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This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum 
fluctuations of 2- and 3-gluon Green functions, remove the �QCD scale and destroy the transition from 
the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, 
the behavior of the Green functions with momenta can be described in terms of the quasi-classical 
instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This 
last result permits applications as, for instance, the detection of instanton phenomenological properties 
or a determination of the lattice spacing only from the gauge sector of the theory.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

QCD, the quantum field theory of strong interactions, is a 
non-abelian gauge theory with a very rich non-perturbative low-
momentum sector where crucial phenomena such as confinement 
and chiral symmetry breaking take place. An appealing approach 
to obtain some understanding of this sector is based on describing 
the gauge fields in terms of short-distance quantum fluctuations 
on top of topologically non-trivial solutions of the classical field 
equations in Euclidean space with finite action, the so called in-
stantons [1–3]. These solutions shed light into many interesting 
phenomena such as the explanation of the U(1) problem [4], they 
can be interpreted as tunneling paths between vacua with differ-
ent winding number in Minkowski spacetime [5], they are related 
to the strong C P problem [6], to the lower part of the Dirac oper-
ator spectrum and chiral symmetry breaking [7] (for more details 
we refer the reader to [8–11]). Applications of instantons extend 
well beyond the scope of QCD such as in the electroweak sector of 
the Standard Model describing rare processes of baryon decay [2], 
studies of decays into the true vacuum which could potentially 
have profound applications in the fate of the early Universe [12]. 
Instanton applications in supersymmetric theories are also note-
worthy, since celebrated results such as the exact β-function were 
achieved employing instanton calculus [13]. Indeed, in most ap-
plications, one cannot deal with the exact solutions of the field 
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equations but with approximated quasi-classical field configura-
tions obtained by the minimization of the action. These are de-
fined through an ansatz, inspired by the exact one-instanton solu-
tion [14–18].

In practice, these quasi-classical field configurations have been 
“observed” by means of numerical simulations in lattice QCD 
[19–23]. In addition, local recognition of instantons’ geometri-
cal shapes around their centers, after applying a cooling proce-
dure perceived to eliminate quantum fluctuations [24], has also 
been addressed extensively. Cooling is a discrete method based on 
making successive “sweeps” to the lattice configuration of fields, 
known to minimize the action but also to introduce biases that 
could potentially lead to uncontrollable effects. Although a number 
of different alternatives has been proposed to prevent these effects 
(e.g. [25,26]), the so-called Wilson flow has been recently proposed 
as a theoretically well founded smoothing technique [27] that en-
compasses many attractive features with the main one being that 
the “flown” fields renormalize in a very simple fashion [28].

On the other hand, a few lattice studies focused on the iden-
tification of the effects originating from the quasi-classical instan-
ton contribution on gluon correlation functions and to investigate 
whether such effects can be potentially distinguished, before ap-
plying any smoothing technique, within a given low-momentum 
window [29–31]. In doing the latter, avoiding the smoothing pro-
cedure as it might distort the gauge fields, two main goals can 
be achieved. One can advocate strongly in favor of the presence 
of quasi-classical structures (and even their low-momentum dom-
inance) in gauge configurations. Moreover, some instantonic prop-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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erties without the need of any sort of extrapolation to the physical 
non-smoothed situation can be measured.

In the present letter, we will compute and analyze the two- and 
three-point gluon Green functions in momentum space. The results 
obtained before and after applying the Wilson flow will be com-
pared, with the first main objective to unravel the behavior as a 
function of the momentum, in the whole momentum range, that 
survives the annihilation of short-distance fluctuations. Next, we 
pinpoint whether the same behavior dominates the gluon corre-
lations at low momenta, and finally we aim at an interpretation 
in terms of instantons. In order to achieve the last on the ba-
sis of the most general assumptions, we focus on the study of a 
particular combination of two- and three-point Green functions 
defining a three-gluon running coupling in the momentum sub-
traction (MOM) scheme. Furthermore, all the past lattice studies 
of gluon correlations in terms of instantons had been made in 
the quenched approximation, i.e. without dynamical quarks. Here, 
gauge fields obtained from both quenched and unquenched lattice 
simulations will be analyzed and compared.

2. Wilson flow

Let us start by a very brief introduction to the Wilson flow, 
which has proven to be an essential tool in modern non-pertur-
bative studies of QCD [27,32]. It is easier to analyze it first in 
continuum language, before introducing its lattice counterpart.

Like many other techniques that have been developed in the 
past decades in order to efficiently deal with unphysical short-
distance fluctuations, also the Wilson flow can be conceived as 
a smoothing procedure which diminishes these unphysical fluc-
tuations. However, in the framework of a quantum field theory, 
short-distance corresponds to ultra-violet (UV) quantum fluctua-
tions and depriving the gauge fields from them, potentially, implies 
to isolate the underlying non-trivial classical solutions which min-
imize the gauge action.

The Wilson flow Bμ(t, x) of an SU(N) gauge field is defined by 
the following first order differential equation [27,32,33]

∂τ Bμ = Dν Gνμ, (1)

where τ is the so-called flow time and

Gμν = ∂μBν − ∂ν Bμ + [Bμ, Bν ], (2)

Dμ = ∂μ + [Bμ, · ], (3)

with the initial condition Bμ(0, x) = Aμ(x). The expansion of the 
flown field Bμ(τ , x) in terms of the fundamental field Aμ(x) reads

Bμ(τ , x) =
∫

d4 y K (τ ; x − y)Aμ(x) , (4)

K (τ ; x) = e− x2
4τ

(4πτ)2
, (5)

where smoothing is destroying short-distance fluctuations (at tree-
level) over a radius of 

√
8τ .

The lattice counterpart of the Wilson flow, previously intro-
duced in the context of Morse theory [34], is defined (see [27,33]) 
by the solution of the differential equation

∂τ Vμ(x, τ ) = −g2
0

[
∂x,μS(V (τ ))

]
Vμ(x, τ )

Vμ(x,0) = Uμ(x) ,
(6)

where S is some discretization of the gauge action and g0 the bare 
coupling. A definition of the link derivatives ∂x,μ can be found 
in ref. [27]. From a historic viewpoint the “streamline” idea of 
Refs. [14–16] is intimately related to the idea of the gradient flow.
Besides the important features of existence, uniqueness and 
smoothness of the flow [27] another very attractive feature of the 
flow is the fact that expectation values of local observables built 
out of the “flown” fields assume a well defined continuum limit. 
It is important to mention that, in order to avoid composite op-
erators’ renormalization, those observables should be evaluated at 
fixed flow time in physical units while taking the continuum limit.

Other smoothing techniques such as the usual cooling or con-
tinuous version of smearing had been previously proposed [35]
and, very recently, a perturbative equivalence between flow time 
and number of cooling steps has been established through the 
comparison of the topological charge obtained with both cooling 
and Wilson flow [36,37].

3. Lattice Green functions

Now, as explained in ref. [38], we will compute from lattice 
QCD simulations the MOM three-gluon coupling defined as

α3−g(k2) = k6

4π

(
G(3)(k2)

)2(
G(2)(k2)

)3
, (7)

where

G(m)(k2) = 1

N
T μ1...μm

a1...am 〈 Ãa1
μ1

(k1) . . . Ãam
μm

(km)〉 (8)

stands for the m-point Green function in Landau gauge, Ãa
μ is 

the gauge field in momentum space, a (μ) are color (Lorentz) 
indices and T and N are the tree-level tensor and normalization 
factor needed for the appropriate projection in each case (for in-
stance T μ1μ2

a1a2 = δa1a2

(
δμ1μ2 − kμ1kμ2/k2

)
and N = 24 for m = 2). 

The kinematical configuration for the Green functions is chosen to 
satisfy: 

∑m
i ki = 0 and k2

i = k2 ∀ i = 1, . . .m.
Then, we can obtain the gauge fields directly from an ensemble 

of lattice configurations, as done in ref. [38], compute the cor-
relation functions and the coupling defined by Eq. (7). A main 
advantage of analyzing this particular coupling is that it offers 
the renormalization group invariant (RGI) combination of two- and 
three-point Green function from the RHS of Eq. (7), which keeps 
no dependence on either the regularization parameter (as is im-
plicitly the case for the m-point lattice Green functions) or the 
renormalization momentum, if any renormalization prescription is 
applied. The gauge fields can be obtained before or after the Wil-
son flow for any flow time. At any step, before and after applying 
the Wilson flow, in order to get the gauge-fixed Green functions 
that should be plugged into Eq. (7), the gauge fields should be 
properly brought to the Landau gauge.

In our results, we have exploited unquenched lattice config-
urations with two degenerate light dynamical flavors (u and d) 
and two heavier (s and c) flavors which made possible a suc-
cessful determination of the MS running coupling at the Z 0-mass 
scale [39]. We have obtained new quenched configurations at sev-
eral large volumes and different bare couplings. 600 configura-
tions at β = 3.90 for a 644 lattice volume (15.64 fm4) and 220 
at β = 4.20 for 324 (4.54 fm4), all of them employing the tree-
level Symanzik gauge action; and 380 at β = 2.37 for 203 × 40
(2.83 × 5.6 fm4), with the Iwasaki gauge action. The idea behind 
using different gauge actions relies to the clarification that the a 
priori different cut-off effects should not pose any concern. In the 
unquenched case, we have used 200 configurations at β = 1.95 for 
a 483 ×96 lattice volume (4.03 ×7.9 fm4), a pion mass of 297 MeV 
with the Iwasaki gauge action and the Twisted Mass action in the 
fermionic sector. More details for the set-up and specifics of the 
unquenched configurations, can be found in [40,41].
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4. Multi-instanton background

We will analyze the results in terms of the quasi-classical solu-
tions of the SU(3) gauge action. In ref. [14], the gauge-field classical 
solution from an ensemble of instantons, Ba

μ , has been proposed to 
be cast as the following trial function,

g0 Ba
μ(x) =

2
∑

i=I,A

Raα
(i)η

α
μν

yν
i

y2
i

ρ2
i

f (|yi |)
y2

i

1 +
∑

i=I,A

ρ2
i

f (|yi |)
y2

i

, (9)

coined as the ratio-ansatz, where yi = (x − zi) and ηα
μν is the 

’t Hooft symbol, that should be replaced by ηα
μν when summing 

over anti-instantons as i = A. Raα
(i) represents the color rotations 

embedding the canonical SU(2) instanton solution in the SU(3) 
gauge group (i.e., α = 1, 2, 3 and a = 1, 2, . . . 8). f (x) is a shape 
function that obeys f (0) = 1 in order not to spoil the field topol-
ogy at the instanton centers which also provides sufficient cut-off 
at large distances guaranteeing convergence of the sum.

Two particular asymptotic limits can be identified in Eq. (9). 
First, if the gauge field is evaluated far away from all instantons’ 
centers, i.e. for any x such that yi >> ρi for all i, the aforemen-
tioned large-distances cut-off makes the shape function to drop 
off keeping only the unity in the denominator and one is left with

g0 Ba
μ(x) ∼ 2

∑
i=I,A

Raα
(i)η

α
μν

yν
i

y2
i

ρ2
i

f (|yi |)
y2

i

. (10)

On the other hand, as the gauge field is evaluated near one given 
instanton or anti-instanton labeled with i = j, i.e. for any x such 
that y j << ρ j , while yi >> ρi for any i �= j,

g0 Ba
μ(x) ∼ 2Raα

( j)η
α
μν

yν
j

y2
j

1

1 + y2
j

ρ2
j

∼ 2
∑

i=I,A

Raα
(i)η

α
μν

yν
i

y2
i

f (|yi |)
f (|yi |) + y2

i

ρ2
i

. (11)

Thus, in both the regimes of large and small distances, the gauge 
field can be effectively described by the following independent-
pseudoparticle sum-ansatz approach,

g0 Ba
μ(x) = 2

∑
i

Raα
(i) ηα

μν

yν
i

y2
i

φρi

( |yi|
ρi

)
, (12)

provided that the profile function φ behaves as

φρ(z) =

⎧⎪⎪⎨
⎪⎪⎩

f (ρz)

f (ρz) + z2
	 1

1 + z2
z 
 1

f (ρz)

z2
z � 1

, (13)

where f (z) is the shape function which can be obtained by min-
imizing the action per particle for some statistical ensemble of 
instantons defining the semi-classical background. This function 
essentially drives the large-distance behavior of the gauge field due 
to one-instanton contributions and incorporates also the nonlin-
ear effects resulting from the average classical interaction of the 
other instantons in the background. According to [17], this shape 
function and the large-distance drop can be approximated as being 
independent of the low-distance scale ρ fixing the instanton size. 
However, the profile function φ, defined to match both large- and 
Fig. 1. The MOM three-gluon coupling defined in Eq. (7) obtained from all the dif-
ferent quenched lattice simulations described in the text. (For interpretation of the 
references to color in this figure, the reader is referred to the web version of this 
article.)

low-distance behaviors, needs to break this scale independence as 
we did explicitly in Eq. (13).

Then, as explained in [29], the gauge-field Green functions can 
be semi-classically obtained within the instanton background as

gm
0 G(m)(k2) = k2−m

m4m−1
n 〈 ρ3m Im(kρ) 〉 (14)

where n is the instanton density,

I(s) = 8π2

s

∞∫
0

zdz J2(sz)φ(z) , (15)

and 〈. . .〉 expresses the average over the distribution of instantons 
within the statistical ensemble defining the background.

Thus, one would have

α3−g(k2) = k6

4π

(
G(3)(k2)

)2(
G(2)(k2)

)3
= k4

18πn

〈ρ9 I3(kρ)〉2

〈ρ6 I2(kρ)〉3
. (16)

Whichever the shape function f (x) might be, the topological con-
dition f (0) = 1 guarantees that I(s) = 18π2/s3 when s → ∞ and 
then

〈ρ9 I3(kρ)〉2

〈ρ6 I2(kρ)〉3
	 1 +O

(
δρ2

k2ρ̄4

)
, (17)

where ρ̄ = √〈ρ2〉 and δρ2 = 〈(ρ − ρ̄)2〉 stand for the mean square 
width of the radii distribution. On the other hand, only relying on 
the sufficient cut-off of f (x) at large distances, one would be left 
with

〈ρ9 I3(kρ)〉2

〈ρ6 I2(kρ)〉3
	 1 + 48

δρ2

ρ̄2
+O

(
k2δρ2,

δρ4

ρ̄4

)
, (18)

for the low-momentum domain. Notice that, had we considered 
a zero width for the radii distribution, the coupling defined by 
Eq. (7) would plainly behave as a scale-independent k4-power law 
for all momenta.

5. Results and discussion

The coupling obtained according to Eq. (7) for all quenched 
simulations at zero flow time appears displayed In Fig. 1. On top 
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Table 1
Estimates for the densities, obtained as explained 
in the text, for the different flow times, also ex-
pressed in physical units. For this to be done, ac-
cording to [27], we have defined √8t0 = 0.3 fm, 
whence t0 = a2τ0 = 0.0113 fm2 and t = τ

τ0
t0. At 

τ = 4, in the unquenched case, the characteristic 
diffusion length is so small that quantum fluctua-
tions have not been properly removed yet.

τ t/t0 n (fm−4)

Quenched 4 6.84 3.5(1)
8 13.7 1.75(4)

15 25.6 0.98(5)

Unquenched 4 2.34 –
8 4.70 6.8(5)

15 8.84 3.0(2)

of it, for the sake of comparison, we have also incorporated ad-
ditional data (orange solid circles) for the same coupling obtained 
from simulations in much smaller lattice volumes (ranging from 
2.44 to 5.94 fm4) with the Wilson gauge action for several β ’s 
from 5.6 to 6.0, and published more than a decade ago [29]. It 
should be first noticed that, as corresponding to the RGI nature 
of the RHS of Eq. (7), all the data from different simulations with 
different actions and set-up’s show a very good physical scaling. 
However, the main feature to be underlined is that, before apply-
ing the Wilson flow, a momentum scale, lying around 1 GeV (in 
the ballpark of �QCD), separates clearly two regimes, the one above 
this scale where quantum corrections manage to build the well-
known perturbative logarithmic running and that below, where 
the power law from Eq. (16) appears to rise. The intercept of 
the low-momenta logarithmic line, as is highlighted by the above-
mentioned good scaling, is a physical quantity, and can be very 
well used for a cheap calibration of the lattice spacing. Its value 
estimated from data is 1.44 GeV−4 and, by neglecting the radii dis-
tribution width, one would be left for the instanton density with 
n = 7.7(1) fm−4.

We have then applied the Wilson flow, for three different flow 
times (τ = 4, 8 and 15), to the quenched lattice configurations at 
β = 4.20 and the unquenched ones at β = 1.95, computed the 
coupling and displayed the results in Fig. 2. There, Eqs. (16)–(18)
explain the k4-behavior observed in both the low- and large-
momentum domains. The intercepts of the large-momentum lines 
provide with an estimate for the instanton density at different flow 
times: n = 3.5(1), 1.75(4), 0.98(5) fm−4 at τ = 4, 8, 15, for the 
quenched case; and n = 6.8(5), 3.0(2) fm−4 at τ = 8, 15, for the 
unquenched case (see Table 1, where the flow time is also ap-
proximately expressed in physical units). Furthermore, the larger 
the flow time the lower momenta the non-enhanced linear be-
havior of Eq. (17) appears to extend down for. This suggests that 
the instanton size grows with the flow time, at least in a first 
stage, when the instanton density is as high as we obtain and 
the instanton-anti-instanton annihilation is the mechanism dom-
inating the evolution of the quasi-classical solutions. In order to 
confirm the estimates of instanton densities here obtained, inde-
pendent shape-dependent direct and indirect methods can also 
be used. Furthermore, after the successful description of the RGI 
combination of two- and three-points Green functions defining a 
coupling with Eq. (16), one can also apply Eq. (14) to account sep-
arately for each. Although, to this purpose, one would also need 
to get or model the shape function. In doing this, as the instan-
ton density has been already fixed by the coupling analysis, the 
only additional free parameter is the instanton size, which would 
be then obtained from the gauge-sector Green functions without 
the need of applying any smoothing procedure. This is however 
Fig. 2. The MOM three-gluon coupling defined in Eq. (7) obtained from quenched 
data with β = 4.20 (top panel) and unquenched with β = 1.95 (bottom panel) lat-
tice simulations at different flow times.

the object of a further work [42], as we only focus here on the 
most general shape-independent results.

On the other hand, according to Eq. (18), wherever the mo-
menta satisfy k2δρ2 
 1, the intercept for the low-momentum line 
is shifted up by log(1 + 48δρ2/ρ̄2) 	 48/ ln 10 δρ2/ρ̄2. Therefore, 
one can get δρ2/ρ̄2 	 0.014 (quenched) and 0.013 (unquenched), 
from the comparison of the intercepts in Fig. 2. These numbers 
can be compared to those estimated in [25], by applying direct 
instanton detection after cooling lattice gauge configurations ob-
tained in the quenched approximation. Therein, in Tab. 6 and 7, 
the distribution half width, σp , for several lattice set-up’s is given. 
For instance, at β = 6.2, σp/ρ̄ is found to range from 0.18 to 0.22, 
for different number of cooling steps; and at β = 6.4 the results 
range from 0.17 to 0.21. The knowledge of the full distribution is 
required for a precise conversion of the mean into half width. In 
literature, investigations of the instanton size distribution can be 
found where both semiclassical and lattice approaches have been 
followed (see, for instance, [10,17,18]). In particular, the authors of 
ref. [43] made a careful quantitative analysis where the size dis-
tribution is shown to agree well with a two-loop RG improved 
prediction from instanton perturbation theory. For our purposes 
here, a rough estimate is however enough and can be made by 
assuming a Gaussian distribution: σp/ρ̄ = √

2 ln 2 δ2ρ/ρ̄2 	 0.14, 
lying well in the right ballpark.

Finally, at zero flow time, the unquenched instanton density can 
be estimated to be 1.55 times larger than the quenched one, if both 
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unknown distribution widths are taken to be the same, from the 
difference between the intercepts. This number however relies on 
how sensible is the quenched lattice calibration.

Thus, studying an RGI combination of Green functions as that in 
(7) defining the three-gluon coupling leads to strong conclusions 
about the effects of the multi-instanton background, as they can 
be obtained on the basis of very general results, particularly not 
affected by the shape function for the pseudo-instanton solution. 
Nevertheless, the drawback is that it can only give access to the 
instanton density and size distribution width and their variations 
with the flow time. Other properties related to the semiclassical 
background, as the instanton size or its full distribution require 
other approaches for their determination, out of the scope of this 
paper.

6. Conclusions

In summary, the results presented here, relying on a very gen-
eral and firm ground, strongly support that the classical solutions 
of the SU(3) gauge theory explain the pattern exhibited by two-
and three-gluon Green functions either at low-momenta or, after 
the efficient killing of the UV fluctuations around the classical min-
ima of the theory, for all momenta. The removal of UV fluctuations 
by the Wilson flow gets rid of the fundamental QCD scale, �QCD, 
introduced at the quantization level of the theory. The only re-
maining scale is then the instanton size, ρ̄ , still fixed by the lattice 
scale setting, done before the removal. Whichever mechanism driv-
ing the transition from the asymptotically-free large-momentum to 
the confined low-momentum domain is also removed.

The dominance of the instanton background on the low-
momentum gluon correlations opens the door to some applications 
as the determination of the instanton density or, after modelling 
the shape function, the instanton size. A determination of the lat-
tice spacing, anchored only to the gauge sector of the theory, is 
also possible.
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