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Abstract

We study simulated animats in terms of wheeled robots with
the most simple neural controller possible – a single neu-
ron per actuator. The system is fully self-organized in the
sense that the controlling neuron receives uniquely the ac-
tual angle of the wheel as an input. Non-trivial locomotion
results in structured environments, with the robot determin-
ing autonomously the direction of movement (time-reversal
symmetry is spontaneously broken). Our controller, which
mimics the mechanism used to transmit power in steam loco-
motives, abstracts from the body plan of the animat, working
without problems also in the presence of noise and for chains
of individual two-wheeled cars. Being fully compliant our
controller may be also used, in the spirit of morphological
computation, as a basic unit for higher-level evolutionary al-
gorithms.

One neuron per joint controller
Research in artificial life (Bedau et al., 2000) ranges from
open ended evolution (Ruiz-Mirazo et al., 2004) to morpho-
logical computation (Müller and Hoffmann, 2017). Here
we examine whether non-trivial locomotion may arise as
self-organized attracting states in sensorimotor loops (Mar-
tin et al., 2016), i. e. in the combined phase space of neuronal
controller and the dynamics of the body and of the environ-
ment (Sándor et al., 2015).

• We find that a single neuron per joint is sufficient for a
self-organized controller which fully abstracts from ter-
rain modularities.

• The one-neuron controller generates self-sustained navi-
gation autonomously both in structured environments and
for nonholonomic constraints. Structural knowledge of
the dynamics of the robot, required otherwise (Das et al.,
2006), is not needed.

• We propose that the here developed controller may sim-
plify the control problem when higher-lever evolutionary
optimization algorithms would address the actuators not
directly, but indirectly via the respective controlling neu-
ron.

Figure 1: One neuron adaptive wheel controller. The
membrane potential x = x(t) of the single controlling neu-
ron is determined by ẋ = Γ(x(a)−x), where x(a) = R cosϕ
measures the current position of the wheel. The controller
has hence access only to the angle ϕ of wheel (propio-
sensation). The neural activity y = y(x) = 1/(1 +
exp(−2x)) translates consecutively into a target position
x(t) = 2y − 1 of a fictive transmission rod (in gray), which
then couples elastically to the wheel via a spring with spring
constant k. The torque M = RFtan results in the end from
the force Fk = k(x(t) − x(a)) exerted by the rod on the
wheel, where Ftan denotes the tangential component of Fk,
and R the radius of the wheel. An additional higher-order
control signal x(c) would result, when added to the actual
position x(a), in a compliant wheel.

Simulated steam locomotive transmission
Our controller mimics, as illustrated in Fig. 1, the power
transmission mechanism used in steam locomotives, with
the neural activity y = y(t) ∈ [0, 1] controlling to the po-
sition of a piston moving forth and back. The timescale
1/Γ ≈ (20 − 100) ms induces a dynamic time-lag, which
breaks the otherwise perfect 360◦ symmetry of the setup.
The direction of motion is determined consequently by the
initial conditions, with both turning direction of the wheel
being equally probable.

We fitted the two-wheel animats illustrated in Fig. 2 with
our neural controller, with each of the two wheels controlled
independently. The wheels are hence coupled only through
the mechanics of the body of the animat and through the
environmental feedback. The resulting control is capable
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Figure 2: The simulated robot having two traction and two
passive support wheels (black wheels on the sides, respec-
tively small white balls below the body).

to deal adaptively both with holonomic and nonholonomic
constraints (Fierro and Lewis, 1998).

We simulated the robots within the LPZRobots physics
simulation environment (Der and Martius, 2012). The robot
may not move at all, but this fixpoint is unstable, and small
perturbation immediately induces a continuous acceleration,
with the final velocity depending on the mass of the robot,
the environmental friction, and the control parameters.

In Fig. 3 a sample path of the animat navigating au-
tonomously in a complex environment is shown. Crossing
from one inclined plane to another the robot first moves
uphill, being however drawn downwards by gravitational
forces – until it turns. It then speeds up again moving ini-
tially in half-circles transversely to the inclined plane.

Adding a higher level input control signal to the neuron,
it is possible to modulate the navigation, fully retaining its
dynamical flexibility thanks to its soft robotics architecture
(Müller and Hoffmann, 2017). A regulation of the wheels
rolling speed is achieved, to give an example, by constant
control inputs. Compliant control is achieved here through
the emergence of self-organized attractors in sensorimotor-
loop (Sándor et al., 2015).

We joined, in an additional experiment, the individual
robots to trains of 5-7 cars, with friction applied only to the
first car and with all 10-14 wheels being controlled indepen-
dently (see Fig. 4). We find complex motion patterns that
shows up as chaos both visually and in projection of the sen-
sorimotor loop to the (ϕ1, ϕ2) plane (Martin et al., 2016).
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Figure 4: A train consisting of elastically coupled cars. The
attractor resulting from a projection to a reduced phase space
is manifestly not a limit cycle.
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