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1 Introduction  

The contemporary equity trading landscape is best described by a competitive fragmented market with 

trading occurring on multiple trading venues1. Market fragmentation is the result of investors with 

different preferences looking for the trading venue that can cater best to their preferences. For instance, 

uninformed passive investors, such as index funds, prefer block orders, while informed active investors, 

such as mutual funds, prefer order splitting strategies with low price impact. Regulatory initiatives (e.g. 

MiFID in the European Union) and technological advances increasing the speed of trading fuelled 

further the transition towards the current competitive equity trading landscape. The modern setup has 

several implications. Namely, how a trading venue is organized affects investors’ trading costs as well 

as their portfolio choices. Consequently, trading costs and portfolio choices drive asset prices, which 

affect cost of capital, carrying welfare implications (Stiglitz, 1989) as well as market quality implications, 

including market resiliency. Market resiliency refers to the phenomenon of return to normal following a 

deviation. Knowing the properties of market resiliency in modern competitive fragmented markets 

becomes even more important for market participants and regulators. This paper studies market 

resiliency across competing venues of a modern fragmented equity market when liquidity is scarce.   

We examine how resilient are modern competing trading venues to severe intraday liquidity shocks. 

Our analysis is motivated by two questions that are not yet sufficiently explored in the empirical 

literature. First, how fast does the liquidity recover on different trading venues following an intraday 

liquidity shock? Second, is the recovery only momentary considering that intraday liquidity shocks may 

repeat, spiralling within a venue and spilling over across venues? To this purpose, we build a unique 

dataset sourced from exchange feeds of two major competing trading venues: London Stock Exchange 

(LSE), a traditional venue, and Chi-X Europe, an alternative venue. Using this cross-venue dataset with 

millisecond resolution, we measure the threshold exceedance duration, i.e. TED, defined as the time 

for liquidity to recover following a shock. We employ a multivariate Hawkes point process methodology 

to uncover whether the recovery is only temporary, as shocks might propagate across time, forming 

spirals, or across venues, forming spillovers.  

Our findings show that in 99% of cases liquidity gets back to normal within approximately one minute 

following a severe liquidity shock. This holds true irrespective of the type of venue yet varies by stock 

size. Zooming in reveals that the recovery is, however, only momentary, as more than half of the shocks 

propagate through time on the same venue and around 12% of shocks propagate cross-venue. In 

comparison with LSE, more frequent, longer, and more severe liquidity shocks were observed at Chi-

X. In addition, we noted short instances of extreme illiquidity on Chi-X, with no ask or no bid quotes. 

Our findings suggest that on average Chi-X has lower market resiliency than LSE for FTSE 100 stocks, 

yet we do find variations of market resiliency across stocks and across time. The microfoundations of 

                                                           
1 The term “trading venue” is used to designate individual exchanges and other venues on which a 
security of interest is traded. We use the term “market” to designate the aggregate trading activity over 
all trading venues where a security of interest is traded. 
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these findings might be related to different market models operated by these venues, trading 

mechanisms, and competition dynamics. 

Our study contributes to the empirical literature on market resiliency, and ultra-fast market dynamics, 

as we aim to fill the gap of the empirical literature on cross-venue market resiliency in the high-frequency 

environment. With respect to the existing literature on market resiliency, our analysis has several 

distinctive features. The unique characteristics of our dataset support the proposed analysis thanks to 

(i) the time increment of one millisecond enabling a study of resiliency at a high-frequency resolution 

not done before in the literature, (ii) the timestamp accuracy coming from exchange feeds, which is 

critical for a reliable measurement of resiliency and cross-venue analysis. Moreover, our sample covers 

two major competing trading venues with different market microstructure for the same set of stocks over 

the same time span, with LSE as the primary listing exchange and Chi-X Europe as the alternative 

venue, accounting together for approximately 80%1 of the equity market of FTSE 100 stocks during the 

observation period. This setup enables us to reliably compare the dynamics of venues having different 

market microstructure. Finally, in comparison with the existing literature, our methodology captures both 

the speed of recovery and how lasting it is. We do this by identifying potential propagation of shocks 

within a venue as well as across venues. 

The rest of the paper is organized as follows. Section 2 presents the related literature. Section 3 

presents the institutional structure of the two trading venues that we study, LSE and Chi-X Europe, and 

describes the data employed for the study. Section 4 describes the Hawkes methodology and its 

application for studying market resiliency. Section 5 presents and discusses the results. Section 6 

documents the significance of parameter estimates and the robustness of our results. Section 7 

concludes. 

 

2 Related literature 

Market resiliency subscribes to the literature on system resiliency. System resiliency refers to the 

system’s “ability to anticipate, to absorb, to adapt, and to recover from a potential disruptive event” 

(Francis & Bekera, 2014). In the seminal literature on market microstructure, the term market resiliency 

has been first used by Kyle (1985) as a transactional property of markets that characterizes liquidity: 

“"Market liquidity" is a slippery and elusive concept, in part because it encompasses a number of 

transactional properties of markets. These include "tightness" (the cost of turning around a position over 

a short period of time), "depth" (the size of an order flow innovation required to change prices a given 

amount), and "resiliency" (the speed with which prices recover from a random, uninformative shock).” 

Whilst the first two properties, i.e. tightness and depth are extensively studied in the literature, resiliency 

received less attention.  

                                                           
1 This figure is computed based on trading volume data in shares from Reuters Eikon covering LSE, 
Chi-X, BATS, and Turquoise for 94 stocks of the FTSE 100 for the first quarter of 2015.  
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The concept of market resiliency evolved in the theoretical and empirical literature since its introduction 

in 1985. Foucault, Kadan, & Kandel (2005) measure market resiliency by “the probability that, after a 

liquidity shock, the spread reverts to its former level before the next transaction”. Obizhaeva & Wang 

(2013) understand market resiliency as the refresh rate of the limit order book, i.e. bid-ask updates, 

following a trade and the speed of convergence of the price, i.e. mid-quote, to a new steady state level 

following a trade. This contribution is important since it shows market resiliency as a reorganization 

capacity of the market, rather than as a recovery to a unique static steady state level. The empirical 

literature on market resiliency starts with the study of Degryse, De Jong, Van Ravenswaaij, & Wuyts 

(2005). The authors take a non-parametric event-study approach and measure market resiliency as the 

number of best limit updates, i.e. changes in the best bid or best ask required for the spread and depth 

to return to average following a shock and use data of 20 stocks on Paris Bourse. The study finds that 

following an aggressive order it takes around 20 best limit updates for the spread and depth to return 

to their initial level prior shock. Large (2007) uses a parametric approach where arriving orders and 

cancellations are viewed as a mutually-exciting 10-variate Hawkes point process with application on 

data for one stock, Barclays on LSE, with one-second snapshot frequency. Using this method, the 

author estimates two metrics that are used to measure market resiliency: (i) the probability of order 

replenishment after a liquidity demand shock (aggressive order) and (ii) the time it would take for the 

limit order book, i.e. LOB to replenish. The author finds that the LOB replenishes resiliently, i.e. reaching 

the level prior shock, less than 40 per cent of the time. In those cases where resilient replenishment 

does occur, the LOB replenishes quite fast, displaying a half-life of under 20 seconds. Gomber, 

Schweickert, & Theissen (2015) define market resiliency as the time for the liquidity metric XLM to return 

to the XLM level observed prior a shock induced by large transactions or Bloomberg ticker news items 

and empirically measure it using data for 21 stocks on XETRA with one-minute snapshot frequency. 

The study concludes that shocks pertaining to large transactions affect liquidity, yet resiliency is high 

such that liquidity returns quickly to the market. Kempf, Mayston, Gehde-Trapp, & Yadav (2015) 

understand market resiliency as the speed of return to the long-run average of spread and depth 

following a liquidity shock. Using an extended Ornstein-Uhlenbeck methodological approach and data 

covering 120 stocks of FTSE 100 on LSE with five-minute snapshot frequency, the authors find that the 

measures of market resiliency stay relatively stable over time, including in the period of the Global 

Financial Crisis when liquidity sunk. However, the marginal difference between consumption resilience 

and replenishment resilience was much higher during the Global Financial Crisis than in normal times. 

Among further findings, the authors document that algorithmic trading is associated with higher 

resiliency for the majority of stocks, yet less so for smaller stocks. The measurement approach of speed 

of return proposed by Kempf et al. (2015) has been employed in further empirical studies by Colliard & 

Hoffmann (2017) and Félez-Viñas (2019). Finally, Danielsson, Panayi, Peters, & Zigrand (2018) 

measure market resiliency as the Threshold Exceedance Duration, i.e. TED, that describes the time 

needed for a stock to recover following a liquidity shock of selected severity and employ an 

autoregressive survival model for detecting and forecasting Liquidity Resilience Profiles, i.e. LRP. The 

appeal of this resiliency measure is its modelability for different definitions of liquidity shocks while 
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preserving the validity of the drivers of TED. The study uses data of 40 stocks of CAC40 traded on Chi-

X and recorded with one-second snapshot frequency. The authors find their measure of market 

resiliency to be time-varying and in particular, TED varies with the current and past state of the LOB 

and of the market. This methodology has been further employed in the studies on liquidity commonality 

and liquidity resilience by Panayi, Peters, & Kosmidis (2015), and on liquidity resilience and market 

making by Panayi, Peters, Danielsson, & Zigrand (2018). 

The above review of the literature on the measurement of market resiliency shows that there is no 

standard way of measuring market resiliency. In particular, the cross-study comparability of the findings 

is limited due to (i) different definitions, (ii) different venues and assets underlying the studies, and (iii) 

the use of data with different frequency ranging from five minutes down to one-second snapshots. We 

consider these aspects in the design of our cross-venue analysis as follows. Whilst we are agnostic to 

the different types of measures discussed in the literature, we chose to apply a Hawkes point process 

approach with a counting process for liquidity shocks defined in line with the Threshold Exceedance 

Duration (TED). As shown by Panayi, Peters, & Kosmidis (2015), TED is compatible with ultra-high-

frequency data. Hawkes processes are particularly well suited for capturing the dynamics of high-

frequency data. We apply this methodology consistently on LSE and on Chi-X data for the same set of 

assets, i.e. FTSE 100 stocks over the same time period, i.e. Q1 2015 on data with one-millisecond 

snapshot frequency. Our approach has the advantage of capturing not only how quickly the market 

returns to the pre-shock level, but also whether that return was indeed meaningful or just fleeting. 

Since our research interest lies in the cross-venue dynamics of a fragmented market, we further note 

the study of Félez-Viñas (2019). She finds that market fragmentation is generally beneficial for market 

resiliency both under normal market circumstances as well as under stress conditions induced by a 

large trade or large information asymmetry. The author reconstructs the consolidated order book at 

one-minute snapshot frequency for 30 Spanish stocks of the IBEX 35 traded on BME, Bats, Chi-X, and 

Turquoise throughout May 2013 – February 2015 and studies market resiliency before the 

fragmentation of order flow and after. The study measures market resiliency as the speed of recovery 

of the relative quoted spread or of the depth as first proposed by Kempf et al. (2015). Relative to the 

work of Félez-Viñas (2019), our study focuses on the cross-venue dynamics of market resiliency in the 

subsecond environment, rather than on the impact of market fragmentation on resiliency.  

Finally, our work contributes to the literature on ultrafast market dynamics attempting to describe 

subsecond phenomena. In the presence of machines taking trading decisions, computational operating 

times used on trading venues go below normal human reaction times. As shown by Wolfe, Seppelt, 

Mehler, Reimer, & Rosenholtz (2020), human reaction times are in the range of 600 milliseconds in 

circumstances of a road hazard where decision is prompted. Johnson et al. (2013) find in price changes 

ultrafast extreme events (UEEs) with a duration below one second, i.e. beyond human response time, 

and show that these events have different characteristics than UEEs with a duration of above one 

second, i.e. within the human response time. Using a crowd model and testing it empirically on data, 

Johnson et al. (2013) show that UEEs are more frequent when the probability of having n agents 
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simultaneously using the same strategy is high and vice versa. We further note the studies of Cartlidge, 

Szostek, De Luca, & Cliff (2012), Golub, Keane, & Poon (2012) and Menkveld (2018). Relative to this 

literature, our work focuses on market resiliency using one-millisecond snapshot frequency. This 

resolution allows us capturing durations of severe intraday liquidity shocks that last shorter than typical 

human response times and are likely driven by machine ecology as described by Johnson et al. (2013) 

and Beddington, J., Bond, P., Cliff, D., Houstoun, K., Linton, O., Goodhart, C., & Zigrand (2012).   

 

3 Institutional structure and data 

3.1 Market structure 

The London Stock Exchange operates as an order-driven market with a limit order book. On the LSE, 

continuous trading starts at 8:00 a.m. and ends at 4:30 p.m. GMT. This phase is preceded by the 

opening auction, which starts at 07:50 a.m. and lasts for ten minutes, plus a random end time of up to 

30 seconds. Continuous trading is followed by a closing auction, which starts at 4:30 p.m. and lasts for 

five minutes, plus a random end time of up to 30 seconds. Furthermore, the venue holds Exchange 

Delivery Settlement Price (EDSP) intraday auctions for the FTSE 100 Futures and Options Contracts 

on the third Friday of each month and Automatic Execution Suspension Period (AESP) auction calls 

that act as circuit breakers based on price monitoring. While EDSP auctions last about five minutes, 

AESP auctions generally last for five minutes, plus a potential extension of up to seven minutes. The 

market model of the London Stock Exchange for FTSE 100 stocks relies on the provision of liquidity by 

market makers. Market makers typically achieve this by submitting limit orders on both sides of the 

market, i.e. bid and ask, delivering guaranteed 2-way prices. Furthermore, the venue has designated 

specialists that are in charge of supporting market quality. LSE uses a standard symmetric pricing 

scheme where the liquidity maker and the liquidity taker pay the same level of fee per transaction. LSE 

has a downstairs market and upstairs market running in parallel. On the downstairs market, orders are 

executed through the stock exchange electronic trading system (SETS). On the upstairs market, orders 

are executed through broker-dealers, away from SETS limit order book and the resulting trades are 

reported to the SETS within three minutes of execution. This arrangement enables a delayed disclosure 

of large institutional trades.  

Chi-X Europe is a London-based Recognised Investment Exchange (RIE). It was initially set up by a 

group of banks in 2007 as a Multilateral Trading Facility (MTF) aiming to compete with LSE and other 

incumbent venues following the change in regulation opening exchanges to competition. Chi-X Europe 

received a full exchange status in May 2013. In 2017, the venue has been acquired by CBOE. The 

trading session on Chi-X Europe starts at 8:00 a.m. and ends at 4:30 p.m. GMT. The venue does not 

have an opening, closing, EDSP, or AESP auction. Instead of circuit breakers, Chi-X Europe uses price 

collars pegged to the prices revealed on the incumbent exchange, which is the LSE for the FTSE 100 

stocks of our interest. There are no market makers and designated specialists alike the ones on LSE. 

Chi-X Europe uses an asymmetric maker-taker fee structure where the liquidity maker and liquidity 
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taker pay different levels of fees. The maker receives a rebate whilst the taker gets charged. This 

structure aims to incentivize liquidity provision. 

London Stock Exchange and Chi-X Europe are the two major competing trading venues for FTSE 100 

stocks with different market microstructure. During the period of our study, there are no market 

microstructure, fee, or trading system changes on these venues. Both exchanges operate an electronic 

limit order book and have visible and hidden orders. Our analysis focuses on the visible order book. 

LSE and Chi-X Europe compete, among other things, on: (i) trading fee structures, e.g. different maker-

taker pricing on LSE and Chi-X, and (ii) reduction in latency1. Such differentiations explain the type of 

market participants that a venue attracts. As documented by Menkveld (2013), the participation rates 

of High-Frequency Traders (HFT) on an incumbent venue differ from those on alternative venues. Using 

data from January 2007 through June 2008, a period when Chi-X entered the market as an alternative 

venue, the author finds an HFT participation rate of 8.1% on NYSE Euronext versus 64.4% on Chi-X. 

Menkveld (2014) suggests that “new markets [i.e. alternative venues such as Chi-X] serve HFTs who 

seek low fees and high speed”. As such, whereas HFTs are likely present on both venues, one may 

conjecture that Chi-X as an alternative venue has more HFT activity, whereas LSE as an incumbent 

venue would likely attract more natural liquidity traders, e.g. institutional investors such as pension 

funds. In 2011, LSE introduced the Millennium Technology, enabling ultra-low latency connectivity and 

allowing the exchange to compete with Chi-X on speed. The literature on competition for order flow 

between LSE and Chi-X provides further evidence. Ibikunle (2018) shows that the share of price 

discovery in relation to informed trading is predominantly higher on Chi-X than on LSE throughout the 

trading day. The study argues that Chi-X’s price leadership allows attracting order flow away from LSE. 

The author also documents a higher presence of HFT activity on Chi-X than on LSE. The study uses 

data for 47 stocks of the FTSE 100 over 106 days of the second half of 2014, which is close to the 

period of our sample and makes the findings particularly relevant for our study. An earlier study by 

Riordan, Storkenmaier, & Wagener (2012) also argues that Chi-X has more informed trading in 

comparison with LSE. The study shows that Chi-X and LSE lead in trade and quote based price 

discovery with Chi-X having a larger fraction of information impounded into prices (44.6%) compared 

to LSE (34.6%). The authors use for their study data covering the quoting and trading activity of FTSE 

100 stocks on LSE, Chi-X, BATS, and Turquoise over April/May 2010. 

 
3.2 Data 

                                                           
1 The roundtrip connectivity latency from connectivity providers within Interxion London for LSE and 
Chi-X was 10 microseconds for LSE and 283 microseconds for Chi-X in 2015 (Delaney, Fenick, Tyc, 
Saade, & Marsh, 2015). The roundtrip connectivity latency refers to the time from the source to the 
destination plus the time from the destination back to the source, excluding the processing time at 
destination. Interxion London is a data centre financial hub that offers ultra-low latency connectivity 
through proximity hosting. Exchange hosting, in comparison with proximity hosting, offers even lower 
roundtrip times. Moreover, differences in processing times, as well as differences in trade publishing 
times in the market data stream, contribute further to differences in speed from one venue to another.   
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We reconstruct the limit order book for each stock of our sample using visible messages from exchange 

feeds. This data is made available by Base Européenne des Données Financières à Hautes Fréquence 

(BEDOFIH). Our sample covers stocks composing the FTSE 100 index as per its composition on 

December 31, 2014, and covers two trading venues: London Stock Exchange and Chi-X Europe. The 

data resolution is one millisecond and the time period of the dataset is January 2, 2015, to March 31, 

2015, i.e. 63 trading days.  

We remove stocks that were subject to corporate splitting or that were delisted during the sample period. 

In total, 99 stocks are retained in the sample. We remove opening, closing, EDSP (297 instances 

observed for 99 stocks), and AESP auction phases (14 instances observed for 14 stocks) that occur on 

LSE and retain for our study only phases of continuous trading on LSE. We also remove these time 

segments from Chi-X Europe data for a consistent cross-venue comparison.  

Our dataset has several unique features important for our analysis. The data has a time increment of 

one millisecond, allowing analysis at high frequency resolution. In addition, exchange feeds have a high 

timestamp accuracy, which is crucial for the validity of such analysis. Thanks to the granularity of the 

data, each event of the limit order book can be clearly seen. The period of our dataset, i.e. first quarter 

of 2015, is clean of significant market microstructural changes or high volatility events that could drive 

results. Finally, the sample covers two trading venues with the same set of stocks, yet with different 

market microstructure, creating an accurate setup for a cross-venue study for market resiliency. The 

list of stocks composing our sample and the subsamples of large, mid, and small capitalisation stocks 

used for enabling comparison with the existing literature are omitted here for brevity but available in the 

Appendix. 

We describe the trading activity on LSE and Chi-X in terms of traded volume, quote updates, and spread 

levels. During the time period of our interest, the total traded volume on LSE and Chi-X accounted 

together for approximately 80% of the total traded volume on LSE, Chi-X, BATS, and Turquoise taken 

together. In average for one stock over the 63 trading days of our sample, the traded volume in number 

of shares was 4.98 million on LSE and 1.49 million on Chi-X, indicating a ratio of 3 to 1. Figure 1 shows 

the daily traded volume in millions of shares for the time period of our sample. For all market 

capitalisation subsamples and consistently for each day of our sample, the traded volume on LSE was 

substantially higher than the traded volume on Chi-X. The traded volume of stocks of firms within the 

highest market capitalisation bin account on a daily basis for roughly half of the total traded volume for 

all stocks of our sample.  

Insert Figure 1 here 

We describe the liquidity of the two venues in terms of the relative quoted spread. Figure 2 plots the 

50th and 95th percentile of the hourly relative quoted spread distribution, averaged across all stocks 

of the sample. In average, consistently throughout all the days of our sample, the spread values are 

higher on Chi-X than on LSE. Whereas the values of the average daily median spread are relatively 

similar cross-venue, the values of the 95th percentile are more apart, indicating that Chi-X has more 
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extreme values of the spread than LSE. Consistently throughout all the hours of continuous trading, 

the average values of the 50th and 95th percentiles of the hourly spread distribution on Chi-X are 

higher than the respective values on LSE. We document intraday patterns for the bid-ask spread in 

line with the literature: highest in the morning (Biais, Hillion, & Spatt, 1995) and then decreasing 

throughout the day with a slight peak around noon (Tannous, Wang, & Wilson, 2013).  

Insert Figure 2 here 

We find on Chi-X instances of infinite spread where there is no best ask or best bid quote. These 

instances do not occur only in the hour of market opening following the LSE opening auction, but also 

throughout the trading day. Furthermore, this phenomenon is observed across several stocks and is 

therefore not particular to a specific stock. The absence of quote may be momentary or last for several 

milliseconds in a row. Table 2 shows the time duration of infinite spreads throughout the hours of 

continuous trading. For instance, within the trading hour from 9 a.m. to 9:59 a.m. there were in 

aggregate 44 minutes with infinite spread occurring in six stocks of the FTSE 100 stocks, which are 

actually a set of the most liquid instruments. We do not find such instances on LSE. We conjecture that 

this fact may be due to differences in market microstructure between Chi-X and LSE, particularly the 

market-making model charged with liquidity provision. 

Insert Table 2 here 

For all stocks of the sample there are instances of infinite spread in the time segment from 8 a.m. to 

8:59 a.m. and the time segment 4 p.m. to 4:30 p.m. Furthermore, the average value of  95th percentile 

of the spread on Chi-X in the time segment 8 a.m. to 8:59 a.m. is far above the one on LSE. We 

conjecture that this effect is associated with the opening and closing auctions on LSE occurring in 

these hours. To exclude the eventuality that the results of our analysis of market resiliency are driven 

by such phenomena, we discard these time segments from our sample. 

Higher trading volumes and narrower spreads at LSE do not necessarily mean price leadership and a 

larger fraction of informed trading on LSE over Chi-X. As argued by Ibikunle (2018) and Riordan, 

Storkenmaier, & Wagener (2012), the quoting activity on Chi-X is intense and the informativeness of 

quotes may attract order flow on Chi-X away from LSE. Therefore, as a proxy of quoting intensity, we 

report on Figure 3 the number of times that the relative quoted spread was updated each day. The order 

of magnitude of the number of updates on LSE and on Chi-X are very close to each other indicating a 

similar level of quoting intensity on both venues. Interestingly, we observe that the quoting intensity is 

not consistently higher on one venue in comparison with the other. On certain days of the sample, Chi-

X has a higher quoting intensity than on LSE and the relation inverts on other days. This fact is indicative 

of market competition microfoundations where venues compete to attract order flow as documented by 

Ibikunle (2018) for LSE and Chi-X. Consistently through all days of the sample, stocks in the high market 

capitalisation bin show the highest level of spread updates and account for more than half of all spread 

updates observed in the sample. 

Insert Figure 3 here 
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4 Methodology 

To study empirically our research question on cross-venue dynamics of resiliency, we assume that the 

data follows a Hawkes point process and identify structural parameters from the data using maximum 

likelihood estimation. Our review of the empirical literature shows that there is no standard measure of 

market resiliency. Whilst we are agnostic to the different types of measures, we chose to apply a 

Hawkes point process given its suitability for high-frequency data. In this setup, liquidity shocks on LSE 

and liquidity shocks on Chi-X are two types of events described by a counting process with 

corresponding arrival intensity of such events. Modelling the arrival process of liquidity shocks with 

Hawkes processes permits the identification of both self-excitation, i.e. spirals1 and cross-excitation, 

i.e. spillovers. Our methodology extends the measurement approach proposed by Schneider, Lillo, & 

Pelizzon (2018) with application to liquidity on the bond market and cross-asset spillovers. We make 

methodological adaptations to account for our interest in capturing market resiliency on the equity 

market instead of liquidity on the bond market. Furthermore, we make amendments to the methodology 

in order to study cross-venue spillovers instead of cross-asset spillovers.  

First introduced by Hawkes (1971), Hawkes processes are point processes with a counting process of 

events and an associated vector conditional intensity process describing the arrival intensity of events 

considering the history of events. This type of processes has found application in numerous studies in 

finance as outlined in the survey by Bacry, Mastromatteo, & Muzy (2015) as shown particularly 

suitable for high-frequency data. Following the notation of Bowsher (2007) and Bacry et al. (2015), we 

write the D-variate counting process of events as 𝑁𝑁(𝑡𝑡) = {𝑁𝑁𝑖𝑖(𝑡𝑡)}𝑖𝑖=1𝐷𝐷  with each element 𝑁𝑁𝑖𝑖(𝑡𝑡) counting 

the number of type 𝑖𝑖 events that occurred up to and including time 𝑡𝑡. The complete observation of 

𝑁𝑁(𝑡𝑡) up to and including time 𝑡𝑡 for all types of events corresponds to the information set ℱ𝑡𝑡𝑁𝑁. Thus, the 

internal history – also known as natural filtration – of the D-variate point process 𝑁𝑁(𝑡𝑡) is {ℱ𝑡𝑡𝑁𝑁}𝑡𝑡≥0. The 

vector conditional intensity process associated with 𝑁𝑁(𝑡𝑡) is 𝜆𝜆(𝑡𝑡) = {𝜆𝜆𝑖𝑖(𝑡𝑡)}𝑖𝑖=1𝐷𝐷  where 𝜆𝜆𝑖𝑖(𝑡𝑡) is the ℱ𝑡𝑡𝑁𝑁-

conditionally expected number of type 𝑖𝑖 events per unit of time as the time interval tends to zero. The 

intensity vector for type 𝑖𝑖 events can be written as:  

 

 𝜆𝜆𝑖𝑖(𝑡𝑡) = 𝜇𝜇𝑖𝑖 + � 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑁𝑁𝑖𝑖(𝑠𝑠) + �� 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑁𝑁𝑖𝑖(𝑠𝑠)
𝑡𝑡

0𝑖𝑖≠𝑖𝑖

𝑡𝑡

0
 (1) 

where 𝜇𝜇𝑖𝑖 is the exogenous baseline intensity and 𝛷𝛷(𝑡𝑡) = {𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡)}𝑖𝑖≤1,𝑖𝑖≤𝐷𝐷 is the response function 

corresponding to a D × D matrix-valued kernel, which for all elements 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡) is non-negative, causal, 

and 𝐿𝐿1-integrable. The kernel 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡) accounts for how process component 𝑗𝑗 influences the occurrence 

                                                           
1 We note that the definition of spiralling at ultra fast times that we employ here differs from the 
liquidity spirals described by Brunnermeier & Pedersen (2009) that arise due to the mutually 
reinforcing mechanism between an asset’s market liquidity and the related traders’ funding liquidity. 
Funding liquidity constraints are unlikely to change at the ultra short time durations that we study. 
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intensity of the process component 𝑖𝑖 such that when 𝑗𝑗 = 𝑖𝑖 this describes the self-excitation effect and 

when 𝑗𝑗 ≠ 𝑖𝑖 this describes the cross-excitation effect.  

For the process to be asymptotically stationary, the spectral radius of D × D matrix 𝛷𝛷(𝑡𝑡) made of the 

𝐿𝐿1-norms �𝜙𝜙𝑖𝑖𝑖𝑖� = ∫ 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡)d𝑡𝑡∞
0  has to be strictly smaller than 1. In the presence of such a process, we 

may take the expectation value of the equation (1) to get 

 𝝀𝝀� = 𝝁𝝁 + 𝜸𝜸𝝀𝝀� (2) 

where [𝜸𝜸]𝑖𝑖𝑖𝑖 = ∫ 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡)d𝑡𝑡∞
0  is the norm of the kernel matrix 𝛷𝛷(𝑡𝑡), 𝝀𝝀� the unconditional expectation of the 

arrival intensity of events, 𝝁𝝁 the exogenous baseline intensity. We write the equation (2) for a single 

element 𝑖𝑖 and divide by 𝜆𝜆𝑖̅𝑖 to obtain the decomposable form 

 1 =
𝜇𝜇𝑖𝑖

𝜆𝜆𝑖̅𝑖
+ 𝛾𝛾𝑖𝑖𝑖𝑖 + �𝛾𝛾𝑖𝑖𝑖𝑖

𝜆𝜆̅𝑖𝑖

𝜆𝜆𝑖̅𝑖
𝑖𝑖≠𝑖𝑖

 (3) 

 

where 𝜇𝜇𝑖𝑖 is the exogenous baseline intensity for element 𝑖𝑖, 𝜆𝜆𝑖̅𝑖 the unconditional expectation of the event 

arrival intensity for element 𝑖𝑖, 𝜆𝜆̅𝑖𝑖 the unconditional expectation of the event arrival intensity for element 

𝑗𝑗,  𝛾𝛾 the norm of the kernel matrix 𝛷𝛷 considering elements 𝑖𝑖 and 𝑗𝑗. Each element on the right hand side 

of the equation (3) can be interpreted as follows:  𝜇𝜇
𝑖𝑖

𝜆𝜆�𝑖𝑖
 is the fraction of events due to baseline intensity 

for venue 𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖 is the fraction of events due to self-excitation intensity, i.e. spiralling for venue 𝑖𝑖, ∑ 𝛾𝛾𝑖𝑖𝑖𝑖 𝜆𝜆
�𝑗𝑗

𝜆𝜆�𝑖𝑖𝑖𝑖≠𝑖𝑖  

is the fraction of events due to cross-excitation intensity, i.e. spillovers from venue 𝑗𝑗 to venue 𝑖𝑖. A higher 

𝛾𝛾𝑖𝑖𝑖𝑖 indicates that shocks on venue 𝑖𝑖 for an individual stock are more likely to spread in time. This shows 

that the venue is less resilient over time.  

A. Bivariate Hawkes process with exponential response function 

We are interested in two types of events: liquidity shocks on LSE and liquidity shocks on Chi-X occurring 

in a stock. Narrowing down the multivariate Hawkes process to the case of the bivariate Hawkes 

process, i.e. 𝐷𝐷 = 2, we re-write equation (1) for a bivariate Hawkes process with self-excitation and 

cross-excitation terms: 

 

⎩
⎪
⎨

⎪
⎧𝜆𝜆1(𝑡𝑡) = 𝜇𝜇1 + � 𝜙𝜙11(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑁𝑁1(𝑠𝑠) + � 𝜙𝜙12(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑁𝑁2(𝑠𝑠)

𝑡𝑡

0

𝑡𝑡

0

𝜆𝜆2(𝑡𝑡) = 𝜇𝜇2 + � 𝜙𝜙22(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑁𝑁2(𝑠𝑠) + � 𝜙𝜙21(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑁𝑁1(𝑠𝑠)
𝑡𝑡

0

𝑡𝑡

0

 (4) 

For a bivariate Hawkes process, the kernel matrix 𝛷𝛷(𝑡𝑡) takes the form: 

 𝛷𝛷(𝑡𝑡) = �𝜙𝜙
11(𝑡𝑡) 𝜙𝜙12(𝑡𝑡)

𝜙𝜙21(𝑡𝑡) 𝜙𝜙22(𝑡𝑡)
� (5) 
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The Hawkes kernel is parametrized as an exponential kernel1 so that the kernel components in equation 

(4) take the exponential form: 

 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑠𝑠) = �𝛼𝛼𝑘𝑘
𝑖𝑖𝑖𝑖𝑒𝑒−𝛽𝛽𝑘𝑘

𝑖𝑖𝑗𝑗(𝑡𝑡−𝑠𝑠)
𝑃𝑃𝑖𝑖𝑗𝑗

𝑘𝑘=1

 (6) 

where the parameter 𝛼𝛼𝑖𝑖𝑖𝑖 can be interpreted as the amplitude of reaction in response to the occurrence 

of an event and the inverse of the parameter 𝛽𝛽𝑖𝑖𝑖𝑖 as the timescale of decay until the occurrence of the 

next event, such that the larger the 𝛽𝛽𝑖𝑖𝑖𝑖 the quicker the decay. The term 𝑃𝑃𝑖𝑖𝑖𝑖 gives the form of the 

exponential kernel, which we set as a double exponential kernel for the self-exciting components (𝑃𝑃𝑖𝑖𝑖𝑖 =

2) and a single exponential kernel for the cross-excitation components (𝑃𝑃𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖 ≠ 𝑗𝑗) in line with the 

specification of Schneider et al. (2018). The double exponential kernel allows accounting for a fast and 

slow speed of propagation of events through the time dimension. 

Considering the exponential parameterisation and the form of the kernel, i.e. double-exponential for 

self-excitation and single-exponential for cross-excitation, we can re-write (4) for data {𝑡𝑡𝑖𝑖} with 𝑖𝑖 =

1,2, … ,𝑛𝑛 and �𝑡𝑡𝑖𝑖� with 𝑗𝑗 = 1,2, … ,𝑚𝑚 corresponding to events of type 1 and type 2 respectively 

 

⎩
⎪
⎨

⎪
⎧ 𝜆𝜆1(𝑡𝑡) = 𝜇𝜇1 + ��𝛼𝛼111𝑒𝑒−𝛽𝛽1

11(𝑡𝑡−𝑡𝑡𝑖𝑖) + 𝛼𝛼211𝑒𝑒−𝛽𝛽2
11(𝑡𝑡−𝑡𝑡𝑖𝑖)�

𝑡𝑡𝑖𝑖<𝑡𝑡

+ �𝛼𝛼112𝑒𝑒−𝛽𝛽1
12�𝑡𝑡−𝑡𝑡𝑗𝑗�

𝑡𝑡𝑗𝑗<𝑡𝑡

𝜆𝜆2(𝑡𝑡) = 𝜇𝜇2 + ��𝛼𝛼122𝑒𝑒−𝛽𝛽1
22�𝑡𝑡−𝑡𝑡𝑗𝑗� + 𝛼𝛼222𝑒𝑒−𝛽𝛽2

22�𝑡𝑡−𝑡𝑡𝑗𝑗�� + �𝛼𝛼121𝑒𝑒−𝛽𝛽1
21(𝑡𝑡−𝑡𝑡𝑖𝑖)

𝑡𝑡𝑖𝑖<𝑡𝑡𝑡𝑡𝑗𝑗<𝑡𝑡

 (7) 

The stationarity condition for a bivariate Hawkes process requires that the matrix with entries equalling 

the 𝐿𝐿1-norms �𝜙𝜙𝑖𝑖𝑖𝑖� = ∫ 𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡)d𝑡𝑡∞
0  of the 2 x 2 kernel matrix has a spectral radius greater or equal 1. 

With an exponential parameterization, the norm is given by 

 𝛾𝛾𝑖𝑖𝑖𝑖 = �
𝛼𝛼𝑘𝑘
𝑖𝑖𝑖𝑖

𝛽𝛽𝑘𝑘
𝑖𝑖𝑖𝑖

𝑃𝑃𝑖𝑖𝑗𝑗

𝑘𝑘=1

 (8) 

and the matrix with entries equalling the 𝐿𝐿1-norms takes then the form 

 

⎣
⎢
⎢
⎢
⎡𝛼𝛼1

11

𝛽𝛽111
+
𝛼𝛼211

𝛽𝛽211
𝛼𝛼112

𝛽𝛽112

𝛼𝛼121

𝛽𝛽121
𝛼𝛼122

𝛽𝛽122
+
𝛼𝛼222

𝛽𝛽222⎦
⎥
⎥
⎥
⎤
 (9) 

Considering that the spectral radius of a square matrix �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� is the largest absolute value of its 

eigenvalues and takes the form 1
2

(𝑎𝑎 + 𝑑𝑑 + √𝑎𝑎2 − 2𝑎𝑎𝑑𝑑 + 4𝑏𝑏𝑐𝑐 + 𝑑𝑑2), the stationarity condition for our 

bivariate Hawkes process with exponential kernel becomes 

                                                           
1 As shown by Bacry et al. (2015), most studies assume that the shape of the kernel components 𝜙𝜙𝑖𝑖𝑖𝑖 
has an exponential decay, some studies assume a power-law decay, and others take a non-parametric 
approach. We assume an exponential decay in line with the study of Schneider et al. (2018), Large 
(2007), and Muni Toke (2011a). Alike Muni Toke (2011a), we acknowledge the interest in exploring 
power-law shaped kernels and leave this to future research.  
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⎣
⎢
⎢
⎡𝛼𝛼111
𝛽𝛽1
11+

𝛼𝛼2
11

𝛽𝛽2
11+

𝛼𝛼1
22

𝛽𝛽1
22+

𝛼𝛼2
22

𝛽𝛽2
22

2
+ ��

𝛼𝛼1
11

𝛽𝛽1
11+

𝛼𝛼2
11

𝛽𝛽2
11+

𝛼𝛼1
22

𝛽𝛽1
22+

𝛼𝛼2
22

𝛽𝛽2
22

2
�

2

− �𝛼𝛼1
11

𝛽𝛽1
11 + 𝛼𝛼2

11

𝛽𝛽2
11� ∗ �

𝛼𝛼1
22

𝛽𝛽1
22 + 𝛼𝛼2

22

𝛽𝛽2
22� + 𝛼𝛼1

12

𝛽𝛽1
12 ∗

𝛼𝛼1
21

𝛽𝛽1
21

⎦
⎥
⎥
⎤

<1 (10) 

 

Finally, considering the above specifications, equation (3) becomes 

 

⎩
⎪
⎨

⎪
⎧1 =

𝜇𝜇1

𝜆𝜆1̅
+ 𝛾𝛾11 + 𝛾𝛾12

𝜆𝜆2̅

𝜆𝜆1̅

1 =
𝜇𝜇2

𝜆𝜆2̅
+ 𝛾𝛾22 + 𝛾𝛾21

𝜆𝜆1̅

𝜆𝜆2̅

 (11) 

where 𝜆̅𝜆1 = 𝜇𝜇1∗𝛾𝛾22−𝜇𝜇1−𝜇𝜇2∗𝛾𝛾12

𝛾𝛾11+𝛾𝛾22+𝛾𝛾12∗𝛾𝛾21−𝛾𝛾11∗𝛾𝛾22−1
, 𝜆𝜆2̅ = 𝜇𝜇2∗𝛾𝛾11−𝜇𝜇2−𝜇𝜇1∗𝛾𝛾21

𝛾𝛾11+𝛾𝛾22+𝛾𝛾12∗𝛾𝛾21−𝛾𝛾11∗𝛾𝛾22−1
, 𝛾𝛾11 = 𝛼𝛼1

11

𝛽𝛽1
11 + 𝛼𝛼2

11

𝛽𝛽2
11, 𝛾𝛾22 = 𝛼𝛼1

22

𝛽𝛽1
22 + 𝛼𝛼2

22

𝛽𝛽2
22, 𝛾𝛾12 =

𝛼𝛼1
12

𝛽𝛽1
12, 𝛾𝛾21 = 𝛼𝛼1

21

𝛽𝛽1
21 . The Hawkes parameters to be estimated are two baselines parameters (𝜇𝜇1, 𝜇𝜇2), eight 

self-excitation parameters (𝛼𝛼111,𝛼𝛼122,𝛼𝛼211,𝛼𝛼222,𝛽𝛽111,𝛽𝛽122,𝛽𝛽211,𝛽𝛽222), and four cross-excitation parameters 

(𝛼𝛼112,𝛼𝛼121,𝛽𝛽112,𝛽𝛽121). 

B. Maximum likelihood estimation 

Following Ozaki (1979), Ogata (1978), and Ogata (1981), the log-likelihood for an intensity function 

𝜆𝜆(𝑡𝑡|𝜃𝜃) of a bivariate Hawkes point process model where events are occurring in the interval [0,𝑇𝑇] is 

 ℓ(𝜃𝜃) = ℓ1(𝜃𝜃1) + ℓ2(𝜃𝜃2) (12) 

where 𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2), and 𝜃𝜃𝑖𝑖 = �𝜇𝜇𝑖𝑖 ,𝛼𝛼1𝑖𝑖𝑖𝑖,𝛽𝛽1𝑖𝑖𝑖𝑖 ,𝛼𝛼2𝑖𝑖𝑖𝑖,𝛽𝛽2𝑖𝑖𝑖𝑖 ,𝛼𝛼1
𝑖𝑖𝑖𝑖,𝛽𝛽1

𝑖𝑖𝑖𝑖� is a parameter vector of the intensity for type 𝑖𝑖 

events which varies in the parameter space Θ𝑖𝑖 where 𝑖𝑖 ≠ 𝑗𝑗. Evaluating ℓ(𝜃𝜃) gives 

 
ℓ(𝜃𝜃) = −� 𝜆𝜆1(𝑡𝑡|𝜃𝜃1)

𝑇𝑇

0
𝑑𝑑𝑡𝑡 + � log 𝜆𝜆1(𝑡𝑡|𝜃𝜃1) 𝑑𝑑𝑁𝑁1(𝑡𝑡)

𝑇𝑇

0
− � 𝜆𝜆2(𝑡𝑡|𝜃𝜃2)

𝑇𝑇

0
𝑑𝑑𝑡𝑡

+ � log 𝜆𝜆2(𝑡𝑡|𝜃𝜃2) 𝑑𝑑𝑁𝑁2(𝑡𝑡)
𝑇𝑇

0
 

(13) 

Plugging in the expression (7) into (13) and evaluating, we can write the log-likelihood function in 

extended form 
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ℓ(𝜃𝜃) = −�𝜇𝜇1𝑇𝑇 +
𝛼𝛼111

𝛽𝛽111
��1 − 𝑒𝑒−𝛽𝛽111(𝑇𝑇−𝑡𝑡𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

+
𝛼𝛼211

𝛽𝛽211
��1 − 𝑒𝑒−𝛽𝛽211(𝑇𝑇−𝑡𝑡𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

+
𝛼𝛼112

𝛽𝛽112
��1 − 𝑒𝑒−𝛽𝛽1

12�𝑇𝑇−𝑡𝑡𝑗𝑗��
𝑚𝑚

𝑖𝑖=1

�

+ � log(𝜇𝜇1 + 𝛼𝛼111𝑅𝑅111(𝑖𝑖) + 𝛼𝛼211𝑅𝑅211(𝑖𝑖) + 𝛼𝛼112𝑅𝑅112(𝑖𝑖))
𝑛𝑛

𝑖𝑖=2

− �𝜇𝜇2𝑇𝑇 +
𝛼𝛼122

𝛽𝛽122
��1 − 𝑒𝑒−𝛽𝛽1

22�𝑇𝑇−𝑡𝑡𝑗𝑗��
𝑚𝑚

𝑖𝑖=1

+
𝛼𝛼222

𝛽𝛽222
��1 − 𝑒𝑒−𝛽𝛽2

22�𝑇𝑇−𝑡𝑡𝑗𝑗��
𝑚𝑚

𝑖𝑖=1

+
𝛼𝛼121

𝛽𝛽121
��1 − 𝑒𝑒−𝛽𝛽121(𝑇𝑇−𝑡𝑡𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

�

+ � log(𝜇𝜇2 + 𝛼𝛼122𝑅𝑅122(𝑗𝑗) + 𝛼𝛼222𝑅𝑅222(𝑗𝑗) + 𝛼𝛼121𝑅𝑅121(𝑗𝑗))
𝑚𝑚

𝑖𝑖=2

 

(14) 

where the recursive terms are defined as follows: 𝑅𝑅111(𝑖𝑖) = 𝑒𝑒−𝛽𝛽111(𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖−1)(1 + 𝑅𝑅111(𝑖𝑖 − 1)), 𝑅𝑅211(𝑖𝑖) =
𝑒𝑒−𝛽𝛽211(𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖−1)(1 + 𝑅𝑅211(𝑖𝑖 − 1)), 𝑅𝑅122(𝑗𝑗) = 𝑒𝑒−𝛽𝛽1

22�𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1�(1 + 𝑅𝑅122(𝑗𝑗 − 1)), 𝑅𝑅222(𝑗𝑗) = 𝑒𝑒−𝛽𝛽2
22�𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1�(1 +

𝑅𝑅222(𝑗𝑗 − 1)), 𝑅𝑅112(𝑖𝑖) = 𝑒𝑒−𝛽𝛽112(𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖−1)𝑅𝑅112(𝑖𝑖 − 1) + ∑ 𝑒𝑒−𝛽𝛽1
12�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗′�

�𝑖𝑖′:𝑡𝑡𝑖𝑖−1≤𝑡𝑡𝑗𝑗′<𝑡𝑡𝑖𝑖� , and 𝑅𝑅121(𝑖𝑖) =

𝑒𝑒−𝛽𝛽1
21�𝑡𝑡𝑗𝑗−𝑡𝑡𝑗𝑗−1�𝑅𝑅121(𝑗𝑗 − 1) + ∑ 𝑒𝑒−𝛽𝛽1

21�𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖′�
�𝑖𝑖′:𝑡𝑡𝑗𝑗−1≤𝑡𝑡𝑖𝑖′<𝑡𝑡𝑗𝑗� . 

As the log-likelihood function corresponding to the exponential kernel can be computed recursively, it 

is suitable for maximum likelihood estimation (MLE).  

C. Application 

For the application of the Hawkes process to our case, we assume a proxy of liquidity 𝑥𝑥𝑖𝑖(𝑡𝑡), which is 

updated frequently yet at irregular intervals. In our application, 𝑥𝑥𝑖𝑖(𝑡𝑡) is the relative quoted bid-ask 

spread1 of an individual stock on venue 𝑖𝑖 at time 𝑡𝑡. The counting process 𝑁𝑁𝑖𝑖(𝑡𝑡) of events relies on the 

identification of liquidity shocks following the method of threshold exceedances. Threshold 

exceedances have been employed in the work on liquidity resilience by Panayi et al. (2015), Panayi, et 

al. (2018), and Danielsson et al. (2018), who propose the measure of Threshold Exceedance Duration 

(TED) and Liquidity Resilience Profile. TED is defined as “the length of time between the point at which 

the liquidity metric of choice2 deviates from a threshold liquidity level, 𝜃𝜃, (in the direction of less liquidity), 

and the point at which it returns to at least that level again” (Danielsson et al. 2018). Thus, liquidity 

shocks are defined as thresholds exceedances which are events occurring when the liquidity metric, 

                                                           
1 Our specification here differs from that of Schneider et al. (2018), who use as a proxy for liquidity a 
variable derived from three metrics of liquidity through Principal Component Analysis: bid-ask spread, 
total quoted volume and inverse depth.  
2 This methodology can accommodate further liquidity metrics, e.g. Xetra Liquidity Measure. While 
recognizing that the depth captures further aspects of the LOB updates than the spread, we keep in 
mind that generally 95% of transactions hit the top of the limit order book. Therefore, we chose to 
focus on the top of the book and thus on the best bid-ask spread. A comparison of the performance of 
TED on both spread and XLM is shown in Panayi, Peters, & Kosmidis (2015). 
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𝑥𝑥𝑖𝑖(𝑡𝑡), exceeds the threshold, 𝜃𝜃𝑖𝑖, in the direction of less liquidity1. In our application, 𝜃𝜃𝑖𝑖 corresponds to 

the 95th percentile2 of the hourly empirical distribution of the relative quoted bid-ask spread of the 

respective day for a selected stock and a selected venue 𝑖𝑖, e.g. 9 a.m. 15-01-2019 for Lloyds on Chi-

X. This leads to an hour-stock-venue specific threshold. Figure 4 shows a hypothetical set-up whereby 

the relative quoted spread fluctuates over time, exceeding the 95th percentile at time 2, and again at 

time 7. These two events are recorded as liquidity shocks. The spread returns underneath the 95th 

percentile at time 4, resulting in a TED of 2 milliseconds. The inter-event duration is 5 milliseconds. In 

the context of market resiliency, a high number of shocks may be indicative of a spiralling effect. 

Spiralling occurs when the return to “normal” is only momentary and another deviation from “normal” 

occurs soon after, indicating that the recovery is not meaningful.  

Insert Figure 4 here 

We motivate our choice of the threshold based on the literature as follows. We set the liquidity threshold 

level as the 95th percentile of the empirical distribution in line with the specification of Schneider, Lillo, 

& Pelizzon (2018). This threshold level serves our interest in capturing severe intraday liquidity shocks 

in contrast with any departure from the median or mean. Moreover, Panayi et al. (2015), Panayi, et al. 

(2018), and Danielsson et al. (2018) show how threshold exceedances work for a large range of liquidity 

thresholds, e.g. 50th percentile, 90th percentile, etc., and that the main drivers of TED remain valid 

whatever the threshold. We set the liquidity threshold as venue specific to acknowledge for individual 

venue-specific dynamics such as the fact that Chi-X often has higher threshold levels than LSE (as 

shown in Figure 2). In addition, we conduct a robustness analysis using a common cross-venue 

threshold. Our choice of an hourly time window is grounded in the strong intraday patterns observed 

across trading venues (see Figure 2, Biais et al. (1995), Tannous et al. (2013)). Furthermore, relying 

on hourly thresholds allows us to minimize any potential impact of intraday changes in tick sizes on 

TED3.  

The above measurement specifications are in line with the characteristics of our dataset, e.g. high 

frequency data resolution, diurnal patterns and the focus of our study on severe liquidity events. We 

estimate the Hawkes parameters through MLE on a one-day-window4 separately for each of the 63 

trading days and for each of the 99 stocks over the two venues of interest: LSE as venue 𝑖𝑖, and Chi-X 

as venue 𝑗𝑗. For each stock-day estimation, we check whether the Hawkes process is stationary using 

the stationarity condition derived in equation (10). We discard those estimations for which the process 

is non-stationary. We also discard estimations where the number of events on both LSE and Chi-X 

taken together is below 20 and the estimations where the diagonal of the hessian is negative, indicating 

                                                           
1 Our specification of an event differs from that of Schneider et al. (2018), who define a shock as the 
instance “when there is a large and abrupt increase in illiquidity such that the speed of increase in 
illiquidity is over a threshold 𝜃𝜃𝑖𝑖”.   
2 The relative threshold approach has been also used in the empirical literature by Kempf et al. (2015) 
where the authors use the mean as a threshold. 
3 We observe changes in tick size for 17 stocks out of 99 stocks. 
4 We follow the specifications of Schneider et al. (2018) for the choice of the time window. 
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that the fit did not converge in a (local) minimum. Discarded cases amount to 3.13% of all estimations. 

Finally, using equation (11) we compute for each stock and day the fraction of events attributable to the 

baseline intensity, the fraction of events due to self-excitation on venue 𝑖𝑖, and the fraction of events on 

venue 𝑖𝑖 attributed to cross-excitation from the paired venue 𝑗𝑗.  

 

5 Results 

First, we present and discuss the outcomes describing the liquidity shocks on LSE and Chi-X along with 

the severity and duration of these events. We continue by showing and discussing the results of the 

estimation of parameters in order to uncover whether shocks spiral within a venue and spill over across 

venues with implications for resiliency. All results are reported for both venues and for three market 

capitalisation subsamples.  

A. Liquidity shocks, severity, and duration 

Table 3 shows the summary statistics of the hourly number of shocks per stock-day on LSE and Chi-X, 

including market capitalisation subsamples. In average, more shocks occur per day on Chi-X (259 

shocks) than on LSE (204 shocks). On both LSE and Chi-X, the number of shocks is the highest for the 

high market capitalisation bin (mean of 374 on LSE and 460 on Chi-X) and lowest for the low market 

capitalisation bin (mean of 111 on LSE and 152 on Chi-X). More than half of the shocks occurring in 

FTSE 100 stocks are happening in the high market capitalisation bin. This observation may be 

explained by the fact that generally, stocks with high market capitalisation are among the most actively 

traded and attract more HFTs, which means more quoting activity in large-cap stocks than in small-cap 

stocks. Figure 5 plots the daily number of shocks over the time of the sample for each market 

capitalisation subsample. We document that shocks occur generally more frequently on Chi-X than on 

LSE, independent of market capitalisation. The average number of shocks is higher on Chi-X than on 

LSE for nearly each day of the sample and for each of the market capitalisation subsamples. It is visible 

that the dynamic of the number of shocks follows the dynamic of the quoting activity shown in Figure 3. 

The distribution of the daily number of shocks is right-skewed with a long right tail. The maximum daily 

number of shocks observed on LSE is 1597 shocks (recorded for BP on February 4, 2015) and on Chi-

X 1871 shocks (recorded for BP on February 2, 2015).  

Insert Table 3 and Figure 5 here 

Importantly, as shown in Figure 6, the number of shocks is higher on Chi-X than on LSE consistently 

throughout all the hours of the day. The number of shocks on both venues follows a similar diurnal 

pattern: higher at the opening, lower during lunch hours, higher after 2 p.m. GMT. Thus, the occurrence 

of shocks follows the intraday pattern of market activity. We document that the number of shocks is the 

highest in the afternoon after 2 p.m. GMT on both LSE and Chi-X. This clustering may be linked to the 

US market opening at 9:30 ET for NYSE and NASDAQ, corresponding to 2:30 p.m. GMT during most 
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of the period of our sample (except for the period March 8 to March 28, 2015 corresponding to 1:30 

p.m. GMT due to different US and European daylight savings change date).  

Insert Figure 6 here 

Table 4 shows the summary statistics for the TED in milliseconds. A higher TED value is indicative of 

low market resiliency. The median duration of threshold exceedances on LSE is 116 milliseconds and 

on Chi-X 200 milliseconds confirming an intensive activity in the subsecond environment and below 

human reaction times. This difference in TED levels between LSE and Chi-X is not the result of 

differences in latencies since proximity and host connectivity latency for LSE, as well as for Chi-X, are 

known to be of the order of microseconds. 99% of instances of threshold exceedance occurring on LSE 

and Chi-X within the FTSE 100 stocks last on average less than 61 seconds on LSE and less than 52 

seconds on Chi-X. Thus, measuring effectively market resiliency requires high-resolution data with a 

frequency more granular than 1 minute. The distribution of duration is highly right-skewed on both 

venues: on LSE (Chi-X) the mean TED is 3,920 milliseconds (3,387 milliseconds), and the median TED 

is 116 milliseconds (200 milliseconds). The maximum TED observed on LSE and Chi-X is approximately 

57 minutes. To inspect the frequency distribution closer, we plot the histograms of the log-transformed 

TED distributions and inter-event distributions for LSE and Chi-X in Figure 7. Indeed, the fraction of 

shocks reverting within 100 milliseconds is larger on LSE than on Chi-X. This result provides evidence 

that following a shock LSE often reverts quicker than Chi-X. Considering the distribution of inter-event 

durations for LSE and Chi-X, we note that a small share of these ultra-low duration shocks are only 

momentary and liquidity dries up quickly again. Finally, the fractions of liquidity dry-ups with a duration 

above 100 milliseconds is higher on Chi-X than on LSE.  

Insert Table 4 and Figure 7 here 

Considering differences across stocks, TED increases with decreasing market capitalisation. The 

quickest to revert following an exceedance are stocks in the high market capitalisation bin. The longest 

lasting exceedances are observed in the low market capitalisation bin. This is true for both LSE and 

Chi-X. By comparison, the time to revert following an exceedance for stocks in the low market 

capitalisation bin (median TED of 146 milliseconds on LSE and 367 milliseconds on Chi-X) is more than 

double the time to revert of stocks in the high market capitalisation bin (median of 114 milliseconds on 

LSE and 168 milliseconds on Chi-X). This relation holds also for the other quantiles of the TED 

distribution.  

Furthermore, we define a proxy metric to capture the severity of an exceedance. Our proxy metric is 

defined as the difference in relative terms between the maximum spread observed during the duration 

of the exceedance of the threshold, max(𝑆𝑆), and the threshold itself, 𝜃𝜃, as follows 

 𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 =
max(𝑆𝑆) − 𝜃𝜃

𝜃𝜃
 (15) 

 

Electronic copy available at: https://ssrn.com/abstract=3711976



17 

 

In the context of market resiliency, severer exceedances may affect the time it takes for the market to 

reorganize itself. Table 5 shows the summary statistics of the severity of threshold exceedances for 

each venue and each market capitalisation bin. We document that threshold exceedances occurring in 

the FTSE 100 stocks are severer on Chi-X than on LSE: the median severity on Chi-X is 0.111 and on 

LSE 0.004. The difference in the severity of exceedances between the two venues is even stronger, 

considering that the threshold values on Chi-X are already higher than the threshold values on LSE. 

This difference in severity across venues remains true for all subsamples of stocks based on market 

capitalisation.  

Insert Table 5 here 

For a broad comparison with the study of Degryse et al. (2005) that employs the number of best limit 

updates for the spread and depth to return, Table 6 shows the number of spread updates recorded 

between the time of threshold exceedance and the time when the spread returns below the threshold. 

Degryse et al. (2005) find that following an aggressive order it takes around 20 best limit updates for 

the spread to return to their initial level prior shock. Using a larger definition of shocks than aggressive 

orders, we find that on both venues the spread returns very quickly below threshold: for over 75% of 

observations of the timeseries, it takes one update for the spread to return below the threshold on LSE 

as well as on Chi-X. This remains true across all market capitalisation bins. At the right tail of the 

distribution, we observe an order of magnitude of 4-7 updates for the spread to return below the 

threshold on LSE and Chi-X. We conjecture that the significantly lower number of updates that we find 

in comparison with Degryse et al. (2005) is due primarily to the large technology leap between 1998, 

the year of the sample used by Degryse et al. (2005), and 2015, the year of our sample, reflecting a 

substantial intensification in market activity. 

Insert Table 6 here 

For a comparison with the study of Kempf et al. (2015) that employs the speed of return to normal, we 

discuss the methodological and empirical differences in  Appendix B and show that this metric is not 

fitting the ultra-high-frequency data that we employ. 

Zooming in for one individual stock, Lloyds, Figure 8 plots the occurrence and duration of threshold 

exceedance over time. We observe that short-lasting shocks are often followed by another shock. 

Furthermore, we note that shocks tend to cluster, in particular around 3 pm. The threshold exceedances 

occurring around this time tend to be severer than other instances occurring throughout the rest of the 

day. 

Insert Figure 8 here 

 

B. Estimation results  
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Before proceeding with the estimation of Hawkes parameters, we examine whether it is more 

reasonable to model the arrival intensity through a Hawkes process than through a Poisson process. A 

Poisson process assumes a constant arrival intensity of events. We evaluate the fittingness of the 

observed data to a Poisson process through a quantile by quantile plot, where the quantiles of the 

observed data are plotted against the quantiles of the exponential distribution. If the events 

corresponding to our data were to arrive with a constant intensity, then most of the points in a quantile-

quantile plot would fit a straight line going through the origin. Figure 9 shows the quantile-quantile plot 

of inter-event durations against exponential quantiles for a selected stock and a subset of days of our 

sample. We see in Panel A that the data doesn’t fit a straight line and we observe a significant number 

of data points of short inter-event times,  which is indicative of clustering of events and thus justifies the 

use of Hawkes processes. After estimating the arrival intensity through a Hawkes process, we rescale 

the quantiles of inter-event durations by the estimated intensity and replot these against exponential 

quantiles. As shown in Panel B, we obtain a good fit for the vast majority of observations. The few 

observations with a less good fit are those with extremely high (above the 95th percentile, e.g. 840 

seconds on January 2, 2015) and extremely low inter-event durations (below the 10th percentile, e.g. 

35 milliseconds on January 2, 2015). 

Insert Figure 9 here 

The average daily fractions of events shown in Figure 10 correspond to the estimates for the baseline-

, self-, and cross-excitation. The reported values are averages built across all stocks of the sample for 

each venue, LSE and Chi-X. Throughout the time period of our sample, on average, approximately one-

third of shocks arrive randomly and are neither due to self-excitation nor to cross-excitation, irrespective 

of venue and of the time. More than half of the threshold exceedances occurring on either LSE or Chi-

X are due to self-excitation. This result indicates a substantial spiralling effect.  The mean fraction of 

events due to spiralling is higher on Chi-X (55%) than on LSE (53%). The difference in means is 

significant at 0.1% level. Finally, the mean fraction of events due to spillover from the competing venue 

is higher on LSE (13%) than on Chi-X (11%). The difference in means is significant at 0.1% level. 

Insert Figure 10 here 

In order to examine the cross-stock variation of the estimates, we present in Figure 11, Figure 12, and 

Figure 14 the estimates for each type of excitation, i.e. baseline excitation, self-excitation, and cross-

excitation, across market capitalisation bins. The fraction of events due to baseline-excitation are lowest 

in the high market capitalisation bucket and highest in the low market capitalisation bucket, indicating 

that baseline intensity varies across stocks. We document also variations across time for the differences 

in baseline excitation between the two venues. The fraction of events attributable to baseline intensity 

is at times higher on LSE than Chi-X and at other times higher on Chi-X than on LSE. In absolute 

number of events, Chi-X has in average across all stocks for each day a higher number of events 

attributable to baseline excitation than LSE. The different dynamics observed in fractions versus 

absolute number of events are largely due to the fact that Chi-X overall has a higher number of shocks 

than LSE. 
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Insert Figure 11 here  

Next, we look at the spiralling effect, which in our study is informative about the resiliency of liquidity. 

The fraction of events due to self-excitation is the highest for the high market capitalisation bin and 

lowest for the low market capitalisation bin, indicating that spiralling levels vary across stocks and 

across days. For stocks with highest market capitalisation self-excitation is higher on Chi-X (mean 61%) 

than on LSE (mean 57%) consistently across all days of the sample. This confirms that in average for 

these stocks more spiralling occurs on Chi-X than on LSE. This remains true also when considering the 

absolute number of events due to spiralling in the high market capitalisation subsample of stocks. For 

the medium and low market capitalisation bin, the superiority of the spiralling effect of one venue over 

the other changes across the days of the sample. In terms of absolute number of events, also for these 

stocks, there are more events due to spiralling on Chi-X than on LSE.  

Insert Figure 12 here 

Since a substantial fraction of events is due to self-excitation, we analyse the timescale of decay of self-

excitation. This metric captures the time between an event occurring in a stock on venue 𝑖𝑖 and a next 

event occurring in the same stock on the same venue as the result of self-excitation. The timescale of 

decay for self-excitation is estimated through the parameter 1
𝛽𝛽𝑖𝑖𝑖𝑖� . Figure 13 shows the timescale of 

decay for a fast propagation through time. The time for an event to spiral is of the order of milliseconds: 

the median time for a shock to be followed by another shock in the same stock and on the same venue 

is 25 milliseconds on LSE and 99 milliseconds on Chi-X1. This is in line with our earlier observation that 

a larger fraction of shocks on LSE, in comparison with Chi-X, has ultra-low TEDs and inter-event 

durations (below 100 milliseconds). The timescale of decay for self-excitation varies across the days of 

the sample as well as across stocks.  

Insert Figure 13 here 

Such a large share of spiralling and a short timescale of decay may be due to several possible economic 

mechanisms. A first possible explanation is a positive autocorrelation in order flow due to algorithmic 

order splitting by investors (e.g. execution algorithms of meta-orders such as Time-weighted average 

price (TWAP) and Volume-weighted average price (VWAP)). A second possible rational for spiralling 

are market overreactions due to competing traders' response to a signal. A third explanation for 

spiralling is the delayed reaction to information in order flows due to speed differentials across traders. 

Finally, the hot potato effect associated with multiple traders simultaneously offloading excess positions 

may also trigger such effects. Relative to the existing literature on market resiliency, the spiralling effect 

is in line with the finding of Degryse et al. (2005) who observe that the probability of a particular order 

type to be followed by an order of the same type is higher than the probability of being followed by a 

different order type. This observation confirms the diagonal effect documented earlier by Biais et al. 

                                                           
1 From our discussion with industry participants, the indicative half-life for an informed market move to 
be picked up by another market participant and exploited is 10 milliseconds for fast venues and 100 
milliseconds for slow venues. 
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(1995) that may be the result of order splitting strategies or collective behaviour of investors imitating 

each other’s reaction to a shock event. The stronger spiralling effect observed on Chi-X versus LSE, in 

particular for large stocks, might be indicative of different liquidity provision dynamics on the two venues 

that are the result of different market models. On LSE, market makers ensure the liquidity provision by 

submitting limit orders on both sides of the market, i.e. bid and ask. Market makers incur no trading 

fees. The liquidity maker and the liquidity taker pay the same level of fee per transaction. On Chi-X, 

there are no market makers and the liquidity provision is incentivized by the pricing scheme. The liquidity 

maker receives a rebate whilst the liquidity taker is charged. As such, a liquidity maker on Chi-X has an 

incentive to supply liquidity in frequent small servings, rather than in one single serving, in order to 

cumulate rebates.  

The fraction of events due to cross-excitation are relatively similar across market capitalisation bins. 

Thus, the strong cross-bin differences observed for baseline excitation and self-excitation are not 

discernible for cross-excitation. For nearly all the days of the sample, the average daily fraction of events 

occurring on Chi-X and spilling over to LSE is larger than the fraction of events occurring on LSE and 

spilling over to Chi-X. The absolute number of events due to spillover is in average similar for LSE and 

Chi-X. When zooming into the sample on individual stocks, we do find variations in the direction of 

spillover across days: the spillover effect is at times stronger from Chi-X to LSE and on other days is 

stronger from LSE to Chi-X. 

Insert Figure 14 here 

Having found an economically significant daily fraction of spillovers occurring between LSE and Chi-X, 

we examine the timescale of decay of an event occurring on venue 𝑖𝑖 until the occurrence of a next event 

on venue 𝑗𝑗 through the parameter 1
𝛽𝛽𝑖𝑖𝑖𝑖�  (𝑖𝑖 ≠ 𝑗𝑗). Figure 15 shows that the timescale of decay for 

spillovers is of the order of milliseconds. We further observe that the speed of spillovers varies across 

days of the sample and across stocks. Finally, for most stocks and days, illiquidity spillovers transmit 

quicker from Chi-X to LSE than from LSE to Chi-X. The median time for an event to spill over from Chi-

X to LSE is 23 milliseconds and from LSE to Chi-X – 36 milliseconds. 

Insert Figure 15 here 

The direction of the spillover effect is likely related to the venues' price leadership and the relative 

contribution to price discovery of one venue over another. This mechanism is described in the studies 

by Ibikunle (2018) and Riordan et al. (2012). Ibikunle (2018) finds that Chi-X’s price leadership allows 

it to attract order flow away from LSE. The author further provides empirical evidence that the share of 

informed trading is higher on Chi-X than on LSE throughout the trading day. Finally, the study also 

shows that Chi-X displays more HFT activity than LSE. These mechanisms are consistent with the 

stronger spillover effect that we document from Chi-X to LSE. As the time period of the sample analysed 

in the study by Ibikunle (2018) – second half of 2014 – is close to the time period of our sample – first 

quarter of 2015, we conjecture that the mechanism outlined by this study provides valid supporting 

evidence for the stronger spillover effect that we document from Chi-X to LSE. The observed spillover 
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effect and the ultra-fast time to spill over reflect the activity of market participants operating on both 

venues and having technological capabilities (like colocation) to react rapidly on venue 𝑗𝑗 after observing 

an event (e.g. large trade) on venue 𝑖𝑖.  

 

6 Significance and Robustness  

A. Significance of parameter estimates 

We test for every estimation whether the spiralling effect and the spillover effect are statistically 

significant. For this purpose, we compute from the inverse of the negative hessian the confidence 

intervals for the 𝛼𝛼𝑖𝑖𝑖𝑖 parameters and verify that these parameters are significantly different from zero 

under the normality assumption. The central limit theorem for maximum likelihood estimators of 

stationary point processes supports the normality assumption. Figure 16 shows the daily fraction of 

estimations with significant 𝛼𝛼𝑖𝑖𝑖𝑖 parameters at the 1% and 0.1% level. The fraction of estimations with 

significant spiralling effect and spillover effect are high and vary throughout the time period of our 

sample. The spiralling effect is significant at the 0.1% level for minimum 83% and maximum 97% of 

stocks. The spillover effect is significant at the 0.1% level for minimum 87% and maximum 99% of 

stocks. This result supports the evidence of illiquidity spiralling and illiquidity spillover effects. 

Insert Figure 16 here 

We further test whether LSE and Chi-X estimates are significantly different. All Chi-X spiralling 

estimates are significantly different from the corresponding LSE estimates at the 0.1% level. 

 

B. Alternative specifications for a threshold common to LSE and Chi-X  

In addition, as an alternative specification, we define a cross-venue threshold common to both venues 

as the minimum between the hour-stock-venue threshold for LSE and the hour-stock-venue threshold 

for Chi-X. This alternative definition allows us in particular to check the validity of the spillover effect. As 

expected, when changing the definition of the shock the total number of shocks increases and 

particularly so for Chi-X. The increase in events is observable in all market capitalisation bin and 

particularly so for high market capitalisation shocks for which the quoting activity is most intense. When 

running the maximum likelihood estimation, in comparison with the baseline, there are more estimations 

where the stationarity condition does not hold or the hessian is negative, indicating that the fit did not 

converge in a (local) minimum. In total, we discard 7.2% of estimations (in comparison with 3.1% under 

baseline). Figure 17 shows the fractions of events due to base-, self-, and cross-excitation per venue 

when using a cross-venue common threshold. Overall, the results that we obtain using this alternative 

specification remain qualitatively similar to the results obtained using hour-stock-venue thresholds. The 

fractions of events due to base-excitation and self-excitation do not change when employing a cross-
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venue common threshold. However, we do observe an increase in the fractions of events on LSE that 

are spillovers from Chi-X: the mean of daily fractions of events increases to 18% when using a cross-

venue common threshold in comparison with 13% when using an hour-stock-venue specific threshold. 

The mean of daily fractions of events on Chi-X that are spillovers from LSE (11%) does not change 

when using a common threshold. We conclude that also under an alternative specification a spillover 

from Chi-X to LSE occurs more often than from LSE to Chi-X. 

Insert Figure 17 here 

Next, we examine the spiralling effect by market capitalisation subsamples. Figure 18 plots the spillover-

related fraction of events for each market capitalisation bin when using a common cross-venue 

threshold. We observe a substantial increase in the fractions of events spilling over from Chi-X to LSE 

for all subsamples. Whereas we do observe variations across individual stocks, we do not document 

substantial differences in the spillover effect across market capitalisation subsamples. In terms of 

absolute number of events, relative to the baseline, there are more days in high market capitalisation 

bin when there are more spillovers from Chi-X to LSE than from LSE to Chi-X.  

Insert Figure 18 here 

This robustness check provides supporting evidence for the validity of the spiralling effect and in 

particular of the spillover effect. 

 

7 Conclusion 

Global equity limit order markets have changed fundamentally due to fragmentation of markets and 

technological advances increasing the speed of trading. This phenomenon had a dramatic impact on 

the functioning and stability of financial markets. In this environment, knowing the properties of market 

resiliency becomes even more important for market participants and regulators. This paper studies how 

resilient are modern financial venues of a fragmented equity market when liquidity is scarce. We study 

the incidence, duration in the sense of TED, and severity of liquidity shocks occurring in FTSE 100 

stocks on LSE, a traditional exchange, and Chi-X, an incumbent venue, with millisecond accuracy. We 

further employ multivariate Hawkes processes to identify the meaningfulness of recoveries from severe 

liquidity shocks by detecting spiralling effects within one venue as well as cross-venue spillover effects.  

First, we find that liquidity shocks happen more often on Chi-X than on LSE consistently throughout 

continuous trading time. They are also more severe on Chi-X than on LSE. We observe instances of 

extreme illiquidity on Chi-X where no bid or no ask quote exists. There are no such instances on LSE 

thanks to market makers guaranteeing 2-way price delivery, whereas no market making mechanism 

exists on Chi-X. More than half of the shocks recorded for all stocks occur in large stocks on both Chi-

X and LSE, however, large-cap stocks are also the quickest to revert to normal in comparison with mid- 

and small-cap stocks of the FTSE 100. The median duration of threshold exceedances on LSE is 116 

Electronic copy available at: https://ssrn.com/abstract=3711976



23 

 

milliseconds and 200 milliseconds on Chi-X, which is below known human reaction times and confirms 

an intensive activity in the subsecond environment on both venues. Among our most important findings 

is that 99% of shocks on both Chi-X and LSE last close to one minute. This indicates a substantial 

amount of quoting within the one-minute environment and suggests that to effectively measure market 

resiliency we need high-resolution data with a frequency below one minute.  

Second, using multivariate Hawkes processes, we find that, on average, more than half of liquidity 

shocks occurring on Chi-X and LSE are due to spiralling effects. This result holds for large-, mid-, and 

small-cap stocks of the FTSE 100. The spiralling effect is stronger on Chi-X than on LSE and in 

particular for large stocks. This may be indicative of different liquidity provision dynamics on the two 

venues, suggesting that the liquidity supply on Chi-X, a venue without market making, is thinner than 

on LSE, a venue with market making. Finally, cross-excitation capturing cross-venue spillover effects 

is economically significant. We find that on average across stocks and days of our sample 13% of daily 

shocks on LSE are spillovers from Chi-X, whereas 11% of daily shocks on Chi-X are spillovers from 

LSE. The time to decay of the spiralling effect, as well as the time of decay of the spillover effect, are 

both below 100 milliseconds. The spiralling and spillover estimates are both statistically significant and 

robust to an alternative shock definition. We conjecture that the direction of the spillover effect is related 

to the price leadership of one venue over another when competing to attract order flow as posed by 

Ibikunle (2018). The observed spillover effect and the ultra-fast time to spill over may reflect the activity 

of market participants operating on both venues and having technological capabilities (like colocation) 

to react rapidly on one venue after observing an event (e.g. large trade) on the competing venue. 

Overall, on average across the FTSE 100 stocks and in comparison with LSE, Chi-X has more liquidity 

shocks, longer lasting shocks, severer shocks, a larger spiralling effect of liquidity shocks and a 

significant spillover to LSE.  The implications of different market resiliency on different venues may be 

costly when liquidity is scarce. This may be a source vulnerability, penalizing participants with cross-

venue access engaged in cross-market arbitrage strategies (Menkveld & Yueshen, 2018) as well as 

participants with access to only the less resilient venue. While our results suggest that Chi-X is a less 

resilient venue than LSE for the FTSE 100 stocks, it is yet an unresolved question what specific aspects 

of market microstructure drive the difference in market resiliency between competing fragmented 

venues. We present several possible economic mechanisms that may explain the spiralling and 

spillover effects that we find and we hope that future research will shed further light on this aspect. A 

further interesting question for future research is integrating the severity of shocks in the Hawkes 

process. This question is important since incidence and duration alone may not offer a complete picture 

of market resiliency. 
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Figure 1. Daily trading volume for each market capitalisation subsample. The figures for the trading volume correspond to the number of shares traded from 
January 2 to March 31, 2015 for all stocks of the sample, except for 5 stocks for which we do not find any records. X-axis: day of the sample. Y-axis: volume 
in millions of shares.  

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 2. Relative quoted spread cross-venue. The 50th and 95th percentiles are calculated from the empirical distribution of the relative quoted spread for 
each stock-day-hour and subsequently averaged across days and stocks for each venue.  

Panel A. Daily spread.  
X-axis: day of the sample.  
Y-axis: relative quoted spread in basis points. 

Panel B. Intraday spread.  
X-axis: hour of the day.  
Y-axis: relative quoted spread in basis points. 
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Figure 3. Number of spread updates for each market capitalisation subsample. The figures correspond to the count of changes in relative quoted spread 
throughout continuous trading from 8am to 16:30, excluding LSE auction times from both LSE and Chi-X data. X-axis: day of the sample. Y-axis: number of 
spread updates. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 4. Hypothetical illustration of threshold exceedances as liquidity shocks and Threshold Exceedance Duration. TED is the length of time between the 
point at which the relative quoted spread exceeds the 95th percentile of the empirical distribution of the spread for the respective hour, day, and stock, which 
occurs at millisecond 2, and the point at which the relative quoted spread goes back below the 95th percentile again, which occurs at millisecond 4. Liquidity 
shocks occur at millisecond 2 and millisecond 7. Thus, in this illustrative example, the TED equals 2 milliseconds and the inter-event duration is 5 
milliseconds.   
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Figure 5. Average number of shocks per day of the sample for each market capitalisation subsample. X-axis: day of the sample. Y-axis: number of shocks. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 6. Hourly number of threshold exceedances. Values correspond to averages build across all stocks of the sample per hour. X-axis: hour of the day. Y-
axis: number of shocks. 
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Figure 7. Histogram of durations for LSE and Chi-X. The plotted data corresponds to binned log10-transformed durations for LSE and Chi-X for all stocks and 
days of the sample. X-axis shows duration in milliseconds in log10 base. Y-axis shows the frequency normalized by the total number of shocks. Note: the 
total number of shocks on Chi-X is larger than the total number of shocks on LSE. 

Panel A. Threshold Exceedance Duration Panel B. Inter-event duration 
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Figure 8. Threshold exceedance durations of Lloyds on LSE and Chi-X. The figure plots in both panels on X-axis the hour of the day and on Y-axis the day of 
the sample. Each line corresponds to a threshold exceedance duration and the colour code indicates the severity of the threshold exceedance. 

Panel A. TED of Lloyds on LSE for day-hour threshold Panel B. TED of Lloyds on Chi-X for day-hour threshold 
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Figure 9. Quantile-quantile plot of inter-event duration and exponential quantiles. The figure plots in both panels on X-axis the quantiles of the exponential 
distribution. In panel A on Y-axis the quantiles of the observed inter-event duration are shown whereas in panel B on Y-axis the quantiles of the inter-event 
duration rescaled by the Hawkes-estimated intensity are plotted. The observed inter-event durations are a subsample of data corresponding to the stock 
Lloyds for 5 trading days from January 2 to January 8, 2015 on LSE. Different colours indicate different days.  

Panel A. Non-rescaled inter-event durations. X-axis: theoretical exponential 
quantiles in log10. Y-axis: sample quantiles in milliseconds. 

Panel B. Rescaled inter-event durations. X-axis: theoretical exponential 
quantiles in log 10. Y-axis: intensity rescaled sample quantiles in log10. 
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Figure 10. Estimates of fractions of events due to baseline-, self-, and cross-excitation for each venue. The reported fractions are averages of daily estimates 
across all stocks. X-axis shows the fraction of events in decimals on a scale from 0 to 1. Y-axis shows the time period of the sample: January 2 to March 31, 
2015. 

Panel A. LSE Panel B. Chi-X 
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Figure 11. Estimates of fraction of events and number of events due to base-excitation by market capitalisation bin. The reported figures are averages of 
estimates across all stocks of the respective bin. X-axis in the upper panels shows the fraction of events in decimals on a scale from 0 to 1 and in the lower 
panels the absolute number of events. Y-axis shows the time period of the sample: January 2 to March 31, 2015. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 12. Estimates of fraction of events and number of events due to self-excitation by market capitalisation bin. The reported figures are averages of 
estimates across all stocks of the respective bin. X-axis in the upper panels shows the fraction of events in decimals on a scale from 0 to 1 and in the lower 
panels the absolute number of events. Y-axis shows the time period of the sample: January 2 to March 31, 2015. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 13. Timescale of decay of self-excitation by market capitalisation bin. The reported figures correspond to the daily medians of estimated timescale of 
decay across all stocks of the respective bin. We interpret the figures as the time for a shock to spiral through the time dimension on venue 𝑖𝑖. The lower the 
value, the faster the shock propagates through time. X-axis shows the timescale of decay expressed in milliseconds. Y-axis shows the time period of the 
sample: January 2 to March 31, 2015. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 14. Estimates of fraction of events and number of events due to cross-excitation by market capitalisation bin. The reported figures are averages of 
daily estimates across all stocks of the respective bin. X-axis in the upper panels shows the fraction of events in decimals on a scale from 0 to 1 and in the 
lower panels the absolute number of events. Y-axis shows the time period of the sample: January 2 to March 31, 2015. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 15. Timescale of decay of cross-excitation by market capitalisation bin. The reported figures correspond to daily medians of estimated timescale of 
decay across all stocks of the respective bin. We interpret the figures as the time for a shock spilling over from venue 𝑖𝑖 to venue 𝑗𝑗. The lower the value, the 
faster the shock propagates cross-venue. X-axis shows the timescale of decay expressed in milliseconds. Y-axis shows the time period of the sample: 
January 2 to March 31, 2015. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 16. Significance of spiralling and spillover effects. The figure shows the daily fraction of estimations for which the self-excitation parameters describing 
the spiralling effect 𝛼𝛼𝑖𝑖𝑖𝑖 (𝑖𝑖 = 𝑗𝑗) and the cross-excitation parameters 𝛼𝛼𝑖𝑖𝑖𝑖 (𝑖𝑖 ≠ 𝑗𝑗) describing the spillover effect are significantly different from zero at the 1% and 
0.1% confidence level. X-axis shows the fractions of estimations with significant spiralling effect in Panel A and significant spillover effect in Panel B. Y-axis 
shows the time period of the sample: January 2 to March 31, 2015. 

Panel A. Spiralling effect Panel B. Spillover effect 
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Figure 17. Estimates of fractions of events due to baseline-, self-, and cross-excitation for each venue with alternative definition of a liquidity shock.  The 
reported fractions are averages of daily estimates across all stocks. X-axis shows the fraction of events in decimals on a scale from 0 to 1. Y-axis shows the 
time period of the sample: January 2 to March 31, 2015. 

Panel A. LSE Panel B. Chi-X 
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Figure 18. Estimates of fraction of events and number of events due to cross-excitation by market capitalisation bin with alternative definition of a liquidity 
shock. The reported figures are averages of daily estimates across all stocks of the respective bin. X-axis in the upper panels shows the fraction of events in 
decimals on a scale from 0 to 1 and in the lower panels the absolute number of events. Y-axis shows the time period of the sample: January 2 to March 31, 
2015. 

Panel A. High market capitalisation bin Panel B. Medium market capitalisation bin Panel C. Low market capitalisation bin 
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Figure 19. Measurement approach through TED, speed of return, speed of return from above, and speed of return from below.  
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Figure 20. TED versus data resolution. The figure plots the occurrence and duration of threshold exceedances of the quoted spread are computed on four 
datasets for a single stock (Aviva) for a subsample of one month (January 2015). The threshold is the monthly median. Panel A shows the results computed 
on the dataset with a time increment of 1 millisecond, panel B – for the dataset with a time increment of 1 second, panel C – for the dataset with a time 
increment of 1 minute, panel D – for the dataset with a time increment of 5 minutes. The TED is shown on each subplot with days of the sample on the Y-axis 
and hours of the day on the X-axis. 

Panel A. 1 millisecond Panel B. 1 second 

  
  
Panel C. 1 minute Panel D. 5 minutes 
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Table 1. Composition of terciles with stock names, codes, market capitalisation, and volume. The 
figures for market capitalisation correspond to the number of shares outstanding as per 31.12.2014 
times the closing price on LSE on 31.12.2014. The figures for the volume correspond to the number 
of shares traded from January 2 to March 31, 2015 and are retrieved from Reuters Eikon, except for 5 
stocks for which we do not find any records. We start with 103 stocks forming the FTSE 100 as per 
31.12.2014 and eliminate Standard Life as it experiences a stock split midway through the sample 
period. We further remove Tullow Oil as it drops from the index on March 23, 2015. Finally, TUI had 
two listings and we include only the main listing on the LSE. The remaining 99 stocks are ranked 
based on the market capitalisation as of 31.12.2014 forming three terciles corresponding to high, mid, 
and low market capitalisation respectively.  

 

Tercile Name LSE RIC Market cap 
(mln £) 

Volume LSE 
(mln) 

Volume Chi-X 
(mln) 

T1 Old Mutual OML.L                    
170,257.80  

                       
519.24  

                          
105.52  

T1 HSBC Holdings HSBA.L                    
116,950.40  

                   
1,782.18  

                          
544.29  

T1 Royal Dutch Shell 'A' RDSa.L                    
108,075.90  

                       
436.65  

                          
115.76  

T1 BP BP.L                      
74,945.25  

                   
2,336.66  

                          
725.92  

T1 GlaxoSmithKline GSK.L                      
66,925.06  

                       
557.45  

                          
134.41  

T1 British American 
Tobacco 

BATS.L                      
65,241.64  

                       
181.70  

                            
61.77  

T1 Vodafone Group VOD.L                      
59,023.43  

                   
3,845.69  

                       
1,105.62  

T1 AstraZeneca AZN.L                      
57,542.46  

                       
168.27  

                            
67.90  

T1 Royal Dutch Shell 'B' RDSb.L                      
54,494.38  

                       
309.92  

                            
75.97  

T1 SABMiller SAB.L                      
54,239.39  

                               
-    

                                   
-    

T1 Lloyds Banking 
Group 

LLOY.L                      
54,115.53  

                   
8,472.50  

                       
2,954.55  

T1 Diageo DGE.L                      
46,465.50  

                       
292.33  

                            
90.55  

T1 Rio Tinto RIO.L                      
42,424.35  

                       
319.61  

                            
94.67  

T1 Barclays BARC.L                      
40,173.08  

                   
2,517.74  

                          
742.92  

T1 Glencore GLEN.L                      
39,250.34  

                   
2,434.23  

                          
812.73  

T1 Prudential Financial PRU.L                      
38,311.25  

                       
258.95  

                            
83.88  

T1 Reckitt Benckiser RB.L                      
37,437.84  

                         
93.99  

                            
19.13  

T1 National Grid NG.L                      
34,500.07  

                       
556.56  

                          
136.98  

T1 Unilever ULVR.L                      
33,729.30  

                       
188.09  

                            
37.77  

T1 BT Group BT.L                      
32,685.87  

                   
1,169.61  

                          
358.72  
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Tercile Name LSE RIC Market cap 
(mln £) 

Volume LSE 
(mln) 

Volume Chi-X 
(mln) 

T1 BG Group BG.L                      
29,531.76  

                               
-    

                                   
-    

T1 BHP Group BLT.L                      
29,326.09  

                       
576.39  

                          
153.01  

T1 Imperial Brands IMT.L                      
27,143.08  

                               
-    

                                   
-    

T1 Shire SHP.L                      
26,746.41  

                       
101.98  

                            
31.94  

T1 Royal Bank of 
Scotland 

RBS.L                      
25,107.09  

                       
728.82  

                          
209.13  

T1 Associated British 
Foods 

ABF.L                      
24,961.47  

                         
48.20  

                            
19.04  

T1 Standard Chartered STAN.L                      
23,809.90  

                       
652.17  

                          
204.08  

T1 WPP WPP.L                      
17,730.05  

                       
242.05  

                            
58.79  

T1 Compass Group CPG.L                      
17,288.88  

                       
240.59  

                            
52.97  

T1 Anglo American AAL.L                      
16,767.03  

                       
396.60  

                            
94.38  

T1 Rolls-Royce 
Holdings 

RR.L                      
16,377.89  

                       
438.01  

                            
96.48  

T1 SSE SSE.L                      
16,019.26  

                       
196.82  

                            
44.88  

T1 Sky Ltd SKYB.L                      
15,453.96  

                       
287.00  

                            
66.57  

T1 Tesco TSCO.L                      
15,352.46  

                   
1,798.13  

                          
551.97  

T2 BAE Systems BAES.L                      
14,882.14  

                       
478.50  

                          
117.31  

T2 Legal & General 
Group 

LGEN.L                      
14,771.18  

                       
720.27  

                          
198.63  

T2 Aviva AV.L                      
14,295.02  

                       
600.38  

                          
139.20  

T2 ARM Holdings ARM.L                      
13,972.85  

                               
-    

                                   
-    

T2 Centrica CNA.L                      
13,862.76  

                   
1,245.52  

                          
356.71  

T2 RELX REL.L                      
12,492.34  

                       
254.23  

                            
54.03  

T2 CRH CRH.L                      
11,437.19  

                       
218.67  

                            
36.50  

T2 Experian EXPN.L                      
10,772.70  

                       
137.01  

                            
35.82  

T2 Smith & Nephew SN.L                      
10,620.29  

                       
189.06  

                            
31.76  

T2 Next NXT.L                      
10,425.97  

                         
25.84  

                              
7.74  

T2 International Airlines 
Group 

ICAG.L                        
9,910.96  

                       
539.49  

                          
204.27  

T2 Pearson PSON.L                        
9,756.60  

                       
176.53  

                            
37.56  

T2 Wolseley WOS.L                        
9,585.41  

                         
45.52  

                            
17.72  
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Tercile Name LSE RIC Market cap 
(mln £) 

Volume LSE 
(mln) 

Volume Chi-X 
(mln) 

T2 Land Securities 
Group 

LAND.L                        
9,146.38  

                       
133.71  

                            
25.63  

T2 ITV ITV.L                        
8,662.68  

                       
814.62  

                          
278.94  

T2 Whitbread WTB.L                        
8,656.42  

                         
28.07  

                              
9.05  

T2 Kingfisher KGF.L                        
8,018.21  

                       
499.96  

                          
173.58  

T2 British Land 
Company 

BLND.L                        
7,918.49  

                       
196.97  

                            
35.22  

T2 Marks & Spencer 
Group 

MKS.L                        
7,829.34  

                       
338.97  

                          
106.10  

T2 London Stock 
Exchange 

LSE.L                        
7,705.90  

                         
52.68  

                            
15.53  

T2 InterContinental 
Hotels Group 

IHG.L                        
7,679.26  

                         
43.29  

                            
14.38  

T2 ANTOFAGASTA ANTO.L                        
7,418.57  

                       
208.85  

                            
66.24  

T2 TUI AG TUIT.L                        
7,381.32  

                         
86.03  

                            
15.73  

T2 Burberry Group BRBY.L                        
7,273.07  

                         
78.46  

                            
26.43  

T2 Capita Group CPI.L                        
7,154.19  

                       
180.70  

                            
40.47  

T2 Johnson Matthey JMAT.L                        
6,961.05  

                         
34.49  

                            
11.41  

T2 easyJet EZJ.L                        
6,637.35  

                       
116.53  

                            
30.96  

T2 United Utilities Group UU.L                        
6,246.10  

                       
131.82  

                            
34.37  

T2 Schroders SDR.L                        
6,070.96  

                         
25.37  

                              
8.31  

T2 Bunzl BNZL.L                        
5,904.23  

                         
42.47  

                            
11.02  

T2 Ashtead Group plc AHT.L                        
5,798.52  

                       
160.95  

                            
41.62  

T2 Aberdeen Asset 
Management 

ADN.L                        
5,755.23  

                       
271.07  

                            
95.78  

T3 GKN GKN.L                        
5,650.99  

                       
329.82  

                            
99.10  

T3 Fresnillo FRES.L                        
5,644.60  

                       
104.57  

                            
33.25  

T3 Carnival CCL.L                        
5,372.49  

                         
59.67  

                            
21.50  

T3 Dixons Carphone DC.L                        
5,322.76  

                       
228.08  

                            
99.58  

T3 Babcock BAB.L                        
5,313.24  

                         
95.83  

                            
23.63  

T3 Friends Life Group 
Ltd 

FLG.L                        
5,159.95  

                               
-    

                                   
-    

T3 Sage Group SGE.L                        
5,014.58  

                       
194.49  

                            
73.94  

T3 Persimmon PSN.L                        
4,835.94  

                         
82.40  

                            
23.04  
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Tercile Name LSE RIC Market cap 
(mln £) 

Volume LSE 
(mln) 

Volume Chi-X 
(mln) 

T3 Severn Trent SVT.L                        
4,806.98  

                         
48.31  

                            
13.46  

T3 Hargreaves 
Lansdown 

HRGV.L                        
4,800.10  

                         
70.01  

                            
16.67  

T3 Hammerson HMSO.L                        
4,744.98  

                       
171.38  

                            
28.32  

T3 Sainsbury (J) SBRY.L                        
4,722.09  

                       
582.35  

                          
176.87  

T3 Barrat Developments BDEV.L                        
4,672.05  

                       
240.68  

                            
79.27  

T3 Travis Perkins TPK.L                        
4,618.41  

                         
43.24  

                            
11.89  

T3 Taylor Wimpey TW.L                        
4,483.27  

                   
1,038.57  

                          
262.38  

T3 Coca-Cola HBC CCH.L                        
4,474.51  

                         
44.74  

                              
9.77  

T3 RSA Insurance 
Group 

RSA.L                        
4,417.37  

                       
256.47  

                            
84.44  

T3 INTU Properties INTUP.L                        
4,398.24  

                       
175.59  

                            
53.18  

T3 3I Group III.L                        
4,377.00  

                       
101.06  

                            
47.84  

T3 Direct Line Insurance 
Group 

DLGD.L                        
4,369.50  

                       
284.99  

                            
58.05  

T3 Smiths Group SMIN.L                        
4,334.40  

                         
78.01  

                            
19.46  

T3 G4S GFS.L                        
4,311.88  

                       
233.06  

                            
82.57  

T3 Wm Morrison 
Supermarkets 

MRW.L                        
4,301.21  

                       
856.25  

                          
232.40  

T3 Royal Mail RMG.L                        
4,299.00  

                       
183.77  

                            
48.65  

T3 Frasers Group SPD.L                        
4,255.08  

                       
101.53  

                            
24.30  

T3 St. James's Place SJP.L                        
4,230.89  

                         
88.12  

                            
23.63  

T3 Meggitt MGGT.L                        
4,164.09  

                       
132.90  

                            
34.68  

T3 Randgold Resources RRS.L                        
4,058.59  

                         
39.34  

                            
15.47  

T3 Weir Group WEIR.L                        
3,949.68  

                         
75.77  

                            
29.80  

T3 Mondi MNDI.L                        
3,856.03  

                         
84.03  

                            
21.24  

T3 Aggreko AGGK.L                        
3,852.02  

                         
59.00  

                            
14.98  

T3 Intertek Group ITRK.L                        
3,766.18  

                         
42.57  

                            
15.51  

T3 Admiral Group ADML.L                        
3,684.28  

                         
54.55  

                            
16.46  
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Table 2. Instances with infinite spread on Chi-X for each trading hour. The column “Number of stocks” 
reports the count of stocks showing instances with no bid or no ask quote in the respective hour. The 
column “Aggregated duration in minutes” reports the cumulative duration of time in minutes with no 
bid or no ask quote summed over all stocks that are concerned. 

Hour Number of stocks 
Aggregated duration in 

minutes 

8 99 919 

9 6 44 

10 11 12 

11 3 1 

12 9 11 

13 12 13 

14 8 21 

15 5 7 

16 99  13  
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Table 3. Summary statistics of number of shocks per day for a stock. A shock is defined as the event 
when the relative quoted spread exceeds the 95th percentile of the hourly empirical distribution of the 
spread per stock-day. The reported values are averages build across days and stocks of the 
respective bin.  

time series   mean   std           0.25           0.50           0.75           0.99  

 LSE  204 210 69 133 243 995 

 LSE - High market cap  374 265 166 299 539 1136 

 LSE - Medium market cap  119 94 58 95 155 467 

 LSE - Low market cap  111 78 50 90 152 361 

 Chi-X  259 253 95 164 322 1196 

 Chi-X - High market cap  460 320 199 391 647 1359 

 Chi-X - Medium market cap  156 123 73 122 204 596 

 Chi-X - Low market cap  152 95 83 129 199 461 
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Table 4. Summary statistics of threshold exceedance duration. The reported values are averages of 
TED build across the hourly distribution of TED for each day and stock of the respective bin. Values 
are in milliseconds. 

time series mean std          0.25           0.50           0.75           0.99  

LSE 3,920 14,041 3 116 2,087 60,362 

LSE - High market cap 2,551 7,825 3 114 1,609 36,239 

LSE - Medium market cap 5,865 20,112 2 102 3,309 84,435 

LSE - Low market cap 6,663 20,884 3 146 3,951 93,665 

Chi-X 3,387 12,004 10 200 1,911 51,706 

Chi-X - High market cap 2,159 6,839 9 168 1,360 30,624 

Chi-X - Medium market cap 5,014 17,171 7 225 2,887 72,216 

Chi-X - Low market cap 5,584 16,869 19 367 3,511 76,657 
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Table 5. Summary statistics of severity of exceedances. Instances of infinite spread are excluded 
from the calculation of the figures for severity. The severity of a shock is defined as the difference in 
relative terms between the maximum spread observed during the duration of the exceedance of the 
threshold and the threshold itself. The reported values are averages build across individual 
exceedances across days and stocks of the respective bin. Occurrences with infinite spread are 
excluded. 

time series mean std          0.25           0.50           0.75           0.99  

LSE 0.197 0.275 0.001 0.004 0.333 0.999 

LSE - High market cap 0.183 0.262 0.001 0.004 0.331 0.998 

LSE - Medium market cap 0.238 0.330 0.001 0.003 0.494 0.999 

LSE - Low market cap 0.201 0.252 0.001 0.010 0.335 0.997 

Chi-X 0.216 0.548 0.001 0.111 0.334 0.999 

Chi-X - High market cap 0.197 0.368 0.001 0.006 0.332 0.998 

Chi-X - Medium market cap 0.247 0.422 0.001 0.163 0.495 0.999 

Chi-X - Low market cap 0.245 0.966 0.001 0.198 0.400 1.001 
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Table 6. Summary statistics of number of times the relative quoted spread changed from the time of 
exceeding the threshold until the time when returning below the threshold. The reported values are 
averages build for each day and stock of the respective bin.  

time series mean std          0.25           0.50           0.75           0.99  

LSE 1.23 1.31 1 1 1 6 

LSE - High market cap 1.25 1.42 1 1 1 6 

LSE - Medium market cap 1.14 0.81 1 1 1 4 

LSE - Low market cap 1.26 1.36 1 1 1 6 

Chi-X 1.32 1.42 1 1 1 7 

Chi-X - High market cap 1.33 1.52 1 1 1 7 

Chi-X - Medium market cap 1.23 1.09 1 1 1 6 

Chi-X - Low market cap 1.37 1.39 1 1 1 7 
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Appendix A. List of sample stocks and composition of subsamples 
Insert Table 1 here 
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Appendix B. Additional analysis  

A. TED and speed of return 

For comparability with existing studies employing the speed of return as a measure of market resiliency, 

we show how the TED measure proposed by Danielsson et al. (2018) and the speed of return proposed 

by Kempf et al. (2015) perform on our dataset using the example of one stock.  

In the following we provide the definition for the two measures of market resiliency: threshold 

exceedance duration, i.e. TED and speed of reversion. The figure below shows by the means of a 

hypothetical stock how the two metrics, TED and speed of return, relate to each other. 

Insert Figure 19 here 

Kempf et al. (2015) propose measuring resiliency through a measure of speed. This measure has as 

an underlying assumption that the spread is a stochastic variable 𝑆𝑆 for which the arithmetic Ornstein-

Uhlenbeck (OU) takes the continuous form 

 𝑑𝑑𝑆𝑆 = 𝑘𝑘(𝑆𝑆̅ − 𝑆𝑆)𝑑𝑑𝑡𝑡 +  𝜎𝜎𝑑𝑑𝜎𝜎 (16) 

 

The corresponding discrete form of the OU process is obtained using the first order Euler’s 

approximation and is given by 

 ∆𝑆𝑆 = 𝑘𝑘(𝑆𝑆̅ − 𝑆𝑆)∆𝑡𝑡 + 𝜎𝜎∆𝜎𝜎 (17) 

The above can be rewritten as an autoregressive process of order one, i.e. AR(1) as follows 

 ∆𝑆𝑆𝑡𝑡 = 𝛼𝛼 − 𝑘𝑘𝑆𝑆𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (18) 

where ∆𝑆𝑆𝑡𝑡 corresponds to the change in the stochastic variable within a time increment 𝑡𝑡, 𝑘𝑘 is the speed 

of reversion to the long-run mean, 𝛼𝛼 is the intercept and 𝜀𝜀𝑡𝑡 is the error term.  

Kempf et al. (2015) propose the following extended specification with autoregressive elements sor the 

measurement of resiliency 

 ∆𝑆𝑆𝑡𝑡 = 𝛼𝛼 − 𝑘𝑘𝑆𝑆𝑡𝑡−1 + �𝛾𝛾𝑡𝑡−𝜏𝜏∆𝑆𝑆𝑡𝑡−𝜏𝜏 + 𝜀𝜀𝑡𝑡

𝑁𝑁

𝜏𝜏=1

 (19) 

 where 𝑆𝑆𝑡𝑡 is the relative quoted spread with ∆𝑆𝑆𝑡𝑡 as the change within a time increment t, 𝑆𝑆𝑡𝑡−1 as the 

relative quoted spread during the last period, ∆𝑆𝑆𝑡𝑡−𝜏𝜏 as the autoregressive component describing the 

change within 𝜏𝜏 time increments 𝑡𝑡, i.e. lags with 𝛾𝛾𝑡𝑡−𝜏𝜏 the corresponding coefficient, 𝑘𝑘 is the speed of 

reversion, 𝛼𝛼 is the intercept, and 𝜀𝜀𝑡𝑡 is the error term.  

In order to make this metric comparable to the TED metric proposed by Danielsson et al. (2018), we 

adopt the following specification: 
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∆𝑆𝑆𝑡𝑡 = 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑆𝑆𝑡𝑡−1>𝜃𝜃 + 𝛼𝛼𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏�1 − 𝑑𝑑𝑆𝑆𝑡𝑡−1>𝜃𝜃� − 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝑡𝑡−1𝑑𝑑𝑆𝑆𝑡𝑡−1>𝜃𝜃

− 𝑘𝑘𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑆𝑆𝑡𝑡−1�1 − 𝑑𝑑𝑆𝑆𝑡𝑡−1>𝜃𝜃� + �𝛾𝛾𝑡𝑡−𝜏𝜏∆𝑆𝑆𝑡𝑡−𝜏𝜏 + 𝜀𝜀𝑡𝑡

5

𝜏𝜏=1

 
(20) 

where 𝑑𝑑𝑆𝑆𝑡𝑡−1>𝜃𝜃 is a dummy variable taking the value 1 if the relative quoted spread at time t-1 was above 

a threshold 𝜃𝜃, which may be the median or the 95th percentile of the empirical distribution of the relative 

quoted spread, and value 0 otherwise, 𝑘𝑘𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏 is the speed of reversion from below, 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the speed 

of reversion from above, 𝛼𝛼𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏 and 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are the corresponding intercepts, and the remaining terms 

are as introduced above. This specification is equivalent to Kempf et al. (2015) specification employed 

by the authors for studying consumption and replenishment resiliency. 

Kempf et al. (2015) estimate the speed of return 𝑘𝑘 by means of ordinary least squares (OLS). When 

attempting to run this estimation, we note that on millisecond level data, the timeseries of spread change 

∆𝑆𝑆𝑡𝑡 show a share of non-zero observations below 1%. The spread change being the endogenous 

variable, the sparsity in this timeseries is not compatible with the mean-reverting Ohrnstein-Uhlenbeck 

process underlying this measure. Running an OLS estimation on timeseries showing this level of 

sparsity is not adequate and leads to spurious results.  

In conclusion, we acknowledge the parametric measurement approach of speed of reversion proposed 

by Kempf et al. (2015), yet find after careful analysis that it is less compatible with the nature of our 

data. Thus, whilst speed of reversion may perform well on datasets with a time increment of five minutes 

or one minute, we conclude that TED is more robust and more suitable for datasets with high frequency 

time resolutions. 

B. Market resiliency: duration at different time resolutions 

For comparison with other studies on market resiliency using lower frequency data, we examine the 

effect of using lower frequency data on measuring TED. For this purpose, we generate four datasets of 

the relative quoted spread with the following time increment: 1 millisecond, 1 second, 1 minute and 5 

minutes. The choice of these time increments is made for enabling comparison with existing studies on 

market resiliency, where datasets of 1 second, 1 minute, and 5 minutes have been used so far. We 

then calculate the TED for each dataset and plot for visual analysis. 

Figure 20 shows the TED for each of the four datasets for a single stock, capturing along duration also 

the occurrence of exceedances. The subplots of the TED at 1-millisecond time increment and 1-second 

time increment are visually alike. The subplots of the TED at 1 millisecond and at 1 minute show a 

visible difference: when measured on data with 1-minute time increment, exceedances occur 

significantly less often and where they do occur, the duration of exceedances is altered. The comparison 

of the subplots of TED at 1-millisecond and TED at 5-minutes shows that the alteration of the number 

of exceedances and of the duration of exceedances becomes substantially more important as the time 

increment increases. As such, we document considerable activity at millisecond level and reason that 

an analysis of market resiliency on venues and stocks with a substantial presence of speed traders 

requires high data resolution. 
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 Insert Figure 20 here 
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