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INTRODUCTION

The nuclear phenomena range from the structure of finite nuclei to a very hot and dense
system which may occur in high-energy heavy-ion collisions or in neutron stars. The
existing experimental initiatives and newly completed facilities (GSI, CEBAF, ..) will
force us to use relativistic equations to compare the calculations with data of the future [1]
and it can be said that for finite nuclei, the spin-orbit part of the relativistic model is
superior to that of the nonrelativistic one [2]. Then it is natural to use the relativistic
model. There exist, however, new features of the relativistic theories which have no analog
in the nonrelativistic calculation, namely the existence of the negative energy sea (Dirac
sea) of filled fermion levels. The presence of the Dirac sea is usually ignored, not because
its effects are negligible, but because the infinite body problems are difficult to handle [3].
The relativistic mean-field model (RMF) is a such model in which the effects of the Dirac
sea are not calculated explicitly, but due to the “magic of the fitting procedure”, its effects
are absorbed effectively in the coupling constants of the models (no sea-approximation) [4].
What I refer to as “magic of the fitting procedure” describes the fact that for such effective
theories many details or ignored corrections can be hidden in the fitted parameters - making
it, of course, more difficult to judge the physical correctness or relevance of each term in
the models. In this work, however, I will treat only such effective theories and therefore in
each case they are compared only after refitting the parameters.

A consistent relativistic mean field model to describe finite nuclei with a quality similar to
that of the nonrelativistic model not only in the treatment of the Hartree terms but also in
the exchange terms and the pairing correlation is also demanded in nuclear physics. This
demand appears not only from aesthetic reasons but also from the physical reason that
at the dripline, for example, the Fermi level is close to the continuum and the coupling
between bound and continuum states should be taken into account explicitly. Therefore
in these regions the pairing correlation becomes very important [5], so that a consistent

11



12 CHAPTER 1. INTRODUCTION

Hartree-Fock Bogoliubov calculation is needed in this case. This demand is not yet fullfilled
completely. In Ref. [5], for example, an attempt is made to go into this direction: The
authors calculate the Hartree parts fully like RMF, but neglect the Fock terms arguing
that this effect is already absorbed in the Hartree part; in addition they use the infinite
mass (zero-range) approximation of the meson propagators in the pairing sector.

Relativistic mean-fields model, which describe the nucleus as a system of Dirac nucleons
that interact with each other by exchanging mean meson fields, have been successful in
describing nuclear matter and ground state properties of finite nuclei [6, 7, 2, 8, 9, 10,
11, 12]. Other applications are the calculation of deformed nuclei [12, 14, 15, 16|, odd
nuclei [12], nuclei at the dripline [17], the potential energy surfaces of heavy nuclei [12],
and the prediction of superheavies [13, 12, 18, 34]. From the success of the RMF model, we
suppose that the exchange effect is already absorbed effectively in the coupling constants of
the model, due to the fitting procedure, but some calculations which take into account the
exchange explicitly by using the linear model have shown that this does not seem to be the
case [26, 27]. Understanding this situation seems necessary and interesting. Unfortunately,
due to the finite range of the mesons and the mesonic nonlinearity of these models, it is
difficult to expand these models in the above direction. On the other hand, the finite
range of the mesons has the advantage of giving the correct short-range (high momentum)
behaviour and the meson dependence of the nonlinear terms is needed to simulate the
many-body effects [27] and vacuum contribution [4].

Another possibility is the point-coupling (PC) model [21, 19, 20]. The difference of this
model to the Walecka model is the replacement of the mesonic potential from the Walecka
model with the density-dependent potential. In Ref. [20], Nikolaus, Hoch, and Madland (
this paper will be frequently cited so that I used the abbreviation NHM) used the Hartree
form of this model to calculate some observables of finite nuclei and nuclear matter. They
obtained similar predictive power as the RMF models, but used different weights and
observables from Ref. [6] to obtain their parameter set. The combination of the two facts
is remarkable, because it seems that the role of the finite-range of the mesons is not too
obviously reflected in the observables of finite nuclei. This fact, if further substantiated,
will give a chance to fullfil the previous demand by using this model. Because predictions
of finite nuclei still depend on fitting procedure or strategy, therefore our objective in this
work is first to study the finite range once again and then exchange effects, where we
treat both with the same fitting procedure. We will analyse these effects by observing
the predictive power of both models for binding energies of some isotopes and isotones,
in the separation energies, in the diffraction radii and surface thicknesses and also in the
spin-orbit splitting, the single particle spectra, and in the nuclear matter properties. This
investigation is necessary before we expand this model any further.

The second topic of this work are superheavy elements. The history of the superheavy



13

element was enlightened by the works of the Frankfurt group [60, 61, 62, 63, 64, 65], since
then, it is known that the study of the possible existence of the shell-stabilized superheavy
elements (SHE) becomes very important. In Ref. [13] it was found that different types
of self-consistent models did not give unique shell closure prediction in the superheavy
region. Why this happens is of considerable importance, therefore the third object of this
work is to study the difference in superheavy predictions of relativistic and nonrelativistic
self-consistent models by using the point of view of the nonrelativistic limit of the PC
model.

In chapter two, we discuss the connection between the linear RMF (Walecka) model and the
linear PC model. Here we fit two parameters sets of the linear PC models to experimental
data, one taking into account the exchange effect and one without the exchange effects.
We use the same fitting procedure as for the NLZ or LZ parameters sets. We calculate
some finite nuclear observables as mentioned previously. Note, that what I mean by the
long-range effect in chapter two, actually the long range in momentum, is nothing else but
a short-range distance effect. In chapter three, we also fit the nonlinear PC parameters to
the experimental data with the same fitting procedure as for the NLZ parameter set. This
nonlinear model does not take into account the exchange and nonlinear vector densities.
In chapter four, we derive the effective Hamiltonian of the nonlinear PC model in the
nonrelativistic limit and the relation to the Skyrme Hartree-Fock (SHF) model is shown.
In this context we also discuss qualitatively the role of isospin and the nonlinear exchange
terms. In chapter five, we use the results of chapter four and three to study the discrepancy
in the superheavy predictions between the relativistic and nonrelativistic models.
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CHAPTER 1.

INTRODUCTION




. -

THE LINEAR WALECKA MODEL

In this work we will study a simple approximation of the linear Walecka model which
takes into account exchange contributions. This approximation can be easily fitted as a
Hartree approximation to the experimental data. Then we use it to study the long-range
and exchange effects of the linear Walecka model in finite nuclei.

Our motivation to study the exchange effects is based on the following facts: for a long
time one has already known that the exchange terms give contributions of the same order
as the Hartree terms [22, 23, 24, 25, 26, 27]. They cannot be treated as a small correction
to the Hartree terms [22, 23, 24, 25, 26, 27]. But until now only a limited number of
relativistic Hartree-Fock (RHF') calculations for finite nuclei have been done [23, 28, 26, 29,
27]. The reason is that RHF calculations are numerically more difficult than the relativistic
Hartree(RH) calculation. As far as our knowledge goes, there is only one RHF calculation
where the parameters have been fitted directly to the experimental observables of the
nuclear ground states [26]. Zhang et al. [26] use a linear model with six fitted parameters
and two fixed parameters (pion coupling constant and mass), but the computational time
of their RHF code is about ten times longer than a Hartree calculation, and since in
the process of searching for the minimum the HF codes need to be called frequently,
they selected only five nuclei in order to obtain their parameter sets. They also did not
include pairing correlations in their calculations. They obtain x?/nucleus ~ 20 - 46. We
compare the result of Ref. [26] with a Hartree calculation in Ref. [6] with x?/nucleus
~ 250. Tt is clear that the exchange effect cannot be absorbed into the linear Hartree
model by a suitable choice of parameter sets. A more detailed discussion about it can be
found in Ref. [26]. The same conclusion is also obtained in Ref. [27] by using the Local
Density Approximation (LDA) to calculate the exchange contributions. On the other hand,
recently a new relativistic mean field model by Furnstahl et al. using effective field theories

15



16 CHAPTER 2. THE LINEAR WALECKA MODEL

(30, 31, 32, 33| was proposed, the claim being that effects beyond a Hartree approach are
included through the linear and the nonlinear coupling constants.

Our motivation to study the long-range effect is based on the following fact : Recently an-
other relativistic model appeared, namely the Relativistic Point Coupling Model (RPC) [20,
21, 19]. The difference of this model to the Walecka model is to replace the mesonic po-
tential from the nonlinear Walecka model with a densities-dependent potential [21, 20].
Ref. [20] (NHM) used the Hartree form of this model to calculate some observables of fi-
nite nuclei and nuclear matter. Similar predictive power in finite nuclei and nuclear matter
was obtained as in Ref . [6], but they used weights and observables different from Ref. [6] to
obtain their parameter set. This fact is remarkable, because now the role of the long-range
effect in the meson theory for finite nuclei can be questioned.

We organize this chapter as follows : in section 1 we briefly review the RHF formalism and
the approximation to extract the local parts of the Fock terms. In section 2 we discuss
the exchange terms in the above approximation. In section 3 we discuss the long-range
effect. In section 4 we give a summary of the approximations made and in section 5 we
fit parameter sets in two approximations, i.e., a point-coupling like approximation with
and without exchange corrections, with the same procedure as Ref. [7]. Then we use the
standard parameter sets LZ ( linear Hartree model) and NLZ (nonlinear Hartree model)
from Ref. [7] as a guidance to study the long-range and exchange effects from the linear
Walecka model in finite nuclei. Finally, in section 6 we present our results and discussion.

2.1 Approximation

Our starting point to study the long-range and exchange effects in finite nuclei is to write
down a Lagrangian density operator from the linear Walecka model as [22]:

EL == \i’(wua“—mB)\il
1 . o i
+ Y sil5 00010 diy — Mt Bi,) — 9:iVTY 63, V], (2.1)
i—svRrA. 2

where the meson contents can be seen in table. 2.1. The ¢;, satisfy the gauge condition

9 ¢i,, = 0. For the ¢;,, the fields used are ¢(z), V,(z), ]%:L(x) and A, (z), denoting a scalar-
isoscalar, a vector-isoscalar, a vector-isovector and the electromagnetic field operators,
respectively. g; and m; are coupling constants and masses of each field operator ggw. Here
we use the standard definition for the field operators as [22]

A~
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B = Tllaploi + L)

o7

U(r) = 3 (Val@)be + Falz)dh), (2.2)

[e%

where ¥, (z), \I~’a and f,;, denote a nucleon, an antinucleon, and a meson wavefunction
with o enumerating the states. The operators a,;, b, and d, annihilate a free meson, a
nucleon and an antinucleon with a momentum k,, similarly the conjugate operators create
a free meson, a nucleon and an antinucleon with a momentum k,. D(x,y,m;) is a meson
propagator which is defined as a solution of

(@ +m;)D(z —y,m;) = 6*(z —y). (2.3)

If we choose a Slater determinant
A
(g0 >= ] b0 > (2.4)
a=1

as the ground state of A occupied single nucleon levels, by using the standard procedure
we have

< ¢0| : ,CAL : |¢0 > = Z \Tla(i’yuaﬂ — mB)‘I!a
a=A

1 _
+ D) s [5(5V¢HHZ-5"¢HW — mi Pl bmin) — 9iValt dmin¥al
i=S\V.RA...

1 y -
- Y, > s [5(3@?&&5 Prapiu — M Orapibrapiu) — 9i¥al't OrpainPs)-
i=SV,R,A... aB

(2.5)

The index H (F) in the meson fields denotes Hartree (Fock) contributions, where the meson
fields satisfy the Klein Gordon equations as :

(O +m?) b (r) = —g: ) Thai(2)
(O +mf)Brinp(x) = —gidugi(2), (2.6)
with :

87

Ths(@) = T T80, (2.7)



18 CHAPTER 2. THE LINEAR WALECKA MODEL
Meson || ¢;, (Field) | g; (Coupling Const) | m; (Mass) | I'} (Coupling terms) | s;
o 35(55) 9gs mg 1 1
w V. (z) qv my Yu -1
P Rl(x) 8 mp VT -1
photon A, (z) e 0 27u(1 + 73) -1
Table 2.1: The meson contents of equation. (2.1).
From Eq. (2.5), we can easily obtain a relativistic Hartree-Fock equation as :
Yo 5l (Pmin(2)dap — Gripsa(®))]¥s(z) =0 (2.8)

> (940" — mp)das —
af i=S,V,R,A...

These are a set of coupled differential equations involving a nonlocal Hartree-Fock potential.
One simple way to localize Eq. (2.5). is to remove the exchange (Fock) terms in the third
line of Eq. (2.5). Then Eq. (2.5) reduces to a relativistic Hartree approximation. This is
the same result as if we consider the meson fields as classical fields.

2.1.1 Low Momentum Expansion of Meson Propagator

To see another kind of approximation which can be done, we return to Eq. (2.6). and write
the meson fields in Eq. (2.8). as

i) = gi / d'yD(z —y,m) Y Jhai(y)
o) = gi [ d'yDlw — g, m) Tl (y), (2.9)
In momentum space, D can be written as
d4p e—ip.(z—y)
D(z,y) = — / ,
(l’ y) (27'(')4 p2 _ mz2 + 7€
1 dp _. p? + e,
= = —tpE=y)[] — : 2.10
Suppose that € — 0 and fr’; < 1 Then we can expand D as
1 d4p ) p2 p4 p6
P L (. S A
(z,v) o (27r)4e [ +m$+m§+mf+ ]
1 1 1
= — oz —y) - =06z - — 0?5z —y) — ... 2.11
2 (z —y) m (z y)+m? (z —y) (2.11)
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If we insert this expression into Eq. (2.9), then we will obtain

by = —g—;Z\TJ&Ff\Pa—i—% O(T,T0,) Zm? (T, T40,) +
9
b = \11 4w T, 0,) — L 02(3,100,) + ... 2.12
Prapi ﬁ+m O( g) = g0 (WalP¥s) + (2.12)

7 7

The convergence of these expressions may be questioned, but at present we are still not able
to give a rigorous answer, we can only use figure 2.1 as motivation of this approximation.
In figure 2.1, o denotes the scalar field of the linear Walecka model. The index w/pc
in the density denotes if the density is calculated by using a mesonic potential/density
dependent potential (like the conventional point-coupling model), the constant ¢ denotes
g%. e denotes the exact scalar potential, e; the contribution in the scalar potential from
the first-order expansion of the scalar field in the absolute velocity, e, the same in second
order, e, is the same as e; but uses the density dependent potential to obtain the densities,
like the point coupling model and E is the same as e, but uses a parameter set which is
directly fitted to observables. We see that e, is closer to e than e;. This fact shows that
the density expansion in the sigma field tends to be convergent. But the selfconsistency
condition has a negative effect in the convergence of the density expansion, which can be
seen by comparing e, with e4. E is closer to e than e4, which means that adding a free
parameter in front of the derivative term and a fitting procedure can help to suppress the
selfconsistency effect in the convergence of the density expansion.

2.1.2 Second-Order Derivative Approximation with Additional
Parameters

To avoid any further difficulties which can appear if we take all orders of the expansion
in Eq. (2.12) in the numerical calculation and the physical interpretation, we decide as a

preliminary step to make the following low-order approximation with additional parameters
ki

i = Z\IIF”\I! +ngD\IrF“\II)
Hrapi = —W%Fé‘% +ki%5(\1rarg‘wﬂ). (2.13)

i i
The physical motivation of this ansatz is obvious from figure 2.1. The constants k; are
some parameters, which can be used to see how strong the effects beyond second order

approximation come into play. For instance, if k; equals one, it means that these effects
play no role at all. Because the terms taken into account, including the fit parameters,
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0.0 185 with LZ, only E with LDZ2
-0.05 ¢
-0.1
-0.15 ¢
| — e=0.50p
02t . NN S €= Cpg s w2
****** €= Cpspc(pspc"'(ApspC)/ ms )
€4 = CP%C (pspc +HAps F))émS )2
“o E=cps (ps +tks(Aps )img)
-0.25 | | ‘

0.5 1.0 1.5 2.0 25 3.0 35 4.0 45
r(fm)

Figure 2.1: Density expansion in the ¢ field of Oxygen: o denotes the scalar field of the
linear Walecka model. The index w/pc in the density denotes if the density is calculated
by using a mesonic potential/density dependent potential (like the conventional point-
coupling model), the constant ¢ denotes g; e denotes the exact scalar potential, e; the
contribution in the scalar potential from the first-order expansion of the scalar field in the
absolute velocity, e; the same in second order, e4 is the same as e, but uses the density
dependent potential to obtain the densities, like the point coupling model and E is the
same as e, but uses a parameter set which is directly fitted to observables.

5.0
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correspond to the conventional point-coupling model, from now on, we call the approxi-
mation in Eq. (2.13) the “point-coupling approximation”. First, we insert Eq. (2.13) into
< ¢o| : L, : |po > and use a Fierz Transformation (FT) to obtain

< ¢0| : ﬁL : ‘QS() > = Z \Tja(i’)/ua# — mB)\Ila
a=A
1 gz 1 gz 1
+ Y s S WY, BT, U+ = 5 ™9, (T, D0, 0 (T 50,0 5)]
i=S,V,R... 2 Z of 2 i of

1
- Y s G 9 S BT BT, U 14 S (TG (8,0,) Tyl ; (04T )
i,j=S,V,R... 2mz af 2 m; af

(T (0" Tg)Ty T + 20T U0 (3, T5)T,; (0" 1))
1 - 1
— EBUA“a”AM +e Z \Ilafy“Aué(l +713)Wq + Lega
(2.14)

The constants C; appear due to the Fierz transformation, the explicit form of these con-
stants can be found in Appendix A. L., is the electromagnetic exchange contribution.
Now we write the above expression as

< QSO‘ : ﬁL : ‘QS() > = Z \T/a(’l:’)/”au — mB)\Ila
2k,

+ Z Z z[ gz JzaJﬁ‘i‘_gz—AiauAgl
i=S,V,R... ]

gz gzk ]_ . .
- Z CJZ[ JJaJJ ma ( AJauAm BjauBéu"'JjaC%)]]

j =S,V,R... ]

— 58,,14“3”/4“ +e Z ‘T’a’YMAui(l + 13)Wq + Lega,

(2.15)
The definitions of the variables in the expression above are :
Agjp = au(‘i’arj\pa)
Bup = 5 [0al3(0,00) = (0,80)Ty V]
Coj = (0uWa)T;(0"Va)
Joj = U I, (2.16)

We can see that the non-derivative exchange terms do not give particular problems since
they give rise to second-order differential equation like the Hartree case, but the derivative



22 CHAPTER 2. THE LINEAR WALECKA MODEL

exchange terms force us to introduce new densities (Bq,,, Caj), Which qualitatively gives a
different effect, since it requires to solve fourth-order differential equation and consequently

further boundary conditions need to be specified.

2.1.3 Linearisation of the Equation of Motion

The dominant contributions in Eq. (2.15) are from the terms with I'; = 1, 7. The fine
contributions are from the terms with I'; = 7, 7. It is quite illustrative if we see the order
of magnitude of the terms with I'; = -y because these terms show a clear order counting
and are easy to calculate. They will be represented by :

2

= \Ila v, U 57U
€1 2m3§ Yo BYoY¥ 3

& = g” 2 >V (Tar0 W)V (570 9)

’U aﬁ
CU CvGy
€exl = 2 g Z‘I’a O\Il \1’5’}/0\11,3
’Uaﬂ
L Gk g ) (00T [T (F0) — (FT5)700
o ® =S Dl Ta) = (V) bl (o (F) = (V)]
Cugv
o m O T () (V) (2.17)

¢y is a constant which appears due to the Fierz transformation. It is a function of the
meson coupling constants and masses and fulfills ¢, < 1. In the plane wave approximation
the summation is replaced by integration according to

> Uy ¥y = o = ( (2.18)

with a=(25+1)(2I+1) a degeneracy factor. S, I denote spin and isospin, respectively. In
this framework, Eq. (2.17) yields the following order counting

gv )
€1~ p
2m2
€y v 0
2
Cv3y )
€ex1 ~ —

2 Y0
2m?
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2
1 Cogpky 34 - 4
2
9 CoGpky 3.6 = 4
~ — . 2.1
€ez2 mé 6'02p0pF (2.19)
From eq.( 2.19), we obtain that | €12 |>] € |, | €errjz |<| €1 |, | €x2 [<| €ezn | and

Ji:—ﬁl ~ CU:;—%. In this approximation, every term in the exchange of the derivative part
gives a contribution in order v?, where v is the absolute velocity of the nucleon and v < 1.
This appears to lead to a problem, because the contribution from the derivative exchange
terms could be similar or a little bit larger than the direct derivative terms, therefore we
can not neglect them if we still want to retain the direct derivative terms in the finite nuclei
calculations, in view of the fact that the direct derivative terms are important for surface
properties of finite nuclei. But it is obvious from the above estimation that these terms
are smaller than the nonderivative exchange terms. It is quite reasonable to assume that

we will have similar order counting for other contributions.

In any case, it will be instructive to derive the equation of motion from equation (2.15).
By using the Euler-Lagrange equation we obtain it as

[7,0" + (M + YV + (U, 4+ 7°Unp) 0" + (W' + 7 W?*)0)) T, = 0, (2.20)
where
- 9.
M= mp+ ads = (8 +82)9" Ay + 584(i0" B + Co) (2.21)
- - 9.
Ve = apdy — (6 + 65)0" AT, + g(sb(iaﬂth +Cy) (2.22)

4 -
UN = gidﬂBﬂa

4 -
UVH = gZ(SbBw,b

2~
W1 - —§5aJa
2~
Wla = _gébea- (223)

Here the double index a/b means summations over S,D/V,R. Sa/b are the contributions
from the derivative exchange. The constants in Eq. (2.20) are :
1 lgs (1gs 49, 3 9a

g0 = _[Eﬁg_(ﬁﬁg_ﬁm_g_ﬁm_%)] (2:24)
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1 g2 1g2 2g2 3 g;
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1g: 495 1 g;

(e 5~ Tes tco7)

16m 16m; 16 m%p

8m2%  16m2  16m2  32m%

1 9%k, 1 g%k, 4 g%k, 3 g%k,
_[5 m? +(E mt 16 md _Em‘}z)]
( 1 g2k, o 1 g2ks | 2 g0k, | 3 g?zkr)]
2 m} 16 m* 16 m: 32 m}

1 ggks 4 ggkv 1 gl%zkr
16 m* 16 m* 16 mj

|

Lopk, 1 gtks 2 gike 1 giky
o (B S i)
mp 6 m; 16 m; 32 my

3. 14g%, 44g%k, 3 gik,
2 16 mi 16 mb
3.1 g%ks 2 g2k, | 3 gRke
306 mi T 16 mi 32 mi
3.1 g%k, 4 9%k, 1 g%k,
216 mt 16 m* ' 16 m%
3,1 9% 2 9%k, 1 gk,
306 mi T 16 mi 32 mk

)
)
]
)l

(2.25)
(2.26)
(2.27)
(2.28)
(2.29)
(2.30)
(2.31)
(2.32)
(2.33)
(2.34)

(2.35)

Now let us study some densities in nuclear matter and finite nuclei to gain physical feeling in
this case. In nuclear matter g; # 0, V; =0, | B; | /(mpp;) is of order v and | C; | /(m%3:)

=

is of order v?, while in finite nuclei p; # 0 and Vp; #0. Based on figs 2.4 and 2.5,
| Vpi | /(mip;) can be estimated to be of order v or possibly even smaller. Here the
index i=V,S. From our experience in nuclear matter, it seems reasonable in finite nuclei to
assume that | B; | /(mpp;) is of order v and | C; | /(mZ%p;) is of order v2. The validity of
these assumptions can also be checked by using figures 2.3 and 2.2.

With this rough estimate of the order of magnitude in the densities, we will study the
form of B? from the Gordon decomposition [38] by using the exact equation of state in
Eq. (2.20). Here we only calculate the scalar case because the vector case is of similar
magnitude but more difficult than the scalar case. After a straightforward Dirac matrix
algebra calculation we have from the Gordon decomposition that A; + As + A3 =0 with :
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A, = —Qli[(a“\ia)wa G, (070,)]
1 _ _
+ §Uu[(6uq]a)70\1’a - \I]afya(aﬂ\lla)]
1 _ _
bM)W — T (0,
1

+ Loz, - a0,

£ MO0 — Wa(040,)
(2.36)

1. 1 _ 1 _
Ay = §aﬂ(\paaw‘1’a) - §anM8M(\I’a‘7M\I’a) - §iW2“D(‘I’a0M\Pa) (2.37)

As = MU AU, + VOT T, (2.38)

Let us define m* = m* +Am* and V* = V*+ AV, where Am* and AV are the parts of
m* and V' with order v2. Now, if we apply the previous order-of-magnitude estimation to
study the magnitude in every term in A; through A3 and we assume that the terms with
order > v? are small and can be neglected, then it is obvious that only the first term in A;
and A, will survive and the Am* and AV® vanish in A3. Thus in the limit of small v the
B¢ can be determined from Dirac equation. We well use this fact as a motivation for the
next approximations.

2.1.4 The Approximate Densities C;, and B;,,

Now we start to make approximations for the terms in the last line of Eq. (2.15) ( or
approximations for the Cj, and the B,,, densities). For a moment suppose that we do not
know yet the approximate forms of the Cj, and B;,, densities, but only expect to obtain
from the approximate Lagrangian density ( the Lagrangian density with the approximate
forms of the densities Cj, and B,,, ) an approximate equation of motion of the form

[v,0" 4+ i(m* + 7V + 0asT*)] ¥, = 0, (2.39)

where m*, V* and 7% are real functions. It implies that there is a connection between
the two types of functions: m*, V¢ ;7% and J;,, Aiops Ch, Bjoyu. Therefore we will try to



26 CHAPTER 2. THE LINEAR WALECKA MODEL

obtain the Cé and Bj,, as functions of the m*, V¢ T8 Finally we use the approximate

form of m*, V® T% to calculate Cg and Bj,, then from these approximate densities C’%
and Bj,, we obtain the approximate Lagrangian density.

The scalar case (I' =1):

The Gordon decomposition [38] of Eq. (2.39) is

\Tla[’yub_“ —i(m* + 7,V + oagTaﬂ)] JA
—W, A[7,0" +i(m* + 7,V + 00TV, = 0, (2.40)

4 = a*v, and a* is an abritrary vector. A straightforward simplification of this expression
gives

Uo(0"W,) — (000, = —i[0,(Veo™V,) +2m* Uy’ ¥,
+ V0,0, 4 2¢°P0T, 5T vy 50, (2.41)

and from Eq. (2.39). we also have

(0,9)(0"T,) = [m™2V,0, +2m*V ¥, ¥, + 1/20(F,¥,)
+ V'V, 0,9, —0,(V,Ueo™V,) + Uy f(Tap) Vo). (2.42)

Here f(T,p) denotes a function of 7,43 which is zero for T,,5=0. We can consider the m*,
VY T as

vV a=A
T = 0+.., (2.43)
§2 §2 . . . g2
where - <5 = o, and 5 = q, are effective coupling constants. They are functions of 2,
s v ]
9 gzks 92k

~5 , o3 and <3, which come from the contribution of the direct and the exchange part in
front of the nonderivative and the derivative of the scalar and vector densities respectively.
In the above equations ... denote contributions from the derivative, isovector, nonlinear
and tensor correction parts. As the next step, we substitute Eq. (2.43) into Eq. (2.40) and
Eq. (2.42) and then into a Lagrangian density to obtain :

1. - - . - -
Ls = Y 20;Awdl - BB+ 1yl
af

= Lhn 4 Lrenting (2.44)
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where

. 1 1
Lhin — -5 050" ps + 2migpl — 2mBJ* T, — 2mp i (Jr,,) — 58”(JT,,“)80(JT‘”‘)(2.45)

and
o Ampg? 5 25 7 h
L on lin — __"BJs 3 ZJs 4 4 25 SJ”JU 2% sJ v, 0" (JY
S mg ps+m3ps+ mBmgp v H+ mgp Tvp ( ’U)
~9 , 2~4
4 2%105%13 (Jrup) — W‘CZZ P2TE Ty + (2.46)

The last two equations are the scalar case of the approximation to the derivative exchange
terms in Eq. (2.15). The other case can be derived similarly. The results are shown in
Appendix B.

2.2 Exchange Effect

It seems that the form of £"°" " is not practically useful in the sense that it has too many
terms and every term is a function of constants in a complicated way, which could lead to
difficulties if one tries to fit all terms to experimental values of nuclear observables. We find
that many terms contain isovector parts, which we know give smaller contributions than
those with only isoscalar parts, since one knows that densities of the isovector contribution
are smaller than the densities of the isoscalar one [7, 2, 20, 6]. Therefore only the isoscalar
contribution from the nonlinear potential will mean a significant difference. We find that
the nonlinear terms without isovector parts are not many and their complete form is

1 1 1 1 1
;kwn—lin = —gﬁsl)g - nyspfql - ZVU(JJ;JWV)2 - §C3ps(‘]:)/']'uu) - 505p§(‘]:<]1}u)(247)

Then it seems reasonable to take these terms as effective nonlinear terms and the con-
tribution from the other terms can be considered smaller than these leading terms and
assumed to be already absorbed effectively in these terms. Because the coupling constants
in front of the tensor fields and the tensor field densities themselves are small [31], we
expect that L5 also yields small contributions, so that it can be neglected. Now we have
the nonlinear Lagrangian density as :

<ol Ly |do> = Lpree+ L1+ Lo+ Lhor tin + Laira + Lena, (2.48)
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Later, in section five, we only use the following Lagrangian densities

‘CLDZZ

‘Cf'ree + ‘Cl + ['dirA

Lipzi = Lipza+ Lo+ Leza.

(2.49)

A second step to simplify the problem is to transform the constants (in Appendix B ) into
simple forms by a redefinition as follows :

676 g2k,

2672 g2k,

941 g%k,

2
M (1185 i
1 g
8m}
1 g3k,
2 mt
1 g2k,
2 mi
1,13 g2k,

21237 mt

1 giky
8 m%

1185 m

55 g2k,
237 mi

1185 m4,

7_giehr
158 m%

]

)]

(2.50)

(2.51)

(2.52)
(2.53)
(2.54)
(2.55)
(2.56)

(2.57)
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1 4 g%k, 128g k, 64g%k,

—0p = —= — 2.
T 2MBl7g mt 79 mi 79 m‘}{] (2.58)
1 1 52 g’ks 23292k, 14 g%k,
-0 = —= £ v . 2.59
2 1% 2mel537 mt 237 mi 79 mR] (2.59)
If we define
~ 1 ¢’k, 3292k, 16 g%k,
Cs = - —== — 2.60
5 [79m4+79m3+79m‘§]’ (2.60)
and
~ 8 g%k, 19 g2k, 19 g%k,
2 — 2 — 2.61
Cv =75 mt 79 mt ' 158 mb E (2.61)
then we obtain also the nonlinear coupling constants as :
~ g2
Bs = _1205"7’353 (2.62)
~ g4
Vs = 8(3’5E;1 (2.63)
~ g4
Yo = —8C’Vm—”4 (2.64)
Cy = SmB(CS—CV)% (2.65)
gt
Cs = —4(Cs - C'v)ﬁ4 (2.66)

Beside the terms with constants %ai and %(51, with i=S,V,R, the terms in Eq. (2.48) can be
interpreted as exchange term corrections. If we take «;, J;, and the remaining parameters
as free parameters, this Lagrangian density is nothing else but the point-coupling model
of ref. [20, 31, 35, 19]. Therefore this approximation qualitatively corresponds to a point-
coupling approximation, even though quantitatively the value of every nonlinear coupling
constant is different. The equation of state from this Lagrangian density in the spherically
symmetric case can be found in Appendix C.

Before we go any further, let us see the features of our formula in figure 2.2 for a Lead
nucleus and figure 2.3 for an Oxygen nucleus, where

m2

I M2 P
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I, represents the energy density contribution from the scalar direct nonderivative term. The
scalar direct derivative term is represented by dI,. I; is the scalar part of the exchange
contribution from the derivative terms. I;,,; represents the same quantity as I;; but it takes
into account only the nonlinear parts. The Iy, /4y are similar to Iy /4en;, but come from the
contribution of the vector part. From those figures we can see that the contributions of I
and I, still have the same order of magnitude as the contribution of the direct derivative
term ( dI,), as expected. In the coupling constant redefinition process, the linear parts
of the exchange of derivative terms is already absorbed, only the nonlinear parts are left
(Ltsnijtont)- The nonlinear term from the scalar part Iy, still has more or less the same
order of magnitude as dI, but I;,,; has a larger contribution than d/; but still smaller than
I,. It is clear now, under the approximation above, that the large value of the nonlinear
contribution from the vector part appears because it is needed to compensate the linear
part which is already absorbed in the coupling constants redefinition, not because the
contribution from the vector part is simply too large. Of course the value of I 1mi
depends on the parameters we use, but the compensational nature of our approximation
does not depend on the parameters.
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Figure 2.2: Comparison of the potential energy density from the exchange of the derivative
terms with the potential energy density of the corresponding direct terms in Lead. The
symbols are explained in the text.
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Figure 2.3: Comparison of the potential energy density from the exchange of the derivative
terms with the potential energy density of the direct terms in Oxygen.
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2.3 Long-range Effect

Figures 2.4 and 2.5 may help to give a clearer understanding of what I mean by the long-
range effect. The following additional definitions have been used in figs 2.4 and 2.5: Aeg
the difference between e and e;, Ae; the difference between e and ey, Aes the difference
between e and ey, Ae,/e the ratio of e; and e, Aey/e the ratio of ( e; — e;) and e, and
finally Ae./e shows the deviation of the ratio of e; and e from unity.

We see from both figures that for Oxygen, Zirconium and Lead e, is closer to e than
e; or Ae; is closer to zero than Aej, and one can see also that Ae,/e is close to one
and Aey/e and Ae./e close to zero and also for large radii Ae,/e is smaller then Ae./e.
These facts show that the density expansion in the sigma field tends to be convergent
and that for large radii and larger mass numbers this behaviour appears more significant,
but the difference between the exact and the approximate form creates a significant effect
if we calculate the equation selfconsistently (we have already used the density-dependent
potentials in the calculation). The calculation with approximation like the point-coupling
model produces a different density than the exact calculation. This fact can be seen
comparing Aes with Ae; or e; with e4 and the figure of the density versus radii in fig. 2.4.
The most significant difference appears in the region of small r. It is clear because in this
region the approximation breaks down. Adding a parameter in front of the derivative term
and a fitting procedure can help a little bit to reduce the discrepancy, but we can see from
the figures that in the region around r equal zero the approximation still shows different
behaviour from the exact form. Therefore we can raise the question to what extent this
fact has effects in predictions of observables for finite nuclei.
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Figure 2.4: Long-range effect in the scalar potential energy of Oxygen.
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Figure 2.5: Same as the first and fourth figures in figure. 2.4 but for the Lead and Zirconium
cases, respectively (top and bottom).
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2.4 Summary of Approximations Made

It will be useful for the reader to summarize the approximations made together with the
motivation for each.

1.

Low momentum expansion of the meson propagator ( 2.12)

The physical motivation of this approximation is clear: the nucleons in nuclei move
slowly. We can use figures 2.4 and 2.5 as motivation of this approximation, but
two difficulties still appear if we take all orders of the expansion in this approxi-
mation, namely the numerical and the physical interpretation. The first problem
is the appearance of fluctuations around r=0 from the terms with the derivative of
the densities calculated in higher than second order by using the four point formula.
It seems that a more suitable numerical formula is needed in this case. This could
be handled with some effort, but the second problem is more difficult: the equation
of motion will be an n-th-order differential equation due to the derivative exchange
terms, where n-2 is the order of the derivative; what is the meaning of this equation
? It seems that a deeper investigation is needed to understand this situation.

Second-order derivative approximation with additional parameters ( 2.13)

We take the derivative expansion only up to second order. The effects beyond the
second-order approximation, partly, are simulated by additional parameters. Due to
this approximation, the Lagrangian density of the linear Walecka model now corre-
sponds to the Lagrangian density of the linear Hartree-Fock point-coupling model
(see ( 2.15)).

Linearisation of the equation of motion

The exact equations of motion from the above approximate Lagrangian density are
fourth-order differential equations due to the derivative exchange terms. A part of the
new densities (Cj, and B,,,) are responsible for this feature. An order of magnitude
analysis of B,, shows that these parts are small. If we suppose that a similar situation
happens for all C;, and B;,,, then neglecting these small parts from each new density
will lead to second-order differential equation (Dirac equation). From the opposite
point of view, we can obtain the approximate densities Cj, and B, if we start from
the Dirac equation.

The approximate densities C;, and B;,,
We calculate these densities by using the Gordon decomposition of the general Dirac
equation ( 2.39) and with an approximate form of m*, V® and T% (see Eq. (2.43)).
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2.5 Determination of Parameters

Before the fitting process ( search the minimum error of the calculated observables), we
need a trial input parameter set, which should make the iteration process in the Hartree
code convergent. Until now, I have not been able to find the right trial parameters if
I take into account the leading nonlinear terms (L, ;). The reason is not clear. It
could be that we should use not only the leading but also all nonlinear terms or our
approximation gives the wrong nonlinear terms or that simply the right trial parameters
have not been obtained yet. An investigation in this direction is, of course, necessary but it
is still worthwhile to first pursue this study without nonlinear terms as a preliminary step,
to examine how this approximation works. Neglecting nonlinear terms, in other words,
corresponds to making the following approximation in Eq. (2.43) : m* ~ mg, VV=T"*
~ 0. We call the parameters under this rough approximation LDZ1 and we will compare
it with LDZ2 and study both numerically. LDZ2 denotes the parameters which for the
case without exchange corrections. The corresponding Lagrangian were given in (2.49).
Then we compare both of them with LZ and NLZ from Ref [7]. To make the result
comparable to Refs. [2, 7], we follow their fitting procedure, choosing the same set of
physical observables (the binding energies, diffraction radii and surface thicknesses of the
160,40 Ca,® Ca,%® Ni,%° Zr116 Sn 124 Sn, and 28 Pb) and weights (0.2% relative error for
the binding energies, 0.5 % for the diffraction radii and 1.5% for the surface thicknesses)
also using the constant gap pairing correlation [2, 7]. Our parameters are gs, gy, gr, ks,
k, and k, ( six parameters). In our approximation, we take ms; = 551.31 MeV, m, = 780
MeV and m,=763 MeV as fixed parameters.

2.6 Results and Discussions

In table 2.2, we collect our x? results and compare to the linear and the nonlinear Hartree
models [7]. Here LZ (a linear one) and NLZ (a nonlinear one) denote parameter sets
from Refs. [7]. BE, DR and ST denote the binding energy, diffraction radii, and surface
thicknesses. It will be helpful for the reader to collect the definiton of each parameter set
which will be discussed in this section into one table as follows:

1. LZ  : Walecka model, no nonlinear terms, exchange omitted
2. NLZ : Walecka model, with nonlinear terms, exchange omitted

3. LDZ1 : Point-coupling model, no nonlinear terms, exchange included
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4. LDZ2 : Point-coupling model, no nonlinear terms, exchange omitted.

In LZ and NLZ one uses four and six free parameters respectively. Another interesting
conclusion which can be found in Ref. [6] is “In the linear RMF model, the addition of
two free parameters in the form of an omega and a rho meson mass (this parameter set is
denoted L1 with x?/nucleus ~ 250) and also the addition of other mesons or tensor cou-
plings does not improve significantly the x2”. Therefore we could say that the comparison
of our approximation with the RMF model by using the LZ parameter set is still fair in
the sense that if we use L1 as comparator, it still does not much change the conclusion.
Global information which can be obtained from table 2.2 is that the parameter set with
the exchange correction (LDZ1) gives a better x? than the one without the exchange cor-
rection (LDZ2, LZ) in binding energies, surface thicknesses and diffraction radii, LZ has a
better x? in the diffraction radius than LDZ2, but basically they have the same quality of
predictions, as we will see later. This fact gives us as an indication that large parts of the
“long-range effect” or the effect beyond the second order approximation can be absorbed in
the parameters k;. If we compare LDZ1 (x?/nucleus ~ 67.2) with a full Hartree-Fock result
in Ref. [26] with x?/nucleus ~ 20-46, it shows that our approximation works quite well.
Comparing the global results in table 2.3 of LDZ1 with NLZ, most differences concern the
surface thickness, but later we will see that after more systematic investigations in every
observable, this is not really the case.

The values of our parameters sets can be seen in table 2.3. The values of the parameter
set LDZ1 in table 2.3 are the values after redefinition (2.49), the original parameters can
be obtained easily from these values with an inverse transformation. Comparing the cou-
pling constants of LDZ2 and LDZ1 in table 2.3 with LZ (see the value in Refs. [7]), they
have similar magnitude. Values of the parameters k; not close to unity indicate that the
long-range effect is strong. LDZ1 has smaller k; and k, values than LDZ2, with k, even
different in sign. LDZ1 has a larger k, value then LDZ2. This shows that the exchange
effect changes the relative magnitude of every contribution in the derivative terms.

| x> | BE | DR | ST | Total |
LZ [800.94 [ 46.01 | 1668.99 | 2515.94
LDZ2 | 872.21 | 70.09 | 1250.96 | 2193.27
LDZ1 | 89.31 | 18.58 | 429.31 | 537.20
NLZ | 23.89 | 18.77 | 29.25 | 71.92

Table 2.2: x? results from various approximations. BE denotes the binding energies, DR
the diffraction radii and ST the surface thicknesses.
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‘ Parameters ‘ Js ‘ o ‘ Jr ‘ kg ‘ k, ‘ k, ‘
LDZ1 11.1437 | 13.8016 | 11.3544 | 0.2213 | -0.2996 | 1.3419
LDZ2 11.4202 | 14.1580 | 11.3443 | 0.7998 | 0.8173 | 0.6999

Table 2.3: Values of the six free parameters after they are fitted, LDZ1 denotes the pa-
rameter set of the point coupling approximation which takes into account the exchange
corrections and LDZ2 the parameter set without exchange corrections.

In figure 2.6 we compare the E/A and charge radius calculations of our work with the LDA
calculation from Ref. [27]. We have better E/A results than the LDA for lighter nuclei
and a similar result for heavier nuclei. For the charge radius we have a similar quality of
results as the LDA calculation. Besides, the x? of LDZ1 is not too far from Ref. [26]. This
result also can be used as a rough probe to see how much relevant information is lost in
our approximation.

Before we study the results in more detail, we will investigate the validity of the approxima-
tion which we already used in Eq. (2.43) by examining every contribution in its potential
with the LDZ1 parameter set. Investigating two cases, 28 Pb and %0, the global behavior
of the potentials should be adequately represented. The result can be seen in figure 2.7
for the 28 Pb case and figure 2.9 for the %0 case. Figure 2.8. and figure 2.10. are the
same figures but with a different scale. In figures 2.8 and 2.10, we show the behavior of the
non-dominant contributions, which cannot be seen in the previous figures. From figures 2.7
and 2.9 it is clear that both nuclei have the same potential behaviour, i.e. the Qg, = (-

+) f:;i ps» give the dominant contribution in the potential (Qs in an attractive part and
Qv in a repulsive part) if we compare them with the contribution from the isovector parts
(Qr,a), the derivative parts (dQ;,i =s,v,r,d) and the tensor part ( Qr). In figures 2.8 and
2.10, one can see that the isovector parts are more important than the derivative parts in
Lead, but the situation is opposite in Oxygen, where the derivative parts dominate over
the isovector parts. The fact that the dominant contribution comes from Qg , can be used

to give a justification for our approximation in Eq. (2.43).

To see the difference among the four parameters more clearly in binding energies of finite
nuclei, we use the error in the binding energies (EBE) and the two-neutron (S,,) and the
two-proton (Sop) separation energies from some isotopic and isotonic chains. The error in
the binding energy is defined as

Eth - Eexp

EBE =
Eexp

, (2.68)
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Figure 2.6: Comparison of binding energies per mass number and charge radii (r.) of some
spherical nuclei for LDZ1 with LDA calculations [27]. Lines in the figures are intended to
guide the eye.
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Figure 2.7: Every contribution in the scalar and the vector potential per nucleon mass as
a function of radius (fm) in 2*® Pb. Here we use the LDZ1 parameter set. The definitions
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Figure 2.11: Error in the binding energies for the Ca, Ni, Sn and Pb isotopes.

while the Sy, and Sg, are defined as
Son = E(N,Z) — E(N — 2,7), (2.69)

and
Sop =E(N,Z) —E(N,Z —2) (2.70)

respectively, with E(N,Z) the calculated binding energy. In figure 2.11 we give the EBE
for the Pb, Sn, Ni and Ca isotopes, and the EBE for the N=82 and N=126 isotones in
figure 2.12. As in the previous case, the lines in the figures appear only to guide the eye.
From these figures, it is apparent that LDZ2 has the same trend as LZ in all cases with
more than 1 % error. This can be understood due to the fact that these parameter sets
have x4 of the order of 800-900 (see table 2.2), so that it is clear that both of them have
the same quality of prediction in EBE. Of course they could be similar in one observable
but behave differently for the others, therefore we will investigate this fact later.

In the isotope chains, LDZ1 has better EBE results than LZ and LDZ2. LDZ1 has about
+ 1 % error for the Ni, Sn, and Pb isotopes, but gives more than 1 % error in the larger
neutron numbers of the Ca isotopes. In the isotonic chains, on the other hand, LDZ1
delivers worse predictions than LZ and LDZ2. This fact shows that even though LDZ1 has
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Figure 2.12: Error in the binding energies for the N=82 and N=126 isotones

better x? than LZ and LDZ2 in binding energies, it does not mean it has better binding
energy predictions for all spherical nuclei. We can also see that although the x%p of NLZ
is not drastically different from that of LDZ1, NLZ yields much better predictions than
LDZ1 for these isotopic trends.

Figure 2.13 shows that while in the heavier isotopes LDZ1 can reproduce the experimental
data, this is not true for the isotones (in figure 2.14). This fact can be understood because
LDZ1 has a relatively good EBE prediction in the isotopic chains but not isotonic chains
(see once again figs 2.11 2.12). In general, the averages of Sy, and Sy, from LDZ1 are
better than LDZ2 and LZ. This is due to the fact that LDZ1 gives better predictions in
the isotopic cases and a little bit better trend of EBE in the isotonic cases than LZ and
LDZ2. The same trend and quality of the Sy, and Sy, predictions from LZ and LDZ2
emphasize the EBE results that even though LZ and LDZ2 have slightly different x?, they
have similar predictive power in binding energies. Here we can also see an important role of
the nonlinear terms for the prediction of binding energies, because only NLZ can reproduce
the Sy and Sy, experimental data for almost all represented isotopes and isotones.

Basically we have not so different prediction qualities in binding energies from LDZ1 and
LDZ2. This result is in agreement with Ref. [26]. The differences from Ref. [26] are that
here we parameterized the same number of experimental observables as LZ, we took into
account the pairing correlations and analysed the binding energies systematically. But
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Figure 2.13: Two-neutron separation energies (Sy,) for the Sn and Pb isotopes.



48 CHAPTER 2. THE LINEAR WALECKA MODEL

35 —
30 ¢
25+t
S 20|
D
3
o 15+
)
10t \
O ---- LZ ©
5| 4 — NLZ
® — LDZ1 (PC aprrox with exc)
o — LDZ2 (PC aprrox without exc)
ol ® Exp (n=82 isotone)
130 135 140 145 150
Mass Number (A)
20 ¢
15¢
S
D 10+
<
o
o
5 L
® —— L DZ1 (PC approx with exc) -
O — LDZ2 (PC approx without exc) -
01 ¢ -1z
¢ —— NLZ
| Exp (n=126 isotone)
200 205 210 215 220

Mass Number (A)

Figure 2.14: Two-proton separation energies (Sg,) for the N=82 and N=126 isotones.



2.6. RESULTS AND DISCUSSIONS 49

instead of using exact finite range Fock terms as Ref. [26], we use a point-coupling-like
approximation and only a rough approximation in the Fock terms of the derivative parts.
We find also that the exchange correction plays a role for binding energies in the isotopic
chains, but not for the isotonic chains. It is not clear whether this is a general feature
or due to approximations. The insignificant difference in the binding energy predictions
between LZ and LDZ2 gives an indication that the long-range effects of meson propagators
in binding energy predictions are already absorbed effectively into the coupling constants of
any linear point-coupling model.

As a next step, we show the predictions of the four parameter sets through observables
which are extracted from scattering data, namely the diffraction radii and the surface thick-
ness. Errors in the diffraction radius and the surface thicknesses are defined similarly as
for the binding energies. Results for the diffraction radii (EDR) can be found in figure 2.15
and for the surface thickness (EST) in figure 2.16. Figure 2.15 shows that the parameter
sets behave quite differently in each isotopic chain. LDZ1 and NLZ have an error of less
than 4+ 2 %. In the Oxygen and Zirkonium isotopes LZ and LDZ2 have an error of more
than + 2 %. This result is expected as in ref [26] and can be understood because LDZ1 and
NLZ have better 2 then LDZ2 and LZ. But because the difference is not really significant,
we can say that basically they have similar predictions in EDR. It is shown that LDZ2
and LZ have a similar trend of the EST, namely, they have an EST of more than 20 % .
LDZ1 has an EST value still in the range below 20 %. Here we can see clearly that the
exchange effect has an important role in the surface thickness prediction but it is still a
bad result if we compare with NLZ which has an EST value below 10 %. This confirms
the result of ref. [26] that the relativistic linear HF calculation still cannot give acceptable
surface thickness predictions. This figure shows us also that only models which include the
nonlinearities can give acceptable surface thickness predictions.

To round off the above results we also calculated the charge distributions of 2° Pb and 6O,
shown in figure 2.17, and the single-particle spectra of 2°® Pb and O both for protons and
neutrons, see figures 2.18 and 2.19. The error of the spin-orbit splitting can be found in
figure 2.21. The experimental values of the single-particle spectra are from Ref. [36]. For
the Oxygen case we obtain that LDZ1 has better charge density predictions then LDZ2
and LZ, but for the 2°8 Pb case it shows strong fluctuations in the surface part of the density
and gives quite large a value of pp(r) at r & zero fermi. Here we cannot reproduce the
result of Ref. [26] for the 2 Ph case. This fact is probably due to that we use a rough
approximation for the exchange of the derivative terms.

For the single-particle spectra of protons and neutrons in %0, all parameter sets reproduce
the experimental data. Only the 15, state is more deeply bound in experiment than NLZ.
We can see also that LZ and LDZ2 show almost identical results. For the 2% Pb case, LZ
and LDZ2 have the same trends. In the neutron case, LDZ1 gives a rather bad prediction
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Figure 2.15: Errors in the diffraction radii for some spherical nuclei.
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| parameter sets | ps(fm ') | E/A(MeV) | K(MeV) | M*/M | as(MeV) |

LZ 1.3 -17.1 584.4 0.53 48.8
LDZ2 1.3 -16.7 953.0 0.54 48.9
LDZ1 1.3 -15.9 550.7 0.54 36.2
NLZ 1.3 -16.2 173.5 0.59 41.8

Table 2.4: Properties of nuclear matter from various approximations. Here p; denotes the
Fermi wave number, E/A the binding energy per nucleon, K the compressibility, M* the
effective mass and a4 the symmetry energy per nucleon

for the 1hg/; state. Beside this state LDZ1 is intermediate in quality between LZ and
LDZ2, on the one hand, and NLZ on the other. This also happens for the 28 Pb proton
and for the 32Sn cases. In general, LDZ1 gives better predictions for protons than for
neutrons.

For the spin-orbit splitting, we use also the results of Ref. [20] for comparison. The defini-
tion of the error in spin-orbit splitting is the same as in the previous cases. For the neutron
case, all models give a bad prediction for ®*Zr (2p) and “®Ca(1d). LDZ2 and LZ only give
acceptable results in 2®® Pb(3p), LDZ1 and NLZ in '®O(1p) and *°Ca(1d) and NHM in
208 pp(3p), 60(1p) and *°Ca(ld). For protons, LDZ2 and LZ cannot give acceptable re-
sults. LDZ1 and NHM have three acceptable results while NLZ has four. All parameter
sets cannot reproduce the experimental result of **Ca(1d) for protons. From this fact, it is
clear that the exchange effect is important for the spin-orbit splitting prediction. We can
also see clearly that the nonlinearity in any relativistic mean field model (here we use the
NLZ and NHM models) appears necessary to give acceptable predictions in the spin-orbit
splitting.

It was shown in Ref. [37] that the exchange effects improve the nuclear matter predictions
of the linear Hartree model, therefore in figure 2.22 we calculate E/A vs p; of symmetric
nuclear matter for the four parameter sets. Other nuclear matter properties can be found
in table 2.4. Our rough approximation cannot improve the nuclear matter predictions of
the linear Hartree models (LDZ2, LZ). This fact demonstrates that it is necessary to refine
the approximation or to solve the exact formulation if we want to see improvement in the
nuclear matter prediction from the exchange effect.
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In summary, we have shown that, formally, a Lagrangian densitiy £ can be determined in
a relativistic linear point-coupling Hartree sense that is not equivalent to that determined
in a relativistic linear point-coupling Hartree-Fock sense, £*F. The significant difference
is due to the exchange of the linear derivative terms which is created by the Cj, and B;,,
densities. By using Gordon decomposition, we can have another representation of these
densities.In this new representation, these densities can be separated into two parts. The
role of the first part can be replaced effectively by tensor terms and all possible mixing
nonlinear terms and the second part is genuine of these densities. This second part is
responsible for the fourth-order differential equations and an order of magnitude analysis
of the Cio and B;,,, densities in the new representation shows that these parts are small.

We have found that in the linear Hartree approximation, the long-range effect from heavy
meson propagators does not give a distinct effect in predictions for finite nuclei, but on the
other hand the local part of the exchange effectcan do so even using approximate C;, and
Biqa, (by neglecting the nonlinear contributions) densities. This was done by calculating
the bulk properties of the ground states of some isotopes and isotones, single-particle
spectra, spin-orbit splittings and saturated nuclear matter properties. The results were
compared with the linear and nonlinear Hartree approximation from Ref. [7]. To show how
effective our approximation is, we compared our result with LDA results [27], and also the
x?%/nucleus with the x?/nucleus of a full Hartree-Fock calculation [26]. The calculation in
Ref. [26] used the same weight as Ref. [7] but fewer observables. We agree with [26] and
[27] that both a linear RH and RHF calculation seem to indicate that some physics is still
missing in the model.
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NONLINEAR POINT-COUPLING(PC)
MODEL

3.1 PC Model in the Hartree Level

To study the connection between the Walecka and the PC model, the point-coupling ap-
proximation must be fit now in the Hartree level but with the nonlinear terms included.
Because in the form of our approximation the connection seems quite clear, we desire a
parameter set with the same treatment as NLZ. The parameter set has scalar isoscalar
nonlinear terms (LDZ2a). It should be emphasized here that our objective is quite differ-
ent from other work ( [20] and the new one [19]). We are not concerned with maximizing
predictive power, but use experimental data only to study the connection of both models.
Now, replacing the scalar meson nonlinear terms in the Walecka model
1 1

with the very rough approximation
1 gs 3 1 gs \*
LY ~ —=by(—==ps) — —bs(—=ps
NL 3 2( mgp) 1 3( mQP)

1 3 1 4
—ZCop? — = 2

S S

and performing the point-coupling approximation for the linear one like in the previous
chapter leads to a point coupling Lagrangian similar to Refs. [20, 19]. The difference is that
in Refs. [20, 19] the vector isoscalar nonlinear term was included in their £y, while they
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‘ Parameters ‘ Js ‘ o ‘ Jr ‘ kg ‘ k., ‘ k, ‘ Cy ‘ Cs ‘
| LDZ2a | 9.5046 | 12.4295 | 8.9677 | 0.3112 | -0.091 | -4.1944 | 23.7337 | -81.8440 |

Table 3.1: Values for the LDZ2a parameter set.

‘ Parameters ‘ Js ‘ o ‘ Jr ‘ My ‘ 3by ‘ 4bs ‘
| NLZ  ]10.0553 | 12.9086 | 9.6988 | 488.67 | -13.5072 | -40.2243 |

Table 3.2: Values for the NLZ parameter set.

used the scalar isoscalar density term in the linear sector instead of the derivative of the
vector isovector density, and it cannot be guaranteed that we have a parameter set with
the right local minimum. In this point of view, essentially, the point coupling model can
be seen as an approximation to the Walecka model, where the nonlinear potential of the
Walecka model is replaced by a simple form of explicit density dependence. The nonlinear
potential in the Walecka model actually is not only a function of the density but also of
the derivative of the density in a complicated way. Surprisingly, this approximation works
relatively well, which will be apparent in the following results.

3.2 Results

Parameter sets and fitting results can be seen in tables 3.1 and 3.3.

The coupling constants for LDZ2a and NLZ [7] in tables 3.1 and 3.2 have similar values.
The values of the parameters k;, which are not close to unity, indicate that the long-range
effect seems to be significant. Table. 3.2 also shows that the main difference in x? between
LDZ2a and NLZ is in the surface thickness observables, leading to the speculation that the
derivative part of the nonlinear terms, which is implicitly present in in the nonlinear part
of the RMF, plays a role in this discrepancy.

| x> | BE | DR | ST | Total |
LDZ2a | 27.65 | 6.57 | 75.79 | 110.01
NLZ | 23.89 | 18.77 [ 29.25 | 71.92

Table 3.3: x? results from LDZ2a and NLZ. BE denotes the binding energies, DR the
diffraction radii decomposed into contributions from the different observables, and ST the
surface thickness. Details are given in the first chapter.
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To see more detail let us compare the predictions of both models in some finite nuclear
observables. First, we calculate the errors in the binding energies of some isotopes and
isotones, second, we calculate the two-neutron separation energies for the Sn and Pb iso-
topes and the two-proton separation energies for the N=82 and N=126 isotones. Then we
examine the errors in the diffraction radii, and surface thicknesses for some isotopes and
finally we give also the spin-orbit splittings for selected nuclei. In addition we calculated
the single-particle spectrum and the charge density of Lead.

We see from figs. 3.1 that NLDZ2a gives the error in the binding energy without too much
difference in quality with NLZ. Together with the two-neutron and two-proton separa-
tion energies in figs. 3.2 and 3.3, LDZ2a still gives acceptable binding energy predictions.
Fig. 3.4 shows that the error in the diffraction radii of LDZ2 is a little bit better than for
NLZ. The error in the surface thickness for NLZ is less than 10 % and LDZ2 below 13 %,
therefore the difference is not really significant as we expected in the beginning from the fit
result. Figure 3.5 shows that similar to the previous result (without the nonlinear terms),
the larger part of the difference in the charge density between the two models appears at
small radii. From figs. 3.6 and 3.7, we can see clearly the role of the nonlinear terms to give
correct single-particle spectra and spin-orbit splitting. This fact emphasizes the results of
the previous chapter. The surprising feature, which can be seen from the above results is,
NLZ has similar prediction quality in the shell structure and binding energy with LDZ2a
where the nonlinear terms of the NLZ parameter set contain the ¢ meson, while the LDZa
parameter set has a simple explicit scalar density-dependent nonlinear terms. It seems that
the nature of the finite nuclei observables and the fitting procedure make the binding ener-
gies and shell structure predictions insensitive to the difference of these nonlinear terms.
The only clear difference of both models appears on the charge density. Finite range thus
only affects the charge density.
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Figure 3.1: Error in the binding energies for the Ca, Ni, Sn, and Pb isotopes, respectively,
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with the parameter sets LDZ2a and NLZ.
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Figure 3.2: Two-neutron separation energies (Sy,) with the parameter sets LDZ2a and
NLZ for the Sn and Pb isotopes.
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3.3 Exchange Effect in the Nonlinear Terms (Quali-
tative Discussion)

Now we demonstrate qualitatively the exchange effect in the nonlinear Lagrangian den-
sity in Eq. (3.2). As before, the system is assumed to have good parity. A full exchange
(without approximation) calculation for the nonlinear terms by using computational alge-
braic methods can be found in [50], but for simplicity without missing too much physical
ingredient, here we only work with an approximation in nonlinear terms as follows :

12

<: YD) > <P >4 3A, < o>
<: @PG’JJ@FHZJ@FG’J}@FG’JJ > o~ (< @F%{J > zfalgj :>)2
+ 64, < Y'Y :><: Yl :>
Ay = < PTYPT) > — < 9% :><: YL, >, (3.3)

where I';=1 or I', = 7,. It is clear that here we neglected the contributions from the third
and fourth-order Fierz transformation and also A2 terms. Then we follow appendix A to
obtain

. 1 3 3 3 3 o
< Lyp > —502[(1 - g)ﬂi’ - gszﬁJw - épsﬁ?s - észt’f,th
3 » 3 o, =
- ]._6’05:]% JT[UJ - Esz;’TJTT;w]
1 6 6 6 6 52, -
- 16l g)pﬁ — PSS ow = PP — P T
6

A T — T T T, (34
It is known from the previous chapter that the isovector terms and the tensor term only
give minor contributions; if we neglect them, only two terms in line one and line three in
Eq. (3.4) survive. It is obvious now, that if the exchange corrections from the nonlinear
terms are taken into account, we obtain a mixing among all possible density-dependent
contributions. Looking at the Rusnak-Furnstahl model in Ref. [21] which, beside the
standard form of the point-coupling model also contains the tensor terms, mixing terms
in the nonlinear part between the scalar isoscalar and vector isoscalar densities, and also
a nonlinear contribution in the form of a derivative of densities, it is understandable from
our point of view, why they claimed that the exchange effect is effectively absorbed in the
coupling constants of their model. But if we want to have a more refined model with tensor
and isovector nonlinearities taken into account without added parameters, it seems that
the exact forms of the exchange of the nonlinear terms should be used.
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_IV-—

NONRELATIVISTIC REDUCTION

The nonrelativistic Skyrme model has been successfully applied in nuclear structure calcu-
lations for many years [47, 34]. The Skyrme potential takes the form of zero-range terms
representing an expansion in the nucleon density and momentum, effectively containing
finite range due to momentum dependence. This model is constructed for use in Hartree-
Fock calculations. Like the RMF model, the parameters of the potential are adjusted to
experimental data both in nuclear matter and in finite nuclei.

The connection between this model and the RMF model was done by several authors,
without [39, 40] and with the nonlinear terms [2, 41], but they did not take into account
tensor and space components of the vector potential contributions. The nonlinearities in
po alone of the RMF and Skyrme models are hard to compare because the 6U’ ( the meson
dependent nonlinear potential of the RMF model) is a quite involved function of py [2]. The
role of the tensor coupling of the isoscalar vector meson to the nucleon in the framework
of effective field theories was investigated in Ref. [42], while the relativistic spin-orbit field
in finite nuclei and superdeformed nuclei was examined in Refs. [46, 45]. The effect of the
tensor coupling to enhance the role of the vector mean field in leading order of the spin-
orbit correction to the nonrelativistic single-nucleon energy in the Zimdnyi model has also
been investigated [44]. The second-order form of the Dirac equation with local potential
has been discussed in reference [48]. It has been shown [43] with the Skyrme model that
a tensor and a time-reversal noninvariant force turns out to be necessary in studying the
properties of odd nuclei. In the previous chapter, the role of the exchange effects was
also investigated in the framework of the point-coupling approximation. It seems that the
largest part of the role of exchange effects in the linear model can be effectively replaced
by the tensor and nonlinear terms in Hartree calculations.

It is obvious from previous chapters that the investigation of the role of nonlinear terms

73
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of the relativistic model in the nonrelativistic limit is quite important. This investigation
seems not really completely done in previous work [2, 41] because, as we mentioned previ-
ously, it is difficult to write down explicitly the density dependence of the RMF nonlinear
terms. This problem does not appear if we use the point-coupling model, because in the
point-coupling model the nonlinear terms are explicitly density dependent. Therefore it
is quite worthwhile to study the connection between the point-coupling model and the
nonrelativistic Skyrme model. In this context, we study not only the role of the linear
terms but also the nonlinear terms of both models in the nonrelativistic limit. The com-
plete discussion about the point-coupling model can be found in Ref. [19]. It consists of
a careful way to obtain a new parameter set for the point-coupling model which is guar-
anteed to correspond to the right local minimum by combining different methods for the
x? minimization. This parameter set was applied to a wide area in nuclear theory, from
spherical finite nuclei, deformed nuclei ( more than one-dimensional calculations), odd nu-
clei, superheavy elements, potential energy surfaces, nuclear matter, neutron matter, up
to exotic nuclei [19]. In the calculations we use the method put forward by Reinhard [2]
to reduce the model into a nonrelativistic form. We use the NHM [20] and some variant of
the LDZ parameter sets simply because they have only few parameters and not too many
terms, so that we can study the effects more clearly.

We organize this chapter as follow : In section 2 we briefly review the Schrodinger equation.
In section 3 we give the Schrodinger form of the Dirac equation. Section 4 contains results
and the discussion is given in section 5.

4.1 Schrodinger Equation

In the nonrelativistic field theory, it is customary to adopt the Schrodinger field for a
massive particle regardless of its spin. The spin structure is not usually built into the free
Lagrangian, but is taken into account only in the interaction Lagrangian. Consequently
the free part of the stress tensor is always symmetric [51]. However, as is demonstrated in
refs. [51, 52], if we break the Schrodinger equation into two equations containing only first-
order derivatives, we can represent the spin content explicitly. The stress tensor calculated
from it is in general not symmetric, but can be symmetrized by standard methods as is
shown in ref. [51]. Reducing the Schrédinger equation into two first-order equations not
only represents its spin content explicitly, but also gives the Landé factor g = 2 [51, 53].
The spin-orbit coupling is obtained by introducing a central potential U(r). It means that
these two effects are not necessarily a consequence of the relativistic invariance but rather
of the field equation of the first-order. In the following we will use the results of Ref. [51]
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as follows:
v = (1) )

and the classical Lagrangian density is defined as

L = z'dﬁ(m)qj;(_x') — N @)V (r)(e) + iy (2)3.Vx(x)
+ X' (2)3. V() + xH(@)(2m — U(r))x(2) (4.2)

where V(r) and U(r) are central potentials. The quantization of this Lagrangian can be
done and will give a nonlocal correction in the equation of state which depends on the form
of the potentials, but for the moment the extension into this direction is not necessary for
our purpose. From Eq. (4.2), we can obtain

(@) = (V) V- FOV] + - 05 - DY) (13
and
X(x) = —if (r)d - Vij(), (4.4)

with f(r) = (2m — U(r))"". If 2m >> |U(r)| then

df(r) 1 dU(r)

dr  4m? dr *
Eq.( 4.3) shows that the nonrelativistic Schrodinger equation with potentials V(r) and U(r)
gives a spin-orbit coupling. There is no reason to assume that the two potentials should be
the same. As long as the y field is given in the form of Eq. (4.2), independent of the form
of f(r), the spin orbit coupling will appear. In the next section we will give the Schrédinger
form of the Dirac equation. It also yields two different potentials, the only difference with
the nonrelativistic one being that they are energy dependent. The normalisation of the
wave function is

(4.5)

N = [ @@ (@)u(e) + X' (@)x(z). (4.6)
If we compare it with the normalisation definition in Ref. [2] as
N = /d?’.’L'quaSST (I)¢Class($), (47)

we will obtain ¢ of the nonrelativistic Schrodinger equation as ¢85 = TV Zy) with

1/2

TYV? =(1—=¢-Vfr)d V) (4.8)

The last term can be interpreted as a spin effect in the normalisation.
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4.2 Dirac Equation

In this section we will derive the second-order form of the Dirac equation. We start from

[7,0" +i(m* + v,V + aaﬂTo‘ﬂ)]\I! =0, (4.9)
where .
Vi —d-V
e . 4.1
. : 0o i¢-T
VI~ Ry gl .
o T = iy T (i&' P > . (4.11)

Here we neglected the time-reversal noninvariant tensor term (7,7, 7%) due to its smallness.
If we assumed from the beginning that the system does not “change sign” under time
reversal, this term and the space component of the vector part would vanish, but at the
moment we will still retain the space component of the vector part to study the role of this
term. If we define

O = T+iV
B(er) = (Cmp+e+S—Vp)™!
€ = (e—mp), (4.12)

and € is the Dirac energy, then by using the same procedure as in Ref. [2], we arrive at the
following expression :

—

<H-e> = /d?’:c(go“pT(S +Vo—3-(V=Q)BF - (V+Q) — )™, (4.13)

where " is upper component of W. If we compare eq. ( 4.13), with eq. ( 4.3) we can see
that

Y — @ )
V(r) — S(r)+Vo(r) +9(Q,V;r)
f(r) — B(é;r), (4.14)

where the function g(€, V;r) comes from the third term of Eq. (4.13). As we mentioned
in the previous chapter, in contrast to a nonrelativistic equation, from a Dirac equation we
obtain V(r) and U(r) with an energy dependence (‘). In order to estimate the convergence
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of the classical expansion, we take the NHM model [20] as example and as in Ref. [2] we
assume the energy €’ ~ -0.03 mp. From the model, we can also obtain

S+Vy ~ —0.08mp,
S—Vy ~ —0.8mgp,
Bop®> ~ 0.05 mg,
Bip*/e ~ 0.07, (4.15)

with
By ~ (1.2mp) !, (4.16)

and estimate that |Q| ~ p. These properties fullfill the allowed range of Reinhard’s order-
of-magnitude estimation of every term in the effective Hamiltonian, which will be used as
the criterion of the approximation [2]. We may thus assume that this behaviour is fullfilled
by any point-coupling model. From the above numbers, we can also see that the point-
coupling model gives automatically a weak V(r) but a strong U(r) like the RMF. This
fact may therefore be identified as another feature of the relativistic model [55]. Using the
normalisation in Eq. (4.7), we will have ¢ = J1/2," with

2 =(1-¢-(Y-0)B%-(V+0)" (4.17)
and writing Eq. (4.13) as
< f{ e >= /d?:xgpclassT(Hgfass o 6‘)@Class, (418)

yields
class —1/2 - vallie! ¢ (P2/( \1= = s -1/2
HGE® = IS+ Vo—0-(V=Q)[B(e') + ¢B*(e)]a - (V+ Q)] 7%. (4.19)

Now we are ready to approximate Eq. (4.19). The first step is to neglect the € dependence
in Eq. (4.19), which comes from the B and ¢'B? terms. The last term gives contributions
in order more than v*, where v is the absolute velocity of the nucleons. From the previous
discussion, we know that the v (or momentum) expansion seems convergent, therefore we
can neglect this term in (4.19). The way to expand the € dependence from B is not trivial
[2, 21]. Here we only choose one form from Ref. [21] as follows :

B By — €B2,
By = (2mp+S-—V) 1, (4.20)

Q
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because with this approximation we still have the opportunity later to study the isospin
effect. Then Eq. (4.19) can be written as

Hclass ~ 01335(2) + Hclass( ) (421)

The first term gives a contribution in order of v? and the second term gives a contribution
in order of v*. The results are

<

HES®) = g1 vy + ¢ - OBy - G + G - OBy

. —3-VByd-* —3-VByd -V, (4.22)
and defining

C=5-OB% -+ OBV —¢-VB27-(*—3- VB2 -V, (4.23)

HESW = 7. GB2(S+ Vo)d- 3 + 3 - QBX(S + Vo)d-V — G- VBI(S + Vp)a - {*
- 1 -
— F-VB(S+W)i-V - {C, HEEs (4.24)

The last term in Eq. (4.24) is an anticommutator between C' and Heg™® . If we set (=0
in Eq (4. 24) the equation is nothing else but Eq. (90) in appendlx A of Ref. [2]. It is
clear that gives corrections Wlth and without V operator. The contribution containing
aV operator and arising from 1% (the space component of the vector potential) plays no
significant role in the spherical system, because we will see later that after we make a
gauge transformation in the wave function these terms will be absorbed in phase factors.
The only effect of these terms are small corrections in S, Vp, 7T, and B because S, Vp, T,
and Bp are functions of the densities, which are in turn functions of the wave functions.
But the g(V) contribution from the T(tensor) will give an enhancement in the spin-orbit
potential. An interesting discussion about the role of HE***) with (3=0 in the spin-orbit
potential can be seen in Ref. [2]. In this work, we will Work only up to order v2. We do that
in order to avoid any complications due to the ¢ dependence in the p, and j}' calculations
appearing in order v*. In addition we assume that the system fulfills spherical symmetry.
Therefore we have

1, dB -
HAS = (S + Vo + By(T? + V?) + Bop + ;((d—r‘)) — 2T.B,)G - L
. 8 6 . ‘/7' — —
- ZE(BO‘/;‘) - E(BOTT) — 223077" - D, (4.25)
with p = —iﬁ, T = 7T and V, = 7.V . Here we find a similar Hamiltonian form (with

7.p terms) as in reference [48], but we will show later that the 7.p’ term will vanish after
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a gauge tranformation. It is shown also that in Eq. (4.25) the tensor terms enhance the
spin-orbit coupling. Now let us write :

(Hecflfass o 6c)(pclass =0 (426)
and ¢35 = K(r) ¢ (r) and take [48]

1
K(r) = exp(—i / V, (tr)rdt) (4.27)
0

If we substitute Eq. (4.27) into Eq. (4.26) then we will have

(H32s — ¢)p = 0 (4.28)
with
class dBy 5 7 9

HES = (S+Vo+ BeT? + pBop + - ((—) — 2T, By)é.L — —(ByT,)) (4.29)

dr or

Since S, Vo, T, and Bp are functions of the densities and the densities are functions of
the wave functions, it seems necessary to check how the densities change through the
transformations. First, we calculate the densities (ps, jr)

ps = Z Wa ((‘Dup]L gpuP QDlOWT QDIOW) (430)

and
gr =1y Wa(p™ ™ — plovigglor), (4.31)
o

A straight-forward calculation up to order v? yields the above densities as functions of the
nonrelativistic densities (7 and J) as

Ps = PO—QBS(T—ﬁ-ﬂ
— 2B3T- Vo — 2B2po(T) (4.32)

and

The last two terms in p; are due to the tensor effect. One can find the definition of py, T
and J in Ref. [2], but for the convenience of the reader we write them explicitly as

oo = ZW classt gpclass
T o= ZW claSS]L Vgpclass

—

- Z W class’r (v )QOCIaSS (434)

<
<~
[l
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We see that the forms of py and J are not changed under the transformation in Eq. (4.27),
but the kinetic term 7 acquires an additional contribution, which has a form like V2p,. We
estimate roughly by taking only the first leading term: V2py ~ Ti—’zﬁpo, here j, is a vector
density, which is defined as ’

Jo = O Wa(p™TgpuP 4 plovigplom)., (4.35)

We can also expand this density into a non-relativistic density like p; and fT. The ex-
pansion depends on the density content of the potential V' and consists of the following
nonrelativistic densities:

5’ — % Z wa[(ﬁwclassf)@class _ SOclass’r(ﬁ(‘pclass)]

—

T2 = Y wa[e™™H(V x )], (4.36)

These densities change sign under a time reversal.

From Eq. (4.35) we can estimate roughly that 7, ~ 2 By(j + f2), and from Eq. (4.36) that
7, and T? are of order v, therefore V2py ~ i—év%BSpg ~ L pRABST ~ 0.3 T; because this
term has a smaller value than the previous one, we can nevglect it. Thus in a spherically
symmetric system, after a gauge transformation (Eq. (4.27)), the space-component con-
tribution of the vector potential is absorbed into a phase factor, where it seems to give no
significant physical effect in lercilfss. Therefore from now on we neglect the space component
of the vector term from our discussion and the essential contributions of the potential up

to second order in v can be written as :

0
VMJES+%+&ﬁ—§wa
r
By' = 2meg (4.37)
with (4.29) written as
class L 1 cent 7 (7 A
HE® = p P+ Ve +W.(§ x 7). (4.38)

Mej f

This equation will serve to compare the nonrelativistic reductions of the models.
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4.2.1 Summary of the Approximations in this Section

Because it will be useful for the reader, here I summarize the approximations which have
been done in this chapter.

1. The time-reversal non-invariant tensor term
We neglected it from the Dirac equation due to its smallness.

2. Approximation in inverse “effective mass” B
We neglected € B? terms and B ~ By - €¢B: from Eq (4.24), i.e, we neglected
contributions in order more than v*.

3. Eliminating ¢ dependence in the densities and currents
To avoid complications due to the ¢ dependence in the densities and currents, the
contributions from the terms in order v* are neglected and the system is assumed to
have spherical symmetry.

4. The space component of vector contribution
It is shown that it does not give a significant effect in the effective Hamiltonian for
spherical symmetry so that it is neglected.

5. Effective mass
Later, in model comparisons (Eq. (4.45) ), we will approximate the effective mass in
the effective Hamiltonian by m.g ~ mp + %(&s(po) — &y(po))po to obtain the explicit
form of the effective Hamiltonian.

4.3 Comparisons of the Models

We will now compare the Skyrme model with the nonrelativistic reduction expansion up to
order v? of the linear Walecka model and the point-coupling model. For the linear Walecka
model it was already calculated in Ref. [2], so that we can take the results from there, here
we only need to calculate for the point-coupling model and to analyse the results.

First the calculation is done without the isospin effect, which will be taken into account
later only in the spin-orbit calculation, because it is significant only in this sector. The
starting point is the following Lagrangian density

L = Lyav+ Lr

1 1 1 1
Ly = Loree — Y (§az~p? + §5ipiApi + Z%‘Pﬁ) - gﬁspg

1=8,0
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‘Cfree = Z \Ila(i/)/ua“ - mB)\Ila

a=A
1 |
Ly = _QGTPOV-]T = §®Tp0pg (4.39)
For L= 0, L represents the NHM parametrization, if v, = 0, it represents the LDZ2a, and

if B, =v; = 0 LDZ2. If L is not equal to zero and 3; = ; = 0 then LDZ1 is obtained. £
in this form leads to

. Or .0 . -~ 2 1 0 . -
~ S 5SA &9 4o S — Aa_9 |lAa_ s -
S @s(po)po + 6:Apo + 4mgﬁ[ap0 (&s(p0) o)l (Vo) ngﬁ[apo (as(po)po)l(T — V.J)
®T 8meg 2 @T - o
Vo = @& (po)po+ (6y y. )A Po — 4meﬂ( o )(Vpo) _(Qmeﬁ)V'J
@T 5meff - =4
+ 2meﬂ( B0 )V po
— ®T =
T = _TVpO' (4.40)
with
ds = a5+ Bspo+ Yspo”
a, = av+7vp02 (441)
and the effective mass becomes
- - e
2mer = 2mp + (Gs(po) — w(p0))po + (65 — 0y — 1 a )Apo
Mefr
@T ameﬁ
T o [6,00( &s(po)po)]T — 2meﬁ( 90 )Voo.d
@T 0 ~ ameff 2
+ 15 po (as(po)po) + ( om0 )I(V po)
m2 [apo( &s(po)po) + Ormeg]V - J (4.42)

Notice that the above equation is equivalent to the self-consistency condition for the ef-
fective mass meg in any mean-field model. Solving this equation yields meg, from which
the central potential and the spin-orbit potential can be calculated through the following
equations:

Vcent — (ds(po) + dv(po))po + (55 + 5u)APO

1 8 GT 87neff = 7
+ Voo - J
[apo( s(po)po)]T (apo) Po

2
2meff 2mig
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Or 0 . 1 - 2
4m§ff [a—m(Qs(PO)PO) + §@Tmeff](vpo)
1 0 . s o
+ m[a—po(%(Po)ﬂo)—@Tmeff]V-J (4.43)
and
= 1 8meff -
W) = =5,2 (55, 7) = OrmelVpo. (4.44)

To see H3** more explicitly, unfortunately, we must break the self-consistency condition

in Eq. (4.42) with the following approximation

1

Meft & Mp + §(ds(PO) — ay(po)) po; (4.45)

substituting Eq. (4.40) into eq. (4.38) leads to

— - d 2 - -
ngass = Cipo+ ColApy+ CsVpg - J + C4(§) + Cs7 + CgV.J

IS 1dpy.. -
+ pC7p+Cs(;§) L (4.46)

where for the linear point-coupling model without exchange (LDZ2)

2 2
v gs
Cl = ( 9 2)

My My
2 2
G ke g5k
c, = (&
2 ( Myl Mt )
Cy; = Cy=0
9822
05 = _06 = 1 m; 2 2
2(mp — 5(57 + mez)ro)
1
C'7 = 1/ 9.2 9.2
2(mp — 525 + 25)po)
932 gv2
I’ 4 v
CS — (ms2 mv2) o (4.47)

4(mp — %(,‘i—é + ifz)ﬂo)

while for the linear point-coupling model with exchange (LDZ1)

(91)2 _ 952)
my2  mg2

Gy
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Cy = ( — —
@T( .2 5:22)
03 = - 1 2 > 2 D)
A(mp — 5(% + 25)po)
. Or(—£5 + 107(2mp — po(£5 + £3)))
4 = 2 2 2
A(mp — 225 + £5)p)
gs_22
Cs = e 5
2(mB — (4 2 z)po)
L erOmy - (&)
-
4(mB — l(;‘,’fz + g” )Po)
1
C;, =

2(mp — 5(25 + %) po)

N —@T(sz—po(g—Q ). was)

4(mp = 5(5 + 25)po)

for the NHM parametrization

Cl = (OéS + Ay + /Bspo + (’Ys + ’yv)pg)

C’2 = 65 + 611
03 = 04 =0
_ _ 2(as + 2B,p0 + 375%)
Cs = —Ce=— 2)2
(QmB + (a’s — iy + Bspo + (75 - %)PO)PO)
1
07 =

(ZmB + (015 — ay + Bspo + (75 - ’Yv)ﬂ%)ﬂo)
. (as —ay + QﬁsPO + 3(75 - %)Pg)
(2mp + (s — o + Bypo + (Vs — 1) P3) p0)

while finally for LDZ2a, the results are similar with NHM, except that for this parameter

set, v, =0 and «; is replaced by s; 757’;2 and d; by szﬂ;l +, where s; is equal to +1 for v and

-1 for s.

Cs

(4.49)

For comparison we take the RMF and Skyrme Hartree-Fock model results from Ref. [2].
For the linear RMF model (LZ), this is

2 2
o = (P9

my2  mg2
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2
v 9s
Co = ( - =)

m’U mS
Cy = C;,=0
05 = _06 = 1 m‘; 2 2
2mp — (8 + 25)m)
1
07 = 2 2
2(mp — 5(Z5 + 2-)po)
9s° 4 90%
08 — (71;52 2mv2 . - (450)
A(mp — 3( + 2)po)

and for the Skyrme Hartree-Fock model :

3 2+a,

C, = Zto + (1—6t3ﬂo )

9t — 5t
G2 = 32
Cy = Cy=0

3t + 5t
Cs = 16
06 = —Cs = —3/4t4

1 3t1 + 5ty

= ) 4.51

Cr omp + 16 Po (4.51)

4.4 Discussion

In this subsection, we qualitatively analyse the results from the previous subsection.

4.4.1 LZ and LDZ2 (Linear Parameter Sets)

Except for Cy, the C; in LZ and LDZ2 are identical. In Cy, LZ has k;=1 but LDZ2 has k; #
1. Referring to chapter 1, remember that this fact actually gives no qualitative physical
difference in the nonrelativistic limit. It appears only as a matter of how to represent the
approximation in LDZ2, which has as a consequence that some part of the long-range effect

still remains in the nonrelativistic limit. Therefore we can say that in the nonrelativistic
limit, LZ and LDZ2 are identical.
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4.4.2 Linear (LDZ2 or LZ) vs Nonlinear (LDZ2a and NHM) Pa-
rameter Sets

On the other hand if v, equals zero then NHM and LDZ2a become identical. Comparing
LDZ2 (or LZ) and LDZ2a (or NHM), there are three similar points, namely: both param-
eter sets give C3 = Cy =0, C5 = —Cg, and C, is density-independent (constant). The de-
nominators of Cs, Cg and Cg, in both parameter sets, have a very weak density-dependence,
whereas the numerators for LDZ2a are density dependent, therefore the difference between
LDZ2 and LDZ2a is in C5, Cg and Cy. For LDZ2, these have constant values but for LDZ2a
they are density dependent. Setting g; = g, and m, =~ m, in both parameter sets leads to
Cs = -Cg. In LDZ2a (] is density dependent, but in LDZ2 C] is constant. It is obvious
in Eq. (4.49) that the role of ~, is not only to enhance the nonlinearity in C; but give a
nonlinearity enhancement also in the spin-orbit coupling (Cs).

4.4.3 PC vs Skyrme Hartree-Fock (SHF) model

Like LDZ2a, the Skyrme (SHF) model has density-dependence in C;, C3 = Cy;=0 and
also (s is density independent. SHF has Cg = —Cg but C5 # —Cs. Now LDZ1, due to
the enhancement from the tensor term, has C3, C; #0 and like SHF, this parameter set
has C5 # —Cs. As we mentioned previously, the tensor term in LDZ1 enhances also the
spin-orbit term (Cy) due to the additional density-dependent term in Cs. The other density-
dependent term in LDZ1 is C's. From the above results, it seems to me that if one wants to
have a correct spin-orbit splitting, one needs to have a correct density dependence in W,
because only models with an additional density dependence in Cg (LDZ2a and NHM obtain
this part from nonlinear terms and LDZ1 from the tensor term) give acceptable spin-orbit
predictions. To combine an acceptable binding energy and surface thickness prediction one
needs to have density dependence in C; (NHM and LDZ2a). For constant Ci, nonzero
values of C3 and C4 and also a density dependence in Cg like LDZ1 can help the prediction
of binding energy and surface thickness a bit, but the results are still far from acceptable,
because we see from the first chapter that LDZ1 has a problem in the prediction of binding
energies in isotonic chains and a much larger x? of the surface thickness than models with
the nonlinearity.
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4.4.4 Possible Enhancement in Nonlinear Terms and Isospin Ef-
fect

Taking into account the exchange correction in the nonlinear terms, after a straightfor-
ward calculation in the effective Hamiltonian, instead of Cy all C; are seen to be density
dependent (since the explicit form does not provide particular insight, I omit presenting
it here). If we calculate by using the model of Rusnak and Furnstahl (R-F) [21] with the
derivative nonlinear terms taken into account. we will obtain C; also density dependent.

Generally the spin-orbit potential can be written as
V_[}q = b,Vpo + bﬁlﬁpq +od+ c'lj;. (4.52)

We will once again use the NHM model without the exchange terms and take the contribu-
tion of isovector terms into account to study how the isospin effect enhances the spin-orbit
potential. In the same way as before

b4 - _ A(po)
(2mq + A'(po)po + Bpg)”’
. B
b4 = - P 29
(2mq + A'(po)po + Bpg)
¢ = 0, ¢ =0, (4.53)

with

A(pﬂ) = (as — Qs — Qy + atv) + 28sp0 + 3(75 - %))pg,
Al(pO) = (a’s — Qs — Qy + a’tv) + ﬂspo + (75 - %)Pga
B = Qs — Oy (454)

From the previous chapter we can see that if we take into account the tensor term (R-F
model [21] or LDZ1 for example) there will be a small correction in b, and b} due to the
tensor contribution in this part, and if we take into account the exchange corrections, we
will have not only enhancements in b, and b but also ¢; and ¢ are not zero, due to the
contribution of the tensor terms which come from the Fierz Transformation. Once again
it must be said that these corrections are small.

This discussion makes clear that the density dependence in the C; can be created by the
tensor and the nonlinear terms. But in contrast to the nonlinear terms, the tensor terms
alone seem not to be adequate to yield acceptable results in the finite nuclear observables.
Therefore, it seems quite obvious from this qualitative analysis in the nonrelativistic limat
that the role of the nonlinear terms to describe finite nuclei is highly significant.
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SUPERHEAVY NUCLEI

The study of the possible existence of shell-stabilized superheavy elements (SHE) is im-
portant for heavy ion physics( [57] and Refs. therein). The earliest calculations ex-
trapolating nuclear shell structure to superheavy systems by using the shell correction
method can be seen from the Frankfurt group in Refs. [60, 61, 62, 63] and the others
in [58, 59, 66, 67]. They predicted spherical proton shell closures at Z=114 and Z=126
and the spherical neutron shell closure at N=184. Experimental progress on this topic
can be found in Refs. [68, 69, 70, 71, 72, 73, 74]. Self-consistent mean-field models
(relativistic and nonrelativistic) have been used for the investigation of superheavy nu-
clei [14, 75, 9, 10, 11, 76, 13, 27, 18, 49, 57|.

Especially interesting results can be found in Ref. [13], showing that different types of
self-consistent models do not give a unique shell closure prediction for superheavy nuclei.
The relativistic models were represented by the NLZ, PL40, NL-SH and TM1 parameter
sets. NLZ, PL40 and NL-SH gave the same shell closure prediction, namely Z=120 and
N=172 but the TM1 parameter set did not predict strong shell structure for spherical
superheavy nuclei. The nonrelativistic models were represented by the Skyrme model with
the SKM*, SKP, SKx and SLy6 parameter sets. SKM* and SKP predicted Z=126 and
N=184, SKI4 predicted Z=114 and N=184, but SKI1, SKI3 and SLy6 did not predict
strong shell structure for spherical superheavy nuclei.

In Ref. [18], Bender et al. have investigated systematically the shell structure of the
superheavy nuclei using the self-consistent mean-field models. They focused on differences
in the isospin dependence of the spin-orbit interaction and the effective mass between
the models and their influence on the single-particle spectra. Their findings have given a
strong argument for Z=120 and N=172 to be the next spherical doubly magic superheavy
nucleus, but until now, the precise microscopic origin of this discrepancy is still not clear.

89
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The underlying models do not only differ in their representation of the effective nucleon-
nucleon interaction and their treatment of relativity but also with respect to their many-
body character [27].

In this chapter we will analyse the role of the nonlinear terms in the binding energies and the
single-particle spectra of heavy and superheavy nuclei by using the nonrelativistic reduction
results from the previous chapter. The result of this analysis will be used to restudy the
discrepancy of predictions for superheavy nuclei between relativistic and nonrelativistic
models.

5.1 Results and Discussion

Before we go into superheavy nuclei, let us focus once again on the differences and the
similarities between the linear (LZ and LDZ2) and nonlinear parameter sets (NLZ and
LDZ2a). We can see from the previous chapters that parameter sets with nonlinear terms
come much closer to experimental data. The parameter sets without nonlinear terms
fail to give acceptable predictions. This applies not only to the binding energies, but
also to the shell structure predictions (single-particle spectra and/or spin orbit splitting).
The two nonlinear models (NLZ and LDZ2a) have similar behaviour in binding energies
and shell structure predictions. There are of course some differences in detail between
both parameter sets, but it seems that the difference is not big enough to distinguish
the predictive capability of both parameter sets. The same situation occurs also between
the two linear parameter sets (LZ and LDZ2). In the nonrelativistic limit we know that
the LDZ2 and LZ parameter sets have identical form in every constant in the effective
Hamiltonian, concluding that, due to the nature of the finite nuclear observables and the
“magic of the fitting procedure”, the different behaviour of both models at short distance
(or high momentum) does not emerge or cannot be seen from those observables. In the
nonlinear case, the nonlinear terms of the NLZ parameter set contain the o meson, while
the LDZa parameter set has simple explicit scalar density-dependent nonlinear terms. I
do not intend to interpret the above fact as meaning that the replacement of two types
of nonlinear terms has no physical effects, but with the same argument as before, namely
that the nature of the finite nuclei observables and the fitting procedure make the binding
energies and shell structure predictions insensitive to the difference of these nonlinear
terms. It is clear from the previous discussion that the LDZ2 and LDZ2a parameter sets
yield different predictions and in the nonrelativistic limit contain different forms of some
constants. Thus it is quite reasonable to interpret the difference of those constants in the
nonrelativistic limit as the key feature leading to different predictions in finite nucles.
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Figure 5.1: Error in the binding energies for Cf and Fm isotopic chains.

5.1.1 Nonlinear Effects in the Heavy and Superheavy Regions

Now we check whether the differences and the similarities of the linear and nonlinear
parameter sets still remain in the heavy and two superheavy nuclei, namely Z=114, N= 184
and Z= 120 N=172. First we study the binding energies of two heavy nuclei isotopic chains,
namely the Californium and Fermium isotopes. Figure 5.1 shows that all parameter sets
except LDZ2 show about 1 % error in the binding energies, but each of them has a different
trend. The trend difference can be seen more clearly in the two-neutron separation energies
of figure 5.2. We see from figure 5.2 that the linear models without exchange (LDZ2 and
LZ) show a quite different trend from NLZ, and LDZ2a (PC model with standard nonlinear
terms) has almost the same trend as the standard parameter set NLZ. The LDZ1 parameter
set (a linear PC model but with exchange contribution) has a different trend from NLZ
but is quite acceptable. LDZ2a has a similar trend as NLZ and LDZ2 has as LZ. These
results emphasize the results from the previous chapter. The different behaviour due to
the nonlinear effect not only appears in the binding energies but is also reflected in the
charge densities. In the superheavy region, this is still the same, as is clear from figure 5.3.

From the previous chapter, it is known that in contrast to the sets NLZ, LDZ1, and LDZ2a,
LZ and LDZ2 do not give an acceptable spin-orbit splitting. From the point of view of
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the nonrelativistic limit, the LZ and LDZ2 parameter sets do not have density dependence
in the spin-orbit potential, while LDZ1 and LDZ2a have a small one, but the density
dependence in the spin-orbit potential behaviour of LDZ1 is different from that of LDZ2a,
because they appear from different sources. This fact is a consequence of the correct spacing
of single-particle spectra predicted by the model. The single-particle spectra seem most
important for the stability of superheavy nuclei [14, 75, 9, 10, 11, 76, 13, 27, 18, 49, 57].
Therefore only models with acceptable single-particle spectra could give a correct prediction
of superheavy nuclei. Figures 5.4 and 5.5 show that for LDZ2, L.Z and LDZ1 not only
the spacing but also the position of the single-particle states is different from NLZ in the
super heavy region, but it is interesting that, even though LDZ2a has not quite the same
spacing as NLZ, it still predicts similar behaviour of the single-particle spectra.

5.1.2 Shell Closures Predictions in Superheavy Nuclei

Therefore we expect that LDZ2a yields similar predictions for spherical shell closures in
superheavy nuclei as NLZ. A direct measure of a shell closure is the observation of a sudden
jump in the two-nucleon separation energies for protons and neutrons, easily visible in the
“two-nucleon gaps” [13]. The definition of the two-nucleon gaps is as follow :

62p(N,Z) = 2B(N,Z)— B(N,Z —2) — B(N,Z +2)
6on(N,Z) = 2B(N,Z) — B(N —2,Z) — B(N +2,2). (5.1)

These expressions correspond to the second differences in the binding energy and will show
a maximum where the two-nucleon separation energies have a jump. One important thing
to remember is that a guarantee for spherical shape can only be given for doubly magic
nuclei where protons as well a neutrons experience a spherical shell closure. Singly magic
nuclei have a good chance to stay spherical, but can deform occasionally [13]. The result
can be seen in figure 5.6. We see that LDZ2a gives a spherical proton shell closure at
7Z=120 and a spherical neutron shell closure at N=184. There is a signal of a spherical
neutron shell closure developing at N=172, but it is weak. There is still some difference in
this prediction from NLZ, but globally the trends are similar.

We showed in chapter four that for the point coupling model (LDZ2a parameter set) in the
nonrelativistic limit the nonlinear terms automatically give a contribution in the form of
a small nonlinearity (density dependence) in Ve and Wi,_g. Because the correct form of
Veent has a connection to correct binding energies and the correct form of Wi_g to correct
shell structure, it appears that to predict spherical shell closures in superheavy nuclei from
the relativistic model the inclusion of the correct form of the nonlinear terms is necessary.
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5.1.3 Nonrelativistic Limit of the PC vs Skyrme Model (Essen-
tial Points)

Now we are ready to analyse the discrepancy between the predictions of the PC model and
the Skyrme-force model from the point of view of the nonrelativistic limit.

1. The significant differences in V., are in C;:

(a) the Skyrme model has:
Ci ~ a1 +ap; (5.2)
(b) while the parameter set LDZ2a has:
Ci ~ a3+ aspo + aspy. (5.3)

ai..as are constant. With these forms both models yield good predictions for the
binding energies. We see that the constants (a; and «) or (a4 and a;) play a crucial
role, because without these constants there never result acceptable binding energy
predictions, as discussed previously. The other basic consideration from the nonrela-
tivistic Skyrme model point of view is as follows: there must be a minimum in E/A
vs ky and a correct incompressibility value of nuclear matter in connection with ac-
ceptable binding energies in finite nuclei. This can be achieved in the Skyrme model
only if we introduce the constants ay and a.

2. The significant differences in Wi,_g are in Cjy
(a) the Skyrme model has:
Cs ~ b (5.4)
(b) while the parameter set LDZ2a has:

Cg ~ bs+bypy + bsps + isospin contributions. (5.5)

Here b;..b5 are constant. With the form ( 5.4) the Skyrme model does not yield
really satisfactory shell structure [18, 49, 57]. As we see LDZ2a yields an acceptable
prediction for the shell structure. An extension of the Skyrme model with an en-
hancement in Wi,_g by isospin contributions has already been done (SKI3-4) [18] and
[13]. By introducing isospin contributions into the spin-orbit potential, like in the
RMF model, SKI3-4 do reproduce the isotope shift of the rms radii in the heavy Pb
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isotopes, but these parameter sets still yield different shell closures in superheavies
than the RMF model. On the other hand, in relativistic PC models, the role of b4
and b5 seems important to reproduce acceptable single-particle spectra. Therefore
possibly the enhancement of SKI3-4 with nonlinear terms (density dependent) can
give even more improvement in their shell structure predictions.

5.1.4 Skyrme Force Inspired by the PC Model

The above discussion is only qualitative; a quantitative calculation using the Skyrme model
not only with isospin terms but also with density dependent terms in the spin-orbit poten-
tial is strongly suggested. A density-dependent ansatz in the spin-orbit potential has been
introduced in Ref [77], but unfortunately this reference does not give a parameter set for
this type of Skyrme model and the form of the spin-orbit potential is quite different from
the one predicted by the point-coupling model. The energy density which reproduces the
spin-orbit potential predicted by the point-coupling model is given by

(r) = ) + £ Wi+ Wa) (Fo- ¥y + Ty Fu+ 30T, V), (5.6)

q

g%(r) is the energy density in the absence of the new terms and J; is the neutron or proton
spin-current density. From £(r) we find for the central potential

and for the spin-orbit potential

—

1 1 B
Wy(r) = SWg(r) + 5 (W1pVp + Wap*Vp). (5-8)

Where W;’(r) is the spin-orbit potential and U] (r) the central potential in the absence of
the new terms.
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_VI-

CONCLUSION AND OUTLOOK

6.1 Conclusion

We have fitted parameter sets in two approximations, i.e. a linear point-coupling approxi-
mation with and without the exchange corrections by using the same procedure as Ref. [7].
We used the parameter sets to calculate the error in binding energies and the two-proton
(two-neutron) separation energies of some isotopic and isotonic chains. We also calculated
the error of the diffraction radii and surface thicknesses of some isotopes. The spin-orbit
splitting, single-particle spectra, and nuclear matter properties also were calculated. The
predictive power of both parameter sets is reflected by the above results and was com-
pared to that of the standard parameter sets LZ and NLZ. We also compared with LDA
results [27] and also the x?/nucleus of the above parameter sets with the x*/nucleus of a
full Hartree-Fock calculation [26].

We have found that due to the nature of the finite nucleus observables and the “magic of
the fitting process” the difference between the RMF model and the point-coupling model
in short distance (or high momentum) does not emerge or cannot be seen obviously from
the predictive power of both models for finite nuclei. On the other hand, if we take into
account the exchange effects, distinctions in predictive power appear. We conclude that
the exchange effect cannot be absorbed into the coupling constants of the linear RMF or
PC model. The linear RH and RHF calculation seems to indicate that some physics is still
missing in the model and the nonlinear terms are needed to cure this. An investigation of
these nonlinear terms on a more fundamental level is necessary to explore more deeply the
nature of finite nuclei from the point of view of relativistic models and to understand the
relativistic models by themselves.
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We have derived the effective Hamiltonian of the nonlinear point-coupling model in the
nonrelativistic limit, using it to analyse the previous results. It becomes clear that the
role of the nonlinearity in the PC model is important not only for the bulk properties but
also for the shell structure. Different from the nonrelativistic models, the nonlinearity in
the relativistic models automatically yields contributions in the form of a weak density
dependence not only in the central potential but also in the spin-orbit potential. The
central potential affects the bulk and surface properties while the spin-orbit potential is
crucial for the shell structure of finite nuclei. We have also used these results to analyse
superheavy nuclei and then suggested a modification in the Skyrme model with a density-
dependent spin-orbit potential inspired by the PC model.

6.2 Outlook

Three things are quite important to investigate in the future before turning to the Hartree-
Fock-Bogoliubov calculations: first, the role of nonlinear exchange terms, second, the most
effective form of the nonlinear terms and third, the exact treatment of derivative exchange
terms. The reason to do the third one is clear and the following argumentation can be used
to illuminate why the first and the second investigations in my opinion are also important.

Let us consider the following case: I fitted £ from chapter one, plus

1 3 1 4
: _ - 1
3Czps 4Csps, (6.1)

L =—
where L£{; simulates all effects beyond linear PC Hartree Fock. We also regard this pa-
rameter set ( Test-NLa) as a nonlinear PC Hartree Fock ignoring the exchange from the
nonlinear terms.

‘ Parameters ‘ Js ‘ G ‘ Jr ‘ kg ‘ k., ‘ k, ‘ Cy ‘ Cy ‘
set a 9.4586 | 12.3756 | 9.4586 | 0.3123 | -0.1556 | 0.1145 | 24.1679 | -83.3120
LDZ2a 9.5046 | 12.4295 | 8.9677 | 0.3112 | -0.091 | -4.1944 | 23.7337 | -81.8440

Table 6.1: Value of the Test-NLa and the LDZ2a parameter set.

There is still improvement comparing set a with LDZ2a in the surface thicknesses, but
not too significant. If we compare with the standard parameter set NLZ, it seems some
effort is still needed to improve the surface thickness predictions. Possibly taking into
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‘Parameters‘ Js ‘ o ‘ Jr ‘ kg ‘ ke ‘ k, ‘ Cy ‘ Cs ‘ C? ‘
| setb  ]9.516 | 12.502 [ 10.775 | 0.276 | -0.077 | 0.043 | 24.146 | -87.6741 | -0.4170 |

Table 6.2: Parameter value of the Test-NLb.

‘ x? ‘ BE ‘ DR ‘ ST ‘ Total ‘
set a | 21.93 | 6.91 | 59.51 | 88.35
set b | 19.32 | 9.71 | 41.00 | 70.00

LDZ2a | 27.65 | 6.57 | 75.79 | 110.01
NLZ | 23.89 | 18.77 | 29.25 | 71.92

Table 6.3: x? results from the Test-NLa, Test-NLb, LDZ2a, and NLZ. BE denotes the
binding energies, DR the diffraction radius and ST the surface thickness contributions

account the nonlinear exchange terms may give better results without adding new free
parameters. Therefore an investigation of the necessity for the nonlinear exchange terms
is quite important.

As we have discussed previously, the significant difference between the RMF model and
the PC model appears quite significantly in the surface thickness observables. 1 suspect
that this is due to the advantages of the mesonic nonlinear terms, which already include
implicitly the contribution of the derivative nonlinear terms from the PC model point of
view. As a preliminary test, I added one more term (with one more free parameter) in £%;
as

LR = L& + CPp2Ap, (6.2)

The parameter count of the Test-NLb is equal to that of the conventional PC model. In
this version the exchange of linear terms is taken into account and a derivative nonlinear
term is used instead of the vector nonlinear term. the Test-NLb gives more improvement
in surface thickness than the Test-NLa. This is still a preliminary test, but motivates an
investigation to search more effective nonlinear terms than the standard ones in the PC
model. This is clearly of paramount interest.
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A
F1ERZ TRANSFORMATION (FT)

The complete derivation of the FT for the spinor in the second order case can be found
in the text books, for example in Ref. [56]. The extension to higher order can be found in
Ref. [50]. For the isospin case in second order one can derive it straightforwardly. Here we
give the FT in second order taking into account isospin effects.

The result can be written as
Uo(21) "W s(23) Up(02) LW (wa) = Y CjiWa(01)1V o (1) Ug(22)T; ¥p(zs), (A1)
J

where I'; denotes one of the operator combinations constructed from the Dirac matrices
and the isospin, and the constants C}; are written in the following table

T
T
Uj=nT 8 "8 8
Ti=0,, | = 0 0
FjZUNUF % 0 0
Uj=w»T | 3 & 5
Ui=s7uT 8 8 8

In the practical calculation, we will neglect terms with ~s, as for spherical nuclei the parity
is assumed to be a good quantum number.

105



106 APPENDIX A. FIERZ TRANSFORMATION (FT)




“B-

EXCHANGE PART FROM THE DERIVATIVE
LAGRANGIAN DENSITY

To derive the approximation for the exchange part from the derivative Lagrangian density,
we use the Gordon decomposition [38]. The derivation is straightforward, as one can see
for the scalar case in section 1. In this Appendix, we collect all of the results of this ap-
proximation.

1. the Scalar Case

o 1 1
Egl’n = —5 ”psa”ps =+ 2m2Bp§ — ZmQBJ{,‘JW - 2mBJ1‘)‘8"(JT,,M) - §8V(JTUH)80(JTU“) (Bl)

and
_ ) 4dm ~2 2~4 ~2
non—lin  __ BYs 3 9s 4 g
Ly = —Tgsps + m;i ps T 4mBm—5gsz{,‘Jw
2T I (e )+ 2 podrnd () — P2 gug (B2
S 14 S 14 v, S} -
mg v (2 m?} M v m;; s“v K
2. the Vector Case
~lin 1 v Al 2 v
L3 = =50, 0" Ty + 2 T} Ty (B.3)
~ . 2‘&4 §2 2‘&4 2.62
l v 2 v
[ron=tin _ —mg (JY ) — 4mB—Tr;§ psJ¥ Ty + mg p2IH Ty + mg ps0” (Jryud?) + ...,

(B.4)
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3. the Tensor Case

~lin 1 o
£ = 0T (Trap) (B.5)
4. the Scalar-Isovector Case
~7. ]_ 5 5 T - " - 1 v - b=
E%L = _§auptsaul)ts + Qm%ﬁ?s - QmZBJtI;th — 2mpJy,0 (JtTvu) - 58 (JtTuu)ao(Jﬂle

32 ~4
[’?Son_lm = +4_me3(JtL:1JtU# - ﬁ?s) 4105(J Jtv# 15?5)
gs o T T gv - o( TH
=+ 2—28 (JtTo'u)sztv 2ptthTUua (Jv) 4+ ... (B?)
m?2 m2
5. the Vector-Isovector Case
Llin — _ a JV " Ty 4 2m%JY Ty (B.8)
> 17 ~2 4 §4 - 2 2§2 - -
,C;L‘gn_ mo— —4mBESJZ,JthS + 2 4sz1Z;Jtvu — 2m—%(J;)JUV) + m§ psaV(JTTVng,) +
(B.9)
6. the Tensor-Isovector Case
‘CtT = §aﬂ(JtT )(9 (JtTaﬁ) (B.lO)

where
ps(-r) = Z@a\ya

JHz) = Z\iloﬁ“\lfa
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Pis ()
()
()

Tyt ()

TH
J tv

v
Jr

Inserting all of the results above into < ¢y|
as follows :

> 0,7,
Z U, Y7,
Z v,o"",

> U0 T, (B.11)

Ly |0 >, the complete expression is obtained

< ¢ : Lr |po >= Z U, (i7,0" —mp)¥,

1

2

1 ]- - -
_5558;11056“)05 - §6tsauptsaupts -

1 1

a=A
1 1 1 - o
50%,6?5 — iaUJ#va — §C¥th#JUu

1 L
5508,,J#8”Jw — 0400 10" Tty

=5 0r0y0" (Jruy) = §9TS=7;’23”(=];TW) + LOOTE 4 LT 4 L, (B.12)
with
2" 2m?2  ‘16m2 16m2 16m% B 16 m4 16 mt 16 m} '
1, __19_3_(i9_§+39_3+3ﬁ)_2 2(i93ks 2 goky 3912%]“?)
! 2m2  “16m?2  16m2  32m% BYM6 mt T 16 mt ' 32 mb
1 g%k 4 g’k 3 g%k
2 2 IS S . Jdv v - R™r B.14
* 3(16 mi 16 mi 16 m} ) (B-14)
1 1 g2 4 g2 1 g% o 1 g%ks 4 g%k, 1 gk,
Capy = [ (=2 - Iy~ IRy gpp(— IsBs = Glv  Z B.15
2% = =gz~ Tomz TTomz) T2 (e s " 16 ma T 16 mi, N (B1D)
la — __lﬁ_(ig_? Eg_ﬁ_i@)_g 2(ig§ks 2 goky _ig%k,)
2" 8m% 16m2  16m2 32m% P16 mt 16 mt 32 mh
1 ¢%ky 4 g’k 1 g3k,
2mp (=t — == — B.1
T2t 16 md 16 md ) (B.16)
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1(5— 1 9%k, 1(1gk 4 g2k, 3ng)]
2° 2m4 2°16 m* 16 m* 16 m%
1 1¢%k, 1,1 g¢%ks 2 gk, 3 g%k,
i e S o )
2 2m, 216 m 16 m; 32 mjy
e _ 1 1gk 4 gvk 1 ghks
27" 2116 mt 16 mi ' 16 mb
15 B 1 g%k, 1( 1 g?k 2 g%k, 1 ng &
2% U8 mk T 2'16mt 16 mi 32 mb
1 9’ks 4 gk, 3 ik,
—0r = -2 v R
2" = mB[16 mt 16 mt 16 mR]
1 g%ks 4 g’k, 1 g%k,
“Ore = —Omipl— 255 il
s = =2MmBlieT T T 16 mt T 16 mh
and
‘Cnonflzn _ csﬁnon lin 4 Cvﬁnon lin 4 ¢ Enon lin 4 Ctvﬁg‘(}nflin,
1 -
£F = or(50u(J7")0" (Jrap) + 0 u(J)0" (Jerag))
m2er
+ l:: (JTWJT + JtT,,HJ ")
1 o v(iT 70
+ §[c58”(JT,,u)8J(JT”) + ¢150" (Jerwp) 00 (Ji)],
where
- _E 1 g5k, ’k, 4 g%k, 3 g%k,n)
G = 16 mi 16 mt 16 mb
a’ky 2 g%k, 3 gk,
G = ( Tttt )
16 my 16 my, 32 my
s = 16 m4 16 mi " 16 mh
1 g%k, 2 g2k, 1 g%k,
Ctoy = ( 4 4 )
16 m; 16 my, 32 mh
1 gsk
Ccr =

16 m4'

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)
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Finally, £, is an electromagnetic Lagrangian density with an exchange correction, it just
remains to approximate the exchange part by the local density (Slater ) approximation [34].
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_C—

ENERGY FUNCTIONAL FOR SPHERICAL
SYMMETRY

To allow for the pairing correlation to come into play as in Ref [7, 2], we replace the wave
operator in Eq. (2.4) by

Q
|¢0 >= H ((1 - wa)1/2 + wi/QbLb]L—GNO >, (Cl)
a=1

where (2 is the number of shell model states included for protons or neutrons respectively.
Then the same procedure is followed as before. The densities now are

Q
Ps (I) = Z wa\i]a\ya

JE(zx) = Zwa\llafy“llfa
Q

Pis(z) = D waU,7Y,
Q

Q
JP () = D weVeao" ¥,
Q
T@) = Y waU,oh 7, (C.2)
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The kinetic term and electromagnetic density also have the same form as above with w,
added in front the summation. The w, denote occupation weights. A more detailed
discussion about this function can be found in [7, 2, 6]. We follow [7] and [6] to use a
constant gap pairing with A =11.2 MeV/ A? in all of our calculations. The nucleonic wave
function can be expressed as [7]

iGa(r)y
= no Jalamma C.3
o= (mdiear™ ) (©3)
and the radial wave functions are determined by the coupled equations
d ke,
0=1[ = —lFa(r) + Us(r) Fa(r) + [ea = U2(r) = U1 (r)]Ga(r)
d ke,
0= [5 — 7]Ga(r) — Us(r)Go(r) = [€a + Ua(r) — Ui (r)|Fa(r), (C4)

where k, = -(j+1/2) for j=1 +1/2 and k, = (j+1/2) for j=1 -1/2 with

1
Ur(r) = awpo+8ulhpo = 50000 + Yopp

+  T0,0(0wpoo + 61 Npoo)
(1+704) 3,13 1
+ SR ey — o) gl — Croabront
+ C3pspo + 05/33/)0 (C.5)
U2 (T) = mp+ Qs P + 55Aps + ﬁspg + %Pg
+ Ts,a(atsps,o + 5tsAps,0)
1
+ 50305+ Cspapt (C.6)
1
Us(r) = =5 (6r0:(po) + Or570,00: (P0,0)) (C.7)
and
1
= 2jo + 1)(G? — F?
Ps A2 Xa:wa( Ja +1)(Gg o)
1 . 2 2
Prs = o Xa:wa(Qja + 1)710,0 (G, — FY)
1 .
Po Zwa(2]a+1)(Gi+Fa2)

2
dmre
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Poo = drr2 ; wa(Zja + 1)7—0,01 (Ga + Fa)
1
g = a(2Ja 1)20, aFa
I 4W22a:w(3+)3(G )
Po + po,
Py = (po 2/00 0)
1 .
Poo = Ar? Z wa(2.7a + 1)7—0,04287* (GaFa)- (08)

o

An expression for the energy is given by the first diagonal element T}, of the stress-energy

tensor :

EMF

1
D Waa — 5 / dPrlop? + 05ps Aps + 4/3Bpl + 3/27,p%
o
Qs P2 o + Ot 5,02 Ps,0 + 0Py + Swpo N o

1
3/2%03 + Oltup?),o + 04w po,0Npoo — §9TS:00T,0,00,0

1 1,33
§9TP§,00 + e Agpp — 562(;) ol

2Csp505 + 3Csp° pa)- (C.9)
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Zusammenfassung und Ausblick

Zusammenfassung

In dieser Arbeit vergleichen wir das lineare Walecka-Modell mit dem Punktkopplungsmod-
ell in Hartree-Naherung um den Einfluss endlicher Reichweite zu untersuchen. Wir ver-
gleichen zusatzlich zwei lineare Punktkopplungsmodelle, eines ohne und eines mit Aus-
tauschtermen, um die durch sie hervorgerufenen Effekte zu studieren. Weiterhin ist der
Vergleich der verwendeten Punktkopplungsmodelle zu bekannten nichtrelativistischen An-
sitzen von Interesse. Dazu wurde in dieser Arbeit der nichtrelativistische Grenzfall des
Punktkopplungsmodells hergeleitet und untersucht. Weil die Modelle als effektive Theo-
rien bezeichnet werden miissen, konnen sie erst nach Anpassung verschiedener Parameter
an experimentelle Daten untereinander verglichen werden. Es wurden daher sowohl fiir
das lineare Punktkopplungsmodell ohne Austauschterme (LDZ2) als auch fiir selbiges mit
Austauschtermen (LDZ1) ein Parametersatz erstellt.

Das lineare Punktkopplungsmodell ohne die Austauschkorrektur wird in Hartree-Naherung
durch folgende Lagrange-Dichte dargestellt:

ﬁZC = Z @a(if)/yau - mB)\IIa
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Unter Beriicksichtigung der Austauschterme erhilt man folgende Lagrange-Dichte:

PC PC
»CHF = EH +£ezEM
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Die C}; werden aus der Fierz-Transformation [56] gewonnen und L., g bezeichnet die elek-
tromagnetischen Austauschterme. Die Dichten B,;, und C,; werden in dieser Arbeit mit
Hilfe der Gordonzerlegung approximiert. Wir benutzen fiir die Anpassung der Parameter
an experimentelle Daten das gleiche Verfahren aus [7].

Mit Hilfe der beiden erwahnten Parametersidtze wurden die Bindungsenergien, die Zwei-
Protonen- sowie Zwei-Neutronen-Separationsenergien, die Diffraktionsradien und die Ober-
flichendicken ausgewéahlter Isotopen- und Isotonenketten berechnet. Diese konnten mit
experimentell bekannten Daten verglichen werden. Weiterhin konnten Spin-Bahn-Auf-
spaltungen, Einteilchenspektren und Kernmaterieeigenschaften bestimmt und diskutiert
werden. Die Vorhersagen unserer beiden neuen Parametersatze wurden mit den etablierten
Parametersitzen L-Z und NL-Z [2, 7] verglichen.

Der Parametersatz L-Z korrespondiert zu dem Modell:

,CI;IV = Z \i’a(i’yua“ —mB)\I!a—I—EEM
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Zusétzlich wurden in dieser Arbeit Ergebnisse des linearen Walecka-Modells mit LDA (lo-
cal density approzimation) [27] als auch unter Hartree-Fock-Ndherung [26] mit unseren
Resultaten verglichen.

Es zeigte sich, dass in denen von uns betrachteten Kernen und mit Hilfe der von uns ver-
wendeten Fitstrategie keine grofien systematischen Differenzen zwischen dem Punktkop-
plungsmodell mit kurzreichweitiger Wechselwirkung und den RMF-Modellen mit Meso-
nenaustausch festgestellt werden konnten. Allerdings zeigt sich ein deutlicher Einfluss
der Austauschterme. Es lasst sich folgern, dass sie nicht durch Redefinition der Kop-
plungskonstanten im linearen RMF- sowie im Punktkopplungsmodell absorbiert werden
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k”onnen. Vielmehr ergibt sich, dass die nicht-linearen Terme ein wichtiger Bestandteil
der Wechselwirkung sind und in den Modellen beriicksichtigt und eingehender untersucht
werden miissen. Weitere fundamentale Studien dieser nicht-linearen Modelle sind notig.
Dies wird zu einem tieferen Verstandnis der Natur der endlichen Kerne vom Standpunkt
relativistischer Modelle und der Modelle selbst fiihren.

Der effektive Hamilton-Operator des nicht-linearen Punktkopplungmodells im nichtrela-
tivistischen Grenzfall wurde in dieser Arbeit hergeleitet. Er ergibt sich zu:

o " dpg 2 R
HES = Oypg+ CyApy+CsVpy - J + @(%) +Cst+CsV - J
L dpo &
r dr
Die C}, Cy, ..., Cs wurden fiir das lineare Punktkopplungs-Modell ohne (LDZ2) und mit
den Austauschtermen (LDZ1) sowie mit einem nicht-linearen Ansatz (LDZ2a) analysiert.

Diese Ergebnisse wurden mit dem linearen Walecka- und dem Skyrme-Hartree-Fock-Modell
verglichen [2].

+ PCF+ Cs( L.

Ein wichtiges Ergebnis dieser Studien ist, dass die nicht-linearen Terme im Punktkop-
plungsmodell sowohl fiir die Beschreibung von Massen als auch fiir die genauen Vorher-
sagen der Schalenstruktur wichtig sind. Die nicht-linearen Terme in relativistischen Mod-
ellen, die sich in ihrer funktionalen Form von den nicht-relativistischen Modellen un-
terscheiden, erzeugen automatisch eine schwache Dichteabhangigkeit nicht nur im Zen-
tralpotential sondern auch im Spin-Bahn-Potential. Das Zentralpotential ist wichtig fiir
Massen- und Oberflicheneigenschaften wahrend das Spin-Bahn-Potential fiir die Schalen-
struktur von endlichen Kernen verantwortlich ist. Diese Ergebnisse wurden benutzt, um
iberschwere Kerne zu analysieren und eine Modifikation des Skyrme-Modells mit einem
dichteabhingigen Spin-Bahn-Potential vorzuschlagen, das aus dem Punktkopplungsmodell
hergeleitet wurde.

Diese neue Energiedichte mit einem dichteabhangigen Spin-Bahn-Potential sieht wie folgt
aus:

]. —— " - -
e(r) =€(r) + §(W1p + Wop?) (Ja-Vpp + Jp.Vpu + D J.Vpy).
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Ausblick

Bevor Hartree-Fock-Bogolyubov-Rechnungen in Erwagung gezogen werden konnen, sollten
drei Aspekte der Mean-Field-Modelle untersucht werden.

e Die Rolle der Austausch-Terme der nicht-linearen Wechselwirkung.
e Die effektive Form der nicht-linearen Terme.

e Diein dieser Arbeit verwendete Naherung bei Betrachtung der Austausch-Wechselwirkung
der Ableitungsterme zeigte keine zufriedenstellenden Ergebnisse. Daher stellt ihre ex-
akte Behandlung eine weitere Aufgabe fiir zukiinftige Entwicklungen dar.

Die ersten beiden Aspekte sollen im folgenden kurz erlautert und untersucht werden.

Erste einfache Untersuchungen mit Hilfe der nicht-linearen Wechselwirkung:

1 1
%L = —502/)3 - 103/);1,

zeigten bereits gute Resultate. Zunédchst wurde ein neuer Parametersatz fiir die neue
Lagrange-Dichte erstellt (TEST-NLa). Ein Vergleich mit den oben beschriebenen Ansitzen
zeigt bereits eine kleine Verbesserung in der Oberflichendicke von endlichen Kernen. Da fiir
diese kurze Untersuchung die Austauschterme nur in Hartree-Naherung untersucht wurden,
lassen sich mit Hilfe der Hartree-Fock-Naherung weitere Verbesserungen erwarten.

Wie schon angemerkt, unterscheiden sich die Vorhersagen des RMF- mit dem Punktkop-
plungsmodells in Bezug auf die Oberflachendicke endlicher Kerne deutlich. Es ist zu ver-
muten, dass die Beitrdge der nicht-linearen Ableitungsterme in den nicht-linearen Termen
des RMF-Modells implizit vorhanden sind. Um dies zu priifen soll eine weitere nicht-lineare
Wechselwirkung untersucht werden:

1 1
LR, = —502:02 - ZC?,P;L + C%pAp,.
Zu ihr korrespondiert der Parametersatz TEST-NLb. Auch hier zeigen sich wiederum

kleine Verbesserungen (siehe Tabelle 1). Eine intensive Studie der nicht-linearen Terme ist
also fiir eine Verbesserung des Modells unumganglich.
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‘ x? ‘ E ‘rdms‘ o ‘Total‘

TEST-NLa | 21.93 | 6.91 | 59.51 | 88.35
TEST-NLb | 19.32 | 9.71 | 41.00 | 70.00
LDZ2a 27.65 | 6.57 | 75.79 | 110.01
NL-Z 23.89 | 18.77 | 29.25 | 71.92

Tabelle.1 : Ergebnisse der beiden getesteten nicht-linearen Ansétze im Vergleich zu den
bekannten LDZ2a und NL-Z. Dargestellt ist jeweils das x?der Bindungsenergie F, des
Diffraktionsradius 74, und der Oberflachendicke o.
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