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A fundamental problem in systems neuroscience is how to force a
transition from one brain state to another by external driven
stimulation in, for example, wakefulness, sleep, coma, or neuropsy-
chiatric diseases. This requires a quantitative and robust definition
of a brain state, which has so far proven elusive. Here, we provide
such a definition, which, together with whole-brain modeling, per-
mits the systematic study in silico of how simulated brain stimula-
tion can force transitions between different brain states in humans.
Specifically, we use a unique neuroimaging dataset of human sleep
to systematically investigate where to stimulate the brain to force
an awakening of the human sleeping brain and vice versa. We show
where this is possible using a definition of a brain state as an en-
semble of “metastable substates,” each with a probabilistic stability
and occurrence frequency fitted by a generative whole-brain model,
fine-tuned on the basis of the effective connectivity. Given the bio-
physical limitations of direct electrical stimulation (DES) of microcir-
cuits, this opens exciting possibilities for discovering stimulation
targets and selecting connectivity patterns that can ensure propa-
gation of DES-induced neural excitation, potentially making it pos-
sible to create awakenings from complex cases of brain injury.

brain states | metastates | electrical stimulation | computational
neuroscience | modeling

Almost 13 decades ago, the father of cognitive psychology,
William James, wrote “everybody knows what attention is”

(1). Indeed, we have long been recognizing various “states of the
brain,” including sleep, wakefulness, aphasia, or attention, but
our understanding of the actual “brain states” underlying such
states remains poor, to say the least. Brains have billions of
neurons and trillions of synapses, nested recursive circuits at all
possible spatiotemporal levels, massive connectivity, and initial
condition-dependent activity evolution. In disciplines such as
physics, genomics, or economics, such systems are characterized
as complex dynamic ones, whereby complex implies that the
ultimately emerging global behavior cannot be understood by
merely studying the network’s elementary nodes. The continu-
ously evolving dynamics of such widespread networks are char-
acterized by a condition-dependent self-organization, going
through stable, “quasistable,” high or low activities and transient
arrangements, termed brain states. Given the complexity of brain
states and their probabilistic, often chaotic, state transitions, their
in-depth study up to now has been minimally successful.
Still, attempts have been made to reduce this complexity to

meaningful insights, e.g., by defining a state space in human
neuroimaging data, using, for example, an estimation of the re-
lationship of selected spatiotemporal and spectral characteristics
of activity within a window shifted over time. The high dimen-
sionality of signals in such cases can be reduced to 2 or 3 values
plotted in a low-dimensional state space enabling visualization

and easier interpretation of the data (2–5). However, while this
approach has been very successful in making sense of complex
data, such a representation ultimately fails to capture the im-
portant dynamics of states and their transitions.
Drawing on insights from complex systems, brain states can

also be described as attractors, i.e., stable states of interacting
brain regions, offering insights into repeatable and robust system
configurations (5, 6), or by additionally using generative models
that take into account context- and rank-dependent constraints
at different hierarchical processing levels (7–9). Interregional
interactions are commonly reflected in the degree of coupling
of neural activity oscillations of local (microcircuit) or remote
neuromodulatory origin.
All of these approaches, however, fail to capture the concept

of metastability, i.e., the quality of systems, including the brain,
to temporarily persist in an existing equilibrium despite slight
perturbations. Evidently, the dynamics of coordination between
brain regions with high functional differentiation is less likely to
be as stable and persistent as the coupling observed between, say,
areas that are part of a single sensory or motor system. The co-
ordination patterns within stable states may often reflect dynamically
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recurring short-lived patterns that can be clustered in metastable
substates for any given brain state (see, e.g., ref. 10).
In the current study, we provide a definition of brain states

dubbed “characterization of the probabilistic metastable sub-
states (PMS) space,” which fully typifies substates as stochastic
subdivisions of regular and persistent brain states. This allows for
recurrent substates to be detected and characterized in terms of
probability of occurrence and alternation profiles.
This allows us to address the fundamental question in neu-

roscience of how the brain transitions come about between dif-
ferent states, e.g., from wakefulness to deep sleep and anesthesia
or to disease states such as coma and neuropsychiatric disorders
(11–13). Solving this problem requires 2 things: 1) a deeper un-
derstanding and quantitative definition of what constitutes a brain
state, e.g., the proposed characterization of the PMS space; and 2)
what drives the transitions between brain states. This would allow
for the possibility of forcing a transition using for example external
stimulation like deep brain stimulation (DBS), multifocal trans-
cranial direct current stimulation (tCDS) (14), or transmagnetic
stimulation (TMS) (15–19).
In order to do this, whole-brain models are needed that can

link the underlying anatomical connectivity with the functional
dynamics obtained from neuroimaging (8, 9, 20–24). We show
here that a generative whole-brain model can actually accurately
fit the PMS space of the empirical data corresponding to dif-
ferent brain states. Specifically, we used a unique dataset of
continuous neuroimaging data from healthy participants falling
asleep during simultaneous functional magnetic resonance im-
aging (fMRI) and electroencephalography (EEG) (25). Using
this dataset, we have recently used a Markovian data-driven
analysis to discover the dynamic choreography between differ-
ent whole-brain networks across the wake–non-REM sleep cycle
(26). However, here we provide evidence that we can externally
force transitions between different brain states by means of in
silico stimulation of the whole-brain model. Last, as proof-of-
concept, we use this method to demonstrate that it can find ac-
curate ways to promote transition from one brain state to another
(as characterized by fMRI), and in particular find ways to
“awaken” the brain from deep sleep to wakefulness and vice versa.

Results
In order to find accurate ways to promote a stimulus-driven
transition from one brain state to another, we first provide a
quantitative characterization of the dynamics underlying brain
states, here called the PMS space, and then fit a whole-brain
model to this. Finally, we exhaustively probe this model off-line
in silico, aiming to find optimal stimulation strategies for forcing
the transition from one specific brain state to another. What
follows offers a synopsis of this methodology (described in detail
in Materials and Methods).
The first step of our analysis has been to identify the PMS space,

by using the leading eigenvector dynamics analysis (LEiDA)
method (27), described in detail in Materials and Methods and in
Fig. 1. Standard (FSL) tools were used to first extract, preprocess
and average the blood oxygen level-dependent (BOLD) signals of
90 regions of interest (ROIs) defined in the Automated Ana-
tomical Labeling (AAL) atlas. They included cortical and sub-
cortical noncerebellar ROIs (nodes) that were considered for the
estimation of dynamic connectivity. The average BOLD time se-
ries of each ROI were Hilbert-transformed to yield the phase
evolution of the regional signals. The phase coherence for each
pair of nodes at any given time can be defined as the cosine of the
phase differences, the value of which varies from 1 to −1, for
signals changing in exactly the same or opposite direction, re-
spectively. This process yields a 3D matrix of NxNxT-size, where
N = 90 and T indicates the number of image volumes acquired in
all considered sessions. Clustering the large number of NxN dy-
namic functional connectivity (dFC) matrices may be in principle
used for estimating metastable states. However, reducing the very
large dimensionality of the coherence matrices significantly im-
proves the signal-to-noise ratio and the reliability of any clustering

or classification process aiming at the description of states. We
have therefore used the aforementioned LEiDA method that re-
lies on the leading eigenvector of each NxN coherence matrix.
The method relies on the extraction of the first (Nx1) eigen-

vector, V1, of each dFC matrix, from which one can reliably
detect a discrete number of reduced dFC patterns by applying
clustering across time points and subjects. Due to the symmetry
of the dFC matrices, each leading eigenvector may be used in
turn to estimate the corresponding dFC matrix. The obtained
k-cluster centroids define the “metastable substates,” for which
one can compute the probability of the centroid, as well as its
transition probabilities.
We use this method in the cases of 2 different naturally oc-

curring brain states: awake and deep sleep conditions obtained in
healthy human participants measured with fMRI and EEG (25).
The clustering as determined by the silhouettes criterion showed
that 3 metastable substates were optimal for fitting both brain
states. Nevertheless, it is entirely possible, albeit computationally
very expensive, to fit the whole-brain model to a higher number
of metastable substates, potentially revealing more of the known
networks involved in sleep shown, e.g., in our previous Markovian
data-driven results (26). Here, we used 3 metastable substates as
a proof-of-concept.
The strategy of brain state definition and potentially of in-

ducing a brain state transition is summarized in Fig. 1, demon-
strating a probabilistic state space that may be underlying a given
brain state, e.g., wakefulness, sleep, anesthesia, or disease.
In order to promote or force transitions between brain states,

we propose a framework to first characterize brain states (Fig. 1),
then use whole-brain models to generate such brain states (Fig.
2A), and ultimately attempt to force a transition between them
(Fig. 2B). Each point in the proposed framework represents an
instantaneous snapshot of the whole brain at a point in time. The
cloud, in turn, describes a global brain state, such as that during
wakefulness or deep sleep. In Fig. 1D, the probabilistic points are
projected onto a 2D space for visualization, but the original state
space is of course likely to be higher dimensional.
By clustering the probabilistic points shown in Fig. 1D, we can

generate substates from groups of points and express their
probability (leftmost panel of Fig. 1D). Since such groups will
still be changing over time, we call them PMS. In Fig. 2A, we
show how we can fit a whole-brain model to this PMS space,
which provides a probabilistic description of the spatiotemporal
dynamics of the underlying functional fMRI time series. The
whole-brain model links the structural anatomy [given by the
diffusion MRI (dMRI) data] with the functional dynamics (given
by the fMRI data) by adapting the free parameters (the effective
conductivity of the anatomical fibers) to provide the optimal fit
between the simulated and empirical PMS spaces [by using an
appropriate probabilistic distance measure, namely symmetrized
Kullback–Leibler (KL) distance].
In Fig. 2B, we show how the whole-brain model can be per-

turbed and stimulated exhaustively in order to promote and
force a specific transition between 2 different brain states. Spe-
cifically, in what follows, we discuss the strategy of fitting the
whole-brain model to the PMS space, and inducing a transition
from one specific brain state to another.

Optimal Spatiotemporal Fit of Whole-Brain Model to PMS Space. The
whole-brain, large-scale model consisted of local nodes repre-
senting local brain regions in a parcellation (Materials and Meth-
ods). The connectivity of different brain regions was constrained by
the underlying anatomical connectivity matrix, i.e., the structural
connectivity (SC), between those nodes. The SC matrix was
obtained using diffusion MRI and tractography techniques (Ma-
terials and Methods), while the dynamics of each local brain area
network were described by the normal form of a supercritical Hopf
bifurcation, also known as the Landau–Stuart oscillator (28). The
internal parameters of the whole-brain model (e.g., the coupling
strength between nodes) can be optimized to fit the PMS space.
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Indeed, the strategy here is to use the centroids of the em-
pirical clusters defining the metastable substates, and to compute
the simulated probabilistic measurements based on those em-
pirical centers. In this way, we assure that the probabilistic
measurements correspond exactly to the empirical metastable
substates.
Fig. 3A shows the performance of the whole-brain model for

fitting data of wakefulness state. In this case, we exhaustively
explored the parameter G, which scales the interarea coupling,
thereby determining the dynamical working point of the system.
The G coupling parameter scales the density of fibers expressed
in the SC and can be interpreted as an indicator of axonal
conductivity, under the simplistic assumption that conductivities
of axons related to long-range connectivity are equal across the
brain, assuming similar myelination density.
Fig. 3A shows 2 measurements of fitting as a function of G: 1)

the phase-coherence–based functional connectivity dynamics
(FCD); and 2) the PMS. The first is computed by collecting the
upper triangular elements of the time-resolved phase coherence
connectivity dFC(t) matrices (over all participants) and then use
the Kolmogorov–Smirnov (KS) distance to compare these em-
pirical distributions with the corresponding simulated distribu-
tions from the model. The minimum value of this KS distance
corresponds to the optimal fitting of the spatiotemporal char-
acteristics and is obtained at G = 0.283. In this case, where the
whole-brain model was fitted to the FCD, the optimal minimum

turned out not to be the best fitting of the spatiotemporal dy-
namics as characterized by PMS.
Instead, in the second case, we obtained more accurate results

by extracting the empirical PMS, shown in Fig. 3B with the PMS
space as well as the transition probability matrix (TPM). To find
the optimal minimum for the PMS, we computed the symmetrized
KL distance between the empirical probabilities and the simulated
probabilities, generated by the model from the same empirical
centroids. This was a stringent criterion to ensure that we would
get the best possible fit. Indeed, the optimal PMS fitting of the
empirical data were obtained at the minimum ofG = 0.245, which
clearly was a significantly better fit than that of the FCD (Fig. 3 C,
Upper). Furthermore, the transition probabilities are also signifi-
cantly better fitted as measured with the Markov entropy dis-
tance (Fig. 3 C, Lower). Note that values of the diagonal of the
transition matrix (i.e., the probability of remaining in the same
state) are much higher than the probabilities of switching states.
This is important as it reflects the metastable character of the
substates.
Overall, these results showed that the PMS-based measure-

ments for characterizing a brain state provide the most signifi-
cantly accurate working point of the whole-brain model to account
for the most detailed spatiotemporal dynamical characteristics of
the brain activity defining a brain state.
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Fig. 1. Computing the probabilistic metastable substate (PMS) space for whole-brain activity. Briefly, we use the leading eigenvector dynamics analysis
(LEiDA) method, (A) where for every time point, t, in every brain region of each participant we extract the BOLD signal, compute the phase of the BOLD
signal, and (B) compute the BOLD phase coherence matrix, dFC(t), between brain regions, and (C) extract the leading eigenvector V1(t) of this matrix. (D) To
obtain a probabilistic metastable substate (PMS) space, we then take all of the leading eigenvectors for all time points in all participants and use an algorithm
to cluster them (here, we show 3 clusters). More specifically, in A, we show for each of the 90 AAL parcels (shown in different colors), we extract the BOLD
signal for a given region (here in orange). For each brain area, the original BOLD signal (orange) is first band-pass filtered between 0.02 and 0.1 Hz (blue) and
then transformed into an analytic signal, which can be represented by its time-varying amplitude A and its phase θ (with real and imaginary components)
using the Hilbert transform. The Hilbert phase, θ, can be represented over time in the complex plane by eiθ, where the real part is given by cos(θ), while the
imaginary part by sin(θ) (black dotted lines). The red arrows represent the BOLD phase at each TR. As can be seen, much of the original BOLD signal is captured
by the BOLD phase, cos(θ) (dotted line). (B) For a given time point (gray box shown at t = 50 in A), the Left panel shows the BOLD phases in all 90 AAL regions
represented in the complex plane (i.e., the unit circle with real and imaginary axis, where all phases are centered at the same origin). The Right panel shows
the phase coherence matrix at a given time twith the BOLD phase coherence (PC) between each pair of brain regions. (C) The leading (i.e., largest magnitude)
eigenvector of this phase coherence matrix at time t, V1(t), is the vector that best captures the main orientation of all BOLD phases, where each element in
V1(t) corresponds to the projection of the BOLD phase in each region into V1(t). The elements of V1(t) are colored according to their sign (red, positive; blue,
negative; same color scheme in all phase representations). (D) Finally, to determine the PMS space, we gather all leading eigenvectors V1(t) for all participants
across time as a low-resolution representation of the BOLD phase coherence patterns. We apply a clustering algorithm (k-means) to divide the sample into a
predefined number of clusters k (here, k = 3). Each cluster is represented by a central vector (blue, orange, and red), which we take to represent a recurrent
pattern of phase coherence, or substate, which occurs with a given probability. Any brain state can thus be represented by this PMS space.
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Optimizing the Whole-Brain Model by Using Effective Connectivity.
The third step in modeling the spatiotemporal PMS space is to
derive 2 different optimized whole-brain models for 2 radically
different brain states. Here, as a proof-of-concept, we used 2
naturally occurring significantly different states, namely, wake-
fulness and deep sleep (25).
Fig. 4 demonstrates the improvements in the aforementioned

fitting procedure, by optimizing the effectiveness of the synaptic
connections between brain regions [effective connectivity (EC)].
Specifically, we computed the distance between the model and
the empirical grand average phase coherence matrices, and adjust
each structural connection separately using a gradient-descent
approach (see Materials and Methods for details). The model
was run repeatedly with recursive updates of EC until convergence
was reached (Materials and Methods).
Fig. 5 shows the results obtained during wakefulness (Fig. 5A)

and sleep (Fig. 5B), with the first row showing the PMS space and
the second row, the TPM, and with left column showing the em-
pirical results and the right column, the fit of the whole-brain
model. Below this, we show EC matrix and the effective degree.
For the whole-brain model fit of PMS space, we found a KL
distance of 0.0169 for wakefulness, and 0.0045 for sleep. Similarly,
for whole-brain fit of the TPM, we found a Markov entropy dis-
tance of 0.098 for wakefulness and 0.109 for sleep. Also note how
different the EC matrices are for the 2 states (bottom 2 rows).

Awakening: Forcing a Brain State Transition. The previous results
show that we can successfully create 2 whole-brain models with
excellent fit to the empirical fMRI data from 2 radically different
brain states. However, the most important finding of this study is
the demonstration of the possibility to force a transition from
one whole-brain model to another via external stimulation.
Fig. 6 summarizes the process of forcing a transition between

2 brain states (source and target). We systematically perturbed
the brain regions in the whole-brain model of the source state
and compared the resulting PMS space for this model with the
empirical data for the other target state (Fig. 6A). Specifically,
the Hopf model allowed an effective way of perturbing the
model by simply changing the bifurcation parameter in a given
brain region (29). The stimulation intensity, i.e., the strength of
the perturbation, is directly related to the amount of shifting the
local bifurcation parameter (Fig. 6 B, Right,Materials and Methods,
and ref. 30). We perturbed the model bilaterally in Fig. 6 B, Left,
which shows the levels of brain state transition fitting for perturbing

separately each of the 45 regions (since it is bilateral stimulation)
with different stimulation intensities in source state (deep sleep).
The color scale of Fig. 6 B, Left, shows the level of fitting with the
target state (wakefulness), i.e., lower values (blue) correspond to an
effective transition.
For the main transition results, we used 2 different protocols

for external stimulation, synchronization and noise, which shifted
the local bifurcation parameter to positive and negative values,
respectively. Fig. 7A shows the results for forcing a transition
from source state (deep sleep) to target state (wakefulness) using
a synchronization protocol where positive values of the local
bifurcation parameter force local oscillations that promote the
possibility of more synchronization across the whole brain. The
color scale indicates the KL distance between source and target
state with lower values indicating a better fit. This promotes a
transition from deep sleep to wakefulness when perturbing most
brain regions with sufficient stimulation intensity (a = 0.08). In 7
A, Right, we show a rendering of brain regions to promote
transition at this stimulation intensity. It is clear from the figures
that while many regions are able to promote a transition (given
sufficient stimulation), other regions are less suitable for this (see
burgundy areas). Importantly, in Fig. 7C, we show that using the
noise protocol to force a transition from deep sleep to wake-
fulness is not possible, with an increase in stimulation intensity
leading to higher KL distances, i.e., poorer fit, indicated by an
increase in the colors to more yellow from blue. Also note that
the color scale is different between Fig. 7 A and B compared to
Fig. 7 C and D, with the first column in each figure having the
identical numerical KL distances (corresponding to the non-
perturbation case) but appearing in different colors due to dif-
ferent color scales.
Fig. 7B shows the results for forcing a transition from source

state (wakefulness) to target state (deep sleep) using a noise
protocol, where negative values of the local bifurcation param-
eter force local oscillations that promote the possibility of more
noise and less synchronization across the whole brain. The results
show more specificity for making the wakeful brain move to deep
sleep than for the inverse, with the right panel showing the ability
of brain regions to promote transition at the stimulation intensity
of a = −0.4 (note the increase in burgundy areas). Importantly,
Fig. 7D shows that using the synchronization protocol does not in
any case result in a transition from wakefulness to deep sleep
(note the increase in KL distance). This could be interpreted that
it is probably much easier, and thus unspecific, to promote a
transition from sleep to awake than vice versa.
Finally, we explored whether stimulating multiple regions with

weaker stimulation intensity would produce equal or better re-
sults. Fig. 8 shows the results of using this multisite stimulation
protocol using a greedy strategy (31) to find the best combination
of multiple brain regions for forcing a transition between states
(deep sleep to wakefulness). Using the synchronization protocol
but at the weaker stimulation intensity of a = 0.02, we identify
the region that best fit the target PMS space and let this region
continue to be stimulated while we look for the best region
among the rest in this new condition. The process was iterated
over 7 steps. As shown in Fig. 8A, the combination of multisite
stimulation reaches its best fit (comparable to the best fit for
single-site stimulation at higher stimulation intensity; Fig. 7A)
using 4 bilateral stimulated regions (frontal middle gyrus, tem-
poral inferior gyrus, frontal superior gyrus, and precuneus,
shown rendered in the right upper panel) and then starts to get
worse when more regions are added. This is shown by the black
line, which indicates the level of fit to the target PMS space
(wakefulness) and reaches a minimum for 4 regions. On the
other hand, the red line indicates the level of fit to the source
PMS space (deep sleep) and gets monotonically worse with
more stimulation sites. Finally, in order to better understand
how the multisite stimulation promote transition, in Fig. 8B, we
plot the evolution of the 3 substates in the source (deep sleep)
and target (wakefulness) states as a function multiregional stimu-
lation. The blue line represents the probability of substate A,

Empirical data Whole-brain model fit

Brain state X Brain state Y

Fit whole-brain model

Pertubation of model

Fit whole-brain model to Probabilistic Metastable Substates (PMS) for a brain state

Force whole-brain model from brain state X to another brain state Y
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(dMRI)

Functional brain 
dynamics (fMRI)
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Fig. 2. Schematic of how to model a brain state and force a transition
between different brain states. This process involves 3 steps. (A) First, we
empirically characterize a given brain state in terms of its probabilistic
metastable substates (PMS) space (using the method shown in Fig. 1). This
gives rise to 3 different substates (blue, orange, and red), which have dif-
ferent probabilities associated with each substate. Second, we fit a whole-
brain model directly to this PMS space (Materials and Methods). (B) Third,
the whole-brain model in source brain state X can be perturbed and stim-
ulated exhaustively in order to promote and force a specific transition to a
target brain state Y.
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which increases with number of regions stimulated, while or-
ange and red lines representing probability of substates B and C
decrease. This nicely fits the transition between the lifetimes
of the PMS in source and target states, shown on the Right, with
the optimal balance for lifetimes found with 4 stimulated
regions.

Discussion
We successfully used a whole-brain model to fit the PMS space
of the 2 radically different brain states of sleep and wakefulness.
The states were extracted from a unique continuous neuro-
imaging data of healthy participants falling asleep during si-
multaneous fMRI and EEG (25). We provided the evidence
that in silico stimulation of this whole-brain model can be used
to show where to force transitions between different brain
states and thus “awaken” the brain from deep sleep to wake-
fulness and vice versa.
We provided evidence primarily for role of single regions to

promote this transition but also provided proof-of-principle that
multisite stimulation can achieve similar results with less stimu-
lation in each site. As expected, we found an optimum number of
regions that will promote a transition between states, while adding
more regions will significantly worsen the transition probability,
reflecting the metastable nature of the brain states. Delivering
multisite stimulation to the brain is by its very nature more difficult
with techniques such as DBS but perhaps possible with a multi-
focal tDCS array (14). Still, at this point it is too early to speculate
whether single or multisite stimulation would be more optimal. In
ongoing work, we have also demonstrated that we can achieve
awakening with more biophysical realistic models such as the
dynamic mean field model, which speaks to the potential for
clinical benefit.
Interestingly, the results show that it is easier to awaken the

model, i.e., promote a transition from sleep to wakefulness, rather
than promote a transition in the opposite direction. It requires less
stimulation in more regions. Evolutionarily, this makes sense given
that in order to promote survival we have to be able to easily wake
from slumber, while falling asleep easily could be seen as less
critical.
More broadly, these results have to be seen in the context of

the well-known Latin statement “post hoc, ergo propter hoc”
(“after this, therefore because of this”), which is a classical log-
ical fallacy, confusing correlation and temporal sequences with
causality. There have long been many spectacular examples of
cases, in which the effect may even precede its cause, as in the
case of backward causation (e.g., the retrocausality in the fields
of quantum mechanics). Richard Feynman (F)—with his F-clocks
and F-gates—was one of the historical physicists who attempted
to understand so-called plateaus of complexity (POCs), i.e., the
physical states of complex systems, by enforcing state transitions
and describing the POCs associated with them (32). One thing
became clear over time: state transitions in any discipline can
only be correctly interpreted, predicted, or even successfully
enforced, if the states themselves are well understood at a nec-
essary complexity level, and the self-organization and dynamics
of the systems can be modeled, potentially leading to theories
predicting empirical data.
Still, it goes without saying that understanding states and their

dynamics in brain-like systems makes physics to appear as an
“easy” matter (32). The organization of the brain daily challenges
most of our efforts to study it, as its understanding requires con-
current studies of local and global networks at different spatio-
temporal scales, as well as of their dynamical evolution over time.
At the macroscopic level, the developments of neuroimaging over
the last few decades has become a valuable source of empirical data
(e.g., ref. 33), but quantitative description of such data, modeling of
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Fig. 3. Results of fitting whole-brain model to probabilistic state space
of resting-state wakefulness fMRI data. (A) The fit is determined when
varying the single global coupling parameter, G, which scales the density
of fibers expressed in the SC and can be interpreted as the synaptic
conductivity of each single fiber. Here, we show 2 measurements of
fitting as a function of G: 1) the phase-coherence–based functional
connectivity dynamics (FCD), and 2) the probabilistic metastable sub-
states (PMS) space. The best fit of the FCD can be found by computing
the Kolmogorov–Smirnov (KS) distance (black line), while the fit to PMS
space can be computed using the symmetrized Kullback–Leibler (KL)
distance between the empirical probabilities and the simulated proba-
bilities generated by the model using the same empirical centroids
(blue line). The optimal fit of for PMS is with G = 0.245. (B) We show the
PMS space and the TPM when using 3 substates. (C ) We found that the
PMS fitting of the empirical data are significantly better than the FCD
fitting (upper figure). The transition probabilities are also significantly
better fitted as measured with Markov entropy distance (lower figure).
Please note how the values of the diagonal of the transition matrix

(i.e., the probability of remaining in the same state) are much higher than
the probabilities of switching states, reflecting the metastable nature of
substates.
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systems, and even perturbing them in silico for understanding
causal relationship between neural and cognitive states is a field in
its early childhood, albeit with promising perspectives (23, 24, 31,
34, 35).
State definition in systems neuroscience justifiably has drawn

and continues to draw a great deal of attention. Attempts were
made to define a brain state in many different ways, often by using
heuristic definitions of signals or signal combinations, and points
in a empirically defined state space characterizing the activity
of the brain at a given time (2–5), by defining attractors of
interacting brain regions (5, 6). Other approaches utilized the
whole-brain connectomic measurements including dFC (36–
39). However, most of these approaches fail to capture and
exploit the intriguing role of various band-limited–power
neurophysiological signals and the spatiotemporal richness
of neuroimaging data.
The PMS space strategy we describe here captures an un-

usually large proportion of data as an ensemble or probabilistic
“cloud” in a state space, which can be decomposed into so-called
metastable substates (27, 40), which are temporarily stable but
variable as a function of time (30, 41, 42). Fitting was optimized
by fine-tuning the model on the basis of the EC.
A clear advantage of using such data-constrained whole-brain

model is its potential use for studying stimulation-induced state
transitions, as it enables an exhaustive search and optimization of
all underlying parameters and locations in silico, and it may ul-
timately offer insights into the self-organization of widespread
networks. Such insights may be impossible to gain even with
direct electrical stimulation (DES) of brain sites in experimental
animals, or occasionally in human patients, as DES has been
shown to violate the most basic principles of cortical microcircuits,
disrupting cortico-cortical signal propagation by silencing the
output of any neocortical area whose afferents are electrically
stimulated (43–45). Stimulation of lateral geniculate nucleus
(LGN), for example, will yield fMRI maps with positive BOLD
responses, in the striate cortex, colliculus, and pulvinar, and neg-
ative bold responses in all extrastriate areas, disynaptically con-
nected to LGN. Intracranial recordings, concurrently carried out
with fMRI, consistently confirm that a short excitatory response
occurring immediately after a stimulation pulse was followed by a
long-lasting spiking inhibition. This inhibition is synaptic, rather
than due to excitability changes, as injection of GABA antagonists,
such as bicuculine, restores the stimulation-induced excitatory
responses.
It has long been known that, in the cortical canonical micro-

circuits, excitation and inhibition are inseparable. Sensory stim-
ulation will first excite glutamatergic and, ∼2 ms later, GABAergic

neurons (46). Both have a strong recurrent self-amplification, and
the output of the microcircuit depends on so-called excitation–
inhibition (E–I) balance at any given time. Electrical stimulation
of the cortical afferents, nulls the excitation differences between
E- and I-neurons, activating both groups simultaneously, and
shunting the output of the microcircuits through the aforementioned
powerful synaptic inhibition and before the initiation of the recurrent
self-amplification (44, 47). Not surprisingly thus, the stimulation
of the LGN in monkeys in DES-fMRI experiments demarcated
all monosynaptic targets of the stimulated brain site, or alter-
natively a selection of polysynaptic nuclei reached through the
antidromic stimulation of collaterals of cortical infragranular
projection neurons. It follows that DES in animals or humans
propagates through cortico-subcortico-cortical pathways, rather
than cortico-cortical connectivity. The often unpredictable active
connectivity combined with the very fact that we can still not
precisely define the element activated by DES (19, 48). This
explains the fact that a large amount of Parkinson patients suffer
from adverse stimulation effects (49). Understanding states and
optimizing in silico stimulations can only be instructive for future
attempts to deal with the DES technology and interpretation of
its results.
The approach presented here may open new, exciting possi-

bilities for discovering new stimulation targets for DBS and TMS
in disease. A stimulation strategy that minimizes the unavoidable

Fig. 4. Fitting whole-brain using effective connectivity (EC). We improved
on the fitting procedure by optimizing the effectiveness of the synaptic
connections between brain regions as specified by the SC. We compute the
distance between the model and the empirical grand average phase co-
herence matrices, and adjust each structural connection separately using a
gradient-descent approach (see Materials and Methods for details). The
model is run repeatedly with the updated EC until convergence.
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aforementioned DES effects by maximizing the network nodes
that can be activated by direct monosynaptic or indirect cortico-
subcortico-cortical paths may indeed provide substantial allevi-
ation of patient suffering. Moreover, the approach could be used
as a principled way to rebalance human brain activity in health
and disease (15) by causally changing the cloud of metastable
substates from that found in disease to the health in order to
promote a profound reconfiguration of the dynamical landscape
necessary for recovery, rather than having to identify the original
point of insult and its repair.
In addition, the presented approach significantly broadens the

findings from previous whole-brain models of simultaneous
neuroimaging activity and direct ON–OFF DBS alleviating
symptoms of brain disease that have revealed trigger points and
underlying brain networks (50–52). Deco et al. (29, 31), for in-
stance, have lesioned and perturbed brain regions and networks
in whole-brain models in silico, demonstrating the causal con-
tribution of brain regions to the ability of the human brain to
efficiently integrate information over time.
Using the proposed framework, further awakenings can be

imagined, perhaps even promoting the “awakening” of locked-in
patients. A whole host of stimulation technologies such as DBS
and TMS could potentially be used to force such transitions be-
tween health and disease. However, it might also be possible to use
targeted neurotransmission to the same effect, now that whole-
brain models have successfully included neurotransmission (24).

Overall, the methods and results presented here may eventu-
ally allow us to build causative whole-brain models that can
characterize all brain states, including levels of consciousness,
disease, and cognitive states. In particular, this could have \great
clinical utility, given that it could provide a principled way of
discovering how to force a transition between 2 brain states.

Materials and Methods
Experimental Data. We based our research on BOLD fMRI data recorded in
Frankfurt (Germany) where participants fell asleep during a simultaneous
EEG-fMRI scanning session. The experimental results were already described
in detail in previous publications (25). All subjects gave written informed
consent with approval by the local ethics committee. For the present study,
we only considered the subset of subjects who reached deep sleep (stage
N3). A summary of the technical and experimental aspects of data acquisi-
tion and preprocessing can be found in SI Appendix.

LEiDA. First, we calculated a phase coherence matrix at each time point to
capture the amount of interregional BOLD signal synchrony at any given time
point, for all subjects and conditions (awake and N3 deep sleep). Specifically,
the BOLD time series of each ROI, corresponding to well-demarcated brain
areas and structures, were high-pass filtered and subsequently Hilbert-
transformed to yield the phase evolution of the BOLD time course of each
node (i.e., ROI). The phase coherence dFC(n,p,t) between each n and p pair of
nodes at time t was then estimated by calculating the cosine of the phase
difference, as shown in Eq. 1:

dFCðn,p, tÞ= cosðθðn, tÞ− θðp, tÞÞ. [1]

Because Hilbert transform expresses any given signal x in polar coordinates,
i.e., x(t) = A(t) × cos(θ(t)), using the cosine function, 2 nodes n and p with
temporarily aligned BOLD signals (i.e., with similar angles) at a given repe-
tition time (TR) will have a phase coherence value close to 1 [cos(0°) = 1],
while nodes with orthogonally developing BOLD signals (e.g., one increasing
at 45° and the other decreasing at 45°) will have zero phase coherence [i.e.,
cos(90°) = 0]. The resulting dFC(t) for each subject in each condition is a thus
3D matrix with size NxNxT, where N = 90 is the number of demarcated brain
areas, and T is the total number of time points (different for each subject
and each condition). Notably, the phase coherence matrix dFC(t) at each
time point is undirected and, as such, symmetric across the diagonal. The
latter property permits strong reduction of the dimensionality of coherence
matrix by calculating its leading eigenvector, V1(t), at each time point (53–
55). The Nx1 leading eigenvector captures the instantaneous dominant
connectivity pattern of the dFC(t), as can be easily observed by calculating its
outer product V1.V1T. This strategy substantially reduces the dimensionality
of the data, from NxN to Nx1, compared to the traditional approaches
considering all values of the connectivity matrix (36, 39, 56). For further
details about LEiDA, the reader is invited to consult the work of Cabral and
colleagues (27, 55).

Upon computing the leading eigenvector of the phase coherence matrix
dFC(t) for each TR, the next step in our analysis was to identify recurrent FC
patterns that may reflect metastable substates. A discrete number of FC
patterns was detected by clustering the leading eigenvectors V1(t) from the
collapsed awake and deep-sleep data fMRI data (2 conditions) including all
subjects. The k-means clustering algorithm was run with cluster-number k
varying from 2 to 8 clusters. Clustering the leading eigenvectors yields k Nx1
dimensional cluster centroids Vc the outer product, VcVc

T, of which repre-
sents the dominant connectivity pattern in each cluster, with the Vc elements
depicting the contribution of each node (brain ROI) to the community
structure. To facilitate visualization and interpretation of substates, the
cluster centroid vectors Vc were rendered onto a cortical surface using
the Human Connectome Project (HCP) Workbench. For our current analysis,
the optimal number of clusters according to various criteria, such as Silhouette,
minimal P value for significant differences between condition probabilities
were k = 3.

Following the identification of metastable substates, we computed the
probability of occurrence of each FC state in each condition. The probability
of occurrence (or fractional occupancy) is simply the ratio of the number of
epochs assigned to a given cluster centroid Vc divided by the total number of
epochs (TRs) in each experimental condition (which is the same in all ex-
perimental conditions). The probabilities were calculated for each subject, in
each experimental condition and for the whole range of the explored
clustering conditions.

In addition, we computed the switching matrix, which captures the tra-
jectories of PMS dynamics in a directional manner. In more detail, it indicates
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rately each of the 45 regions (using bilateral stimulation) with different
stimulation intensities in source state (deep sleep). Here, we have high-
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regions are kept at their normal bifurcation parameter. The color scale for
the results shows the level of fitting with the target state (wakefulness), i.e.,
lower values (deep blue) correspond to the most effective transitions.
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the probability of, being in a given substate (rows), transitioning to any of the
other substates (columns). Differences in probabilities of occurrence and
probabilities of transition were statistically assessed between conditions
using a permutation-based paired t test. This nonparametric test uses per-
mutations of group labels to estimate the null distribution. The null distri-
bution is computed independently for each experimental condition. For
each of 1,000 permutations, a t test is applied to compare populations and
the significance threshold α = 0.05 was used.

Whole-Brain Computational Model. We simulated the BOLD activity at the
whole-brain level by using so-called Hopf computational model, which em-
ulates the dynamics emerging from the mutual interactions between brain
areas, considered to be interconnected on the basis of the established graphs
of anatomical SC (30, 57). The model consists of 90 coupled dynamical units
(ROIs or nodes) representing the 90 cortical and subcortical brain areas from
the aforementioned AAL parcellation. The local dynamics of each brain area
(node) is described by the normal form of a supercritical Hopf bifurcation,
also called a Landau–Stuart oscillator, which is the canonical model for
studying the transition from noisy to oscillatory dynamics (28). When coupled
together using brain network architecture, the complex interactions between
Hopf oscillators have been shown to successfully replicate features of brain
dynamics observed in electrophysiology (58, 59), magnetoencephalography
(60), and fMRI (30, 57).

The dynamics of an uncoupled node n is given by the following set of
coupled dynamical equations, which describes the normal form of a super-
critical Hopf bifurcation in Cartesian coordinates:

dxn
dt

=
�
an − x2n − y2

n

�
xn −ωnyn + βηnðtÞ, [2]

dyn
dt

=
�
an − x2n − y2

n

�
yn +ωnxn + βηnðtÞ, [3]

where ηnðtÞ is additive Gaussian noise with SD β. This normal form has a
supercritical bifurcation an = 0, so that if an > 0 the system engages in a
stable limit cycle with frequency fn = ωn/2π and when an < 0 the local dy-
namics are in a stable fixed point representing a low-activity noisy state.
Within this model, the intrinsic frequency ωn of each node is in the 0.04- to
0.07-Hz band (n = 1, . . ., 90). The intrinsic frequencies were estimated from
the data, as given by the averaged peak frequency of the narrowband BOLD
signals of each brain region.

To model the whole-brain dynamics, we added an additive coupling term
representing the input received in node n from every other node p, which is
weighted by the corresponding SC Cnp. This input was modeled using the
common difference coupling, which approximates the simplest (linear) part
of a general coupling function. Thus, the whole-brain dynamics was defined
by the following set of coupled equations:
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Fig. 7. Main results of forcing a transition between brain states. We used 2 different protocols for external stimulation, synchronization (sync) and noise,
which shifted the local bifurcation parameter to positive and negative values, respectively. (A) Shown are the results of forcing a transition from source state
(deep sleep) to target state (wakefulness) using a synchronization protocol where positive values of the local bifurcation parameter force local oscillations
that promote the possibility of more synchronization across the whole brain. The color scale indicates the KL distance between source and target state with
lower values indicating a better fit (more blue). As can be seen, a transition from deep sleep to wakefulness is promoted when perturbing most brain regions
with sufficient stimulation intensity (a = 0.08). At Right, we show the ability of brain regions to promote transition at this stimulation intensity. It is clear from
the results that while many regions are able to promote a transition (given sufficient stimulation), other regions are less suitable for this (see burgundy areas).
(B) Shown are the results of forcing the opposite transition from source state (wakefulness) to target state (deep sleep) using a noise protocol, where negative
values of the local bifurcation parameter force local oscillations that promote the possibility of more noise and less synchronization across the whole brain.
The results show more specificity for making the wakeful brain move to deep sleep than for the inverse, with the Right showing the ability of brain regions to
promote transition at the stimulation intensity of a = −0.4 (note the increase in burgundy areas). Please also note how the noisy protocol needs larger
absolute values than the synchronization protocol. (C) In contrast, transitions are not always possible, such as when using the opposite protocols for forcing
transitions. In particular, when using the noise protocol to force a transition from deep sleep to wakefulness increases in stimulation intensity lead to higher
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the first column in each figure having the identical numerical KL distances (corresponding to the nonperturbation case) but appearing in different colors due
to different color scales. (D) Similarly, it is not possible to force a transition from wakefulness to deep sleep when using the synchronization protocol, as
shown by the monotonic increase in KL distance.
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dxn
dt

=
�
an − x2n − y2

n

�
xn −ωnyn +G

XN
p=1

Cnp
�
xp − xn

�
+ βηnðtÞ, [4]

dyn
dt

=
�
an − x2n − y2

n

�
yn +ωnxn +G

XN
p=1

Cnp

�
yp − yn

�
+ βηnðtÞ, [5]

where G denotes the global coupling weight, scaling equally the total input
received in each brain area. We fixed the noise SD to β = 0.02 and the mean
SC to <C> = 0.2, in order to be in the same range of parameters previously
explored in Deco et al. (30). While the oscillators are weakly coupled, the
periodic orbit of the uncoupled oscillators is preserved. Notably, we do not
address here the case of nonlinear coupling, in which the next nonvanishing
higher-order term following a Taylor expansion of the full coupling should be
considered (61, 62). The variable xn emulates the BOLD signal of each node n.
The global coupling parameter G is the control parameter with which we

adjusted the model to the dynamical working region where the simulations
optimally fit the empirical data (30, 63).

Empirical Fitting.
Comparing empirical and simulated grand-averaged static functional connectivity.
The comparison was measured by computing the Pearson correlation co-
efficient between corresponding elements of the upper triangular part of the
empirical and simulated grand-averaged functional connectivity (FC).
Comparing empirical and simulated FCD. We measure KS distance between the
upper triangular elements of the empirical and simulated FCD matrices
(accumulated over all participants). For a single subject session where M time
points were collected, the corresponding phase-coherence based FCD matrix
is defined as a MxM symmetric matrix whose (t1, t2) entry is defined by the
cosine similarity between the upper triangular parts of the 2 matrices dFC(t1)
and dFC(t2) (previously defined; see above). For 2 vectors p1 and p2, the
cosine similarity is given by (p1.p2)/(jjp1jjjjp2jj). Epochs of stable FC(t) con-
figurations are reflected around the FCD diagonal in blocks of elevated in-
ter-FC(t) correlations. The KS distance quantifies the maximal difference
between the cumulative distribution functions of the 2 samples.
Comparing empirical and simulated probability metastable space state measurements.
For comparing the probabilities of the metastable states, i.e., the probabil-
ities of the extracted empirical centers after clusterization, we used a sym-
metrized KL distance between the simulated and empirical corresponding
probabilities, i.e.:

KL
�
Pemp, Psim

�
=0.5

 X
i

PempðiÞln
�
PempðiÞ
PsimðiÞ

	
+
X
i

PsimðiÞln
�
PsimðiÞ
PempðiÞ

	!
, [6]

where Pemp(i) and Psim(i) are the empirical and simulated probabilities on the
same empirical extracted metastable substates i.
Comparing empirical and simulated transition probabilities between metastable
substates. We calculated the entropy rate S of a Markov chain, with N states
and transition matrix P. The rate entropy S is given by the following:

S= S1 + S2 + . . . + SN , [7]

where

Si =−pðiÞ
XN
j=1

Pði, jÞlogPði, jÞ. [8]

The probability pðiÞ represents the stationary probability of state i. For
long realizations of the Markov chain, the probabilities of each state con-
verge to the stationary distribution p, which is solution of the following
equation:

PTp=p. [9]

Thus, the stationary distribution is the eigenvector of the transpose of
the transition matrix with associated eigenvalue equal to 1. A Markov
model that makes a lot of transitions has a large rate entropy, while a
Markov model that barely transits has low entropy. For each transition
matrix, we obtained the stationary distribution, and then calculated the
entropy rate. The final measure comparing the 2 TPMs is just defined by
the absolute value of the difference between both respective Markov
entropy values.
Methods for updating EC. We derived 2 whole-brain models, namely, 1 for
accounting the awake condition and another for accounting the N3 deep
sleep condition. In both cases, we optimized the EC between brain regions.

Specifically, we compute the distance between the model FCphases mod
ij and

empirical FCphases emp
ij grand-averaged phase coherence matrices, and adjust

each structural connection separately with a gradient-descent approach,
thereby transforming structural into effective connections. The model is
run repeatedly with the updated EC until the fit converges toward a
stable value.

We start with the anatomical connectivity obtained with probabilistic
tractography from dMRI and use the following procedure to update:

Cij =Cij + «
�
FCphases emp

ij − FCphases mod
ij

�
. [10]

We update all connections in order to access the potential missing compo-
nents of the anatomical connectivity obtained with dMRI, which is known to
miss connections in the opposite hemisphere, given that most known tracts
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Fig. 8. Stimulation of multiple regions with weaker stimulation intensity
can produce equal or better results to single-site stimulation. We used a
multisite stimulation protocol with a greedy strategy to find the best com-
bination of multiple brain regions to force a transition between states (deep
sleep to wakefulness). Using the synchronization protocol but at the weaker
stimulation intensity of a = 0.02, we identified the region that best fit the
target PMS space and let this region continue to be stimulated while we
looked for the best region among the rest in this new condition. The process
was iterated over 7 steps. (A) The figure shows how the combination of
multisite stimulation reaches its best fit using 4 bilateral stimulated regions
(in gray shaded area) and then starts to get worse when more regions are
added. The best fit is comparable to the best fit for single-site stimulation at
higher stimulation intensity (Fig. 7A). This is shown by the black line in-
dicating the level of fit to the target PMS space (wakefulness) and reaches a
minimum for 4 regions (listed in orange and rendered on the brain in or-
ange). In contrast, the red line indicates the level of fit to the source PMS
space (deep sleep), which gets monotonically worse with more stimulation
sites. (B) To better understand how the multisite stimulation promotes
transition, the figure plots the evolution of the 3 substates (blue, orange,
and red) in the source (deep sleep) and target (wakefulness) states as a
function of multiregion stimulation. The black line represents the probability
of state A, which increases with number of regions stimulated, while orange
and red lines represent the decreasing probabilities of substates B and C. This
nicely fits the transition between the probability of the PMS in source and
target states, shown on the Right, with the optimal fit found for the same
4 regions.
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are bilateral. We use «= 0.01 and the grand average phase coherence matrix
is defined as follows:

FCij =Æcos
�
φjðtÞ−φiðtÞ

�
æ, [11]

where φjðtÞ is the phase of the BOLD signal in brain region j at time t extracted
with the Hilbert transform, with the bracket denoting the average across time.
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