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We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral 
phase transition in the quark–meson model where the interactions between quarks are generated by 
pion and sigma exchanges. Starting from the Nambu–Gorkov propagator in real-time formulation we 
obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) 
in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled 
nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the 
zero temperature limit using a model input spectral function. We find that these components of the gap 
display a complicated structure with the real part being strongly suppressed above 2�0, where �0 is its 
on-shell value. We find �0 � 40 MeV close to the chiral phase transition.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Low-temperature quark matter at large chemical potential is ex-
pected to be a color superconductor [1,2]. In its ground state, it 
forms a coherent state of bound Cooper pairs which flow without 
resistivity. At moderate densities, the most robust pairing pattern 
involves two light flavors of up and down quarks forming Cooper 
pairs with a wave-function that is antisymmetric in color space [3].

Experimental programs exploring highly compressed matter in 
heavy-ion collisions will probe the region of the phase diagram of 
strong interaction matter where the interplay between the chiral 
symmetry breaking and color superconductivity is an important 
factor [4]. In this regime of interest, which is close to the chiral 
phase transition line, quarks and mesons are the dominant de-
grees of freedom. Having this context in mind, we address here 
the 2SC pairing in quark matter in the quark–meson model, which 
is a renormalizable model that shares the chiral symmetry break-
ing pattern with the underlying fundamental theory of QCD [5,6]. 
More specifically, our work is further motivated by the recent ob-
servation that the entropy of this model shows anomalies at low-
temperatures, when studied within the functional renormalization 
group formalism [7]. This could be an indication of the instabil-
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ity of the obtained ground state toward color superconductivity or 
some other phase of QCD, for example, the quarkyonic phase [8].

Color superconductivity in the 2SC phase was studied at asymp-
totically high densities within perturbative QCD framework in 
Refs. [9–12]. In these theories, the interaction between quarks is 
mediated via (screened) gluon exchanges and the pairing fields 
are governed by Eliashberg-type equations, familiar from boson-
exchange models of superconductivity. Approximate solutions of 
these equations for the case of massless quarks were obtained 
which exhibit the scaling of the gap (more precisely, its on-shell 
value �0) with the strong coupling λ as �0 ∝ exp(−1/λ); these 
solutions also identified the pre-factor of the (approximate) gap 
equation for the real part of the pairing field. However, to our 
knowledge, the effects of retardation of interaction via gluon or 
other exchanges and the resulting complex nature of the gap func-
tion have not been exposed so far.

The aim of this work is thus to address again the problem of 
2SC pairing, however within a model which is better suited in the 
regime close to the chiral phase transition and to maintain the 
complex nature of the gap throughout the calculation. We choose 
to work with the quark–meson model, where the interaction be-
tween quarks is mediated by pseudo-scalar pion exchanges and 
scalar sigma exchanges. The quarks are assumed to be massive due 
to the dynamical mechanism of chiral symmetry breaking. We find 
the equations for the 2SC pairing gap appropriate for the quark–
meson model, which naturally encapsulate the information on the 
spectral functions of mesons. Furthermore, using an approximate 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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form of the input spectral functions of mesons we solve the ob-
tained Eliashberg-type equations exactly, thus fully exhibiting the 
complex nature of the pairing gap.

After this work was completed, Ref. [13] appeared which stud-
ies pairing in the Yukawa model with a finite-range interaction 
and obtains the full energy-momentum dependence of the gap in 
the case of imbalanced fermions. It shows that the frequency de-
pendence of the gap in the color-flavor-locked phase of QCD has 
important ramifications for its color neutrality.

This paper is organized as follows. In Sec. 2 we set up the for-
malism for 2SC pairing with the quark–meson model and obtain 
the relevant equations for the pairing gap. Section 3 describes the 
results of numerical solutions of the gap equations. Our results are 
summarized in Sec. 4.

2. Formalism

In this work we apply the Nambu–Gorkov formalism where 
the quark states are combined in spinors (our notations follow 
Ref. [14])

� ≡
(

ψ

ψ̄ T

)
≡

(
ψ

ψc

)
.

The inverse quark propagator, defined in a standard fashion via the 
Nambu–Gorkov spinors �, is given by

S−1(q) =
(

/q + μγ0 − m �̄

� (/q − μγ0 + m)T

)
, (1)

where the following relation holds �̄ = γ0�
†γ0. We consider the 

case of equal number densities of up and down quarks with a com-
mon chemical potential μ and mass m. The real time-structure of 
the propagators and self-energies are not specified for simplicity 
until later. Furthermore, the vertex corrections to the quark–meson 
vertices �i

π (q) and �σ (q) will be neglected and these will be ap-
proximated by their bare values

�i
π (q) =

(
τ i

2 γ5 0

0 −( τ i

2 γ5)
T

)
, �σ (q) =

(
I 0
0 −I

)
, (2)

where pions are assumed to couple via pseudo-scalar coupling and 
I is a unit matrix in the Dirac and isospin spaces. The pion and 
sigma propagators are given by

Dπ (q) = 1

q2
0 − q2 − m2

π

, Dσ (q) = 1

q2
0 − q2 − m2

σ

, (3)

where mπ/σ are their masses. The gap equation for � in the Fock 
approximation is then given by

�(k) = ig2
π

∫
d4q

(2π)4

(
−τ i

2
γ5

)T

S21(q)
τ j

2
γ5δi j Dπ

+ ig2
σ

∫
d4q

(2π)4
(−I)T S21(q)IDσ (q − k), (4)

where gπ and gσ are the coupling constants. The Ansatz for the 
gap in a 2SC superconductor is given by [3]

�ab
i j (k) = (λ2)

ab(τ2)i jCγ5[�+(k)�+(k) + �−(k)�−(k)], (5)

where a, b . . . refer to the color space, i, j, . . . refer to the fla-
vor space and the projectors onto the positive and negative states 
are defined as �±(k) = (E±

k + α · k + mγ0)/2E±
k , where E±

k =
±

√
k2 + m2 and α = γ0γ . Inverting Eq. (1) one finds for the off-

diagonal 21 component of the quark propagator
S21(q) = −(λ2τ2Cγ5)

[
�+�−(q)

q2
0 − (εq − μ)2 − �2+

+ �−�+(q)

q2
0 − (εq + μ)2 − �2−

]
= −(λ2τ2Cγ5)F21(q). (6)

On substituting Eqs. (5) and (6) into Eq. (4) and canceling common 
terms we find

�+(k)�+(k) + �−(k)�−(k)

= −ig2
π

3

4

∫
d4q

(2π)4
γ5 F21(q)γ5 Dπ (q − k)

+ ig2
σ

∫
d4q

(2π)4
F21(q)Dσ (q − k). (7)

In the next step we decompose the remainder of the anomalous 
propagator into a sum of positive and negative state contribu-
tions F21 = �− f1 + �+ f2. Now, on multiply (7) from the right by 
�+(k) and �−(k), using the properties (�±)2 = �± , �+ +�− = 1, 
�+�− = 0, and taking the trace of the resulting two equations 
(note that Tr �± = 4) we obtain two gap equations introduced in 
Eq. (5)

�+(k) = −3ig2
π

4

∫
d4q

(2π)4
(K−+ f1 + K++ f2)Dπ (q − k)

+ ig2
σ

4

∫
d4q

(2π)4
(M−+ f1 + M++ f2)Dσ (q − k). (8)

�−(k) = −i
3g2

π

4

∫
d4q

(2π)4
(K−− f1 + K+− f2)Dπ (q − k)

+ i
g2
σ

4

∫
d4q

(2π)4
(M−− f1 + M+− f2)Dσ (q − k) (9)

where K±± = Tr[γ5�
±(q)γ5�

±(k)] and M±± = Tr[�±(q)�±(k)]. 
The commutation property [�±, γ 5] = 0 implies that we may set 
in Eqs. (8) and (9) K±± = M±± . A further simplification arises 
because one is generally interested in the gap at the Fermi sur-
face of the particles and it is legitimate to drop the antiparticle 
component of the decomposition of the gap function (5) and take 
�− = 0. Indeed the integrand of Eq. (8) is strongly peaked at the 
Fermi surface, i.e., when εq = μ due to the pole structure of the 
anomalous propagator (6). Its antiparticle pole is located at ener-
gies 2μ ∼ 700 MeV and, therefore, cannot influence the physics at 
much lower scale ∼ �+ � 2μ.

We find then

�+(k) = −i
3g2

π

4

∫
d4q

(2π)4
K−+ f1(k − q)Dπ (q)

+ i
g2
σ

4

∫
d4q

(2π)4
K−+ f1(k − q)Dσ (q), (10)

where f1 = �+/(q2
0 − ξ2

q − �2+) with ξq = εq − μ. At this point 
we make explicit the finite-temperature content of the equations 
above within the Schwinger–Keldysh real-time formalism. The re-
tarded component of the gap function can be written in standard 
notations [15,16]

�R+(k0) =
∞∫

−∞

dω

2π

∞∫
−∞

dω′

2π

× D>(ω′)F >(ω − ω′) − D<(ω′)F <(ω − ω′)
k0 − ω + iδ

, (11)

where
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F >,<(p) = i A(p) f >,<(p), f <(p) = nF (p),

f >(p) = 1 − nF (p), (12)

D>,<(q) = iB(q)g>,<(q), g<(q) = nB(q),

g>(q) = 1 + nB(q), (13)

nF/B(p) are the Fermi and Bose distribution functions, A(p) and 
B(p) are the fermionic and bosonic spectral functions; we have 
suppressed in these equations the pion and sigma indices and mo-
mentum variables which will be restored below. In terms of these 
functions Eq. (10) can be written as

�R+(k0,k) = −i
3g2

π

4

∫
d3q

(2π)3

∞∫
−∞

dεA(ε,k − q)

×
∞∫

0

dω′

2π
Bπ (ω′) Jπ (k0,ω

′, ε)K−+

+ i
g2
σ

4

∫
d3q

(2π)3

∞∫
−∞

dεA(ε,k − q)

×
∞∫

0

dω′

2π
Bσ (ω′) Jσ (k0,ω

′, ε)K−+, (14)

where

Jπ/σ (k0,ω,ε) = nB π/σ (ω) + nF (ε)

ε − k0 − ω − iδ
+ 1 + nB π/σ (ω) − nF (ε)

ε − k0 + ω − iδ

� θ(−ε)

ε − k0 − ω − iδ
+ θ(+ε)

ε − k0 + ω − iδ
, (15)

and the second approximate relation follows in the zero tempera-
ture limit to be used below. (From now on we drop the sub- and 
superscripts on � as we refer only to its retarded, positive energy 
component.) In the zero temperature limit, the d3q phase space 
integration can be transformed into an integration over the magni-
tude of q and the on-shell energy ξp , which can be then performed 
analytically. As a result we find

�(k0,kF ) =
∞∫

0

dε F (ε)

∞∫
0

dω′λ(ω′)
[

1

ε + k0 + ω′ + iδ

+ 1

ε − k0 + ω′ − iδ

]
, (16)

where the kernel of the gap equation is given by

λ(ω) = g2
σ Bσ (ω) − 3g2

πBπ (ω)

4v F
, (17)

where v F is the Fermi velocity of quarks and

Bπ/σ (ω) =
2kF∫
0

qdq

(2π)2
Bπ/σ (ω,q)K−+,

F (ε) = Re
�(ε)sgn(ε)

[ε2 − �(ε)2]1/2
. (18)

In the case where the spectral function Bπ/σ (ω, q) does not de-
pend on the momentum transfer q, the first equation in (18) sim-
plifies to Bπ/σ (ω) � (m2k2

F /π2 E2
F )Bπ/σ (ω), where we substituted 

the zero temperature limit of K−+(q → 0). Then, the kernel can be 
written as
Fig. 1. Dependence of the kernel function given by (20) for two values of the 
strengths of interaction parametrized by η on frequency.

λ(ω) = (m2 v F /4π2)
[

g2
σ Bσ (ω) − 3g2

π Bπ (ω)
]
, (19)

i.e., up to a constant factor, it is given by the sum of the spectral 
functions of mesons.

3. Numerical results

Eq. (16) represents two coupled non-linear integral equations 
for the real and imaginary parts of the gap function, which were 
solved iteratively on a quadratic mesh spanned by the variables 
[ε, ω]. The numerical method has been described elsewhere [16]. 
We approximate the kernel of the gap function, Eq. (19), by a suit-
able Gaussian function of the form

λ(ω) = gω

(ω − ω0)2 + γ 2/4
, (20)

with the parameter values chosen as γ = 0.0972, g = 0.0077 and 
ω0 = 0.1734. To obtain these parameter values we have computed 
Eq. (19) using as an input the spectral functions Bπ/σ (ω) derived 
from the quark–meson model [17]. The centroid of Eq. (20) ω0 is 
at the mass of the σ meson and its hight g was matched to the 
numerical computation of Eq. (19). To explore the sensitivity of the 
result on the strength of the coupling we repeated the computa-
tions by rescaling g → ηg , where η is a constant factor. In Fig. 1
we plot the function λ(ω) in Eq. (20) for two values of η indicated 
in the figure.

The solutions of the gap equation are shown in Fig. 2, where 
we display the real and imaginary parts of the gap as a function 
of frequency. The on-shell value of the gap �0 follows in the limit 
ω = 0 where it becomes purely real; it is seen that this value is 
rather sensitive to the strength parameter η. Increasing its value 
by 10% produces a four-fold increase in �0. Computations for a 
larger value η = 1.4 (not shown in the figure) display a further 
increase of the gap value up to �0 � 0.3 GeV.

In the off-shell region, the imaginary and real parts of the gap 
show non-trivial structures. They intersect for ω � 2�0, beyond 
which the imaginary component dominates before both compo-
nents vanish at asymptotically large frequencies. Note that in the 
ordinary BCS formulations the gap is real and constant in the 
off-shell region. Clearly, our results show that the constant gap 
approximation could be accurate only very close to the on-shell 
(ω → 0) limit. A proper account of the frequency dependence 
of the propagators of the color superconductors may be of im-
portance for many frequency dependent observables, for example, 
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Fig. 2. Dependence of the real (solid) and imaginary (dashed) components of the 
gap function on frequency for two value strengths of interaction η = 1 (lower) and 
η = 1.1 (upper) pair of curves.

for the description of their dynamical response to various pertur-
bations. Examples include the dynamical (frequency dependent) 
Meissner effect or transport coefficients, such as shear viscos-
ity. We recall that in the framework of the Kubo formalism, see 
e.g. [18], the last quantity requires an evaluation of the frequency 
derivative of response function, which will obtain an additional 
contribution through the frequency dependence of the gap func-
tion.

4. Conclusions and perspectives

We have set up a formalism to compute the pairing gap in 
the 2SC phase of low-temperature quark matter within the quark–
meson model. Starting from the Nambu–Gorkov propagator of the 
quarks for the 2SC phase we have evaluated their anomalous self-
energy (gap) due to meson exchanges. Using the real-time for-
malism we have expressed the gap function in terms of spectral 
functions of mesons (here pions and sigmas) at finite tempera-
tures, see Eq. (14). The frequency dependence of the spectral func-
tions implies a complex gap function, which physically reflects the 
retardation of the pairing interaction (which is absent in the BCS-
type formulations). We have solved the coupled integral equations 
for the real and imaginary parts of the gap function in the zero-
temperature limit, showing that these components have non-trivial 
structures in the frequency domain, see Fig. 2.

For the sake of physical insight and simplicity, we have approx-
imated the full spectral functions of the quark–meson model by a 
Gaussian-type function and explored the dependence of the gap on 
the strength of the interaction. We find that the on-shell value of 
the gap strongly depends on the strengths of the attraction in the 
pairing channel, which is consistent with the expectations from 
the BCS type approaches. It would be interesting to evaluate the 
components of the 2SC gap function using spectral functions of 
the quark–meson model directly for specific values of density and 
temperature of quark matter.

The frequency dependence and complex nature of the gap func-
tion implies that a number of physical quantities may differ qual-
itatively from their BCS counterparts computed with a real, con-
stant in the frequency domain, gap. Among many examples, the 
transport coefficients, such as shear viscosity [18–20], would be 
interesting to evaluate.
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