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Early life adversity and prenatal stress are consistently associated with an increased risk
for schizophrenia, although the exact pathogenic mechanisms linking the exposures with
the disease remain elusive. Our previous view of the HPA stress axis as an elegant but
simple negative feedback loop, orchestrating adaptation to stressors among the
hypothalamus, pituitary, and adrenal glands, needs to be updated. Research in the last
two decades shows that important bidirectional signaling between the HPA axis and
intestinal mucosa modulates brain function and neurochemistry, including effects on
glucocorticoid hormones and brain-derived neurotrophic factor (BDNF). The intestinal
microbiome in earliest life, which is seeded by the vaginal microbiome during delivery,
programs the development of the HPA axis in a critical developmental window,
determining stress sensitivity and HPA function as well as immune system
development. The crosstalk between the HPA and the Microbiome Gut Brain Axis
(MGBA) is particularly high in the hippocampus, the most consistently disrupted neural
region in persons with schizophrenia. Animal models suggest that the MGBA remains
influential on behavior and physiology across developmental stages, including the
perinatal window, early childhood, adolescence, and young adulthood. Understanding
the role of the microbiome on critical risk related stressors may enhance or transform of
understanding of the origins of schizophrenia and offer new approaches to increase
resilience against stress effects for preventing and treating schizophrenia.

Keywords: schizophrenia, microbiome, brain-derived neurotrophic factor, development, stress, cortisol
INTRODUCTION

Schizophrenia presents an enormous burden to individuals, families, communities, and public
health, but the mechanisms underlying its pathogenesis, presentation, and course remain largely
enigmatic, with no interventions known to prevent or cure the disease. New perspectives are
necessary to overcome this roadblock. The microbiome, which broadly refers to the collection of
genomes of the commensal microbes inhabiting our bodies, influences our health in broad and
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complex ways. The emerging science of the microbiome is a
promising new domain that could shed light on crucial disparate
features of schizophrenia, including its association with prenatal
and life course stressors, neurodevelopmental underpinnings,
inflammatory neuropathology, particularly of the hippocampus
and its metabolic comorbidity.

The Microbiome
The microbiome comprises a dynamic ecological community of
commensal microorganisms that inhabit our body where it
interfaces with the environment. These specific microbes,
which are collectively referred to as the microbiota, consist of
bacteria, viruses, fungi, and protozoa; approximately equal our
own cells in number; and combined pose over 200 times the
number of genes as the human genome (1, reviewed in 2). Recent
advances in high-throughput genetic sequencing and computational
abilities reveal the richness, complexity, and essential role of the
microbiome in human health. Its composition varies by anatomic
region, with the gut microbiome in the distal large intestine
considered the most influential for health.

After being seeded at birth by maternal vaginal bacteria in the
birth canal, the neonate gut microbiota develops in a phasic
manner, largely due to feeding. The gut is initially colonized by
microaerophilic Proteobacteria and facultative anaerobic
Actinobacteria, which consume oxygen and create a suitable
niche for subsequent obligate anaerobes like Bacteroides,
Clostridium, and Bifidobacterium spp. (3, 4) Breast milk
stimulates the growth of bifidabacteria, but weaning results in the
emergence of Firmicutes and Bacteroidetes (5). These phyla
proliferate with the introduction of solid foods and eventually
come to dominate the gut microbiota (5). By 2.5 to 3 years of age,
the infant gut microbiota structure stabilizes and resembles the
adult gut microbiota, which is also dominated by Firmicutes and
Bacteroidetes (3). The developmental dynamics of the infant gut
microbiota are shaped by host genes, host immunity and
environmental factors, such as diet, medications, and climate (6–8).

Over the last decade, it has emerged that the humanmicrobiome
highly influences the development of the central nervous system
(CNS) and the immune system. The microbiome is shaped by stress
exposures from early life and, in turn, influences stress responsivity
(9). Given this new information, our models of the endocrine
modulation of the stress response should be updated to account
for the microbiome.

The bidirectional influence of the gut microbiome and CNS
occurs through the “gut-brain axis” (GBA), components of
which include the vagal nerve, gut hormone signaling, immune
system, tryptophan metabolism, and microbial metabolites, such
as short-chain fatty acids (reviewed in 10). Activity along the
GBA intersects with the HPA axis (Figure 1) and may influence
many psychiatric disorders, as evidenced by the association of
gut dysbiosis with autism, depression, and anxiety disorders as
well as functional gastrointestinal disorders (11–16). Given the
purported inflammatory underpinnings for schizophrenia and its
severe comorbidities with other microbiome-linked metabolic
diseases, associations between schizophrenia and the microbiome
are of great interest.
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Stress Response and the Microbiome
Awareness of the overlap of stress signaling and the microbiome
began in 2004 with the report that germ-free mice had an
exaggerated hypothalamus-pituitary-adrenal (HPA) responses
to stress in comparison to non-germ-free mice (17). The
“microbiome-gut-brain axis” (MGBA) refers to bidirectional
signaling between the gut flora and CNS. Acute and chronic
stressors that activate the HPA axis also influence the microbiome
and gut epithelium which participate in behavioral and systemic
stress effects. The gut and brain communicate through the vagal
(parasympathetic) nerve, which is a cholinergic anti-inflammatory
pathway associated with slowed heart and respiratory rates and
digestive function. Under stress, the sympathetic nervous system
predominates and vagal function is reduced. The gut microbiome
produces neurotransmitters that influence behavior, including
acetylcholine, catecholamines, g-aminobutyric acid, histamine,
melatonin, and serotonin, all of which are also essential for
regulating gastrointestinal peristalsis and sensation. Thus, the HPA
axis and GBA are intersecting, co-dependent loops for managing
stress and inflammation as part of their physiological function.

In this review, we illuminate aspects of the stress response and
the microbiome as the GBA, with respect to schizophrenia. The
impact of stress exposures on the brain will almost certainly
entail signaling with the microbiome. Some factors that are
associated with an increased risk for schizophrenia are
considered across developmental stages, including the perinatal
window, early childhood, adolescence, and young adulthood.

The HPA Axis, Hippocampus,
Neurotrophins, and Schizophrenia
The neurobiology of the stress cascade and its potential for
toxicity is well described. The HPA axis is the stress response
system through which stress hormones and the CNS interact. Early
dysregulation of the HPA axis is associated with adult stress-related
disorders, including schizophrenia (18–20). Mechanistically, HPA
axis dysregulation is considered to be linked to schizophrenia risk
via glucocorticoid (GC) overproduction, especially during
vulnerable phases of neurodevelopment. Cortisol-releasing
hormone (CRH) is released from the paraventricular nucleus of
the hypothalamus following physical or psychological stressors.
CRH binds receptors on the anterior pituitary gland, driving release
of adrenocorticotropic hormone (ACTH). This stimulates the
adrenal cortex to release cortisol, the human GC hormone.
Under physiological conditions increasing cortisol levels inhibit
CRH release, terminating this stress cascade through a negative
feedback loop. However, excess and chronic stress hyperactivate the
HPA axis and cause abnormally high GC levels (21–24).

The effect of elevated GC levels on the hippocampus, the essential
structure for memory and contextualizing new information, may
be relevant. The hippocampus is the most commonly abnormal
brain region in groups of schizophrenia cases, with progressive
hippocampal volume loss a common observation (25). Increased
activation, metabolism, and inflammation of the anterior
hippocampus are associated with psychotic symptoms (26, 27)
(reviewed in 28). The hippocampus possesses a high concentration
of GC receptors that promote threat appraisal and help organize the
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stress response. Increased GC levels may drive overactivation and
inflammation of the hippocampus and thereby promote
schizophrenia (reviewed in 29–31).

GCs may also influence schizophrenia through interaction
with neurotrophin pathways. Neurotrophins are growth factors
responsible for neuron growth, differentiation, and formation of
new synapses (32). Brain-derived neurotrophic factor (BDNF),
the most abundant neurotrophin, is highly active in the
hippocampus, cortex, and basal forebrain, where it binds its
receptor, tyrosine kinase receptor B (TrkB), to play a key role in
synaptic plasticity and long-term memory formation (33).
Because GC receptors and TrkB are co-expressed in the
hippocampus, important crosstalk between GCs and BDNF
occurs here, as threat appraisal relies on both current stress
and appropriate context from memory (34). As such, GC and
BDNF equilibrium remains crucial for stress response regulation
throughout life. Impairment of GC receptors and TrkB in the
Frontiers in Psychiatry | www.frontiersin.org 3
hippocampus favors vulnerability to stress-related disorders,
including schizophrenia (reviewed in 35).

These pathways are influenced by the microbiome. Gut
dysbiosis can indirectly influence cortisol release and sensitivity
via chronic cytokine-mediated inflammation (36–38). This
proinflammatory state may be driven by microbes crossing the
intestinal barrier, releasing microbial byproducts such as
lipopolysaccharide (LPS), or be moderated through bacterial
metabolites, such as short-chain fatty acids (39–43) (reviewed
in 44). The microbiome further influences the structure and
function of the amygdala, which is critical for emotion learning
and social behavior, especially responses linked to anxiety and/or
fear (45, 46). Studies of germ-free mice show that the absence of
the microbiome during early critical developmental windows
leads to chronic cortisol elevation and altered hippocampal
BDNF levels (17, 47). Depleting the microbiome of previously
healthy mice through antibiotics disrupts the HPA axis (36, 48, 49).
FIGURE 1 | The hypothalamic-pituitary-adrenal (HPA) axis regulates the response to stress (red lines). Stress activates the hypothalamus to secrete cortisol-
releasing hormone (CRH), which induces the anterior pituitary gland to release adenocorticotropin hormone (ACTH; solid red lines). ACTH stimulates the adrenal
gland cortex to produce cortisol (solid red line), which negatively regulates CRH production to terminate the stress response cascade (dashed red line). Excess or
chronic stress can disturb normal HPA axis function via altered neuroendocrine signaling and gut dysbiosis (blue). Under excess or chronic stress, the hypothalamus
is hyperactivated, leading to upregulation of the anterior pituitary gland and adrenal gland activation (plus signs) as well as downregulation of CRH inhibition (minus
sign). Consequently, abnormally high levels of cortisol result in increased hippocampal signaling, which may overactivate the hippocampus, cause inflammation, and
alter the crosstalk equilibrium between cortisol and BDNF in the hippocampus. Excess or chronic stress causes gut dysbiosis, which alters gut hormone and
microbe metabolite signaling from the gut to the brain through the vagus nerve, i.e., the GBA.
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Taken together, these findings suggest that a healthy microbiome is
an important component of HPA axis development and that early
alterations of the microbiome can affect neuroendocrine pathways
throughout life.

Resilience in Schizophrenia
Identifying factors to increase resilience against stress is an area of
active research that may be addressed through MGBA research.
Anxiety and depression-like symptoms in germ free animas as well
as the transference of a depression phenotype from a human patient
to a rats through fecal microbiota support the feasibility of this
approach (50). Mice deficient in the CRH1 receptor and those with
increased GR activity display more resilient behaviors (51–54) and
these hormones can be modulating by the gut microbiome (11, 50).
Likewise, the expression of serotonergic, glutamatergic, and GABA,
which are dysregulated in association with poor resilience (55), are
modulated through microbiome effects in animal models (reviewed
in 56). A healthy microbiome may also contribute to resilience
through emotion regulation that manifests as positive emotions and
optimism, cognitive flexibility, and healthy interpersonal function,
attributes that are associated with active coping styles (reviewed in
57). There may be treatment role for nutritional supplementation,
as stress-related behaviors and HPA dysfunction in socially isolated
male mice was remedied by dietary supplementation with DHA
(58) and a rat study even demonstrated that stress sensitivity from
early life trauma might be remediated through long-term
supplementation with an eicosapentaenoic acid (EPA)/DHA
mixture (59). The overlap of findings on the M-GBA with
neuroendocrine and behavioral measures with those implicated
for resilience indicate opportunities to modify the impact of stress
exposures and augment resilience by targeting the microbiome.
PERINATAL DEVELOPMENT

Introduction
In 1934, Rosanoff and colleagues published “The Etiology of So-
Called Schizophrenic Psychosis” in the American Journal of
Psychology (60). This manuscript, which examined 142 pairs
of twins either concordant or discordant for schizophrenia, was
the first to associate birth complications with schizophrenia. In
subsequent decades, schizophrenia risk during pregnancy, birth,
and the neonatal period was broadly examined. Many risk factors
were identified that occurred in important early developmental
stages, including maternal infection, stress, and medical
complications during pregnancy, fetal growth restrictions, and
hypoxia during pregnancy and birth. Overall, early-life exposures
have the greatest impact on the development and function of
central neural circuits and the immune system (46).

Missing from this well-developed story is the impact of
maternal exposures on her microbiome and the potential for
vaginal dysbiosis (61, 62). The newborn’s gut microbiome is
seeded by the maternal vaginal microbiome during passage
through the vaginal canal (8, 63). Disruptions in maternal
microbiome may cause the newborn to be seeded with a more
inflammatory gut microbiome (64, 65). It is this newborn
Frontiers in Psychiatry | www.frontiersin.org 4
microbiome that appears to have a strong influence in driving
the development of the immune system and directing
neurodevelopment (17, 66–70). These important contributions
to fetal development must now be included is considering the
action of schizophrenia risk factors in the perinatal period.

Maternal Infection
Maternal infection during pregnancy is associated with the risk
for schizophrenia and is a maternal stressor. A 1988 study
reported an increased rate for persons who were in utero
during the 1957 influenza epidemic (71). Subsequent studies
replicated this finding and suggested the second trimester as the
gestational risk period for schizophrenia from influenza
infection, although other evidence points to the first trimester
(72–74). Other maternal infections associated with the
offspring’s risk for schizophrenia include rubella, varicella
zoster virus, herpes simplex virus, and Toxoplasma gondii,
known as TORCH agents, which can cross the placental
barrier and directly infect the fetus, as can measles, polio,
bacterial bronchopneumonias, and infections of the genitals
and reproductive tract (75–77). Taken as a whole, infection
with this group of pathogens during pregnancy is relatively
common and may be an important factor for psychiatric
disorder risk.

As to mechanism, there are several possibilities. One of these is
direct invasion, which is consistent with the very high rate of
schizophrenia following prenatal rubella, up to 20%, given rubella’s
well-known propensity for neural invasion in the developing fetus
(76). Supporting invasion, a mouse model of influenza infection
showed persistence of influenza RNA in the brains of offspring of
infected pregnant mice (78). Another possibility is indirect damage
driven by maternal inflammation. During maternal infection,
inflammatory cytokine levels are elevated (75) and these may
disrupt fetal neurodevelopment and potentially drive schizophrenia
risk. For instance, the proinflammatory cytokine IL-1b negatively
regulates hippocampal neurogenesis, suggesting a possible
mechanism through which chronic inflammation could affect
schizophrenia susceptibility (79). Notably, maternal inflammation
correlates with later childhood psychiatric symptoms (80). Other
potential risk pathways include effects frommaternal fever, maternal
antibodies crossing the placenta and medications, such as analgesics
and anti-inflammatories, taken by the mother during infection, all of
which may impact fetal neurodevelopment (81–83).

However, maternal infections also alter her microbiome,
potentially leading to increased production of inflammatory
products released by her gut, as well as to disrupted seeding of the
neonatal microbiome at birth (64, 65). Neonates born to mothers
with ongoing HIV infection show decreased gut microbiome
diversity including reduced levels of Prevotella, a bacterial genus
linked to inflammatory regulation of stressor (84). It is possible that
dysbiosis secondary to maternal infection sensitizes the neonate to
further stress-related injury, including elevated schizophrenia risk.
Given the data demonstrating the impact of maternal inflammation
on offspring schizophrenia risk and the microbiome’s potential
contributions to this inflammation, the microbiome may be a key
player in schizophrenia pathogenesis.
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Maternal Stress
Maternal stressors, such as depression, unwanted pregnancy,
death of a partner, and exposure to war and disasters, are associated
with schizophrenia in offspring (19, 85–88). For female fetuses,
these external stressors are most strongly correlated with
schizophrenia when they occur during the first trimester;
however, male fetuses demonstrated increased schizophrenia risk
through the second trimester, suggesting sex differences in critical
periods (87, 88). Importantly, maternal stress during the first six
months of postnatal life is associated with worse behavioral
outcomes in children, suggesting that disrupted caregiving may
also be a component to the schizophrenia risk posed by maternal
stress (89). Additionally, prenatal nutritional deficiencies, including
gross calorie deficits during famine and micronutrient deficiencies
in homocysteine and vitamin D, are associated with both
schizophrenia and the above-mentioned stressors (90–94), which
certainly impact the microbiome composition. The short-term
effects of maternal stress may act through adverse pregnancy
outcomes, while the long-term effects on neurodevelopment may
involve altered neonatal stress programming and gut dysbiosis (95).
Maternal stress increases fetal and neonatal exposure to maternal
cortisol, altering growth and behavior in humans and animal
models (reviewed in 96). Stress also has well-documented effects
on the microbiome, which may in turn alter inflammation and
neurodevelopment in a developing neonate (62, 97–103). As an
example, maternal perinatal stress increases offspring susceptibility
to allergic diseases, which suggests interactivity between maternal
GCs, perinatal immune development, and possible maternal
dysbiosis (79). In a mouse model, prenatal maternal stress led to
dysbiosis in both mother and offspring, increased IL-1b in utero,
and a corresponding decrease in BDNF in offspring (104). Other
experiments have shown antibiotics alter BDNF levels in dysbiotic
mice, suggesting that interventions in the gut microbiome may be
important in modifying risk (105).

Exploring how the maternal stress influences her microbiome
for fetal effects relevant to schizophrenia risk may enhance our
understanding of the disease and suggest new treatments or
prophylactics through probiotic use (reviewed in 106).
Mechanistically, the microbiome-driven effects of stress may
manifest through alterations of the HPA axis during key
developmental stages (107), impaired development of small
intestine immune tissue and IgA production (108, 109), or
alterations in gut-metabolites leading to aberrant development
(110). Given that many of these downstream events are linked
with schizophrenia risk, future work should aim to elicit the
microbiome contributions of schizophrenia risk secondary to
maternal stress.

Fetal Hypoxia
Many obstetric complications can lead to fetal hypoxia, which
carries well-known risks to medial temporal regions. With
regards to schizophrenia, fetal hypoxia may be the most
significant risk factor among obstetric complications, in
addition to maternal infections and fetal growth restriction
(111, 112). Multiple studies report increased exposure to fetal
hypoxia among persons with schizophrenia (113–115). One
study show fetal hypoxia predicts the risk for early onset
Frontiers in Psychiatry | www.frontiersin.org 5
schizophrenia even after controlling for prenatal infection and
fetal growth restriction (116). Further, fetal hypoxia is associated
with reduced gray matter and ventricular enlargement in cases
with schizophrenia and their non-ill siblings, although not in
unrelated controls (117). Mechanistically, hypoxia may have an
additive effect with genetic factors hastening the onset of
schizophrenia in susceptible individuals (118). Certainly
hypoxia may influence the composition and function of the gut
microbiome (119, 120). As described above with infection and
stress, these alterations increase future susceptibility to stress by
influencing systemic inflammation, stress pathways, and BDNF
production. Additionally, maternal microbes may invade the
fetal brain following a hypoxic episode, as has been shown in
sheep (121).

Fetal Growth Restriction
In 1966, a small but significant reduction in birth weight was
observed in schizophrenic patients when compared to their
siblings (122), prompting consideration that fetal growth
restriction was a schizophrenia risk factor. Some, but not
all studies associated lower birth weight, reduced head
circumference, and congenital malformations with increased
schizophrenia risk (123). There are heterogeneous causes of
fetal growth restriction, only some of which may be associated
with the risk for schizophrenia (124).

Maternal Complications
Other perinatal obstetric complications include maternal
bleeding, maternal diabetes, preeclampsia, and caesarean
section birth complications (125–127) (reviewed in 128). These
perinatal traumas—along with the aforementioned factors of
maternal infection, maternal stress, fetal hypoxia, and fetal
growth restriction—altogether present a compelling argument
for a close connection between the early window of neural
development and schizophrenia risk. Recent advances indicate
that the vaginal microbiome suggest that it may be a key player in
this relationship. After all, these traumas occur during the
perinatal period, when initial microbiota seeding of the
newborn’s gut by the maternal vaginal microbiome occurs
during fetal passage through the birth canal.

Neuroendocrine Pathways
Cortisol, the primary human “stress” hormone, is also of central
relevance for the developing fetus, promoting the maturation of
vital organs, including the lungs, gastrointestinal tract, liver,
heart, and brain. As such, the fetal HPA axis is tightly
regulated, and is responsive to minute changes in fetal plasma
levels of cortisol, which easily crosses the placental barrier (reviewed
in 129). Due to their high cortisol sensitivity, developing fetuses rely
on the placental enzyme 11b-hydroxysteroid dehydrogenase type 2
(11b-HSD2) to inactivate maternal cortisol by converting it to less
active cortisone, beginning in the second trimester (130). Thus, in
early gestation, before placental 11b-HSD2 is induced, maternal
hypercortisolemia has potent effects on developmental gene
expression. Even after the induction of 11b-HST2, some cortisone
can be reactivated through 11b-hydroxysteroid dehydrogenase type
2 (11b-HSD2), which converts cortisone back to cortisol (reviewed
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in 131). This effect can be heightened by factors like maternal
protein malnutrition, which diminish 11b-HSD2 gene expression
(132). The detrimental effects of elevated exposure to maternal
cortisol go beyond fetal development to influence emotional and
behavioral disturbances during infancy and childhood and in later
life (85) possibly including the perinatal schizophrenia risk pathways
described above (reviewed in 133). Beyond the direct association
between maternal stress and schizophrenia, elevated maternal
cortisol may enhance other risks. In one study, elevated maternal
cortisol during the second trimester enhanced the risk for adolescent
onset depression in the offspring of mothers who experienced
infections during pregnancy (134).

The neurotrophin BDNF is also critical for neurodevelopment.
Elevated levels of BDNF are reported in fetuses with severe growth
restriction as well as those with macrosomia in the context of
maternal diabetes (135). Mechanistically, it is proposed that BDNF
is neuroprotective in the developing fetus through anti-inflammatory
mechanisms (136). In vivo animal models demonstrate that
BDNF can reduce hypoxic brain injury through modulation of
inflammatory cytokines and promotion of microglial activation
(137). Given BDNF’s protective role in the developing brain, it is
possible that downregulation of BDNF could exacerbate
schizophrenia risk in the perinatal window.

The Microbiome
Colonization of a newborn neonate gut is normally seeded by the
vaginal microbiome during birth, as described, along with
maternal vaginal, skin, and oral and fecal bacterial strains (8,
Frontiers in Psychiatry | www.frontiersin.org 6
63, 138). These vaginal contributions are transient and by four
months post-birth, the infant’s gut microbiome is more similar
to the maternal gut microbiome (Figure 2) (139, reviewed in
140). Neonates born via caesarean section lack exposure to the
maternal vaginal microbiome and demonstrate a higher
prevalence of maternal oral and skin microbes. They are also
more likely to develop immune-related disorders (8, 64, 65, 141,
142). Disruptions of the maternal vaginal microbiome via infection,
stress, or other pathways may lead to neonatal dysbiosis (65,
reviewed in 143). Pre-term birth, caesarean sections, steroid use,
and antibiotic use are also associated with dysbiosis in the newborn
infant (144, 145).

The initial development of the microbiome, including its seeding
at birth and development through very early childhood, is important
for the development of a healthy core microbiome that is resistant to
later perturbation. Given that dysregulation of the microbiome can
cause pathogenic inflammation, dysbiosis in the perinatal window
may lead to long-term inflammatory dysregulation (146–148).
Further studies are needed to determine how maternal flora may
influence immune development and schizophrenia risk in
their offspring.
EARLY CHILDHOOD

Introduction
Childhood onset of schizophrenia is rare, but a number of neurologic
and psychiatric features are already present in childhood. Likewise, a
FIGURE 2 | The newborn neonate gut initially contains bacterial strains from the mother’s oral, skin, gut, and vaginal microbiomes. The maternal source of initial
colonization varies by the method of fetal delivery, i.e., vaginal birth or caesarean section. Although the newborn neonate gut microbiome stabilizes to resemble the
mother’s gut microbiome by about four months of age, this early and transient variability may have long-term impacts on childhood development.
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number of traumatic exposures in childhood are associated with
schizophrenia risk. The possibility that these presentations reflect the
interactions of stress signaling and neurotrophic effects that may be
influenced or modulate by the microbiome effects, which is currently
being explored.

Signs Across Neurodevelopment
Schizophrenia is highly heterogeneous and no one developmental
trajectory can describe the risk pathway for all cases. However, the
literature does note certain clusters of behavioral features,
including gross motor dysfunction and lower verbal intelligence
(149–153). As children develop, personality traits, social behaviors,
and mood symptoms may emerge that are more imminently
related to the risk for psychosis (reviewed in 154).

During the first two years of life, infants undergo rapid
neurodevelopment achieving important motor milestones, like
walking, running, pointing, stacking blocks; language milestones,
like simple sentences and phrases from a vocabulary of hundreds
of words; and social milestones, like beginning self-sufficiency,
responding to requests, recognizing self in photographs (reviewed
in 155). As failure to achieve milestones raises concern for
neurologic development, this developmental stage has been
studied in the offspring of affected mothers, in whom a 10%
recurrence risk is anticipated. “Pandysmaturation’ was identified
as a risk predictor in these “high risk” offspring, which involves a
delay in cranial development and visual-motor development and
disorganized motor performance (156, 157). Other studies
identified passive infants with short attention spans, absence of
stranger anxiety, poor communication competence, or abnormal
use of language, and lower reactivity as signs of increased
schizophrenia risk (158–162).

As children grow into early childhood, they typically become
more coordinated, speak fluently, begin to learn reading and
writing, and form friendships and social circles. Here again
motor difficulties including clumsiness, poor coordination, and
poor balance are predictive of higher schizophrenia risk (163, 164).
Academically, learning disabilities like dyslexia are associated with
higher schizophrenia risk (162). Among children of individuals
with schizophrenia, relative decreases in coherence and complexity
of language are associated with later schizophrenia risk (165).
Socially, isolation, impaired affection, disturbed behavior,
hyperactivity, impulsivity, and mood dysregulation including
depressive signs and emotional lability are concerning for
increased schizophrenia risk (158, 161, 162, 164).

In later childhood before transitioning into adolescence,
children continue to improve in athletic, academic, and social
behavior. Motor impairment of coordination and balance may
become more striking in children with high schizophrenia risk
(166–168). Additionally, high risk children may display learning
difficulties in attention, concentration, memory, and thought as
well as behavioral and mood dysfunctions such as increased
aggression, problematic interpersonal relations, social isolation,
low self-esteem, offending behaviors, poor affective control, and
depression (152, 153, 162, 169–176).

Taken together, childhood impairments in neurologic
development, marked by motor, cognitive, and behavioral
disturbances, appear be on the trajectory toward schizophrenia,
Frontiers in Psychiatry | www.frontiersin.org 7
although most children with these features will not become
psychotic. Notably, many of these factors entail stress effects
on neuroendocrine function and neural plasticity. New research
tracking the microbiome over development is showing its role in
neurodevelopment and behavioral responses.

Exposure to Trauma
Traumatic experiences, ranging from abuse to accidental injuries,
serious infections, and hospitalizations, may increase risk for
schizophrenia (reviewed in 177). Trauma that occurs in
childhood and adolescence is associated with psychosis and
other psychiatric outcomes. Neurobiological studies demonstrate
a stress hyporesponsive period in humans during the 6th through
12th postnatal months. Adverse experiences of newborns during
this period can have lasting effects on HPA axis modulation (178,
179) from a long term elevation of basal GC secretion. Early life
stress (ELS) rodent experiments demonstrate that maternal
separation effects on stress sensitivity are mediated through GC-
dependent mechanisms (reviewed in 180).

BDNF genetic variants may also influence sensitivity to trauma.
There are many variants to the human BDNF gene, however,
relatively few common variants fall within coding regions (181).
Among these the BDNFVal66Met variant is the most studied overall
and has been specifically investigated with regards to schizophrenia
risk (reviewed in 182). The BDNFVal66Met polymorphism disrupts
episodic memory in humans as a hippocampus-dependent
memory function. Extensive studies in both animal models and
humans have explored the effects of this polymorphism on
numerous psychiatric disorders (reviewed in 183). Regarding
schizophrenia risk, the 66Met allele decreases BDNF release
probability (184), producing lower efficiency in neurotrophic
activity, which is required for neurogenesis and neuroplasticity
(185). It is associated with impaired episodic memory and lesser
hippocampal activation (186). 66Met carriers with schizophrenia
spectrum or bipolar disorders exposed to childhood sexual abuse
show reduced grey matter volumes, consistent with the reduced
BDNF mRNA levels in 66Met carriers who were exposed to
childhood sexual abuse (186).

The higher sensitivity to trauma among 66Met carriers may
be explained through the physiopathology of stress-induced
changes in neural systems. BDNF plays a key role in neuronal
plasticity (32, 187). BDNF-signaling is impaired by ELS; early
traumas can evoke significant memory impairments in adulthood
in association with reduced BDNF levels (188). This reduction,
explained by hypermethylation of the BDNF promoters, can
interact with genetic susceptibility, as in the BDNF 66Met
carriers (189).

ELS prepares an organism, over the modulation of the HPA
axis, for similar adversities during life. This way, a mismatching
environment results in an increased susceptibility to psychopathology
(131) such as major depression, panic and other co-morbidities.
Epigenetics seem to make limbic system structures—mainly the
hippocampus and amygdala—more rigid and prone to react
depressively and protectively through adulthood. Of clinical
significance, a higher occurrence of co-morbidities is usually related
to a higher severity of positive and negative symptoms, suicidality,
and poorer outcomes (190, 191).
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ELS exposure is a negative regulator of BDNF and glucocorticoid
receptors (GR) expression in the hippocampus, in the long term,
favoring the vulnerability to develop neuropsychiatric disorders,
especially upon additional stress exposures (192, 193). An
alternative consideration is whether reduced neural capacity leads
to a compensatory brain activation that might produce or activate
trauma memories. A study of spatial working memory monitored
by fMRI found that subjects with schizophrenia had to recruit more
cortical regions for the task (194). In this same study, false memory
errors were also associated with greater bilateral prefrontal
activation. It is plausible that neural strategies to compensate for
deficits of perceptual organization, working memory and
visuospatial function may lead to a higher recognition of new
stimuli as (false) memories. False trauma memory is more
frequent among adolescents with posttraumatic stress
disorder (PTSD) who experienced childhood sexual abuse (195).
Combined, psychosis and childhood sexual abuse may greatly
amplify false memories.

It is possible that some of these traumatic experiences are
related to PTSD or stress symptoms, as is likely in many cases of
abuse. Alternatively, they may be related to direct brain injury, as
is likely in many cases of meningitis and encephalitis (196). Most
studies examining trauma in schizophrenia risk do not
distinguish between events that occur in early childhood versus
adolescence, instead identifying events that occur before a
determined age (e.g., 16 or 18 years old). However, examination
of the timing of trauma suggests that puberty is an important
window for distinguishing between anxious and depressive
outcomes (197). Future studies examining the timing of
traumatic exposures against puberty onset can better elucidate
schizophrenia risk in these two populations.

Abuse
History of sexual and physical abuse is strongly correlated with
greater psychotic symptom severity among adolescents and young
adults in clinical high-risk (CHR) cohorts for schizophrenia.
Patients from one such cohort reporting sexual abuse as
children or adolescents had increased likelihood of transitioning
to psychosis (198). Overall, sexual abuse history is more prevalent
in these high-risk individuals than the general population (198–
204). Physical abuse is also commonly reported by CHR
individuals and may be linked with cognitive defects (205–209).
Early physical trauma may lead to hyperarousal of the stress
response and chronically elevated cortisol levels (210).

Emotional abuse in childhood, including neglect and
maltreatment, has negative effects on mental health (211).
Perceived discrimination significantly predicts the transition to
psychosis, and emotional trauma and bullying are associated
with depression, anxiety, and low self-esteem in CHR individuals
(205). These various emotional traumas may impair cognitive
function by denying a positive, stimulating environment for the
developing brain (212, 213).

Physical and emotional trauma in childhood appears to alter
stress response. Adults who reported childhood trauma demonstrate
blunted cortisol responses, likely an adaptive response to chronic
cortisol elevation (211, 214). In schizophrenia, increased stress
sensitivity is a potential causal factor (133, reviewed in 215).
Frontiers in Psychiatry | www.frontiersin.org 8
Mechanistically, chronically increased cortisol may make the
hippocampus vulnerable to injury via cortisol-induced dendritic
restructuring or altered cortisol receptor levels (216–221). Cytokines
like IL-6 and TNF-a are elevated in children exposed to trauma and
can alter cortisol responses (222, 223). Additionally, the BDNF
pathway may be relatively inhibited from chronically elevated
cortisol, further promoting hippocampal injury and schizophrenia
risk (224).

The gut microbiome is influenced by early childhood trauma
and likely influences schizophrenia risk in turn (225).
Gastrointestinal distress is frequently associated with early
adversity in children, and the gut microbiome appears to
influence stress programming in animal models (226–229)
(reviewed in 230). Recent studies describe altered microbial
patterns in children subjected to adversity, with elevations in
Lachnospiraceae spp. suggestive of a potential influence on stress
sensitivity (231). Additionally, childhood adversity is associated
with altered gut microbiota during pregnancy, and may influence
observed alterations in inflammatory and GC response to stress,
thus contributing to propagation of schizophrenia risk across
generations (232). Mechanistically, microglia have an important
role in neuroplasticity and neurogenesis and are also sensitive to
peripheral inflammation. Gut dysbiosis may negatively influence
neurodevelopment through altered microglia activation (228,
233). Future work examining gut microbiome, inflammation,
and effects of probiotics in CHR patients may help further
elucidate connections between the microbiome, early trauma,
and schizophrenia.

Infections
Childhood infections are another important risk factor for
schizophrenia onset, especially viral CNS infections (234–236)
implicating the microbiome. Childhood infections increase
schizophrenia risk in a dose-dependent manner and familial
liability for infection also increases schizophrenia risk (237).
Additionally, hospitalization for severe infection and even
outpatient antibiotic treatment in children are related to
increased risk for future psychiatric hospitalizations, suggesting
a broad impact of childhood infections on mental health (238).

Mechanistically, direct CNS damage from infection or
indirect inflammatory damage may drive the increased
schizophrenia risk following childhood infections (238).
Antibiotic use in response to infection may also drive risk.
Several antibiotics including fluoroquinolones are associated
with neurotoxicity and psychosis risk (239). In addition to
neurotoxic effects, infections and antibiotics can elevate cortisol
levels, potentially affecting the stress cascade (240).

The microbiome also likely influences infection risk in
schizophrenia. Studies of germ-free mice show that the gut
microbiome primes microglia, stimulating viral specific immunity
and reducing viral-driven demyelination via a TLR4-mediated
process (241). Dysbiosis driven by antibiotic use or other factors
may therefore increase CNS damage from neuroinvasive viruses
and thereby increase schizophrenia risk. Interestingly, one study
showed antibiotic treatment during adolescence in mice reduced
anxiety-like behavior (99). However, cognitive deficits were shown
along with reduced hippocampal BDNF and hypothalamic
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oxytocin and vasopressin expression so the reduction in anxiety-
like behavior is suggestive of negative symptoms.
ADOLESCENCE

Adolescence is the transition from childhood into adulthood that
begins with puberty and ends with cessation of physical growth
and neural development in the early 20s (242). Puberty broadly
impacts mental health, neuroendocrinology, and the microbiome
(reviewed in 243). Neurologically, adolescence encompasses
improved abstract thinking, reasoning, and knowledge while
also seeing a trend toward increased risk-taking behavior.
Schizophrenia most frequently develops during adolescence
and young adulthood, and the changes that occur during this
developmental stage likely participate in shaping schizophrenia
risk. As with early childhood, there are concerning signs and
exposures during adolescence that are linked to schizophrenia.

Adolescent Signs
As with early childhood, broad impairments in neuromotor
development, cognitive function, and behavior often mark
individuals at risk for schizophrenia (reviewed in 154). As the
adolescent matures, poor coordination, balance, and perceptual-
motor and visual-motor functioning may become more apparent
in a subgroup of cases (152, 168, 173). Cognitively, lower
intelligence and especially a decrease in intellectual function
mark schizophrenia risk (151, 153, 169, 244). There is
impairment of individual domains including arithmetic and
spelling, formal thought disorders, attention difficulties, increased
distractibility, poor executive functioning, and general learning and
memory difficulties (152, 153, 169, 173, 245). Behaviorally,
aggression, withdrawal, and generally poor social competence
and peer relations are also concerning, with psychiatric
symptoms including affective flattening and anxiety often present
(149, 151, 174, 175, 246, 247).

Risk Exposures
As discussed earlier, studies of exposures do not usually
distinguish between pre-pubescent children and post-pubescent
adolescents. The aforementioned exposures of sexual, physical,
and emotional abuse as well as infection similarly convey
schizophrenia risk among adolescents. However, trauma may
have different long-term outcomes post-puberty, and its
potential effect on schizophrenia risk merits further study.
Additionally, the increased risk-taking behavior exhibited at
this stage may be influenced by early trauma and influence
further trauma exposures. New exposures, such as recreational
drug use, may also contribute to schizophrenia risk.

Recreational Drug Use
Recreational drugs exploration is frequent in adolescence and
many carry a significant risk for psychosis, particularly cannabis.
By their first psychotic episode, approximately half of patients will
have a history of cannabis use and one-third meet criteria for
cannabis use disorder (248). Alcohol use is similarly high among
individuals who have experienced their first psychotic episode, and
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there is elevated use of cocaine, amphetamine, barbiturate, and
other drugs. Cause and effect associations of cannabis and
psychosis are well described, although some schizophrenia-
susceptible individuals may self-medicate to reduce the anxiety
surrounding the presentation of schizophrenia symptoms, with
this drug-seeking behavior may further exacerbate their risk for the
disorder (249). Chronic exposure to tetrahydrocannabinol (THC),
an active ingredient in cannabis, can disrupt neurodevelopmental
maturation dependent on endocannabinoid pathways and may
lead to overactivation of a pro-hallucinogenic pathway of 5-HT2A
receptors, which may promote schizophrenia onset in susceptible
individuals (250).

Substance abuse can dysregulate the HPA axis. Alcohol and
nicotine use induce cortisol production, and long-term use can
cause chronic cortisol elevation and dysregulation similarly to
previously described trauma (251–254). Additionally, the gut
microbiome is dysregulated by psychostimulants, alcohol, and
opioids (255–259) (reviewed in 260). Microbiome influences on
addiction are an active area of research. Microglial function is
shaped by the microbiome and altered by drugs of abuse (233,
261). Likewise, BDNF dysregulation by dysbiosis is associated
with altered behavioral response to cocaine and alcohol (256,
262, 263). While more work is needed to establish causal
relationships, these findings suggest multiple ways in which the
microbiome may influence addiction behaviors.
YOUNG ADULTHOOD

The transition from adolescence to adulthood occurs during the
20s (242). This transition is typically marked by completion of
education and transition to complete independence, which can
increase stress in a young adult’s life. Onset of schizophrenia
typically occurs around this life transition, peaking at 18 to 25 years
old in men and 25 to 35 years old in women, with 80% of cases
initially presenting before 40 years of age (264–266). The age of
schizophrenia onset may be related to immune activation and
stress. Interestingly, inflammatory diseases including inflammatory
bowel disease, multiple sclerosis, and some autoimmune diseases
tend to initially present in young adulthood (264–266). Gut
dysbiosis and cortisol dysregulation are observed in many
autoimmune diseases and disruptions to these systems in early
adulthood likely influence schizophrenia onset as well (reviewed in
267, 268). First-episode schizophrenia patients have well-
documented inflammatory disturbances, such as cytokine
elevations and microglial activation (reviewed in 269).

Metabolic disturbances, including glucose intolerance, insulin
resistance, and hyperglycemia, also frequently present in this age
group and are more common among antipsychotic and naïve
first-episode schizophrenic patients compared to the general
population (270, 271). These changes may promote schizophrenia
onset through persistent inflammatory effects. Stress-related cortisol
elevations and gut dysbiosis both contribute to metabolic
disturbances, suggesting alternative pathways that influence
schizophrenia risk (272, 273). The microbiota also regulate adult
neuroplasticity and microglia activation (233, 274).
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Aerobic Exercise: A Potentially Protective
Factor
While a number of risk factors for schizophrenia are identified,
recent evidence points to protective factors. Specifically, aerobic
exercise (AE) is hypothesized to play an important protective role
against stress induced effects. AE induces a cascade of molecular and
cellular processes that support brain plasticity and growth of new
vasculature and trigger the processes through which neurotrophins
mediate neural plasticity (reviewed in 275–278). Among
neurotrophins, BDNF is the most susceptible to regulation by
physical exercise (279–281), with synthesis and release into the
blood circulation increasing in a dose-response manner (282, 283).
Consistent with these findings, Voss et al. (284, 285) found
increased connectivity between the bilateral parahippocampus and
the bilateral middle temporal gyrus was linked to BDNF increase in
AE subjects. A recent meta-analysis (286) of 29 studies (N = 1111
healthy subjects) examined the effect of exercise on BDNF in three
exercise paradigms: 1) a single session of exercise; 2) a session of
exercise following a program of regular exercise; and 3) resting
BDNF levels following a program of regular exercise. Results
demonstrated a moderate effect size for increases in BDNF
following a single session of exercise (Hedges’ g = .46, p < .001).
Further, regular exercise intensified the effect of a session of exercise
on BDNF levels (Hedges’ g = .59, p = .02). Finally, results indicated a
small effect of regular exercise on resting BDNF levels (Hedges’ g =
.27, p = .005). Examination of moderator effects across paradigms
found that subjects’ age was not significantly related to changes in
BDNF following exercise, but sex significantly moderated the effect
of exercise on BDNF levels, such that studies with more women
showed less BDNF change resulting from exercise.

Consistent with these reports, findings indicate individuals
with schizophrenia tend to have highly sedentary lifestyle
characterized by low aerobic fitness which was highly
correlated with poor cognitive functioning and symptoms
(287). These findings parallel reports among individuals at
clinical high risk for psychosis indicating lower levels of fitness,
less physical activity, as well as more barriers to exercise (288–
292). Yet, a pilot AE RCT indicated engagement in AE led to
11.0% increase aerobic fitness (293) as well as BDNF vs. a 1.9% in
the TAU subjects (294) (reviewed in 295). A hierarchical
multiple regression analysis indicated that, after controlling for
age, sex, changes in anti-psychotic and SSRIs, and changes in
menstrual cycle phase, BDNF changes independently predicted
changes in cognitive function (b = .38, t = 2.06, p = .05) (296).
Notably, improvements in cognitive functioning were associated
with intensity of AE activity (294).

Exercise alters the composition and functional capacity of the
gut microbiome independent of diet (reviewed by 28). As the
effects of AE on BDNF production are further studied in
schizophrenia, examination of how the microbiome influences
this pathway may be illuminating.
POTENTIAL MECHANISMS

Although some stress exposure is essential for growth and
development, stress that overwhelms adaptive capacities has
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adverse physiological consequences, as initially described in
1938 by Hans Selye (297). The initial stress axis model included
direct and feedback interactions among the hypothalamus
(release of corticotropin-releasing factor), pituitary (ACTH),
and adrenal glands (cortisol), which was then expanded by
Sapolsky’s “glucocorticoid cascade hypothesis” (298) to
encompass catecholamines and other interacting mediators of
adaptation in addition to GCs. This model must now be widened
to include the central influence of the microbiota on the initial
programming of the stress axis and ongoing bidirectional effects
that influence stress responding. The communication pathways
between the gut and brain includes the vagal nerve, through
which some microbial species invoke anxiolytic effects of some
species (299). Enteroendocrine cells secrete biologically active
peptides, including galanin, which stimulates the central HPA
axis leading to increased adrenal cortisol secretion, and ghrelin
which has similar effects linked to nutritional and metabolic
conditions (300, 301) (reviewed in 302, 303). Reciprocally, even
short durations of stress impact the relative proportions of phyla
in the microbiota mediated through neuroendocrine and
autonomic nervous system activity (304). The neuro-immuno-
endocrine pathways linking the gut and brain include afferent and
efferent neural pathways, immune effects, bi-directional
neuroendocrine signaling and by alterations in intestinal
permeability, critically influenced by relative proportions of
microbiota species, as shown in Figure 1.

Examined as a whole, broad pathways through which the gut
may influence stress and schizophrenia risk include cytokine-
driven global inflammatory modifications, stress hormone
metabolism, microglial activation, neuroplastic regulation, direct
infection, and other nervous system activity as described above.
Given schizophrenia risks at key developmental stages also coincide
with microbiome development and associated changes, examining
these pathways across development may be especially poignant.
During the perinatal period, as the brain and HPA axis develop,
dysbiosis in mother and child is influenced by multiple factors
including infection and stress and in turn may influence the brain
and HPA axis. As the child continues to grow and develop, the
microbiome continues to adapt and change. While stressors
including psychic and physical trauma, recreational substance
use, inflammatory diseases, metabolic disturbances, and AE have
been previously understood in context of neuroendocrine
pathways, these events also affect the microbiome which in turn
likely feed back into stress and neurodevelopment pathways. When
viewed as one interconnected system, the ways microbial,
endocrine, and neurological pathways influence each other across
development should improve our understanding of schizophrenia
risk and perhaps offer novel treatment methods. While current
knowledge rests largely on germ free, antibiotic treated or probiotic
supplemented animal models, the field is finally advancing to
human studies.
CONCLUSION

Our understanding of schizophrenia risk has evolved over the
past century as technological improvements have made better
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research methods possible. Recent decades demonstrate the
profound impact that neuroendocrine pathways have on
schizophrenia risk across human development. The microbiome
represents one of the newest frontiers in research that is broadly
impacting healthcare. Recent work has already demonstrated many
interactions between schizophrenia risk, neuroendocrinology, and
the microbiome, but there are unexplored areas throughout
development where further interactions likely occur. Thus, future
work examining schizophrenia risk must continue to incorporate
the crosstalk between the neuroendocrine pathways and
the microbiome.
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