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A B S T R A C T

In energy modelling, open data and open source code can help enhance traceability and reproducibility of model
exercises which contribute to facilitate controversial debates and improve policy advice. While the availability of
open power plant databases increased in recent years, they often differ considerably from each other and their
data quality has not been systematically compared to proprietary sources yet. Here, we introduce the python-
based ‘powerplantmatching’ (PPM), an open source toolset for cleaning, standardizing and combining multiple
power plant databases. We apply it once only with open databases and once with an additional proprietary
database in order to discuss and elaborate the issue of data quality, by analysing capacities, countries, fuel types,
geographic coordinates and commissioning years for conventional power plants. We find that a derived dataset
purely based on open data is not yet on a par with one in which a proprietary database has been added to the
matching, even though the statistical values for capacity matched to a large degree with both datasets. When
commissioning years are needed for modelling purposes in the final dataset, the proprietary database helps
crucially to increase the quality of the derived dataset.

1. Introduction

In energy modelling the question of traceability and reproducibility
of model exercises has been heavily debated in recent years. It is em-
phasised how important both open data and open source code are in
this context to allow for controversial debates of model outcomes which
often serve as policy advice (cf. [1–4]). One of the big challenges for
policy makers today is to manage the transition of energy systems to-
wards sustainability. As sustainability is not only limited to technically
or economically feasible solutions, it requires social feasibility in as-
pects like justice or acceptance as well. Therefore, it is crucial for a
successful energy transition to discuss different competing pathways
with varying benefits for different groups in society openly with all
stakeholders. This represents a highly complex task suited to be ad-
dressed by modelling exercises.

In this sense, energy system modellers face the challenge to provide
at least all relevant assumptions in a traceable and transparent way (cf.
[5]). In this context we want to point out the difference between
transparency and openness. While transparency requires a study to be
traceable in terms of all assumptions made, openness even calls for

open access to the applied code and used data. However, none of them
guarantees reproducibility as transparency does not always necessitate
‘completeness’ of information (data and code) and openness could lead
to a confusing quantity of information hindering application or un-
derstanding. In this respect, one should not take openness or trans-
parency directly as reproducibility, in fact they are rather preconditions
for reproducibility, but do not guarantee it. Additionally, open data
sources show different levels of data quality which again is often hard
to judge objectively. Nonetheless, this does not call for avoiding
openness or transparency, but rather intends to raise awareness of re-
lated dangers (for further information on challenges related to openness
cf. [6]).

Up to now, no systematic analysis exists as to whether a certain
source of open data has an inherent lack in data quality compared with
proprietary data sources or to what extent proprietary data sources
might outperform currently available open data sources. However, one
needs to be aware that this question can only be answered for specific
cases. Here, we discuss this issue of data quality for power plant da-
tabases which are used as key input to various kinds of energy mod-
elling exercises. We chose this case due to the already extensive
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availability of open data for conventional1 power plants (e.g. Refs.
[7–12]). Nonetheless, the same issue of data quality applies to all re-
quired input data describing the current, and with certain reservations
regarding its assumptions also the future, framework of the system
under consideration (e.g. electricity demand, grid constraints, CO2

caps, fuel prices, etc.). Therefore, we focus here on challenges related to
data mining for modelling needs while we describe applications of
modelling exercises using the derived datasets in Refs. [13,14].

Here, we present an approach on how to derive and check trans-
parent and open power plant fleets for each European country. We
introduce powerplantmatching (PPM) [15], a tool for merging power
plant databases into a final dataset and apply it to evaluate several
combinations of open and proprietary databases of power plants.2 This
allows us to evaluate differences in the used input data and how those
databases complement one another. Overall we aim at identifying if a
dataset derived purely from open data can compete with a dataset de-
rived from open and proprietary databases by comparison with national
capacity statistics.

2. Methodology

To derive a consistent power plant fleet for each European country
we developed powerplantmatching (PPM) that is a toolset for cleaning,
standardizing and combining multiple power plant databases [15]. At
first, we give an overview of the databases which were used as inputs in
PPM in subsection 2.1 and then we present briefly how PPM works in
subsection 2.2. We show how we rescale between gross and net capa-
cities to allow for comparability in subsection 2.3 and how we deal with
wind and solar power units in subsection 2.4. The methodology section
closes with a plausibility check as a proof of concept which is described
in subsection 2.5.

2.1. Short overview of used databases

For PPMs application six databases that are openly available3 and
one proprietary database have been used (cf. Table 1) which all differ in
their magnitude both in number of units and represented capacities but
also in geographical scope, level of detail and their definitions (e.g. fuel
types). All of these databases have been filtered such that they only
contain units within the geographical scope of interest, here we chose
EU28 + Switzerland + Norway - Cyprus - Malta. However, the end

user is free to choose his individual geographical coverage in the config
file of PPM. The capacities in the different databases range from small
kW-scale units up Europe's biggest plant, Bełchatów (5.42 GW) in Po-
land. An overview of the massive number of records being contained in
the different databases, especially those in CARMA and WEPP, and their
distribution in terms of capacities and fuel-types the is shown in Fig. 1.

The proprietary World Electric Power Plants Database (WEPP) is an
example of one of the most widespread power plant databases used by
academics, NGOs and businesses [16,17]. It is the only database that
has been acquired commercially beforehand in the version from Sep-
tember 2016. Even though it is allegedly updated quarterly according to
the vendor, it contains units that one does not find any information
about elsewhere, neither in the other databases nor in the internet
through manual research (e.g. ‘Aachen Works 1’). The fact that it also
does not contain geographic coordinates of the plants adds doubt as to
whether it always reflects real existing units at its release date. In
contrast, Open Power System Data (OPSD) is “a free-of-charge data
platform dedicated to electricity system researchers” providing “data on
installed generation capacity by country/technology, individual power
plants (both conventional and renewables-based), and time series data”
in the form of individual data packages [18]. In the following, we refer
to the conventional power plants data package as OPSD, which is used
as input for PPM. Since the DOE Energy Storage Exchange (ESE) [11] is a
database of storage units, we filtered it such that in our case it only
contains pumped storages, as smaller storage systems like batteries are
not contained in the other database and could therefore not be suc-
cessfully matched. The database provided by the World Resources In-
stitute (WRI) obviously does not contain any units below MW-scale.
PPM obtains the ENTSOE5 database directly through the application
programming interface (API) of the ENTSO-E Transparency Platform
[10] to keep it up to date. Nevertheless, there are examples of power
plant owners reporting less than the full net generating capacity to the
European Network of Transmission System Operators for Electricity
(ENTSO-E); possibly, to reserve a certain part of their plant's capacity
for spinning and control reserve. For instance, Germany's hard coal and
natural gas power plant ‘Gersteinwerk’ has a total nameplate capacity
of 2372MW (2040MW excluding gas turbines) [19], while ENTSOE
only reports 2003MW of total installed capacity. All of the aforemen-
tioned differences add to the challenge of matching. For example,
power plants which were historically fuelled with coal but have been
retrofitted to natural gas at some point, might be given with coal in one
database and with natural gas in another.

2.2. Brief introduction to PPM

PPM has been implemented in Python and is available under a
GNU/GPLv3 licence. In order to understand how the underlying
method of PPM works, we describe the main steps and program mod-
ules in the following. Basically the PPM method can be broken down

Table 1
Applied power plant databases that cover the EU-28 + Switzerland + Norway - Cyprus - Malta [7–12,15].

Database Supplier Abbreviation Type No. units GW

Carbon Monitoring for Action CARMA gross 50,570 4931.96
European Network of Transmission System Operators for Electricity ENTSOE net 4384 851.14
DOE Energy Storage Exchange (only pumped storages) ESE net 850 153.72
Global Energy Observatory GEO gross 1314 692.02
Open Power System Data (Conventional Power Plants) OPSD4 net 6768 571.08
World Electric Power Plants Database WEPP gross 63,398 1848.83
World Resources Institute WRI unknown 2867 360.898

1 We excluded wind and solar units from our analysis, cf. subsection 2.4.
2 In order to avoid confusion, the following wording has been agreed upon:

For the raw collections of input data we use “database”, while “dataset” is used
for the processed versions including the matching result and “fleet” means the
power plants claimed for one single country. While “Power plant” refers to an
entire generating station at one location, “unit” and “block” are used inter-
changeably and refer to a fraction of a power plant.

3 Meaning that they are either published under an open source license or are
freely available for download.

4 Note that the capacity statistics from ENTSO-E: Scenario Outlook and
Adequacy Forecast (SO&AF) as reported by OPSD are not to be confused with the
conventional power plant database provided by OPSD.

5We intentionally renounced the hyphen here, enabling us to distinguish
clearly between the organization (ENTSO-E) and the obtained database used as
input for PPM (ENTSOE).
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into four steps: (1) standardization of the terms and tabular structure
for each database, (2) aggregation of units into power plants, (3)
linkage of the aggregated power plant lists, and (4) reduction of the
connected claims (cf. Fig. 2).

The first step comprises the data module of the PPM package, which
compiles explicit mappings to translate the different terms and struc-
tures of each database into a previously defined structure (cf. Table 2)
with respect to the concept of ‘tidy data’ [20]. For example, a mapping
of the fuel types of the WEPP can be found here [21]. In addition,
databases exposing gross power capacities are rescaled. The used
scaling factors are described in subsection 2.3 more in detail.

Most power plant databases like OPSD, ENTSOE, ESE and WEPP
report individual power plant units, however, aggregated power plants
are commonly integrated in models on system scale, so an aggregation
is needed (step 2). This aggregation step takes place before different
databases can be compared to each other and is based on the approx-
imate probability that any two units belong to the same power plant.
This is computed by weighting the similarity between name, fuel type
and geographic location with a naive Bayesian classification scheme
implemented in the java application Duke [22]. Groups of units with
pair-wise similarities above a high threshold (98.5%) are collected as
power plants. The capacities of the power plant units belonging to-
gether are summed and the most frequently occurring name is kept
while the geo-coordinates are being averaged.

The core of the PPM tool is the third step, which links the separate

power plant datasets. The same comparison scheme based on Duke with
slightly different weights is used to determine similar power plants for
every pair of datasets. These individual links from dataset to dataset are
iteratively joined to chains connecting as many datasets as possible.
Each chain links several - sometimes conflicting - claims about the same
power plant. These claims are then reduced according to a predefined
reliability score (cf. Table 5). Sources which were both updated recently
and checked manually (OPSD) get the highest score, before sources that
are only updated regularly (ESE, ENTSOE and WEPP), before sources
which have not been updated for a longer period of time (GEO, WRI,
CARMA). The claim originating from the database with the highest
score is then accepted for the final dataset. However, it can happen that
claims with the highest but same score stem from two or more data-
bases. In this case the acceptance is based on the most frequent name,
fuel type, and technology in addition to the mean location in terms of
latitude and longitude and the median capacity. In general, it is im-
portant to note that at least two input databases are needed for one
record (=power plant) to occur in the final matched dataset.

For a slightly more detailed description of the specific algorithms
used in PPM please refer to Section 2.2 in the companion paper [14].

2.3. Rescaling between gross and net capacities

Since several databases provide gross capacities (e.g. WEPP and
CARMA) whereas others (e.g. ENTSOE) provide net capacities, these

Fig. 1. Overview of the different input databases. Each marker represents one record, is scaled based on its capacity and colored based on its fuel type.

Fig. 2. Flow chart of the main steps in PPM.
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values need to be standardized, i.e. rescaled to either of them, before a
sensible matching can take place.

The OPSD database for Germany, which was put together manually
by the OPSD modellers, is based on two different originating databases,
one from the Federal Network Agency (BNetzA) and one from the German
Environment Agency (UBA). While the former one provides unit sizes as
net capacities, the latter provides them as gross capacities. This is of
threefold advantage giving us the chance (a) to derive fuel- and tech-
nology-specific correction factors, (b) to check how PPM's vertical ag-
gregation algorithm performs and (c) to evaluate the horizontal
matching process of PPM (cf. subsection 2.4).

Fig. 3 depicts the ratios between net and gross capacities for a
combination of fuel-type and technology in the form of boxplots. We
recognize that all medians and all but one means are above and close to
0.9 confirming the rule of thumb that the net capacity of power plants is
usually about 90% of their gross capacity due to their internal con-
sumption [23]. However, the diagram also displays a couple of outliers,
which are defined as values that are either lower than the 1st quartile
minus 1.5 IQR (inter quartile range) or higher than the 3rd quartile plus
1.5 IQR. Those have been investigated further manually and can be
grouped into two categories:

(1) Outliers for (Natural Gas, Combined Cycle) stem from industrial
plant owners, like chemical and automotive companies as well as
refineries. Therefore, by nature their net capacities are smaller than
their gross capacities of the boilers.

(2) The remaining outliers have been checked individually, i.e. their
given net to their gross capacities have been compared to those
given by owners of the units and seem to simply result from input
errors. Hence, their rescaling factors are not representative of their
combination of fuel type and technology.

After having confirmed that all groups of outliers can be explained,
this demonstrated to a great extent why the averages are mostly lower
than the medians. In order to represent these outliers in the rescaling
process, we consequently decide to use the mean values as rescaling

factor (based on the combination of fuel type and technology as given
in Fig. 3).

2.4. Dealing with wind and solar power plants

Since especially wind and solar units are comparatively small in
terms of unit-wise capacity (ranging from very-low kW to low MW

Table 2
Standardized data structure.

Column heading Description Example(s)

Name Name for the unit/plant “Bouchain 7”, “Centrale
Maasvlakte”

Fueltype General fuel type “Wind”, “Solar”, “Natural Gas”
Technology Further specification “Onshore”, “PV”, “CCGT”
Set Indicator if CHP used “PP” or “CHP”
Country Short country name “France”, “Germany”, “Latvia”,

…
Capacity Net/gross installed

capacity
645.0

YearCommissioned Year when unit came
online

1995

lat Geographical latitude 51.96262
lon Geographical longitude 4.025152
File File of origin RTE
projectID ID in original file OEU123

Table 3
Cumulative installed capacities.

No. Object of Comparison Records [−] Capacity [GW] Ratio to Statistics

i Matched dataset w/WEPP 14,348 747.41 97.32%
ii Matched dataset w/o WEPP 6014 707.65 92.14%
iii WEPP only 36,796 728.65 94.88%
iv Statistics ENTSO-E SO&AF – 767.97 100.00%

Table 4
Comparison of records containing a commissioning year in relation to the count
of the two datasets.

Matched dataset with WEPP Matched dataset without WEPP

Records w/
Year

Total Ratio Records w/
Year

Total Ratio

Austria 643 679 95% 151 164 92%
Belgium 228 272 84% 2 27 7%
Bulgaria 97 111 87% 2 20 10%
Croatia 51 51 100% 3 24 13%
Czech Republic 153 178 86% 0 19 0%
Denmark 416 430 97% 14 22 64%
Estonia 20 38 53% 0 3 0%
Finland 243 369 66% 15 279 5%
France 1134 1362 83% 36 172 21%
Germany 1529 2038 75% 510 529 96%
Greece 122 135 90% 2 30 7%
Hungary 77 79 97% 0 19 0%
Ireland 80 108 74% 1 17 6%
Italy 1451 1575 92% 19 399 5%
Latvia 44 47 94% 0 4 0%
Lithuania 20 22 91% 1 5 20%
Luxembourg 81 88 92% 1 2 50%
Netherlands 573 589 97% 3 50 6%
Norway 784 803 98% 4 408 1%
Poland 397 448 89% 6 66 9%
Portugal 370 376 98% 103 122 84%
Romania 346 350 99% 0 28 0%
Slovakia 41 41 100% 36 37 97%
Slovenia 85 89 96% 44 54 81%
Spain 1417 1488 95% 1478 2520 59%
Sweden 637 665 96% 0 157 0%
Switzerland 662 695 95% 522 526 99%
United Kingdom 1115 1222 91% 213 311 68%
Total 12816 14348 3166 6014

Table 5
Reliability scores for each database - higher values
indicate higher reliability.

Database Reliability score

BNETZA 3
CARMA 1
ENTSOE 4
ESE 4
GEO 3
OPSD 5
WEPP 4
WRI 2
UBA 2
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scale), but huge in terms of deployed numbers (e.g. more than 1.7
million single units only in Germany [24]), they would massively im-
pede the matching process. Moreover, since most of the single solar
panels and wind turbines do not have a specific name (except larger
wind and solar parks), there is no data in the name column and, con-
sequently, no input for the string comparator available. Therefore, all
wind and solar units are being filtered as part of the data mending,
enabling us to keep the entire process computationally manageable.

However, for a further usage of the derived power plant data in
modelling approaches, PPM is able to concatenate given wind and solar
units from the OPSD renewable data package [24] to the final dataset at
the end of the matching process.

2.5. Plausibility check: UBA vs. BNetzA

As mentioned above in subsection 2.3, the OPSD conventional
power plant database for Germany has been assembled by the OPSD
modellers by manually linking and merging the two source databases
BNetzA and UBA. The 413 collected links are published as part of the
package. Unfortunately, changes in the power plant list on identifiers or
operating status in the source datasets since the last update on July 14,
2016 have invalidated all but 319 links, illustrating the need for a

mostly automatic linking scheme. Aggregating the power plant units of
BNETZA and UBA separately as described in Section 2.3 determines 176
power plants in BNETZA and 166 power plants in UBA connected by
181 manual links. The discrepancy derives from overlapping aggrega-
tion groups of power plant units identified by PPM, which mostly result
from different fuel type specifications for the same block in BNETZA
and UBA. PPM finds 153 correct links and no wrong link. Of the 28
missed links 21 are hidden by the incorrectly chosen aggregation
groups.

Fig. 4 illustrates the capacities per fuel type for the PPM matching
result (orange) of the UBA (green) and BNetzA (red) databases together
with the comparison to the reference database from OPSD for Germany
(blue). The comparison shows that the algorithm is able to reproduce
OPSD's manual matching for the German fleet closely for almost all fuel
types. Since block B of Gundremmingen nuclear power plant was already
marked as ‘shutdown’ in OPSD in 2017, this explains the missing of
1284 MW in the blue bar, so it matches even exactly for all remaining
nuclear units. The lowest underestimation occurs for Natural Gas
(−0,482 MW) and the highest overestimation for Hard Coal
(+0.627 MW). The remaining differences result from different oper-
ating statuses of certain power plant blocks, since some of them are
currently in an intermediate state between operation and shutdown, in

Fig. 3. Boxplot of the ratios between net and gross capacities for different fuel-types and technologies. Triangles indicate means, green horizontal lines medians and
circles outliers.

Fig. 4. Plausibility check of PPM results for Germany.
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the databases referred to as “temporary shutdown”, “security reserve”
or “special case”, making it hard to distinguish the real operating plant
size.

Altogether, we can state that our matching algorithm produces
plausible results as it is able to reproduce the reference capacities
(82.09 GW) to a very good extent (83.76 GW) with an absolute devia-
tion of only about 2%.

3. Analysis

The analytical part of this paper is twofold: In the first part, we
assess to what extent open databases cover Europe's installed capacities
by comparing them among themselves and also to national capacity
statistics. The latter are also reported by and taken from the OPSD-
initiative through their national generation capacity data package [25]
and must not be confused with their conventional power plants data
package (cf. subsection 2.1). Even though the initiative gathered sta-
tistical data from many different sources, only the data taken from
ENTSO-E's Scenario Outlook and Adequacy Forecast SO&AF) covered
Europe completely in the base year 2016, therefore we used it here. The
statistical values serve as a reference to a, yet unknown, reality since
these statistical values contain uncertainties themselves and, of course,
do not contain specific power plants. For all variants, the year 2016
represents the base year, as being the most recent year for which the
statistics contain full historical information. In the second part, we
check how much the proprietary WEPP database can contribute to the

matching by adding it to the matching process.

3.1. Part I: assessing the coverage of open databases ‘on their own’

In this part, we show how PPM is applied to six open power plant
databases (all but WEPP from Table 1) that went through the matching
process.

Fig. 5 depicts the fuel type-specific data for each input database as
bar chart and displays the matching result with diamonds. The chart
shows clearly that the initial databases differ vastly among each other
and that CARMA contains the highest capacities for all fuel types, apart
from lignite, in which it does not contain any plants. However, since
CARMA contains more than double the capacity of hard coal than
ENTSOE, this indicates that the database providers have not dis-
tinguished between hard coal and lignite. As previously stated in sub-
section 2.1, ESE only contains pumped storages, which are, of course,
classified as hydro plants. Since for a positive match of one single power
plant at least two databases are needed, in theory the matched dataset
can contain only the maximum capacity of one database if two identical
databases were fed into PPM in theory. However, since more than two
databases are part of the matching process, the summed capacity in the
matched dataset can, of course, be higher than the maximum of one of
the input databases. In practice, the claimed capacity in the final da-
taset is always lower than the maximum of the input databases, except
for hydro power.

The capacities of the resulting matched dataset are now grouped by

Fig. 5. Fuel type-specific capacities per input dataset as bars and the matching dataset as diamond marker.

Fig. 6. Capacities of the matched dataset and statistical values by fuel type.
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fuel type and compared to statistical values, displayed in Fig. 6. Un-
fortunately, the statistics report some fuel types in an aggregated form:
“Bioenergy and other renewable fuels” were assigned to “bioenergy”
and “Bioenergy and renewable waste” to “waste”. All of the following
aggregates, namely “Differently categorized fossil fuels”, “Differently
categorized renewable energy sources”, “Mixed fossil fuels”, “Other or
unspecific energy sources” and “Tide, wave, and ocean” were assigned
to “other”. This leads to relatively high statistical values for “other” and
“waste” and to very low values for “bioenergy”. Still, for the non-ag-
gregated fuel types obvious deviations occur, with the exception of
nuclear plants.

In order to analyse these deviations from a different perspective, a
plot showing the same data, but grouped by countries instead of fuel
types, has been created (cf. Fig. 7). It shows effectively that, in parti-
cular larger countries, namely France, Germany, and Sweden, are not
yet covered very well, while e.g. Poland and Denmark match to a high
extent, whereas some overestimation occurs in Spain. The discrepancy
between the statistically reported total capacities (∼768 GW) and those
of the matching result (∼708 GW) for the above-mentioned continental
European countries can hardly be neglected even in view of inherent
uncertainties. Therefore, we investigate in the following subsection,
whether the missing capacity is provided by a proprietary dataset.

3.2. Part II: how much can WEPP contribute to open databases?

Up to here, PPM's application had only been focussed on the
matching of freely available databases. Now, we extend this matching
by adding WEPP as input database into the matching process. We define
four objects of comparison, which form the basis of our analysis here.
First, a matching result including the WEPP (i). Second, the matching
result without the WEPP (ii), already known from part I (cf. subsection
3.1). Third and fourth, we take the WEPP only (iii) and, again, capacity
statistics from ENTSO-E SO&AF (iv) for comparison into account. We
chose these objects to identify to which extent the WEPP contributes to
the matched database and to evaluate the differences to the WEPP and
statistics alone. In doing so, we can test the level of suitability of open
available power plant databases for modelling purposes. However, we

must keep in mind that the WEPP has been acquired in the version as of
09/2016 (cf. subsection 2.1), so it might miss capacity additions and/or
retirements of the fourth quarter of that year. Hence, we acknowledge
that WEPP, just as capacity statistics, contains uncertainties itself and
can, therefore, only be seen as an approximation of the hidden real-
world capacity installations.

Table 3 gives an overview of the four objects of comparison and
their sizes. Indirectly, it also shows that adding WEPP to the matching
increases the cumulative capacity by ∼40 GW of the matched dataset,
even though this value is still ∼20 GW lower than what the statistics
report, but already higher ∼19 GW higher than the total capacities of
the WEPP. While the matched dataset w/WEPP contains more than
twice as much records as the matched dataset w/o WEPP does, it only
contains roughly 5.6% more of represented capacity. This is an in-
dication that the set difference represents many comparatively small
units. This phenomenon can also be confirmed geographically for the
dataset w/o WEPP (cf. Fig. 8a) and the one w/WEPP (Fig. 8b) in which
the six most important fuel types (the rest summed among ‘Other’) were
plotted onto a European map. The differences can especially be seen for
numerous comparatively small gas and hydro plants, visible e.g. in
Denmark, France, Portugal and Poland.

Since a bar plot with 28 countries, showing four bars each might
easily lead to confusion, we instead decided to plot country-wise (but
not fuel type-specific) data points that are shown in Fig. 9 in the form of
scatter plots for each object of comparison against each another.

The plotted data forms point clouds close to the 45° identity line
indicating a very good agreement with R2-values ranging from 98.84%
to 99.68%. However, made visible through the double logarithmic axes,
all clouds in which the matched dataset w/o WEPP is contained seem to
deviate almost entirely to one side, hinting at a slight underestimation
of this dataset (e.g. R2= 98.84% for matched dataset w/o WEPP vs.
statistics), confirming the results from subsection 3.1. Adding the WEPP
to the matching contributes to some extent (R2= 99.45%) to the
matching result when comparing the two subplots on the left in the
lowest row. The reason for this is the requirement that a record is only
approved during the matching process if it occurs in at least two da-
tabases (cf. subsection 2.2). Due to this fact, a lot of records are

Fig. 7. Capacities of the matched dataset and statistical values by country.
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disregarded in comparison to the matched dataset w/WEPP in which
especially CARMA and WEPP complement each other quite well.
Nevertheless, the main finding of these plots is that the total installed
capacities for each country are represented to a quite good extend for

the three datasets in comparison with the claimed capacity statistics.
Since any fuel type-specific information is hidden in the depiction of

Fig. 9, we decided to draw country-wise subplots, showing the results
for each fuel type on the x-axis and for the capacity on the y-axis,

Fig. 8. Map plots of the matched datasets once without WEPP (a) and once with (b) - showing differences for comparatively small units, visible e.g. in Denmark,
France, Sweden and Poland.
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categorized by vertical bars representing the four objects of compar-
ison. Due to the large image size needed to display all the subplots
properly, we placed the graph into the appendix (cf. Fig. 12). One can
see that for most countries and fuel types all four objects of comparison
claim capacities in the same order of magnitude. Interestingly, obvious
exceptions can be found in a couple of Eastern European countries: In
Estonia, the statistics report some 2 GW as hard coal whereas the other
three objects report them as oil. This might be explained by the fact that
Estonia uses some peat-fired power plants (which can be seen as a form
of hard coal or lignite with an even lower “lower heating value”), while
peat is often not a fuel-type category in databases. In Lithuania, where
the WEPP and matching w/o WEPP claim about 2 GW for natural gas,
while the matching w/WEPP claims more than ∼3GW and statistics
around ∼2GW but as “other”. In Bulgaria, both the matched dataset
w/WEPP, statistics and WEPP claim ∼4GW of lignite capacity,
whereas the matched dataset w/o WEPP claims no capacity at all. Im-
portantly, it needs to be reconsidered that the addition of WEPP to the
matching process does not necessarily lead to higher capacity claims.
This is due to the fact that the final capacity claim is based on the
median of the capacities of the databases with the highest reliability
score (cf. subsection 2.2), thus adding a database with a lower capacity
record can indeed reduce the capacity claim of this record in the

matched dataset. In Germany, the statistics deviate noticeably from the
three other objects for natural gas plants. This is due to the fact that
there exists a high number of very small ‘must-run’ CHP units which
receive special funding through Germany's CHP law [26], but are not
contained in any of the input databases, similarly like wind and solar
power. Satisfactorily, in both matched datasets nuclear capacities are
matched to a very good extent in all countries, in some even exactly like
in Finland, France or Hungary. The same tendency holds true for both
hard coal and lignite units, although to a lower extent due to outliers in
countries such as Bulgaria, Romania or the Czech Republic. For the fuel-
types bioenergy, waste and ‘other’ no clear tendency can be formulated,
since they deviate strongly from country to country, in low orders of
magnitude though. These deviations are primarily caused by diverging
definitions of those fuel types (e.g. organic waste can be included in
either bioenergy or waste6).

Since power plants with high capacities are more prominent, they
are also likely to be contained in more databases. Therefore we

Fig. 9. Scatter plot of installed capacities per country in [GW] for each object of comparison against one another.

6 The allocation of fuel-types is being done differently for each database, due
to different names and abbreviations. They can be checked directly within the
data module of PPM.
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evaluated qualitatively, whether there is connection between the ca-
pacity and the number of datasets involved in the matching process for
each record of the matched dataset. The results are shown in form of

two subplots, both containing scatter plots showing point clouds with
one point for each record in Fig. 10. The upper subplot (a) distinguishes
the matched dataset with WEPP by the number of datasets involved in

Fig. 10. Scatter plots of capacities by number of datasets involved in match (a) and capacities for each dataset on its own in (b).

Fig. 11. Subset of development of capacity additions throughout the current and last century.
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the match. We find a slight tendency which indicates the assumed re-
lationship that bigger plants are more likely to be matched: The more
number of databases are involved in the match, the more does the cloud
move towards higher capacities. In general, this trend is also valid when
the datasets are filtered by fuel types, therefore we chose to display here
independently of fuel types. For a visual comparison, the lower subplot
(b) shows clouds for each of the originating datasets on its own, but
neither colored nor rescaled in contrast to those in Fig. 1.

Another aspect under consideration is the variable
“YearCommissioned” which is defined as the year in which a power
plant had been synchronized with the power grid. Unfortunately, only
three out of the seven input databases, namely ESE, OPSD and WEPP,
contain data about the commissioning year. Therefore it is very im-
portant to note that every positive match, which has been found
without participation of one of those databases, does not have a com-
missioning year entry in the record of the final dataset. Consequently,
only those units which have an entry can be depicted in Fig. 11,
showing four subsets of the development of capacity additions
throughout the current and last century. For the two plots at the left,
one can see clearly the installation peak of nuclear plants in the 1970s
and 1980s and the peak of natural gas installations (or retro-fittings) in
the last 25 years. Since wind and solar power have been excluded from
the analyses here (cf. subsection 2.4), their enormous capacity addi-
tions during the recent years are, of course, not depicted in any of the
subplots.

Apparently, the two plots on the right side (OPSD and matched w/o
WEPP) show substantially less capacity additions than the two graphs
on the left side. For the matched w/o WEPP dataset 47.36% of the
entries and 55.82% in terms of capacity have no data for the commis-
sioning year. However, for the matched w/WEPP dataset only 10.68%
of the entries and only 6.33% in terms of capacity lack data about the
commissioning year. The WEPP itself only consists of 1.07% of capacity
with no data about the commissioning year, whereas the OPSD misses
46.6% in terms of capacity. Table 4 lists per country the amount of
records containing a commissioning year, the absolute amount of re-
cords and their ratio both for the matched dataset w/WEPP and w/o
WEPP. A comparison of the ratio columns shows that for almost every
country, the WEPP increases the share of records containing commis-
sioning year information. The two exceptions are Germany and Swit-
zerland and it is important to note that only their ratio decreases,
whereas the total amount of records with commissioning year increased
in both countries.

Therefore, it is important to note that for modelling exercises that
require installation years (e.g. capacity expansion models like energy
and/or power system models), a database which covers commissioning
years to a major extent like WEPP seems to be strongly needed. Of
course, it would be most desirable if open datasets provided more data
about commissioning years in future releases.

4. Conclusions and Outlook

The aim of this work was to assess the current state of data quality
of open conventional power plant databases for energy modelling ex-
ercises. The matched dataset w/o WEPP, which is purely based upon
free data accounts for ∼92% to ∼97% of the overall generation ca-
pacity in Europe relative to generation capacity statistics from ENTSO-E
SO&AF and power plant capacities from WEPP, whereas the matched
dataset w/WEPP likewise accounts for ∼97% to even ∼103%. The
non-represented power plants in between those two matched dataset
are often units with small capacities. If the commissioning years of units
are required for modelling needs in the final dataset, the WEPP plays a
crucial role by filling these data gaps. Therefore, the integration of the
proprietary WEPP into the matching process extends the data basis to a
certain extent under the matching criteria, which require that a power
plant must be confirmed by at least two sources.

One of the main findings is that the algorithmic combination of
freely available data sources is not yet on par with the proprietary
WEPP database and a significant amount of manual work with attention
to detail remains unavoidable; nevertheless the work load has reduced
considerably. Of course, it would be most desirable if the final dataset
matched perfectly with given capacity statistics, which in turn reflected
real-world installed capacities.

As many energy system modelling groups do not have access to the
WEPP due to its relatively high costs or cannot choose to use WEPP due
to its restrictive license that impedes providing all input data, they rely
solely on open databases. One of our next steps will be to evaluate
whether and how the matched dataset w/o WEPP can be extended by
non-matched units of one or a combination of some the open databases,
replicating similar results as the matching including WEPP does.
Moreover, it would be favourable to add more plant parameters (e.g.
efficiency) in order to contribute to high data quality in open data and
facilitate transparency and reproducibility in energy system modelling.
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Appendix

Highly detailed results both per country and per fuel-type for each of the four distinguished cases are shown in Fig. 12.

F. Gotzens, et al. Energy Strategy Reviews 23 (2019) 1–12

11



Fig. 12. Comparison results by the two dimensions 'country' and 'fuel type'.
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