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Abstract

Metastasis formation requires active energy production and is regulated at multiple levels by mitochondrial
metabolism. The hyperactive metabolism of cancer cells supports their extreme adaptability and plasticity and
facilitates resistance to common anticancer therapies. In spite the potential relevance of a metastasis metabolic control
therapy, so far, limited experience is available in this direction. Here, we evaluated the effect of the recently described
a-ketoglutarate dehydrogenase (KGDH) inhibitor, (S)-2-[(2,6-dichlorobenzoyl) amino] succinic acid (AA6), in an
orthotopic mouse model of breast cancer 4T1 and in other human breast cancer cell lines. In all conditions, AA6
altered Krebs cycle causing intracellular a-ketoglutarate (a-KG) accumulation. Consequently, the activity of the a-KG-
dependent epigenetic enzymes, including the DNA demethylation ten-eleven translocation translocation hydroxylases
(TETs), was increased. In mice, AA6 injection reduced metastasis formation and increased 5hmC levels in primary
tumours. Moreover, in vitro and in vivo treatment with AA6 determined an a-KG accumulation paralleled by an
enhanced production of nitric oxide (NO). This epigenetically remodelled metabolic environment efficiently
counteracted the initiating steps of tumour invasion inhibiting the epithelial-to-mesenchymal transition (EMT).
Mechanistically, AA6 treatment could be linked to upregulation of the NO-sensitive anti-metastatic miRNA 200 family
and down-modulation of EMT-associated transcription factor Zeb1 and its CtBP1 cofactor. This scenario led to a
decrease of the matrix metalloproteinase 3 (MMP3) and to an impairment of 4T1 aggressiveness. Overall, our data
suggest that AA6 determines an a-KG-dependent epigenetic regulation of the TET-miR200-Zeb1/CtBP1-MMP3 axis
providing an anti-metastatic effect in a mouse model of breast cancer-associated metastasis.

Introduction worldwide?. The disease is extremely heterogeneous®
For its high yearly incidence, mortality and morbidity, —and characterised by about 20% incidence of metastasi-
breast cancer is a developing threat women face zation” mainly in bone, distant soft tissue and lung™®.
Despite the remarkable progresses in prevention and

patient care and the scientific community effort to elu-

Correspondence: Chiara Cencioni (chcencioni@gmail.com) or cidate the molecular mechanism underpinning aetiology

1Carlo Gaetano (carlo.gaetano@gmail.com) and development of breast cancer, the request of effective
Dl_v|spn of Cardiovascular Ep|gen§t|cs, Department of Cardiology, Goethe anti-metastatic therapies remains open.

University, 60596 Frankfurt am Main, Germany K . .
“Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute — FPO, RecentlY: a broad interest Pomted to cancer metabolism
IRCCS, Candiolo, Italy as a promising target to develop new therapeutic
Full list of author information is available at the end of the article.

These authors contributed equally: Sandra Atlante, Alessia Visintin

These authors jointly supervised this work: F. Spallotta, C. Cencioni, C. Gaetano

Edited by G. Melino

© The Author(s) 2018

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
BY in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.

SPRINGER NATURE
CDDpress

Official journal of the Cell Death Differentiation Association


http://creativecommons.org/licenses/by/4.0/
mailto:chcencioni@gmail.com
mailto:carlo.gaetano@gmail.com

Atlante et al. Cell Death and Disease (2018)9:756

approaches. Cancer cells are characterised by a hyperactive
metabolism and adaptability to nutrient deprivation®.
Indeed, enhanced glycolysis and/or oxidative phosphor-
ylation conferred to drugs interfering with metabolism,
including the tricarboxylic acid (TCA) cycle, promising
therapeutic potential interest, although the possibility to
elicit adverse effects needs to be carefully evaluated’ '°.
TCA helps cancer to develop its adaptability in con-
sequence of the intrinsic ability to adjust metabolic fluxes
according to resource availability. Further, metabolites
produced during TCA cycle dramatically affect tumour
cell epigenetic landscape'' ™. In this light, TCA cycle
relevance is validated by several specific cancer-associated
mutations occurring into the coding sequence of its
enzymes'*'°. In mitochondria, the a-ketoglutarate dehy-
drogenase complex (KGDH), a key control TCA enzyme,
catalyses the oxidative decarboxylation of a-ketoglutarate
(a-KG) to succinyl-CoA exploiting the reduction of
NAD™ to NADH'>''®, Its enzymatic activity relies on
the availability of ATP, inorganic phosphate, and NAD™
produced by glycolysis and respiratory chain controlling
the mitochondrial redox status, the metabolite flux and
many different signalling pathways, including amino acid
synthesis'>'**°, KGDH is one of the mitochondrial
enzymes most sensitive to tumour micro-environmental
changes and plays a role in the cancer adaptive metabolic
response®”’. Therefore, it is envisaged that drugs target-
ing this enzymatic complex might show interesting anti-
cancer properties.

DNA hypermethylation is an intrinsic feature of cancer
genetic landscape®~>* possibly due to ten-eleven trans-
location hydroxylase (TET) activity alterations, which
have been associated with worse prognosis®*~>*. Com-
monly, in cancer, the reduced DNA demethylation
associates with specific mutations or decreased expression
of TET encoding genes, as well as with diminished a-KG
intracellular levels occurring upon its replacement with
the oncometabolite D-2-hydroxyglutarate®>*, a-KG not
only fuels energetic and anabolic routes into the mito-
chondrion but regulates also demethylation of DNA and
histones, acting as cofactor for all dioxygenases including
TETs and Lysine demethylases (KDMs)**~>!. Of interest,
in a metabolically compromised environment, KGDH
inhibition increased o-KG level restoring the epi-
metabolic control on the DNA demethylation cycle®.

TET activity is particularly relevant to counteract breast
cancer progression by suppression of mechanisms asso-
ciated with the metastatic process33’35. In this context,
TET proteins de-repress the expression of tissue inhibi-
tors of metalloproteinases (TIMP 2 and 3)%¢ and of anti-
metastatic miRNAs, such as miR-200 family members,
demethylating their promoter regions™.

The miR-200 family consists of five members organised
in two different clusters according to chromosomal
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location. Mouse chromosome 4 and 6 give rise to two
polycistronic transcripts encoding for cluster 1 (miR-200b,
miR-200a and miR-429) and cluster 2 (miR-200c and
miR-141) respectively’’. In breast cancer they hinder both
epithelial-to-mesenchymal transition (EMT), the initiat-
ing step of tumour invasion, and metastatic cancer stem
cell function®°. Most of miR-200 tumour suppressor
activity is obtained by direct targeting of the two zinc-
finger E-box binding homeobox members Zebl and
Zeb2**~*2, This family of transcription factors have been
defined as the master inducer/regulator of EMT since
they directly inhibit the cell-cell adhesion molecule E-
cadherin enhancing cell motility**~**.

Although metabolic alterations, inefficient DNA deme-
thylation and unbalanced miR-200/Zeb circuitry have
been well defined as crucial steps along metastatic pro-
gression, the presence of a functional link among all these
elements has not been thoroughly investigated yet. In the
present work, we took advantage from the properties of a
novel compound, the (S)-2-[(2,6-dichlorobenzoyl)amino]
succinic acid (AA6), able to inhibit KGDH activity, to
increase cellular a-KG levels and to restore the epi-
metabolic control upon DNA demethylation cycle®”.
Here, we investigated AA6 properties as potential anti-
metastatic drug in a spontaneous lung metastasis mouse
model of breast cancer.

Results
The KGDH inhibitor AA6 prevents lung metastasis
formation in 4T1 mouse model of breast cancer

The KGDH is a TCA cycle mitochondrial enzyme
whose activity can be inhibited by (S)-2-[(2,6-dichlor-
obenzoyl)amino]succinic acid (AA6)*. In an attempt to
understand whether its inhibition might interfere with
tumour progression, we administered two doses of AA6
(12.5 mg/kg and 50 mg/kg) in the 4T1 orthotopic mouse
model of breast cancer®®, Interestingly, AA6 reduced the
area of lung metastasis in a dose-dependent manner
without apparently affecting growth of the primary
tumour (Fig. 1a, b, d). Further the treatment of 4T1 mice
with the dose of 50 mg/kg significantly decreased the
incidence of lung metastasis (Fig. 1c). Analysis of Ki67, a
marker of proliferating cells, and cleaved caspase 3
(Casp3), a marker of apoptosis, into the primary tumour
of untreated and AA6 treated mice revealed no difference
between the two groups. Similarly, we did not detect any
significant differences in proliferation or apoptosis in lung
metastasis (Fig. 1le—h). These data suggest that AA6 does
not directly interfere with metastasis growth but rather
could induce a delay of the metastatic process. To
investigate the anti-metastatic effect of AA6, we studied
the expression of a selected panel of genes associated with
tumour progression and metastasis. This analysis revealed
that some crucial metastatic genes were negatively
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Fig. 1 (See legend on next page.)

modulated by AA6 (Fig. 2a and Supplemental table I).
Further analyses confirmed that AA6 repressed, both at
mRNA and protein level, extracellular matrix proteases
(e.g. Mmp3), cell adhesion molecules (e.g. Gpnmb), and
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transcription factors associated to cancer progression
(e.g. Ctbp1) with a minor effect on cell proliferation genes
(e.g. Plaur and Src) (Fig. 2b, c). In agreement, 4T1 cells
treated with AA6 for 24 h (h) showed reduced migration
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Fig. 1 AA6 prevents 4T1 cell lung metastasis formation. a Hematoxylin and eosin staining: arrows represent lung metastasis reduction after
3 weeks of treatment of 4T1 orthotopic mouse model of breast cancer with AA6 (12.5 mg/kg n = 10; 50 mg/kg n = 5), compared to controls; n = 10.
Scale bar 50 um. b-d The graph shows the measured metastasis area in AA6 treated mice (12.5-50 mg/kg; grey bars) compared to controls (black
bars) (b) and the percentage of metastasis incidence analysed by Mantel-Cox Test (*p = 0.0082) (c); no difference was observed in the primary -
tumour volume (d). e, f Representative confocal images (left panels) and relative densitometry (right panels) showing cell proliferation (Ki67) (e) and
apoptosis (CASP3) (f) in AA6 treated mice primary tumour (12.5-50 mg/kg; grey bars) compared to controls (black bars). Samples were probed by an
anti-Ki67 antibody (green; monoclonal), anti-CASP3 (green; monoclonal) and counterstained by DAPI (blue). Scale bar 50 um; control n = 10; 12.5 mg/kg
n=10; 50mg/kg n=5. g, h Representative immunohistochemistry images (left panels) and relative quantification (right panels) showing cell
proliferation (Ki67) (g) and apoptosis (CASP-3) (h) in AA6 treated mice primary tumour (grey bars) compared to controls (black bars). Samples were
probed by an anti-Ki67 antibody (monoclonal), anti-CASP3 (monoclonal) and counterstained by hematoxylin. Scale bar 50 um; control n = 10;
12.5mg/kg n = 10; 50 mg/kg n = 5. Data are presented as mean + SE; *p < 0.0332, **p < 0.0021, ***p < 0.0002 vs controls. Data were analysed by non-

parametric Mann-Whitney test

(Suppl. Figure 1la, b), adhesion to endothelium (Suppl
Figure 1c) and invasion capacity (Suppl. Figure 1d). In
these experiments, the most important effects were
observed at 50 uM AA6, with a tumour cell migration
impairment/inhibition higher than 80% (Fig. 2d), in par-
allel to a significant inhibition of invasiveness (Fig. 2e). In
agreement with in vivo observations, 50 uM AA6 did not
affect survival and proliferation of 4T1 cells (Suppl. Fig-
ure 2). Interestingly, similar results were obtained in two
different human breast cell lines: the African American
human cell line CRL-2335 and the Caucasian human cell
line MDA-MB-231. CRL-2335 cell line is a recognized
model of basal-like breast carcinoma, one of the most
aggressive and deadly carcinoma sub-type characterized
by poor clinical outcomes. Of note, CRL-2335 cells are
negative for the expression of human epidermal growth
factor receptor 2 (Her2-neu), Oestrogen Receptor (ER),
and Progesterone Receptor (PR) and positive for the
expression of basal-like markers, epidermal growth factor
(EGFR), and cytokeratin 5/6 (ck 5/6)**. Conversely, the
MDA-MB-231 cell line represents one of the most com-
monly used breast cancer highly aggressive, invasive and
poorly differentiated triple-negative (Her2-neu, ER, and
PR negative) in vitro model*>*°, Remarkably, AA6 down-
modulated most of the metastasis-associated genes in
both human breast cell lines (Suppl. Figure 3a, b; Suppl.
Figure 4a, b). Further, AA6 reduced serum-stimulated
chemo-attraction (Suppl. Figure 3¢c; Suppl. Figure 4c) and
adhesion to TNF-a-activated endothelium (Suppl. Fig-
ure 3d; Suppl. Figure 4d) without affecting viability
(Suppl. Figure 3e; Suppl. Figure 4e), survival and pro-
liferation (Suppl. Figure 3f; Suppl. Figure 4f). Hence, AA6
treatment affected tumorigenic functions of 4T1, CRL-
2335 and MDA-MB-231 cells without altering their vital
functions. Taken together these results foster AA6 as an
anti-metastatic compound active both in vivo and in vitro.

KGDH inhibition increases a-KG levels leading to DNA
demethylation and impaired cell migration

In agreement with prior data obtained from non-cancer
related dysmetabolic models®?, also in breast cancer AA6
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inhibited KGDH enzymatic activity (Suppl. Figure 5a)
leading to intracellular a-KG level increase (Suppl. Fig-
ure 5b). In this chemically determined a-KG-enriched
environment, we observed an increase in TET protein
expression both in vivo (Fig. 3a, b) and in vitro (Fig. 3¢
and Suppl. Figure 5c) paralleled by a higher total TET
enzymatic activity (Fig. 3d). Interestingly, in 4T1 cells,
confocal analysis of TET proteins revealed that AA6
treatment rescued the predominant cancer-associated
extra-nuclear localisation of these proteins*”*® (Fig. 3c).
TET1 and TET3 re-localisation into the nucleus was
further confirmed by the biochemical analysis of nucleus/
cytoplasm fractions (Suppl. Figure 5d). Remarkably, the
intra-nuclear TET re-localisation was paralleled by a
global reduction of DNA 5-methyl cytosine (5mC) and a
relative increase in the content of 5-hydroxymethyl
cytosine (5hmC) both in vivo and in vitro (Fig. 3e, f).
Similar results were observed in CRL-2335 cells and
MDA-MB-231 cells upon AA6 treatment (Suppl. Fig-
ure 3g; Suppl. Figure 4g). In order to investigate AA6
molecular mechanism, KGDH expression was knocked-
down (KD) in 4T1 cells by CRISPR/Cas9 technology
(Fig. 4a). KGDH expression KD significantly affected its
enzymatic activity (Fig. 4b) leading to a relative accumu-
lation of intracellular a-KG (Fig. 4c). Of note, CRISPR/
Cas9 vector 2 was more efficient than vector 1 eliciting a
higher increase of a-KG levels. AA6 effect on total TET
enzymatic activity as well as on 5mC and 5hmC was
reproduced in 4T1 KGDH KD cells (Fig. 4d—f). Remark-
ably, the partial inhibition of KGDH impaired 4T1 cell
migration (Fig. 4g) without altering cell viability and
proliferation (Suppl. Figure 6a-c). All these evidences
suggested that the KGDH complex might function as a
key metabolic enzyme during metastatic progression and
that AA6 counteracts this process.

AAG6 stimulates the endogenous synthesis of nitric oxide

Taking under consideration the impact that o-KG
fluctuations might have on different intracellular path-
ways, we evaluated the involvement of additional
mechanisms in the anti-metastatic response to AA6.
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Fig. 2 AA6 administration decreases metastasis-associated transcripts and interferes with 4T1 cells migration. a Heatmap showing the 53
most differentially regulated genes in tumour mass derived from AA6 injected mice (50 mg/kg), or untreated mice; n = 3 each group. Yellow and
blue represent over- and under-expressed genes, respectively. b mRNA expression analysis of Matrix metallopeptidase 3 (Mmp3), Glycoprotein
transmembrane non-metastatic B (Gpnmb), C-terminal binding protein 1 (Ctbp1), Plasminogen activator, urokinase receptor (Plaur) and Rous
sarcoma oncogene (Src) genes in AA6 injected mice (50 mg/kg; grey bars) and control mice (black bars); n = 5. ¢ Representative western blot (upper
panels) and relative densitometry (lower panel) of MMP3, GPNMB, CtBP1 and SRC protein levels in AA6 (50 mg/kg; grey bars) treated mice compared
to controls (black bars). GRB2 and GAPDH were used as loading controls; n =5 each group. d Representative phase contrast microscopy images
(upper panel) depicting 4T1 cells motility after 24 h treatment with AA6 (50 uM) or vehicle alone; the graph (lower panel) shows the percentage of
closure in 4T1 cells after 24 h treatment with AA6 (50 uM; grey bar) or vehicle (black bar). Scale bar 100 um; n =5 each group. e Representative
pictures (upper panel) showing 4T1 cell invasiveness after AA6 (50 uM) treatment versus vehicle; the graphs (lower panel) represent migrated cells
counted after 24 h treatment with AA6 (50 uM; grey bar) or vehicle alone (black bar). Scale bar 50 um; n = 3. Data are presented as mean =+ SE;

*p < 0.05, **p < 0.005, ***p < 0.0005 vs controls. Data were analysed by two-way ANOVA and non-parametric two-tailed paired Student's t-test

a-KG is a relevant precursor of ornithine, a non-
proteinogenic amino acid, which leads to L-arginine
(L-Arg) synthesis through the urea cycle. As a substrate,
L-Arg contributes to NO synthases (NOS) activation
fostering the endogenous production of NO*, Recently,
NO-donors have been proposed as promising therapeutic
options for breast, liver and skin cancers™ and, in this
perspective, we reasoned that the anti-metastatic role of
AA6 might be not only associated to its modulation of
mitochondrial metabolism and TET activation but also to
an effect on endogenous NO synthesis. To explore this
possibility, we investigated AA6 effect on the a-KG/L-
Arg/NO axis. A slight but significant increase of L-Arg
content was observed both in vivo (Fig. 5a) and in vitro
(Fig. 5b) either upon AA6 treatment or after KGDH KD
(Suppl. Figure 6d). Interestingly, an increase in the total
amount of nitrates and nitrites, conceivably by-products
of NO synthesis, was detected in the tumorigenic tissue of
AAG6 treated mice (Fig. 5c). In agreement with this
observation, after 16h of AA6 in vitro treatment,
increased NO levels were detected in 4T1 cells as deter-
mined by the FACS analysis of signals generated by the
fluorescent indicator 4,5-diaminofluorescein-2 diacetate
(DAF-2DA; Fig. 5d). The ability of AA6 to induce endo-
genous NO synthesis was verified by the addition of the
NO scavenger 2-Phenyl-4,4,5,5-tetramethylimidazoline-
1-oxyl 3-oxide (PTIO) to 4T1 cells treated with AA6. As
expected, PTIO significantly reduced NO levels (Fig. 5e).
Consistently, similar increase in NO production was
observed in 4T1 KGDH KD cells (Suppl. Figure 6e).
Taken together these data suggest that AA6 has the
unprecedented property to activate NO synthesis possibly
acting via enhancement of the metabolic/biosynthetic a-
KG/L-Arg/NO axis.

AA6 impairs the EMT process through activation of miR-
200 family and Zeb1 down modulation

It has been recently reported that miR-200 family
expression is controlled by endogenous NO allowing for
the mesendodermal differentiation of mouse embryonic
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stem cells”"*%, miR-200 family is usually down-modulated

during tumour progression. This phenomenon is
believed to prevent the miR-200-dependent inhibition of:
(i) EMT; (ii) cancer stem cell self-renewal/differentiation;
(iii) chemoresistance® . Intriguingly, as miR-200 family
presents CpG-rich sequences, a down-modulation
mechanism used by cancer is the hypermethylation at
the regulatory regions of both clusters to favour tumour
formation and increase cell invasion ability*>*"*°, To
understand whether AA6 treatment might have an effect
on the tumour suppressor miR-200 family we investigated
DNA methylation at miR-200 gene loci and their response
to endogenous NO production in 4T1 cells. Methylation
analysis revealed that AA6 significantly reduced 5mC
levels in two different regulatory regions of both miR-200
cluster 1 and 2 (Fig. 6a). The methylation reduction
allowed miR-200 family transcription in vivo (Fig. 6b, c)
and in vitro (Fig. 6d) as shown by pri-miR and miR parallel
expression analysis. AA6 ability to positively regulate NO
production and miR-200 family expression prompted us to
investigate other players of the EMT process, such as the
transcriptional repressor Zebl, a direct target of miR-200s.

Zebl, a zinc-finger homeodomain transcription factor,
actively facilitates EMT by transcriptional inhibition of
the cell—cell adhesion molecule E-cadherin, a hallmark of
the initiating step of cancer metastasis. AA6 administra-
tion in mice injected with 4T1 cells into the mammary
gland significantly reduced Zebl protein level (Fig. 6e).
The same result was obtained in 4T1, CRL-2335 and
MDA-MB-231 cells treated with AA6 and in KGDH KD
cells (Fig. 6g; Suppl. Figure 3h; Suppl. Figure 4h; and
Suppl. Figure 7b). Specifically, in 4T1 cells Zebl expres-
sion was reduced both at mRNA and protein level (Fig. 6f, g)
in response to miR-200 family increase as demonstrated
by experiments in which miR-200c was KD by validated
LNA oligos (Fig. 6h). Moreover, Zebl is known to
bind CtBP1 corepressor’* a transcriptional factor
associated to cancer progression present among the most
modulated genes in the tumour metastasis PCR array
analysis reported here and whose down-modulation was
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vehicle-treated cells (black bar); n = 3. e Quantification of 5mC (left panel) and 5hmC (right panel) global levels in 4T1-injected mice after AA6
administration (50 mg/kg; grey bars) compared to untreated mice (black bars); n =5 each group. f Quantification of 5mC (left panel) and 5hmC (right
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Official journal of the Cell Death Differentiation Association



Atlante et al. Cell Death and Disease (2018)9:756 Page 8 of 18

a b
120+
PN B LCv2 NTC
L& & &8 12 B LCv2_NTC = 1004 LCv2_KGDH_1
,f, W";' ,:}' 1.0 3 LCv2_KGDH_1 E 80- * [ LCv2_KGDH_2
OA OA G\ £ [ LCv2_KGDH_2 S
~ ~ ~ 508 * S 604 *%
2 ®
Los = = b
0.0 0-
c d
57 200+
& X W LCv2 NTC - % [ LCv2_NTC
2 4 LCv2_KGDH_1 g L LCv2_KGDH_1
29 * [ LCv2_KGDH_2 §‘15°' 3 LCv2_KGDH_2
T § 3 S
£5 ;_‘3 100-
2 24
ge =
g4 g N
3 L
0“ T 0' T
e f
~ 2.5 3 0.12-
3 Bl LCv2_NTC g 012 , HE LCv2NTC
< 2.0 LCv2_KGDH_1 < 0.104 . LCv2_KGDH_1
o [ LCv2_KGDH_2 2 0.08- [ LCv2_KGDH_2
T 1.5 s
o
s = = 2 0.06-
2 4.0- Q
2 £ 0.04
] &=
— 0.54 5
g S
= 0.0 2

g LCv2_NTC LCv2_NTC+AA6 LCv2_KGDH_1 LCv2_KGDH_2

*kk
1000 ————— mm LCv2 NTC

@ LCv2_NTC+AA6
=3 LCv2_KGDH_1
[ LCv2_KGDH_2

Oh

Closure (%)

24h |

Fig. 4 CRISPR/Cas9 KGDH inactivation increases a-KG levels, TET activity and global 5hmC and interferes with 4T1 cell line biological
properties. a Representative WB (left panel) and relative densitometry (right panel) of KGDH protein levels in 4T1 cells after CRISPR/Cas9 inactivation
of KGDH (LCv2_KGDH_1 and LCv2_KGDH_2) compared to control vector (LCv2_NTC). a-tubulin was used as a loading control; n = 5. b KGDH activity
and ¢ a-KG level quantification of LCv2_NTC- (black bars), LCv2_KGDH_1- (dark grey bars) and LCv2_KGDH_2- (light grey bars) 4T1 cells; n = 3 each
group. d TET activity quantification performed in LCv2_KGDH_1- (dark grey bar) and LCv2_KGDH_2- (light grey bar) 4T1 cells compared to LCv2_NTC
(black bar); n = 3. e Global 5mC and f 5hmC levels in 4T1 cells after CRISPR/Cas9 inactivation of KGDH (LCv2_KGDH_1 and LCv2_KGDH_2; grey bars)
compared to control vector (LCv2_NTG black bars); n =3 each group. g Representative phase contrast microscopy images (left panel) and relative
percentage of closure measurements (right panel) showing 4T1 cells motility after CRISPR/Cas9 inactivation of KGDH (LCv2_KGDH_1; medium grey
bar and LCv2_KGDH_2; light grey bar) compared to control vector (LCv2_NTG; black bar) in the presence or absence of AA6 (50 uM; dark grey bars).
Scale bar 100 pm; n =3 each condition. Data are presented as means + SE; *p < 0.05, **p < 0.005, ***p < 0.0005 vs controls. Data were analysed by
non-parametric two-tailed paired Student's t-test
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validated by qRT-PCR and western blot (Fig. 2a—c).
CtBP1 expression down-modulation by AA6 treatment

anti-metastatic potential of AA6 was further confirmed
in vivo and in vitro by the inhibition of MMP3 expression

was further confirmed in vitro (Suppl. Figure 7d).
Relevantly, the tumour metastasis PCR array analysis
pointed out MMP3 as one of the most down-regulated
targets of AA6 (Fig. 2a—c). MMP3 is a matrix-metallo
protease contributing to initiate the metastatic spread in
various tumours>®, Recently, Sun et al. demonstrated that
MMP3 is an indirect target of miR-200 family/Zeb1 axis®®
acting on the downregulation of MMP3 via Zebl/phos-
phorylated-SMAD3 interaction®. In our experiments, the
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both at mRNA and protein level (Fig. 2b, c¢; Suppl. Fig-
ure 7¢, d). Similar effects were observed in 4T1 KGDH
KD cells (Suppl. Figure 7a-b). Moreover, to understand
whether Zebl inhibition was important for AA6 anti-
metastatic effect, 4T1 cells were transfected either with an
empty vector (pCMV6_EV) or with a plasmid carrying
Zebl (pCMV6_Zebl). As expected, transfected cells
expressed significantly higher levels of Zeb1l compared to
controls (Fig. 7a). The forced expression of Zebl was
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Fig. 6 AA6 prevents metastasization targeting the TET-miR200-Zeb1/CtBP1-MMP3 axis. a Relative enrichment of 5mC in selected CCpGG
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treated 4T1-injected mice expressed as fold-induction compared to untreated mice (black bars); n = 3. ¢ Cluster 1 (miR-200b, miR-200a and miR-429;
left panel) and cluster 2 (miR-200c and miR-141; right panel) expression in 4T1-injected mice treated with AA6 (50 mg/kg; grey bars), the graph
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and miR-141; right panel) expression in 4T1 cells treated with AA6 (50 uM; grey bars) for 6, 16, and 24 h, bar graphs represent average fold changes
versus vehicle-treated cells (black bars); n = 4. e Representative WB (left panel) and relative densitometry (right panel; n = 5) of ZEB1 protein level in
AA6 (50 mg/kg; grey bar) treated mice compared to controls (black bar). GAPDH and Red Ponceau were used as loading controls. f, g Zeb1 mRNA
expression levels (f) and representative western blotting analysis of ZEB1 protein expression (g) in 4T1 cells exposed to AA6 (50 uM; grey bars) for 48 h
indicated as fold-change versus vehicle-treated cells (black bars); the right panel shows the relative densitometry as fold-change versus vehicle.
a-tubulin was used as loading control; n = 4. h Representative WB (left panel) and relative densitometry (right panel) of ZEB1 protein expression level
in AAG treated 4T1 cells compared to vehicle-treated cells after transfection either with scramble-LNA (vehicle: black bar; AA6 50 uM: light grey bar) or
anti-miR-200c-LNA (vehicle: dark grey bar; AA6 50 uM: medium grey bar). a-tubulin was used as loading control; n = 4. Data are presented as mean +
SE; *p < 0.05, **p < 0.005 vs controls. Data were analysed by one and two-way ANOVA and non-parametric two-tailed paired Student’s t-test

paralleled by an increase in CtBP1 and MMP3 protein  dependent increase of NO played an important role in the
expression (Fig. 7a). In this condition, Zebl restored the =~ miR-200 family response (Fig. 7c) determining Zebl
migratory ability of the cells regardless the presence of down-modulation (Fig. 7d) and motility reduction of
AA6 (Fig. 7b). Further experiments performed in the 4T1 cells (Fig. 7e). Similar results were obtained in 4T1
presence of the NO scavenger PTIO indicated that AA6- KGDH KD cells (Fig. 7f). Taken together these results
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(see figure on previous page)

Fig. 7 Zeb1 overexpression or PTIO administration counteracts AA6 effect in 4T1 cells. a Representative WB (left panel) and relative
densitometry (right panel) of ZEB1, CtBP1, and MMP3 protein levels in 4T1 cells transfected with pCMV6_Zeb1 (grey bars) after 48 h compared to
control vector (pCMV6; black bars). GAPDH was used as a loading control; n =4. b Representative phase contrast images (left panel) depicting
4T1 cells motility and relative percentage of closure measurements (right panel) after Zeb1 overexpression (o CMV6_Zeb1; dark grey bar and
pCMV6_Zeb1 + AA6-50 uM; medium grey bar) compared to control vector (pCMV6; black bar and pCMV6 + AA6-50 uM; light grey bars). Scale bar
100 um; n = 4. ¢ Cluster 1 (miR-200b, miR-200a, and miR-429; left panel) and cluster 2 (miR-200c and miR-141; right panel) expression in 4T1 cells after
16 h of treatment with vehicle only (black bars), AA6 (50 uM; light grey bars), AA6 (50 uM) + PTIO (100 uM; medium grey bars) and PTIO alone
(100 uM; dark grey bars); n=3. d Representative WB (left panel) and relative densitometry (right panel) of ZEB1 levels in 4T1 cells after 16 h of
treatment with vehicle alone (black bar), AA6 (50 uM; light grey bar), AA6 (50 uM) 4 PTIO (100 uM; medium grey bar) and PTIO alone (100 uM; dark
grey bar). GAPDH was used as a loading control; n = 4. e Representative phase contrast images (left panel) depicting 4T1 cells motility and relative
percentage of closure measurements (right panel) in 4T1 cells after 16 h of treatment with vehicle only (black bar), AA6 (50 uM; light grey bar), AA6
(50 uM) + PTIO (100 uM; medium grey bar) and PTIO alone (100 uM; dark grey bar); n = 4. f Representative WB (left panel) and relative densitometry
(right panel) of ZEB1 levels in 4T1 cells after CRISPR/Cas9 inactivation of KGDH (LCv2_KGDH_1 and LCv2_KGDH_2; light grey bars) compared to
control vector (LCv2_NTC; black bar) with or without PTIO (100 uM; dark grey bars) treatment. GAPDH was used as a loading control; n = 4. Data are
presented as mean =+ SE; *p < 0.05, **p < 0.005, ***p < 0.0005 vs controls. Data were analysed by one and two-way ANOVA and non-parametric two-

tailed paired Student’s t-test

-
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suggest that, further to TET activation, miR-200 induc-
tion, possibly associated with endogenous NO synthesis
enhancement, leads to the inhibition of the master EMT
inducer Zebl conceivably contributing to the anti-
metastatic effect of AA6.

Discussion

The recent evidence that metabolic alteration might
contribute to transformation and tumour progression
raised interest in anticancer approaches aimed at control-
ling transformation and metastasization processes™'>'”,
Exciting results have been obtained in preclinical cancer
models where different metabolic pathways have been
targeted by selective drugs’'°. Specifically, pathways
involved in nutrient supplying, energy production and
molecular biosynthesis were chosen as novel pharmacolo-
gical targets’ '°. Little is known, however, about the
potential anticancer effect of drugs able to increase the
intracellular level of specific metabolites and their impact
on metastasization. In the present study we evaluated
whether the novel epi-metabolic drug AA6 might chal-
lenge lung metastasis formation in the 4T1 orthotopic
mouse model of breast cancer.

4T1 tumour cell line, a recognized model for breast
cancer studies originally isolated by Miller and collea-
was exploited. 4T1 cell injection into the mam-
mary gland of BALB/c mice gives rise to a mammary
carcinoma with characteristics resembling the human
one. After injection, primary tumour grows into the
mammary gland and spontaneously develops lung
metastasis even after surgical removal of the original
tumour, a situation resembling that occurring in real
clinical situations*>”.

Taking advantage from this model, we found that
ketoglutarate dehydrogenase inhibition, following AA6
treatment, reduced the initiating steps of tumour invasion.
Indeed, the master regulators of EMT, miR-200 family
and Zebl transcription factor®”~**, resulted differentially
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regulated by KGDH inhibition. Specifically, AA6 induced
miR-200 expression and consequently repressed Zebl
levels. Surprisingly, AA6 not only acted on a-KG levels,
but it was also able to increase the expression and nuclear
localisation of TET proteins, a fundamental step toward
re-activation of DNA demethylation. Indeed, cancer
genetic landscape is characterized by hypermethylation
paralleled by TET activity alterations**~>*, Different cau-
ses have been accounted for these alterations including
(i) specific mutations, (ii) molecular mechanisms leading
to reduced expression of TET proteins® %, (iii) deloca-
lisation out of the nucleus**®. In breast cancer, TET
activity counteracts tumour progression suppressing
metastasis development:*>= it de-represses the expres-
sion of tissue metalloproteinase inhibitors®® and of anti-
metastatic miRNAs, demethylating their promoter
regions””. In this scenario, the AA6 dependent boost of
TET activity, consequent to increased expression and
nuclear re-localisation, suggests AA6 as a promising tool
to counteract metastasis formation in experimental breast
cancer. The inversion between 5mC and 5hmC DNA
global levels observed following AA6 treatment, in fact,
might specifically hit TET promoter regions activating
their transcription. These observations were in line with
the recent description that AA6 restored the epi-
metabolic control on the DNA demethylation cycle in a
metabolically compromised intracellular environment®?,
KGDH role as AA6 target, was further confirmed by
experiments performed in two human breast cancer cell
lines (CRL-2335 and MDA-MB-231) and in 4T1 cells in
which KGDH was reduced by CRISPR/Cas9 technology.
These results pointed out how a-KG fluctuations might
interfere with gene transcription regulation. Moreover, the
evidence of this communication strengthens the concept
of a close interaction between metabolic pathways and
epigenetic mechanisms and shed light on the tight coop-
eration between the cell metabolite factory in mitochon-
dria and the nuclear transcription regulation machinery.
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Of interest, our pharmacological approach maintained a
residual KGDH activity, possibly important for cellular
viability. In fact, it has been clearly established that defects
in TCA cycle enzymes, in most of cases, were lethal.
Specifically, during early development, KGDH complex
knock-out is deleterious determining embryonic lethality
in mice®®!, profound growth defects in cancer cell lines
in vitro and in vivo after xenotransplantation®, and a-KG
aciduria in human patients with severely decreased levels
of KGDH activity®®. Interestingly, the paucity of patients
with KGDH deficiency further support the relevance of
this specific enzymatic function®®. Moreover, these
reports pointed out that only KGDH heterozygosity per-
mits normal embryonal development in consequence of
residual KGDH activity. Our experimental evidence about
KGDH CRISPR/Cas9 cells indeed confirmed that residual
KGDH activity is essential for cell viability. For this rea-
son, single clone selection to obtain monoclonal KGDH
CRISPR/Cas9 cells was unsuccessful, prompting us to
perform experiments in early non-clonal populations
obtained after one round of puromycin selection. Hence,
we hypothesise that the partial KGDH inhibition could be
relevant to the ultimate anticancer effect. The partial
KGDH inhibition, in fact, although preserving cellular
viability, seemed sufficient to reduce their migration/
invasion. Consequently, the anti-metastatic miR-200
family expression was enhanced leading to Zebl and
CtBP1 expression inhibition.

The present results suggest that KGDH inhibition and
the reduction of EMT process are associated with a rapid
increase in a-KG. In fact, as depicted in our model (Suppl.
Fig. 8), a-KG availability stabilizes TET expression and
induces miR-200 promoter demethylation paralleled by
an increase of endogenous NO production, fostering their
transcription. Interestingly, NO exerts a contradictory
effect on metastasis development depending on the pri-
mary tumour and the organ target of metastasization”.
While in some cases NO seems to enhance tumour pro-
gression and metastasization®, it also hinders aggres-
siveness of breast cancer® inhibiting cell migration by
MMP down-modulation®®, and lung metastasis reduc-
tion®”. In our context the administration of the epi-
metabolic drug AA6, acting on distinct intracellular
pathways, counteracted migration, invasion and metas-
tasis development of 4T1 cells.

In conclusion, we provide here compelling evidences
supporting AA6 as a promising drug to hinder cancer
progression. KGDH targeting led to a-KG increase, able
to activate both TET-dependent DNA demethylation and
NO production, two molecular/metabolic pathways that
might cooperate to hamper the EMT process (Suppl.
Fig. 8). Mechanistically AA6, indirectly targeting miR-200
family-Zeb1/CtBP1 axis, decreased Mmp3 expression
impairing 4T1 invasion ability in vitro and in vivo. In this
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view, AA6 might represent a novel epi-metabolically
active small molecule useful in the treatment of experi-
mental metastatic breast cancer.

Materials and methods
Animal model and treatment

8-week-old female BALB/c mice were purchased from
Charles River. To generate spontaneous breast cancer and
relative lung metastasis, 10° murine breast cancer
4T1 cells (ATCC® CRL-2539™) were injected into
the mammary fat pad in mice under the anaesthesia
with isoflurane 2.5%. In all experiments, 4T1 cells
were inoculated at day 0. The mice were divided in groups
at day 7. The dose and the treatment schedule of (S)-2-
[(2,6-dichlorobenzoyl)amino]succinic acid (AA6) were
designed as follows: mice received either 50 mg/kg of AA6
(dissolved in PBS, 0.9% p/v NaCl) three times a week or
12.5 mg/kg of AA6 daily, ip. injections, and were sacri-
ficed after 21 days of treatment (control #» = 10, 12.5 mg/kg
AA6 n =10, 50mg/kg AA6 n=5). The primary mam-
mary tumours were dissected and measured by digital
caliper. The tumour burden in lung was determined by
hematoxylin and eosin staining. All animal procedures
were approved by the Ethics Committee of the University
of Torino, and by the Italian Ministry of Health, in
compliance with national and international laws (D.Lgs
26/2014 and Directive 2010/63/EU respectively).

Cell culture, treatment and transfection

The murine breast cancer 4T1 cells were purchased
from ATCC (ATCC® CRL-2539™). Cells were cultured in
complete RPMI1640 medium (Gibco) supplemented with
1% L-Glutamine (SIGMA), 1% Penicillin-Streptomycin
(SIGMA) and 10% Foetal Bovine Serum (FBS, MILLI-
PORE). A dose-response curve with the compound AA6
was performed and 50 uM was adopted for further bio-
logical evaluations. For the present study, we verified
AAG6 solubility in water (> 10 mg/mL) and its stability in
cell medium. All subsequent studies were performed
using mother solution of AA6 dissolved in water oppor-
tunely diluted in cell medium. 4T1 cells were transfected
with 1pg of pCMV6_Zebl (OriGene) or empty vector
using Lipofectamine 3000 (Invitrogen) according to
manufacturer’s instruction. After 48h, 4T1 cells were
collected and used for further analyses. Human umbilical
vein endothelial cells (HUVEC) were isolated from human
umbilical veins by trypsin treatment (1%) and cultured in
M199 medium (SIGMA) with the addition of 20% foetal
calf serum (FCS; Gibco), 100 U/mL penicillin (Gibco),
100 pg/mL streptomycin (Gibco), 5UI/mL heparin,
12 pg/mL bovine brain extract and 200 mM glutamine
(Gibco). HUVEC were grown to confluence in flasks and
used from the second to the fifth passage. The use of
HUVEC was approved by the Ethics Committee of the
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“Presidio Ospedaliero Martini” of Turin and conducted in
accordance with the Declaration of Helsinki. Written
informed consent was obtained from all donors. MS-1
from mouse endothelial cells, MDA-MB-231 and
CRL2335 cell lines from human breast carcinoma were
purchased from ATCC® and cultured in DMEM medium
supplemented with 1% L-Glutamine, 1% Penicillin-
Streptomycin and 10% FCS.

Cell motility assay

In the Boyden chamber (BD Biosciences) invasion assay,
cells (2 x 10%) were plated onto the apical side of 50 pg/mL
Matrigel-coated filters (8.2 mm diameter and 0.5 um pore
size; Neuro Probe, Inc.) in serum-free medium with or
without increasing concentration of the drugs (0.1-50 uM).
Medium containing 20% FCS was placed in the baso-lateral
chamber as chemo attractant. After 18 h, cells on the apical
side were wiped off with Q-tips. Cells on the bottom of the
filter were stained with crystal-violet and counted with an
inverted microscope. Data are shown as percentages of
migration of treated cells versus the migration measured
for vehicle (water) treated cells. Control migration was 72
+5 cells (n=5) using MDA-MB-231, 78+6 using
CRL2335, and 85 + 7 for 4T1 (mean + SE).

In vitro scratch assay

4T1 cells, KGDH-CRISPR/Cas9 inactivated-4T1 cells
and Zebl-overexpressing 4T1 cells were seeded into 12-
well plates and grown to confluence overnight. The cell
monolayer was scratched and covered with RPMI1640
medium (Gibco) supplemented with 1% L-Glutamine
(SIGMA), 1% Penicillin-Streptomycin (SIGMA), 1% Foe-
tal Bovine Serum (FBS, MILLIPORE) and according to the
purpose of experiment treated with or without the drug of
interest (AA6: 10, 25 and 50 uM; PTIO: 100 pM). Images
were captured after 24h using a Motic AE2000 light
microscope using 10x original magnification (Motic
Electric Group Co. Co.). Areas were measured using
Image] imaging software (BioVoxxel Fiji). For each con-
dition mean was calculated and compared to the area at
the starting time point of the experiment.

Cell adhesion assay

HUVEC or MS-1 were grown to confluence in 24-well
plates. Cells were pre-treated or not with increasing
concentrations of AA6 (0.1-50 uM) for 1 h, then were co-
incubated with human or mouse TNF-a (10 ng/mL) for
18 h and washed twice with fresh medium. Tumour cells
(7 x 10* cells/well) were seeded and left to adhere with
HUVEC for 1h. Unattached tumour cells were washed
away and the number of adherent cells was evaluated by
the Image Pro Plus Software for micro-imaging (Media
Cybernetics, version 5.0, Bethesda). Data are shown as
percentages of adhesion of AA6-treated cells versus the
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control adhesion measured on untreated cells; for
HUVEC, the control adhesion per microscope field
(n=5) was 19+3 using MDA-MB-231, 17 +3 using
CRL2335; for MS-1, the control adhesion per microscope
field (n =12) was 23 +4 using 4T1. The TNF-a stimu-
lated adhesion was 193 + 11% using MDA-MB-231, 231 +
25 using CRL2335, and 184 + 14 using 4T1 (mean + SE).

Transwell cell invasion assay

The invasiveness of 4T1 cells was measured with a
polycarbonate 8-um porous Transwell membrane (BD
Falcon). The top side of the membrane was incubated 1 h
at 37° C with 1 mg/mL Matrigel (BD Biosciences) in PBS.
4T1 cells were harvested and re-suspended in RPMI
serum free medium at the concentration of 7 x 10° cells/mL.
Lower wells of the chamber were loaded with 500 pL
RPMI, 2% EBS. Upper wells were loaded with 100 pL cells
alone or in the presence of AA6 10, 25 and 50 uM. After
incubation for 24 h at 37° C, the top side of the insert
membrane was scrubbed free of cells, and the bottom side
was fixed with 2.5% glutaraldehyde and stained with 0.1%
crystal violet for 15 min, respectively. The images of the
invasive cells in the bottom side of the membrane were
taken under an Olympus BX60F-3 microscope using a
2.5x original magnification.

Breast cancer cell viability assay

Cells (2 x 10°/well) were seeded in 96-well plates and,
after 24 h, treated with different concentrations of AA6
(0.1-50 uM) in complete medium. After 72 h of incuba-
tion, viable cells were evaluated by 3-(4,5-Dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT,
Methylthiazolyldiphenyl-tetrazolium  bromide (MTT,
SIGMA) inner salt reagent at 570 nm, as described by the
manufacturer’s protocol. The readings from treated cells
were expressed as percentage versus control measured on
untreated cells.

Colony-forming assay

Cells (1 x 10°/well) were seeded into 6-well plates
(well diameter: 34.58 mm) and treated with different
concentrations of AA6 (0.1-50 uM) in complete med-
ium. The medium was changed after 72 h and cells were
cultured for additional 10 days. Subsequently cells were
fixed and stained with a solution of 80% crystal violet
and 20% of ethanol. Colonies were then photographed.
To induce a completely dissolution of the crystal violet
30% acetic acid was added. Absorbance was detected at
595 nm.

miR200c-LNA transfection

4T1 cells were transfected with 50uM Mircury
scramble or miR-200c LNA-oligonucleotides (Exiqon)
using jetPRIME-siRNA Transfection reagent (Polyplus)



Atlante et al. Cell Death and Disease (2018)9:756

according to manufacturer’s instructions. After 16 h, cells
were incubated with fresh medium for 32h and then
treated with AA6 or water, as control, for additional 24 h.

KGDH CRISPR/Cas9 inactivation

To inactivate mouse KGDH, sgRNAs were cloned into
LentiCRISPR2 vector (Addgene) using the GoldenGate
protocol:*®

- KGDH_1: Fw 5'-caccgCAGCATCCAAAATCCCCA
G-3;

Rv 5'-aaacCTGGGGATTTTGGATGCTGce-3';

- KGDH_2: Fw 5’-caccgGTGAACTGCATGATCCCA
G-3%

Rv 5'-aaacCTGGGATCATGCAGTTCACc-3';

Specific CRISPR/Cas9 transfection was compared to a
non-targeting control (NTC) sgRNA:

- NTC: Fw 5'-caccgTTCCGGGCTAACAAGTCCT-3';

Rv 5-aaacAGGACTTGTTAGCCCGGAAc-3'.

The obtained plasmids were transformed into NEB 5-
alpha Competent E. coli (High Efficiency -New England
Biolabs), then DNA was purified by EZNA Fastfilter
Endo-Free Plasmid DNA Maxi Kit (Omega Bio-Tek), and
a concentration of 6 pug was used for transfection in
4T1 cells; the transfection was performed using Lipo-
fectamine 3000 (Invitrogen) according to the manu-
facturer’s protocol. All experiments were performed by
using the polyclonal population emerging after a round of
puromycin selection showing residual KGDH expression,
specifically, after 48 h 4T1 cells were selected by 1.5 pg/
mL puromycin recovered from selection and tested for
KGDH knock-out by western blot.

Enzymatic activity assay and metabolite quantification

KGDH Activity Assay Colorimetric Kit (K678, BioVi-
sion), TET Activity/Inhibition Assay Colorimetric Kit
(P3086, Epigentek), the a-KG Assay Colorimetric/
Fluorometric Kit (K677, BioVision), and Arginine quan-
tification kit (CEB938Ge, Cloud-Clone Corp.) were per-
formed according to manufacturer’s instructions. Signals
were detected by EnSpire Multimode Plate Reader (Perkin
Elmer).

Nitric oxide quantification

Nitrate/Nitrite Colorimetric Assay Kit (780001, Cayman
Chemical) was performed according to manufacturer’s
instructions. AA6-treated/untreated 4T1-injected mice
tumorigenic tissue samples (25mg) were lysed in RIPA
buffer (Tris HCl pH 7.4 10 mM, NaCl 150 mM, NP-40 1%,
sodium deoxycholate (DOC) 1%, SDS 0.1%, glycerol 0.1%,
Protease Inhibitors Cocktail), homogenized and cen-
trifuged, 200 pug of freshly lysed sample were used per
condition. The NO-final products NO3™ 4+ NO,  were
colorimetrically detected by EnSpire Multimode Plate
Reader (Perkin Elmer). In vitro NO production was
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evaluated by adding 4,5-diaminofluorescein diacetate
(DAF-2DA, Cayman Chemical) according to manu-
facturer’s instructions to 4T1 cultured 3, 6, 16, 24 h with
50 uM AAG6 or vehicle alone, to 4T1 cells after 16 h of
treatment with vehicle only (water), AA6 (50 pM) and AA6
(50 uM) + PTIO (SIGMA, 100 uM) and to 4T1 cells after
CRISPR/Cas9 inactivation of KGDH + PTIO (100 uM). At
the end of treatment, cells were collected and analyzed by
FACS (FACS Canto II-BD) to detect intracellular NO
production.

5-methylcytosine and 5-hydroxymethylcytosine global
level quantification

Genomic DNA extraction from AA6-treated/untreated
4T1-injected mice tumorigenic tissue (25 mg) and AA6-
treated/untreated 4T1 cells was performed using the
E.ZN.A. Tissue DNA kit (D3396, Omega Bio-Tek). 5mC
and 5hmC global levels were evaluated using the ELISA-
based MethylFlash Methylated DNA Quantification Col-
orimetric Kit (P1034, Epigentek) and the MethylFlash
Hydroxymethylated DNA Quantification Colorimetric Kit
(P1036, Epigentek) respectively. The optical density (OD)
was detected by EnSpire Multimode Plate Reader (Perkin
Elmer).

Detection of 5mC on miR-200 family promoter

The 5mC enrichment on miR-200 family promoter was
analyzed by EpimarK 5mC and 5hmC Analysis Kit (New
England Biolabs) according to manufacturer’s instruc-
tions. Briefly, DNA was isolated from AAG6-treated/
untreated 4T1-injected mice tumorigenic tissue (25 mg)
using the E.ZN.A. Tissue DNA kit (D3396, Omega Bio-
Tek). The amplified regions were selected on the bases of
CCpGaG sites reported on MethPrimer 2.

The following primers were used:

Clusterl r1 F: 5'- TTTCTATCACAGACACAATACA
G -3

Clusterl r1 R: 5'- GAAGTATATCTGACGGGTGT -3’

Clusterl r2 F: 5'- GGTAGCCTGAGTGTAGACAAG
ACA -3/

Clusterl r2 R: 5'- CTCTGCAGCAAGCACCCTCC-3’

Cluster2 rl F: 5'- AAGGAGGAAGAGCGAGAGTG -3’

Cluster2 r1 R: 5'- CCATTTACTGCGTTCTACCGT -3’

Cluster2 r2 F: 5'- TGTTTGGGTGCTGGTTGGGA -3’

Cluster2 r2 R: 5'- CCACCCTTAACTCGGAAGAAG -3’

RNA Extraction, RT-PCR and miRNA Analysis

Total RNA was isolated either from samples deriving
from AAG6-treated/untreated 4T1 cells or from AA6-
treated/untreated 4T1-injected mice tumorigenic tissue
(10-25 mg) using Tri-Reagent (SIGMA) according to the
instructions of the manufacturer. cDNA synthesis for
quantitative real-time PCR (qRT-PCR) was carried out
with  qScript c¢DNA SuperMix (95048, Quanta
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BIOSCIENCES) following the manufacturer’s protocol.
All reactions were performed in 96-well format in the
StepOne Plus Real-Time PCR System (Applied Biosys-
tems) using PerfeCTa SYBRGreen FastMix, ROX (Quanta
BIOSCIENCES). Each RNA sample was tested in dupli-
cate and PO was used as housekeeping gene. The Applied
Biosystem software’s Comparative Ct Method (Applied
Biosystem) was used to calculate mRNA expression levels,
data were presented as fold change of transcripts for
target genes. Fold change below 1 shows downregulated
expression versus controls. Primer sequences used for
mRNA analysis were selected based on published
sequence data from NCBI database and listed below:

Gene  Species Forward (5'-3") Reverse (5/-3')

ZEB1 Mus AGACCAGACAGTATTACCAG CAGAAATTCTTCCACATT
Musculus

MMP3  Mus ACATGGAGACTTTGTCCC G TIGGCTGAGTGGTAGAGTCCC
Musculus

GPNMB  Mus AGAAATGGAGCTTTGTCTACGTC  CTTCGAGATGGGAATGTATGCC
Musculus

CtBP1  Mus CAAGAAGGAAGTCAGCCCAG  GCCTCAATGAGCACAACCAC
Musculus

PLAUR  Mus CAGAGCTTTCCACCGAATGG GTCCCCGGCAGTTGATGAG
Musculus

SRC Mus GCTAGAGGCTGGTGTTGATTG GAGTCTGCTGGAC (@]
Musculus

TET Mus GAAGGAACAGGAAGCTGCAC  CTGGCCAAACCTAGTCTCCA
Musculus

TET2 Mus GATCCAGGAGGAGCAGTGAG TGGGAGAAGGTGGTGCTATC
Musculus

TET3 Mus CCGGATTGAGAAGGTCATCTAC  AAGATAACAATCACGGCGTTCT
Musculus

PO Mus GCGTCCTGGCATTGTCTGT GAAGGCCTTGACCTTTTCAGTAAG
Musculus

Primers for miR-16, miR-141, miR-200a, miR-200b, miR-
200c, miR-429, primiR-200 clusterl, primiR-200 cluster2
and the reagents for reverse transcriptase and qPCR reac-
tions were all obtained from Applied Biosystems. Relative
expression was calculated using the comparative cycle
threshold (Ct) method (AACt). miRNA expression levels in
each sample were normalised to miR-16 expression as,
under the experimental conditions of the present study,
miR-16 was not modulated by AA6 treatment.

Metastasis RT? profiler PCR array

RNA was extracted from AA6-treated/untreated 4T1-
injected mice tumorigenic tissue (10-25mg) using Tri-
Reagent (SIGMA) according to supplier’s instructions.
Briefly, total mRNA was treated with column DNase
treatment (QIAGEN RNeasy mini kit) and converted to
¢DNA (RT? First Standard Kit, 330401, QIAGEN). cDNA
samples were mixed with the ready-to-use RT® SYBR
Green ROX qPCR master mix (330522, QIAGEN), and
equal volumes were aliquoted to each well of the same
plate (RT? Profiler PAMMO028ZC, QIAGEN) to perform
the real-time PCR cycling programme.
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Western blotting

Western blot analyses were performed according to
standard procedures. AA6-treated/untreated 4T1-injected
mice tumorigenic tissue (10-25mg) and AA6-treated/
untreated 4T1 cells samples were lysed in Laemmli buffer
(Tris HCI 100 mM pH 6.8, SDS 4%, glycerol 20%, DTT
25 mM, NuPAGE LDS Sample Buffer 1x - Invitrogen).
Nitrocellulose blotting membranes were probed with the
following antibodies: ZEB-1 (Santa Cruz), CtBP-1 (Cell
Signaling), GPNMB (Thermo Fisher Sc.), MMP-3 (BIOSS),
SRC (Cell Signaling), KGDH (alias OGDH, Genetex),
TET-1 (Genetex), TET-2 (Santa Cruz) and TET-3 (Novus
Biologicals) flag (SIGMA), a-tubulin (Cell Signaling),
GAPDH (abcam), Grb2 (Santa Cruz). Signals were detec-
ted by Odyssey CLx Infrared Imaging System (LI-COR
Biosciences). Optical density values of specific proteins
were normalized to that of tubulin and corrected for those
obtained from controls that were considered equal to 1.

Subcellular fractionation

5 x 10° AA6-treated/untreated 4T1 cells were lysed with
the lysis buffer provided by Qproteome Cell Compart-
ment kit (QIAGEN), then fractionation was performed
according to the manufacturer’s instructions. Subcellular
fraction content was normalised according to Comassie
staining before western blotting.

Immunofluorescence and confocal microscopy

Confocal analysis was performed according to standard
procedures in AA6-treated/untreated 4T1 cells fixed with
4% paraformaldehyde. TET-1 (1:150, monoclonal, Gene-
tex), TET-2 (1:100, polyclonal, Santa Cruz) and TET-3
(1:150, polyclonal, Novus Biologicals) antibodies were used.
Samples were analysed using a Leica TCS SP8 confocal
microscope using a 40x original magnification. Confocal
analysis of primary tumours was performed to standard
procedures in AA6-treated/untreated primary tumours
using Ki67 (1:400, monoclonal, ThermoFisher Scientific),
Cleaved Caspase-3 (1:50, monoclonal, Cell Signaling) anti-
bodies. Immunofluorescence images were captured by uti-
lising a Leica TCS SPE confocal laser-scanning microscope
using a 20x original magnification (Leica Microsystems) and
by maintaining the same laser power, gain and offset set-
tings. All immune-localisation experiments were performed
on multiple tissue sections.

Immunohistrochemistry

Immunihostochemistry was performed with enzymatic
induced epitope retrieval procedures in AA6-treated/
untreated lungs, using Ki67 (1:200, monoclonal Ther-
moFisher Scientific) and Cleaved Caspase-3 (1:50,
monoclonal, Cell Signaling). The images were taken under
an Olympus BX60F-3 microscope using a 20x and a 40x
original magnification.
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Statistical analysis

Non parametric student’s t-test was used to analyse
variables. Significance between experimental groups was
determined by one or two-way ANOVA followed by the
Bonferroni’s multiple comparison post tests using
GraphPad InStat software. For tumour volume and lung
metastasis we applied non-parametric Mann Withney test
while for the incidence of lung metastasis we applied
Mantel-Cox Test. Overall values of p < 0.05 were deemed
statistically significant. Data indicate the mean values of at
least three independent experiments+ SE. A specific
comment has been added for each analysis.
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