G6+ cells are clustered; the clustering is achieved by randomly setting the percentage of being 251 

G6+ to 85 % and the rest to G6- (𝑝𝐺𝐴𝑇𝐴6  =  0.85);  252 

2) cells with nine or close to nine neighbours are N+ up to 82 % (𝑝𝑁𝐴𝑁𝑂𝐺 =  0.82), the rest N-. 253 

The values for 𝑝𝐺𝐴𝑇𝐴6 and 𝑝𝑁𝐴𝑁𝑂𝐺 are obtained from the experimental data and are the proportion of 254 

ICM cells positive for GATA6 or NANOG expression, respectively. Hence, 𝑝𝐺𝐴𝑇𝐴6 is the proportion of 255 

DP and N-G+ cells and 𝑝𝑁𝐴𝑁𝑂𝐺  is the proportion of DP and N+G- cells. Combining this information for 256 

each cell, we determined its simulated population type. 257 

 258 

 259 
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Sensitivity of the four populations model: 260 

The four populations model relies on three parameters: 261 

1. 𝑝𝐺𝐴𝑇𝐴6, the proportion of GATA6 positive cells, i.e DP and N-G+ cells 262 

2. 𝑝𝑁𝐴𝑁𝑂𝐺, the proportion of NANOG positive cells, i.e DP and N+G- cells 263 

3. startNumNeigh, the number of neighbours at which we start assigning NANOG positive fate 264 

to the cells 265 

We analysed the sensitivity of the model to the values of these three parameters. We varied 𝑝𝑁𝐴𝑁𝑂𝐺 266 

and 𝑝𝐺𝐴𝑇𝐴6 between 0 and 1 in steps of 0.2 and startNumNeigh between 7 and 14 in steps of 1. For 267 

each parameter value combination, we performed 100 simulations. For each embryo, we calculated 268 

the mean distribution of populations of the 100 simulations. The mean population distributions are 269 

then summed up to obtain the total overall population distribution. This simulated total population 270 

distribution is then compared to the total population distribution from the experimental data. To 271 

assess the goodness of fit, we employed the mean squared error 𝑀𝑆𝐸 = 𝑀𝑒𝑎𝑛((popDist𝑆𝑖𝑚 −272 

popDist𝐸𝑥𝑝)2), where popDist𝑆𝑖𝑚 is the population distribution of the simulations and popDist𝐸𝑥𝑝 273 

the population distribution obtained from the experiments. For a better visualisation, we rescale the 274 

MSE and obtain the simulation match 1 −
𝑀𝑆𝐸−𝑀𝑖𝑛(𝑀𝑆𝐸)

𝑀𝑎𝑥(𝑀𝑆𝐸)−𝑀𝑖𝑛(𝑀𝑆𝐸)
. Hence, a simulation match of 0 275 

corresponds to the parameter values with the worst match and a simulation match of 1 to the best 276 

match (Fig 7) 277 

 278 
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  279 

Fig 7: Higher values of 𝒑𝑵𝑨𝑵𝑶𝑮 and 𝒑𝑮𝑨𝑻𝑨𝟔 provide a better match of the simulations to the experimental data. 280 

Simulation match to experimental data from early embryos (normalized to [0,1]) for the four populations model, 281 

varying 𝑝𝑁𝐴𝑁𝑂𝐺  and 𝑝𝐺𝐴𝑇𝐴6  between 0 and 1 and startNumNeigh between 7 and 14. 282 

 283 

Varying startNumNeigh independently showed the best match for 14, followed by 9 (Fig 8A). 284 

Plotting the population distributions however showed that the differences between the simulations 285 

are negligible (Fig 8B). 286 

 287 

          288 

Fig 8: The four populations model is robust with respect to the parameter startNumNeigh. Simulation match 289 

to experimental data from early embryos (normalized to [0,1]) (A) and population distributions (B) for the four 290 

populations model for 𝑝𝑁𝐴𝑁𝑂𝐺 =  0.8 and 𝑝𝐺𝐴𝑇𝐴6  =  0.8 and startNumNeigh varying between 7 and 14.  291 

 292 
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Varying 𝑝𝑁𝐴𝑁𝑂𝐺 and 𝑝𝐺𝐴𝑇𝐴6 shows that for values between 0.6 and 1 for both parameters, we 293 

obtain a reasonable fit, with the best fit for 𝑝𝑁𝐴𝑁𝑂𝐺 =  0.8 and 𝑝𝐺𝐴𝑇𝐴6  =  0.8 (Fig 9A). Plotting the 294 

population distribution for the simulations of these nine parameter combinations, shows that 295 

increasing the values for 𝑝𝑁𝐴𝑁𝑂𝐺 or 𝑝𝐺𝐴𝑇𝐴6 changes the composition of the populations in the 296 

simulated ICMs (Fig 9B). If 𝑝𝑁𝐴𝑁𝑂𝐺 or 𝑝𝐺𝐴𝑇𝐴6 is one, only up to two populations arise. For values below 297 

one for 𝑝𝑁𝐴𝑁𝑂𝐺  and 𝑝𝐺𝐴𝑇𝐴6, the four populations arise and become more evenly distributed the 298 

smaller the values are. 299 

 300 

Fig 9: The values of 𝒑𝑵𝑨𝑵𝑶𝑮 and 𝒑𝑮𝑨𝑻𝑨𝟔  determine the population distributions in the simulated ICMs. 301 

Simulation match to experimental data from early embryos (normalized to [0,1]) (A) and population distributions 302 

for the top nine matches (B) for the four populations model for startNumNeigh = 9 and 𝑝𝑁𝐴𝑁𝑂𝐺  and 𝑝𝐺𝐴𝑇𝐴6  303 

varying between 0 and 1.  304 

 305 
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