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Abstract: Steep rise of parton densities in the limit of small parton momentum fraction x poses a
challenge for describing the observed energy-dependence of the total and inelastic proton-proton
cross sections σtot/inel

pp : considering a realistic parton spatial distribution, one obtains a too-strong
increase of σtot/inel

pp in the limit of very high energies. We discuss various mechanisms which allow
one to tame such a rise, paying special attention to the role of parton-parton correlations. In addition,
we investigate a potential impact on model predictions for σtot

pp , related to dynamical higher twist
corrections to parton-production processes.
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1. Introduction

Modeling of high-energy collisions of hadrons is of considerable importance for experimental
studies in the high-energy collider and cosmic ray fields (see, e.g., Ref. [1] for a review of the latter
subject). An important part of the corresponding Monte Carlo (MC) generators is a treatment of the
production of hadronic jets of relatively high transverse momenta pt. However, because of a steep rise
of parton densities in hadrons in the limit of small parton momentum fraction x, the corresponding
model approaches face severe consistency problems related to a very rapid increase of both the
interaction cross sections and of the yields of produced particles in the very high energy limit.

Let us start with the inclusive cross-section to produce jets of pt larger than some chosen
cutoff value pt,cut in pp collisions. Using the collinear factorization of the perturbative quantum
chromodynamics (pQCD) [2,3], it can be expressed as a convolution of parton momentum distribution
functions (PDFs) of the proton, f I/p(x, Q2), with the Born parton scatter cross-section, dσ2→2

I J /dp2
t :

σ
jet
pp(s, pt,cut) = ∑

I,J=q,q̄,g

∫
pt>pt,cut

dp2
t

∫
dx+ dx− f I/p(x+, M2

F) f J/p(x−, M2
F)

dσ2→2
I J (x+x−s, p2

t , M2
F)

dp2
t

. (1)

Here s is the center-of-mass (c.m.) energy squared for the scattering, x±—light cone (LC)
momentum fractions of the partons I and J [(anti-)quarks or gluons], taking part in the hard process,
and M2

F—a chosen factorization scale. The energy rise of σ
jet
pp is thus related to the low x behavior of

the PDFs f I/p(x, Q2), which is driven, in turn, by the increase of the phase space for parton evolution.
Describing the latter by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [4–6],
we have approximately:

σ
jet
pp(s, pt,cut) ∝

1
p2

t,cut
s∆eff , ∆eff ∼ 0.3 . (2)
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Here we immediately recognize two problems. First, the inclusive jet production cross-section
depends strongly on the chosen pt-cutoff pt,cut. Secondly and more importantly, σ

jet
pp increases

asymptotically much quicker than the total cross-section σtot
pp (s), since the energy rise of the latter is

bound by the unitarity and cannot be quicker than ∝ ln2 s. Thus, at sufficiently high energies one
inevitably deals with multiple jet production per inelastic collision, which is usually referred to as
multiparton interactions (MPIs) (see, e.g., Ref. [7]).

2. Multiparton Interactions: “Minijet” Approach and Beyond

2.1. MPIs: “Minijet” Approach

Generally, the usual PDFs are insufficient to treat multiparton interactions. Rather,
the corresponding formalism involves the so-called generalized multiparton distributions (nGPDs)
F(n)

I1...In/p(x1, ..., xn,~b1, ...,~bn−1, Q2
1, ..., Q2

n) which describe a simultaneous distribution of n partons with

respect to their LC momentum fractions xi and relative transverse separations~bi, when probed at the
corresponding virtuality scales Q2

i [8–11]. For example, the expression for double parton scattering

(DPS) cross section contains 2GPDs F(2)
I1,I2/p for the projectile and target protons:

σ
4jet(DPS)
pp (s, pt,cut) =

1
2

∫
dx+1 dx+2 dx−1 dx−2

∫
pt1 ,pt2>pt,cut

dp2
t1

dp2
t2 ∑

I1,I2,J1,J2

dσ2→2
I1 J1

dp2
t1

dσ2→2
I2 J2

dp2
t2

×
∫

d2∆b F(2)
I1 I2/p(x+1 , x+2 , M2

F1
, M2

F2
, ~∆b) F(2)

J1 J2/p(x−1 , x−2 , M2
F1

, M2
F2

, ~∆b) . (3)

Here the transverse separation ~∆b between the two partons taking part in the two scattering
processes is the same for the projectile and the target.

Since there exists a rather scarce experimental information on nGPDs, a standard simplifying
assumption is to neglect multiparton correlations, in which case n-parton GPDs are expressed via a
product of n independent single-parton GPDs:

F(n)
I1...In/p(x1, ...xn,~b1, ...~bn−1, Q2

1, ...Q2
n) =

∫
d2bn GIn/p(xn,~bn, Q2

n)
n−1

∏
i=1

GIi/p(xi,~bi +~bn, Q2
i ), (4)

the latter being subject to a constraint∫
d2b GI/p(x,~b, Q2) = f I/p(x, Q2) . (5)

In such a case, Equation (3) simplifies to

σ
4jet(DPS)
pp (s, pt,cut) =

1
2

∫
d2b

[
2χ

jet
pp(s, b, pt,cut)

]2
, (6)

being expressed via the so-called jet production eikonal χ
jet
pp, with [c.f. Equation (1)]

χ
jet
pp(s, b, pt,cut) =

1
2 ∑

I,J

∫
pt>pt,cut

dp2
t

∫
dx+ dx−

∫
d2bt GI/p(x+,~b +~bt, M2

F) GJ/p(x−,~bt, M2
F)

×
dσ2→2

I J (x+x−s, p2
t , M2

F)

dp2
t

. (7)

Here~b is the impact parameter for pp collision while~bt refers to the transverse position of the
target parton J.
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More generally, for n-parton scattering one has

σ
jet(n)
pp (s, pt,cut) =

1
n!

∫
d2b

[
2χ

jet
pp(s, b, pt,cut)

]n
. (8)

To see the effect of multiparton interactions on the total and inelastic pp cross sections, we must
take into account that multiple parton scattering generates several other contributions, in addition to
multiple jet production, as exemplified in Figure 1 for the particular case of DPS. The first (cut) diagram
in Figure 1 corresponds to the partial contribution to σtot

pp from the above-discussed double-dijet
production process; there are two real parton cascades giving rise to secondary hadron production.
The second graph in Figure 1 describes a (negative) screening correction to single-dijet production
process; in addition to the real parton cascade giving rise to hadron production, there is a virtual cascade
responsible for an elastic rescattering process. Finally, the last diagram in Figure 1 corresponds to a
(quasi)elastic scattering: both parton cascades are virtual ones, hence, they do not contribute to hadron
production. Using the Abramovskii-Gribov-Kancheli (AGK) cutting rules [12], one obtains the relation
between the relative contributions of the three graphs in Figure 1 as (+2):(−4):(+1). Consequently, the
summary contribution of DPS to σtot

pp can be expressed via the double-dijet production cross-section as

∆(2)σtot
pp = −1

2
σ

4jet(DPS)
pp . (9)

(+2) (−4) (+1)

Figure 1. Schematic diagrams for different processes generated by double parton scattering in
proton-proton collisions: double-dijet production (left), screening correction to single-dijet production
(middle), and (quasi)elastic scattering (right); the vertical dashed-dotted lines indicate the position of
the cut plane. Relative weights of the corresponding contributions are shown below the graphs.

It is noteworthy that the respective correction to the part of the inelastic pp cross-section, related to

the production of jets of pt > pt,cut, σ
inel(jet)
pp , comes only from the first two graphs in Figure 1, yielding

∆(2)σ
inel(jet)
pp = −σ

4jet(DPS)
pp . (10)

Performing a similar analysis for n-parton scattering, n > 2, one arrives to the well-known

“minijet” ansatz for σ
inel(jet)
pp (see, e.g., Ref. [13]):

σ
inel(jet)
pp (s, pt,cut) =

∫
d2b

[
1− e−2χ

jet
pp(s,b,pt,cut)

]
, (11)

which defines, thus, the lower bound on σinel
pp and σtot

pp . For example, using a similar multiple scattering
treatment for “soft” (pt < pt,cut) rescattering processes, one obtains (e.g., Ref. [14])

σinel
pp (s) =

∫
d2b

[
1− e−2χ

jet
pp(s,b,pt,cut)−2χsoft

pp (s,b))
]

(12)

σtot
pp (s) = 2

∫
d2b

[
1− e−χ

jet
pp(s,b,pt,cut)−χsoft

pp (s,b))
]

, (13)
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where the eikonal χsoft
pp describes the contribution of such soft processes. Equations (11)–(13) form the

basis for the MPI treatment in most current MC generators (see, e.g., Ref. [15] for a review).
It is important to notice that such a treatment does not modify the inclusive jet production

cross-section σ
jet
pp. Indeed, summing up the partial contributions of the three graphs in Figure 1 yields

∆(2)σ
jet
pp = σ

4jet(DPS)
pp [(2) ∗ 2 + (−4) ∗ 1 + (1) ∗ 0] = 0 , (14)

where we take into account that the 1st graph contributes twice (two dijets produced) while the last
diagram gives a zero contribution. This is known as the AGK-cancellations [12], which hold also for
an arbitrary n-parton scattering. As a result, σ

jet
pp remains defined by the collinear pQCD factorization

ansatz, Equation (1).
At first sight, the above-discussed eikonalization procedure allows one to “marry” the quick

energy rise of σ
jet
pp with a relatively slow increase of σ

inel(jet)
pp . Since the latter depends strongly on the

effective area occupied by partons in the transverse plane [c.f. Equations (7) and (11)], one seems to
have a possibility to properly tune model predictions for σtot/inel

pp by adjusting the energy-dependence
of the spatial parton distributions. Indeed, choosing a more dilute parton distribution over a larger

area at a given collision energy, as depicted in Figure 2(left), one obtains a larger σ
inel(jet)
pp and a

smaller number of jets produced per inelastic event. On the contrary, having a denser parton cloud

occupying a smaller area, as in Figure 2(right), gives rise to a smaller σ
inel(jet)
pp but to a higher jet

production rate. In reality, the respective freedom is limited by experimental studies of GPDs in deep
inelastic scattering (DIS) experiments and by collider measurements of the elastic scattering slope
Bel

pp(s) which is proportional to the average impact parameter squared for pp collision, Bel
pp ∝ 〈b2〉,

being thereby related to the effective proton size. As demonstrated in Ref. [13], using realistic parton
spatial distributions in the proton results in a too fast energy rise of σtot/inel

pp , compared to experimental
data. Current MC generators typically employ an ad hoc “solution”, assuming the jet production
cutoff to be energy-dependent, pt,cut = pt,cut(s), and empirically parametrizing such a dependence.

Figure 2. Schematic view of proton-proton collisions for a broader (left) or narrower (right) proton
transverse profile.

2.2. MPIs: Role of Color Fluctuations

Potentially, the situation may be improved by considering color fluctuations in the proton [16].
Let us consider the proton to be represented by a superposition of several Fock states characterized by
different spatial sizes and different parton densities, as depicted in Figure 3, i.e., |p〉 = ∑i

√
Ci |i〉, with

Ci being the respective partial weights, ∑i Ci = 1. Then Equation (11) changes to

σ
inel(jet)
pp (s, pt,cut) = ∑

i,j
Ci Cj

∫
d2b

[
1− e−2χ

jet
pp(ij)(s,b,pt,cut)

]
, (15)

where the eikonal χ
jet
pp(ij) describes jet production for the case when the projectile and target protons

are represented by the states |i〉 and |j〉, respectively. χ
jet
pp(ij) is defined by Equation (7), with the GPDs

GI/p(x,~b, Q2) being replaced by the partial ones GI/p(i)(x,~b, Q2), for the state |i〉 of interest, with

∑
i

Ci GI/p(i)(x,~b, Q2) = GI/p(x,~b, Q2) . (16)
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p     = + + ...

Figure 3. Schematic view for the decomposition of the proton wave function in terms of parton Fock
states of different transverse sizes.

Thus, allowing for a larger dispersion between the properties of Fock states |i〉, one may reduce

σ
inel(jet)
pp , hence, also σtot/inel

pp , for a given σ
jet
pp. Indeed, the main contribution to the total and inelastic pp

cross sections comes from the largest size states of the projectile and target protons [c.f. Figures 2 and 3].
On the other hand, the above-discussed decomposition of the proton wave function has no impact on
σ

jet
pp(s, pt,cut): due to the constraints (5) and (16), it remains defined by Equation (1).

Yet the corresponding freedom is still rather limited by the experimental constraints discussed in
Section 2.1. Additionally, a larger dispersion between the properties of proton’s Fock states gives rise
to a higher cross-section for (single plus double) low mass diffraction (see, e.g., Ref. [17] for a recent
discussion), which is constrained by collider measurements, notably by the TOTEM data at the Large
Hadron Collider (LHC) [18,19].

It is noteworthy that taking such color fluctuations into account, one already goes beyond the
simple uncorrelated parton picture. Indeed, when obtaining Equation (15), one assumes a factorization,
like in Equation (4), for partial multiparton nGPDs F(n)

I1,...In/p(i) for any Fock state |i〉, but Equation (4) is

no longer valid for the total nGPDs F(n)
I1,...In/p.

2.3. MPIs: Role of Multiparton Correlations

As is clear from the discussion in the previous sections, for a given inclusive jet cross-section σ
jet
pp,

σ
inel(jet)
pp anticorrelates with the average jet production rate per inelastic event. Do we have any means

to further enhance the latter without changing the transverse extension of the proton profile? This turns
to be possible indeed, if we reconsider the basic assumption of the minijet approach, Equation (4),
and take into account multiparton correlations [20], also for particular Fock states of the proton.
The main problem with the uncorrelated parton picture is illustrated qualitatively in Figure 4.

Figure 4. Schematic view for the transverse overlap of parton clouds of the colliding protons for a
uniform parton distribution in the proton disk (left) and for a clumpy profile of the proton (right).

Considering, for the sake of simplicity, a top-hat transverse profile for the proton, partons are
uniformly distributed in the proton disk. In such a case, multiple jet production mostly takes place in
relatively central pp collisions characterized by small impact parameters, where one has a significant
overlap of the projectile and target parton clouds. In turn, this results in a small average number of
jets produced per inelastic event. As an alternative, one may consider a “clumpy” parton distribution,
as depicted in Figure 4(right), with the parton “clumps” being created by short-range parton-parton
correlations in the transverse plane. In such a picture, multiple jet production is considerably enhanced
in peripheral collisions, which thus enlarges also the average jet production rate per event.

A mechanism of that kind emerges in the QGSJET-II model [21,22] which offers a combined
treatment of soft and hard processes in hadronic collisions, in the framework of the so-called “semihard
Pomeron” approach [23–25]. While one applies the DGLAP formalism to describe parton evolution in
the region of relatively high virtualities, |q2| > Q2

0, Q0 being some cutoff for pQCD being applicable,
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nonperturbative (parts of) parton cascades, with |q2| < Q2
0, are treated phenomenologically as soft

Pomeron emissions, as illustrated in Figure 5.

soft Pomeron

QCD ladder

soft Pomeron

Figure 5. Schematic view of a semihard scattering process: perturbative parton evolution is represented
by the ladder; the “blobs” above and below the ladder correspond to nonperturbative parton cascades
described as soft Pomeron emissions.

In addition, one takes into consideration nonlinear effects related to interactions between parton
cascades, which is treated as Pomeron-Pomeron interactions, the corresponding, so-called enhanced,
diagrams being resummed to all orders [26–28]. As discussed in Refs. [21,29], only a subset of such
enhanced diagrams can be included in the standard “minijet” framework described in Section 2.1,
namely those which correspond to rescatterings of intermediate partons in the parton cascades off
their parent hadrons and, thus, produce absorptive corrections to PDFs (GPDs). The other graphs,
while having altogether no impact on the usual PDFs, play a crucial role in taming the energy rise of
the interaction cross sections [21].

The simplest diagrams of the kind, shown in Figure 6, emerge due to a special contribution to
2GPD of the target proton, corresponding to the so-called “soft parton splitting” mechanism [30]. Let us
discuss in some detail the 1st graph in Figure 6, which defines a correction to double-dijet production.
The two partons entering the two ladders from below, i.e., the initial partons for the two perturbative
(|q2| > Q2

0) parton cascades, originate from two soft Pomerons describing nonperturbative parton
cascading. In turn, those soft Pomerons emerge from a splitting of their parent soft Pomeron coupled to
the target proton. Thus, we have the following picture: a soft parton cascade developing in the target
proton, followed by a splitting of the last parton in this cascade into a pair of new soft partons which,
in turn, initiate two separate soft cascades. Finally, each of those enters the perturbative (|q2| > Q2

0)
domain and gives rise to a dijet production. Because of the relatively small slope of the soft Pomeron,
the two partons entering the perturbative evolution appear to be close by in the transverse plane,

i.e., we have effectively a parton clump. The overall (negative) corrections to σ
inel(jet)
pp and to σtot/inel

pp
emerge when we add contributions of the other relevant graphs in Figure 6, similarly to the case of the
eikonal double scattering [c.f. Figure 1 and Equations (9) and (10)].

It is worth remarking that in the discussed formalism, due to the AGK-cancellations, the inclusive
jet production cross-section, σ

jet
pp, remains defined by the collinear pQCD factorization ansatz,

Equation (1), with the PDFs f I/p(x, Q2) containing absorptive corrections due to relevant enhanced
diagrams [21].

Using such an approach, one is able indeed to obtain a reasonable description of both the total pp
cross-section and of particle production, while using realistic PDFs and a realistic description of the
spatial structure of the proton, for a fixed energy-independent cutoff1 Q2

0 = 3 GeV2 [22].
Concerning parton-parton correlations, one may generally expect an additional contribution

coming from the so-called perturbative parton splitting mechanism which played a crucial role for
properly describing the rates of high pt double-dijet production [9,10]. This has been studied in

1 For the chosen factorization scale, M2
F = p2

t /4, this corresponds to the transverse momentum cutoff pt,cut ' 3.4 GeV.
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some detail in Refs. [30,31] which showed that the corresponding contribution to σ
4jet(DPS)
pp (s, pt,cut)

[Equation (3)], hence, also to σ
inel(jet)
pp , is suppressed by kinematics in the limit of small pt,cut and can be

neglected in this limit, compared to the one of the “soft parton splitting” mechanism.

(+1)(−4)(+2)

Figure 6. Schematic diagrams for the contributions of the “soft parton splitting” mechanism to
double-dijet production (left), screening correction to single-dijet production (middle), and high mass
diffraction of the target proton (right); relative weights of the contributions are shown below the graphs.
Perturbative parton cascades are represented by the ladders and soft parton evolution—by the “blobs”;
the triple-Pomeron interaction vertex is shown by the small black circle. The vertical dashed-dotted
lines indicate the position of the cut plane.

3. Potential Importance of Dynamical Higher Twist Corrections

As stressed repeatedly in the previous Sections, a very important feature of the above-discussed
approaches is that they all preserve the collinear factorization ansatz, Equation (1), for inclusive jet
production. Yet this may be a problem, when applied to particle production, since the inclusive jet
rates, hence, also the multiplicity of produced hadrons, depend strongly on the chosen pt-cutoff,
see Equation (2). In the QGSJET-II-04 model [22], a relatively high parton virtuality cutoff Q2

0 = 3 GeV2

is employed as the border between the perturbative hard and nonperturbative soft parton evolution.
On the other hand, from general considerations, one may expect pQCD to be applicable down to much
smaller values Q0 ∼ 1 GeV. Hence, an important perturbative mechanism seems to be missing.

Let us now remind ourselves that the collinear factorization of pQCD has been established at
the leading power level, i.e., neglecting the so-called higher twist (HT) corrections suppressed by
additional powers of the hard scale [2,3]. It is thus natural to expect that these are HT effects which
damp jet production for relatively small jet transverse momenta, while being of minor importance
in the high pt range. In the following, we shall investigate the potential impact of HT corrections
on the predicted interaction cross sections; applications to particle production will be discussed
elsewhere [32].

While the theoretical treatment of higher twist effects dates nearly 40 years back [33–37], a rigorous
implementation of the formalism in MC generators seems hardly possible at the present stage.
The corresponding contributions involve many unknown multiparton correlators and generally do not
allow a probabilistic treatment. Consequently, one is forced to choose a phenomenological approach
and to make several brute force and, generally, ad hoc assumptions.

In the following, we are going to restrict ourselves with dynamical power corrections to hard
parton scattering processes, corresponding to coherent multiple rescattering of s-channel partons on
virtual soft gluons, i.e., ones characterized by vanishingly small LC momentum fractions, xg ∼ 0, with
gluon pairs forming pair-wise color singlet states [38,39]. Such contributions have been shown to
provide dominant nuclear size-enhanced corrections to the low x and low Q2 behavior of structure
functions in DIS on nuclear targets [38,40] and to the suppression of jet pt-spectra in high-energy
proton scattering on heavy nuclei, for moderately small pt [39]. It is worth stressing that extrapolating
such a treatment to proton-proton collisions is a strong ad hoc assumption since, unlike the case of a
nuclear target, there is no formal justification for neglecting other potential HT contributions. We shall
provide later some qualitative arguments why such an extrapolation may not be senseless.
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3.1. Resummed Power Corrections to High-Energy Scattering

While traditional applications of pQCD are based on the leading twist collinear factorization [2,3],
it has been demonstrated in Refs. [41,42] that such a factorization holds also for the leading, O(1/Q2),
power corrections to hard scattering processes. In an example diagram of Figure 7, corresponding
to the contribution to hard quark-quark scattering, which involves rescattering on two additional
gluon fields, the central “blob” marked “H” depends on short distance physics only and, thus,
allows a perturbative treatment. On the other hand, all the nonperturbative long distance physics
is contained in multiparton correlation functions for the projectile and target hadrons, denoted by
half-ellipses in the Figure, the corresponding contributions being hard process-independent. However,
an implementation of such higher twist corrections in hadronic interaction models is hampered by the
fact that they generally involve a considerable number of unknown multiparton correlators. Moreover,
such a factorization is not expected to be valid beyond the leading power level [43,44].

H

Figure 7. An example diagram for higher twist corrections discussed in the text, for the case of
quark-quark hard scattering.

On the other hand, Ref. [39] demonstrated that in the high-energy (low-x) limit, dominant nuclear
size-enhanced power corrections to hard scattering processes in proton-nucleus collisions come from
coherent multiple rescattering of s-channel partons on virtual soft gluon pairs and that the respective
contributions can be resummed to all powers. The corresponding hard scattering contributions
corresponding to the “blob” H in Figure 7 have a structure exemplified in Figure 8(left) for the case of
the leading power correction: two gluon fields in a pair are separated by the so-called contact part of
the quark propagator, which implies no propagation in the LC-plus direction [37]; propagators which
separate such gluon pairs from the quark field and from each other are represented, on the other hand,
by the pole part of the propagator, which implies a propagation over considerable distances. It is such a
prescription which gives rise to the nuclear enhancement: in the low x limit, the struck quark from one
nucleon in the nucleus propagates over large distances ∝ 1/(x p+), p+ being the LC-plus momentum
of the nucleon, scattering coherently on many correlated soft gluon pairs from other nucleons [38–40].

Figure 8. (Left) the structure of the hard “blob” in Figure 7, for leading power corrections discussed
in the text, for the case of hard scattering of quarks of different flavors. (Right) an alternative leading
power correction to the qq′ hard scattering, which provides a subleading contribution in the high
energy limit. Quark propagators with a vertical dash correspond to the contact terms; the propagator
marked by a cross is the pole term.
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In the following, we extrapolate the treatment of Ref. [39] to proton-proton collisions.
The corresponding leading power (twist-4) corrections involve a quark-gluon correlation function
(in the LC A+ = 0 gauge)

Tqg(x, xg1 = 0, xg2 = 0) =
∫ dy−q

4π

dy−g1
dy−g2

2π
eip+x y−q Θ(y−g2

)Θ(y−g1
− y−q )

× 〈p|ψ̄(0) γ+ F+α(y−g2
) F+

α (y−g1
)ψ(y−q )|p〉, (17)

in the case of quark-quark or quark-gluon scattering and a similar gluon-gluon correlator Tgg,

Tgg(x, xg1 = 0, xg2 = 0) =
∫ dy−g

2πxp+
dy−g1

dy−g2

2π
eip+x y−g Θ(y−g2

)Θ(y−g1
− y−g )

× 〈p|F+β(0) F+α(y−g2
) F+

α (y−g1
) F+

β (y−g )|p〉, (18)

for gluon-quark or gluon-gluon scattering [38], with y−q , y−g , y−g1
, y−g2

being the LC-minus coordinates of
the fields and F+

α - the projection of the gluon field tensor on the LC-plus direction. Correspondingly,
higher power corrections involve correlators with 2n gluon fields for the virtual soft gluons.

3.2. Additional Assumptions and Model Implementation

In our model implementation of the formalism discussed in Section 3.1, we make several
additional strong assumptions. Starting with the quark-gluon correlator Tqg, a closer look at

Equation (17) reveals that it formally coincides, up to a factor, with the quark-gluon 2GPD F(2)
qg

multiplied by the gluon LC momentum fraction xg, in the limit xg → 0 and for zero transverse
separation between the two partons, ∆b = 0 [and, similarly, for Tgg in Equation (18)]. This motivated us

to employ a probabilistic treatment for Tqg and Tgg, interpreting them as xg F(2)
qg

∣∣∣
∆b=0

and xg F(2)
gg

∣∣∣
∆b=0

,
respectively, and to proceed in a similar way with the other correlators involving larger numbers of
soft gluons.

Here we must make additional assumptions concerning the relevant virtuality scales and
gluon momentum fractions in the corresponding multiparton GPDs, e.g., for Q2

q, Q2
g, and xg in

F(2)
qg (x, xg, Q2

q, Q2
g, ~∆b). While the natural choice for Q2

q is the factorization scale M2
F for the hard process,

one usually considers soft gluons to be purely nonperturbative ones, with Q2
g ∼ Λ2

QCD. Instead, we
set Q2

g equal to our separation scale Q2
0, in order to describe the GPDs by soft Pomeron asymptotics.

Finally, we take into consideration that the soft gluons have a finite virtuality,

|q2
g| ∼ 〈p2

t 〉 ∼ xg x−g s , (19)

with x−g being the LC-minus fraction for the gluon and 〈p2
t 〉 - the characteristic transverse momentum

squared for such soft gluons. In the factorization procedure discussed in Section 3.1, one neglects
LC-minus momentum components for projectile partons (similarly neglecting LC-plus momenta of
target partons) and considers the limit xg → 0 for the soft gluons involved in the process. Here,
taking into account the small but finite virtuality of such gluons, Equation (19), and the fact that
these gluons belong to the projectile proton (for the diagram in Figure 7), their LC-minus momentum
fractions x−g should be much smaller than the LC-minus fraction of the target quark participating in
the hard process:

x−g ∼
〈p2

t 〉
xg s

� x− . (20)

Since we expect a rather weak xg-dependence for xg F(2)
qg and xg F(2)

gg in the small xg limit at the
low virtuality scale Q2

g = Q2
0, we set

xg =
Q2

0
x− s

. (21)
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Using these additional assumptions, the approach discussed in Section 3.1 leads to the following
leading power (twist 4) correction to the inclusive jet cross-section of Equation (1)

∆(HT)σ
jet
pp(s, pt,cut) = KHT ∑

I,J=q,q̄,g

∫
dx+ dx−

∫
dt̂ Θ(t̂û/ŝ− p2

t,cut)
π2 αs(M2

F)CI

t

× xg F(2)
Ig (x+, xg, M2

F, Q2
0, ∆b = 0) f J/p(x−, M2

F)
d
dŝ

[
ŝ dσ2→2

I J (ŝ, t̂, M2
F)

dt̂

]
, (22)

where ŝ = x+x−s, t̂, and û = −ŝ − t̂ are Mandelstam variables for the Born parton scattering,
xg = Q2

0/(x−s), Cg = CA = 3, Cq(q̄) = CF = 4/3, and the 2GPD F(2)
Ig is taken for zero separation

between the pair of projectile partons, ∆b = 0. A similar correction emerges due to rescattering on soft
gluons from the target proton.

Taking into consideration higher power corrections due to coherent rescattering on multiple soft
gluon pairs from the projectile and the target protons, we obtain the partial jet production eikonal
χ

jet
pp(ij) [c.f. Equations (15) and (7)] as

χ
jet
pp(ij)(s, b, pt,cut) =

1
2 ∑

I,J

∫
dx+ dx−

∫
d2bt

∫
dt̂ Θ(t̂û/ŝ− p2

t,cut) GI/p(i)(x+,~b +~bt, M2
F)

× GJ/p(j)(x−,~bt, M2
F)

{
1 +

∞

∑
n=1

[KHT π2 αs(M2
F)]

n

n!

[
d
dŝ

ŝ
t̂

]n

×
[(

CI x+g Gg/p(i)(x+g ,~b +~bt, Q2
0)
)n

+
(

CJ x−g Gg/p(j)(x−g ,~bt, Q2
0)
)n]}

×
dσ2→2

I J (ŝ, t̂, M2
F)

dt̂
' 1

2 ∑
I,J

∫
dx+ dx−

∫
d2bt

∫
dt̂ Θ(t̂û/ŝ− p2

t,cut)

× exp

{
KHT π2 αs(M2

F)

t̂

[
CI x+g Gg/p(i)(x+g ,~b +~bt, Q2

0) + CJ x−g Gg/p(j)(x−g ,~bt, Q2
0)
]}

× GI/p(i)(x+,~b +~bt, M2
F) GJ/p(j)(x−,~bt, M2

F)
dσ2→2

I J (ŝ, t̂, M2
F)

dt̂
, (23)

where x±g = Q2
0/(x∓s) and we approximated nGPDs F(n)

Igg...g (also F(n)
Jgg...g) by factorized products of

independent GPDs for the parton I and n soft gluons, taken at the same transverse position~b +~bt

[c.f. Equation (4)]. Additionally, in the last step, we took into account that the HT corrections due to
rescattering on soft gluon pairs from the projectile and the target are significant in different parts of the
kinematic space and that the dominant contribution to parton-parton Born scattering in the high energy
limit comes from a t-channel gluon exchange. Hence, we approximated the Born cross-section as

dσ2→2
I J (ŝ, t̂, M2

F)

dt̂
' 1

2
CI CJ π α2

s(M2
F)/t̂2 . (24)

Since our treatment contains several brute force assumptions and uncertainties, we introduced an
adjustable parameter, KHT, which controls the magnitude of the HT corrections in our approach.

Before we present numerical results, let us provide some qualitative arguments in support of
our extrapolation of the treatment of Refs. [38–40] to proton-proton collisions. Let us remind that the
Lorentz-contraction acts differently on partons of different momenta, in a quickly moving parton cloud
of the proton. While fast (large x) partons are confined to a narrow “pancake” in the longitudinal
direction, the abundant small x gluons are spread over longitudinal distances ∝ 1/(xg p+). For the
diagram in Figure 8(left), corresponding to the approach of Refs. [38–40], the low-x quark propagates
over large distances ∝ 1/(x+p+) comparable to the longitudinal size of the gluon cloud and, thus,
may scatter coherently on many correlated soft gluon pairs. In contrast, considering, for example,
an alternative configuration depicted in Figure 8(right), the first gluon is separated from the quark by
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the contact propagator, which implies there is a very small distance between the quark and the gluon.
Hence, only a very small portion of the gluon content of the proton can be involved in that type of
interaction, with the corresponding contribution being a subdominant one.

3.3. Impact on the Energy Rise of pp Cross Sections

Implementing the phenomenological treatment of HT corrections, described in Section 3.2, in the
framework of the QGSJET-II model, we were able to reach a consistent description of experimental
data on total and elastic pp cross sections, using rather small values for the separation scale Q2

0 between
the soft and hard parton dynamics: Q2

0 = 1.5 and 1 GeV2, which for our choice of the factorization
scale, correspond to pt-cutoff values pcut

t ' 2.4 and 2 GeV, respectively. The corresponding results
for σtot

pp , σinel
pp , and σel

pp, plotted in Figure 9 by solid lines, have been obtained using the same value
KHT ' 4 and suitably adjusting other model parameters. For comparison, we plot also by dashed lines
the energy-dependence of these cross sections, obtained without such HT corrections, i.e., using the

same two parameter sets but setting KHT = 0. In addition, we show by dotted lines σ
inel(jet)
pp calculated

using Equation (15) in a “minijet”-like way (but including the effects of color fluctuations, as described
in Section 2.2): neglecting both HT corrections and the contributions of the diagrams of the kind
depicted in Figure 6 and including only those enhanced graphs which provide absorptive corrections
to partial one-parton GPDs GI/p(i)(x,~b, Q2). Since the rate of multiple scattering depends significantly
on a chosen transverse profile for the proton (c.f. the discussion in Section 2.1), we plot additionally
in Figure 10 the energy-dependence of the calculated forward elastic scattering slope, for the two
parameter sets.
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Figure 9. Energy-dependence of the calculated total, inelastic, and elastic proton-proton cross sections,
for the soft-hard separation scales Q2

0 = 1 GeV2 (left) and Q2
0 = 1.5 GeV2 (right), obtained taking the

HT corrections into account (solid lines) or neglecting them (dashed lines). The dotted lines correspond

to σ
inel(jet)
pp calculated in a “minijet”-like way, as explained in the text. The experimental data are from

Refs. [45–50].

The presented results show that the above-discussed treatment of HT effects allows one indeed
to reduce substantially the model dependence on the Q0-cutoff since the model parameters tuned to
reproduce the observed energy dependences of pp cross sections differ insignificantly for the two cases
considered (Q2

0 = 1 and 1.5 GeV2). Not unexpectedly, the importance of HT corrections, illustrated
by the differences between the solid and dashed lines in Figure 9, increases with energy and for a
smaller value of the Q0-cutoff. On the other hand, restricting oneself with a “minijet”-like treatment,
i.e., neglecting both the “soft parton splitting” mechanism and the HT corrections to hard scattering

processes, the calculated σ
inel(jet)
pp corresponding to the part of the inelastic cross-section related to

production of (mini-)jets, without the contribution of soft processes, exceeds the measured inelastic pp
cross-section already at LHC energies.
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Figure 10. Energy-dependence of the calculated forward elastic scattering slope for pp collisions, for
the parameter sets corresponding to the soft-hard separation scales Q2

0 = 1 GeV2 (solid line) and
Q2

0 = 1.5 GeV2 (dashed line). The experimental data are from Refs. [45–48].

It may also be instructive to compare the x-dependence of the calculated gluon GPD,
x Gg/p(x,~b, Q2

0), at the soft-hard separation scale Q2
0, for different values of b, as shown in Figures 11

and 12 by solid lines. Additionally, we plot by dotted lines the “bare” gluon GPD obtained neglecting
the relevant absorptive corrections induced by Pomeron-Pomeron interactions (c.f. the discussion in
Section 2.3). As discussed previously in Ref. [51] and can be seen in the figures, nonlinear effects related
to Pomeron-Pomeron interactions cause a saturation of parton densities at the Q2

0 scale, in the low x
limit and for relatively small values of b. On the other hand, for increasing b, such absorptive effects
become weaker and weaker, which explains the difficulty to observe signals of parton saturation in
measured structure functions for DIS. It is noteworthy that the contributions of relatively large values
of b to the integrated PDFs [c.f. Equation (5)], hence, also to DIS structure functions, are additionally
enhanced in the low x limit by the parton transverse diffusion. It is also worth stressing here that the
treatment of HT effects, discussed in Section 3.2, has no impact on PDFs (GPDs); it reduces instead the
hard parton-parton scattering cross-section [c.f. Equations (22) and (23)].
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Figure 11. Calculated gluon GPD x Gg/p(x,~b, Q2
0) at the Q2

0 scale for different values of b (as indicated in
the plots) for the parameter set corresponding to Q2

0 = 1 GeV2 - solid lines. x Gg/p(x,~b, Q2
0) calculated

neglecting absorptive corrections due to Pomeron-Pomeron interactions is shown by dotted lines.
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Figure 12. Same as in Figure 11 for the parameter set corresponding to Q2
0 = 1.5 GeV2.

4. Outlook

We addressed the problem of a fast energy rise of proton-proton interaction cross sections, related
to the explosive increase of the inclusive (mini-)jet production rate in the high energy limit, which,
in turn, stems from the steep low-x rise of parton densities in hadrons. We demonstrated that common
difficulties in “marrying” experimental data on the low-x behavior of the gluon PDF in the proton
with the moderate energy-dependence of the total pp cross-section is mainly related to the basic
assumption of the popular “minijet” approach: using uncorrelated parton picture, both in momentum
and transverse coordinate space, for multiple scattering processes. Taking into account parton-parton
correlations, in particular, those produced by the “soft parton splitting” mechanism, allows one to
substantially improve the situation.

This is, however, insufficient to obtain a reasonable matching between the treatments of soft and
hard processes in the corresponding models of high-energy hadronic interactions: the predictions
for interaction cross sections and, especially, for particle production depend strongly on the chosen
separation scale, the so-called Q0-cutoff, between the soft and hard physics. In that respect, the situation
may be improved by taking into consideration dynamical higher twist corrections to hard parton
scattering processes. In this work, we proposed a phenomenological treatment of such corrections,
relating them to generalized parton distributions in the proton, with allowed us, using a single
additional adjustable parameter, to substantially reduce the dependence of the model results on
the Q0-cutoff.

It is noteworthy that our treatment is qualitatively similar to the popular recipe used in most
present MC generators: the use of an energy-dependent cutoff for jet production. Indeed, in our
approach, the taming of the wild energy rise of pp cross sections is due to a suppression of hard
scattering processes, for relatively small transverse momenta of produced final partons, rather than
due to a modification of PDFs, related to parton saturation. On the other hand, due to the assumed
relation to parton GPDs, we have a dynamical treatment, e.g., the corresponding corrections become
stronger for more central proton-proton collisions.

Yet the proposed approach is a highly phenomenological one and involves numerous brute force
assumptions. Hence, further cross checks and constraints, notably, based on experimental data for
secondary particle production, are highly desirable. In particular, an independent calibration of the
basic parameter of the scheme, which controls the magnitude of the respective corrections, e.g., based
on measured hadron transverse spectra in the range of moderately small pt [52], is required.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
MC Monte Carlo
pQCD perturbative quantum chromodynamics
PDF parton distribution function
LC light cone
c.m. center-of-mass
DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
MPI multiparton interaction
GPD generalized parton distribution
DPS double parton scattering
AGK Abramovskii-Gribov-Kancheli
DIS deep inelastic scattering
LHC Large Hadron Collider
HT higher twist
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