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Correlation functions provide information on the properties of mesons in vacuum and of hot nuclear 
matter. In this work, we present a new method to derive a well-defined spectral representation for 
correlation functions. Combining this method with the quark gap equation and the inhomogeneous 
Bethe–Salpeter equation in the rainbow-ladder approximation, we calculate in-vacuum masses of light 
mesons and the electrical conductivity of the quark–gluon plasma. The analysis can be extended to other 
observables of strong-interaction systems.
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1. Introduction

Hadrons contribute to most of the visible matter in our real 
world and are undoubtedly an embodiment of dynamical chiral 
symmetry breaking (DCSB) and confinement. Current and future 
hadron physics facilities are focusing on hadron spectroscopy in 
order to shed light on the mysteries of quantum chromodynamics 
(QCD). On the other hand, it is believed that the Relativistic Heavy 
Ion Collider (RHIC) and the Large Hadron Collider (LHC) are able 
to create the quark–gluon plasma (QGP) state of the early Universe 
through a “mini-big bang”. This provides us with the possibility 
to study quark–gluon dynamics directly and to enrich our under-
standing of the QCD phase diagram. The transport coefficients of 
the QGP, which directly reflect details of the quark–gluon interac-
tion, are highly interesting from both experimental and theoretical 
viewpoints.

A unified description for physics in the two areas has been a 
central goal and great challenge for decades. Lattice QCD which is 
based on Monte Carlo simulations of quantum fields on finite dis-
crete spacetime lattices has achieved numerous significant results, 
however, it also has its own limitations [1,2]. Thus, relativistically 
covariant formalisms of continuum quantum field theory (QFT) are 
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still desirable. Among them, the Dyson–Schwinger equation (DSE) 
approach [3–5] is a framework that includes both DCSB and con-
finement [6]. Remarkably, at zero temperature, T = 0, a single DSE 
interaction kernel preserving the one-loop renormalization group 
behavior of QCD has been able to provide a unified description 
of the pion’s electromagnetic form factor [7], its valence-quark 
distribution amplitude [8], and numerous other quantities [9,10]. 
Therefore, it is of great significance to extend the DSE approach to 
further quantitative studies of hadron and QGP physics.

In the DSE framework, hadrons, i.e., color-singlet bound states 
of quarks, are described by the Bethe–Salpeter equation (BSE) or 
the Faddeev equation. Solving these equations requires the quark 
propagator, i.e., the solution of the gap equation, on the complex 
momentum plane. The analytical structure of the quark propagator 
strongly depends on the specified truncation scheme and interac-
tion model. This may lead to technical difficulties in the study of 
light-quark hadrons with masses above 1 GeV and meson bound-
states composed of one heavy and one light valence-quark. Those 
aspects of these problems connected with continuation into the 
complex plane can be solved using the perturbation theory inte-
gral technique [11,12], as illustrated in Ref. [7], whereas, as high-
lighted elsewhere [13], resolving the difficulties associated with 
heavy-light mesons requires bound-state kernels which are more 
sophisticated than that obtained in the simplest DSE truncation. At 
nonzero temperature, T �= 0, Matsubara frequencies are introduced 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in imaginary-time thermal field theory [14]. Then, the situation is 
even more complicated since we do not know how to analytically 
continue Matsubara frequencies. Thus, it is a long-standing chal-
lenge to study in-medium hadrons.

At T �= 0, transport coefficients can be calculated from meson 
spectral functions through Kubo formulae. Solving for meson spec-
tral functions, one has to calculate Euclidean meson correlation 
functions. However, in terms of Green functions, the calculations 
are highly divergent. As we will see, the subtraction scheme which 
works at T = 0 is not applicable at T �= 0. Thus, the divergence 
problem precludes the study of transport properties.

In this paper, we propose a novel approach based on spectral 
analysis, which can systematically solve the problems mentioned 
before. Using our new approach, we can extend the DSE study 
to a much wider range of applications. To demonstrate this, we 
calculate the masses of the π - and ρ-meson in vacuum and the 
electrical conductivity of the QGP with a single DSE interaction 
kernel. Both the result for the electrical conductivity and the ap-
proach itself are essentially new.

2. Meson correlation functions

The retarded correlation function of local meson operators is 
defined as

�R
H (t, �x) = 〈 J H (t, �x) J †

H (0, �0)〉β, (1)

where β = 1/T and 〈...〉β denotes the thermal average. The opera-
tor J H has the following form

J H (t, �x) = q̄(t, �x)γH q(t, �x), (2)

with γH = 1, γ5, γμ, γ5γμ for scalar, pseudo-scalar, vector, and 
axial-vector channels, respectively. The meson spectral function is 
related to the imaginary part of the Fourier transform of the re-
tarded meson correlation function [15], namely,

ρH (ω, �p) = 2 Im �R
H (ω, �p). (3)

Note that the spectral function is positive semi-definite for pos-
itive frequency and that ρH (ω, �0) = −ρH (−ω, �0). In the zero-
momentum limit, �p = �0, the Euclidean correlation function which 
can be connected with the retarded correlation function by ana-
lytic continuation, i.e., ω + iε → iωn , has the following spectral 
representation,

�H (ω2
n) =

∞∫

0

dω2

2π

ρH (ω)

ω2 + ω2
n

− (subtraction), (4)

where ωn = 2nπ T , n ∈ Z , are the bosonic Matsubara frequencies. 
Note that an appropriate subtraction is required because the spec-
tral integral in Eq. (4) does not converge, i.e., ρH (ω → ∞) ∝ ω2

(see, e.g., Eq. (10) below).
Using the Fourier transform on Eq. (4), one can obtain the 

spectral representation of the Euclidean temporal correlation func-
tions without any subtraction. Lattice QCD generally adopts such 
a form [16]. However, it is not applicable for the DSE approach. 
As we will see, the numerical calculation of the Fourier trans-
form is actually very difficult because of divergences in computing 
�H (ω2

n) by the DSE approach. At T = 0, one has the so-called 
twice-subtracted dispersion relation [17] which is well-defined. At 
T �= 0, its straightforward extension reads

�H (ω2
n) = �H (0) + ω2

n�′
H (0) +

∞∫
dω2

2π

ω4
nρH (ω)

ω4(ω2 + ω2
n)

. (5)
0

The above equation takes care of the ultraviolet divergence. How-
ever, it generates a divergence in the infrared region because 
ρH (ω → 0) ∝ ω at T �= 0. Moreover, Eq. (5) is correct only if the 
derivatives of the Euclidean and retarded correlators can be con-
nected by analytical continuation. It can be proved that such an 
analytical continuation does not hold at T �= 0. At one-loop level, 
one can easily check that the analytical continuation breaks down 
for the zeroth component of the vector correlation function. Thus, 
Eq. (5) is ill-defined and useless at T �= 0.

Here we would like to present a new method to construct a 
well-defined spectral representation. We introduce a transform for 
a function f (x),

ÔN(x1, . . . , xN){ f } =
N∑

i=1

f (xi)

N∏
j �=i

1

xi − x j
, (6)

where x1 �= x2 �= . . . �= xN . If f (x) is an N-order polynomial, then 
ÔN+2{ f } = 0, e.g., Ô3{linear function} = 0. According to analyti-
cal properties of correlation functions in QFT [18], the subtractions 
in the dispersion relations are always polynomials of momenta (or 
Matsubara frequencies), e.g., the subtraction for the meson corre-
lation function is a linear function of ω2

n . Thus, using the 3-order 
transform for �H (ω2

n) in Eq. (4) or (5), i.e.,

�̂H (ω2
i ,ω2

j ,ω
2
k ) = Ô3(ω

2
i ,ω2

j ,ω
2
k ){�H }

= �H (ω2
i )

(ω2
i − ω2

j )(ω
2
i − ω2

k )

+ �H (ω2
j )

(ω2
j − ω2

i )(ω2
j − ω2

k )

+ �H (ω2
k )

(ω2
k − ω2

i )(ω2
k − ω2

j )
, (7)

where ωi, j,k are arbitrary unequal Matsubara frequencies, one 
finds that the subtraction in Eq. (4) or the linear term of ω2

n in 
Eq. (5) is canceled. Correspondingly, �̂H (ω2

i , ω2
j , ω

2
k ) can be ex-

pressed as the surviving integral of the spectral function,

�̂H (ω2
i ,ω2

j ,ω
2
k ) =

∞∫

0

dω2

2π

ρH (ω)

(ω2 + ω2
i )(ω2 + ω2

j )(ω
2 + ω2

k )
. (8)

Note that Eq. (8) is a novel version of the spectral representa-
tion for meson correlation functions. As we mentioned before, it 
is found that the traditional spectral representations, i.e., Eqs. (4)
and (5), are not well-defined because of the infrared or ultravio-
let divergence. However, through a simply power analysis, one can 
easily verify that the integral in Eq. (8) is divergence-free both in 
the ultraviolet and infrared regions. Furthermore, Eq. (7) is an ex-
act algebraic equation without any approximation. Therefore, by 
analytic continuation, Eq. (8) is actually consistent with the origi-
nal definition of the spectral function, i.e., Eq. (3). As we will see, 
since Eq. (8) is a well-defined expression directly formulated in 
frequency (or momentum) space, it is very suitable for analyzing 
Euclidean Green functions obtained by nonperturbative functional 
frameworks, e.g., the DSE approach. Namely, using Eq. (8) one is 
able to extract observables which are encoded in the spectral func-
tions from the nonperturbatively calculated correlation functions.

At first glance, Eq. (8) depends on three different frequencies 
(or momenta) and thus is a complicated three-dimensional equa-
tion. But it can be simplified easily. For numerical convenience, 
one can further introduce a one-variable correlator as �̃H (ω2

i ) =
�̂H (ω2, ω2 , ω2 ) (where ωi+1 = ωi + 2π T and ωi+2 = ωi +
i i+1 i+2
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Fig. 1. Vector correlation functions of the non-interacting massless quark gas at T =
100 MeV.

4π T ), which then reduces Eq. (8) to a simple one-dimensional 
equation, i.e.,

�̃H (ω2
i ) =

∞∫

0

dω2

2π

ρH (ω)

(ω2 + ω2
i )(ω2 + ω2

i+1)(ω
2 + ω2

i+2)
. (9)

Here choosing ωi+1 and ωi+2 as the second and third arguments of 
�̂H is a matter of convenience, and one can use different ways as 
well, e.g., reducing three-variable �̂H (ω2

i , ω2
j , ω

2
k ) to one-variable 

�̃H (ω2
i ) by fixing ω j,k as any two specified Matsubara frequencies.

Before putting our new method into practical applications, we 
illustrate it with a simple example. For the non-interacting mass-
less quark gas, one can analytically calculate its vector spectral 
function, i.e.,

ρ ii
V (ω) = 2πχωδ(ω) + 3

2π
ω2 tanh

( ω

4T

)
, (10)

where χ is the quark number susceptibility and spatial indices i
are summed over. Inserting the above equation into the right-hand 
side of Eq. (9) and performing the well-defined integral, we obtain 
the correlation function �̃ii

V (ω2
i ) (denoted by plus dots in Fig. 1). 

On the other hand, one can also calculate �̃ii
V (ω2

i ) through evalu-
ating the one-loop Feynman diagram in Euclidean space. Although 
the quark loop integral appearing in �ii

V (ω2
i ) diverges, we can 

compute �̃ii
V (ω2

i ) from Eq. (7) without any divergences (denoted 
by circle dots in Fig. 1). It is found that the plus and circle dots 
coincide with each other, which illustrates the validity of Eq. (9). 
Therefore, for realistic cases, we can compute the correlation func-
tion with functional approaches, e.g., DSE, and apply Eq. (7) to 
eliminate divergences and then using Eq. (9) extract the spectral 
functions ρH (ω) which connect to physical quantities.

3. Dyson–Schwinger equations

In terms of Green functions, the Euclidean meson correlation 
function, �H (ω2

n), is defined as

, (11)

where gray circular blobs denote dressed propagators and vertices; 
G(4) denotes the full quark–anti-quark four-point Green function; 
G(4)

0 denotes the two disconnected dressed quark propagators in 
the dashed box; black dots denote bare propagators or vertices. 
One can easily check that the loop integral of Eq. (11) is highly 
divergent, which directly leads to the numerical difficulty in com-
puting its Fourier transform. However, because Eq. (9) is an exact 
expression and its right-hand side is a well-defined integral, its 
left-hand side is automatically free from divergences. Thus, us-
ing the 3-order transform Eq. (7) for Eq. (11), one can obtain a 
well-defined correlation function, �̃H , which has a spectral repre-
sentation as in Eq. (9).

The dressed propagators and vertices in Eq. (11) can be solved 
by the corresponding DSE. Using the rainbow-ladder (RL) trunca-
tion which approximates the quark–gluon vertex as bare vertex 
and expresses the two-particle irreducible kernel in terms of one-
gluon exchange (see, Ref. [19], for example), the gap equation for 
the quark propagator is written as

S(ω̃n, �p)−1

= Z2(i �γ · �p + iγ4ω̃n + Zmm)

+ Z1
∑∫

q
g2 Dμν(�k,�nl)

λa

2
γμS(ω̃l, �q)

λa

2
γν, (12)

where ω̃l = (2l + 1)π T , l ∈ Z , are the fermionic Matsubara fre-

quencies; �
∫

q = T
∑

l

∫ d3 �p
(2π)3 denotes the Matsubara summation 

and the spatial momentum integral; Z1,2,m are the vertex, quark 
wave-function, and mass renormalization constants, respectively; 
Dμν(�k, �nl), with (�k, �nl) = (�p − �q, ω̃n − ω̃l), is the dressed gluon 
propagator. The inhomogeneous BSE for the dressed vertex is writ-
ten as

�H (ωn; ω̃m, �p)

= Z HγH − Z1
∑∫

q
g2 Dμν(�k,�ml)

× λa

2
γμS(ω̃l, �q)�H (ωn; ω̃l, �q)S(ω̃l + ω̃n, �q)

λa

2
γν, (13)

where the renormalization constant Z H is Z4 (= Z2 Zm) and Z2
for the (pseudo-)scalar and the (axial-)vector, respectively. Note 
that, since the RL truncation is the leading term in a symmetry-
preserving truncation scheme, the solutions of Eqs. (12) and (13)
satisfy Ward–Takahashi identities [20,21].

The gap equation and the inhomogeneous BSE are fully deter-
mined by a specified interaction model, i.e., g2 Dμν(�k, �nl). Fol-
lowing Ref. [22], we employ a one-loop renormalization-group-
improved interaction model which has two parameters: a strength 
D and a width ξ . With the product Dξ fixed, one can obtain a 
uniformly good description of pseudo-scalar and vector mesons 
in vacuum with masses � 1 GeV if ξ ∈ [0.4, 0.6] GeV. We use 
ξ = 0.5 GeV. In the QGP region, we follow Ref. [23] to include a 
Debye mass in the longitudinal projection of the gluon propaga-
tor and a logarithmic screening for the nonperturbative interac-
tion. With the thermally modified model, one can obtain that the 
thermal quark masses for massless quarks are proportional to tem-
perature for a very hot QGP, i.e., mT = 0.8T for T � 3Tc , which is 
consistent with lattice QCD [24].

4. Extraction of observables

At T = 0, the Euclidean meson correlation functions can be 
written in O (4) covariant form. Then, we have the corresponding 
spectral representation,

�̂H (s, s1, s2) =
∞∫

0

dm2

2π

ρH (m)

(m2 + s)(m2 + s1)(m2 + s2)
. (14)

The information on mesons of channel H can be extracted from 
the spectral function ρH (m); viz., the ground state and radially ex-
cited states correspond to peaks of ρH (m). According to Eq. (14), 
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Fig. 2. Meson spectral functions of the pseudo-scalar (left) and the vector (right) 
channels, and their sensitivities to the variation of the MEM default model.

the whole tower of states, from the ground state to all radially ex-
cited states, contributes to the correlation function, but the ground 
state dominates. To reliably extract information on the tower of ra-
dially excited states from the correlation function, a sophisticated 
method is typically necessary [25,26]. Herein, however, since the 
kernels are simple, only the masses of ground and first-excited 
states are sought, and the primary purpose is illustration of a new 
method to construct a well-defined spectral representation, it is 
sufficient to employ a straightforward single-channel approach to 
the bound-state problems.

At T �= 0, properties of in-medium mesons can be obtained 
from the corresponding spectral functions, and their dissociation 
can be read off from the width of the corresponding peaks. Espe-
cially the vector spectral function which is related to the electro-
magnetic current correlation function is of significance for observ-
ables of the QGP, e.g., electrical conductivity, heavy-quark diffusion 
coefficient, thermal dilepton rate, etc.. From the Kubo formula, the 
electrical conductivity can be expressed as σem = σ e2 ∑

f Q f (sum 
of the electrical charges of flavored quarks) and

σ = 1

6
lim
ω→0

3∑
i=1

ρ ii
V (ω, �p = 0)

ω
, (15)

where ρ ii
V are the spatial components of the vector spectral func-

tion (in what follows, the summation is suppressed unless stated).

5. Numerical results

At T = 0, we use the maximum entropy method (MEM) [27–29]
to solve for spectral functions from Eq. (14). Following lattice QCD 
[30], we choose the MEM default model as m0m2. For simplicity, 
we let m0 = mfr which is calculated in the non-interacting limit 
[31,32]. To check the sensitivity of the result to the default model, 
we vary m0 by a factor 5 as in Ref. [30]. The calculated pseudo-
scalar and vector spectral functions are plotted in Fig. 2. It is found 
that the first peaks which correspond to the ground states of the 
π - and ρ-meson, are very sharp and robust against the varia-
tion of m0 (uncertainties of their locations are less than 1 MeV). 
Compared with the result obtained by the homogeneous BSE, the 
ground-state masses are precise (see Table 1).

But the second and high-energy peaks are not so stable against 
the variation of the default model. For example, it is supposed that 
the second peaks correspond to the first radially excited states. 
However, compared with the result obtained by the homogeneous 
BSE, this is not the case all the time. We find that the MEM tends 
to merge close peaks. Sometimes, the second peaks are broad and 
do not truly correspond to the first radially excited states (see the 
last two columns in Table 1). This is an intrinsic drawback of the 
Table 1
Masses of the π - and ρ-meson in vacuum and their comparison with the results 
obtained from the homogeneous BSE (h.BSE), where the upper errors are obtained 
with m0 = 0.2mfr , while the lower errors are obtained with m0 = 5.0mfr [parame-
ters I and II follow Refs. [22,26], and dimensional quantities are reported in GeV].

method para. π ρ π ′ ρ ′

this work I 0.135 0.748 1.065+0.021
−0.025 1.185−0.003

+0.045
h.BSE I 0.134 0.742 1.071 0.974
this work II 0.152 1.043 1.461+0.024

−0.077 1.239−0.033
+0.015

h.BSE II 0.155 1.046 1.283 1.260

Fig. 3. Vector spectral functions at different temperatures (the solid lines are ob-
tained by using the fitted spectral function as the default model directly, and the 
shaded ranges around the curves are obtained by altering the default model).

Fig. 4. Behavior of the electrical conductivity with temperature (the shaded range 
around the curve is obtained by altering the default model).

MEM and also happens in lattice QCD [30], which can be improved 
by the high-precision MEM [33].

At T �= 0 (and zero chemical potential), we implement calcula-
tions with the physical parameters I in Table 1. It is found that the 
hadron gas transits to the QGP at Tc = 144 MeV [34]. At T > Tc , 
considering that light hadrons are dissolved in the QGP, we can 
parameterize the vector spectral function as,

ρ ii
V (ω) = 2χω

ω2 + η2
+ 3

2π
(1 + κ)ω2 tanh

( ω

4T

)
, (16)

where the first part is the Breit–Wigner-like (BW-like) distribu-
tion [35,36], and the second part is the perturbative continuous 
tail [37]. Note that there are three parameters in the above form. 
Inserting it into Eq. (9), we can fit the parameters with a very 
high precision. The fitted vector spectral functions are plotted in 
Fig. 3. It is found that the BW-like distribution becomes higher 
and sharper with increasing T .

To check the reliability of the fitting, we use the fitted spectral 
function as the MEM default model, and analyze the sensitivity of 
the MEM output to the variation of the default model (by doubling 
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or halving the strength of the BW-like part). The result is also plot-
ted in Fig. 3. It is found that the spectral functions obtained by the 
MEM are close to the fitted ones and the uncertainties are also 
tolerable.

Finally, we calculate the electrical conductivity of the QGP and 
study its evolution with temperature. The electrical conductivity 
reflects the coupling strength of the QGP. For example, in the non-
interacting case, i.e., the infinite temperature limit, the electrical 
conductivity is infinite. On the other hand, the AdS/CFT [38,39] in-
dicates that the electrical conductivity of the strongly coupled QGP 
is small. Our result is plotted in Fig. 4, which is consistent with the 
recent results of lattice QCD [36,40]. It is found that σ/T increases 
with increasing T , which indicates that the coupling strength of 
the QGP decreases with increasing temperature.

6. Epilogue

We presented a novel approach which has no analyticity and 
divergence problems as other approaches to systematically study 
meson spectroscopy in vacuum and transport properties of the 
QGP. Combining it with the solutions of the rainbow-ladder trun-
cated DSE, we reproduced masses of the π - and ρ-meson ground 
states, and then calculated the electrical conductivity of the QGP 
for the first time. The magnitude of the electrical conductivity 
is comparable with recent results of lattice QCD, and its evolu-
tion with T indicates a strongly-coupled QGP in the neighborhood 
of Tc .

The key of the new approach is the transform (6), which can be 
easily extended to baryon correlation functions. The new approach
is also potentially applicable for radially excited states. Resonances 
which are not well defined in the homogeneous BSE can also be 
studied by the new approach. Thus, the new approach could pro-
vide the possibility to achieve a unified description of light hadrons 
with masses < 2 GeV by the DSE approach. In medium, more 
transport coefficients, e.g., heavy quark diffusion coefficient, ther-
mal dilepton rate, etc., can also be studied by the DSE approach. 
Moreover, the study is not limited to zero chemical potential. 
Therefore, the new approach can potentially connect observables 
with QCD phase transitions on the whole temperature–chemical-
potential plane.

Based on the new approach, the DSE study of QCD can be 
systematically improved by a more elaborate truncation scheme 
beyond the RL approximation [21]. Besides QCD applications, the 
new approach is general and potentially useful in a much wider 
spectrum of strongly interacting many-body systems [41], e.g., con-
densed matter electronic systems which are described by Quantum 
Electrodynamics (QED), or effective quantum field theoretical mod-
els, e.g., (2 + 1)-dimensional QED (QED3).
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