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6Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
7Walton Centre NHS Foundation Trust, Liverpool, L33 4YD, UK
8Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London & Chalfont Centre for Epilepsy,
London, SL9 0RJ, UK
9Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
10Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
11Danish Epilepsy Centre – Filadelfia, 4293 Dianalund, Denmark
12Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
13Neurogenetics Group, Center for Molecular Neurology, VIB-University of Antwerp, 2650 Edegem, Belgium
14Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, 2650 Edegem, Belgium
15Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
16Division of Brain Sciences, Imperial College Faculty of Medicine, London, SW2 2AZ, UK
17Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
18The FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
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*Author for correspondence: Tel.: +1 514 778 6260; stefan.wolking@med.uni-tuebingen.de
‡EpiPGx Consortium group members are listed in the Appendix.

Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomark-
ers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials &
methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893
European subjects with GGE – responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid.
Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p
<10-5) but no significant association reflecting its limited power. The suggestive associations highlight can-
didate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS
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of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven
candidate gene analyses in upcoming pharmacogenetic studies.
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Genetic generalized epilepsies (GGE) are common, affecting about a third of all patients with epilepsy. Most
GGE follow a complex mode of inheritance, supposedly involving a multitude of common and rare genetic
variants [1]. Unlike developmental and epileptic encephalopathies, monogenic forms of GGE account for only
a small fraction of cases: culpable genes include GABRG2 [2], GABRA1 [3] or SLC2A1 [4]. Furthermore, a small
percentage of GGE is associated with common copy number variations (CNVs) such as 15q13.3 [5–8] as well as rare
CNVs [9]. Recent studies highlighted the complexity of GGE genetics by underpinning the role of common SNP
variants [1] as well as the enrichment of rare deleterious missense variants in known epilepsy genes and the group of
GABAA receptor-encoding genes [10–12].

Resistance to antiepileptic drugs (AEDs) is a widespread problem in the treatment of epilepsies. Drug resistance
is defined by the International League against Epilepsy as ongoing seizures despite treatment with two correctly
chosen AEDs in a sufficient dose [13]. As a rule, response to the first AED is achieved in about 50% of patients [14].
In the case of ongoing seizures, the addition of or exchange with another AED will result in seizure freedom in
further 15% of patients. Patients refractory to two AEDs have a chance of less than 5% to reach seizure freedom
– with a shrinking likelihood of success with an increasing number of drug trials [14]. Despite the approval of
various novel AEDs in recent years, the proportion of patients who are drug resistant has remained more or less
unchanged [15].

So far, the choice of an AED is guided by several factors such as age, gender, epilepsy type as well as by potential
drug interactions or side effects, and personal experience. Recommendations for AED choice can be found in
national and international guidelines [16]. Substantial pharmacogenetic findings that resulted in the adaptation of
treatment guidelines are sparse and exist only for cutaneous adverse drug reactions (ADR) of different severity
associated with sodium channel blockers that share an aromatic ring structure [17–20]. The overall usefulness
of pharmacogenetic screenings in reducing the frequency of ADR remains, however, controversial [21]. For AED
responder status, pharmacogenetic findings in childhood absence epilepsy (CAE) showed an association of common
variants in the ABCB1 drug transporter as well as in CACNA1H and CACNA1I, subunits of T-type calcium channels,
with responder status for the drugs ethosuximide and lamotrigine (LTG) [22].

Genes involved in drug absorption, distribution, metabolization and excretion (ADME) have been in the focus of
pharmacogenetic research of AEDs for some time [23–25]. Influence of variants in genes-encoding drug transporters
have been shown to influence pharmacokinetic parameters of LTG or valproic acid (VPA) [26–28]. Therefore, ADME
genes represent prospective locations of genome-wide association.

This study aimed to test whether common genetic variants predict drug response to LTG, levetiracetam (LEV),
VPA, the combination of VPA and LTG or overall drug response in a cohort of 893 people with GGE that were
deeply phenotyped regarding clinical presentation and pharmacoresponse.

Materials & methods
Ethics statement
All study participants provided written, informed consent for genetic analysis. Local institutional review boards
reviewed and approved study protocols at each contributing site.

Study design
The epilepsy cohort derived from the EpiPGx Consortium that was established in 2012 to identify genetic
biomarkers of epilepsy treatment response and ADR. EpiPGx (https://www.epipgx.eu/) is a European-wide epilepsy
research partnership under the European Commission Seventh Framework Protocol (FP7). This case–control study
is based on the retrospective evaluation of patient data. Relevant patient data were extracted from patient charts by
trained personnel and collected in a common electronic case report form used by all consortium sites. Individuals
included in the study were exposed to LTG, VPA and/or LEV. These three AEDs were the most frequent in our
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Table 1. Clinical details for three antiepileptic drug cohorts.
AED
group

Gender (% of
females)

AOO (mean, SD) Duration of
epilepsy (mean in

years)

Seizure frequency before and after initiation of AED
(mean per month, SD)

Distribution of GGE subtypes (%)

R NR R NR R NR Seizure
type

R NR Subtype R NR

Pre Post Pre Post

VPA 61% 59% 12.3
(± 5.3)

11.6
(± 5.4)

21.2 22.9 GTCS
nGTCS

1.8
(± 2.3)
20.4
(± 119.5)

0
0

1.8
(± 2.1)
40.1
(± 151.0)

3.1
(± 9.6)
30.1 (±
94.2)

JME
AE
EGTCS

35.6%
39.8%
24.4%

48.7%
35.0%
16.2%

LTG 67% 79% 12.9
(± 6.9)

12.2
(± 5.1)

20.9 19.4 GTCS
nGTCS

1.9
(± 2.5)
20.3
(± 102.8)

0
0

2.0
(± 2.0)
72.0
(± 228.3)

2.8
(± 8.3)
44.3
(± 126.2)

JME
AE
EGTCS

33.6%
37.2%
29.2%

29.4%
35.1%
15.5%

LEV 85% 65% 13.1
(± 4.0)

11.4
(± 4.6)

22.0 22.1 GTCS
nGTCS

1.8
(± 1.7)
14.3
(± 8.5)

0
0

2.0
(± 1.9)
12.8
(± 9.6)

2.3
(± 5.3)
22.9
(± 75.3)

JME
AE
EGTCS

61.7%
22.2%
16.0%

53.2%
33.9%
12.1%

Depiction of gender distribution, mean age of seizure onset, duration of epilepsy at the time of inclusion, seizure frequency for GTCS and non-GTCS before and after initiation of treatment
with respective AED, and distribution of GGE subtypes for the three AED groups.
AE: Absence epilepsies (childhood and juvenile absence epilepsy); AED: Antiepileptic drug; AOO: Age of onset of first seizure; EGTCS: Generalized epilepsy with generalized tonic-clonic
seizures only; GGE: Genetic generalized epilepsy; GTCS: Generalized tonic-clonic seizure; nGTCS: Seizures other than GTCS (absence seizures, myoclonic seizures); JME: Juvenile myoclonic
epilepsy; LEV: Levetiracetam; LTG: Lamotrigine; NR: Nonresponder; Pre: Before initiation of treatment with AED; Post: After initiation of treatment with AED; R: Responder; SD: Standard
deviation; VPA: Valproic acid.

cohort. Besides carbamazepine, they reflect the highest usage in Europe [29] and are broadly available [30]. We tested
whether common genetic variants were significantly associated with drug response to one of these AEDs, to the
combination therapy of LTG and VPA, which can provide additive benefits [31], or with drug response to at least
one of these AEDs

Cohorts, phenotype definition, inclusion & exclusion criteria
From more than 12,000 individuals that are documented in the EpiPGx electronic case report form, only 893
individuals met our inclusion criteria. The cohorts exclusively consisted of individuals of non-Finnish European
ancestry with an established diagnosis of GGE according to the current International League against Epilepsy
diagnostic criteria [32]. Individuals were required to feature one of the four typical GGE syndomes: CAE, juvenile
absence epilepsy (JAE), juvenile myoclonic epilepsy or GGE with generalized tonic-clonic seizures (GTCS) only.
Diagnosis was based on patient history, seizure semiology, electroencephalogram (EEG) and cerebral imaging
findings.

The entire cohort of 893 individuals (587 females and 306 males) comprised 359 individuals with juvenile
myoclonic epilepsy, 194 patients with CAE, 191 patients epilepsy GTCS and 149 patients with JAE. Median age
of seizure onset was 12 years (±5.6). Altogether, 589 patients originated from Central Europe (Austria, Belgium,
Denmark, Germany and The Netherlands), 218 from the British Isles (UK and Ireland), and 86 from Southern
Europe (Italy). Recruitment sites are listed in the Supplementary data. More detailed clinical information is shown
in Table 1.

Individuals with a diagnosed monogenetic cause of epilepsy, severe developmental or intellectual deficits, epilep-
togenic lesions on cerebral imaging, seizures other than GTCS, myoclonic or absence seizures, or recurrent
noncompliance were excluded from the analysis.

Furthermore, individuals were required to fulfill response or nonresponse criteria for at least one AED. The
following are our definitions in EpiPGx: response was defined as seizure freedom under continuous treatment
for at least 1 year and prior to initiation of any other treatment. The period of seizure-freedom did not have
to be ongoing at the time of inclusion. Nonresponse was defined as recurring seizures at ≥50% of pretreatment
seizure frequency given adequate dosage. The assignment to the response or nonresponse groups was based on
the evaluation of at least one epilepsy specialist at the source center. For the overall response analysis of the entire
GGE cohort, in the case of exposure to multiple AEDs, patients were defined as responders if they fulfilled the
responder criteria for at least one AED. We also included patients in the overall response cohort that fulfilled the
criteria based on their response profile for other AEDs. This included 43 patients with ethosuximide (38 responders
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Table 2. Sample size of genome-wide association study cohorts.
Cohort Responders Nonresponders

Overall 608 278

VPA 410 155

LTG 137 250

LEV 82 127

LTG and VPA 31 73

Number of responders and nonresponders in each of the five genome-wide association study cohorts.
LEV: Levetiracetam; LTG: Lamotrigine; VPA: Valproic acid.

and five nonresponders) and seven patients with zonisamide (three responders and four nonresponders). Dosage
requirements for the classification of nonresponse were a minimal daily dose of 150 mg for LTG, and 1000 mg for
VPA and LEV, respectively. For response classification, lower doses were accepted on a case-by-case evaluation left
to the discretion of the specialist (e.g., 100 mg LTG).

Imputation & genotyping quality controls
Genome-wide association studies (GWASs) were conducted separately for each AED-response cohort using imputed
best-guess genotypes. Genotyping and imputation methods have been described previously [20]. We applied stringent
per-individual and per-SNP quality controls (QC) using PLINK 1.9 [33]. Per-individual QC: we included unrelated
individuals (pairwise identity-by-descent [IBD]: PI HAT <0.06) with European ancestry, and an SNP genotype
missingness rates less than 2%. Cohort consistency was controlled via principal component analysis using the
EIGENSOFT software [34]. Outlier subjects in the five datasets (Table 2) were identified and removed using a sigma
of >5 standard deviations from the first ten principal components. A European ancestry of the remaining cohort of
893 individuals was verified by a principal component analysis comparison to 1000 Genomes data (Supplementary
Figure 1). Per-SNP QC: SNPs were included by the following QC criteria: autosomal annotation, IMPUTE2
info-score >0.9 [35], genotype missingness rate less than 2% and minor allele frequency more than 1%. After SNP
QC-filtering, between 3,287,443 and 3,347,871 SNPs remained for GWAS analysis.

Statistical association analyses
Single marker association analyses were performed using the linear mixed model application FaST-LMM [36] to
correct for confounding by population stratification or cryptic relatedness. The spectral decomposition matrix
was calculated using a linkage disequilibrium (LD)-pruned SNP dataset (LD r2 <0.2 and a window size of 100
SNPs) under exclusion of the major histocompatibility complex cluster on 6p22.3-p21.2. The covariates gender,
age of onset and array type (Illumina, Affymetrix, CA, USA) were included in a linear mixed model. p-values
below 5 × 10-8 or 10-5 were considered significant or suggestive, respectively. Given the exploratory approach
of this pilot-GWAS, we did not correct for multiple testing of five AED response traits – accepting a slightly
higher false-positive rate in order to present a comprehensive list of candidate loci for each AED response trait
for follow-up studies. Manhattan and quantile-quantile plots were created using the R-package qqman. Genomic
inflation factors were calculated using the R-package GenABEL. Regional plots were created using the LocusZoom
webtool (http://locuszoom.org) based on the hg19/1000 Genomes November 2014 reference data.

Gene-set analysis & gene-level analysis for ADME genes
To test whether genes involved in pharmacokinetics, in other words, ADME, were associated as a group with
pharmacoresponse, we created a gene set of 307 genes (Supplementary Table 3). We applied MAGMA version 1.04
using the entire set of SNPs and GWAS p-values to run the gene-set and gene-level analysis [37].

Study power estimates
We performed power analyses, using the power calculator for case–control genetic association analyses PGA2
version 2.0 [38]. For an alpha level of p ≤ 5 × 10-8, our analysis of the five AED response cohorts had 80% power
to detect genome-wide significant SNPs of minor allele frequency (MAF) = 5% with relative risks ≥1.48, ≥1.54,
≥2.51, ≥2.93, ≥4.65 for overall, VPA, LTG, LEV, and LTG and VPA, respectively (Supplementary Figure 2).
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Functional annotation of SNPs & gene-level analysis
We applied the FUMA webtool [39] to our summary statistics to perform a genome-wide gene-level analysis. Given
about 14,000 genes interrogated in our GWASs, p-values <3.6 × 10-6 were considered significant after Bonferroni
correction.

Results
Cohort description
After per-individual QC, 893 persons were included in the GWASs. There was a substantial overlap between
the different analysis cohorts since various patients were treated with two or more AEDs. The breakdown of
the different AED-response cohorts is shown in Table 2. The overlap of the cohorts is shown in Supplementary
Figure 3. Comparing the ratio of responders to nonresponders for the different groups, we saw more responders
than nonresponders for VPA, whereas for LTG and LEV the nonresponders outweighed the responders (Table 2).
Regarding the seizure rate before treatment with the respective AED, we saw for LTG and VPA a higher frequency
of seizures other than GTCS (i.e., myoclonic and absence seizures) in nonresponders compared with responders.
We did not observe this effect for LEV and for GTCS for all AEDs.

Genome-wide association study analysis
To test the hypothesis that genetic markers predispose to pharmacoresponse, a linear-mixed model analysis of the
AED subgroups as well as of the overall cohort was performed. We observed no evidence for a substantial GWAS
p-value inflation (lambda-range between 0.99 for LEV and 1.02 for LTG and VPA, Figure 1 & Supplementary
Figure 4). We did not detect any genome-wide markers for any of the AEDs or the overall cohort (Figure 1)
that exceeded the threshold of significance (p < 5 × 10-8). However, we identified 29 loci with lead SNPs that
were suggestive for an association with AED response (p < 10-5). The strongest association was found in the
LEV response group for rs17676256 (4q25), an intronic SNP in the ANK2 gene (p = 1.07 × 10-7) (Figure 1 &
Supplementary Figure 8). Among the other loci several represented genes involved in neuronal development or
associated with neurodevelopmental disorders: CACNB2 and CNTNAP2 for the overall response, CELF2 for LTG
response, LRRTM4 and MAGI2 for the response to LTG plus VPA. The top results for all GWASs are depicted
in Table 3 and Supplementary Table 1. Regional genomic plots are shown in Supplementary Figures 5–9. We also
did not observe an enrichment of SNPs at the gene-level (Supplementary Table 4 shows hits with p < 1 × 10-4,
Supplementary Figure 10 presents the quantile-quantile plots).

Gene-level & gene-set analysis of the ADME gene panel
The gene-set analysis using MAGMA on a set of 307 ADME candidate genes revealed no significant result (the
p-values ranged between 0.41 for LTG and 0.99 for VPA) (Supplementary Table 2). The gene-level analysis for
the 307 genes showed no significant results (Supplementary Table 3) with a p-value threshold of 1.6 × 10-4 after
Bonferroni correction.

Replication analysis of SNP associations predicting LTG response
We aimed to test whether the SNPs described by Glauser et al. [22] (rs2032582 for ABCB1, rs2753325 and
rs2753326 for CACNA1H) that were reportedly associated with LTG response in CAE showed an association with
LTG responder status in our cohort. We tested our entire GGE LTG cohort (Table 2) as well as the fraction of
CAE patients that were responders or nonresponders to LTG (26 responders, 41 nonresponders; 20 males, 47
females; median age of seizure onset 6 years [±2.3]). rs2032582 revealed no significant association for the whole
group (p = 0.35, odds ratio [OR]: 1.17) and the CAE group (p = 0.45, OR: 0.70) by Fisher’s exact test. The two
synonymous SNPs, rs2753325 and rs2753326, were neither present in our imputed SNP set, nor did we find SNPs
in LD.

Discussion
No pharmacogenetic marker for drug response to specific AEDs has been reproducibly identified to date. In this
pilot study, we aimed to explore common genetic variants associated with drug response in three common AEDs:
LEV, LTG and VPA. They are the most frequently used AEDs in GGE and are considered as the first line of
treatment [40]. The ratio of responders to nonresponders was higher in the VPA group compared with LTG and
LEV for which nonresponders prevailed. This observation could reflect the superiority of VPA in the treatment of
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Figure 1. Manhattan plots and genomic inflation factors (λ) for the five genome-wide association study analyses. Dashed line
represents the p-value threshold for suggestive association (linear mixed model p = 10-5).
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Table 3. Top genome-wide association study analysis results (p < 10-5) for therapy response studies of five antiepileptic
treatments.
SNP Location (hg19) p-value Gene

Overall responder status

rs6871559 5:8047709 5.03 × 10-6 –

rs13179734 5:29350681 8.82 × 10-6 –

rs7457112 7:146876502 9.30 × 10-6 CNTNAP2

rs1277731 10:18563985 9.41 × 10-6 CACNB2

rs11681922 2:29442426 9.84 × 10-6 ALK

Valproic acid

rs78269837 5:76809481 5.03 × 10-6 WDR41

rs4292046 2:238149704 5.29 × 10-6 –

rs6046489 20:19945493 6.88 × 10-6 RIN2

rs619889 18:62929316 9.65 × 10-6 –

Lamotrigine

rs17650998 3:178313693 8.66 × 10-7 KCNMB2

rs10206521 2:21420828 3.23 × 10-6 –

rs1291861 10:11111799 5.93 × 10-6 CELF2

rs11794033 9:25100016 7.97 × 10-6 –

Levetiracetam

rs17676256 4:114061536 1.07 × 10-7 ANK2

rs12320526 12:77952683 1.59 × 10-6 RP1-34H18.1

rs12734159 1:66185458 2.76 × 10-6 –

rs7956831 12:9889157 3.36 × 10-6 –

rs1014085 8:57643998 3.65 × 10-6 –

rs3756744 5:128428722 3.70 × 10-6 –

rs7515154 1:85704435 4.08 × 10-6 –

rs72765466 1:236218004 5.69 × 10-6 NID1

rs17124115 12:50305590 7.36 × 10-6 RP11-70F11.11

Lamotrigine and valproic acid

rs1922809 2:77687101 7.77 × 10-7 LRRTM4

rs4751538 10:129635908 8.00 × 10-7 –

rs78723182 7:78521292 1.51 × 10-6 MAGI2

rs4416719 6:6164208 2.24 × 10-6 F13A1

rs1479876 3:140044009 4.23 × 10-6 CLSTN2

rs7705566 5:31259129 4.28 × 10-6 CDH6

rs8003775 14:39335815 5.54 × 10-6 LINC00639

Genome-wide association study lead SNPs (p � 10-5) associated with response to respective antiepileptic drugs or overall response, including SNP position (hg19 assembly) and gene for
genic markers. For SNPs in linkage disequilibrium, only the SNP with the lowest p-value are depicted.

GGE [40]. The observation that nonresponders had a higher seizure frequency before the start of treatment with
the respective AED reflects the common clinical observation that individuals with severe epilepsies are less likely to
achieve seizure freedom – the cornerstone of the intrinsic severity hypothesis of pharmacoresistance [41].

Our GWAS approach did not reveal evidence that strong genetic effects contribute to the genetic variance of
therapy response of the most common AEDs used in the treatment of GGE. The lack of significant findings in this
study rules out single variants with large effect size. This underlines that there is no simple answer to the question
of the causes of response and pharmacoresistance [23]. Other mechanisms for the development of drug resistance
have been proposed [42]. Novel antiseizure agents are in development that aim to overcome drug resistance [43].
However, there is compelling evidence that multiple genetic factors influence AED response [44].

Assuming a complex genetic trait, one would expect the presence of multiple genetic variants with small effect
sizes – a hypothesis that cannot be dismissed by our study due to insufficient power. Our power to detect variants
with small effect sizes was too low due to the limited sample size. Nonetheless, we identified several suggestive loci.
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Among them, we identified several loci associated with genes of interest: ANK2 encodes a 440 kDa polypeptide
that is exclusively expressed in brain tissue [45] and has been identified as a high-confidence autism spectrum
disorder (ASD) gene [46]. A recent study showed that ANK2 mutations lead to increased axon branching and
ectopic connectivity [47]. Deletions of MAGI2 that encodes a scaffold protein, which interacts with several pre- and
postsynaptic proteins in inhibitory and excitatory synapses [48], have been described in association with infantile
spasms [49]. CELF2, which is involved in alternative RNA splicing in the brain [50], has been recently implicated as
a modifier gene for individuals with KCNQ1-associated epilepsy [51]. CACNB2 encodes a L-type calcium channel
subunit, which has also been associated with ASD [52] as well as Brugada syndrome [53]. CNTNAP2, also known as
CASPR2, encodes a neuronal transmembrane protein that is involved in neuron–glia interaction and the clustering
of potassium channels [54]. It has been associated with ASD and epilepsy [55] and Cntnap2-/- mice show seizures
and abnormal EEG patterns [56]. LRRTM4 is implicated in synaptogenesis [57] and in the organization of excitatory
and inhibitory synapses [58]. As in the nature of GWAS, these findings should not be considered as causal variants,
but as markers for regions, where the actual causal variant has yet to be identified.

Interestingly, whereas several of the top SNPs belong to genes that are associated with neurological development
and neurodevelopmental disorders, none was found in ADME genes. This was further corroborated by the lack of
significant findings in the gene-set analyses. Furthermore, we could not corroborate the finding by Glauser et al.,
who reported an association of LTG response with a variant in the gene ABCB1 [22]. However, our analysis did not
allow to further elucidate the role of the two CACNA1H variants [22].

The major limitation of this study was its sample size that is reflected by the fact that of more than 12,000
individuals in our database only 893 fulfilled our inclusion criteria. There is an elemental trade-off between the
need of a large sample size on the one side and accuracy and stringent phenotype definition on the other side.
In our study, we decided to emphasize the latter. It could be argued that a looser definition of drug response, for
example, 50 or 75% seizure reduction compared with base level or 6 months of seizure freedom would have resulted
in a larger sample size. However, we assume that a less rigorous definition would have blurred potential genetic
association. Thus, even though large cohorts of genotyped [1] and exome-sequenced [10] patients have recently
become available, detailed clinical data and the personnel to collect and analyze these data are the main constraint
to perform larger studies of this kind.

Conclusion
This is the first GWAS for individual AED response in GGE. While our study did not reveal significant association
signals for drug response, we identified several suggestive loci. Future hypothesis-driven association studies should
attempt to reproduce our top findings, freed from the threshold (p < 5 × 10-8) for genome-wide correction
for multiple testing. Furthermore, this study, by design, focused on SNPs. Possibly, the inclusion of rare variants
and CNVs, in analogy to recent case–control studies on epilepsy risk factors [10–12,59], will shed more light on
drug response. More novel analysis techniques such as the polygenic risk score [60] or the polygenic transmission
disequilibrium test [61] could also help to elucidate the role of common variants in future analyses.

Summary points

• Drug resistance to antiepileptic drugs is a common challenge in the clinical management of patients with epilepsy.
• There are no pharmacogenetic markers for drug response in epilepsy so far.
• We conducted a genome-wide association study of 893 European subjects with genetic generalized epilepsy for

drug response to lamotrigine, levetiracetam and valproic acid.
• We identified 29 genomic loci (p < 10-5) with suggestive evidence for association with antiepileptic drug response

but did not find significant genetic association (p < 5 × 10-8) of responder status with common variants.
• A gene-set and gene-level analysis for genes involved in drug absorption, distribution, metabolization and

excretion revealed no significant association.
• The replication of a previously reported marker for lamotrigine response in ABCB1 was not significant.

Supplementary data
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