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Motivated by a recent finding of an exact solution of the relativistic Boltzmann equation in a Friedmann–
Robertson–Walker spacetime, we implement this metric into the newly developed transport approach 
Simulating Many Accelerated Strongly-interacting Hadrons (SMASH). We study the numerical solution of 
the transport equation and compare it to this exact solution for massless particles. We also compare 
a different initial condition, for which the transport equation can be independently solved numerically. 
Very nice agreement is observed in both cases. Having passed these checks for the SMASH code, we 
study a gas of massive particles within the same spacetime, where the particle decoupling is forced by 
the Hubble expansion. In this simple scenario we present an analysis of the freeze-out times, as function 
of the masses and cross sections of the particles. The results might be of interest for their potential 
application to relativistic heavy-ion collisions, for the characterization of the freeze-out process in terms 
of hadron properties.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Kinetic theory [1] has been widely used to study the nonequi-
librium evolution of fluids and plasmas, not only for ordinary 
substances but also in the relativistic domain [2]. For sufficiently 
dilute systems, the Boltzmann equation (BE) describes how the 
one-particle distribution function f (t, x, k) relaxes towards equi-
librium. Under a general spacetime metric, this equation reads [3]

kμ ∂ f (t,x,k)

∂xμ
+ �i

λμ kλkμ ∂ f (t,x,k)

∂ki
= C[ f ] , (1)

where �i
λμ are the Christoffel symbols and C[ f ] represents the 

(nonlinear) collision integral [2].
A non-trivial solution of this equation (aside from the equi-

librium distribution) is extremely hard to obtain in this general 
case. Nevertheless, several approximations can be used to simplify 
the nonlinear structure of C[ f ]. One of the simplest methods is 
the relaxation time approximation (RTA) [4], which provides a lin-
earized collision term. In addition, perturbative solutions based on 
the existence of some small parameter (like the Knudsen number) 
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are also possible e.g. the Chapman–Enskog expansion [5,6]. On the 
other hand, the BE can also be addressed by pure numerical tech-
niques, known as molecular dynamics simulations or Boltzmann–
Uehling–Uhlenbeck (BUU) transport. For relativistic heavy-ion col-
lisions (RHICs), where a mixture of relativistic particles is subjected 
to mutual interactions and mean-field potentials, the system of 
coupled BEs can be solved by Monte Carlo methods, as in [7–12]. 
These numerical approaches—more suitable for these complicated 
systems—also introduce systematic uncertainties, originating from 
algorithmic approximations and truncations. For this reason, the 
finding of exact non-trivial solutions of Eq. (1), at least in particular 
scenarios, is important to test different methods and approxima-
tions, either semianalytical or purely numerical.

In RHICs the dynamics and geometry of the created fireball pro-
vide certain degrees of symmetry, from which simplified models 
have been proposed [13]. For some of them, exact solutions of the 
BE have been found under the RTA. For example, in the Bjorken 
model [14] (describing a boost-invariant longitudinal expansion) 
a semianalytic result has already been calculated by Baym [15]. 
An exact solution in a Gubser expansion (allowing an additional 
expansion in the transverse plane) has been obtained in [16]. An 
exact solution in a 3D conformal expanding medium, or Hubble 
flow, was recently found in [17,18] under the RTA.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2017.04.080
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:torres@fias.uni-frankfurt.de
http://dx.doi.org/10.1016/j.physletb.2017.04.080
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.04.080&domain=pdf


J. Tindall et al. / Physics Letters B 770 (2017) 532–538 533
This last scenario represents an interesting case with applica-
tions to RHICs but also in a cosmological context to describe an 
expanding universe [19–21]. An exact analytical solution of the BE 
for an expanding medium has recently been presented in [22,23]. 
This solution is valid for massless particles, interacting in a flat 
universe under a Friedmann–Robertson–Walker (FRW) metric. The 
particle–particle interactions are assumed to follow constant total 
cross sections, but the full nonlinear structure of the collision op-
erator is kept, i.e. no RTA is assumed. The exact solution obtained 
in [22,23] was used to test a linear approximation of the BE, and 
approximate solutions based on the RTA.

In this paper we compare a numerical solution of Eq. (1)
with this exact result. We employ the new hadronic transport ap-
proach SMASH (Simulating Many Accelerated Strongly-interacting 
Hadrons) [12]. It is used to simulate hot and dense strongly inter-
acting matter with the goal of exploring the quark gluon plasma 
phase diagram by performing comparisons to experimental data 
from heavy ion experiments at different accelerators such as the 
Large Hadron Collider (LHC), the Relativistic Heavy Ion Collider 
and the SIS-18 at the GSI Helmholtzzentrum für Schwerionen-
forschung. SMASH constitutes an effective numerical solution of 
the equations of motion associated with Eq. (1) using a geomet-
rical collision criterion as in UrQMD1 under a Minkowski metric, 
i.e. ds2 = dt2 − dx2 − dy2 − dz2. We adapt the SMASH dynamics 
to work on an expanding homogeneous, isotropic gas of massless 
particles with a FRW metric ds2 = dt2 − a2(t)(dx2 + dy2 + dz2).2 In 
this case the BE is reduced to [21,3,23]

kμuμuν∂ν f (t,k) = C gain[ f ] − Closs[ f ] , (2)

where the gain and loss terms present their full nonlinear struc-
ture.

Our first goal is to present a non-trivial test of the SMASH code 
in an expanding geometry by comparing our outcome to the ex-
act solution given in [22,23]. We also check our results against 
the numerical solution of Eq. (2) for a different initial condition 
given in [23]. Then, we exploit the flexibility of SMASH to solve 
the transport equation in an expanding system of massive parti-
cles, generating a dynamical freeze-out (or decoupling) due to the 
Hubble expansion. This opens up the possibility to study more re-
alistic systems of interest in cosmological scenarios, or in RHICs.

In Sec. 2 we present the SMASH solution to the Boltzmann 
equation for massless particles using several initial conditions, in 
particular the one for which an exact analytical solution is known. 
In Sec. 3 we introduce a toy model of freeze-out for relativistic 
particles when the Hubble rate exceeds the interaction rate. We 
discuss how the freeze-out time can be extracted from the final 
spectrum of particles. Finally, we present our conclusions and out-
look in Sec. 4.

2. SMASH solution of the Boltzmann equation under a FRW 
spacetime

The authors of Ref. [22,23] have calculated an exact solution of 
the Boltzmann equation (2) for an infinite gas of massless particles 
with constant elastic cross-section. This is a very particular sys-
tem, with symmetry properties that help to simplify the transport 
equation. This scenario is physically motivated by the expansion of 
the universe in the radiation-dominated era [19].

SMASH is a recently developed transport approach used to de-
scribe the hadronic stage of heavy-ion collisions at low and in-
termediate energies with applications from GSI to LHC physics. In 

1 Ultra-relativistic Quantum Molecular Dynamics.
2 We only consider the case without spatial curvature K .
particular, one can use SMASH to simulate a gas of massless par-
ticles with constant elastic cross-section σ . In this work we use 
a spherical volume filled with N particles (this number remains 
constant due to the absence of number-changing processes). The 
particles are initialized with an isotropic, homogeneous spatial dis-
tribution according to a given initial condition.

Whilst it appears a formidable task to adapt SMASH to a gen-
eral spacetime, the FRW metric we wish to implement is fairly 
simple. As SMASH operates in physical phase-space variables, we 
will always work with the physical 3-momenta k = kphys , as 
opposed to the approach in [22,23], which uses the covariant 
momenta.3 The equations of motion of the particles reflect the 
physical expansion of the universe. The velocity measured by a 
comoving observer to the expanding spacetime (sometimes called 
peculiar velocity) is combined with the Hubble flow: vi

Hubble =
H(t)xi , where H(t) ≡ ȧ(t)

a(t) is the Hubble parameter. The physical 
momentum of the particle suffers a redshift and scales as 1/a(t).

Particle collisions are not affected by the Hubble expansion, be-
cause the characteristic collision time is always much smaller than 
H−1(t), so during the collision the particles do not feel the expan-
sion of the universe.

For a gas of massless particles (radiation) the cosmic scale fac-
tor is fixed by the Friedmann equation to be of the form a(t) ∼
t

1
2 [19,21,20]. Following [22,23] we adopt the solution a(t) =√
1 + br

l0
t , where l0 = 1/(σn0) is the mean-free path at time t = 0

(σ denotes the cross section and n0 the initial particle density) and 
br is a parameter which contains the density fraction of radiation 
in the universe and the Hubble parameter itself at t = 0.

We initialize the particles in a far-from-equilibrium configura-
tion, according to the momentum distribution in [22,23]

f (t = 0,k) = 256

243

ka

T0
λexp

(
− 4ka

3T0

)
, (3)

where λ = exp(μ0/T0) is the fugacity of the system, and T0 a pa-
rameter, which can be thought of as an initial temperature of the 
system.4

The analytical solution for this initial condition was determined 
to be

f (t,k) = λ
e
− ka

κT0

κ4(τ )
[4κ − 3 + ka

κ(τ )T0
(1 − κ(τ ))] , (4)

where κ(τ ) = 1 − exp
(− τ

6

)
/4, and the transformed time variable 

τ = ∫ t̂
t̂0

1
a3(t̂′)dt̂′ with t̂ = t/l0. For the particular form of the a(t)

used, we have

τ = 2

br

[
1 −

(
1 + br

l0
t

)−1/2
]

. (5)

The distribution function is normalized such that

N =
∫
V

∫
f (t,k)

d3k

(2π)3
d3x , (6)

where V is the volume of the sphere, and d3k = dkk2d
k .

3 The distinction is important in nonorthonormal metrics [20]. In our equations 
we will always trade the modulus of the covariant momentum—whose magnitude 
is not modified by the expansion of the system—by the physical one.

4 Out of equilibrium, the expressions of the particle and energy densities formally 
coincide with that for an ideal gas, with T0 playing the role of the temperature.
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Fig. 1. Mollweide projection of the angular distribution of particles at t = 0.1 fm. 
We show all particles contained in the sub-sphere r < rsub in red, and the particle 
outside this volume (r > rsub ) in blue (and re-scaled by a factor 1.5 for clarity). We 
use a single event Nev = 1. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

We now present the results of SMASH for the solution of the 
Boltzmann equation for different values of the physical time. No-
tice that we show these results in terms of k multiplied by the 
scale factor.

In our simulations we use a constant particle number N =
1.5 × 105 contained in a spherical volume with initial radius r0 =
50 fm. The ratio br/l0 is fixed to 0.1. The initial temperature of 
the system is set to T0 = 0.2 GeV. With this set of parameters, 
the fugacity takes a value of λ0 � 2.7, which should be constant 
in the evolution, cf. Eq. (4). To avoid unwanted boundary effects 
and ensure homogeneity we always work with particles contained 
in a sub-sphere of radius rsub(t) = a(t)r0/1.5. To check the spa-
tial isotropy we plot in Fig. 1 the Mollweide projection of the 
distribution of particles for t = 0.1 fm. The Mollweide projection 
reflects the 2D angular distribution of particles (neglecting their 
distance to the origin) into a 2D ellipsoidal plot. It is widely used 
in cartography and cosmology, but it can also be applied to heavy-
ion physics [24].5 In red we show the particles contained in the 
sub-sphere r < rsub . In blue we depict the particles with r > rsub , 
where we have re-scaled the Mollweide projection by the factor 
1.5. Isotropy is manifest in the plot.

Before presenting our results for the distribution function we 
show the time evolution of the particle and energy densities in 
Fig. 2. The theoretical expressions of the (non-equilibrium) densi-
ties admit an analytic form [23],

n = λ0T 3
0

π2a3
, ε = 3λ0T 4

0

π2a4
. (7)

Our results are in very good accordance with these formulas, even 
for a single event.

In Fig. 3 we present the ratio f (t, k)/ feq(k), where feq(k) =
e
− ka

T0 is the (Boltzmann) equilibrium distribution corresponding 
to limτ→∞ f (t, k).6 We plot the results as a function of ka

T0
for 

t = 0.1, 2, 4, 10 fm. We have used 20 events, and present up to the 
value ka

T0
= 8.0, where statistical errors start to become significant. 

The output from SMASH is compared to the analytical solution (4)
which uses the initial momentum distribution in Eq. (3). The re-
sults demonstrate a very good agreement between SMASH and the 

5 We thank Felipe Llanes-Estrada for discussions on this topic.
6 While the exact Boltzmann solution cannot be reached at t → ∞ due to a finite 

τ horizon [23], we still use it for normalization.
Fig. 2. Time evolution of the particle and energy densities in SMASH (dots) for one 
event, compared to the analytical expression in Eqs. (7). (For interpretation of the 
references to colour in this figure, the reader is referred to the web version of this 
article.)

Fig. 3. Ratio of the distribution function over the equilibrium Boltzmann distribution 
versus ka

T0
for the initial condition (3). The SMASH output (points) is compared to 

the analytical solution of the Boltzmann equation (solid line) for different values of 
time t = 0.1, 2, 4, 10 fm. (For interpretation of the references to colour in this figure, 
the reader is referred to the web version of this article.)

Fig. 4. Ratio of the distribution function over the equilibrium Boltzmann distribution 
versus ka

T0
for the initial condition (8). The SMASH result (points) is compared to 

the numerical solution of the Boltzmann equation (solid line) for different values 
of time t = 0.001, 2, 4, 8 fm. (For interpretation of the references to colour in this 
figure, the reader is referred to the web version of this article.)

exact solution. Statistical errors due to the low number of particles 
in each bin explain the deviations between the analytical solution 
and that of SMASH for ka

T0
> 5. For the lower momentum modes, 

ka
T0

< 1, the small deviations are a combination of statistical errors 
as well as the finite size of the bin-width which has a noticeable 
effect in regions where f (t, k) is changing rapidly with respect 
to k.

In Fig. 4 a similar comparison is made with a different initial 
momentum distribution. We adapt the “two-mode initial condi-
tion” introduced in [23]:
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f (t = 0,k) =
[

1 − 1

10
L(2)

3

(
ka

T0

)
+ 1

20
L(2)

4

(
ka

T0

)]
e
− ka

T0 , (8)

where L(β)
n (x) = ∑n

i=0(−1)i
(n+β

n−i

) xi

i! are Laguerre polynomials [2]. 
While no analytical solution for this initial condition has been 
achieved, one can still numerically solve the BE for it. The latter, 
when written as a coupled system of equations for the moments of 
the distribution, can be easily solved by a finite difference method. 
From Fig. 4 one can see that SMASH results and the numerical 
solution compare very well. Errors stemming from the binning pro-
cedure are more significant here and cause the low-k data points 
to noticeably deviate from the expected value. Overall this figure, 
together with Fig. 3, can be considered a validation check for the 
SMASH approach to solving the relativistic Boltzmann equation in 
a FRW metric.

3. Dynamical decoupling of a relativistic massive gas

In this section we present a simple realization for the freeze-
out of a particle; exploiting the Hubble expansion as a mechanism 
to dynamically decouple the particles at a certain time. The funda-
mental idea relies on the fact that the scattering rate � � |v|nσ 7

decreases in time due to the volume expansion, so that there 
might exist a time at which this rate becomes smaller than the 
Hubble rate H and the particles decouple. This is the basic pic-
ture behind the description of the thermal history of the primitive 
universe [19–21].

We implement a much simpler scenario, because we only con-
sider a single species of relativistic particles interacting by a con-
stant cross section. The initial temperature is set to T0 = 0.4 GeV 
and the mass of the particles to m = 5T0, so we deal with a 
relativistic gas of particles. One should note that a gas of ultra-
relativistic or nonrelativistic particles is not useful in this study, 
as we will see that it is not possible to distinguish an equilibrium 
distribution evolving in time from a decoupled distribution with a 
momentum redshift [19,20].

For relativistic particles, it is known that there exists no equilib-
rium distribution in the collisionless case (e.g. after decoupling).8

Therefore, our toy model is based on the following scenario: We 
start with an equilibrium distribution of massive particles. As long 
as � 	 H , collisions allow the system to maintain equilibrium 
despite of the Hubble expansion. Once � ∼ H , the number of col-
lisions will not be enough to re-equilibrate the system, and the 
distribution function of particles freezes. For later times, when 
� < H the distribution of particles is necessarily out of equilibrium 
due to the momentum redshift. To be able to see the decoupling 
within a reasonable amount of time we take the Hubble rate as a 
pure parameter of the model and use H = βt , with β = 0.01 fm−2. 
Notice that this is a rather arbitrary choice. Our goal, however, is 
to establish a toy model for the freeze-out in RHICs, with a Hub-
ble parameter encoding the physics of the expanding medium. For 
this exploratory study, we choose this parameter to illustrate the 
effect of decoupling in a clear manner.

As said, our initial state is a gas in equilibrium, where the stan-
dard Boltzmann distribution of thermodynamics can be applied. 
The distribution function contains two parameters: the temper-
ature and chemical potential (or fugacity). The latter is needed 
due to the absence of number-changing processes. Taking into ac-
count that collisions maintain equilibrium at early times (when 
� 	 H), it is possible to compute the values of these two pa-
rameters by noting that the evolution of the particle density is 

7 |v| is the relative velocity of the colliding particles.
8 More technically, this statement is closely related to the nonexistence of a time-

like Killing vector for a FRW metric with a nonconstant a(t).
n(T , μ) = n0(T0, μ0)(a0/a)3, and assuming an adiabatic evolution 
where the entropy per particle (s/n) is constant in the evolution. 
These two conditions provide a system of two coupled equations 
for the values of T and μ. The evolution of the particle density 
gives

T e
μ(T )

T K2(m/T ) = T0e
μ0
T0 K2(m/T0)

(a0

a

)3
, (9)

and the condition s/n = s0/n0 provides

μ(T )

T
= μ0

T0
+ m

T

K1(m/T )

K2(m/T )
− m

T0

K1(m/T0)

K2(m/T0)
, (10)

where standard thermodynamical relations have been used (see 
e.g. [25]).

It is illustrative to take the ultrarelativistic and nonrelativistic 
limits of these equations to recover the textbook cases,

T (t) =
⎧⎨
⎩

T0
a0

a(t) for m 
 T ,

T0

(
a0

a(t)

)2
for m 	 T ,

(11)

which tells us that in an expanding gas of ultrarelativistic (non-
relativistic) particles, the equilibrium state is maintained with a 
temperature scaling as T ∼ 1/a (T ∼ 1/a2). It is possible to check 
that we also reproduce the evolution of the chemical potential in 
these two limiting cases [21].

We check the expected equilibrium evolution using SMASH 
with relativistic particles with a mass of m = 2 GeV. The cross sec-
tion is assumed to be constant σ = 40 mb, and the initial configu-
ration is a Boltzmann distribution with temperature T0 = 0.4 GeV 
and vanishing chemical potential μ0 = 0. The geometrical condi-
tions are the same as in the last section. We use 20 events to 
reduce statistical uncertainty.

In Fig. 5 we present SMASH results at different times together 
with the expected equilibrium distribution. In the upper panels we 
check that the SMASH results compare perfectly well to the pre-
dicted equilibrium distribution with parameters given by Eqs. (9), 
(10). In the lower panels we observe that deviations occur, which 
increase with time. This is the effect of the decoupling, which 
roughly happens between t = 5 fm and t = 10 fm by looking at 
the panels. Using the naive condition � ∼ H , we numerically ob-
tain an approximate guess of tD ∼ 8 fm.9 Although this is a very 
crude estimate, it is consistent with the situation shown in Fig. 5.

In fact, it is possible to determine the form of the distribution 
function after decoupling. One simply needs to take into account 
the unavoidable momentum redshift. For any time after decoupling 
t > tD

fdec(t,k) = feq

(
tD ,k

a

aD

)
(12)

∝ exp

[
−

√
(ka/aD)2 + m2

T D

]
.

Before fitting our results to this form let us consider the ultra-
relativistic and the nonrelativistic limits:

fdec(t,k) ∝

⎧⎪⎨
⎪⎩

exp
(
− ka

T DaD

)
for m 
 T

exp

[
− k2

2m
a2

T Da2
D

]
for m 	 T .

(13)

These functions mimic the equilibrium distributions with a 
temperature evolving in the same way as in Eq. (11). Therefore, we 

9 � is given in SMASH by counting the number of collisions per unit time.
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Fig. 5. Distributions of particles for a relativistic massive gas at different times. We compare the outcome from SMASH and the theoretical prediction for a thermal distribution. 
From left to right, and top to bottom, the times read t = 0.1, 2.5, 5, 10, 15, 20 fm, respectively. (For interpretation of the references to colour in this figure, the reader is 
referred to the web version of this article.)
Fig. 6. Fit of the particle distribution at t = 20 fm to a nonequilibrium distribution 
of the form (12). (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of this article.)

recover the result that for these limiting cases, the evolution after 
decoupling is indistinguishable from an equilibrium situation.10

Let us take the distribution of our massive particles at some 
large time t = 20 fm (this would correspond to the detection or 
measuring time). After checking that the distribution cannot be 
described by an equilibrium distribution (a χ2 test over the fit 
gives values around 6–7 per degree of freedom), we proceed to fit 
the nonequilibrium distribution to (12). We obtain a very good fit 
which is shown in Fig. 6.

We should stress that the fitting parameters aD and T D are not 
really independent, but they are related by Eq. (9). However, as 
the combined implementation of such a nonlinear constraint is in-
volved, we have opted to assume independent parameters, and test 
the consistency of the results a posteriori by obtaining the freeze-
out time from each of them.

From the fit we obtain a decoupling temperature of T D = 0.32 ±
0.02 GeV. Using Eq. (9) and the explicit form of a(t) = exp(βt2/2)

we obtain a freeze-out time of tD = 5.5+0.8
−0.9 fm. The fit also gives 

the value of (a/aD )2 = 41 ± 4, corresponding to a freeze-out time 

10 In a cosmological scenario this claim is not actually true, as the effective de-
generacy factor g(T ) of the distribution function is itself a function of temperature, 
thus producing a difference between the two cases.
of tD = 5.2+0.8
−0.9 fm, which is quite close to the previous number, 

so we can provide a final average value of tD = 5.3 ± 0.6 fm for 
the freeze-out time. Notice that this time is consistent with the 
situation seen in Fig. 5, although smaller than the crude estimate 
obtained by simply comparing � and H . One has to be careful 
when interpreting these numbers, because all of them assume a 
sharp freeze-out process, which is certainly not happening in our 
case, where a smooth decoupling occurs in time.11

We perform a parametric study of the freeze-out time by vary-
ing the mass of the particle and the interaction cross section. 
We present our results in Fig. 7. From this figure we observe a 
slight dependence of the decoupling time on the particle mass (for 
smaller masses this dependence is more pronounced). This can be 
explained due to the fact that when the mass is increased the rela-
tive speed of the particles in the collision, and the particle density, 
are reduced. The combined effect is a decrease of �, which favours 
the appearance of the decoupling at earlier times. We also see a 
rather systematic increase of the decoupling time with the total 
cross section. This is also expected because for larger cross sec-
tions � increases, producing a delay in the decoupling of particles.

If we had taken the condition � = H to define the freeze-out 
times, we would have obtained systematically larger values than 
those shown in Fig. 7. A similar condition has been proposed in 
the context of RHICs trading the Hubble rate by the expansion ve-
locity of the fireball surface [26,27]. A slightly different criterion is 
used in Ref. [28,29], ξ� = H , where ξ is a parameter to be deter-
mined. Using the values of tD from Fig. 7, we can easily extract 
the corresponding ξ . We observe that for lower masses ξ is closer 
to one, but it quickly decreases to ξ � 0.3–0.4 for m > 0.5 GeV. As 
a function of the cross section, ξ is rather stable around ξ � 0.4, 
increasing up to ξ � 0.5 for σ = 20 mbarn.

From this simple toy model for decoupling, we can already 
observe a rather clear dependence of the freeze-out time as a 
function of the particle properties. Using a more refined model in-

11 Our exponential parametrization of the scale factor helps to have a rather sharp 
freeze-out process. However, one cannot avoid still having a certain number of col-
lisions even at times as large as t = 20 fm.
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Fig. 7. Left panel: decoupling time tD as a function of the particle mass (keeping a constant cross section of σ = 40 mbarn). Right panel: decoupling time tD as a function of 
the cross section (with a fixed mass of m = 2 GeV).
cluding many interacting species one might address the freeze-out 
features of RHICs, and verify or falsify some of the hypotheses used 
to describe this mechanism. In this letter we content ourselves to 
present the real possibility of such a model and illustrate how the 
FRW expansion can provide a basis to address the freeze-out of 
particles in the SMASH transport approach.

4. Conclusions and outlook

In this letter we have reported our results on the solutions of 
the Boltzmann equation for a relativistic gas in a FRW spacetime 
evolution using the SMASH transport approach. For this metric 
there exists a particular exact solution of the Boltzmann equation 
which admits an analytical form [22,23]. We have compared the 
outcome of SMASH using the same initial condition and found a 
very good agreement for all times. Given that the initial condi-
tion is far from equilibrium, this agreement provides a non-trivial 
check for the SMASH code. We have also presented the solution of 
the Boltzmann equation for the “two-mode initial condition” intro-
duced in Ref. [22]. In this case no analytical solution is known, but 
a numerical solution of the Boltzmann equation—written in terms 
of a system of coupled equations for the moments of the distribu-
tion function—is not difficult to obtain. We also find a very good 
comparison between both approaches for all times.

Thanks to the versatility of SMASH we have solved the trans-
port equation for more general cases. In particular, we have pre-
sented here the solution for massive particles, with a Hubble ex-
pansion which produces a decoupling of particles when the in-
teraction rate falls below the expansion rate. As long as � 	 H , 
the evolution maintains the equilibrium distribution of particles, 
thanks to the collisions among them. In this limit we have seen 
that the predicted equilibrium distributions agree very well with 
the SMASH outcome. At decoupling (when � ∼ H) the distribution 
of particles departs from equilibrium due to the absence of colli-
sions. Taking into account the momentum redshift of the particles, 
we have extracted the value of the freeze-out time which is consis-
tent with the time at which the particle distribution departs from 
the equilibrium one. Finally we have presented an analysis of the 
freeze-out time as a function of the mass of the particle and the 
interaction cross section.

An interesting extension of this “toy model” for the freeze-out 
is to enlarge the particle content of the system implementing more 
realistic interactions according to the physics happening in rela-
tivistic heavy-ion collisions. This would allow access, in a more 
systematic manner, to the freeze-out of different species in a quan-
titative way and explore the hypothesis of a collective decoupling 
at fixed temperature versus a sequential freeze-out. With the re-
sults presented in this letter in a simplified scenario, we have 
provided indications that a dependence of the freeze-out time on 
the particles’ properties does exist.
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