
symmetryS S

Article

Quintessential Inflation with Dynamical Higgs
Generation as an Affine Gravity

David Benisty 1,2, Eduardo I. Guendelman 1,2,3, Emil Nissimov 4,* and Svetlana Pacheva 4

1 Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
benidav@post.bgu.ac.il (D.B.); guendelman@fias.uni-frankfurt.de (E.I.G.)

2 Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
3 Bahamas Advanced Study Institute and Conferences, 4A Ocean Heights, Hill View Circle, Stella Maris,

Long Island, Bahamas
4 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria;

svetlanapacheva@gmail.com
* Correspondence: emilnissimov6@gmail.com

Received: 16 March 2020; Accepted: 13 April 2020; Published: 5 May 2020
����������
�������

Abstract: First, we propose a scale-invariant modified gravity interacting with a neutral scalar
inflaton and a Higgs-like SU(2) × U(1) iso-doublet scalar field based on the formalism of
non-Riemannian (metric-independent) spacetime volume-elements. This model describes, in the
physical Einstein frame, a quintessential inflationary scenario driven by the “inflaton” together with
the gravity-“inflaton” assisted dynamical spontaneous SU(2) × U(1) symmetry breaking in the
post-inflationary universe, whereas the SU(2)×U(1) symmetry remains intact in the inflationary
epoch. Next, we find the explicit representation of the latter quintessential inflationary model with a
dynamical Higgs effect as an Eddington-type purely affine gravity.
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1. Introduction

Studies in cosmology are dominated by the fundamental concept of “inflation”—a period
of exponential expansion, which provides a plausible solution for the “puzzles” of the Big-Bang
cosmology (the horizon problem, the flatness problem, the magnetic monopole problem, etc.) [1–8].
For more extensive accounts, see the books [9–21]. The most widely discussed mechanism for
generating a period of accelerated expansion is through the presence of some vacuum energy. In the
context of models with scalar field(s)-driven inflation, vacuum energy density appears naturally when
the scalar field(s) acquire an effective potential Ueff which has flat regions so that the scalar field(s) can
“slowly roll” [5,6,22–24] and their kinetic energy can be neglected resulting in an energy-momentum
tensor of the form Tµν ' −gµνUeff.

With the discovery of the accelerating expansion of the present universe [25–33], it appears
plausible that a small vacuum energy density, usually referred in this case as “dark energy”, is also
present even today. The two vacuum energy densities, the one of inflation and the other of the
dark energy dominated universe nowadays, have however a totally different scale which demands a
plausible explanation of how cosmological evolution may naturally interpolate between two apparently
quite distinctive physical situations.

The possibility of continuously connecting an inflationary phase of the “early” universe to a slowly
accelerating universe of nowadays through the evolution of a single scalar field—the quintessential
inflation scenario—has been first studied in [34]. Subsequently, a multitude of different quintessential
inflationary models have been proposed: (a) based on modified f (R) gravity [35–37]; (b) based on
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the k-essence concept [38–42]; based on the “variable gravity” model [43]. For an extensive list of
references to earlier work on the topic of quintessential inflation, see the References [44–53] (some
of them focusing on Higgs inflation) and [54–59], In particular, see the recent Reference [60] for
quintessential inflation in the context of Einstein-Gauss-Bonnet gravity and Reference [61] for warm
quintessential inflation.

Another parallel groundbreaking development alongside the quintessential inflationary
cosmology is the advent of extended modified gravitational theories. The main motivation aims
to overcome the limitations of the canonical Einstein’s general relativity manifesting themselves in:
(i) Cosmology, for solving the problems of dark energy and dark matter and explaining the large
scale structure of the Universe [26,62,63]; (ii) Quantum field theory in curved spacetime, due to the
non-renormalizabilty of ultraviolet divergences in higher loops [64–69]; and (iii) Modern string theory,
given the natural appearance of higher-order curvature invariants and scalar-tensor couplings in
low-energy effective field theories [70–74].

Various classes of modified gravity theories have been employed to construct plausible
inflationary models: f (R)-gravity, scalar-tensor gravity, Gauss-Bonnet gravity (see [75,76] for an
extensive review); also recent proposals based on non-local gravity ([77] and references therein) or
based on brane-world scenarios ([78] and references therein). Let us recall the first early successful
cosmological model based on the extended f (R) = R+ R2-gravity producing the classical Starobinsky
inflationary scalar field potential [2].

For a recent detailed work on quintessential inflation based on f (R)-gravity, where the role of
dark matter is being played by axions, see Refernece [79].

A broad class of actively developed modified/extended gravitational theories is based
on employing (one or more) alternative non-Riemannian spacetime volume-forms, i.e.,
metric-independent generally covariant volume-elements in the pertinent Lagrangian actions on
spacetime manifolds with an ordinary Riemannian geometry, instead of (or alongside with) the
canonical Riemannian volume-element

√−g d4x, whose density is given by the square-root of the

determinant of the Riemannian metric
√−g ≡

√
−det ‖gµν‖.

Originally the formalism employing non-Riemannian volume-elements in generally-covariant
Lagrangian actions as in Equation (7) below was proposed in [80–84]. The concise geometric
formulation was presented in [85,86]. A brief outline of the basics of the formalism of non-Riemannian
volume-elements is given in Section 2 below.

This formalism was used as a basis for constructing a series of modified gravity-matter models
describing unified dark energy and dark matter scenario [87,88], quintessential cosmological models
with gravity-assisted and inflaton-assisted dynamical suppression (in the “early” universe) or
dynamical generation (in the post-inflationary universe) of electroweak spontaneous symmetry
breaking and charge confinement [89–91], as well as a novel mechanism for the supersymmetric
Brout-Englert-Higgs effect (dynamical spontaneous supersymmetry breaking) in supergravity [85].

In the present paper our first principal goal is to analyze (Section 3 below) the close interplay
between cosmological dynamics and the patterns of (spontaneous) symmetry breaking along the
history of universe, which itself is one of the most important paradigms at the interface of particle
physics and cosmology. We will extend our construction, started in [89], of a modified gravity model
coupled to (the Higgs part) of the standard electroweak matter content (see, for example, [92,93])
besides the scalar “inflaton” field. The main aim here is to provide an explicit realization from first
(Lagrangian action) principles of the remarkable proposal of Bekenstein [94] about the so called
gravity-assisted dynamical generation of the Higgs effect—dynamical symmetry breaking of the
electroweak SU(2) × U(1) symmetry—without introducing unnatural (according to Bekenstein’s
opinion) ingredients such as negative (“ghost”-like) mass squared and quartic self-interaction for
the Higgs field. Here we study the interrelation between the presence or absence of dynamical
spontaneous electroweak symmetry breaking and the different stages of universe’s evolution driven



Symmetry 2019, 12, 734 3 of 16

by the “inflaton”—triggering inflation in the “early” universe as well as representing quintessential
variable dark-energy in the “late” universe.

It is shown that during inflation there is no spontaneous electroweak symmetry breaking and
the Higgs field resides in its “wrong” vacuum state (“wrong” from the point of view of standard
high-energy particle physics). The non-trivial symmetry-breaking Higgs vacuum is dynamically
generated in the post-inflationary epoch.

Let us specifically stress that this mechanism is different from the widely discussed scenario
of Higgs inflation, where the Higgs field triggers the inflation in the “early” universe through a
non-minimal coupling to gravity [95–110]. In our scenario the impact of the Higgs field dynamics
starts after end of inflation.

Another ground-laying branch of gravitational theories is the purely affine gravity formalism, first
proposed in [111–115]. It has attracted since then a significant interest primarily due to the established
dynamical equivalence [116] of the three principal formulations of standard Einstein’s gravity: purely
metric (second-order formalism), metric-affine (Palatini or first-order formalism) and purely affine
formalism. For more recent developments and list of references, see [117–134], in particular about
incorporating torsion and explaining dark energy as an instrinsic property of space-time.

To establish the connection of our non-Riemannian volume-element formalism and the purely
affine formalism, our next task (Section 4) will be to represent the above quintessential inflationary
model with a dynamical Higgs effect in the form of a no-metric purely affine (Eddington-type) gravity.

2. The Essence of the Non-Riemannian Volume-Form Formalism

Volume-forms define volume-elements (generally covariant integration measures) over
differentiable manifoldsM, not necessarily Riemannian ones, so no metric is a priori needed [135].
They are given by nonsingular maximal-rank differential forms ω on M (for definiteness we will
consider the case of D = 4 dimensionalM):∫

M
ω
(
. . .
)
=
∫
M

d4x Ω
(
. . .
)

(1)

where:

ω =
1
4!

ωµνκλdxµ ∧ dxν ∧ dxκ ∧ dxλ , ωµνκλ = −εµνκλΩ , Ω =
1
4!

εµνκλωµνκλ . (2)

The conventions for the alternating symbols εµνκλ and εµνκλ are: ε0123 = 1 and ε0123 = −1.
The volume-element density (integration measure density) Ω transforms as scalar density under

general coordinate reparametrizations.
In standard general-relativistic theories the Riemannian spacetime volume-form is defined

through the tetrad canonical one-forms eA = eA
µ dxµ (A = 0, 1, 2, 3):

ω = e0 ∧ e1 ∧ e2 ∧ e3 = det ‖eA
µ ‖ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (3)

which yields:

Ω = det ‖eA
µ ‖ =

√
−det ‖gµν‖ ≡

√
−g . (4)

Instead of
√−g d4x we can employ another alternative non-Riemannian volume-element as in (1)

and (2) given by a non-singular exact 4-form ω = dA where:

A =
1
3!

Aµνκdxµ ∧ dxν ∧ dxκ −→ ω =
1
4!

∂[µ Aνκλ]dxµ ∧ dxν ∧ dxκ ∧ dxλ . (5)
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Therefore, the corresponding non-Riemannian volume-element density

Ω ≡ Φ(A) =
1
3!

εµνκλ ∂µ Aνκλ. (6)

is defined in terms of the dual field-strength scalar density of an auxiliary rank 3 tensor gauge
field Aµνκ .

In the next Section we will discuss in some detail the properties of a quintessential inflationary
model coupled to a truncated version of the electro-weak particle content carrying the standard
electro-weak SU(2)×U(1) symmetry. Namely, for simplicity we retain only a Higgs-like scalar field
and discard the electro-weak gauge fields and fermions.

Before proceeding let us note the following important property of Lagrangian action terms
involving (one or more) non-Riemannian volume-elements:

S =
∫

d4x ∑
j

Φ(A(j))L(j)(other fields) + . . . . (7)

The equations of motion of (7) with respect to the auxiliary tensor gauge fields A(j)
µνκ according to

(6) imply:
∂µL(j)(other fields) = 0 −→ L(j)(other fields) = Mj , (8)

where Mj are free integration constants not present in the original action (7). This illustrates the significant
advantage of the non-Riemannian volume-element formalism over the “Lagrange-multiplier gravity”
method [136], which appeared a decade later and which requires picking a priori some ad hoc
constant as opposed to the dynamical appearance of the arbitrary integration constants (8). For further
advantages of the non-Riemannian volume-element formalism, see the above remarks.

A characteristic feature of the modified gravitational theories (7) is that when starting in the
first-order (Palatini) formalism, all non-Riemannian volume-elements Φ(A(j)) yield almost pure-gauge
degrees of freedom, i.e., they do not introduce any additional physical (field-propagating) gravitational
degrees of freedom except for few discrete degrees of freedom with conserved canonical momenta
appearing as arbitrary integration constants Mj. The reason is that the modified gravity action (7) in
Palatini formalism is linear with respect to the velocities of some of the components of the auxiliary
gauge fields A(j)

µνκ defining the non-Riemannian volume-element densities, and does not depend on the
velocities of the rest of auxiliary gauge field components. The (almost) pure-gauge nature of the latter
is explicitly shown in [86,89] (Appendix A) employing the standard canonical Hamiltonian treatment
of systems with gauge symmetries, i.e., systems with first-class Hamiltonian constraints according to
the classification of Dirac [137,138].

3. Quintessential Inflationary Model with Dynamical Higgs Effect

Our starting point is the following specific example of the general class of modified gravity
models [85,86,89–91,139,140]) involving several non-Riemannian volume-elements (using units with
16πGNewton = 1):

S =
∫

d4x Φ1(A)
[

R(g, Γ)− 2Λ0
Φ1(A)√−g

+ Xφ + f1eαφ + Xσ −V0(σ)eαφ
]
+
∫

d4x Φ2(B)
[

f2e2αφ − Φ0(C)√−g

]
. (9)

Here the following notations are used:

• The scalar curvature R(g, Γ) = gµνRµν(Γ) is given in terms of the Ricci tensor Rµν(Γ) in the
first-order (Palatini) formalism:

Rµν(Γ) = ∂αΓα
µν − ∂νΓα

µα + Γα
αβΓβ

µν − Γα
βνΓβ

µα (10)
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defined by the affine connection Γλ
µν a priori independent of the metric gµν.

• The non-Riemannian volume-element densities Φ1(A), Φ2(B), Φ0(C) are defined as in (6):

Φ1(A) =
1
3!

εµνκλ ∂µ Aνκλ, Φ2(B) =
1
3!

εµνκλ ∂µBνκλ, Φ0(C) =
1
3!

εµνκλ ∂µCνκλ . (11)

• φ is a neutral scalar “inflaton” and σ ≡ (σa) is a complex SU(2)×U(1) iso-doublet Higgs-like
scalar field with the isospinor index a = +, 0 indicating the corresponding U(1) charge.
The corresponding kinetic energy terms in (9) read:

Xφ ≡ −
1
2

gµν∂µφ∂νφ, Xσ ≡ −gµν∂µσ∗a ∂νσa , (12)

and
V0(σ) ≡ m2

0 σ∗a σa , (13)

is a canonical mass term for the Higgs-like field, i.e., neither negative (“ghost-like”) mass-squared
term nor quartic self-interaction are introduced unlike the case in the standard electro-weak
model [92,93].

• f1,2 and α are dimensionful coupling constants in the “inflaton” potential. The Λ0 is a small
dimensional constant which will be identified in the sequel with the “late” universe cosmological
constant in the dark energy dominated accelerated expansion’s epoch.

The specific form of the action (9) is fixed by the requirement of global Weyl-scale invariance under:

gµν → λgµν, Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Cµνκ → Cµνκ , (14)

φ→ φ− 1
α

ln λ, σa → σa, (15)

where the scaling parameter is λ = const. The importance of global scale symmetry within the context
of non-Riemannian volume-element formalism has been already stressed in the first original papers
(see [82]), where in particular models with spontaneously broken dilatation symmetry have been
constructed along these lines, which are free of the Fifth Force Problem [84].

Varying the action (9) with respect to gµν, Γλ
µν, Aµνλ, Bµνλ, Cµνλ, φ and σa , yield the following

equations of motion, respectively:

Rµν(Γ)−Λ0
Φ1(A)√−g

gµν −
1
2

∂µφ∂νφ− ∂µσ∗a ∂νσa −
1
2

gµν
Φ2(B)Φ0(C)
Φ1(A)

√−g
= 0 , (16)

Φ1(A)gµν
(
∇λδΓλ

µν −∇µδΓλ
λν

)
= 0 , (17)

gµν
(

Rµν(Γ)−
1
2

∂µφ∂νφ− ∂µσ∗a ∂νσa

)
− 4Λ0

Φ1(A)√−g
+
(

f1 −m2
0 σ∗a σa

)
eαφ = M1 ≡ const , (18)

f2e−2αφ − Φ0(C)√−g
= −M2 ≡ const ,

Φ2(B)√−g
= χ2 ≡ const , (19)

∂µ

(
Φ1(A)gµν∂νφ

)
+ αΦ1(A)

(
f1 −m2

0 σ∗a σa
)
eαφ + 2αΦ2(B) f2e2αφ = 0 , (20)

∂µ

(
Φ1(A)gµν∂νσa

)
−Φ1(A)m2

0 eαφσa = 0 . (21)

Equations (18) and (19) are special cases of the general Equation (8) discussed above. Here M1,2

and χ2 are arbitrary (dimensional and dimensionless, respectively) integration constants, with M1,2

triggering a spontaneous breaking of the global Weyl-scale symmetry (15).
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Taking the trace of Equation (16) and comparing with Equations (18) and (19), we find for the
ratio of volume-element densities:

χ1 ≡
Φ1(A)√−g

=
2χ2
(

f2e2αφ + M2
)

M1 +
(
m2

0 σ∗a σa − f1
)
eαφ
≡ χ1(φ, σ) . (22)

On the other hand, following analogous derivation in [82], Equation (17) yields a solution for Γµ
νλ

as a Levi-Civita connection:

Γµ
νλ = Γµ

νλ(ḡ) =
1
2

ḡµκ (∂ν ḡλκ + ∂λ ḡνκ − ∂κ ḡνλ) (23)

with respect to a Weyl-conformally rescaled metric:

ḡµν = χ1(φ, σ) gµν (24)

with χ1(φ, σ) as in (22).
Conformal transformation gµν → ḡµν via (24) convert the modified gravity action (9) into the

physical Einstein-frame action (objects in the Einstein-frame indicated by a bar):

SEF =
∫

d4x
√
−ḡ
[

R(ḡ)− 1
2

ḡµν∂µφ∂νφ− ḡµν∂µσ∗a ∂νσa −Ueff(φ, σ)
]

, (25)

with an effective Einstein-frame scalar field potential:

Ueff(φ, σ) ≡
M1 + eαφ

(
m2

0 σ∗a σa − f1
)

χ1(φ, σ)
−

χ2
(

f2e2αφ + M2
)(

χ1(φ, σ)
)2 + 2Λ0

=

[
M1 + eαφ

(
m2

0 σ∗a σa − f1
)]2

4χ2
(

f2e2αφ + M2
) + 2Λ0 , (26)

which is entirely dynamically generated due to the appearance of the free integration constants M1,2 and
χ2 (18) and (19).

As discussed in [86,90,91,141] the scalar potential Ueff(φ, σ) (26) has a remarkable feature: it
possesses two (infinitely) large flat regions as a function of φ at σa = fixed (see the graphical
representation on Figure 1) with the following properties:

• (a) (−) flat “inflaton” region for large negative values of φ (and σa is finite) corresponding to the
“slow-roll” inflationary evolution of the “early” universe driven by φ. Here the effective potential
(26) reduces to (an almost) constant value independent of the finite value of σa—this is energy
scale of the inflationary epoch:

Ueff
(
φ, σ

)
' U(−) =

M2
1

4χ2 M2
+ 2Λ0 . (27)

Thus, in the “early” universe the Higgs-like field σa must be (approximately) either massless or
constant with no non-zero vacuum expectation value, therefore there is no spontaneous breaking of
SU(2)×U(1) symmetry. Moreover, in fact as shown in the Remark below, σa does not participate
in the “slow-roll” inflationary evolution, so σ stays constant there equal to the “false”vacuum
value σ = 0.
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• (b) (+) flat “inflaton” region for large positive values of φ (and σa—finite) corresponding to the
evolution of the post-inflationary (“late”) universe, where:

Ueff
(
φ, σ

)
' U(+)(σ) =

(
m2

0 σ∗a σa − f1

)2

4χ2 f2
+ 2Λ0 (28)

acquires the form of a dynamically induced SU(2)×U(1) spontaneous symmetry breaking Higgs
potential with a Higgs “vacuum” at:

|σvac| =
1

m0

√
f1 , (29)

where the parameters are naturally identified as:

f1 ∼ M4
EW , m0 ∼ MEW (30)

in terms of the electro-weak energy scale MEW ∼ 10−16MPl .
• Thus, the residual cosmological constant Λ0 in (28) has to be identified with the current epoch

observable cosmological constant (∼ 10−122M4
Pl) and, therefore, according to (27) the integration

constants M1,2 are naturally identified by orders of magnitude as

M1 ∼ M2 ∼ 10−8M4
Pl , (31)

since in the latter case the order of magnitude of the vacuum energy density in the (−) flat region
(27) becomes:

U(−) ∼ M2
1/M2 ∼ 10−8M4

Pl , (32)

which conforms to the Planck Collaboration data [142,143] for the “early” universe’s energy scale
of inflation being of order 10−2MPl .

• Here the order of magnitude for f2 is determined from the mass term of the Higgs-like field σ in
the (+) flat region resulting from (28) upon expansion around the Higgs vacuum (σ = σvac + σ̃):

f1m2
0

χ2 f2
(σ̃a)

∗(σ̃a) , (33)

which implies that:
f2 ∼ f1 ∼ M4

EW . (34)

• Let us specifically note that the viability of the present model (in a slightly simplified form without
the Higgs scalar) concerning confrontation with the observational data has already been analyzed
and confirmed numerically in Reference [141]. In particular, a graphical plot of the evolution of r
(tensor-to-scalar ratio) vs. ns (scalar spectral index) has been provided there.
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Figure 1. Qualitative shape of the two-dimensional plot for the effective scalar potential Ueff(φ, σ) (26).

Remark 1. Assuming that in the (−) flat “inflaton” region (for large negative values of φ and σa—finite)
both the “inflaton” φ and the Higgs-like field σa evolve in a “slow-role” regime, their “slow-role” equations of
motion in the standard FLRW (Friedmann-Lemaitre-Robertson-Walker) reduction of the Einstein-frame metric
(ḡµνdxµdxν ≡ −N2(t)dt2 + a2(t)d~x.d~x) read accordingly (see, for example, [5,6,22,23]):

.
φ' − 1

3H
∂Ueff(φ, σ)

∂φ
,

∂Ueff(φ, σ)

∂φ
=

αeαφ
[

M1 + eαφ
(
m2

0 |σ|2 − f1
)] [

M2
(
m2

0 |σ|2 − f1
)
−M1 f2eαφ

]
2χ2

(
M2 + f2e2αφ

)2 (35)

.
σ' − 1

3H
∂Ueff(φ, σ)

∂σ
−→ d|σ|

dt
' − 1

3H

m2
0 |σ|eαφ

[
M1 + eαφ

(
m2

0 |σ|2 − f1
)]

2χ2
(

M2 + f2e2αφ
) , (36)

where |σ|2 ≡ σ∗a σa and H =
.
a
a denotes the Hubble parameter. Equations (35) and (36) define parametrically

a curve |σ| = |σ|(φ) in the two-field (φ, |σ|) target space. Equivalently, this curve is defined through the
differential equation:

d|σ|
dz
'

m2
0 |σ(z)|

(
M2 + f2z2

)
α2 z

[
M2
(
m2

0|σ(z)|2 − f1
)
−M1 f2z

] , z ≡ eαφ . (37)

In the (−) flat “inflaton” region (φ – large negative) z is very small, so in this case Equation(37) can be
rewritten as:

α
(
|σ| − f1

m2
0 |σ|

)
d|σ| ' dz

z
−→ α

(1
2
|σ(z)|2 − f1

m2
0

ln |σ(z)|
)
' ln z . (38)

Obviously, a consistent solution |σ(z)| of (38) does not exist for z = eαφ → 0, therefore, the assumption
for the “slow-roll” evolution (36) of the Higgs-like field σa in the inflationary region (large negative values of φ)
is invalid. Thus |σ| must be constant and Equation (36) implies |σ| = 0 in the (−) flat “inflaton” region.

To conclude this section, we see that thanks to the remarkable dynamically generated scalar
potential (26) the “inflaton” φ plays the role both of driving “slow-roll” inflationary dynamics in the
“early” universe, as well as it plays the role of a quintessential variable dark-energy field triggering
slowly accelerating de Sitter expansion in the “late” universe.



Symmetry 2019, 12, 734 9 of 16

Accordingly, gravity-inflaton dynamics generates dynamically spontaneous SU(2) × U(1)
symmetry breaking – Higgs effect – in the post-inflationary epoch, whereas it dynamically suppresses
spontaneous symmetry breaking during inflation in the “early” universe. Namely, the dynamical
transition from the “false” Higgs vacuum to the genuine electroweak spontaneously broken vacuum is
driven by the inflaton evolving from (large) negative values (on the “(−)” flat region (27) of the scalar
potential (26)) to (large) positive values (on the “(+)” flat region (28) of the scalar potential (26)).

Thus, our scale invariant modified gravity model (9) in its Einstein-frame representation (25)
and (26) turns out to be an explicit implementation of Bekenstein’s idea [94] about a gravity-assisted
spontaneous symmetry breaking of electro-weak (Higgs) type without invoking negative mass squared
and a quartic Higgs field self-interaction unlike the canonical case in the standard particle model [92,93].

4. Eddinton-Type No-Metric Gravity and Quintessential Inflation

Let us now consider a generic model of gravity, with some Riemannian metric ḡµν and with the
ordinary Riemannian volume-element

√−ḡ within the first-order (Palatini) formalism, interacting
with a multi-component scalar field φA, A = 1, . . . , N (using again units with 16πGNewton = 1):

S =
∫

d4x
√
−ḡ
[

ḡµνRµν(Γ)−
1
2

ḡµνhAB∂µφA∂νφB −U(φ)
]

, (39)

where the Ricci tensor Rµν(Γ) is the same as in (10), and hAB(φ) indicates some “metric” in the scalar
field target space (in the present case it will be just a unit matrix).

The equations of motion with respect to gµν, φA and Γλ
µν read accordingly:

Rµν(Γ) =
1
2

(
Tµν −

1
2

ḡµνTλ
λ

)
, (40)

Tµν = hAB(φ)∂µφA∂νφB − ḡµν

[1
2

ḡκλhAB(φ)∂κφA∂λφB + U(φ)
]

, (41)

1√−ḡ
∂µ

(√
−ḡgµνhAB∂νφB)− 1

2
ḡµν ∂hCD

∂φA ∂µφC∂νφD − ∂U(φ)

∂φa = 0 , (42)∫
d4x

√
−ḡḡµν

(
∇λδΓλ

µν −∇µδΓλ
λν

)
= 0 (43)

Following again the analogous derivation in [82], the solution of Equation (43) is that Γλ
µν becomes

the canonical Levi-Civita connection w.r.t. ḡµν:

Γµ
νλ = Γµ

νλ(ḡ) =
1
2

ḡµκ (∂ν ḡλκ + ∂λ ḡνκ − ∂κ ḡνλ) . (44)

Equations (40) and (41) can be equivalently written as:

ḡµν =
2

U(φ)

(
Rµν(Γ)−

1
2

hAB(φ)∂µφA∂νφB
)

, (45)

that is, the metric ḡµν in (39) is expressed entirely in terms of the affine connection and the matter field.
Now, we will show that the gravity-matter theory (39) is equivalent, in a sense of producing the

same equations of motion (41)–(44), to the following Eddington-type purely affine gravity theory:

SEdd =
∫

d4x
2

U(φ)

√
det ‖Rµν(Γ)−

1
2

hAB(φ)∂µφA∂νφB‖ , (46)

i.e., (46) does not involve at all a Riemannian metric.
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Indeed, varying the action (46) w.r.t. Γλ
µν and φa we get:

2
U(φ)

√
det ‖Hαβ(Γ, φ, σ)‖

(
H−1((Γ, φ, σ)

)µν
(
∇λδΓλ

µν −∇µδΓλ
λν

)
= 0 , (47)

with the short-hand notation:

Hµν(Γ, φ) ≡ Rµν(Γ)−
1
2

hAB(φ)∂µφA∂νφB , (48)

and

∂µ

( 1
U(φ)

√
det ‖Hαβ(Γ, φ)‖

(
H−1(Γ, φ)

)µνhAB(φ)∂νφB
)

− 1
2U(φ)

√
det ‖Hαβ(Γ, φ)‖

(
H−1(Γ, φ)

)µν ∂hCD

∂φA ∂µφC∂νφD + 2
∂

∂φ

( 1
U(φ)

)√
det ‖Hαβ(Γ, φ)‖ = 0 . (49)

Now, using the identification Equation (45) for the Riemannian metric ḡµν = 2
U(φ)

Hµν(Γ, φ) with
Hµν(Γ, φ) as in (48), Equations (47)–(49) become identical to Equations (42) and (43) , respectively.

The above derivation of purely affine gravity interacting with multi-component scalar fields
appeared previously in [144]. Historically, this formulation was proposed for the first time in [115] in
the special case of a single Klein-Gordon field with U(φ) = 1

2 m2 φ2, see also [145].
Applying the above established equivalence between the models (39) and (46) to the initial modified

gravity action (9) and its Einstein-frame representation (25) with Ueff(φ, σ) as in (26), analyzed in Section 3
above, we find that the following specific Eddington-type purely affine no-metric gravity model:

SEdd =
∫

d4x
8χ2

(
f2e−2αφ + M2

)
[

M1 +
(
m2

0 σ∗a σa − f1e−αφ
)]2

+ 8Λ0χ2
(

f2e−2αφ + M2
)

×
√

det ‖Rµν(Γ)−
1
2

∂µφ∂νφ− ∂µσ∗a ∂νσa‖ , (50)

actually describes a quintessential inflationary dynamics with dynamically generated Higgs effect in
the post-iflationary epoch with all the properties discussed in Section 3. The metric gµν in the initial
modified scale-invariant gravity action (9) with non-Riemannian volume-elements, taking into account
relation (45) applied for the Einstein-frame metric (24) where U(φ) = Ueff(φ, σ) (26) and using the
on-shell relations (19) and (22), is identified as:

gµν =
2

χ1(φ, σ)Ueff(φ, σ)

[
Rµν(Γ)−

1
2

∂µφ∂νφ− ∂µσ∗a ∂νσa

]
, (51)

with Rµν(Γ) as in (10), and χ1(φ, σ) and Ueff(φ, σ) explicitly given in (22) and (26), respectively:

1
χ1(φ, σ)Ueff(φ, σ)

=
2
[

M1 + eαφ
(
m2

0 σ∗a σa − f1
)]

[
M1 + eαφ

(
m2

0 σ∗a σa − f1
)]2

+ 8Λ0χ2

(
f2e2αφ + M2

) . (52)

5. Conclusions

In the present paper we have employed two fundamental concepts, namely, non-Riemannian
metric-independent spacetime volume-elements and (global) scale invariance, to construct a
self-consistent model of modified gravity coupled to a neutral scalar “inflaton” and to a Higgs-like
SU(2)×U(1) iso-boublet scalar possessing the following extraordinary features:
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(a) In the physical Einstein frame, thanks to a dynamical generation of a remarkable scalar
potential with two long flat “inflaton” regions with vastly different heights, the model describes a
plausible quintessential inflationary scenario, driven by the “inflaton”, with a “slow-roll” inflationary
stage in the “early” universe and a slow accelerating de Sitter expansion in the “late” universe;

(b) This model provides an explanation of the interplay between cosmological dynamics and
the patterns of symmetry breaking during the evolution of the universe. Namely, we find an explicit
realization from first (Lagrangian-action) principles of the noteworthy proposal of Bekenstein from
1986 about “gravity-assisted” dynamical Higgs-like spontaneous symmetry breakdown (Higgs effect).
We exhibit gravity-“inflaton” suppression of the Higgs effect during inflation, i.e., no electroweak
spontaneous breakdown there), whereas in the post-inflationary epoch a Higgs-type symmetry
breaking potential is dynamically created.

(c) The coupling constants in the initial modified gravity action are naturally identified as powers
of the standard electroweak mass scale.

(d) It is shown how to represent the above quintessential inflationary model with a dynamical
Higgs effect in the form of a no-metric purely affine (Eddington-type) gravity.

A next important task is to study in some detail, within the present quintessential inflationary
scenario with a dynamical Higgs effect, the numerical solutions for the basic inflationary observables
(scalar power spectral index, tensor-to-scalar ratio, etc.) extending the numerical analysis from
Reference [141] (where the Higgs field was absent). Since in the present scenario the Higgs field during
(most of the) inflation resides in its “false” vacuum, the significant impact of Higgs field dynamics
will occur after end of inflation when the “inflaton” starts to generate the non-trivial Higgs symmetry
breaking potential.
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