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The Noether Symmetry Approach can be used to construct spherically symmetric solutions in f (R) grav-
ity. Specifically, the Noether conserved quantity is related to the gravitational mass and a gravitational 
radius that reduces to the Schwarzschild radius in the limit f (R) → R. We show that it is possible to 
construct the M–R relation for neutron stars depending on the Noether conserved quantity and the as-
sociated gravitational radius. This approach enables the recovery of extreme massive stars that could not 
be stable in the standard Tolman–Oppenheimer–Volkoff based on General Relativity. Examples are given 
for some power law f (R) gravity models.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Compact stars are natural laboratories to test strong gravity ef-
fects or, in general, alternative theories of gravity. In particular, 
some neutron stars present properties, as the Mass–Radius (M–R) 
relation, that can be hardly explained in the context of Gen-
eral Relativity adopting simple equations of state. For examples, 
PSR J0348+0432 [1] and PSR J1614−2230 [2] represent a chal-
lenge for standard theory and could be a possible testbed for 
modified gravity [3–12]. On the other hand, understanding the 
structure of neutron stars allows to constrain the parameters of 
any given gravitational theory in the strong field regime [15–18].

However, the most important problem in this research concerns 
the choice of equation of state for matter, that, up to now, are not 
known with certainty. In order to explain observations, one can ei-
ther ask for exotic (unknown) equations of state or for modifying 
gravity in the strong field regime inside the star [19–21]. To con-
strain the observational parameters in modified theories of gravity, 
one can use the M–R relation as discussed in [22]. A drawback 
in the study of neutron stars models is the fact that one cannot 
always perform self-consistent matching of internal and external 
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solutions. This is because, in modified gravity, the exterior space–
time geometry is not described exclusively by the mass of the star.

This point needs to be clarified. According to the stellar struc-
ture, if a theory of gravity is viable and can describe, for example, 
a neutron star, a unique solution should be achieved and internal 
and external solutions should be consistently matched. This fact 
strictly depends on the well formulation and the well position of 
the Cauchy problem. In a modified theory of gravity, assigning the 
mass M and the radius R could not be sufficient to obtain self-
consistent boundary conditions. The problem gets worse if the field 
equations are higher than second order in derivatives because one 
needs initial data up to (n − 1) order, being n the derivative order 
of the field equations.1 This means that it could result extremely 
difficult to get a unique solution matching internal and external 
ones. This lack of effective mathematical tools to achieve unique 
solutions can be partially circumvented considering in detail the 
Cauchy problem. As discussed in [9,24], a choice of source fluid 
and suitable coordinates in the gravitational field equations can 
lead to a well position and well formulation of the problem. How-
ever, a general recipe, working for any modified theory of gravity, 
does not exist at the moment.

Furthermore, the Birkhoff Theorem [23] is not always valid in 
modified gravity and the consistency of solutions must be carefully 

1 In the case of f (R) gravity, being the field equations of order 4, we need initial 
data up to the third derivative.
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verified according to the boundary conditions [24]. This means that 
other information concerning the mass distribution is necessary in 
order to obtain a unique solution for both the interior and exterior 
regions of stars.

In general, the external solution is imposed by hand to be coin-
cident with the internal Schwarzschild or Tolman–Oppenheimer–
Volkoff (TOV) solution: the method is equivalent to freezing-out 
the further degrees of freedom emerging from Modified Gravity 
with respect to those of General Relativity outside the star. This 
approach is controversial because it means that the full field equa-
tions are not considered, and hence the self-consistency of the 
whole problem is strongly violated. Consequently, artificial effects 
on the structure of the star can arise. A self-consistent analysis of 
compact objects, in particular of neutron stars and their properties 
in Modified Theories, in particular in f (R) gravity,2 is a funda-
mental challenge which needs to be addressed.

It is worth stressing that modified theories of gravity were in-
troduced to explain the accelerated expansion of the Universe, the 
presence of dark matter and, finally, the impossibility to renormal-
ize gravity [3–12]. All the fundamental interactions have already 
been described at fundamental level by quantum field theory, ex-
cept gravity. In other words, a self-consistent theory of quantum 
gravity is not at hand until now. This means that General Relativ-
ity is not the final theory of gravitation, but only an approximation 
of it working very well at local and infrared scales. The simplest 
generalization of General Relativity is assuming that the Hilbert–
Einstein action of gravity, linear in the Ricci curvature scalar R, 
can be generalized as f (R) where f is an analytic function of R
not necessarily linear. The fundamental reason for this approach 
lies on the fact that the formulation of quantum field theory on 
curved space–times gives rise to higher order corrections to the 
gravitational action like R + αR2 [3]. Furthermore, the effective 
action of any unified theory, involving gravity, implies corrections 
to the Hilbert–Einstein Lagrangian, then f (R) gravity is a natural 
approach to be pursued. On the other hand, the form of f (R) can 
be constrained assuming a sort of “inverse scattering procedure” 
considering fine experiments and observations that can fix the pa-
rameters of gravitational interaction [13]. It is interesting to see 
that a wide range of astrophysical phenomena can be addressed by 
f (R) gravity ranging from Solar System scales up to cosmological 
scales without assuming the dark energy and dark matter hypothe-
ses [14]. The investigation predicts the existence of new stable 
neutron star branches with respect to General Relativity [15]. In 
particular, techniques related to the existence of symmetries and 
conserved quantities can aid in the construction of self-consistent 
neutron star models. The so-called Noether Symmetry Approach 
[25] is one these techniques suitable for these purposes.

In fact, identifying Noether symmetries enables one to “reduce” 
dynamics by finding out first integrals and, if a complete set of first 
integrals is identified, to solve this one through a suitable change
of variables. In other words, if the number of conserved quanti-
ties coincides with the dimension of the configuration space, the 
resulting system is fully integrable. On the other hand, such con-
served quantities are always related to the physical parameters of 
dynamical systems. In general, the technique has been successfully 
applied to dark energy and inflationary cosmology [25,26] and to 
dynamical systems in spherical and axial symmetry [27].

In this paper, the Noether Symmetry Approach is adopted to 
fix the radius R and the mass M of neutron stars. As it can be 
shown, both quantities can be related to the Noether conserved 
quantity emerging in f (R) gravity. In this case we say that we 

2 To avoid confusion between the radius R of the star and the Ricci scalar curva-
ture R, we adopt a different notation.
are in the presence of a Noether Star. Specifically, because the ex-
istence of a Noether symmetry is related to the identification of 
a vector field in the configuration space whose Lie derivative is 
conserved, it is possible to perform a change of variables where 
one (or more than one) cyclic variable appears in the dynamics. 
A conserved quantity is related to this variable and then a first 
integral is derived. We will show that such a conserved quantity 
coincides with the gravitational mass and therefore the gravita-
tional radius of the stellar system. In particular, the Noether vector 
allows to fix a power-law form f (R) = f0R1+ε , where the devi-
ations with respect to General Relativity can be easily identified. 
The mass and the radius of the system are functions of ε . The 
standard Schwarzschild radius and mass of General Relativity are 
recovered for ε → 0. A power law Lagrangian, like that we are us-
ing here, has been largely tested at different scales. Several works 
have been done on the study of deviations on the apsidal motion 
of eccentric eclipsing binary systems [28], as well as tests on the 
geodesic motions of massive particles [29]. Primordial gravitational 
waves in the early universe have been widely studied [30]. As dis-
cussed in [26], power-law f (R) models have several applications
in cosmology and can partially alleviate the problem of today ob-
served accelerated expansion also if they have to be improved in 
order to address the whole cosmic evolution (see [4,6] for details).

The outline of the paper is as follows. In Sec. 2, the field equa-
tions for f (R) gravity are derived. Sec. 3 is devoted to the Noether 
Symmetry Approach. The power-law form of f (R), associated con-
served quantities and the spherically symmetric solutions are de-
rived. The modified TOV solution related to f (R) = f0R1+ε is 
discussed in Sec. 4. Herein the M–R diagram, considering values of 
ε �= 0 and then demonstrating the deviation of the diagram with 
respect to General Relativity case (ε = 0), is also discussed. The 
conclusions are drawn in Sec. 5.

2. Field equations and spherical symmetry in f (R) gravity

Let us start from the following action

A = 1

16π

∫
d4x

√−g [ f (R) +Lm] , (1)

where g is the determinant of the metric tensor and Lm is the 
standard fluid matter Lagrangian. We adopt for the moment the 
physical units G = c = 1. The field equations, in the metric formal-
ism, for action (1) are obtained by the variational principle

fRGμν − 1

2
[ f − fRR] gμν − (∇μ∇ν − gμν�) fR = 8π Tμν. (2)

Here Gμν = Rμν − 1
2Rgμν is the Einstein tensor, f = f (R), 

fR(R) = fR = df (R)/dR is the derivative of f (R) with respect 
to the Ricci scalar and Tμν is the energy–momentum tensor of 
matter.

Spherically-symmetric solutions can be looked for, computing a 
point-like Lagrangian in which the spherically symmetry is placed 
in the action (1). It is worth noting that a given symmetry can 
be imposed whether in the Lagrangian formalism, from which the 
Euler–Lagrange equations are subsequently derived, or directly into 
the field equations. The results are entirely equivalent. We will 
adopt the first strategy in order to define the space configuration 
where the Noether vector acts on the point-like Lagrangian.

A generic spherically-symmetric metric is:

ds2 = −A(r)dt2 + B(r)dr2 + C(r)d�, (3)

where d� = dθ2 + sin θ2dφ2 is the angular element. Imposing (3)
in the action (1), in principle, a canonical form with a finite num-
ber of degrees of freedom may be assumed, that is
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A =
∫

drL(A, A′, B, B ′, C, C ′,R,R′) , (4)

where the Ricci scalar R and the metric coefficients A, B , C are 
the set of independent variables defining the space configuration 
(see also [27] for details). The prime indicates the derivative with 
respect to the radial coordinate r.

In order to obtain the point-like Lagrangian in the above coor-
dinates, we write the action as

A =
∫

d4x
√−g

[
f − λ(R− R̄)

]
, (5)

where λ is a Lagrangian multiplier and R̄ is the Ricci scalar ex-
pressed in terms of the metric (3), i.e. in more compact form, as

R̄ = R∗ + A′′

AB
+ 2

C ′′

BC
, (6)

where R∗ collects first order derivative terms

R∗ = A′C ′

ABC
− A′ 2

2A2 B
− C ′ 2

2BC2
− A′B ′

2AB2
− B ′C ′

B2C
− 2

C
. (7)

Varying the action (5) with respect to R we obtain that λ = fR . 
Then, the action (1) becomes

A =
∫

drC
√

A
√

B

[
f − fR

(
R−R∗ − A′′

AB
− 2

C ′′

BC

)]

=
∫

dr

{
C
√

A
√

B

[
f − fR(R−R∗)

]

− fRC ′ A′

(
√

A)′(
√

B)′
− 2

(
√

A)′

(
√

B)′
fRC ′

}
.

Then the canonical point-like Lagrangian is

L = −
√

A fR

2C
√

B
C ′2 − fR√

AB
A′C ′ − C fRR√

AB
A′R′ +

− 2
√

A fRR√
B

R′C ′ − √
AB[(2 + CR) fR − C f ] . (8)

The above Lagrangian can be recast in a suitable form introducing 
the matrix formalism:

L = q′T T̂ q′ + V , (9)

where q = (A, B, C, R) and q′ = (A′, B ′, C ′, R ′) are the general-
ized positions and velocities associated with L. The index T in-
dicates the transposed column vector. The kinetic tensor is given 

by T̂ i j = ∂2L
∂q′

i∂q′
j

. V = V (q) is the potential depending only on the 

configuration variables.
The general form of the Euler–Lagrange equations is

d

dr
∇q′L− ∇qL = 2

d

dr

(
T̂ q′

)
− ∇q V − q′T

(
∇q T̂

)
q′ =

= 2T̂ q′′ + 2

(
q′ · ∇q T̂

)
q′ − ∇q V − q′ T

(
∇q T̂

)
q′ = 0 , (10)

which gives the equations of motion in terms of A, B , C and R, re-
spectively. After some manipulations, it is possible to demonstrate 
that the variable B can be expressed as a combination of A and C , 
that is

B =
(

2C2 fRRA′R′ + 2C fRA′C ′ + 4AC fRRM ′R′ + A fRC ′ 2
)

× (2AC[(2 + CR) fR − C f ])−1 . (11)
By inserting Eq. (11) into the Lagrangian (8), we obtain a non-
vanishing Hessian matrix which removes the singular dynamics, 
and then the Lagrangian (8) may be recast in the more manage-
able form

L = [(2 + CR) fR − f C]
C

[2C2 fRRA′R′

+ 2CC ′( fRA′ + 2A fRRR′) + A fRC ′ 2] . (12)

Since 
∂L

∂r
= 0, L is canonical (L is the quadratic form of generalized 

velocities, A′ , C ′ and R ′ and then coincides with the Hamiltonian), 
so that we can consider L as a Lagrangian with three degrees of 
freedom.

3. Spherically symmetric solutions via Noether symmetry 
approach

We now search for symmetries for the Lagrangian (12) in order 
to obtain exact solutions. It is known that if the following relation 
holds

L X L = 0 ,→ XL = 0 , (13)

then Noether symmetries exist. Here L X is the Lie derivative with 
respect to the Noether vector

X ≡ α∇q + α′∇q′ , (14)

α are functions of configuration variables and α′ their deriva-
tives. The second part of Equation (13) means that the vector 
derivative X is applied to the Lagrangian L. Being, for example, 

X = α
∂

∂qi
+ α̇

∂

∂q̇i
, it is XL = α

∂L

∂qi
+ α̇

∂L

∂q̇i
, that is the contraction 

of X on L.
In general, Equation (13) is the contraction of the Noether vec-

tor X on the tangent space T Q = {A, A′, C, C ′, R, R′} with the 
space of the configuration given by Q = {A, C, R}. Explicitly, we 
have:

LXL = α · ∇qL + α′ · ∇q′L = q′ T
[
α · ∇qL̂ + 2

(
∇qα

)T

L̂
]

q′ , (15)

where, in the matrix formalism, it is L = q′TL̂q′ . Equation (15) van-
ishes if the functions α satisfy the following system

α · ∇qL̂ + 2(∇qα)TL̂ = 0 −→ αi
∂ L̂km

∂qi
+ 2

∂αi

∂qk
L̂im = 0 . (16)

The functions αi , which fix the Noether vector, are obtained by 
solving the system (16). The system of equations (16) is related to 
the form of f (R)-Lagrangian. In particular, classes of f (R) mod-
els, consistent with the spherical symmetry, are determined by 
solving the above system [27]. Conversely, by choosing the f (R)

form, we can explicitly solve (16). We find that the system (16) is 
satisfied for

f (R) = f0R1+ε , (17)

and

α = (α1,α2,α3) =
[
(1 − 2ε)kA, −kC, kR

]
, (18)

where ε is any real number, k an integration constant and f0 a 
dimensional coupling constant. Eq. (17) is not the unique possi-
ble f (R) solution that can be derived from the Noether Symmetry 
Approach, however it is the only analytic and available in explicit 
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form [9]. This means that for any f (R) = f0R1+ε , a Noether sym-
metry exists and it is related to a constant of motion �0 given by 
the equations of motion, that is

�0 = α · ∇q′L = 2(1 + ε)kCR2ε−1[2(1 + ε) + εCR] ×
× [(ε − 1)RA′ − (2(1 + ε)2 − 3ε − 2)AR′] . (19)

A physical interpretation of �0 is possible by starting from General 
Relativity, i.e. ε = 0. In this case, the Noether symmetry yields the 
solution

αG R = (−kA,kC) , f (R) = f0R . (20)

The functions A and C give the Schwarzschild solution and then, 
upon restoration of standard units, the constant of motion is

�0 = 2GM

c2
, (21)

where M is the gravitational mass of the system. In other words, 
in the case of Einstein gravity, the Noether symmetry gives the 
Schwarzschild radius (and the gravitational mass) as a conserved 
quantity. In the general case (17), the Lagrangian (12) becomes

L = (1 + ε)R2ε−1[2(1 + ε) + εCR]
C

[
2εC2 A′R′+

+ 2CRC ′ A′ + 4ε ACC ′R′ + ARC ′ 2
]

, (22)

and exact solutions, using the constant of motion, can be given in 
the form

B = 1 + ε

2ACR[2(1 + ε) + εCR]
[

2εC2 A′R′+

+ 2CRC ′ A′ + 4ε ACC ′R′ + ARC ′ 2
]

, (23)

A = R
ε(2ε+1)

ε−1

{
k1 + �0

∫ R
ε(4ε−1)

1−ε dr

2k(ε2 − 1)C[2(ε + 1) + εCR]
}

(24)

where k1 an integration constant. General Relativity is clearly re-
covered for ε = 0. Such solutions can be used to obtain TOV 
solutions and M–R relations parameterized by ε . Reversing the 
problem, the M–R relation fixes the underlying theory of gravity, 
corrected with respect to General Relativity.

4. Noether’s stars

The above relations enable general solutions for the field equa-
tions to be determined, giving the dependence of the scalar cur-
vature R vs the radial coordinate r. The first step is to calculate 
the interior metric solution that must be matched with the cor-
responding exterior solution. In order to restore the TOV standard 
notation, let us set A(r) = e2ψ , B(r) = e2λ , C(r) = r2, where ψ and 
λ are functions of the radial coordinate r only.3 The metric (3) can 
then be recast in the standard form:

ds2 = −e2ψdt2 + e2λdr2 + r2d�2 . (25)

The energy–momentum tensor is

3 C(r) is the function that rules how 2D surfaces, embedded in spacetime, are 
measured. Choosing C(r) = r2 implies that the length of a circle, centered in the 
origin of the coordinates, is 2πr (i.e. in such a way we preserve the spherical sym-
metry). If C(r) �= r2, the circle is deformed. Furthermore, the system can present 
singularities if C(r) is not continuous and derivable. These cases can be interesting 
in the cases of anisotropic and/or inhomogeneous collapses.
Tμν = diag
(

e2ψρ, e2λ p, r2 p, r2 sin2 θ p
)

, (26)

where ρ is the matter density and p is the pressure [31]. The non-
trivial components of the field equations (2) give the TOV equa-
tions for f (R) gravity [15], which in our case, for f (R) = f0R1+ε , 
are:

Rε

r2

[
r
(

1 − e−2λ
)]

= 8πρ + 1

2
εR1+ε +

+ e−2λ

{(
2

r
− dλ

dr

)[
ε(1 + ε)Rε−1R′] +

+
[
ε(1 + ε)Rε−2

[
RR′′ + (ε − 1)R′ 2

)]}
, (27)

Rε

r

[
2e−2λ dψ

dr
− 1

r

(
1 − e−2λ

)]
= 8π p +

+ 1

2
εR1+ε + e−2λ

(
2

r
+ dψ

dr

)[
ε(1 + ε)Rε−1R′] . (28)

Here, now the prime indicate the derivative with respect R. 
Adopting physical units, we may set f0 = 1. For ε = 0, the stan-
dard TOV equations of General Relativity are recovered. The stellar 
configuration is a solution of the field equations and the conserva-
tion equations for the energy–momentum tensor, ∇μTμν = 0, from 
which the hydrostatic equilibrium condition follows:

dp

dr
= −(ρ + p)

dψ

dr
. (29)

In f (R) gravity, the scalar curvature is a dynamical variable and 
the equation for R can be obtained by taking into account the 
trace of the field equations (2). We have

3� fR +R fR − 2 f = −8π(ρ − 3p) , (30)

that explicitly becomes

(ε − 1)Rε+1 + 3ε(1 + ε)e2λ

[
(ε − 1)Rε−2R′ 2 +

+Rε−1R′
(

2

r
− dλ

dr
+ dψ

dr

)
+Rε−1R′′

]
=

= −8π(ρ − 3p) . (31)

The above equation give us a further constraint to solve the TOV 
equations [15]. These equations (27)–(30) can be solved by numer-
ical integration from r = 0, but we require a set of boundary condi-
tions to fix the integration constants, and an equation of state that 
gives a relation between the density and pressure (see e.g. [22] for 
details on the numerical method).

In Figs. 1–4, the M–R diagram for various values of ε is repre-
sented. Herein some popular equations of state are used, namely 
Sly, BSK19, BSK20 and BSK21 respectively [32,33]. It is clear to 
see that for |ε| > 0.01 there is a significant deviation with respect 
to General Relativity. Noteworthy is the fact that, for increasingly 
large values of |ε|, the M–R diagrams assume a self-similar behav-
ior. Larger radii and masses are achieved for negative values of the 
scaling parameter while, in the case of positive values, the traces 
are bent with usual General Relativity TOV equations. It is straight-
forward to see that we can reach masses about (2.8–3)M	 using 
the BSK20 and BSK21 equations of state.

A final comment is in order at this point. The radius in the fig-
ures has not to be identified with the constant of motion. The con-
stant of motion fixes the functional relation between the mass M
and the radius R saying that there is a characteristic gravitational 
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Fig. 1. M–R diagram for f (R) = R1+ε for the Sly EoS with different values of ε
(purple color scales). The classical TOV solution corresponding to ε = 0 is also 
shown as a red line. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 2. M–R diagrams for (17) using the Bsk19 EoS with different values of ε rep-
resented as a blue color scale. The classical TOV solution corresponding to ε = 0 is 
also shown as a red line.

radius which coincides with the Schwarzschild radius of General 
Relativity, i.e. for ε = 0. Clearly, for any ε the gravitational radius 
changes. The integration constant k can be chosen equal to 1 with-
out affecting the system. The sign of ε is related to the (M–R)

relation. If ε < 0 larger stars can be achieved with respect to Gen-
eral Relativity. For ε > 0, we obtain smaller stars.

5. Conclusions

The mass of a self-gravitating system can be considered as a 
Noether charge according to the existence of the Noether sym-
metries. In this paper, we derived both the conserved quantities 
and the functional form of f (R) gravity according to the so-called 
Noether Symmetry Approach [25]. The final output is that a power-
law form of f (R) gravity is determined by the Noether vector. The 
power ε can be any real number. Such a parameter is useful in or-
der to study deviations with respect to General Relativity.

In particular, spherically-symmetric solutions are considered 
and we derived the field equations parameterized by ε . Starting 
from this scheme, modified TOV equations are obtained and, as-
suming reliable equations of state discussed in the literature, the 
M–R relation is achieved. According to the value and the sign of ε , 
it is possible to show that radii and masses of compact neutron 
Fig. 3. M–R diagrams for (17) using EoS BSk20. The green color scale represent the 
different values of ε . The classical TOV corresponding to ε = 0 is also shown as a 
red line.

Fig. 4. M–R diagrams for f (R) given in equation (17). Here different curves for dif-
ferent values of ε (yellow color scale) using the BSk21 EoS are shown. The classical 
TOV corresponding to ε = 0 is also shown as a red line.

stars change with respect to General Relativity. This fact allows, 
in principle, that larger/smaller objects can be obtained by varying 
the gravitational sector with respect to those provided by the stan-
dard theory. In particular, extremely large objects could be framed 
depending on modified gravity [15].

Some considerations are in order at this point. The first is re-
lated to the Noether symmetries. The associated conserved quan-
tity leads the M–R relation. In other words, the existence of the 
symmetry is capable of ruling the stellar parameters and then the 
position of the star on the Hertzsprung–Russell diagram. In a gen-
eral sense, the whole diagram could depend on the given theory 
of gravity and compact objects, where strong field effects are ef-
fective, could be a useful testbed to retain or rule out alternative 
models.

Another consideration is related to the role of gravity in this 
framework. It seems that the parameter ε can really point out 
deviations with respect General Relativity emerging at given inter-
action lengths. Such lengths, depending on ε , have a similar role of 
the Schwarzschild radius (derived for ε = 0). The paradigm is that 
any theory of gravity has its own characteristic gravitational ra-
dius that can be something else with respect to the standard one 
of General Relativity. It is worth noticing that for small deviation 
with respect to General Relativity we can write
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R1+ε 
 R+ εR lnR+O(ε2) , (32)

and then control the magnitude of the corrections with respect 
to the standard Hilbert–Einstein action. Such deviation could come 
out in the strong field regimes inside compact objects that could 
be very similar to some situations present in the early universe 
where logarithmic corrections emerge from quantization of curved 
spacetime [15,34].

Finally, neutron stars, achieved in such a framework, could re-
ally discriminate between modified gravity and dark matter scenar-
ios: in fact no exotic particle is requested in this context. The only 
natural assumption is that a symmetry breaking of gravitational 
interaction can happen at a given scale and energy, exactly like in 
the case of Starobinsky model of early universe where higher order 
curvature terms like R2 give rise to inflation [9,34].

The Noether Symmetry Approach deserves some further gen-
eral considerations. As firstly discussed in [25], the utility of the 
method is twofold. From one hand, it allows to find out exact solu-
tions since the presence of Noether symmetries reduces the related 
dynamical systems. Clearly, if the number of symmetries coincides 
with the number of dimensions of configuration space, the sys-
tem is completely integrable. On the other hand, as shown here, 
the approach allows to select the class of models, in this case the 
power-law form of f (R) gravity. This means that the further de-
grees of freedom of any modified theory of gravity (scalar tensor, 
vector tensor, and so on) can be linked to the symmetries that 
rule the dynamics (see [25] for scalar tensor gravity). In this per-
spective, the Noether Symmetry Approach is a general criterion to 
select viable theories of gravity.
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