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In this paper we discuss to what extent one can infer details of the interior structure of a black hole 
based on its horizon. Recalling that black hole thermal properties are connected to the non-classical 
nature of gravity, we circumvent the restrictions of the no-hair theorem by postulating that the black 
hole interior is singularity free due to violations of the usual energy conditions. Further these conditions 
allow one to establish a one-to-one, holographic projection between Planckian areal “bits” on the horizon 
and “voxels”, representing the gravitational degrees of freedom in the black hole interior. We illustrate 
the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter 
core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole 
entropy can emerge as the statistical entropy of a gas of voxels.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Classically, black holes hide their interior behind an event hori-
zon. Since not even light can escape from behind the event horizon 
one cannot (apparently) learn much about the interior structure of 
the black hole. According to the “no-hair” theorem [1] the only 
thing one can learn about a black hole from outside the horizon 
is its mass, charge and angular momentum. Here “hair” means 
any qualities other than mass, charge or angular momentum (e.g.
baryon number) which characterizes the matter that formed the 
black hole. However, combining quantum field theory with black 
holes one finds black holes are not entirely black – they emit ther-
mal radiation at the Hawking temperature TH [2]. Since black holes 
have a temperature one can consider the possibility that they have 
an entropy. If we assume that each fundamental particle of mass 
m carries a basic unit of information, i.e., a bit, the total infor-
mation associated with an imploding star of mass M is roughly 
M/m. In turn these particles of mass m can fit into the black hole, 
provided that their Compton wavelength does not exceed the hole 
size, i.e., h̄/mc � rS with rS = 2GM/c2 being the horizon radius. By 
combining these conditions one can assign a black hole an entropy 
proportional to its horizon surface area [3]

SBH ∼ kBGM2

h̄c
∝ kB A

l2Pl

, (1)
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where kB is Boltzmann’s constant, lPl = √
Gh̄/c3 ≈ 10−35 m is the 

Planck length, and A is the surface area of the black hole’s horizon 
given by A = 4πr2

S .1 One possible way to interpret Eq. (1) is that 
the surface area of the black hole, A, can be broken up into funda-
mental units or “bits” of Planckian area l2Pl. Thus the horizon area 
A can be seen as being tiled by Planckian area plaquettes. Since 
the Planck area is very small (on the order of 10−70 m2) and since 
A for stellar mass black holes will be, at minimum, of the order of 
103 km2, one can see that the entropy associated with astrophys-
ical black holes will be huge. This can be seen by comparing the 
entropy of a solar mass black hole with the entropy of a “star” of 
photons with a temperature T = 1000 K. This temperature gives a 
photon wavelength of λ ∼ 10−7 m. The number of photons in such 
a “star” is Nγ ∼ V /λ3 ∼ (Rs/λ)3 where Rs is the stellar radius. The 
entropy of this photon star (normalized by kB ) is proportional to 
the number of photons Sγ /kB ∝ Nγ ∼ (Rs/λ)3. Now if we take Rs

to be of the order of the radius of the Sun, Rs ∼ 109 m, we get 
Sγ /kB ∼ 1048. In comparison the entropy for a solar mass black 
hole (again normalized by kB ) given by (1) (using M ∼ 1030 kg) is 
SBH/kB ∼ 1075 i.e. SBH � Sγ .

Aside from a few special cases [4–6] the nature of the black 
hole entropy is not completely understood. Other than the

1 As an historical inversion the idea that black holes had an entropy was proposed 
first [3] and after the precise formula for the temperature was given by Hawking [2]
the exact proportionality between the entropy and surface area was determined, 
giving the well-known result SBH = kB A

2 .
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thermodynamic definition SBH ≡ ∫
dM/TH, we still lack a satis-

factory statistical description of black hole entropy in terms of 
microscopic degrees of freedom. This can be re-phrased by saying 
one generally ignores the connection between the information/en-
tropy of the horizon as seen by an external observer and the 
unknown, microscopic gravitational degrees of freedom in the in-
terior of the black hole. In this paper we explore some concrete 
example of a one-to-one connection between the horizon entropy 
and some yet unspecified “bits” or units in the black hole inte-
rior.

The fact that the entropy of a black hole scales as an area 
rather than as a volume is unusual. Normally the entropy of a sys-
tem scales like the volume of the system. This feature has led to 
the connection between gravitational systems and holography. In 
a black hole all the information/entropy is apparently encoded in 
the two dimensional horizon. This holographic approach to grav-
ity was first expounded in [12,13], and an overview of this subject 
can be found in [14]. We are proposing, that as with a real holo-
gram, there should be some holographic projection between the 
areal “bits” which tile the horizon and some “voxels”2 or volume 
“bits” of the interior. Voxels in general mean a three dimensional 
“bit”, but here we will have a generalized meaning of voxel as 
an (n − 1)-spatial-dimensional volume “bit”. The reason for this is 
that in the interior of a black hole one has a fantastic high en-
ergy/high density natural laboratory. As one approaches the center 
of a Schwarzschild black hole one reaches energies and densities 
which are unattainable in a man-made laboratory. In fact for a 
classical Schwarzschild black hole the energy density diverges at 
the central singularity. This singularity is problematic and proba-
bly signals the breakdown of general relativity.

The main question is the character of these interior voxels. This 
is a fundamental issue of quantum gravity. In a nutshell one can 
say that quantum gravity plays the analogue of a kinetic theory 
of voxels, since it is expected to connect microscopic degrees of 
freedom to the thermodynamic value of the entropy in (1) (see 
for instance [7–11]). As a result the voxels should be related to 
some short scale modification of the gravitational field. By assum-
ing some condition which leads to the avoidance of the interior 
singularities one can obtain possible ultraviolet completions of 
black hole spacetimes. Due to the character of black hole metric 
coefficients, i.e., g00 = (1 + 2ΦN(r)), the Newtonian potential ΦN
provides enough information for this purpose – static gravitational 
forces are the result of virtual graviton exchange that can be de-
scribed by a scalar theory. Writing the Newtonian potential as

ΦN(r) = M

M2
Pl

∫
d3k

(2π)3
D(k)|k0=0 exp(i�k · �r) (2)

one wants ultraviolet finite propagators, D(k), to tame the classical 
curvature singularity. The specific way the propagator is modi-
fied corresponds to specific models of a quantum gravity improved 
black hole.

Despite the different approaches to quantum gravity, the reg-
ularity of space–time requires that metric coefficients fulfill the 
condition |∂2

r g00| < M2
Pl, which is equivalent to saying that the cur-

vature can at most assume Planckian values. The above condition 
is easily met for distances � lPl. On the other hand, at scales ∼ lPl, 
one ends up with a Newtonian potential ΦN(r) ∼ O(r2). Accord-
ing to this reasoning, a simple realization of a regular space–time 
is based on the assumption that the center of the black hole is 
replaced by a de Sitter core [15]. The latter has been considered 
in early attempts to avoid the curvature singularity by matching 

2 The name is a combination of “volume” and “pixel”.
an outer Schwarzschild geometry with an inner de Sitter geometry 
along time-like [16–18] and space-like matter [19] shells. Physi-
cally, a de Sitter core is a repulsive gravity region which can pre-
vent the complete gravitational collapse to a singular matter/en-
ergy density profile. Local violations of energy conditions are the 
signature for the non-classical nature of the resulting black hole at 
short scales. There are a host of different approaches [20–29] to 
avoiding the central singularity which all amount to having a de 
Sitter or de Sitter-like core inside the horizon.

At present a consistent quantum theory of matter and gravity 
in the interior of a black hole does not exist. Thus we will keep our 
picture of the interior as general as possible. The first assumption 
mentioned above is a generic de Sitter core. Secondly we allow the 
dimensionality of the de Sitter core to be larger or smaller than 
four (3 space plus one time). We first discuss the possibility of a 
de Sitter core with space–time dimensions four or larger. String 
theory, brane models, and Kaluza–Klein theories, are examples of 
theories allowing space–time dimensionality greater than four. The 
extra dimensions are “curled-up” to a small size/large energy scale 
so that one is not able to access these extra spatial dimensions 
except at high energy densities. Although such energies may not 
be feasible in the laboratory, they can be reached at some point 
in the interior of a black hole, resulting in the extra dimensions 
“opening up”. Thus we model the interior of the black hole as an 
n-dimensional de Sitter space–time where at first we take n ≥ 4. 
The interior metric is

ds2
interior = −

(
1 − r2

α2

)
dt2 + dr2(

1 − r2

α2

) + r2dΩn−2. (3)

dΩn−2 is the differential angular part of the metric for the angular 
coordinates θ, φi where i = 1, 2, 3, ..., n − 3. The constant α is re-
lated to the positive cosmological constant Λ by Λ(n) = (n−2)(n−1)

2α2 . 
For the usual case where n = 4 this leads to Λ = 3

α2 .
For the exterior metric we assume (for simplicity) a Schwarz-

schild metric

ds2
exterior = −

(
1 − 2GM

c2r

)
dt2 + dr2(

1 − 2GM
c2r

) + r2dΩ2. (4)

To draw our conclusions we only need the asymptotic forms of 
the above metrics. We offer, however, an example to clarify how 
the smooth transition between the metrics with different dimen-
sions can take place. We follow the standard arguments of teras-
cale black holes with special reference to the large extra dimen-
sion paradigm. According to ADD proposal [30,31], the additional 
spatial dimensions must have a size R small enough to be usu-
ally un-observable: Gravity has to have the standard behavior at 
macroscopic scales. On the contrary for distances r � R , gravity 
can probe the full (4 +d)-dimensional bulk spacetime M(4+d) with 
n = 4 + d. The bulk can be factorized as M(4+d) = M(4) × T (d) , 
where M(4) is the brane (i.e. our standard four dimensional Uni-
verse) and T (d) is a d-dimensional torus with radii of size R . 
Einstein’s equations can be derived from the action S = Sg + Sm, 
where the gravitational part reads

Sg ∼ Md+2
F

∫
R

√−g dnx, (5)

where MF is the higher dimensional, fundamental scale. By per-
forming a Kaluza–Klein (KK) expansion of the graviton field one 
can obtain a dimensionally reduced action which is valid for r � R .

Sg → Md+2
F Rd

∫
(4)R

√
−(4)g d4x︸ ︷︷ ︸

effective brane action

+
∑
k>0

(. . .)

︸ ︷︷ ︸
. (6)
KK excitations
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This is another way to saying that, up to sub-leading corrections, 
gravity behaves normally at macroscopic scales, i.e. as Einstein 
gravity [32,33]. The matter action, Sm, contains a term depend-
ing on Standard Model (SM) fields that do not propagate in the 
bulk∫

LSM(ΦSM)

√
−(4)g d4x. (7)

Since we are concerned about neutral black hole solutions we will 
not consider this term. In the regime r < R , however, there has to 
be a mass density that generates the (4 + d)-dimensional de Sitter 
core. This means that Sm has an additional term of the form∫

LdS
√−g dnx. (8)

From the term above one obtains an energy–momentum tensor 
T μν

dS that must vanish outside the bulk. With the above ingredi-
ents one can actually find black hole solutions with radii rS =
2GM/c2 � R that can be described by the four-dimensional line 
element ds2

exterior. At distances smaller than R , however, the geom-
etry behaves drastically different from the usual black hole solu-
tion since a de Sitter core, described by the line element ds2

interior, 
forms in the bulk. Apart from the out horizon rS = 2GM/c2, 
there exist an inner horizon in the bulk, located at rdS = α =√

(n−2)(n−1)
2Λ

. It turns to be that rdS � rS.
The manner in which we connect the horizon with the interior 

is simply by the requirement that every area plaquette on the hori-
zon should have some corresponding (n − 1)-spatial-dimensional 
“voxel” in the interior. The spatial volume Vn−1 associated with 
the n-dimensional de Sitter metric (3) is

Vn−1 =
α∫

0

Sn−2rn−2√
1 − r2

α2

dr = πn/2αn−1

Γ (n/2)
, (9)

where Γ (x) is the Gamma-function and Sn−2 = 2π(n−1)/2

Γ ((n−1)/2)
is the 

surface area of the unit (n − 2)-sphere. Now if we take the length 
scale of the fundamental (n − 1)-spatial-dimensional voxel that 
builds up Vn−1 to be l, then the total number of voxels in Vn−1
is

Nvoxel ∼ Vn−1

ln−1
= πn/2

Γ (n/2)

(
α

l

)n−1

. (10)

Note that we have left the scale of the fundamental voxel length 
(i.e. l) arbitrary. One might assume this should be of the order of 
the Planck length (i.e. l 
 lPl), or some other higher dimensional 
fundamental scale l∗ (i.e. l 
 l∗) or maybe it would be set of the 
scale α (i.e. l 
 α). However, here we leave l free and not necessar-
ily connected with the other scales of the system. The assumption 
of this paper is that, aside from numerical factors involving π or 
Γ (x), the number of horizon bits/pixels (i.e. Npixel ∼ A/l2Pl ∼ r2

S/l2Pl) 
should coincide with the interior voxels (i.e. Nvoxel ∼ Vn/ln−1 ∼
(α/l)n−1). Explicitly this gives

Nvoxel = Npixel ⇒ α

l
∼

(
rS

lPl

)2/(n−1)

. (11)

Now taking rS to be the Schwarzschild radius of some astrophysi-
cal black hole so that rS ≈ 104 m one can see that the ratio of the 
right hand side of (11) is of the order rS/lPl ≈ 1039 – very large. 
For the case of four-dimensional spacetime (i.e. when n = 4) one 
finds α/l ∼ 1026. In such a case we do not have any constraint on 
the size of the de Sitter core as in the presence of extra dimen-
sions. We just require that rdS ≤ rS, so the de Sitter core is inside 
Table 1
Values and constraints on the parameters, R , α, l for different space–time dimen-
sions n for M F ∼ 1 TeV.

n

7 8 9 10

α/l ∼ 1.0 × 1013 1.4 × 1011 5.6 × 109 4.6 × 108

R [m] ∼ 4.6 × 10−9 1.0 × 10−11 2.5 × 10−13 2.2 × 10−14

l [m] � 4.6 × 10−22 7.1 × 10−23 4.5 × 10−23 4.8 × 10−23

the Schwarzschild horizon. For α = 103 m (which is a distance 
scale still less than the horizon radius of stellar black holes) this 
gives l ∼ 10−23 m, which is a distance scale that can potentially be 
probed. In such a scenario one does not necessarily need to invoke 
extra-dimensions to get observable results. The effect of consider-
ing extra dimensions is that by increasing the number n, the ratio 
α/l decreases. We need, however, to take into account that also 
the size of extra dimensions decreases with n. For MF ∼ 1 TeV, 
R becomes smaller like ∼ 10

32
d −19 meters as d increases [33,34]. 

By recalling that α � R , we find that l is nearly stable versus n, 
i.e., the value of l is in the range 10−22–10−23 m. Table 1 sum-
marizes the main quantities as n varies. We consider n ≥ 7 only, 
since n = 5, 6 are experimentally ruled out [33]. The result is that 
the fundamental length scale, l, in the black hole interior can be 
different from both lPl and α.

Note that our conjecture (11), supported by a simple argument 
of information conservation, can be further improved by requiring 
that the black hole entropy is nothing but the entropy of a “gas of 
voxels”, namely

Svoxel ≡ kB log

(
(Nvoxel)!/

∏
i

Ni !
)

!= SBH, (12)

where Ni are voxel-admissible microscopic configurations. In the 
limit of large Nvoxel this gives

Nvoxel ∼ Npixel. (13)

Apart from logarithmic corrections associated with the probability 
of each voxel configuration, the above condition offers a way to in-
terpret, at a statistical level, the black hole entropy in terms of an 
(n − 1)-spatial-volume dependent entropy. Thus the areal depen-
dence of SBH would be a thermodynamic fictitious effect seen by 
an asymptotic observer.

We now turn to the opposite possibility: that the number of di-
mensions of the de Sitter core may be less than four. This reduced 
dimensional scenario is called spontaneous dimensional reduction 
[12,35,36]. The basic idea is that the spacetime in its high en-
ergy/short distance regime might switch from the conventional 
differential manifold configuration to that of a fractal surface as 
a result of a huge loss of local resolution. As a result, the ac-
tual spacetime dimension would be expressed in terms of some 
fractal dimension, able to smoothly “flow” from the conventional 
topological value, four, to some smaller value, e.g., two. The idea 
that spacetime dimensionality can vary with energy is nowadays 
supported by an array of quantum gravity models and numerical 
experiments for fractal spacetimes [37–45]. As noted in [46] this 
has repercussions for black hole metrics: Spacetimes are conformal 
invariant; it is no longer possible to distinguish between small/big 
or classical/quantum black holes [47–49]; the two dimensional 
gravitational coupling, G2, is dimensionless. These properties are 
already evident by examining the Newtonian potential for a mass 
M in (1 + 1)-dimensions, i.e.,

Φ2 
 G2Mx,
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which in unaffected by any rescaling of lengths x and masses M , as 
in the case of the quantum mechanical Compton relation governing 
particle sizes. This is confirmed by full metric of dilaton gravity 
black holes, e.g. [47]

ds2
2 = −

(
2G2M

c2
|x| + C

)
dt2 + dx2( 2G2 M

c2 |x| + C
) , (14)

whose gravitational radius is proportional to the inverse of the 
mass, rS 
 1/M . As a consequence, in 2 dimensions, we no longer 
have a minimal length scale, encoded in the gravitational coupling, 
at which further compression of particles is prevented by matter 
collapsing into a black hole. Nevertheless it has been shown, that 
as in the higher dimensional case, regularizing quantum effects can 
replace the singularity with a de Sitter core in two dimensions 
[51,52].

To obtain spacetimes in both the large and short scale regimes, 
we need an action for the dimensionally reduced phase. Among 
the class of dilaton gravity models, the following action can be 
obtained from the Einstein–Hilbert action in the limit n → 2 [47]
(see also other dimensionally reduced models in [48–50])

S2 =
∫

d2x
√

−(2)g

[(
c4

8πG1
ψ (2)R− 1

2
(∇ψ)2

)
+L(1+1)

m

]
.

(15)

Here Ψ is the dilaton field and L(1+1)
m is the dimensionally re-

duced matter Lagrangian. The last step is to assume a suitable 
L(1+1)

m describing the de Sitter core as a solution of equations de-
rived from the above action. In such a way the black hole will look 
four-dimensional to an external observer but will also exhibit a 
regular two-dimensional interior.

As a result we assume that our inner metric is described by the 
short scale behavior of a regular dilaton gravity black hole given 
by [51]

ds2
interior = −

(
r2

α2
− C

)
dt2 + dr2( r2

α2 − C
) (16)

where C is a free parameter. The space–time structure is quite dif-
ferent from the higher-dimensional counterparts. Regardless of the 
sign of C the space–time is well behaved at r = 0 and one can 
obtain the spatial volume of the core by

V 1 =
α

√|C |∫
0

S0√∣∣ r2

α2 − C
∣∣dr ∼ α, (17)

i.e. the core volume is of order α. Accordingly, the number of vox-
els is Nvoxel ∼ α/l. In two dimensions, since G2 is dimensionless, 
there is no minimum length scale, thus we can adjust the param-
eter l to any arbitrarily small value in order to match the number 
of area bits Npixel on the horizon.

The main idea of this paper is that the horizon can be con-
nected to the internal structure of black holes. Our line of rea-
soning is based on the existence of a relation between the 
areal “bits”/plaquettes on the horizon and some (n − 1)-spatial-
dimensional voxels of the interior of the black hole. To frame 
our arguments we modeled the black hole interior by means 
of an (n)-dimensional de Sitter space–time. This is a generic 
way for avoiding the central singularity, which is supported by 
several quantum gravity improved black hole models. Thus the 
voxels, which compose the interior volume, are (n − 1)-spatial-
dimensional cubes of de Sitter space. By adjusting the dimension-
ality, n, of the de Sitter space and/or the de Sitter length scale α
(which is the same as adjusting the cosmological constant for the 
vacuum inside the black holes since Λ ∝ α−2) one finds that the 
voxel length scale, l, in the interior of the black hole can be very 
different from either the Planck length scale, lPl , or the cosmolog-
ical length scale, α. We showed that this kind of reasoning can 
offer an interpretation of the areal entropy of black holes in terms 
of a volume depending statistical entropy associated to a gas of 
voxels. We also considered the case of spontaneous dimensional 
reduction of black hole interiors. We showed that the parameter 
freedom of dilaton gravity black holes can be exploited in order to 
match internal one-dimensional voxels with the horizon bits.

Despite the provisional nature of the proposed arguments, we 
believe that the concept of fundamental voxel encoding gravita-
tional information could lead to new insights about the nature of 
black hole entropy.

Note added

After this work was completed we learned of two works [53,54]
which discuss similar issues.
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