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Relapsing fever (RF) is claimed a neglected arthropod-borne disease caused by a

number of diverse human pathogenic Borrelia (B.) species. These RF borreliae are

separated into the groups of tick-transmitted species including B. duttonii, B. hermsii,

B. parkeri, B. turicatae, B. hispanica, B. persica, B. caucasica, and B. myiamotoi,

and the louse-borne Borrelia species B. recurrentis. As typical blood-borne pathogens

achieving high cell concentrations in human blood, RF borreliae (RFB) must outwit

innate immunity, in particular complement as the first line of defense. One prominent

strategy developed by RFB to evade innate immunity involves inactivation of complement

by recruiting distinct complement regulatory proteins, e.g., C1 esterase inhibitor

(C1-INH), C4b-binding protein (C4BP), factor H (FH), FH-like protein-1 (FHL-1), and

factor H-related proteins FHR-1 and FHR-2, or binding of individual complement

components and plasminogen, respectively. A number of multi-functional, complement

and plasminogen-binding molecules from distinct Borrelia species have previously been

identified and characterized, exhibiting considerable heterogeneity in their sequences,

structures, gene localization, and their capacity to bind host-derived proteins. In addition,

RFB possess a unique system of antigenic variation, allowing them to change the

composition of surface-exposed variable major proteins, thus evading the acquired

immune response of the human host. This review focuses on the current knowledge of

the immune evasion strategies by RFB and highlights the role of complement-interfering

and infection-associated molecules for the pathogenesis of RFB.

Keywords: spirochetes, Borrelia, relapsing fever, immune evasion, complement, antigenic variation, innate

immunity, adaptive immunity

INTRODUCTION

Relapsing fever (RF), an ectoparasite-borne bacterial disease caused by Borrelia species is
characterized by recurrent episodes of high fever and spirochetemia in the blood of infected
individuals (1–4). RF is a neglected and emerging bacterial disease in the Americas and certain
African countries, especially in regions with a high incidence of infected argasid and ixodid ticks
of the genus Ornithodoros and Ixodes, respectively, or the human body louse Pediculus humanus
(2, 4). While soft tick-borne RF (STBRF) is mainly found along the West coast of North America
and endemic in the temperate and tropical African territories, the occurrence of hard tick-borne
RF (HTBRF) directly correlates with the distribution of ixodid ticks in the northern hemisphere
(5, 6). In contrast, LBRF is geographically restricted to countries along the Horn of Africa, in
particular Eritrea, Ethiopia, and South-Sudan (4). Despite its focal distribution, LBRF has the
potential to dramatically re-emerge when sociodemographic factors such as war, famine, political
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turmoil, and precarious hygiene conditions in overcrowding
camps change (7–11). Clinical signs of STBRF and LBRF
appear abruptly between 2 and 18 days after infection with
high fever, often accompanied by rigors, headache, chills,
nausea, vomiting, myalgia, and diarrhea (2, 4). More severe
clinical manifestations affect different organs such the liver
(hepatosplenomegaly, liver dysfunction, hepatic failure),
spleen (rupture), gastrointestinal tract (bleeding), lung (acute
pulmonary edema, acute respiratory distress syndrome),
heart (myocardial failure), and the central nervous system
(meningism, facial paresis, vertigo, rigidity) (4). Concerning
HTBRF, fever, headache, chills, arthralgia, fatigue, and malaise
have been reported as the most common symptoms and severe
neurological manifestations such as meningoencephalitis occur
predominantly in immunocompromised patients (6, 12, 13). Like
Lyme disease spirochetes, RFB exploit diverse immune evasion
strategies to avoid recognition, and circumvent the innate
and adaptive immune responses. Herein, we summarize the
current knowledge of potential pathogenic factors identified in
diverse RFB that counteract complement and humoral immune
responses of the human host.

THE COMPLEMENT SYSTEM AT A
GLANCE

Complement operates as a first line of defense against intruding
pathogens and consists of numerous fluid-phase and membrane-
bound regulators, inhibitors and inactive precursor molecules,
most of which act in concert upon activation to eliminate
microbes (14). Just like a domino effect, the complement cascade
can independently be activated through three distinct pathways:
the alternative (AP), the classical (CP), and the lectin pathway
(LP) (15, 16).

The AP is spontaneously activated by a so-called tick-over-
process leading to the covalent attachment of activated C3b
molecules to microbial surfaces and thus allowing a continuous
monitoring for invasive human pathogens (opsonization) (17,
18). Activation of the CP is triggered by binding of C1q to
surface-bound IgM or IgG clusters and the LP utilizes mannose-
binding lectin (MBL), collectins, and ficolins to recognize
carbohydrate moieties on bacterial cell surfaces (15, 16, 19–21).
Upon activation, either the C3 convertases C3bBb (AP) or C4b2a
(CP and LP) are formed, leading to a massive generation of
activated C3b that covalently binds to foreign surfaces. Further
downstream activation is driven by binding of C3b to the C3
convertases, resulting in the formation of the C5 convertases

Abbreviations: BpcA, B. parkeri complement regulator-binding protein A;

BtcA, B. turicatae plasminogen-binding protein; CbiA, complement binding

and inhibitory protein A; CihC, complement inhibition via C4BP; C1-INH,

C1 esterase inhibitor; C4BP, C4b binding protein; FhbA, FH-binding protein

A; FH, Factor H; FHL-1, FH-like protein-1; FHR, FH-related protein; HcpA,

human complement regulator and plasminogen-binding protein A; HTBRF,

hard tick-borne relapsing fever; GAG, glycosaminoglycans; LBRF, louse-borne

relapsing fever; MAC, membrane attack complex; RCA, regulators of complement

activation; RF, relapsing fever; RFB, relapsing fever borreliae; SCR, short consensus

repeats; STBRF, soft tick-borne relapsing fever; Vlp, variable large protein; Vmp,

variable major protein; Vsp, variable small protein.

C3bBb3b or C4b2a3b. By engendering the C5 convertase, C5
is cleaved to C5a and C5b, which covalently binds to the
target surface. This critical activation step initializes the terminal
sequence (TS) and the assembly of the pore-forming membrane
attack complex C5b-9 orMAC. TheMAC, a ring-like structure, is
composed of numerous C9 molecules, all of which integrate into
the microbial membrane and ultimately cause lysis (22–24).

To protect self surfaces from excessive activation, complement
is tightly controlled by a variety of soluble and cell-bound
complement regulatory proteins (25). Concerning soluble
regulators, the AP is regulated by factor H (FH) and the factor
H-like protein 1 (FHL-1) (generated by alternative splicing of
the cfh gene). Both regulators inactivate C3b to iC3b by acting
as co-factors for factor I, thereby accelerating the decay of the
membrane-bound C3 convertase. In contrast to FH and FHL-
1, the factor H-related protein 1 (FHR-1) is supposed to be a
regulator of the TS and appears to block the cleavage activity
of the C5 convertases by inhibiting the generation of C5a (26).
The role of the additional four FHR proteins in complement
regulation is as yet unclear. Recent data provide some evidence
that these proteinsmay enhance complement activation and, thus
possess an opposite regulatory function compared to FH and
FHL-1 (27). Initial activation of the CP and LP is controlled
by C1 esterase inhibitor (C1-INH) by inactivation of the
serine proteases C1r, C1s, MASP-1, and MASP-2, respectively.
In addition, the downstream activation steps of the CP are
terminated by binding of the C4b-binding protein (C4BP) to
C4b. This soluble regulator acts as cofactor for the Factor I-
mediated degradation of C4b. The TS is blocked by preventing
the integration of the soluble preforming sC5b-9 complexes into
the target membrane via vitronectin and clusterin (16).

RECRUITMENT OF COMPLEMENT
REGULATORY PROTEINS, AN EFFICIENT
STRATEGY OF RFB FOR ESCAPING
COMPLEMENT-MEDIATED KILLING

Immediately upon entry into the mammalian host, RFB face
complement as the first line of defense. However, the role
of complement in spirochete clearance has controversially
been discussed. It has been shown that IgM is able to
efficiently kill B. hermsii in the course of bacteremia in infected
C3- and C5-deficient mice by a complement-independent
mechanism, while B cell-deficient mice showed very high loads
of spirochetes in their blood (28, 29). These findings led to
the assumption that innate immunity plays a subordinate role
in the pathobiology of these pathogens. On the other hand,
RFB produce complement-binding proteins, most of which
operate on different activation levels to protect spirochetes
from complement-mediated bacteriolysis (30–37). This includes
proteins of B. hermsii, B. parkeri, B. duttonii, B. miyamotoi, and
B. recurrentis, respectively. An overview of the characteristics
of these suspected, infection-relevant surface proteins are
given below.
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TABLE 1 | Characteristics of complement-binding proteins of relapsing fever borreliae.

Complement

binding

protein

Genospecies Strain Gene

localization

Gene locus Gene

name/

ORF

Synonyms/

other

designations

Size

(kDa)

Interacting

complement

regulator

Binding

regions of

complement

regulator

Binding of

complement

component(s)

Interacting

with

specific

host-

derived

proteins

Complement

resistance

(GOF)

Complement

inhibition

References

STBRF

BhCRASP-1 B. hermsii HS1 lp174 BHA008 cspH FhbA1 21.5 FH

FHR-1

SCR20 n.d. Plasminogen Yes n.d. (33, 36)

FhbA B. hermsii YOR

HS1

lp174 n.d.a fhbA,

bha008

FHBP19

FhbA2

24 FH

FHL-1

n.d. n.d. n.d. n.d. n.d. (30, 31, 41)

FHBP28 B. parkeri RML n.d. n.d. n.d. none 28 FH n.d. n.d. n.d. n.d. n.d. (30, 42)

BpcA B. parkeri RML lp150 n.d. n.d. none 17 FH

FHR-1

SCRs 19-20

SCRs 3-5

n.d. Plasminogen n.d. n.d. (36)

BtcA B. turicatae 91E135 lp159 A7978_

04350

n.d. none 20.5 none n.d. n.d. Plasminogen n.d. n.d. (36)

BHA007 B. hermsii HS1 lp174 BHA007 bhA007 none 39 C4BP n.d. n.d. Fibronectin n.d. n.d. (43)

HTBRF

CbiA B. miyamotoi FR64b lp70 CNO09_

05070

cbiA none 21 FH SCRs 8-20

SCRs 15-20

SCRs 19-20

C3, C3b, C4b,

C5

Plasminogen Yes CP, TS (37, 44)

LBRF

HcpA B. recurrentis A1

A17

lp124 n.d. hcpA none 21 FH

FHR-1

SCRs 19-20

SCRs 3-5

C3, C3b, C4b Plasminogen Yes TS (34)

CihC B. recurrentis A1

A17

lp124 n.d. cihC none 40 C4BP

C1-INH

n.d. n.d. Fibronectin Yes n.d. (35)

CihC B. duttonii La lp165 BDU_

RSO4550

cihC BDU_1 40 C4BP

C1-INH

n.d. n.d. Fibronectin Yes n.d. (35, 45)

n.d.; not determined.

GOF, protein produced in a gain-of-function background; AP, alternative pathway; CP, classical pathway; TS, terminal sequence.
aSequence of the fhbA gene could not be detected on lp200 of B. hermsii YOR and lp174 of B. hermsii HS1, respectively, by BLAST searches.
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Inactivation of the Alternative Pathway by
Binding of Complement Regulator FH
Acquisition of regulators of complement activation is one of the
most common strategies exploited by many human pathogenic
microorganisms to evade complement (38–40). At least seven
FH-interacting proteins have been described among RFB species
including BhCRASP-1 (FhbA1) of B. hermsii HS1 and FhbA2
(FhbA, FHBP19) of B. hermsii YOR, FHBP28 and BpcA of
B. parkeri, CbiA of B. miyamotoi, and HcpA of B. duttonii
and B. recurrentis (30, 31, 33, 34, 36, 37) (Table 1). All FH-
interacting proteins have in common binding to the C-terminal
domains implicating that the regulatory domains located at
the N-terminus of FH are accessible to retain their Factor I-
mediated C3b degradation activity (33, 34, 36, 37) (Table 1).
Moreover, BhCRASP-1, HcpA, BpcA, and CbiA, respectively,
facilitate complement resistance when ectopically produced in
genetically manipulated spirochetes (gain-of-function strains)
(33, 34, 36, 37).

Within a Borrelia species, the FH-binding proteins are highly
conserved, exhibiting sequence identity values of >93% (32) but
among RFB, the percentages are quite low (36–45%). Whether
the lack of sequence similarity might account for a different fold,
appears to be somewhat questionable, in particular in the light
of missing three dimensional structures. Interestingly, at least

four conserved motifs (LDxNQKQALIxF, LGN-KxKQFLQxLH,
SFSSxNFxD, and LEQKKExAL) could be identified in all seven
proteins, raising the possibility of a non-continuous FH-binding
site. Further studies investigating variants of FhbA2, FHBP28,
HcpA, and BpcA also provide evidence that multiple regions
are involved in the interaction with FH (30, 34, 36, 41). Of
importance, infection studies utilizing a fhbA deletion mutant
demonstrated that FhbA2 is the only FH-binding protein of
B. hermsii and the absence of FhbA did not have an impact
on serum resistance or infectivity of spirochetes, indicating
functionally redundant roles played by other complement-
interacting proteins as discussed below (46).

Inactivation of the Classical and Lectin
Pathway by Binding of C1-INH and C4BP
To date, CihC of B. recurrentis is the soley protein displaying
complement-inactivating properties on the CP and LP by
binding to C1-INH and C4BP-binding protein (35). Orthologous
proteins exhibiting sequence identities between 44 and 91%
have been detected in B. duttonii Ly (BDU_1026), B. hermsii
(BHA007), B. turicatae (BTA001), B. parkeri (BpA001), and
B. crociduraeAchema andDOU (BCD_1370) but no homologous
sequences could be found in LD spirochetes (42, 43). Functional
analyses revealed that, like FH, C4BP bound to the borrelial

FIGURE 1 | Immune evasion strategies of RFB. (A) Inhibition of complement by distinct borrelial proteins acting at certain levels of the activation cascade. (B) Immune

evasion of RFB by multiphasic antigenic variation. (C) Schematic representation of the structure of the Vsp1 (VspA) dimer of B. turicatae [PDB 2GA0, adapted from

(47)]. The monomeric units are represented in dark or light blue. The variable sequences are distributed within the second and third α-helices as well as all loop regions

and summarize in variable region (VR) 1–4. The light blue circle at the top of the dimer indicates the region with the highest variability. FH, factor H; FHL-1, factor H-like

protein 1; FHR, factor H-related protein; C4BP, C1-INH, C1 esterase inhibitor; C4b binding protein; iC3b, inactivated C3b; iC4b, inactivated C4b, IgG,

immunoglobulin G.
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surface retained its complement-inhibitory activity for factor
I-mediated C4b degradation, thus targeting activation of the
CP and LP (Figure 1A, Table 1). Previously, Meri et al. also
demonstrated inactivation of the CP by binding of functional
active C4BP to the surface of B. recurrentis and B. duttonii (45).
In addition, CihC also promotes termination of the CP at the
initial activation steps by binding of C1-INH, indicating that
this borrelial molecule displays multi-functional complement-
inhibitory properties. Deletions at the N- and C-terminus of
CihC did not abrogate binding of C4BP or C1-INH leading to
the assumption that central regions might be responsible for
binding (Table 1). A crucial role of CihC in mediating serum
resistance of RFB was evidenced by employing cihC-expressing
gain-of-function strains which displayed a resistant phenotype
upon serum challenge (35). In contrast to CihC, the BHA007
protein of B. hermsii only bound C4BP but not C1-INH (42).
Owing to their functional properties to interact with fibronectin,
these molecules have generically been named as “fibronectin-
binding proteins” and clustered together with the fibronectin-
binding BBK32 protein of Lyme disease spirochetes (42). Despite
their low sequence similarity, the finding that BBK32 confers
bloodstream survival of spirochetes (48) supports the possibility
that CihC orthologs might also play a role during infection of the
human host. Concerning CP inactivation, CbiA of B. miyamotoi
has previously been shown to strongly inhibit activation of the
CP, independently from interaction with C4BP by a yet unknown
mechanism (37) (Figure 1A, Table 1). It is tempting to speculate
whether binding of C4b to CbiA restricts downstream activation
of the CP by terminating formation of the C3 convertase (37).

Inhibition of the Terminal Sequence and
MAC Assembly
Terminating the final activation steps by binding to pore-forming
complexes or late complement components negatively affects
assembling of theMAC as demonstrated for CbiA and HcpA (37)
(Figure 1A, Table 1). In particular, CbiA strongly inhibits the
TS, probably through the binding of C5 and C9 whereas HcpA
moderately influences complement on this level and BpcA and
BtcA, respectively, did not have an impact at all. Interference with
the TS enhance the process of complement inactivation mediated
by distinct outer surface proteins.

Inactivation of Complement by Acquisition
of Plasminogen
Distinct complement-interacting proteins including
BhCRASP-1, HcpA, and CbiA exhibit multiple binding
specificities to host-derived fluid phase proteins such as
plasminogen (33, 34, 36, 44) (Figure 1A, Table 1). Plasminogen
is known to bind to C3, C3b, C3d, and C5 and upon activation to
plasmin, C3 and C5 degradation takes place (49). Plasminogen
is also able to enhance Factor I-mediated C3b degradation in
the presence of FH (49). Previous studies demonstrated that
plasmin(ogen) bound to B. hermsii HS1, B. recurrentis A1, and
B. parkeri decreases the amount of C3b molecules deposited
on the borrelial surface (33, 34, 36) or lead to degradation of
C3b when purified HcpA, BpcA, and CbiA, respectively, have

been employed (34, 36, 44). Thus, degradation of C3 and C5
appears an additional strategy of RFB to successful overcome
host immune defenses.

Direct Interaction With Individual
Complement Components
HcpA and CbiA also bind to some extent to individual
complement components, namely C3, C3b, C4, and C4b,
respectively, as well as C5 (CbiA) though the relevance of
these interactions on complement inactivation require further
investigation (37) (Figure 1A, Table 1).

In conclusion, these findings suggest an involvement of these
molecules in immune evasion in particular as the inactivation
of the key complement component C3b is thought to be an
efficient instrument for bacterial survival and may account for
the extraordinary pathogenesis of RFB in the human host.

ANTIGENIC VARIATION, A POWERFUL
MECHANISM OF RFB TO ESCAPE
IMMUNE AVOIDANCE

To evade clearance by the humoral immune response of the
human host, RFB are capable of producing a bulk repertoire
of antigenically distinct serotypes in a given cell population
by a genetically driven process termed antigenic variation
(50). In their pioneering work, Barbour and Stoenner revealed
that the phenomenon of serotype switching is a spontaneous,
reversible, and multiphasic process, creating outer surface
proteins that bear serotype-specific epitopes (50) (Figure 1B).
These immunodominant, variable major lipoproteins (Vmps) are
divided into two different, highly polymorphic protein families:
the variable small proteins, Vsp (∼20 kDa) and the variable large
proteins, Vlp (∼36 kDa) that are subdivided in additional four
subfamilies: α, β, γ, and δ (50–52). Apparently, the molecular
mechanism of antigenic variation is not a subject to a process
that is under pressure of the local environment, host factors or
the host immune system. Recognizing that multiple serotypes
arise from a single cell, thus, theoretically plenty of variants
can be generated by producing highly diverse sets of Vlps and
Vmps during infection. Previous studies revealed that 60–70
antigenically distinct variants of B. hermsii could arise during
mammalian infection (52). Such a considerable diversity is
achieved by multiple rounds of genetic rearrangements of the
Vmp encoding genes including (i) non-reciprocal recombination
of silent or archival vmp genes with an active, transcribed vmp
gene (gene conversion), (ii) intramolecular DNA rearrangement,
and (iii) switching of the expression site resulting in a
modification of the transcript (53, 54). The mechanism of
intermolecular recombination also appears to take place in the
OldWorld RFB B. duttonii (55). Variable antigen genes encoding
for Vlps and Vsps have also been detected in B. turicatae,
B. crocidurae, B. duttonii (56, 57), B. miyamotoi (58, 59), and
B. recurrentis (60, 61). Genetically, the silent or archival vmp
genes are dispersed on different linear plasmids of 28–53 kb
whereas an active, promoter-driven expression locus is found
only on a single plasmid (53, 61). Such an active vlp or vsp gene
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can be exchanged by any archival or silent vlp and vsp gene
but the frequency of replacement differs between these genes
(62). The unceasing exchange of vmp genes will undoubtedly
generate numerous polymorphic Vmps, allowing spirochetes to
remain one step ahead of the adaptive immune response and
thereby successfully evade the host’s defenses. In a study using
genetically modified B. hermsii cells that lack the ability to
undergo antigenic variation, Raffel et al. clearly demonstrated
that Vmps are required for inducing a high spirochetemia in
the blood and for causing a relapse in infected mice whereby
colonization of the ticks by these attenuated spirochetes remains
unaffected (63). Interestingly, Vmp-lacking cells showed a reduce
fitness compared to the WT and reconstituted spirochetes.

Crystal structure refinements of Vsp and Vlp revealed a
similar fold for both groups of proteins which are predominately
composed of a 2-fold-symmetric dimer. Each monomeric unit
consists of four α-helical bundles connected by two loop
regions (47, 64) (Figure 1C). The N-terminus is anchored in the
spirochetal membrane while the flexible C-terminus is folded
back and oriented closely to the N-terminus. The variable loop
regions are exposed to the environment and serve as ligands for
antibodies. Interestingly, themost conserved regions are oriented
to the outside of the protein known to be targets for anti-Vmp
antibodies elicited during infection. Of note, OspC, the major
outer surface protein of B. burgdorferi is phylogenetically and
structurally related, and shares a common helical fold to the
Vsps suggesting that these proteins might display similar roles
in immune evasion (47, 65).

CONCLUDING REMARKS

Over the last decades, a number of complement-interacting
molecules have been described, all of which touch the first line

of host defense in certain ways by obstructing activation of

complement. In synergy with the antigenic variation system,
RFB are able to repeatedly circumvent both, the innate immune
system as well as the acquired immune response. Understanding
the molecular principles of how these molecules interfere
with innate immunity may pave the way for developing new
therapeutics for the treatment of RF patients or patients
suffering from complement deficiencies, and might even serve as
preventive measures for infectious diseases in general. Surface-
exposed molecules may also be part of a new vaccine or
can be used for the generation of novel immunoassays (32).
Undoubtedly, future studies should unravel important questions
addressing the role of functionally redundant, anti-complement
proteins in the pathogenesis of these new-emerging pathogens.
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