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A potential clinical and etiological overlap between schizophrenia (SZ) and bipolar disorder (BD) has long been a
subject of discussion. Imaging studies imply functional and structural alterations of the hippocampus in both dis-
eases. Thus, imaging this core memory region could provide insight into the pathophysiology of these disorders
and the associated cognitive deficits. To examine possible shared alterations in the hippocampus,we conducted a
multi-modal assessment, including functional and structural imaging as well as neurobehavioral measures of
memory performance in BD and SZ patients comparedwith healthy controls.We assessed episodicmemory per-
formance, using tests of verbal and visual learning (HVLT, BVMT) in three groups of participants: BD patients
(n=21), SZ patients (n=21) andmatched (age, gender, education) healthy control subjects (n=21). In addi-
tion, we examined hippocampal resting state functional connectivity, hippocampal volume using voxel-based
morphometry (VBM) and fibre integrity of hippocampal connections using diffusion tensor imaging (DTI). We
foundmemory deficits, changes in functional connectivitywithin the hippocampal network aswell as volumetric
reductions and altered white matter fibre integrity across patient groups in comparison with controls. However,
SZ patients when directly compared with BD patients were more severely affected in several of the assessed pa-
rameters (verbal learning, left hippocampal volumes, mean diffusivity of bilateral cingulum and right uncinated
fasciculus). The results of our study suggest a graded expression of verbal learning deficits accompanied by struc-
tural alterationswithin the hippocampus in BD patients and SZ patients, with SZ patients beingmore strongly af-
fected. Our findings imply that these two disorders may share some common pathophysiological mechanisms.
The results could thus help to further advance and integrate current pathophysiological models of SZ and BD.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Since the introduction of the Kraepelinian dichotomy which divides
major endogenous psychoses into two distinct groups of diseases that
are known today as schizophrenia (SZ) and bipolar disorder (BD), this
concept has strongly influenced modern psychiatric diagnostic classifi-
cation systems. However, recent findings have cast doubt on this
ogy and Neuroimaging, Dept. of
y, Heinrich-Hoffmann-Str. 10,
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classification into two separate entities (Craddock and Owen, 2005).
Therefore, finding evidence of shared clinical features and/or patho-
physiological pathways between these disorders represents a field of
great interest in psychiatric neuroscientific research.

Direct comparisons of cognitive and clinical variables revealed that
SZ and BD share important clinical and cognitive features (Mann-
Wrobel et al., 2011; Schaefer et al., 2013), for example some symptoms
of psychosis, memory deficits or affective disturbances. Episodicmemo-
ry deficits are persistent in both disorders, even in symptom-free inter-
vals (Mann-Wrobel et al., 2011; Schaefer et al., 2013). In BD however,
the deficits are usually less severe than in SZ patients (Seidman et al.,
2002; Reichenberg et al., 2009).
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In addition to that, some anatomical alterations may be shared
across psychosis disorders using multimodal imaging parameters
(fibre integrity, volumes, cortical thickness) although the severity of
the alterations or the location may be different. For instance, regarding
volumetric findings, reduced hippocampal volume has been found fre-
quently in SZ (Wright et al., 2000), but not as consistently in BD
(Adler et al., 2007; Koo et al., 2008; Scherk et al., 2008; de Castro-
Manglano et al., 2011). This is in line with reports of temporal, occipital
and parietal volume and cortical thickness reductions in SZ but not in
BD patients in comparison with controls (Rimol et al., 2012). Regarding
diffusion tensor imaging (DTI)-studies, current knowledge indicates
partly analogical location of fibre integrity (FA) changes in SZ and BD:
the recent meta-analysis of (Williamson and Allman, 2012) yielded
two regions with significant fibre integrity (FA) changes in SZ: the left
frontal deep white matter and the left temporal deep white matter,
and a meta-analysis in BD by Vederine et al. (2011) showed two signif-
icant right-hemispheric clusters of FA alterations that were located in
the parahippocampal gyrus and close to the subgenual anterior cingu-
late cortex (ACC).

Functional imaging findings in both disorders suggest altered func-
tional connectivity within frontal and between frontal and limbic re-
gions in SZ (Meyer-Lindenberg et al., 2005; Kuhn and Gallinat, 2013)
and a frontal–limbic network disturbance in BD (Yurgelun-Todd et al.,
2000; Blumberg et al., 2003; Strakowski et al., 2005; Kronhaus et al.,
2006; Lyoo and Renshaw, 2010). Current findings in the field of
resting-state fMRI support the idea that SZ and BD share core patho-
physiological pathways. Resting-state fMRI is an attractive tool because
it allows to measure functional activation independently of a specific
task. A recent meta-analysis of resting-state studies in SZ showed
Table 1
Sociodemographic and clinical characteristics and cognitive performance of the SZ patient grou
range are in brackets.

BD SZ

Number 21 21
Gender
f/m

9 f/12 m
BD/SZ:
χ2 = 0.18, ns

9 f/
SZ/
χ2

Age (years) 35.67 (10.68) 38.38 (1
Education (years) 14.86 (2.43) 15.82 (4
Handedness
(EHI) L:R

80.75 (18.09) 76.34 (1

Duration of illness (yr.) 7.62 (5.82) 8.45 (3
Episodes of illness (nr.) 6.35 (12.00) 4.32 (1
Medication (yr.) 6.26 (6.09) 7.34 (3
Medication categories 21 mood stabilisers

2: addit. antidepressants
21 atypi
5: addi.

Clinical scores
BDI II 9.85 (8.97) –

BRMAS 0.38 (0.25) –

PANSS global – 63.20 (5
PANSS positive – 15.40 (3
PANSS negative – 15.11 (1
PANSS general symptomatology – 32.60 (4
Cognitive scores
HVLT-R (t-scores) 51.27 (12.46) 38.56 (8

BVMT-R (t-scores) 54.91 (8.03) 36.20 (1

MWT-B 29.86 (3.31) 28.01 (2

Note: ns = non-significant. BDI II = Beck Depression Inventory, BRMAS = Bech Rafaelsen M
Learning Test-Revised [HVLT-R]), BVMT-R = Brief Visuospatial Memory-Test Revised [BVMT-
f = female, m = male.

* p b 0.01.
** p b 0.001.
decreased resting-state activity compared with control subjects in the
left hippocampus, the ventromedial prefrontal cortex, the posterior cin-
gulate cortex and the precuneus (Kuhn and Gallinat, 2013). In BD pa-
tients, altered functional connectivity between the frontal and the
limbic brain (Anand et al., 2009; Chepenik et al., 2010; Ongur et al.,
2010; Chai et al., 2011) and between the frontal cortex and the striatum
(Anand et al., 2009; Chepenik et al., 2010) has been reported.

In sum, the previous literature thus suggests that both disordersmay
share deficits in episodic memory and structural abnormalities in the
hippocampus, although the results are less consistent in BD compared
with SZ. Therefore, in the present study, we combined behavioral test-
ing and structural imaging with resting-state fMRI which allowed us
to probe the functional connectivity of the hippocampus with other
parts of the brain.

In the current study we investigated the hypothesis that potential
shared cognitive symptoms in SZ and BD are directly associated with
functional and structural alterations within the hippocampal brain
region.

2. Material and methods

2.1. Participants

We included 21 patients with the diagnosis of a paranoid SZ
(M [mean] = 38.38 years [SD [standard deviation] = ±10.30]) and
21 patients with the diagnosis of a BD I (mean age: M = 35.67
[SD = ±10.68] years) without any comorbid axis-I or II disorders (in-
cluding drug abuse) according to the DSM-IV criteria (APA, 1994). We
ensured the diagnosis using the Structured Clinical Interview for DSM-
p (n= 21), the BD patient group (n= 21) and the control group (CON; n= 21). SD and

CON Statistics

21 –

12 m
CON:
= 0.13, ns

8 f/12 m
BD/CON:
χ2 = 0.11, ns

χ2 = Pearson3s chi-square

0.30) 36.95 (11.10) F = 0.34, ns
.92) 15.85 (1.84) F = 0.60, ns
5.65) 80.48 (15.91) F = –0.45, ns

.45) – t = 0.67, ns

.23) – t = 0.38, ns

.78) – t = –1.45, ns
cal neuroleptics
typical neuroleptics

2.10 (3.45) t = 3.65 **

0.25 (0.44) t = 0.83, ns
.20) – –

.00) – –

.90) – –

.89) – –

.14) 56.56 (12.37) F = 17.76**

Post-hoc:
CON/BD*

CON/SZ**

SZ/BD**

4.61) 54.23 (10.89) F = 14.89**

Post-hoc:
CON/BD: ns
CON/SZ**

BD/SZ**

.89) 31.96 (2.91) z = –1.75, ns

ania Scale, PANSS = Positive and Negative Syndrome Scale, HVLT-R = Hopkins Verbal
R]), MWT-B = Mehrfachwahl-Wortschatztest, EHI = Edinburgh Handedness Inventory.
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IV (SCID-I and SCID-II; German version (Wittchen et al., 1996)) follow-
ed by an interview to examine sociodemographic factors. We only re-
cruited remitted patients with BD. We ensured their remitted status
by using the diagnostic criteria according to the DSM-IV (Wittchen
et al., 1996). Also, we only included BP patients that scored less than
18 points in the German version of the Beck Depression Inventory II
(BDI II (Hautzinger et al., 2006)) and less than 7 points in the German
version of the Bech Rafaelsen Mania Scale (BRMAS; Bech, 1981).

All patients were treated in the Department of Psychiatry, Goethe-
University, Frankfurt, Germany during the time of the experiment. All
patients were asked to participate in the current study during their
treatment period, and we examined those patients who were willing
to participate andwho did not fulfil any exclusion criteria. To guarantee
a good comparability between the two groups we ensured that the du-
ration of illness (at aminimumof 5 years), the number of episodes of ill-
ness and the years of treatment with medication were comparable
across disease groups (see Table 1 for further details). All patients had
to be in a stable medication status (no significant change) during the
lastmonth preceding testing.We also computed chlorpromazine equiv-
alents for each SZ patient using the formula by Woods (2003) and
Almeida scores as described by Almeida et al. (2009).

21 healthy participants (mean age:M=36.90 [SD=±11.06] years)
who were matched with the patient groups in age, gender and educa-
tion were included in the study. Exclusion criteria for control subjects
were current drug-abuse, any kind of neurological disease, a history of
psychiatric disorders including axis I and axis II disorders according to
DSM-IV (using the SCID I and II (Wittchen et al., 1996)), and an inability
to provide informed consent. We ensured that none of the controls
had any positive family history of affective or psychotic disorder.
Statistical tests (ANOVA, Scheffé post-hoc contrast analyses, chi-
Table 2
A) Post-hoc group comparisons between controls (n = 21), SZ patients (n = 21) and BD patie
whole-brain functional connectivity. B) Statistical test for group differences regarding the VBM
T scores were corrected for multiple comparisons using small volume correction (‘svc’). Correct
only includes significant group comparisons. C) Statistical test for group differences regarding th
cinate fasciculus provided by the JHU White-Matter Tractography Atlas (provided by FSL (Hua

ROI mask Tal.
Koord. x, y, z
(cluster size, voxel)

CON
M (SD)
beta scores

BD
M (SD)
beta scores

A) Resting state: seed hippocampus total
L. frontal lobe -19, -27, 26 (506) 0.145 (0.013) 0.034 (0.012
L. frontal lobe -21, -47, 25 (475) 0.102 (0.034) 0.056 (0.012
R. lentiform nucleus 19, -11, 0 (964) 0.071 (0.029) 0.055 (0.018
R. putamen 27, 6, 0 (587) 0.092 (0.023) 0.078 (0.018
L. thalamus -3, -6, 0 (617) 0.068 (0.078) 0.061 (0.054
Bil. para-hippocampal gyrus -29, -35, -7 (639) 0.081 (0.023) 0.079 (0.025

31, -21, -12 (885) 0.031 (0.071) 0.042 (0.623
Bil. cingulate gyrus -21, -25, -7 (415) 0.045 (0.034) 0.058 (0.012

16, -19, -3 (338) 0.067 (0.012) 0.080 (0.018

B) VBM
L. hippo-campus -28, -15, -25 (929) -0.017 (0.009) -0.007 (0.00

R. hippo-campus 21, -21, -24 (949) -0.017 (0.04) -0.007 (0.05

C) DTI
Cingulum LH FA 0.408 (0.201) 0.398 (0.023

MD 0.689 (0.031) 0.705 (0.024
RH FA 0.362 (0.176) 0.357 (0.214

MD 0.512 (0.041) 0.685 (0.022
Fornix FA 0.263 (0.277) 0.245 (0.337

MD 1.458 (0.174) 1.510 (0.154
Uncinate fasciculus LH FA 0.410 (0.273) 0.420 (0.231

MD 0.732 (0.032) 0.735 (0.081
RH FA 0.353 (0.166) 0.350 (0.268

MD 0.726 (0.050) 0.760 (0.083

Note: BA= Brodmann area, TAL = Talairach coordinates, FC = functional connectivity scores,
isotropy, MD = mean diffusivity (mm²/s × 10−3), RD = radial diffusivity (mm²/s × 10−3), L1

* p b 0.01.
** p b 0.001.
square-tests) for differences between the groups regarding age, hand-
edness and parental education revealed no significant group differences
(all p-values N 0.05).

The anatomical MRI scans of all participants were reviewed by a
neuroradiologistwho did not find any clinically relevant pathology. Par-
ticipantswere providedwith a description of the study and gavewritten
informed consent before participating. Experimental procedures were
approved by the ethical board of the medical department of the
Goethe-University, Frankfurt/Main, Germany.

2.1.1. Assessment of cognitive and clinical data
We assessed crystallized intelligence using the MWT-B

(Mehrfachwahl-Wortschatz-Test (Lehrl, 2005), the German equivalent
of the “Spot-the-Word test”), verbal learning with the Hopkins Verbal
Learning Test-Revised [HVLT-R] and non-verbal (visual) learning
using the Brief Visuospatial Memory-Test Revised [BVMT-R] (view
Table 2 for further details) (all tests taken from theMATRICS test battery
(Nuechterlein and Green, 2006)).

We explored the clinical state of the illness across patient groups
using disease-specific questionnaires. For SZ patients, the Positive and
Negative Syndrom Scale (PANSS (Kay et al., 1987)) was administered.
For BD patients, we used the BDI II (Hautzinger et al., 2006) and the
BRMAS (Bech, 1981). This was done also for the healthy control group
in order to rule out potential affective symptoms.

2.2. Data acquisition

Within 1 week of the diagnostic, cognitive and clinical testing func-
tional and anatomical imageswere acquiredusing a SiemensMagnetom
Allegra 3 Tesla MRI system (Siemens Medical Systems, Erlangen,
nts (n = 21) in the functional connectivity pattern between hippocampus bilaterally and
beta scores in the hippocampus left and right (ROIs based on the hippocampusmask total).
ion for multiple comparisons using additional FDR correction was noted as ‘FDR’. The table
e DTI ROI analysis parameters (FA, MD, RD, L1) regarding the tracts: cingulum, fornix, un-
et al., 2008)).

SZ
M (SD)
beta scores

F
signifi-cance

BDNSZ
p

CONNSZ
p

CONNBD
p

) 0.040 (0.015) F = 4.41⁎ ns ⁎ ⁎

) 0.051 (0.043) F = 3.23⁎ ns ⁎ ⁎

) 0.045 (0.021) F = 3.10⁎ ns ⁎ ns
) 0.068 (0.018) F = 4.51⁎ ns ⁎ ns
) 0.047 (0.056) F = 3.18⁎ ⁎ ⁎ ns
) 0.101 (0.023) F=5.42⁎⁎ ⁎ ⁎ ns
) 0.069 (0.653) F = 2.99⁎ ns ⁎ ns
) 0.078 (0.065) F = 6.01⁎ ns ⁎ ns
) 0.103 (0.065) F = 8.67⁎ ns ⁎ ns

9) 0.030 (0.010) F = 11.77⁎ ⁎⁎ (svc) ⁎⁎ (svc) ⁎⁎ (svc)
⁎⁎ (FDR) ⁎⁎ (FDR) p = 0.09 (FDR)

) 0.031 (0.05) F = 10.89⁎ ⁎⁎ (svc) ⁎⁎ (svc) ns
⁎⁎ (FDR) ⁎⁎ (FDR) ns

) 0.401 (0.270) 1.78, ns - - -
) 0.734 (0.029) 16.80⁎⁎ ⁎⁎ ⁎⁎ ⁎

) 0.352 (0.263) 2.22, ns - - -
) 0.609 (0.047) 27.47⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎

) 0.241 (0.341) 5.23⁎ ns ⁎ ⁎

) 1.660 (0.145) 8.38⁎⁎ ns ⁎⁎ ⁎

) 0.376 (0.035) 17.36⁎⁎ ⁎⁎ ⁎⁎ ns
) 0.771 (0.076) 3.69⁎⁎ p = 0.07 ⁎ ns
) 0.341 (0.219) 3.71⁎ p = 0.08 ⁎ ns
) 0.810 (0.040) 13.32⁎⁎ ⁎⁎ ⁎⁎ p = 0.10

CON= controls, BD= bipolar patients, SZ = schizophrenia patients, FA = fractional an-
= axial diffusivity (mm²/s × 10−3).
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Germany) at the Goethe University Brain Imaging Center, Frankfurt am
Main, Germany. Each scanning session began with a resting-state func-
tional measurement (echo-planar-imaging [EPI]-sequence, 400 vol-
umes, voxel size: 3 × 3 × 3 mm3, TR = 2000 ms, TE = 30 ms, 33
slices covering the whole brain, slice thickness = 3 mm, distance fac-
tor = 20%, flip angle = 90°), followed by a high-resolution T1-
weighted anatomical measurement (MDEFT sequence (Deichmann
et al., 2004), 176 slices, 1 × 1 × 1 mm3). Three diffusion tensor imaging
datasets were also acquired for each subject using generalized auto-
calibrating parallel acquisitions (GRAPPA; Griswold et al., 2002)
with an EPI sequence (TR = 8760 ms; TE = 100 ms; bandwith =
1302Hz/pixel, acquisition voxel size=2× 2× 2mm3; 60 axial adjacent
slices; slice thickness = 2 mm (no gap); FOV = 192 × 92 × 120 mm;
acquisition matrix = 96 × 96; 10 images without diffusion weighting
(b0) with 60 diffusion-encoded images (b-values = 1000 s/mm2 60
noncolinear directions, acquisition time = 10 min.)).

Participants were scanned with dimmed lights and were instructed
to lie still and look at a white fixation cross presented in the centre of
the visual field. Participants did not engage in any overt speech during
the scanning sequences.

2.3. Image preprocessing: resting-state fMRI

The BrainVoyager QX software version 2.3 (Goebel et al., 2006) was
used to preprocess and co-register the functional and anatomical MR
images. The preprocessing steps of the functional data included slice-
time correction, rigid-body motion correction (Levenberg–Marquardt
algorithm; cut-off for head motion: ±2 mm), linear trend removal
and high-pass temporal filtering (3 cycles per time course, cutoff =
0.0075 Hz). Three-dimensional (3D) anatomical scans were trans-
formed into Talairach space (Talairach and Tournoux, 1988) using a
12-point affine transformation. We used automated routines of the
BrainVoyager software to co-register the functional data to the anatom-
ical scans of the same participant, and resampled the functional data to
an iso-voxel size of 3 × 3 × 3 mm3.

For a seed-based analysis (SBA), we used an anatomically defined
hippocampusmask (hippocampus total) provided by the Brain Voyager
QX program. The seeds were then used to do a seed correlation analysis
(SCA). During SCA, the functional time-series of one or more pre-
defined brain areas (= seed regions) are sampled and correlated
with all other functional time-series. Following previous recommenda-
tions, we corrected the seed time-series for potential nuisance variables
(Z-normalized), which included fMRI signal from ventricles, whitemat-
ter, the global (whole-brain) signal and the six head movement param-
eters (Birn et al., 2006; Chai et al., 2012). The analysing steps of the
resting-state fMRI data were done with custom-written routines and
freely available toolboxes in Matlab (MathWorks, Natick, MA). Results
were visualized on the anatomical images using the BrainVoyager QX
software.

2.4. Imaging preprocessing: ROI analysis with VBM

The VBMpreprocessing and statistical analysis were performedwith
SPM8 (statistical parametric mapping [Wellcome Department of Imag-
ing Neuroscience, London, UK]) running onMATLAB version 7.7.0. First,
all images were checked for artefacts, structural abnormalities and pa-
thologies. Second, customized T1 templates and prior images of grey
matter (GM), white matter (WM) and cerebro-spinal fluid (CSF) were
created from all participants in order to use it for the group analysis.
We used modulated data and prior probability maps (voxel intensity)
to guide segmentation in SPM. The segmentation included six different
tissue types, light bias regularization (0.001), 60 mm bias FWHM cut-
off, warping regularization of 4 mm, affine regularization to the ICBM
European brain template (linear registration) and a sampling distance
of 3 mm. The quality of the segmentation was checked before further
analysis. Finally, the images were smoothed with a Gaussian kernel of
8 × 8 × 8 mm3 (FWHM). Using this procedure the intensity of each
voxel was replaced by the weighted average of the surrounding voxels,
in essence blurring the segmented image.

TheWFU PickAtlas toolbox in SPM8 (Maldjian et al., 2003) was used
to createmasks for the left and right hippocampus. The size of themasks
was 1000 mm3 (default). In the following step we compared grey mat-
ter volume differences in the ROIs between individual images, using the
voxel-based morphometry (VBM) tool of the SPM8 software. After-
wards, group comparisons in the ROIs of GM using VBM were tested
with linear statistical contrasts resulting in a t-statistic for each voxel.
The respective global volumes of grey and white matter and CSF as ob-
tained during segmentation were included as nuisance variables.

2.5. DTI procedures: ROI analysis with FSL

DiffusionMRI data were pre-processed and analysed using the stan-
dard TBSS routine of FSL 4.1 (Oxford Centre for Functional MRI of the
Brain — FMRIB software library; FSL, http://www.fmrib.ox.ac.uk/fsl)
(Smith et al., 2006). TBSS is a specific voxel-wise approach to analyse
DTI data, which projects individual DTI parameters of each participant
onto a mean skeleton of a white matter mask (Smith et al., 2006). The
different steps applied for the preprocessing of the Diffusion MRI data
included motion correction, correction for eddy-current distortion and
averaging the three DTI datasets into one single-4D dataset per subject.
After that, the preprocessed images were fitted using a tensor model
that generated the diffusionmaps (fractional anisotropy [FA], mean dif-
fusivity [MD]) used in the following TBSS analysis. This was followed by
a non-linear registration of all images into standard MNI space and the
creation of an averaged FA skeleton on which individual FA and MD
values were projected (for further details of the procedure see Oertel-
Knöchel et al., 2014). The resulting DTI parameters on the skeleton
were used for ROI analyses of all tracts which are connected to the
greymatter regions of thehippocampus region. The tractswere selected
using the JHU White-Matter Tractography Atlas provided by FSL (Hua
et al., 2008). This Atlas tool is recommended by FSL and was used to
mark the topographical boundaries of all ROIs in MNI space and to cre-
ate white matter masks. The tracts were selected as follows: bilateral
uncinate fasciculus, bilateral cingulum, fornix.

2.6. Statistical analysis

To generate a two-level general linear model (GLM) (Biswal et al.,
1995; Rotarska-Jagiela et al., 2010), we sampled the averaged and nor-
malized (Z-normalization) functional time-series of thepredefined seed
regions. This resulted in first-level functional connectivity coefficients
for each participant. Then, the functional connectivity coefficients of
the seed regions were entered into a second-level, mass-univariate
one-way analysis of a covariance (ANCOVA) model. In this model the
different groups were defined as a between-subject factor while the
variables age, sex and education were considered as nuisance covari-
ates. To correct for multiple comparisons, we used the FDR correction
for main effect of functional connectivity (thresholded at p b 0.05
(Genovese et al., 2002)). The effect of the group factor was then visual-
ized on an anatomical template (courtesy of Montreal Neurologic Insti-
tute (MNI)). In a following step, all significant regions on this level were
defined as regions-of-interest (ROIs), which were used for a ROI-
averaged connectivity analysis (post-hoc, pairwise, two-sample t-test
[two-tailed]) using voxel functional connectivity coefficients of each
participant to assess group contrasts (corrected for multiple compari-
sons using the cluster-level correction tool (p b 0.05; cluster-level cor-
rection, minimum cluster size of 200 mm3)).

The resulting statistical maps of the ROI grey matter analysis using
VBM showed all voxels of the ROIs with a significant group difference
being set at a (minimum cluster size = 100 mm3) p-value threshold
of p b 0.001 (small volume correction). The significant results of the
analysis are interpreted as volume differences between the groups.

http://www.fmrib.ox.ac.uk/fsl
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We also computed t-tests assessing group differences of ROI FA and
MD values (bilateral uncinate fasciculus, fornix, bilateral cingulum)
from the DTI analysis (at an alpha set at p b 0.05; tfce [threshold free
cluster enhancement] corrected), using the SPSS 21.0 software package
(Statistical Package for Social Sciences, http://www.spss.com).

Moreover, we performed group comparisons of cognitive measures
(BVMT-R, HVLT-R) using two independent ANOVAs with group being a
fixed factor and the test scores defined as independent variables.
Group comparisons of BDI II and BRMAS were conducted using t-tests
to compare the two groups (BD, CON). All comparisons of cognitive
and neurobehavioralmeasures were conductedwith the SPSS 21.0 soft-
ware package.

We controlled for a potential influence of medication on the results
performing a bivariate correlation analysis (Pearson product-moment
correlation, two-tailed) between the functional connectivity values
and the medication doses computed according to the method by
Almeida et al. (2009) for BD patients and chlorpromazine equivalents
according to Woods et al. (2003) for SZ patients. In addition, a correla-
tion between the years of medication and the beta values of the func-
tional activation during the resting-state measurement was calculated.

3. Results

3.1. Cognitive and clinical data

Mean (SD) PANSS scores in the group of SZ patients were: global
scale: M = 63.20 (SD = ±5.20), positive symptoms: M = 15.40
(SD=±3.00), negative symptoms:M=15.11 (SD=±1.90) and gen-
eral symptomatology: M = 32.60 (SD= ±4.89) (see Table 1).

Assessing current psychopathology in the groups of healthy
control subjects (CON) and of the BD patients, we found that the BDI II
scores of the BDpatientswere significantly higher compared to the con-
trol group (BD patients: M = 9.85 [SD = ±8.97], CON: M = 2.10
[SD = ±3.45]; t = 3.65, p = 0.001) indicating subclinical depressive
symptoms in BD patients. BRMAS scores showed no significant group
differences (BD patients: M = 0.38 [SD = ±0.25], CON: M = 0.25
[SD= ±0.44]; t = 0.83, ns). However, none of the patients or controls
fulfilled a score of N18 in the BDI II and a score of N7 in the BRMAS, indi-
cating acute symptoms.

Verbal (HVLT-R) and non-verbal (BVMT-R) learning parameters
showed significant group differences across groups (HVLT-R: F =
17.76, p b 0.001; BVLT-R: F = 14.89, p b 0.001). Overall, SZ patients
showed the lowest values followed by BD patients and controls. The
group differences in both memory parameters reached a significant
level in the post-hoc contrasts between controls and SZ patients and be-
tween BD patients and SZ patients (all p values b 0.001). However, the
group contrast between controls and BD patients showed significant
differences only in the verbal learning values (HVLT; p b 0.01). Controls,
SZ and BDpatients did not differ significantly in crystallized intelligence
(z = −1.75, ns) (see Table 1).

3.2. Resting-state functional connectivity

The multi-subject result map (voxel-by-voxel one-sample t-test
of connectivity values) with voxel clusters of significant bilateral
hippocampus total functional connectivity included left frontal lobe,
right lentiform nucleus, right putamen, left thalamus, bilateral
parahippocampal gyrus and bilateral cingulate gyrus (ANCOVA, F-map
corrected for FDR).

3.2.1. Differences between SZ patients and controls
Post-hoc pairwise comparisons (two-sample t-tests, corrected for

nuisance variables) showed a significant reduction of functional con-
nectivity scores in the left frontal lobe, the right lentiform nucleus, the
right putamen and the left thalamus in SZ patients compared with con-
trol subjects. Higher functional connectivity scores in SZ patients when
compared with controls were found in the bilateral parahippocampal
gyrus and in the bilateral cingulate gyrus (all ps b 0.001; cluster-level
correction; view Fig. 1, Table 2).

3.2.2. Differences between BD patients and controls
Left frontal lobe functional connectivitywas also decreased in BD pa-

tients in comparison with controls (p b 0.001; cluster-level correction;
view Fig. 1, Table 2).

3.2.3. Graded differences (CON–BD–SZ)
If graded differences are defined as significant differences between

all groups (SZ N BD N CON), none of the functional connectivity param-
eters fulfilled this criterion. However, in the left thalamus, BD patients
showedmean values that lay between controls and SZ patients without
showing statistically significant differences in comparisonwith the con-
trol group (view Fig. 1, Table 2).

3.3. VBM results

TheVBMROI analysis of the left and right hippocampus revealed sig-
nificant differences across groups (left: F = 11.77, right: F = 10.89, all
ps b 0.001).

3.3.1. Differences between SZ patients and controls
In the right hippocampal volumes SZ had significantly lower

beta scores in comparison with controls. Differences in beta scores in
BD as compared to controls did not reach a significant level (CON:
β = −0.017 [SD = ±0.04], BD: β = −0.007 [SD = ±0.05], SZ: β =
0.031 [SD = ±0.05]).

3.3.2. Graded differences: CON–BD–SZ
In left hippocampal volumes, controls had the significantly highest

beta scores, followed by BD patients and SZ patients (left: CON:
β = −0.017 [SD = ±0.009], BD: β = −0.007 [SD = ±0.009], SZ:
β = 0.030 [SD = ±0.010]; see Fig. 2, Table 2).

3.4. DTI ROI results

DTI ROI analyses revealed significant group differences in the cingu-
lum bilaterally (MD), in the fornix (FA, MD) and the uncinate fasciculus
bilaterally (FA, MD) (all p; tfce b 0.05).

3.4.1. Differences in both patient groups in comparison with controls
Scheffé post-hoc single contrasts for the left and right cingulum

showed the lowest values for MD in controls (all p (tfce) b 0.05). Post-
hoc group comparisons between the two patient groups showed signif-
icantly higher MD scores in SZ than in BD patients in the left cingulum,
and – the other way around – for the right cingulum (highestMD scores
in BD) (all p (tfce) b 0.05).

After computingpost-hoc single contrasts of the fornixwe found sig-
nificantly lower FA/higher MD values for both patient groups in
comparisonwith controls (p (tfce) b 0.05), but no significant group con-
trast between the patient groups (p (tfce) N 0.05).

3.4.2. Differences between SZ patients and controls
In the left and right uncinate fasciculus, SZ patients showed lower FA

values in comparison with controls (p b 0.001).

3.4.3. Graded differences: CON–BD–SZ
A comparison of MD values in the bilateral uncinate fasciculus

resulted in higher values in controls as compared to SZ patients (all
ps (tfce) b 0.05). BD patients showed trend level significance in the
MD scores of the right uncinate fasciculus compared with controls
(p = 0.10). Furthermore, in computing a direct comparison between
the two patient groups,MD scores of the right uncinate fasciculus proved
to be significantly increased in SZ patients in comparisons with BD pa-
tients. There was also trend level significance in the MD scores of the

http://www.spss.com
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left uncinate fasciculus and the FA scores of the right uncinate fasciculus
between SZ and BD patients (p b 0.10) (see Fig. 3, Table 2).

3.5. Correlation analyses

None of the clinical parameters separately assessed for each disease
group (positive and negative symptoms in SZ [PANSS], acute affective
symptoms [BDI II for depressive, BRMAS for manic symptoms]) showed
a significant correlation with any of the functional or structural imaging
parameters (all p values N 0.05).

The BVMT-R (non-verbal learning) values were not significantly as-
sociated with any of the imaging parameters across groups (p N 0.05).
Verbal learning, however (measured using theHVLT-R)was significant-
ly correlated with right hippocampus volumes in the BD (r = 0.490,
p = 0.03) and in the SZ (r = 0.395, p = 0.04) patient groups (but not
in controls; p N 0.05). Yet these correlations did not reach significance
after correcting for multiple comparisons (Bonferroni correction).

None of the imaging parameters showed any significant correlation
with the medication scores or with years of medication in BD or SZ pa-
tients (p N 0.05).

4. Discussion

4.1. Resting-state functional connectivity

Our seed-based functional connectivity analysis (resting-state fMRI)
with the bilateral hippocampus as the seed region revealed markers of
hypo- and hyperconnectivity between hippocampal and fronto-limbic
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regions in both, SZ and BD patients, when compared with controls. In
particular, SZ patients showed hypoconnectivity between the bilateral
hippocampus, the left frontal lobe, the left thalamus, the bilateral
lentiform nucleus and the right putamen. The results confirm current
neurophysiological models that suggest altered functional connectivity
within frontal and between frontal and limbic regions in SZ (Meyer-
Lindenberg et al., 2005; Kuhn and Gallinat, 2013) and a frontal–limbic
network disturbance in BD (Yurgelun-Todd et al., 2000; Blumberg
et al., 2003; Strakowski et al., 2005; Kronhaus et al., 2006; Lyoo and
Renshaw, 2010). Accordingly, current resting-state findings in BD pa-
tients revealed changes in the functional connectivity between frontal
and limbic brain regions in comparison with controls (Anand et al.,
2009; Chepenik et al., 2010; Ongur et al., 2010; Chai et al., 2011) and
fronto-striatal hypoconnectivity during rest in BD patients (Anand
et al., 2009; Chepenik et al., 2010).

Moreover, SZ patients showed higher functional connectivity scores
in the bilateral parahippocampal gyrus and in the bilateral cingulate
gyrus when compared with control subjects. The findings of disturbed
connectivity in a fronto-limbic network with both – hypo- and
hyperconnectivity in SZ patients – are in line with the theory of a
disconnectivity syndrome in psychiatric disorders first proposed by
Friston (1998) that suggested a failed connectivity between relevant
brain regions. The result of either increased or decreased functional con-
nectivities between the hippocampus and fronto-limbic brain regions
shows the complex pattern of disturbance of brain networks in SZ. Fur-
thermore, our findings in BD patients are in accordance with a recent
meta-analysis (e.g., (Chen et al., 2011))whichmainly suggests hyperac-
tivity of limbic regions but not directly of the hippocampus in BD
patients.

4.2. Volumetric (VBM) findings

Both SZ and BD patients showed lower grey matter volumes in the
left hippocampus in comparisonwith controls; however volumedeficits
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in the right hippocampuswere limited to SZ patients. This is in-linewith
previous findings, which robustly show hippocampal volume reduc-
tions in SZ (Wright et al., 2000), but only inconsistently in BD (Adler
et al., 2007; Koo et al., 2008; Scherk et al., 2008). Our findings therefore
confirm the hypothesis of Brown et al. (2011) that hippocampal volume
may be of importance for the differentiation between SZ and BD. Brown
and colleagues based their assumption on direct comparisons of grey
matter volumes in subcortical regions, showing lower volumes in SZ pa-
tients comparedwith BD patients in the right hippocampus, in the puta-
men and the amygdala.

4.3. White matter fibre integrity/mean diffusivity (DTI)

White matter fibre integrity, as assessed by mean diffusivity, was
strongly affected in SZ patients in the tracts connecting the hippocam-
pus with other brain structures (uncinate fasciculus, cingulum, fornix),
whereas alterations in the BD patients were more subtle. This result is
in line with findings of multiple white matter changes in SZ including
the interconnections of the frontal lobe, thalamus, cingulate gyrus and
white matter changes of the left temporal deepwhite matter (intercon-
nections of frontal lobe, insula, hippocampus-amygdala, temporal lobe,
occipital lobe) (Williamson and Allman, 2012). Accordingly, in BD pa-
tients, mainly right-sided changes in DTI parameters have been report-
ed (parahippocampal gyrus and close to the subgenual ACC) (Vederine
et al., 2011).

4.4. Graded differences: CON–BD–SZ

Overall, the current data partly support the concept of graded chang-
es across the SZ and BD spectrum. SZ patients show more pronounced
deficits regarding neurobehavioral measures of episodic memory per-
formance, alongside with stronger structural alterations when com-
pared with BD patients. BD patients showed more subtle behavioral
deficits in memory performance, and also more subtle functional and
structural changes in comparison with controls. In a direct comparison,
visual learning (HVLT), left hippocampal volume (VBM), mean diffusiv-
ity of the bilateral cingulum and the right uncinate fasciculus showed
evidences for the idea that both patient groups are affected, but BD pa-
tients less severe. However, the resting state functional connectivity and
other anatomical parameters did not support this concept of graded
change.

The main finding of graded changes across the SZ and BD spectrum
can be interpreted as partly contradictory to Kraepelin3s (Kraepelin,
1896) distinction of two entirely different and independent disease
entities. However, our findings are in line with a large body of recent
imaging and genetic research showing that BD and SZ share some
core molecular and pathophysiological mechanisms (Craddock and
Owen, 2005; Craddock andOwen, 2010) and thereby cannot be concep-
tualized as two entirely distinct classes of disorders. We may assume
that BD and SZ may share some pathophysiological pathways but
that there might be also distinct alterations across multimodal mea-
sures. Such an interpretation would conformwith the findings from re-
cent genome-wide association studies, which reveal partial but not
complete overlap of the genetic risk profiles of these disorders (Hall
et al., 2014).

4.5. Imaging parameters without graded changes

Resting-state analysis revealed reduced functional connectivity
in the left frontal lobe, the right lentiform nucleus, the right
putamen and the left thalamus in SZ patients compared with control
subjects, and higher functional connectivity scores in SZ patients
when compared with controls in the bilateral parahippocampal gyrus
and in the bilateral cingulate gyrus, but no alterations in BD patients.
In contrast, left frontal lobe functional connectivity was decreased in
BD patients in comparison with controls but not in SZ patients. Right
hippocampal volumes might not be affected in BD patients but in
SZ patients in comparison with controls. Regarding DTI parameters,
mean diffusivity (MD) of fibre tracks related to the hippocampus
showed graded changes, but this was less present in fibre integrity pa-
rameters (FA).

4.6. Cognitive and clinical data in association with imaging findings

Clinical parameters specifically assessed for each disease group
separately revealed no significant associations with the imaging
findings. That means that our main findings are independent of acute
symptomatology, including positive and negative symptoms in SZ
[PANSS], and acute affective symptoms (BDI II for depressive, BRMAS
for manic symptoms) in BD patients. However, our study was neither
powered nor specifically designed to assess such correlations because
our patient samples showed relatively low severity scores of acute
symptoms.

Verbal learning (HVLT-R) scores showed significant group differ-
ences across groups, with the lowest values found for SZ patients and
subtle deficits in BD patients in comparison with healthy controls. Crys-
tallized intelligence did not differ across groups, and all main group dif-
ferences in imaging parameters were independent of crystallized
intelligence. Furthermore, verbal learning (HVLT-R) was significantly
correlated with right hippocampal volumes in the BD and in the SZ pa-
tient groups although these comparisons did not last after correcting for
multiple comparisons.

4.7. Limitations

Although all patients of our study were treated with psychiatric
medication at the time of measurement, we tested potential influence
of psychiatricmedication on the functional and structural brain changes
in our study. We failed to show any association between functional and
structural parameters and medication status or duration of medication
use. This result confirms previous findings that report no influence or
even a positive effect (reduced group differences between patients
and controls) of psychopharmacological treatment on structural
and functional findings in psychiatric patients (Dazzan et al., 2005;
Hafeman et al., 2012).

The sample size of the current study is relatively small, but we en-
sured that all patients were screened applying very strict inclusion
criteria. For instance, we included only BD patients with BD I disorder
(not BD II), we included only SZ patients with paranoid subtype
(no schizoaffective or other subtype), and we ensured that none of the
patients had any history of drug addiction.

5. Conclusions

A direct comparison of SZ and BD, two major psychotic disorders, is
of interest regarding the ongoing debate thatwas startedwith the intro-
duction of the Kraepelinian dichotomy concept in 1896 (Kraepelin,
1896). Currently this debate centres on the question whether BD and
SZ are distinct disorders or may share some pathophysiological path-
ways. Our research suggests that although both examined patient-
groups may share some pathophysiological pathways, functional and
structural abnormalities may be more severe in SZ than in BD. Further
studies are needed to explore and explain these graded changes in SZ
and BD to define which parameters show graded changes and which
do not.

The approach to examine functional as well as structural markers
in the same study follows recent developments in the field (Womer
et al., 2009), suggesting a mechanistic relationship between structural
and functional abnormalities. Thus, the development of a multi-modal
neurophysiological model of psychoses, with shared and distinct
pathways across traditional disease entities, may help to clarify the
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pathways that contribute to individual symptom patterns (Linden,
2012).
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