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Deutschsprachige Zusammenfassung

Tomographie des Quark-Gluon-Plasmas im Labor

Angesiedelt in der Schnittmenge zwischen Kern- und Teilchenphysik, bietet die moderne
Schwerionenphysik einen viel versprechenden Ansatz zur Beantwortung fundamentalster
Fragen nach der Entstehung des Universums. Werden die Kerne schwerer Atome, soge-
nannte Schwerionen, auf nahezu Lichtgeschwindigkeit beschleunigt und anschließend
kontrolliert zur Kollision gebracht, so werden in den entstehenden Kollisionszonen unge-
heure Mengen Energie deponiert, was zur Folge hat, dass sich die vorliegende Materie
in einem sehr heißen und dichten Zustand befindet, wie er auch kurz nach dem Urknall
vorgelegen haben könnte. Durch die enormen Temperaturen in diesem Zustand sind die
relevanten Freiheitsgrade der Materie nicht länger nuklearer Natur, sondern sind überwie-
gend von subnuklearen Teilchen, den Quarks und Gluonen, bestimmt, was dazu führt,
dass dieser Zustand auch als Quark-Gluon-Plasma (QGP) bezeichnet wird. Diese Par-
tonen wechselwirken miteinander mithilfe der starken Kernkraft, die beschrieben wird
durch die Quantenchromodynamik (QCD) und die, neben der elektromagnetischen, der
schwachen und der Gravitationskraft, eine der vier fundamentalen Wechselwirkungen des
Standardmodells der Teilchenphysik ist.

Zu den wichtigsten Eigenschaften der Quantenchromodynamik gehören das sogenannte
confinement und die asymptotische Freiheit. Während Ersteres besagt, dass die Kopplung
zwischen Partonen stärker ist je weiter beide Partonen voneinander entfernt werden, so
beschreibt Letzteres den Effekt, dass Partonen bei kleiner Distanz oder hohen Impulss-
kalen als quasi-frei angesehen werden können. Diese asymptotische Freiheit der QCD
erlaubt die Anwendung von perturbativen Methoden (perturbative QCD, pQCD) bei hohen
Teilchenenergien oder hohen Temperaturen der zu untersuchenden Materie. Ultrarelati-
vistische Schwerionenkollisionen bieten nun einen aussichtsreichen Zugang zu einem
besseren Verständnis dieser Eigenschaften der Quantenchromodynamik unter extremen
Bedingungen.

Beginnend mit Studien am SPS1-Beschleuniger des europäischen Kernforschungszen-
trums CERN in der Nähe von Genf/Schweiz, konnten in verschiedenen Experimenten
am RHIC2 des BNL3 auf Long Island/USA und am LHC4-Beschleunigers am CERN
interessante Eigenschaften dieser heißen und dichten Materie festgestellt werden. Eine der
phänomenalsten Entdeckungen in diesen Studien am RHIC- und LHC-Beschleuniger war,
dass der neu entstandene Materiezustand als ein nahezu ideales Fluid mit einem geringen
Scherviskositäts-über-Entropiedichte-Verhältnis beschrieben werden kann. Da jedoch die
partonischen Freiheitsgrade des QGP aufgrund des confinement unter Raumbedingungen
in Hadronen eingeschlossen und damit nicht direkt messbar sind, kann der Nachweis der
Eigenschaften der entstandenen Materie nur indirekt erfolgen. Dazu werden Observablen
definiert, von denen man eine Sensitivität auf die zu untersuchenden Eigenschaften erwartet

1Super Proton Synchrotron
2Relativistic Heavy-Ion Collider
3Brookhaven National Laboratory
4Large Hadron Collider
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und für die theoretische Modelle formuliert werden können. Nur das Zusammenspiel der
experimentellen Messung und diesen theoretischen Modellen ermöglicht anschließend
eine verlässliche Charakterisierung der entstandenen Materie.

Eine der prominentesten Observablen zur Untersuchung heißer und dichter Materie in
ultrarelativistischen Schwerionenkollisionen ist das sogenannte „Jet Quenching“. Jets sind
hochenergetische Partonen, die paarweise durch seltene Parton-Parton-Interaktionen mit
hohem Impulsübertrag in z.B. Proton-Proton-Kollisionen oder den anfänglichen Nukleon-
Nukleon-Streuungen einer Schwerionenkollision entstehen. Während Jets in Proton-Proton-
Experimenten aufgrund ihrer hohen Virtualität weitere Partonen abstrahlen und somit
Schauerstrukturen ausbilden, wechselwirken Jets, die in der Anfangsphase von Schwe-
rionenkollisionen produziert werden, zusätzlich mit dem weicheren Hintergrundmedium
der Schwerionenkollision bevor sie schließlich als Hadronen in den Detektoren nachge-
wiesen werden können. Abhängig von den Eigenschaften des durchquerten Mediums,
wie z.B. Temperatur, Dichte oder Länge, verlieren Jets durch diese Interaktionen Energie
und Impuls, sodass die anschließende Untersuchung ihres Energieverlusts sie zu einer
tomographischen Sonde des entstandenen heißen und dichten Mediums macht.

Ein besonderer Vorteil ist dabei die hohe Energie der Jets, führt sie doch zum Einen zu
einer kurzen Formationszeit, sodass Jets bereits früh mit dem Hintergrundmedium interagie-
ren und damit auch an der frühen Phase der Schwerionenkollision teilnehmen können. Zum
Anderen kann durch die hohen relevanten Impulsskalen die Produktion der Jets mithilfe
von perturbativer QCD beschrieben werden. Ausgehend von einer Faktorisierung zwischen
der Anfangsverteilung von Partonen in Nukleonen, dem eigentlichen harten Parton-Parton-
Streuprozess und der anschließenden Fragmentation der Partonen zu Hadronen, lässt sich
die eigentliche Mediumsmodifikation von Jets durch einen Vergleich von Jet-Ereignissen
in Schwerionenkollisionen mit entsprechenden Ereignissen in Proton-Proton-Kollisionen
charakterisieren. Somit konnte der Energieverlust von Jets experimentell auf verschie-
dene Arten nachgewiesen werden: Während der nukleare Modifikationsfaktor RAA das
Verhältnis der Transversalimpuls-Spektren in Schwerionenkollisionen mit entsprechend
skalierten Spektren in Proton-Proton-Kollisionen vergleicht, wurden durch die gesteigerten
Kollisionsenergien am LHC-Beschleuniger und damit einhergehend höheren Produktions-
wahrscheinlichkeiten sehr hochenergetischer Jets auch Untersuchungen möglich, in denen
Jets basierend auf ihren Teilchenschauer rekonstruiert und dann sowohl deren Spektren
als auch Jet-Korrelationen pro Ereignis verglichen werden konnten. In beiden Arten von
Studien konnte ein signifikanter Energieverlust bzw. eine starke Unterdrückung hoch-
energetischer Jets bestätigt werden, was als weitere Evidenz für die Entstehung eines
Quark-Gluon-Plasmas in diesen Schwerionen-Experimenten gilt.

Verschiedene theoretische Modelle basierend auf perturbativer Quantenchromodynamik
erklären den enormen Jet-Energieverlust durch sowohl partonische Streuungen der Jets
innerhalb des heißen Hintergrundmediums als auch durch gluonische Abstrahlprozesse, die
durch Streuungen der Jets mit dem Medium induziert werden. Ein wichtiger quantenme-
chanischer Effekt, der bei Bremsstrahlungsprozessen hochenergetischer Teilchen innerhalb
eines Mediums berücksichtigt werden muss, ist der Landau-Pomeranchuk-Migdal-Effekt
(LPM-Effekt). Dieser Effekt, der zunächst für photonische Bremsstrahlungsprozesse hoch-
energetischer Elektronen innerhalb der Quantenelektrodynmik durch Landau, Pomeran-
chuk und Migdal entdeckt wurde, sagt eine kohärente Unterdrückung von aufeinander-
folgenden Bremsstrahlungsprozessen voraus, die durch die endliche Formationszeit der
abgestrahlten Teilchen hervorgerufen wird. Ist diese Formationszeit länger als die mittlere,
freie Weglänge zwischen den Streuungen, so kann nicht mehr länger von unabhängigen, ra-
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diative Prozessen gesprochen werden, die durch die Bethe-Heitler-Gleichung beschrieben
werden und z.B. zu einer linearen Weglängenabhänigkeit des radiativen Energieverlusts
führt. Im Falle von gluonischen Abstrahlprozessen innerhalb der Quantenchromodynamik
wird dieser Effekt noch verstärkt, da die abgestrahlten Gluonen selber mit den Mediums-
komponenten wechselwirken können. Dies führt zu einer charakteristischen, nicht-linearen
Abhängigkeiten des resultierenden, radiativen Jet-Energieverlusts in dünnen QCD-Medien.

Verwendetes Modell für den Energieverlust von Jets im
Quark-Gluon-Plasma

In dieser Arbeit werden die Auswirkungen des nicht-Abelschen Landau-Pomeranchuk-
Migdal-Effekts auf den Energieverlust hochenergetischer Jets innerhalb ultrarelativisti-
scher Schwerionenkollisionen untersucht. Dazu wird das heiße und dichte Hintergrund-
medium der Schwerionenkollisionen als expandierendes Quark-Gluon-Plasma beschrie-
ben und mithilfe des semi-klassischen Transportmodells BAMPS5 simuliert, welches
die 3+1-dimensionale, relativistische Boltzmann-Gleichung durch einen stochastischen
Testteilchen-Ansatz löst und bereits in zahlreichen vorherigen Studien seine Anwendbar-
keit in der Beschreibung von Schwerionenkollisionen am RHIC- und LHC-Beschleuniger
unter Beweis gestellt hat. Innerhalb von BAMPS stellen quasi-freie Gluonen und leichte
Quarks die Freiheitsgrade des Mediums dar, sodass die mikroskopischen Prozessen inner-
halb dieses partonischen Mediums mithilfe von Wirkungsquerschnitten aus perturbativer
Quantenchromodynamik berechnet werden können. Dabei dürfen die Partonen unterein-
ander sowohl mittels elastischer 2 ! 2-Streuungen, welche die Teilchenzahl erhalten,
als auch inelastischer 2 $ 3 Prozesse, welche durch Gluonemission bzw. -annihilation
die Teilchenzahl verändern, miteinander wechselwirken. Während 2 ! 2-Interaktionen
durch pQCD-Prozesse in führender Ordnung („leading-order pQCD“), wie z.B. gg ! gg
oder gq ! gq , beschrieben werden, wird für die inelastischen 2 $ 3-Prozesse, wie
z.B. gg ! ggg oder ggg ! gg, eine verbesserte Gunion-Bertsch-Näherung für Bremss-
trahlungsprozesse verwendet, für die eine verbesserte Übereinstimmung mit dem exakten
pQCD-Matrixelement bei Vorwärts- bzw. Rückwärtsrapidität der Gluonemissionen in frü-
heren Studien nachgewiesen werden konnte. Die daraus resultierenden Eigenschaften der
mikroskopischen Prozesse werden in Kapitel 3 dieser Arbeit eingeführt. In den verschie-
denen pQCD-Wirkungsquerschnitten auftretende Divergenzen, die durch die begrenzte
Anwendbarkeit von pQCD bei soften Impulsskalen entstehen, werden durch effektive
Debye-Massen abgeschirmt, die durch die Präsenz anderer Partonen innerhalb des heißen
und dichten Mediums hervorgerufen werden. Weitere Details des verwendeten Ansatzes
zur Modellierung des Quark-Gluon-Plasmas werden in Kapitel 4 diskutiert.

Im Gegensatz zu anderen theoretischen Modellen, die die Jet-Medium-Interaktionen mit-
hilfe von pQCD-Wechselwirkungen und die Evolution des Mediums durch relativistische
Hydrodynamik beschreiben, hat die Anwendung eines partonischen Transportmodells für
die Untersuchung des Jet-Energieverlusts den Vorteil, dass sowohl für die Jet-Medium-
Interaktionen als auch die Interaktionen zwischen den partonischen Mediumskomponenten
die gleiche Art der Wechselwirkung verwendet wird. Auf der anderen Seite erschwert
speziell die Betrachtung der Partonen als semi-klassische, mikroskopische Teilchen und
nicht als quantenmechanische Objekte eine rigorose Implementation des quantenfeldtheo-
retischen LPM-Effekts in ein partonisches Transportmodell. Während die Beschreibung

5Boltzmann Approach for Multi-Parton Scattering
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der Interaktionen durch die Boltzmann-Gleichung eine Lokalität der Interaktionen voraus-
setzt, führt die endliche Formationszeit von Gluonemissionen unter Berücksichtigung des
LPM-Effekts zu einer räumlichen Ausdehnung der Wechselwirkungen. Daher wird in der
vorliegenden Arbeit ein besonderer Fokus auf die Untersuchung verschiedener Ansätze für
die Implementierung des nicht-abelschen LPM-Effekt in ein semi-klassisches Transport-
modell gelegt, um damit die Auswirkungen des LPM-Effekts auf die Eigenschaften des
resultierenden, radiativen Jet-Energieverlusts zu zeigen.

Numerische Implementierungen des LPM-Effekts

Den wegweisenden, analytischen Arbeiten von Baier u. a. (BDMPS) [Bai+95; Bai+97a;
Bai+98b] bezüglich des LPM-Effekts in der Quantenchromodynamik folgend, erwartet
man für den radiativen Energieverlust eines hochenergetischen, partonischen Projektils mit
Energie E, das ein thermisches Medium mit Temperatur T und Länge L durchquert und
dabei medium-induziert Gluonen der Energie ! und Transversalimpuls k? abstrahlt, im
eikonalen Limit E � ! � k? folgende charakteristische Abhängigkeiten:

• Durch die endliche Formationszeit, ⌧f ⇠ !/k
2

?, werden hochenergetischere Gluo-
nemissionen unterdrückt, da sie bei gegebenem Transversalimpuls eine längere
Formationszeit besitzen. Dies führt dazu, dass die differentielle Emissionsrate eines
Projektils im LPM-Limit wie d�/d! ⇠ !

�3/2 von der Gluonenergie ! abhängt.

• Gleichzeitig führt die Berücksichtigung der endlichen Formationszeit der Gluone-
missionen zu einer charakteristischen Längenabhängigkeit des radiativen Energie-
verlusts des Projektils, sodass sich für den radiativen differentiellen Energieverlust
dE/dx ⇠ L in dünnen Medien und dE/dx ⇠ const. in dicken Medien ergibt.

Im Rahmen dieser Arbeit werden drei verschiedene Ansätze zur Beschreibung des
LPM-Effekts in BAMPS implementiert und deren Auswirkungen auf den resultierenden
numerischen Energieverlust der Jets zunächst in5 durch Vergleich mit den erwarteten
analytischen Abhängigkeiten im eikonalen Limit verglichen:

✓-LPM Die bisherige Implementation des LPM-Effekts in BAMPS basiert auf einer ef-
fektiven Unterdrückung der radiativen 2 $ 3-Matrixelemente mithilfe der Thetafunktion
✓
�
⌧f � �

�
, wobei ⌧f die Formationszeit des abgestrahlten Gluons und � die mittlere freie

Weglänge des abstrahlenden Partons innerhalb des Mediums ist. Durch diesen „✓-LPM“-
Ansatz werden longitudinale Gluonabstrahlungen, deren längere Formationszeit zu einem
Überlapp zwischen aufeinanderfolgenden Streuprozessen führen würde, unterdrückt und
damit sichergestellt, dass nur inkohärente (unabhängige) Gluonemissionen stattfinden kön-
nen. Mithilfe des „✓-LPM“-Ansatzes kann für die differentielle Gluonemissionsrate d�/d!
die charakteristische !�3/2-Abhängigkeit des nicht-Abelschen LPM-Effekts innerhalb von
BAMPS nachgewiesen werden.
Obwohl die endliche Formationszeit der Gluonemissionen zwar im Matrixelement be-
rücksichtigt wird, findet jedoch die eigentliche Abstrahlung instantan und damit an der
räumlichen Position des 2 ! 3-Prozesses statt. Dadurch zeigt der „✓-LPM“-Ansatz zwar
die für den LPM-Effekt charakteristische Abhängigkeit des Gluon-Spektrums, vernachläs-
sigt aber die dE/dx ⇠ L-Abhängigkeit des radiativen Energieverlusts in dünnen Medien
und zeigt nur die für dicke Medien gültige Beziehung dE/dx ⇠ const..
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Um auch kohärente Abstrahlprozesse im „✓-LPM“-Ansatz effektiv berücksichtigen zu
können, wird der Parameter XLPM eingeführt, der über ✓

�
⌧f �XLPM�

�
parametrisch auch

softere Gluonabstrahlungen erlaubt. Die erhöhte Emissionsrate bei kleinen Transversalim-
pulsen k? führt dabei zu einer logarithmischen Sensitivität des radiativen Energieverlusts
auf den Parameter XLPM.

Stochastischer LPM Durch einen Vergleich mit den analytischen Ergebnissen von
BDMPS, konnte Zapp, Wiedemann und Stachel [ZSW09; ZSW11] einen numerischen
Algorithmus entwickeln, der den LPM-Effekt durch eine stochastische Unterdrückung der
Gluonen während ihrer Formationszeit modelliert. Dazu werden die durch einen 2 ! 3-
Bremsstrahlungsprozess abgestrahlten Gluonen zunächst als Test-Gluonen behandelt, die
während ihrer Formationszeit elastisch wechselwirken und somit ihre Formationszeit selbst-
konsistent modifizieren können. Nach Beendigung dieser endlichen Formationszeit wird
stochastisch ermittelt, ob die jeweilige Emission tatsächlich stattgefunden hat oder ob sie
nachträglich unterdrückt wird. Durch diesen Algorithmus sind die Gluonabstrahlprozesse
nicht mehr lokal, sondern über eine endliche Zeit ausgedehnt, was zur Folge hat, dass die
korrekte Längenabhängigkeit des radiativen Jet-Energieverlusts sowohl in dünnen als auch
in dicken Medien reproduziert werden kann.
In Rahmen der vorliegenden Dissertation wird diese „stochastische LPM“-Methode in
BAMPS implementiert und ihr Zusammenspiel mit den bisherigen Modellannahmen inner-
halb von BAMPS untersucht. Dazu wird zunächst ein vereinfachtes Modell mit konstanten
Wirkungsquerschnitten für die elastischen Interaktionen der abgestrahlten Gluonen und
der radiativen Prozesse der abstrahlenden Projektile definiert, für das sich die charak-
teristischen Abhängigkeiten des LPM-Effekts analytisch herleiten lassen. Unter diesen
kontrollierten Bedingungen kann erfolgreich die numerische Anwendbarkeit des „stochas-
tischen LPM“-Algorithmus innerhalb von BAMPS für verschiedene Projektilenergien E

und Mediumslängen L demonstriert werden.
Im weiteren Verlauf der Arbeit werden die vereinfachten Interaktionen schrittweise durch
die bekannten

p
ŝ-abhängigen 2 ! 2- und 2 ! 3-pQCD-Prozesse von BAMPS ersetzt

und die Auswirkungen dieser Ersetzungen auf den resultierenden Jet-Energieverlust prä-
sentiert. Dabei kann erfolgreich nachgewiesen werden, dass die endliche Formations-
zeit innerhalb der „stochastischen LPM“-Methode auch unter Verwendung der pQCD-
Wirkungsquerschnitte zu einer L2-Abhängigkeit des Energieverlusts�E in dünnen Medien
und einer L-Abhängigkeit in dicken Medien führt.
Obwohl die differentielle Emissionsrate d�/d! des „stochastischen LPM“-Algorithmus
bei mittleren Gluonenergien T < ! < E wie erwartet eine !�3/2-Abhängigkeit zeigt,
führen sowohl Effekte der 2 ! 2- als auch der initialen 2 ! 3-Prozesse in BAMPS
zu Abweichungen bei niedrigen Gluonenergien ! < T . Dabei stellt sich durch Ver-
gleich mit differentiellen Streuraten aus „Hard Themal Loop“-Rechnungen (HTL) heraus,
dass insbesondere die konkrete Wahl der effektiven Debye-Abschirmung in den 2 ! 2-
Prozessen innerhalb von BAMPS eine signifikante Unterdrückung von soften Impulsüber-
trägen (q2? / T

2) bewirkt. Gleichzeitig führt die
p
ŝ-Divergenz im Vier-Gluonen-Kanal

des Prozesses gg ! gg, der in anderen analytischen Rechnungen oft vernachlässigt wird,
zu einer divergierenden Streurate bei kleinen Gluonenergien. Beide Resultate zusammen er-
geben Abweichungen zwischen BAMPS und anderen Modellen bei kleinen Gluonenergien
! < T für die Energie-Abhängigkeit des Transportparameters q̂, welcher das Vermögen der
Gluonen quantifiziert während ihrer Formationszeit Transversalimpuls zu akkumulieren.
Diese Akkumulation wiederum bestimmt maßgeblich die resultierende Unterdrückung
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durch den nicht-Abelschen LPM-Effekt innerhalb des „stochastischen LPM“-Ansatzes.
Des Weiteren wird bereits die Emissionsrate des anfänglichen Bremsstrahlungsprozesses
bei kleinen Gluonenergien durch die softe k?-Divergenz in Gunion-Bertsch-Näherung
bestimmt, welche im „stochastischen LPM“-Ansatz nicht mehr durch eine Thetafunktion
unterdrückt, sondern durch den Parameter ⇠LPM kontrolliert wird, der ein minimales Limit
k?; min = ⇠LPM

p
ŝ vorgibt. Es kann gezeigt werden, dass wie bereits im „✓-LPM“-Ansatz

auch, der resultierende Jet-Energieverlust logarithmisch von der Wahl des Parameters ⇠LPM
abhängt.

AMY Während die beiden effektiven LPM-Methoden, „✓-LPM“ und „stochastischer
LPM“, durch die Verwendung des Gunion-Bertsch-Matrixelements von Parametern für
die Abschirmung softer Gluonemissionen abhängen, verhindern andere pQCD-Modelle
diese soften Divergenzen durch eine Resummierung unendlich vieler Leiterdiagram-
me. Gleichzeitig wird durch die Resummierung der verschiedenen Leiterdiagramme
der nicht-Abelsche LPM-Effekt implizit berücksichtigt. Eines dieser Modelle ist der
AMY6-Formalismus [AMY02b], welcher die makroskopische Gluonemissionsrate ba-
sierend auf thermischer Feldtheorie berechnet. Unter Annahme einer Skalenseparation
T � gs T � g

2

sT und eines unendlich langen, thermischen Mediums, lassen sich damit
differentielle Emissionsraten d�/d! formulieren, deren numerische Berechnung innerhalb
dieser Arbeit durchgeführt und anschließend mithilfe effektiver „1 $ 2“-Prozesse in
BAMPS implementiert wird. Während die resultierende Gluonemissionsrate der „AMY“-
Methode innerhalb von BAMPS die erwartete !�3/2-Abhängigkeit zeigt, führt die Annahme
eines unendlich langen Mediums zu der bereits diskutierten Längenunabhängigkeit des
radiativen differentiellen Energieverlusts dE/dx. Durch den erfolgreichen Vergleich des
Jet-Energieverlusts der „AMY“-Methode in BAMPS mit entsprechenden Rechnungen des
MARTINI-Modells, welches die AMY-Raten in ein hydrodynamisches Medium einbettet,
wird die numerische Implementation innerhalb von BAMPS validiert.

Nachdem die numerischen Realisierungen des LPM-Effekts innerhalb von BAMPS
diskutiert wurden, werden im weiteren Verlauf die verschiedenen Ansätze quantitativ
miteinander verglichen. Da es keine physikalischen Argumente für eine bestimmte Wahl
der Parameter XLPM und ⇠LPM in den beiden effektiven LPM-Ansätzen „✓-LPM“ und
„stochastischer LPM“ gibt, werden deren Werte zunächst durch einen Vergleich mit dem
Energieverlust in dicken Medien innerhalb der „AMY“-Methode bestimmt. Während in-
nerhalb der „✓-LPM“-Methode die beste Übereinstimmung mit dem AMY-Energieverlust
für XAMY

LPM = 0.05 gefunden wird, werden die Parameter im „stochastischen LPM“-Ansatz
zu ⇠

AMY; g
LPM = 0.015 für eikonale Gluon-Projektile und zu ⇠

AMY; q
LPM = 0.01 für eikonale

Quark-Projektile bestimmt. Obwohl die drei Methoden nun einen ähnlichen differen-
tiellen Energieverlust zeigen, unterscheiden sich die zugrundeliegenden differentiellen
Emissionsraten d�/d! und d�/dk? signifikant. Während der AMY-Formalismus eine
divergierende Emissionsrate sowohl bei ! ! 0 als auch ! ! E zeigt, führen die verschie-
denen Annahmen in den beiden effektiven LPM-Ansätzen, wie z.B. die zugrundeliegenden,
elastischen Interaktionen der Gluonen während der Formationszeit (Debye-abgeschirmte
2 ! 2-Prozesse vs. elastische Streuungen aus HTL) oder das Abschirmen softer und
kollinearer Gluonemissionen (Minimales k? vs. Resummierung der Leiterdiagramme),
zu einer endlichen bzw. verschwindenden Rate bei kleinen und großen Gluonenergien.
Auf der anderen Seite unterscheidet sich der „stochastische LPM“-Ansatz von den beiden
anderen Methoden durch die explizite Berücksichtigung der endlichen Formationszeit und

6Arnold, Moore, Yaffe
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der damit korrekten Längenabhängigkeit des Energieverlusts in dünnen Medien. Des Wei-
teren führt die einsetzende Thermalisierung der Gluonen während ihrer Formationszeit im
„stochastischen LPM“-Ansatz zu einem transversaleren Emissionsspektrum im Vergleich
zur „✓-LPM“-Methode. Damit der resultierende Energieverlust dennoch vergleichbar ist,
wird dieses softere Emissionsspektrum im „✓-LPM“-Ansatz durch eine höhere totale
Emissionsrate kompensiert.

Jets in einem statischen, thermischen Medium

Während die vorherigen Ergebnisse unter Annahme eines eikonalen Projektils erhalten
wurden, wird Kapitel 6 der radiative Energieverlust in den verschiedenen LPM-Ansätzen
für den Fall eines nicht-eikonalen Projektils diskutiert. Für solch ein Projektil gilt nicht
länger ! ⌧ E, sodass der Jet bei Durchquerung des Mediums seine Energie verändert und
somit der zeitliche Verlauf der Projektilenergie E(t) bei Durchquerung eines thermischen
Medium untersucht werden kann. Zunächst wird als Referenz der Energieverlust eines
Jets simuliert, der nur durch elastische 2 ! 2-Wechselwirkungen Energie an das Medium
abgibt. Wie erwartet, kann gezeigt werden, dass der Anteil des elastischen Energieverlusts
im Vergleich zum radiativen Energieverlust vernachlässigbar ist. Mit den zuvor bestimmten
Parametern XLPM und ⇠LPM kann für das nicht-eikonale Szenario festgestellt werden, dass
Projektile durch die Prozesse der „✓-LPM“-Methode am schnellsten Energie verlieren, wo-
hingegen die zeitlichen Energieverläufe des „stochastischen LPM“-Ansatzes und von AMY
einen langsameren Energieverlust zeigen. Gründe für diesen langsameren Energieverlust
sind zum Einen die Divergenzen in AMY, die zu einem „Alles-oder-Nichts“-Energieverlust
führen, und zum anderen die endliche Formationszeit im „stochastischen LPM“-Ansatz,
die den Energieverlust von Jets durch hochenergetische bzw. kollineare Gluonemissionen
verlangsamt.

Um die Verteilung der abgestrahlten Gluonen in den verschiedenen LPM-Methoden
charakterisieren zu können, wird darüber hinaus die Modifikation rekonstruierter Jets bei
Durchquerung eines thermischen Mediums untersucht. Dazu werden mithilfe des Anti-
k?-Algorithmus und einer Auflösung von R = 0.3 Jets basierend auf Partonenschauern
rekonstruiert, die aus einem führenden partonischen Projektil und seiner softeren Partonen-
wolke bestehen und die durch den Ereignisgenerator PYTHIA erzeugt wurden, bevor sie
das thermische Medium durchquert haben. Die eigentliche Mediumsmodifikation der Par-
tonenschauer durch die verschiedenen LPM-Wechselwirkungen wird anschließend durch
entweder den zeitlichen Verlauf der rekonstruierten Jet-Energie oder die Modifizierung
der Energie-Verteilung um den Jet herum, den eigens definierten „shower shapes ⇢̂(r)“,
quantifiziert. Im Vergleich zum Energieverlust einzelner Projektile ist die Modifizierung
der Partonenschauer durch das Medium ein Multiteilchen-Effekt, der auf verschiedenen
Mechanismen basiert:

• Zum Einen verlieren die einzelnen Schauerpartonen Energie durch elastische Streu-
ungen innerhalb des Mediums oder durch medium-induzierte Bremsstrahlung. Ab-
hängig von der konkreten LPM-Modellierung werden die abgestrahlten Gluonen
dadurch entweder transversal und damit aus dem rekonstruierten Jet abgestrahlt,
was zu einer Erhöhung des rekonstruierten Jet-Energieverlusts führt, („✓-LPM“ und
„stochastischer LPM“) oder aber sie verbleiben durch kollineare Abstrahlungen nahe
der eigentlichen Jet-Achse und verändern damit die rekonstruierte Jet-Energie nicht
(AMY).
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• Zum Anderen kann sowohl die ursprüngliche Vakuumsstrahlung aus PYTHIA als
auch die medium-induzierte Strahlung durch elastische Wechselwirkung der Gluo-
nen zu größeren Winkeln transportiert werden und damit den rekonstruierten Jet-
Energieverlusts erhöhen.

• Gleichzeitig können aber auch die durch elastische 2 ! 2-Wechselwirkungen ge-
streuten Mediumskomponenten innerhalb der Jets verbleiben und damit den rekon-
struierten Jet-Energieverlust wieder abschwächen.

Es wird gezeigt, dass die Unterschiede im radiativen Energieverlust der einzelnen
Schauerpartonen in den verschiedenen LPM-Ansätzen zu unterschiedlichen zeitlichen
Verläufen der rekonstruierten Jet-Energien führen. Der endliche Transversalimpuls k? der
Emissionen in den beiden effektiven LPM-Ansätzen führt zu einem Jet-Energieverlust mit
voranschreitender Zeit, wobei erneut im „✓-LPM“-Ansatz aufgrund der verschwindenden
Formationszeit der schnellere Energieverlust auftritt. Im Gegensatz zu den effektiven
LPM-Methoden zeigen die kollinearen Emissionen innerhalb der „AMY“-Methode einen
nahezu verschwindenden Energieverlust der rekonstruierten Jets. Erst wenn der Transport
von abgestrahlten Gluonen durch weitere elastische Streuungen erlaubt wird, führen auch
die Emissionen durch den AMY-Formalismus zu einem rekonstruierten Jet-Energieverlust,
der den anderen beiden Ansätzen ähnelt. Diese Ähnlichkeit wird durch die zusätzliche
Betrachtung von gestreuten Mediumskomponenten zusätzlich verstärkt, sodass sich sowohl
die rekonstruierten Jet-Energien als auch die zugrundeliegenden ⇢̂(r)-Verteilungen stark
ähneln.

Jets im expandierenden Medium einer Schwerionenkollision

Aufgrund der extrem kurzen Lebenszeit des Mediums innerhalb einer Schwerionenkol-
lision sind Experimente zur Bestimmung der Eigenschaften des entstandenen heißen
und dichten Materiezustands auf Vergleiche mit theoretischen Simulationen angewie-
sen. Daher werden Kapitel 7 der vorliegenden Arbeit zunächst makroskopische Größen
wie z.B. die Dichte oder Temperatur des expandierenden Schwerionen-Mediums inner-
halb von BAMPS bestimmt, bevor anschließend die numerischen Simulationen für den
Energieverlust von Jets unter Berücksichtigung der verschiedenen LPM-Ansätze mit
experimentellen Resultaten des LHC-Beschleunigers für „Jet Quenching“-Observablen
in Blei-Blei-Kollisionen mit psNN = 2.76 TeV verglichen werden. Diese makroskopi-
schen Größen werden durch Mittelung der mikroskopischen Verteilungen innerhalb des
Mediums bestimmt, die wiederum durch eine Überlagerung vielzähliger Nukleon-Nukleon-
Interaktionen aus PYTHIA initialisiert und anschließend durch sowohl 2 ! 2- als auch
2 $ 3-Prozesse („✓-LPM“-Ansatz mit XLPM = 0.3) innerhalb von BAMPS evolviert wer-
den. Es wird gezeigt, dass die anfänglich hohe Teilchenzahldichte (n ⇠ O

�
102 fm−3�)

und Energiedichte (✏ ⇠ O
�
102 GeVfm−3�) aufgrund der starken Expansion des Mediums

rapide abnimmt. Da eine Definition der Temperatur im Prinzip nur in äquilibrierten Syste-
men gerechtfertigt ist und besonders die frühe Phase einer Schwerionenkollision weit weg
von einer Äquilibrierung ist, werden verschiedene Möglichkeiten für die Definition einer
effektiven Temperatur diskutiert, da die Temperatur als Parameter für die anschließende
Untersuchung des Jet-Energieverlusts mithilfe der AMY-Emissionsraten essentiell ist. Da-
bei bestätigt sich die Annahme einer hohen anfänglichen Temperatur T ⇠ O(1 GeV) im
Zentrum der Kollisionszone.
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Des Weiteren wird präsentiert, dass die mikroskopischen pQCD-Interaktionen innerhalb
von BAMPS zu einer starken Kollektivität im partonischen Medium führen. Dazu wird der
integrierte elliptische Fluss v2 für verschiedene Zentralitäten berechnet und mit experimen-
tellen Ergebnissen des LHC-Beschleunigers für Blei-Blei-Kollisionen bei einer Schwer-
punktsenergie von p

sNN = 2.76 TeV verglichen. Sowohl elastische 2 ! 2-Interaktionen,
deren Wirkungsquerschnitt mithilfe eines effektiven Faktors K = 3.5 skaliert wurde, als
auch elastische und radiative Prozesse innerhalb von BAMPS führen zu einem signifi-
kanten elliptischen Fluss während der partonischen Phase der Schwerionenkollision, der
vergleichbar mit den gemessenen Werten für das hadronische v2 ist.

Nachdem die verschiedenen LPM-Ansätze unter kontrollierten Bedingungen innerhalb
eines statischen Mediums diskutiert wurden, wird ihr Einfluss auf den Energieverlust
von Jets unter realistischen Bedingungen in sowohl zentralen als auch peripheren Blei-
Blei-Kollisionen bei einer Schwerpunktsenergie von p

sNN = 2.76 TeV untersucht. Im
Gegensatz zu soften Observablen, wie z.B. dem elliptischen Fluss v2, können hadronische
Spektren bei hohem Transversalimpuls p? durch eine Faltung der partonischen Spektren
mit Fragmentationsfunktionen bestimmt werden, die in elementareren Teilchenreaktionen
gemessen wurden. Dies erlaubt einen Vergleich der Unterdrückung partonischer Spektren
aus BAMPS, die entweder auf skalierten, elastischen Wechselwirkungen (K = 3.5) oder
den radiativen Prozessen der verschiedenen LPM-Implementierungen basieren, mit dem
nuklearen Modifikationsfaktor RAA geladener Hadronen, der in zentralen oder peripheren
Kollisionen am LHC gemessen wurde. Dadurch kann interessanterweise gezeigt werden,
dass bereits die skalierten, elastischen Wechselwirkungen zu einer realistischen Unter-
drückung der Hadron-Spektren sowohl in zentralen als auch peripheren Ereignissen führen.
Die radiativen Prozesse hingegen zeigen für alle drei vorgestellten LPM-Ansätze (mit
den an AMY angepassten Parametern) einen hohen Jet-Energieverlust und damit eine zu
starke Unterdrückung der hadronischen Spektren. Dieses Ergebnis eines zu großen Ener-
gieverlusts ist konsistent mit anderen Modellen, die RAA basierend auf den Emissionen
des AMY-Formalismus innerhalb hydrodynamischer Simulationen berechnet haben. Erst
nachdem die Parameter der effektiven LPM-Ansätze auf XLPM = 0.3 und ⇠LPM = 0.05
verringert werden und die laufende QCD-Kopplung berücksichtigt wird, können sowohl
der „✓-LPM“- als auch der „stochastische LPM“-Ansatz die gemessene Unterdrückung
von Hadronen in zentralen Kollisionen beschreiben. Darüber hinaus führt die endliche
Formationszeit innerhalb des „stochastischen LPM“-Algorithmus zu einer leicht verbes-
serten Übereinstimmung mit dem gemessenen RAA in peripheren Kollisionen. Jedoch
kann keines der untersuchten LPM-Modelle den signifikanten, elliptischen Fluss bei hohen
Transversalimpulsen erklären.

Die Studien von Jets innerhalb des thermischen Mediums fortführend wird die Mediums-
modifizierung rekonstruierter Jets innerhalb von Blei-Blei-Kollisionen mit Schwerpunkts-
energie p

sNN = 2.76 TeV mithilfe des nuklearen Modifikationsfaktor Rjet
AA rekonstruierter

Jets und der Verteilung der Impulse um die Jet-Achsen, den „jet shapes ⇢(r)“, berech-
net. Dazu werden die anfänglichen Partonenschauer mithilfe von PYTHIA generiert und
anschließend innerhalb des expandierenden BAMPS-Medium mittels der verschiedenen
LPM-Ansätze unter Berücksichtigung der neu festgelegten Parameter XLPM und ⇠LPM
evolviert. In Übereinstimmung mit anderen theoretischen Modellen wird demonstriert,
dass für eine realistische Unterdrückung der rekonstruierten Jets in allen untersuchten
LPM-Ansätzen die zusätzliche Berücksichtigung von Effekten gestreuter Mediumsteilchen
eine essentielle Rolle spielt. Obwohl beide effektive LPM-Ansätze die Unterdrückung
inklusiver Hadronen beschreiben kann, ist die Übereinstimmung der Simulation mittels
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des „stochastischen LPM“-Ansatzes bei den untersuchten Rekonstruktionsparametern
R = 0.2 und R = 0.4 leicht besser. Auch die puren elastischen Wechselwirkungen, ska-
liert mit K = 3.5, zeigen eine realistischen Unterdrückung rekonstruierter Jets, was darauf
hindeutet, dass eher die Streurate als die Kinematik der Prozesse den resultierenden Jet-
Energieverlust bestimmt. Erneut zeigt die Simulation mittels des AMY-Formalismus einen
zu starken rekonstruierten Jet-Energieverlust. Durch Berechnung der Impulsverteilung
um die rekonstruierten Jet-Achse kann nachgewiesen werden, dass der Energieverlust der
rekonstruierten Jets hauptsächlich durch eine Modifizierung der äußeren Jet-Regionen her-
vorgerufen wird. Bei diesen größeren Winkeln kann eine Erhöhung der Impulse festgestellt
werden, wohingegen der innere Teil der rekonstruierten Jets nahezu unverändert ist. Wäh-
rend dieser unmodifizierte innere Teil der Jets auch in den experimentellen Daten gefunden
werden kann, überschätzen die verschiedenen LPM-Ansätze innerhalb von BAMPS die
Erhöhung der Impulse bei großen Winkeln.

Ausblick

Basierend auf den in dieser Arbeit durchgeführten Studien und deren Resultaten werden in
Kapitel 8 abschließend Vorschläge unterbreitet, wie die Untersuchungen dieser Arbeit in
Zukunft weitergeführt werden könnten:

• Im Zuge dieser Arbeit wurde herausgefunden, dass einige der untersuchten Observa-
blen allein durch skalierte, elastische Wechselwirkungen beschrieben werden können.
Des Weiteren zeigte die Untersuchung der elastischen Wechselwirkungen von Gluo-
nen während ihrer Formationszeit signifikante Unterschiede zu feldtheoretischen
Rechnungen in HTL-Näherung. Ein ähnliches Ergebnis wurde bereits in anderen
Studien innerhalb von BAMPS beim Vergleich der elastischen Wechselwirkungen
schwerer Quarks mit entsprechenden HTL-Rechnungen festgestellt. In diesen Studien
wurde der Energieverlust schwerer Quarks durch Einführung eines effektiven Faktors
für die Debye-Masse an die HTL-Rechnung kalibriert. Solch eine Studie könnte im
Prinzip auch für leichte Quarks durchgeführt und somit die Abweichungen zwischen
BAMPS und den HTL-Rechnungen quantifiziert werden. Eine andere Möglichkeit die
elastischen Wechselwirkungen in BAMPS zu verbessern, wäre eine Aufteilung der
2 ! 2-Prozesse nach ihrem zugrundeliegenden Impulsübertrag. Ähnlich zu anderen
theoretischen Modellen könnten Streuungen mit hohem Impulsübertrag (t̂ ' m

2

D)
weiter durch pQCD beschrieben werden, wohingegen Prozesse mit niedrigem Im-
pulsübertrag durch Diffusionsprozesse innerhalb eines Langevin-Ansatzes simuliert
werden. Ein erster Ansatz für eine solche Studie könnte die Implementierung der
elastischen Streurate aus HTL innerhalb von BAMPS sein. Allerdings wäre solch eine
Streurate, ähnlich wie die Emissionsrate aus AMY, im Prinzip nur für thermische
Systeme gültig.

• Aktuell werden Partonenschauer durch 1 ! 2-Splittings der führenden Partonen
innerhalb des Ereignisgenerators PYTHIA generiert. Dabei kommt es aufgrund der
Masselosigkeit der Partonen innerhalb von BAMPS zu einer Trennung zwischen
den Vakuumsemissionen in PYTHIA und den Bremsstrahlungsprozessen in BAMPS.
Jedoch könnte man das Konzept der Virtualität effektiv in BAMPS implementie-
ren und dadurch eine stochastische Entwicklung dieser Virtualität mithilfe von
1 ! 2-Splittings ähnlich zu PYTHIA realisieren. Die Wahrscheinlichkeit bei wel-
cher Virtualität solch ein Splitting auftritt und wie die Impulse der ausgehenden
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Partonen aussehen, könnte mithilfe der etablierten Sudakov-Faktoren modelliert
werden. Bei diesem Vorgehen wird eine detaillierte Studie von Kohärenzeffekten
zwischen Vakuums- und medium-induzierter Strahlung essentiell sein. Dennoch
bleibt es fraglich, ob solch eine Modellierung von Partonen mit einer Virtualität im
Kontext der Boltzmann-Gleichung gerechtfertigt ist oder ob man nicht viel mehr
die Kadanoff-Baym-Gleichung für „off-shell“-Transport verwenden sollte, für die
aktuell aber noch keine analytische Lösung gefunden wurde.

• Einer der aktuell größten Nachteile von BAMPS ist die allgemein fehlende mikro-
skopische Beschreibung des QCD-Phasenübergangs zwischen partonischen und
hadronischen Freiheitsgraden: Bei hohen Partonenergien existiert mit den Frag-
mentationsfunktionen zwar eine verlässliche Möglichkeit zumindest partonische
Spektren in hadronische Spektren zu überführen, allerdings kann dies nicht für
Studien rekonstruierter Jets verwendet werden, da diese nur mithilfe individueller
Ereignisse und nicht basierend auf Spektren-Ebene rekonstruiert werden können.
Ein möglicher Ausweg ist die Modellierung der Fragmentationsprozesse mithilfe
von Monte-Carlo-Methoden. Basierend auf den Fragmentationswahrscheinlichkeiten
D

h
i

�
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�

könnte man entsprechende Prozesse modellieren, für die allerdings die
Erhaltung von Energie und Impuls bei jedem Splitting eine entscheidende Rolle spie-
len wird. Um diese Monte-Carlo-Fragmentation anschließend zu validieren, könnte
der Vergleich mit Spektren nützlich sein, die aus der üblichen Faltung mit Fragmen-
tationsfunktionen berechnet werden können. Für softe Partonenergien ist jedoch die
Anwendung von Fragmentationsfunktionen aufgrund der hohen QCD-Kopplung bei
diesen Energien nicht erlaubt. Es gibt dennoch bereits erste Versuche innerhalb von
BAMPS diese soften Partonen basierend auf ihrer Entfernung im Konfigurations-
und Impulsraum zu gruppieren und anschließend effektiv zu hadronisieren. Es wird
sich zeigen, welchen Einfluss eine solche Hadronisierung für die in dieser Arbeit
vorgestellten Resultate von Observablen des Hintergrundmediums haben werden.

• Vor kurzem wurde der „run II“ des LHC-Programms erfolgreich abgeschlossen, in
dem die Schwerpunktsenergie auf psNN = 5.02 TeV nahezu verdoppelt wurde. Ob-
wohl man von theoretischer Seite nur kleinere, eher quantitative Änderungen in den
Eigenschaften des Hintergrundmediums erwarten könnte, führt die erhöhte Kollisi-
onsenergie zu einer erhöhten Produktionswahrscheinlichkeit sehr hochenergetischer
Jets und damit einhergehend zu der Möglichkeit „Jet Quenching“-Observablen noch
differentieller zu untersuchen. Zu diesen Observablen, die prinzipiell auch durch die
vorgestellten Methodiken durch BAMPS berechnet werden können, gehören sowohl
Interjet-Observablen, wie z.B. die Modifikation der Fragmentationsfunktionen re-
konstruierter Jets, als auch Intrajet-Observablen, wie z.B. die Korrelationen von Jets
mit energetischen Photonen oder Bosonen, dem sogenannten „goldenen Kanal des
Jet Quenchings“. Darüber hinaus kann man vermuten, dass auch in Zukunft weitere
Studien zum Energieverlust von Jets in Schwerionenexperimenten bei verschiedenen
Kollisionsenergien geplant sind, sodass eine erneute Überprüfung der in dieser Arbeit
vorgestellten Modellannahmen unter den geänderten Bedingungen zu empfehlen ist.
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1 Introduction

Among the most intriguing, open questions of humanity are the questions of our origin.
Where are we from? Why are we here? Why is the universe how it is? While religions
give their very own answers, with modern science we are able to at least aim for more
rational answers. One field that is especially promising for finding answers to several
of above questions is high energy physics, and in particular the field of ultra-relativistic
heavy-ion collisions. When heavy nuclei at velocities close to the speed of light collide,
they deposit an enormous amount of energy within a small region of space. Consequently,
the energy density within these regions exceeds the density of usual nuclear densities by
far, potentially forming a new state of matter. In this state of matter the relevant degrees
of freedom are sub-nucleonic (partonic) particles, namely quarks and gluons, coining its
name quark-gluon plasma (QGP). In the QGP, quarks and gluons interact with each other
via the strong nuclear force, which can be described theoretically by the fundamental
theory of quantum chromodynamics (QCD), which is an essential part of the standard
model of particle physics. Although the study of the QGP and thereby QCD under extreme
conditions is interesting in its own, these extreme conditions of matter are also expected to
be present shortly after the Big Bang. Therefore its study may additionally reveal essential
information about the early phase of the universe and thereby give further evidence for the
big bang theory.

In recent years, experiments both at the Relativistic Heavy-Ion Collider (RHIC) at BNL1

and the Large Hadron Collider (LHC) at CERN2 made huge efforts in experimentally
proving the existence of the quark-gluon plasma. To this end, heavy-ions like gold (197Au)
or lead (208Pb) nuclei are accelerated to almost the speed of light and subsequently collided
in dedicated collision zones, which are surrounded by a variety of different detector systems.
Unfortunately, due to the short lifetime of the hot and dense matter and the confinement
of partons into colorless hadrons, a direct measurement of a heavy-ion collision is not
possible. Rather each detector component aims for a different aspect by measuring different
remnants of the actual heavy-ion collision. However, it is only the interplay between these
experimental observations and appropriate theoretical calculations that enables us to draw
reliable conclusions about the properties of the created matter and thereby the existence of
the quark-gluon plasma.

One of the most prominent observables for studying the quark-gluon plasma created in
ultra-relativistic heavy-ion collisions at RHIC and LHC is jet quenching. When jets—highly
energetic partons produced in hard processes of the initial nucleon-nucleon interactions
within the colliding nuclei—travel through the hot and dense environment of the heavy-ion
collision, they interact with medium components and thereby lose energy and momen-
tum. These mainly partonic interactions are dominated by binary scattering and radiative
Bremsstrahlung processes, which can be both described by perturbative quantum chro-
modynamics due to the small QCD coupling at these large parton energies. Assuming a
factorization between the jet production process and the subsequent medium modification,

1Brookhaven National Laboratory
2European Organization for Nuclear Research
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the original jets are indifferent from jets that are produced in more elementary collisions
as p + p collisions, where no formation of a background medium is expected. Conse-
quently, the comparison of the measurement of quenched jets in a heavy-ion collision
and unquenched jets in p + p collision represents a promising opportunity for probing the
properties of QCD matter under extreme conditions.

Especially when considering radiative processes of energetic partons, coherence effects
play an essential role. Due to the finite formation time of emitted gluons, subsequent
Bremsstrahlung processes may act coherently to each other and thereby lead to a suppres-
sion of gluon emissions wrt. the incoherent Bethe-Heitler regime. While first discovered
in the 1950s in Bremsstrahlung processes of photons within quantum electrodynamics,
this Landau-Pomeranchuk-Migdal (LPM) suppression leads in the case of a non-Abelian
theory as QCD to a remarkable energy and path-length dependence of the partonic energy
loss.

The main purpose of this thesis is the study of jet quenching in ultra-relativistic heavy-ion
collisions at LHC and especially its dependence on coherence effects as the non-Abelian
LPM effect. To this end, we employ the partonic transport approach BAMPS (Boltzmann
Approach for Multi-Parton Scattering) and revise its current description for the LPM effect.
BAMPS simulates the quark-gluon plasma by solving the 3+1-dimensional3 Boltzmann
equation for massless partons while employing matrix elements calculated in leading-order
perturbative quantum chromodynamics (pQCD). The partons within BAMPS, which fulfill
the on-shell condition E

2 = ~p2 +m
2, may scatter elastically via binary 2 ! 2 process as

well as radiate gluons via 2 $ 3 Bremsstrahlung and annihilation processes described by
an improved version of the Gunion-Bertsch approximation. By applying the same Debye-
screened pQCD matrix elements to both the jet-medium interactions and medium-medium
interactions, BAMPS is one of the few approaches describing jets and the underlying bulk
medium evolution within the same framework.

However, due to the local nature of interactions underlying the Boltzmann equation,
a formal description of quantum-mechanical processes as the coherent suppression of
gluon emissions due to the LPM effect is highly demanding. Previously the LPM effect
was modeled within BAMPS by an effective suppression factor in the radiative 2 $ 3
matrix elements. In the course of this work, we will revise this implementation and its
dependencies and confront it with two other approaches for coherent gluon emissions,
namely the gluon emission rate from thermal field theory and a stochastic description
based on a formal pQCD calculation for gluon radiation. By studying the different LPM
approaches both in the more academic setup of a static brick of quark-gluon plasma and
afterwards in the expanding medium of a heavy-ion collision, this comparison will then
allow us to understand and point out the different ingredients of radiative, partonic energy
loss and how it can be identified in the experimental observations at LHC.

Structure of the work

The present thesis is structured as follows: the next Chapter 2 gives a comprehensive
overview of the physics of quantum chromodynamics and ultra-relativistic heavy-ion
collisions in general and thereby aims for bringing the present thesis into a broader
scientific context. After introducing in Chapter 3 the different microscopic interactions of
partons within the quark-gluon plasma by discussing both elastic and radiative processes
from perturbative quantum chromodynamics, we review in Chapter 4 the partonic transport

3In this context, “3+1-dimensional” corresponds to three space and one time dimensions.
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approach BAMPS and its underlying assumptions. A heuristic derivation of the non-Abelian
Landau-Pomeranchuk-Migdal and its dependencies is given in the beginning of Chapter 5,
where we then introduce the different methods for describing the LPM effect, which were
studied in this work. To this end, we discuss our assumptions about the different LPM
approaches and study their characteristics in a simplified scenario of a static brick of QCD
matter. While the energy loss studied in Chapter 5 considers an eikonal projectile, we study
in Chapter 6 the more realistic case of a non-eikonal projectile that modifies its energy
while traversing the quark-gluon plasma. Finally, in Chapter 7 we simulate the medium
modification of jets from the different LPM approaches in the expanding bulk medium of
a heavy-ion collision and confront it with results from the experiments at the LHC.

Natural units

Although the standard unit system in physics is the SI4 unit system, one often chooses an
unit system that is more appropriate for the specific problem at hand. Therefore we will
employ throughout this work the Natural unit system popular in high-energy physics and
cosmology. In this unit system, one defines for the physical constants

~ = c = kB = 1 ,

where ~ is the Planck constant, kB is the Boltzmann constant and c is the speed of light.
This choice significantly simplifies calculations at high energy and small length scales,
since both space and time are defined in the same units as well as energy and momentum,
respectively. While the former are mainly given in femtometer (“Fermi”, fm), the latter are
written in magnitudes of electronvolt (eV), in our case mostly in giga-electronvolt (GeV).
Furthermore, one can show that in Natural units

1 = ~c = 0.197 fm GeV (1.1)

holds and therefore space/time coordinates can be translated to energy/mass units.

4International System of Units, abbreviated from the French Système international (d’unités)
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2 Smashing nuclei: the quark-gluon
plasma in the laboratory

The following chapter summarizes the state-of-the-art of our theoretical and experimental
knowledge about nuclear matter under extreme conditions. Among the extraordinary
properties of this hot and dense state of matter are energy and number densities vastly
exceeding the values of usual matter. Consequently, the relevant degrees of freedom are
partons, quarks and gluons, obeying the laws of quantum chromodynamics (QCD), which
leads to the label “quark-gluon plasma” (QGP) for this state of matter. QCD is the theory
of the strong interactions between quarks and gluons and thereby an important part of the
standard model of particle physics, the most fundamental physics theory at the moment.
In Section 2.1 we briefly revise the main characteristics of QCD, before we discuss in
Section 2.2 our current understanding of the phase diagram of strongly interacting matter.
One of the most promising ways to study the properties of hot and dense nuclear matter
experimentally are collisions of heavy-ions at enormous energies. In Section 2.3 we
recapitulate recent experimental results measured at the Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN.
Since the main topic of this work are the tomographic capabilities of hard probes we
will focus the discussion mainly on the phenomena of jet quenching, the modification
of energetic partons due to the transition through the expanding medium of a heavy-ion
collisions.

The overview given in this chapter is supposed to bring the present work into the
broader context of the research field of quark-gluon plasmas in ultra-relativistic heavy-ion
collisions. Obviously such an introduction has to be written selectively by focusing on
the main concepts important for the following studies of this work. For a more detailed
discussion of other properties of the quark-gluon plasma in heavy-ion collisions we refer
to the given literature.

2.1 Basics of QCD and the standard model

The most successful theory to date for describing the physics of elementary particles is the
standard model of particle physics. Developed in the second half of the 19th century, the
standard model categorizes elementary particles based on their quantum properties and
describes the fundamental interactions— strong, electromagnetic and weak interaction—1

between these particles. In the standard model one differs between particles with spin
s 2 {0; 1}, so called bosons, and particles with half-integer spin s = 1/2 called fermions.
The Pauli principle forbids two fermions to exist in the same quantum state, whereas

1At the moment there is no successful approach for renormalization in general relativity, the theory describing
gravitation, so that it cannot be incorporated into the canon of the other gauge theories of the standard model. Hence,
gravitation is commonly not considered as part of the standard model. Furthermore, although gravitation can be
crucial at macroscopic scales from a bouncing ball to the density in neutron stars, its influence on the dynamics of
quarks and gluons is negligible due to the small coupling between their masses in comparison to the strong coupling
in QCD. Therefore we neglect gravitation for the results within this work.
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2 Smashing nuclei: the quark-gluon plasma in the laboratory

the same does not hold for bosons for which an arbitrary number of bosons in the same
quantum state are allowed. While fermions are massive2 particles that can be components
of heavier subatomic particles as protons or neutrons, bosons are either massless (in the
case of the strong and electromagnetic interaction) or massive (in the case of the weak
interaction) particles that mediate the fundamental interactions between fermions.

The category of fermions itself is subdivided into leptons, which only interact via
the electromagnetic and weak interactions, and quarks, which have color charge and
thereby additionally interact via the strong interactions. The quarks and leptons are further
categorized in different families based on their particles masses: While the leptons are
divided into electrons e�, muons µ� and tauons ⌧�, the quarks are split into three families
with each two quark flavors, namely up (u) and down (d), strange (s) and charm (c),
bottom (b) and top (t). Furthermore, each quark and each lepton has an anti-particle with
the same mass but opposite quantum numbers.

The three fundamental forces within the standard model are · · ·

• · · · the electromagnetic interaction mediated by massless photons (bosons with
spin s = 0), e.g., responsible for the bounding within atoms of negatively charged
electrons to positively charged nuclei.

• · · · the weak interaction mediated by the massive W± and Z bosons, which is
responsible for decays of subatomic particles as, e.g., the �-decay n ! e� + p + ⌫e.

• · · · the strong interaction mediated by massless gluons (bosons with spin s = 0),
which acts on small length scales between the components of nucleons in atom
nuclei.

In a seminal work for which they were awarded the 1979 Nobel Prize in Physics, both
Glashow, Salam and Ward and Weinberg demonstrated that the electromagnetic and weak
force are two aspects of the same interaction and can therefore be unified within one
electroweak theory [Gla59; SW59; Wei67].

One similarity of the three fundamental interactions of the standard model is that they can
be described by quantum field theories with underlying renormalizable, gauge symmetries.
Since our main research interest in this work is the interaction of partons with color charge,
we focus in this work on the quantum field theory called quantum chromodynamics (QCD)
which describes the strong interaction between sub-nucleonic particles. For more details
about quantum field theories related to the other fundamental interactions, we refer to the
literature [PS95; Wei95; Wei96; Mag05; Zee10; MS10].

Quantum chromodynamics is a non-Abelian quantum field theory with an underlying
SU(3) gauge symmetry. Hence, the Lie algebra of this theory, [Ta, Tb] = ifabcTc, is based
on eight generators Ta with structure constants fabc, where a, b, c . . . may have N

2

c � 1
values and Nc is the number of colors—the quantum number attributed to QCD. The
generators are related to the gluon fields Aa

µ, whereas the quark fields with flavor k are
described, due to their fermionic spins, by spinors  k and  k =  

†
k�

0 for the respective
anti-quark. By combining the different fields, one can formulate the Lagrangian density of
QCD,

LQCD =
X

k

 k

�
i�

µ
Dµ �mk

�
 k �

1

4
F

a
µ⌫F

µ⌫,a
, (2.1)

2Recent measurements provide hints to a very small, but finite neutrino mass (m⌫ < 2 eV) [Tan+18].
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2.1 Basics of QCD and the standard model

where the covariant derivative D
µ = @

µ
� igTaA

µ
a describes both the quark dynamics and

the coupling of the quark fields to the gluon fields. The mass of quarks is given in the
second term of the sum mk k k, where mk is the mass of a free quark and should not be
confused with the so called constituent mass of partons within nucleons. The constituent
mass gets additional contributions from virtual sea quarks leading to significantly larger
quark masses.

Especially, the non-Abelian symmetry of QCD complicates solutions of Eq. (2.1) for
problems with even few particles. Consequently the QCD Lagrangian is at the moment
only solvable under certain circumstances:

• One common way for solving quantum field theories is the perturbative expansion
of the Lagrangian Eq. (2.1) via an appropriate order parameter. In perturbative
QCD (pQCD), the order parameter is the QCD color charge g as defined in the
covariant derivative of Eq. (2.1) representing the coupling of quark to gluon fields.
Correspondingly to quantum electrodynamics, where for the electric charge e and
the QED coupling constant ↵ = e

2
/(4⇡) holds, one can define the QCD coupling

as ↵s = g
2
/(4⇡). As we will see in the next section, due to the non-Abelian nature

of QCD, ↵s is not a constant but depends on the momentum scale of the respective
physics problem at hand. However, this complicates a perturbative expansion that
relies on a small order parameter g ⌧ 1 or ↵s ⌧ 1 in order to truncate higher orders
in the expansion. The actual perturbative expansion is then accomplished by the
concept of Feynman diagrams. Within this work we mainly focus on solving QCD
by leading-order perturbation theory (cf. Chapter 3). For more details about the
perturbative expansion of QCD we refer to the excellent textbook by Peskin and
Schroeder [PS95].

• In contrast, lattice QCD (lQCD) solves QCD based on a discretization of the QCD
action in space and time. This prevents divergences at small length scales and
thereby allows to numerically calculate quark and gluon interactions at arbitrary
coupling strengths g. However, lQCD suffers from the necessity of calculating
the action in imaginary time which prevents calculations of dynamic problems as,
e.g., the scattering of partons. Nevertheless, lattice QCD is extremely successful
in calculating static phenomena at soft momentum scales as, e.g., quark masses or
the critical temperature of nuclear matter (cf. Section 2.2). For more details about
lattice QCD, especially at high temperatures and densities, we refer to Refs. [Boy+96;
Pet12; Phi13].

As we will see in the course of this work, the presented picture for solving Eq. (2.1) gets
further complicated when considering the dynamics of QCD for macroscopic systems con-
sisting of dozens of quarks and gluons, where one cannot avoid further phenomenological
approximations and model assumptions. In the following sections, we briefly revise two
main characteristics regarding QCD, the parton model underlying QCD and the asymptotic
freedom of partons at large momentum scales.

2.1.1 Parton model

Historically, quantum chromodynamics was formulated inspired by the parton model

primarily developed by Gell-Mann, Zweig and Feynman. In order to sort the enormous
number of newly discovered “elementary particles” by particle physics experiments in
the 1960s, Gell-Mann [Gel64] and Zweig [Zwe64] proposed sub-nucleonic particles,
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2 Smashing nuclei: the quark-gluon plasma in the laboratory

which they coined quarks. These quarks form compound particles named hadrons, which
were categorized depending on their mass and their quark content: the heavier hadrons
consisting of three quarks or anti-quarks were named baryons, whereas hadrons consisting
of a quark and an anti-quark were called mesons. This scheme allowed to categorize all
discovered particles at that time. The idea that hadrons as protons, p, or pions, ⇡ , are
built from more fundamental particles was supported by Feynman [Fey69], who called
these components partons. These partons were then identified with the quarks and gluons
within nucleons whose existence was confirmed by deep inelastic scattering of electrons
on nucleons.

However, both parton models struggled with the description of the �++ resonance:
in the parton model the �++ contains three u quarks, which is forbidden for fermions
obeying Fermi-Dirac statistics derived from the Pauli principle. Consequently, a new
quantum number called color with values red, green and blue was introduced to the parton
model. Each quark possesses one of these colors, whereas gluons have both a color and an
anti-color. As we will see in the next section, due to the so called confinement, individual
colored partons cannot be observed in nature. Quarks and gluons are bound within colorless
hadrons. The theoretical concept of quark and gluon colors was experimentally confirmed
by measurements of the hadron production in e+ + e� collisions that could only be
described by a finite number of colors, Nc = 3 [Pov+06].

2.1.2 Asymptotic freedom and confinement

We discussed earlier that the QCD coupling g or ↵s = g
2
/(4⇡) serves as the order

parameter for solving QCD via a perturbative expansion. Therefore perturbative QCD, as it
is applied in this work, relies on the smallness of the coupling in order to be able to truncate
higher orders of the expansion. However, different measurements of the QCD coupling
in high-energy particle collisions observed that the QCD coupling ↵s is not constant but
depends on the respective momentum scale Q

2 underlying the specific problem at hand.
Figure 2.1 shows the current status of the measured Q

2 dependence of ↵s

�
Q

2
�

from various
experimental studies aiming for different phenomena within QCD. Apparently, the QCD
coupling diverges for small momentum scales Q2 and logarithmically vanishes for larger
momentum scales. One parametrization for this “running” of the QCD coupling is given
by leading-order pQCD as

↵s(Q
2) =

12⇡

(11Nc � 2Nf ) ln
�
Q

2
/⇤2

QCD

� , (2.2)

where Nc = 3 is the number of different colors, Nf the number of active quark flavors and
⇤QCD the only free parameter of QCD representing the typical energy scale of QCD. It
depends on Nf and is fitted based on experimental studies [Bet07] to

⇤QCD(Nf = 3) = 346 MeV ⇤QCD(Nf = 4) = 305 MeV ⇤QCD(Nf = 5) = 220 MeV .

(2.3)

The reason for the high Q
2 behavior of ↵s is the non-Abelian nature of QCD. While

photons do not couple directly to an other photon in quantum electrodynamics (QED),
gluons significantly interact with other gluons in QCD. This “self-coupling” in QCD then
implies the phenomenon of asymptotic freedom, the vanishing coupling at high momentum
scales. At these high momentum scales, quarks and gluons can hence be described as quasi-
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Figure 2.1: Compilation of measurements of the QCD coupling ↵s as a function of the momentum scale
Q2 taken from Ref.[Tan+18].

free particles. For the derivation of asymptotic freedom from first-principles QCD, GROSS,
WILCZEK and POLITZER were awarded with the 2004 Nobel Prize in Physics [GW73b;
GW73a; Pol73; GW74; Dav74]. Contrary to asymptotic freedom, calculations at small
Q

2 are not possible within perturbative QCD due to the diverging QCD coupling. This
divergence corresponds to an infinite QCD potential at small momentum or large length
scales that leads to the confinement of partons within hadrons and the fact that there is
no possibility to directly measure free, colored partons. Due to this large QCD coupling,
phenomena at soft momentum scales as, e.g., the hadronization of partons, cannot be
calculated within perturbative QCD. Although there are effective models for the QCD
potential at these small momentum or large length scales, respectively, at the moment there
is no formal approach for deriving confinement directly from QCD. This problem is of
such outstanding importance for both mathematics and theoretical physics, that it is one of
the Millennium Prize Problems stated by the Clay Mathematics Institute3.

2.2 The phase diagram of strongly interacting matter

Due to the strength of the strong interaction at small length scales, the behavior of ordinary
matter at subatomic scales is dominated by QCD. As we have seen in the previous section,
partons are confined within hadrons due to the diverging QCD coupling at soft momentum
scales. Consequently, unbound partons cannot be observed at standard conditions (T ⇡

300 K ⇡ 0 MeV) in nature. However, several theoretical models predict that when nuclear
matter is either significantly heated or compressed, the relevant microscopic degrees of
freedom of matter change from hadrons to quarks and gluons and thereby a phase transition

3http://www.ams.org/notices/200606/fea-jaffe.pdf
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2 Smashing nuclei: the quark-gluon plasma in the laboratory

may occur. In this section we briefly revise the current theoretical understanding of these
different phases of nuclear matter, which can be derived from the specific characteristics
of QCD, and discuss where and how phase transitions change the medium parameters of
QCD matter.

Figure 2.2: Phase diagram of strongly interacting matter as a function of baryon chemical potential µB

and temperature T predicted by theoretical considerations together with trajectories taken by
different heavy-ion experiments. Figure taken from Ref. [Muk16].

Correspondingly to water and other systems, one can define a phase diagram of QCD
matter. In this phase diagram, different phases of strongly interacting matter are given
as regions in the plane spanned by the temperature T and the baryon chemical potential
µB measuring the excess of baryons over anti-baryons, which is related to the density
of baryons4. Figure 2.2 shows current expectations for the different phases of strongly
interacting matter. Nuclear matter under standard conditions is located at (µB;T ) ⇡

(924; 0)MeV in the phase diagram [Ris04]. For investigating the phase diagram one has in
principle two possibilities: either heating up (increasing T ) or compressing (increasing
µB) the matter under study.

By heating matter with vanishing net baryon density, one moves on a vertical line close
to µB ⇡ 0 MeV in Fig. 2.2. This region of small µB and high T is of special interest,
since one assumes that it was also realized in nature shortly after the Big Bang, when
the early universe cooled down along a trajectory in this µB-region. Phase transitions at
small baryon chemical potential can be calculated by lattice QCD calculations, which
predict that at this baryon chemical potential a crossover transition occurs [Aok+06]. This
crossover transition corresponds to a gradual change of medium parameters and thereby
mixtures of partonic and hadronic degrees of freedom can be found. Above temperatures
T ⇡ 160–190 MeV the QCD coupling is then small enough that the matter is dominated
by quasi-free quarks and gluons and therefore the formation of a quark-gluon plasma is
expected [KLP00; Kar01; FK01; FK04; Bor+11].

On the contrary, an additional compression of matter, which can be represented by
horizontal lines in Fig. 2.2, leads to a prediction of smaller transition temperatures at
higher µB, where the application of contemporary lattice QCD is demanding. Reason for

4The corresponding quark chemical potential µq can be approximated by the valence quarks giving µq = 1/3µB .
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this complication is the so-called sign problem which emerges from the transformation
to Euclidean space [FP02; FP03; For10]. Consequently, phenomenological models for
QCD [MK89; Hal+98; Sca+00; AK02] are often applied that expect a first-order phase
transition at these higher µB. First-order phase transitions are characterized by a rapid
change of the medium parameters leading to a discontinuity in the first derivative of, e.g.,
the energy density ✏ or the number density n.

At even higher µB, matter is then compressed strong enough so that partons from
different hadrons begin to overlap and thereby form a phase of quasi-free quarks and
gluons even at low temperatures. Such a phase is expected in neutron stars, where
the enormous density of neutrons leads to quarks and gluons traveling within multiple
neutrons. At these densities, partons are also expected to build pairs similar to Cooper pairs
in electric superconductors. Consequently, this proposed state of matter is often called
“color superconductor” [Rue+05; Ris04].

In principle, our previous knowledge about the phase diagram was mostly limited to the
region around nuclear matter at standard conditions, to which we are used to in our every-
day life. However, modern heavy-ion experiments allow us to investigate further regions
of the phase diagram in order to extend our knowledge about QCD and its application to
macroscopic systems. In Fig. 2.2 we show the expected trajectories in the phase diagram
taken by matter produced in various modern heavy-ion experiments probing QCD matter.
These experiments and their various results are covered in the next section.

2.3 Experimental signatures of the quark-gluon plasma

As mentioned in the previous section, modern heavy-ion experiments are an excellent
tool for investigating matter under extreme conditions and thereby study the properties
of the quark-gluon plasma. To this end, heavy ions—the nuclei of heavy atoms like lead
208Pb or gold 197Au—are accelerated to ultra-relativistic velocities in particle accelerators,
as, e.g., the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory
(BNL) or the Large Hadron Collider (LHC) at CERN. Two of these energetic beams of
heavy-ions are subsequently collided with center-of-momentum (CoM) energies psNN ⇠

O(100–1000 GeV) per nucleon-nucleon scattering in dedicated collision zones, which are
covered by detector experiments measuring the emerging reaction products.

The different stages of such an ultra-relativistic heavy-ion collision are sketched in
Fig. 2.3, where we denote the direction of the beam axis of the heavy ions as z and the
time as t, and can be outlined as follows:

• During the initial heavy-ion collision, the nucleons of both heavy-ions interact with
each other. One model for describing these nucleon interactions is the Glauber model

as introduced in Section 7.1.1 and further discussed in Appendix D. Depending on
the impact parameter—the distance between the center of the colliding nuclei in the
transverse plane wrt. the beam axis—of the specific collision, one distinguishes in
the Glauber model between participant nucleons—nucleons that have interacted with
nucleons from the other heavy-ion—and spectator nucleons—nucleons that have
not interacted with other nucleons but travel undeflected through the collision zone.
As we will discuss later, the individual nucleon-nucleon interactions or rather the
partonic processes underlying these collisions can be further categorized depending
on their individual momentum transfer. For example, hard and therefore rare nucleon-
nucleon scatterings may produce partons with high transverse momentum p?, so
called jets. Due to their high energy and thus short formation time, these jets are
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Figure 2.3: Sketch of the different stages of an ultra-relativistic heavy-ion collision. Figure based on
Ref. [Shi10].

formed early and therefore exhibit most of the following phases of the heavy-ion
collision, which makes them a prominent probe for studying the quark-gluon plasma

• By the collision of multiple nucleons of both nuclei, an enormous amount of energy
is deposited in a small volume, leading to a collective medium with energy densities
(and effective temperatures) vastly exceeding values of usual nuclear matter. There-
fore the relevant degrees of freedom of this matter are assumed to be quarks and
gluons which form an expanding quark-gluon plasma. Due to the initial nucleon-
nucleon interactions, this system is supposed to be far from equilibrium at these
early phases. This non-equilibrium phase can then be described, e.g., by partonic
transport approaches as the partonic cascade model BAMPS5 [Xu04] (cf. Chapter 4)
employed in this work (cf. Section 7.1). After some thermalization time ⌧0 the
strong partonic interactions within the created medium lead to a thermalization of
momenta, which allows to apply also hydrodynamical calculations only valid in
thermal systems. Several hydrodynamical models [Huo+01; KH03; RR07; SJG11;
Nie+11; Nie+13; NEP16; HS13; STV12a; GJS13; STV12c], including both ideal and
viscous hydrodynamics, are successful in describing these early, thermalized phases
of heavy-ion collisions. However, in these models often an early thermalization time
⌧0 / 1 fm [Hei04] is assumed. As we will see later in this work, the transport ap-
proach BAMPS was one of the first approaches giving microscopic evidence for such
a fast thermalization time by including not only binary but also number changing
partonic pQCD processes.

• With progressing time, the partonic system expands and cools down. As described
in the previous section, this cooling leads to a phase transition, which can be de-
scribed macroscopically via various equation of states calculated, e.g., from lattice

5Boltzmann Approach to Multiple Parton Scatterings
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QCD [Phi13]. After this phase transition, the microscopic degrees of freedom of
the expanding medium are hadrons which form a hadron gas. Consequently, an
appropriate choice for simulating the further medium evolution could be hadronic
transport approaches as, e.g., URQMD [Bas+98; Ble+99] and SMASH [Wei+16].
Within these models, hadronic scattering processes as well as hadron resonance
decays are implemented based on either measured or calculated hadronic cross sec-
tions. At the moment, the actual hadronization of the partonic medium cannot be
described from first-principles on the microscopic level (cf. Section 2.1.2). How-
ever, there are phenomenological descriptions for the hadronization reaching from
fragmenting strings [Lin+04] to recombination models [Fri+03]. Another way for
considering a hadronization is the combination of hydrodynamics, including an ap-
propriate equation of state, and a particulization scheme, commonly realized via the
Cooper-Frye method [CF74]. The so obtained hadrons can then be further simulated
within hadronic transport approaches leading to so-called hybrid models [Pet+08;
HP12]. Unfortunately, applying such a hadronization procedure leads to the loss of
microscopic information during the hadronization process.

• The hadronic medium further expands and cools down until it first chemically and
later kinetically freezes out. After the chemical freeze-out the interactions between
hadrons do not further modify the chemical composition of the medium, whereas
at kinetic freeze-out the hadronic interactions terminate at all. Finally, the hadrons
reach the detectors where their energy and momentum as well as their species is
determined within the detectors.

Besides the presented ultra-relativistic heavy-ion collisions, which aim to produce the
quark-gluon plasma via an increase in temperature, there are also experimental attempts to
create a quark-gluon plasma via the compression of nuclear matter. Such low-energy and
high-baryon-density interactions are, e.g., planned at the upcoming FAIR6 facility at GSI7

in Darmstadt. Since we focus in this work on the investigation of matter produced in ultra-
relativistic heavy-ion collisions at LHC, we refer to Ref. [Fri+11] for more information
about high density heavy-ion collisions.

However, in all possible approaches for creating a quark-gluon plasma in experiment,
the experimental detectors are only capable to measure the confined hadrons emerging
from the initial heavy-ion collisions. Therefore, one has to infer properties of the QGP
based on the final-state hadrons measured in the detectors. Since the initial heavy-ions
posses only longitudinal momentum wrt. the beam axis before the collision, one focuses
in these measurements mainly on the transverse momenta wrt. the beam axis since these
momentum components must have been produced predominantly by final state interactions.

In the following sections we review different hadronic observables proposed for studying
the characteristics of the partonic medium created in ultra-relativistic heavy-ion collisions.
Due to the complexity of a heavy-ion collision, each observable on its own has only limited
significance. It is rather the interplay of various observables considering different aspects
of the bulk medium evolution that allow reliable conclusions about the hot and dense
matter. In this work we mainly focus on the energy loss of energetic, light partons and the
elliptic flow within the bulk medium as measured in the run I of the LHC program. For
other observables as, e.g., the energy loss of heavy quarks, the melting of charmonia or the

6Facility for Antiproton and Ion Research
7Gesellschaft für SchwerIonenforschung
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2 Smashing nuclei: the quark-gluon plasma in the laboratory

bulk medium emission of photons, or the recent run II of the LHC program8 we refer to
the literature.

2.3.1 Collective flow of the bulk medium

The general character of a single heavy-ion collision is mainly determined by the impact
parameter of the colliding heavy-ions. If two heavy-ions collide head-on with vanishing
impact parameter, a larger number of reaction products and higher energy densities are
expected in the created medium than in collisions with larger impact parameter. Exper-
imentally, the centrality of a collision is determined by detectors positioned at larger
distances along the beam axis which measure the remnants of the heavy-ion collision.
While head-on collisions are called central collisions, heavy-ion events with larger impact
parameter are called peripheral collisions. This centrality can be related via the Glauber
model introduced in Appendix D to the number of participating nucleons Npart and the
number of binary nucleon-nucleon interactions Ncoll.

Due to the relativistic velocities of the nuclei, the initial shape of the heavy ions can
be approximated by thin, circular discs in the (x, y)-plane transverse to the beam axis,
which point along the z-direction. Since in peripheral collisions most of the spectator
nucleons leave the collision zone unmodified, the collision zone of peripheral events is
therefore given by the intersection of two circles in the (x, y) plane. A sketch of this
almond-shaped distribution of the initial nucleon-nucleon interaction is given in Fig. 2.4.
Due to the collectivity of the created medium and thereby the generated pressure gradients,
this initial eccentricity in configuration space is translated to an asymmetry in the transverse
momentum of the individual partons and hadrons during the medium expansion. This
relation between spatial eccentricity and momentum anisotropy is stronger for more
effective microscopic interactions, which lead to a stronger flow within the medium.

In order to quantify the momentum anisotropy one decomposes the measured hadronic
spectra dN/d� depending on the azimuthal angle � into Fourier harmonics vn. The angle
� is defined as the azimuthal angle relative to the reaction plane spanned by the beam axis
and the impact parameter vector ~b. The Fourier decomposition is then given by [VZ96;
PV98]

E
d3
N

d3
p

=
d3
N

p? dp? dy d�

=
1

2⇡

d2
N

p? dp? dy

 
1 +

1X

n=1

2vn cos (n(�� r))

!
, (2.4)

where
�
E, px, py, pz

�
is the four-momentum of a particle, p? =

q
p
2

x + p
2

y its transverse
momentum and y = log ((E + pz)/(E + pz)) its momentum space rapidity, which is
similar to a velocity generalized to relativistic kinematics. As sketched in Fig. 2.4 the
reaction plane angle is denoted by  r and considers the orientation of the specific event
at hand. The different Fourier coefficients vn have different physical meanings: while
the directed flow v1 measures the radial expansion of the medium, the elliptic flow v2

considers the momentum anisotropy of particles in the transverse direction (s. below).
8Although most of the observables measured in the run I of the LHC program were recently repeated during run II at

the higher CoM energy p
sNN = 5.02 TeV, in this work we focus on results from run I only. This is mainly reasoned

by the additional, significant effort necessary for recalculating the numerical simulations within this work, while at
the same time we expect only modest quantitative differences for the results presented.
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Figure 2.4: Sketch for the almond-shaped collision zone of a peripheral heavy-ion collision. The circles
represent the colliding heavy-ions flying in the z direction. The different given quantities
are defined for the calculation of dN/d� (for more details see text). Figure taken from
Ref. [CMS13a].

Higher-order Fourier coefficients with n � 3 are sensitive to fluctuations in the initial
nucleon distributions of the colliding heavy-ions that are translated to the final state hadron
distribution.

For the experimental measurement of the Fourier coefficients vn a precise determina-
tion of the reaction plane of a given event, the so called event plane, is necessary in
order to correctly define the azimuthal angles � and  r. This determination is challeng-
ing in experiments, so that recent experiments use cumulants—momentum correlations
between different measured particles—to appropriately calculate the different Fourier
coefficients [Sne11; Bil+11]. For example, v2{4} denotes the four-particles cumulant of
the elliptic flow v2. In contrast, for studies of elliptic flow within theoretical simulations
(cf. Section 7.1.3) one can arbitrarily define the orientation of the event plane and therefore
choose  r = 0. One can show that the elliptic flow coefficient v2 of a particle can then be
derived to [VZ96]

v2 =

*
p
2

x � p
2

y

p
2

?

+
. (2.5)

In ideal hydrodynamics, the measured elliptic v2 is directly proportional to the initial
spatial eccentricity of the heavy-ion collision. However, the inclusion of viscous effects
may reduce the resulting v2, which makes a measurement of v2 to an observable sensitive
to the shear viscosity-over-entropy ratio ⌘/s of the produced matter. By studying v2 in
peripheral Au + Au collisions at psNN = 200 GeV, experiments at RHIC first discovered
matter that could be described by a significant small value for ⌘/s, which was interpreted
by the creation of a nearly “perfect fluid”. Figure 2.5 shows results for different flow
coefficients vn obtained in peripheral to central psNN = 2.76 TeV Pb + Pb collisions
at LHC together with hydrodynamical calculations based on Glauber initial conditions
and employing different values for ⌘/s. In these comparisons, the experimental results
for vn in peripheral collisions at LHC agree with the assumption of a small ⌘/s close
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Figure 2.5: Comparison of the flow harmonics vn of charged particles depending on their transverse mo-
mentum p? measured by the ALICE collaboration [ALI11] for different centralities 30–40 %
(top panel), 0–5 % (middle panel) and 0–2 % (bottom panel). Additionally, hydrodynamical
predictions [SJG11] for v2 and v3 calculated with Glauber initial conditions and different
shear viscosity-over-entropy ratios ⌘/s are given. Figure taken from Ref. [ALI11].
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2.3 Experimental signatures of the quark-gluon plasma

to the limit ⌘/s = 1/(4⇡) predicted by ADS/CFT9 [KSS04]. On the other hand, the
finite v2 in central collisions and the significant triangular flow additionally point to the
importance of fluctuations in the initial state. Recent studies within viscous hydrodynamics
are successful in describing higher-order Fourier coefficients vn�3 by considering both a
finite ⌘/s and fluctuating distributions of the initial nucleon-nucleon collisions [SJG11;
STV12c; STV12a]. These fluctuations then may lead to triangular structures giving rise
to triangular eccentricities that are translated by collective effects to a triangular flow of
hadrons. Furthermore, if one compares the measured v2 of different hadron species by their
respective valence quark content, one finds that the elliptic flow scales with the number
of valence quarks. These findings point to the assumption that the elliptic flow is mainly
caused during the early partonic phase of a heavy-ion collision (for more details, see
Ref. [JZ06]). Therefore we present in Section 7.1.3 numerical results for the elliptic flow
v2 in p

sNN = 2.76 TeV Pb + Pb collisions obtained by the partonic transport approach
BAMPS.

2.3.2 Jet quenching

Besides the presented collectivity of hadrons, one of the most prominent observables
for studying the partonic stages of ultra-relativistic heavy-ion collisions is jet quenching.
Jets are partons with high transverse momentum p? that are produced in hard processes—
processes with a high momentum transfer Q2—in elementary e+ + e� as well as hadronic
collisions as, e.g., p + p collisions. Within p + p collisions, these hard processes arise
from scatterings between the partons of the incoming protons. Due to the necessary
significant momentum transfer between partons, the probability for the production of a jet
is drastically smaller than for softer interactions. However, the high momentum transfers
of these processes and thereby small QCD coupling ↵s (cf. Section 2.1.2) also allow the
calculation of these partonic production processes within perturbative QCD. In order to
conserve energy and momentum, jets are produced (at leading-order pQCD) as back-to-

back
10 pairs. Assuming the factorization theorem of hard processes in pQCD [CSS89], the

differential production cross section of these di-jet pairs in, e.g., p + p collisions is given
by the convolution [Wie09]

d�p+p!h+X =
X

f

X

i,j,k···

fi

�
x1, Q

2
�
⌦ fj

�
x2, Q

2
�
⌦ �̂ij!f+k··· ⌦Df!h

�
z, µ

2

F

�
. (2.6)

While fi,j denotes the parton distribution functions of parton species i and j in the incoming
protons, �̂i j!f k is the elementary cross section for the characterizing partonic process
i j ! f k calculated within pQCD. Finally, the hadronization of the outgoing partons is
obtained by fragmentation functions Df!h

�
z, µ

2

F

�
, which are determined empirically in

elementary e+ + e� collisions and which give the probability for a parton of species f and
momentum p

p
? to fragment into a hadron h with momentum p

h
? = zp

p
?. µF denotes the

factorization scale distinguishing between hard and soft processes. Different to the pQCD
cross section, the parton distribution functions as well as the fragmentations functions

9Anti-de-Sitter/conformal field theory. In this conjecture, a conformal field theory similar to QCD is related to an
Anti-de-Sitter space obeying the laws of general relativity. For example, the high energetic partons studied in this
work are described by strings falling on the horizon of a black hole.

10“Back-to-back” means in this context that the di-jet pair is produced with an angle �� = ⇡ in the azimuthal plane
wrt. the beam axis due to transverse momentum conservation. At higher orders, there is the finite probability for
additional particle production so that there are deviations to �� = ⇡.
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2 Smashing nuclei: the quark-gluon plasma in the laboratory

can, at the moment, only be determined experimentally. In Section 7.3.1 we will further
discuss the role of fragmentation functions for obtaining hadronic spectra from the partonic
transport approach BAMPS.

Besides more elementary p + p collisions, jets are also produced in hard nucleon-nucleon
interactions of the colliding nuclei in a heavy-ion collision. In contrast to p + p collisions,
these jets have to traverse the bulk medium created by soft interactions of other nucleon-
nucleon scatterings before reaching the detectors. On their way through the medium, the
jet partons interact with the partonic background medium, lose energy and momentum and
thereby probe different phases of the hot matter. Already in the 1980s Bjorken [Bjo82]
anticipated the tomographic capabilities and proposed jet quenching as an observable for
obtaining information about the medium properties of the partonic matter created in heavy-
ion collisions. Jet quenching was then first experimentally observed in p

sNN = 200 GeV
Au + Au collisions at RHIC, where an attenuation of the away-side11 peak in the angular
correlation distribution of energetic hadrons was found [STA03; STA05].

The number and the spatial position of the hard nucleon-nucleon interactions and
thereby the production points of jets can be calculated by the Glauber model discussed in
Appendix D and applied in Section 7.1.1.

Among the advantages of jet studies in heavy-ion collisions are the short formation time
⌧f ⇠ 1/p? of jets due to its large transverse momentum. Hence, jets are formed already at
the beginning of the heavy-ion collision and may therefore probe also the early stages of
a heavy-ion collision. Furthermore, the possibility to calculate the initial jet production
within pQCD and the assumed universality of the jet production allows a direct comparison
of the hadronic spectra at high p? measured in heavy-ion collisions with corresponding
spectra obtained in p + p collisions. Any difference between both spectra can then be
attributed to final-state effects originating from jet quenching within the heavy-ion medium.

However, the above outlined picture of jets and jet quenching is ill-defined. The out-
going partons of the initial hard scattering may have obtained a significant virtuality,
m

2
> E

2
� ~p2, both in p + p and nucleon-nucleon interactions of heavy-ion collisions.

Consequently, the partons aim to reduce their virtuality by emitting additional gluons via
1 ! 2 process leading to an evolution in virtuality that can be described by DGLAP12

evolution equations [AP77; Dok77; GL72]. Moreover, the emitted gluons themselves may
further emit other gluons or split into quark-antiquark pairs and thereby form entire parton

showers which consist of one (or few) hard parton(s), the leading parton, together with its
surrounding cloud of softer emitted partons. In heavy-ion collisions, the parton showers
then evolve within the partonic medium and thereby modify their distribution around the
respective leading parton. By reconstructing jets based on these parton showers one may
characterize the medium modification of jets more differentially than based on only the
leading partons.

Therefore, depending on the specific physics question at hand, one may categorize jet
quenching studies in two major categories:

Suppression of leading hadron spectra

By studying jet quenching, one is interested in the medium modification of jets due to
their transition through the hot matter created in heavy-ion collisions. These medium

11While the near-side defines the hemisphere around a distinguished particle as, e.g., a jet, the away-side defines the
opposite hemisphere.

12Dokshitzer-Gribov-Lipatov and Altarelli-Parisi
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2.3 Experimental signatures of the quark-gluon plasma

modifications may then serve as a probe for the medium properties as, e.g., the density of
the underlying background medium. In order to quantify this medium modification one
defines the nuclear modification factor RAA, which compares the spectra at high transverse
momentum p? from p + p collisions with the corresponding spectra within heavy-ion
collisions. It is given by

RAA =
d
2
NAA/dp? dy

Ncoll d
2
Npp/dp? dy

, (2.7)

where d2
NAA / dp? dy denotes the differential spectrum from heavy-ion collisions and

Ncoll d
2
Npp / dp? dy is the corresponding spectrum from p + p collisions scaled by the

number of binary nucleon-nucleon interactions Ncoll. Hence, a value of RAA = 1 corre-
sponds to no modification of the spectra within heavy-ion collision, whereas any deviation
from this value, especially at high p?, may hint to final-state effects as, e.g., jet quenching.
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Figure 2.6: Comparison of the nuclear modification factor RAA within central heavy-ion collisions mea-
sured by different experiments at SPS, RHIC and LHC together with theoretical calculations.
Figure taken from Ref. [CMS12e].

In Fig. 2.6 we show the p? dependence of the nuclear modification factor RAA

measured in Au + Au and Pb + Pb collisions with different CoM energies p
sNN =

{17.3 GeV; 200 GeV; 2760 GeV} together with theoretical calculations from perturbative
QCD. And indeed, the more energetic heavy-ion collisions at RHIC and LHC show a sig-
nificant attenuation of hadrons over the entire p? range, whereas at lower SPS energies this
suppression is absent (for more details, see Ref. [DEn04]). This finding strongly supported
the proposed jet quenching as a signal for the formation of the quark-gluon plasma at
RHIC and LHC energies. The suppression of charged hadrons at LHC is strongest around
p? ⇡ 6–8 GeV and rises at higher p?. Theoretical models including radiative pQCD
energy loss of jets are successful in describing the measured suppression. We extend these
models in Chapter 7 by calculating the nuclear modification factor RAA within BAMPS
simulations for jets traversing an expanding heavy-ion media.
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2 Smashing nuclei: the quark-gluon plasma in the laboratory

Modification of parton showers and reconstructed jets

While the previously introduced RAA of charged hadrons measures the suppression of
individual, high p? particles and thereby the energy/momentum loss of only the leading
parton/hadron, modern experiments are capable to also determine the medium modification
of entire parton showers, namely the leading parton together with its associated vacuum
and medium-induced radiation. For this, partons or hadrons are clustered into objects
called reconstructed jets by well-defined jet reconstruction algorithms. Developed in more
elementary e+ + e� and p + p collisions, these algorithms aim to appropriately group
the different partons in order to obtain information about the initial hard-scattered parton
initiating the parton shower. In other words, jet reconstruction algorithms in elementary
particle collisions reenact the different QCD splittings of the virtual parton to reconstruct
the initial parton. When applying the concept of reconstructed jets to heavy-ion collisions,
this allows for more differential studies of the medium modification of jets by not only
considering the energy loss of the leading parton but, e.g., also a potential widening or
narrowing of the parton shower around the leading parton. In the following we briefly
revise the concept of reconstructed jets and its application in heavy-ion physics. For
more information about the actual concept of jet reconstruction in general we refer to the
excellent review in Ref. [Sal10].

A poor man’s version for a jet reconstruction algorithm defining which particles belong to
the same jet could be fixed cones around the leading parton. Consequently, the reconstructed
jets could then be found by associating every parton within an angular distance ri =p
��2

i +�y
2

i < R to the same reconstructed jet, where ��i and �yi are the distances of
parton i to the leading parton in the azimuthal angle � and the momentum space rapidity
y, respectively. The resolution parameter or jet cone radius R then defines the maximum
distance in the �-y plane for a parton to be reconstructed in the same jet. The final momenta
of the reconstructed jets are obtained by summing the four-momentum of each parton
within the same reconstructed jets. However, this fixed cone approach assumes that the
leading parton is the most reasonable choice for the center of the reconstructed jets. In
contrast, iterative cone algorithms, as they are employed in modern hadron collider studies,
choose a (random) seed particle to which the particle momenta with r < R are added.
After each added momentum the newly obtained jet axis is then the seed for the next
iteration step. This iteration procedure is completed, when the reconstructed jets are stable.

However, the presented iterative cone algorithms suffer from the characteristics of QCD:
there is always a finite probability for a very soft and/or very collinear additional gluon
emission. Since the reconstructed jets from the iterative cone algorithm depend on the
specific choice of seed, any other choice of seed resulting from one additional QCD
splitting could lead to an other result for the reconstructed jets. In order to avoid these
issues, one defines requirements for modern jet algorithms called infrared safety and
collinear safety. While infrared safety ensures that the resulting reconstructed jets are
robust against any additional soft gluon splitting, the collinear safety is defined so that
results do not change if another collinear gluon emission occurs. Both requirements lead
to the assumption that reconstructed jets are insensitive to hadronization processes at a soft
momentum scale. Therefore we assume within this work, that jets being reconstructed
from partons are comparable to jets being reconstructed from the corresponding hadrons
after the hadronization.

Another approach for reconstructing jets are sequential recombination or clustering jet
algorithms that attempt to recapitulate the original QCD branchings. These clustering algo-
rithms are both infrared and collinear safety since they calculate at each step combinations

20



2.3 Experimental signatures of the quark-gluon plasma

of all particles and therefore the concrete choice of a seed is dispensable. The algorithm
for such a recombination algorithm with resolution parameter or “cone radius” R can be
written as [Sal10]:

Algorithm 1: Jet clustering algorithm
do

foreach particle pair i, j do

Calculate distance dij = min

⇣
p2p?; i, p

2p
?; j

⌘
(�i��j)

2
+(yi�yj)

2

R
2

foreach particle i do

Determine diB = p2p?; i

if min
�
dij , diB

�
= min

�
dij

�
then particle i and j belong to same jet

Combine particle i and j to new particle k
Remove particle i and j from particle list

else if min
�
dij , diB

�
= min

�
dij

�
then no other particle close enough to particle i

Define particle i as final jet
Remove particle i from particle list

while number of particles N 6= 0;

Please note that all employed quantities in the reconstruction algorithm are Lorentz
invariant, a crucial requirement for the ultra-relativistic collisions at RHIC and LHC. As for
the cone algorithms, the particles are combined by summing their respective four-momenta.
Depending on the specific choice of parameter p one distinguishes between different
clustering algorithms:

• The choice p = 1 represents the k? algorithm [ES93] preferring clusterings around
soft particles.

• The Cambridge/Aachen algorithm [WW99; Wob00] neglects any particle momentum
dependence by setting p = 0 and thereby reconstruct jets by only considering angular
distances.

• Opposite to the k? algorithm and most often used in the heavy-ion context, the
anti-k? algorithm [CSS08] with p = �1 reconstructs jets around hard cores reaching
to softer outer partons.

We show in Fig. 2.7 typical clustering results from the different recombination algorithms
together with a modern choice of cone algorithm [SS07]. One drawback of clustering
algorithms are their significant numerical costs: depending on the employed algorithm
it takes ⇠ N

3 steps to cluster N particles. By applying techniques based on Voronai
diagrams, modern clustering algorithms as published in the FASTJET package achieve
speeds ⇠ N logN [CSS12; CS05].

These performance improvements together with the increased production probability of
jets at LHC enabled experiments to not only measure jets in p + p collisions but also in
heavy-ion collisions. The first evidence of the medium modification of reconstructed jets
was the momentum asymmetry between the two leading reconstructed jets in a heavy-ion
event [ATL10; CMS11b; CMS12b]. Already in p + p collisions, the stochastic nature of
the shower evolution together with the finite resolution parameter R leads to an imbalance
between the jets reconstructed from the partons showers initiated by the initially back-to-
back partons. This momentum imbalance is further enhanced by the medium modification
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Figure 2.7: Comparison of the results of different jet reconstruction algorithms applied to a parton-level
event by the event generator HERWIG [Mar+92; Cor+01]. In order to visualize the “area” of
the reconstructed jets soft and random particles, so called ghosts were added to the events.
While the anti-k? and SIS-CONE algorithms lead to rather circular jet areas, the found jets by
the k? and Cambridge/Aachen algorithms are more fuzzy. Figure taken from Ref. [Sal10].

of the parton showers, which may be different for the two partons showers depending
on their traveled path-lengths within the expanding medium. For example, if the initial
production point of the hard scattering is on the edge of the heavy-ion collision, one parton
shower may leave the collision almost unmodified while the other parton shower has to
traverse a significant amount of hot and dense matter before reaching the detectors. The
momentum imbalance is quantified by

AJ =
p?; Leading � p?; Subleading

p?; Leading + p?; Subleading
, (2.8)

where p?; Leading (p?; Subleading) is the transverse momentum of the leading (subleading)
reconstructed jet. Consequently, AJ = 0 corresponds to the case of equal transverse
momentum of the reconstructed jets, whereas AJ = 1 would represent the case where
the subleading jet completely vanishes. Figure 2.8 shows the first measurement of AJ in
central Pb + Pb collisions with p

sNN = 2.76 TeV by the ATLAS collaboration. And indeed
the distribution of momentum imbalance measured in p + p collision significantly differs
from the distribution measured in heavy-ion collisions, where an enhancement of events
with larger momentum asymmetry can be found. In contrast to other models [QM10;
You+11a; Col+12], we found in Ref. [Sen+15] that the momentum imbalance is mainly
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2.3 Experimental signatures of the quark-gluon plasma

determined by the asymmetry already present in the initial state of the collision and not by
the different path lengths within the medium. We revise in Section 7.4.2 these results and
present current calculations within the BAMPS framework.
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Figure 2.8: Momentum asymmetry AJ between the two leading reconstructed jets measured by the
ATLAS experiment [ATL10] within central (0–10 %) p

sNN = 2.76 TeV Pb + Pb (solid
points) and corresponding p + p (open points) collisions. In addition the yellow histogram
shows the theoretically expected AJ distribution from unquenched jets superimposed into an
heavy-ion background. Figure taken from Ref. [ATL10].

Furthermore, similar to the nuclear modification factor RAA of charged hadrons, one can
define a jet RAA comparing the p? spectra of reconstructed jets in p + p collisions with the
corresponding spectra in heavy-ion collisions

R
jet
AA =

d
2
N

jet
AA/dp? dy

Ncoll d
2
N

jet
pp/dp? dy

. (2.9)

Different to the RAA of individual particles, the jet Rjet
AA is due to the finite resolution R

of jet reconstruction additionally sensitive to a potential medium-induced broadening of
the parton shower. Figure 2.9 shows the jet Rjet

AA measured by the ALICE and ATLAS
experiments. Interestingly, the suppression of reconstructed jets is comparable to the
suppression of single hadrons as presented in the previous section. Furthermore, the
difference between the Rjet

AA with R = 0.2 and R = 0.4 seems to be negligible, which hints
to a medium modification of jets at larger angles to the reconstructed jet axis.

Among the further inter-jet observables studied in run I of the LHC program are the
suppression of heavy-flavor tagged jets and the correlation of jets with energetic photons.
The heavy-flavor tagged jets aim to characterize the different energy loss mechanisms
of (approximately) massless quarks and massive quarks by, e.g., tagging a reconstructed
jet with a bottom quark nearby a b-tagged jet and comparing it to the inclusive jet re-
sults [CMS14a]. On the other hand, �+jet correlation studies consider a medium-modified
reconstructed jet that was produced initially in, e.g., an initial hard q + g ! � + q in-
teraction [CMS12d]. While the jet interacts with the medium and thereby loses energy
and momentum, the photon traverses the medium almost undisturbed. Since both were
produced back-to-back at leading-order, this allows a reliable definition of the energy loss
of the jet, which coined the term “golden channel” for such kind of processes.
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Figure 2.9: Comparison of the nuclear modification factor RAA of reconstructed jets measured by
different experiments in central psNNs=2.76 TeV Pb + Pb collisions. While the left panel
shows the RAA of reconstructed jets with R = 0.2 measured by the CMS and ALICE
collaborations, the right panel presents the corresponding results with R = 0.4 measured by
the CMS and ATLAS collaborations. Figure taken from Ref. [CMS16].

While the above presented inter-jet observables dealt with the medium modification
of a reconstructed jet as a whole, there are also intra-jet studies relating individual par-
ticles to the reconstructed jets in order to obtain information about the modification of
particles around and within the reconstructed jets. For example, the jet shape observable
⇢(r) measures the transverse momentum distribution around the jet axis [CMS13b]. As
we will further discuss in Section 7.4.3, one quantifies the medium modification of jet
shapes by comparing their distribution in central Pb + Pb collisions with the corresponding
distribution in p + p collisions. Different intra-jet observables [CMS12c; CMS14b] showed
that the energy and momentum loss of reconstructed jets is mainly caused by soft particles
transported to large angles wrt. the jet axis and a collimation of the inner, hard jet core.
We will further discuss these findings in Section 7.4.3, where we present the jet shapes as
calculated in the partonic transport approach BAMPS.
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3 Microscopic processes of partons in the
quark-gluon plasma

We learned in the previous chapter that there is evidence that partons, quarks and gluons, are
the relevant degrees of freedom in the early phases of ultra-relativistic heavy-ion collisions.
We discussed in Section 2.1 that the fundamental theory for these partons is quantum
chromodynamics (QCD), which can be solved by a perturbative expansion (pQCD) of the
Lagrangian Eq. (2.1) on page 6 in orders of the QCD coupling ↵s. Within the partonic
transport approach employed in this work for simulating the quark-gluon plasma, these
pQCD interactions are used when numerically solving the 3+1D Boltzmann equation
(cf. Chapter 4). In this chapter we present the different microscopic processes from pQCD
that are considered within the present work: While Section 3.1 introduces the binary 2 ! 2
matrix elements from leading-order pQCD, Section 3.2 briefly revises the Gunion-Bertsch
approximation of 2 ! 3 Bremsstrahlung processes valid for the kinematical region of
hard parton interactions. The processes presented in Sections 3.1 and 3.2 are calculated
in vacuum pQCD, which may suffer from infrared divergences originating from massless
internal propagators. We will discuss how these divergences can be screened in the hot and
dense environment of a quark-gluon plasma by attaching effective masses to the internal
propagators, which are inspired by more formal thermal field theory calculations, namely
from the Hard-Thermal-Loop approximation (HTL). Furthermore, we explain how the
scale-dependence of the QCD coupling ↵s

�
Q

2
�

discussed in the previous section can be
considered in the context of microscopic interactions in a partonic medium.

One key concept in any kind of particle scatterings is the cross section � measuring the
probability for a specific final state emerging from a given initial state of particles. For
example, if two bunches of particles A and B with lengths lA, lB and densities ⇢A, ⇢B
scatter with each other, the cross section is defined by [PS95]

� :=
No. of scattering events

⇢A lA ⇢B lB A
(3.1)

where A is the transverse area of each bunch. In quantum theory, the quantity measuring
the transition from initial to final states is the invariant matrix element M. The cross
section for a 2 ! N process of two particles A and B is then given by [PS95]

�2!N =
1

2ŝ

1

⌫AB

 
NY

i=1

Z
d
3
pi

(2⇡)32Ei

!
(2⇡)4�(4)(pA + pB �

NX

i=1

pi)
��M2!N

��2 , (3.2)

where ŝ = (pA + pB)
2 is the Mandelstam variable representing the available center-of-

momentum energy, |M2!N |
2 is the matrix element of the respective scattering process

averaged over all initial and summed over all final quantum states and ⌫AB considers
whether the initial state particles A and B are distinguishable. The integration over the
phase space of final state particle momenta preserves energy and momentum conservation
between the initial and final state via the �(4)-function. This section reviews these total
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3 Microscopic processes of partons in the QGP

cross sections calculated for both elastic 2 ! 2 and inelastic 2 $ 3 processes within
perturbative QCD.

Please note that the partonic processes introduced in this section are calculated under the
assumption that the parton masses are negligible at energy scales ⇠ O(GeV) characteristic
for high-energy physics. While this assumption seems legit for gluons and the lighter
quark flavors, up (mu ⇡ 2.2 MeV), down (md ⇡ 4.7 MeV) and strange (ms ⇡ 95 MeV),
same arguments do not hold for charm (mc ⇡ 1.275 GeV) and bottom (mb ⇡ 4.18 GeV)
flavored quarks1. Hence, the presented framework was previously also extended to massive
pQCD matrix elements in order to simulate the transport properties of heavy quarks. Since
we constrain ourselves in this work to jet quenching in the light flavor sector, we set
mq = mg = 0 for the rest of this work and refer to Refs. [Uph+10; Uph+11; Uph+12;
Uph13; Uph+14; Sen+17] for more details about heavy flavor results within the BAMPS
approach.

3.1 Elastic 2 ! 2 pQCD processes

In a binary 2 ! 2 scattering, two incoming partons, A and B, with four-momenta
pA = (EA, ~pA) and pB = (EB, ~pB) scatter with each other with the result that two
outgoing partons, 1 and 2, with momenta p1 and p2 leave the scattering. Please note that we
orient us in the present work on the standard nomenclature in the BAMPS framework and
denote binary 2 ! 2 interactions often as elastic interactions since no additional particle
is produced in these interactions. This is in contrast to inelastic 2 $ 3 processes discussed
in the next section, where an additional parton is either emitted or absorbed.

As we have seen in the previous section, the cross section of a scattering depends via
Eq. (3.2) on the Mandelstam variable ŝ determining the available center-of-momentum
energy

p
ŝ of the collision. The Mandelstam variables,

ŝ = (pA + pB)
2 = (p1 + p2)

2

t̂ = (pA � p1)
2 = (pB � p2)

2 (3.3)

û = (pA � p2)
2 = (pB � p1)

2
,

are Lorentz invariant quantities which characterize the kinematics of a scattering. One
can show that the different Mandelstam variables are not independent from each other
but the relation ŝ + t̂ + û =

P
i m

2

i holds, where the sum runs over all particle masses
mi contributing to the specific process. Consequently, for massless partons û = �ŝ� t̂

follows.
At a given scale ŝ, the outgoing parton momenta p1 and p2 are mainly determined by

the momentum transfer q2, or equivalent the Mandelstam variable t̂, of the interaction.
Moreover, the momentum transfer t̂ directly relates to the scattering angle ✓\(~pA, ~p1) in
the center-of-momentum (CoM) system. By projecting out t̂ in Eq. (3.2) on the previous
page one derives the differential cross section d� / dt̂ for a given interaction to [Uph13]

d�

dt̂
=

1

16⇡ŝ2
��M

��2
A,B!1,2

, (3.4)

which describes the distribution of different momentum transfers t̂ at a given ŝ. Obviously,
1The numerical values for the different quark masses were taken from the 2018 edition of the Review of Particle

Physics [Tan+18].
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3.1 Elastic 2 ! 2 pQCD processes

the integrated total cross section can also be obtained from the differential cross section via

� =

t̂maxZ

t̂min

d�

dt̂
dt̂ . (3.5)

By employing the relation t̂ = �ŝ/2(1� cos ✓) between t̂ and the scattering angle ✓, one
derives the integration limits t̂min = �s and t̂max = 0 from ✓ = [0; ⇡]. Therefore the
Mandelstam variable t̂ (and also û) is negative and the corresponding momentum transfers
are defined as q2 = �t̂.

g, pA

g, pB

g, p1

g, p2

(a) s-channel

g, pA

g, pB

g, p1

g, p2

(b) t-channel
g, pA

g, pB

g, p1

g, p2

(c) u-channel

g, pA

g, pB

g, p1

g, p2

(d) four-gluon vertex

Figure 3.1: Different channels of the process gg ! gg calculated in leading-order pQCD. The respective
channel is determined by the characteristic momentum scale given by the momentum of the
internal gluon propagator. For more details see Ref. [PS95].

Both the differential and the integrated cross sections rely on the averaged matrix el-
ements

��M
��2 of the specific partonic process. These matrix elements can be directly

calculated within perturbative QCD with the help of Feynman diagrams, a tool schemati-
cally representing the perturbative expansion of Eq. (2.1) on page 6. For example, due to
the abundance of gluons and their larger QCD color factor (we will discuss the QCD color
factors of quarks and gluons later in this section) the processes gg ! gg and gq ! gq
are the dominant processes of partons within the quark-gluon plasma during the initial
stages of an ultra-relativistic heavy-ion collision. The differential cross section for the
process gg ! gg calculated in perturbative QCD at leading-order in the QCD coupling
↵s reads [PS95]

d�gg!gg

dt̂
=

9⇡↵2

s

2ŝ2


3�

t̂û

ŝ
2
�

ŝû

t̂
2
�

ŝt̂

û
2

�
. (3.6)

The corresponding matrix elements of the active channels contributing to the process
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3 Microscopic processes of partons in the QGP

gg ! gg are shown as Feynman diagrams in Fig. 3.1. At large ŝ, which could be
realized, e.g., in a scattering of an energetic parton with a thermal parton, the process
gg ! gg is dominated by the t-channel processes

��M
��2 ⇠ 1/t̂2. This dominance of

the t-channel at large CoM energies is a characteristic feature of perturbative QCD and
can be found also in other partonic processes at leading order. Therefore, the differential
cross sections of quarks and gluons at high ŝ scale by the QCD color factors, which are
CF = (N2

c �1)/(2Nc) = 9/4 for quarks and CA = Nc = 3 for gluons and which originate
from the group Casimir factors of SU(3). Please note that, in contrast to other approaches,
we explicitly consider also the four-gluon vertex in the process gg ! gg, which follows
from the self-interactions of gluons due to the non-Abelian symmetry of QCD. While this
channel can be neglected at higher

p
ŝ (
��M

��2
4�gluon

⇠ 1/ŝ2), it significantly contributes
to the interactions of softer gluons as they are, e.g., considered in Section 5.3.3, where
we discuss the momentum broadening of emitted gluons from inelastic Bremsstrahlung
processes.

gluons gg ! gg gg ! qq
gq ! gq
gq ! gq

quarks qq ! qq qq ! qq
qq ! qq qq ! gg qq ! q 0q 0

qq 0 ! qq 0 qq 0
! qq 0

qg ! qg qg ! qg

Table 3.1: The different elastic parton processes considered in the present work.

Similar to gg ! gg, one can also calculate the matrix elements for other parton
processes within pQCD. Table 3.1 shows the elastic processes of different parton flavors—
quarks q , gluons g and anti-quarks q—considered within this work. For an overview of
the corresponding matrix elements and their Feynman diagrams we refer to Appendix A.

The previously discussed matrix elements show divergences at soft momentum scales.
For example, the t-channel contribution to the gg ! gg matrix element diverges for
t̂ ! 0 at a fixed ŝ. These divergences originate from the massless internal quark and gluon
propagators of the different channels contributing to the respective process. They can be
formally cured by calculating the above cross sections within thermal field theory valid for
the hot and dense environment of a quark-gluon plasma. One method which is commonly
applied for such calculations is the Hard-Thermal-Loop (HTL) approximation [Pis89;
BP90]. Within this work, we effectively cure the divergences by introducing a Debye
screening mass for the diverging propagators. In other words, due to the screening within
the medium, the internal propagators become effectively massive and thereby cure the
divergences. The Debye masses of quark and gluons depend on the number of quark
flavors Nf and colors Nc, and can be written as [Won96]

m
2

D := m
2

g = 16⇡↵s

Z
d3
p

(2⇡)3
1

p
(Ncfg +Nffq) (3.7)

m
2

q = 4⇡↵s
N

2

c � 1

2Nc

Z
d3
p

(2⇡)3
1

p
(fg + fq) , (3.8)

where fi is the phase space distribution of quarks and gluons, respectively. For example,
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3.1 Elastic 2 ! 2 pQCD processes
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Figure 3.2: Integrated elastic cross section � depending on the CoM energy ŝ of the scattering partons
for the different partonic 2 ! 2 processes considered in this work. The QCD coupling is
chosen as ↵s = 0.3 and the cross section is scaled by the Debye mass m2

D.

within a thermal medium with temperature T the Debye masses can be evaluated to

m
2

D =
8↵s

⇡

�
Nc +Nf

�
T

2 (3.9)

m
2

q =
2↵s

⇡

N
2

c � 1

Nc
T

2
. (3.10)

After introducing the effective Debye screening mass, the differential cross section of the
process gg ! gg reads

d�gg!gg

dt̂
=

9⇡↵2

s

2ŝ2

"
3�

t̂û

ŝ
2
�

ŝû
�
t̂�m

2

D

�2 �
ŝt̂

�
û�m

2

D

�2

#
. (3.11)

Figure 3.2 shows the integrated cross sections � depending on ŝ for the different elastic
2 ! 2 processes considered in this work. The divergences in the leading-order matrix
elements are cured by the described Debye screening. As already discussed, the parton
processes which include a t-channel contribution scale with the QCD color factors at high
ŝ. The contribution of the other processes gg ! qq and qq ! q 0q 0 which include only an
active s-channel is negligible at high CoM energies, whereas at softer momentum scales
their contribution can be significant.

As we have seen in Section 2.1.2, the scale dependence of the QCD coupling ↵s

�
Q

2
�

is
a crucial property of QCD leading to the confinement of partons within hadrons at soft
momentum scales and the asymptotic freedom of partons at large momentum scales. In
the previous discussion of the elastic matrix elements we neglected this scale dependence
but assumed that the QCD coupling is constant. Although this is a legit approach when
investigating phenomena at a fixed scale, the energy loss of jets within a medium studied
within this work may obtain contributions from different momentum scales: While the
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3 Microscopic processes of partons in the QGP

interactions within the heavy-ion medium occur on softer momentum scales and thereby
stronger QCD coupling, jet-medium interactions exhibit harder momentum transfers
leading to a softer QCD coupling. In order to evaluate this “running” of the QCD coupling
microscopically, we choose the value of the QCD coupling ↵s

�
Q

2
�

based on Eq. (2.2) on
page 8, where the momentum scale Q

2 is chosen by the Mandelstam variable ŝ, t̂ or û of
the respective channel under consideration. For example, the t-channel contribution in
Eq. (3.11) is replaced by

↵
2

s�
t̂�m

2

D

�2 !
↵
2

s

�
t̂
�

�
t̂�m

2

D

�
↵s

�
t̂
���2 . (3.12)

Consequently, the running of the QCD coupling is considered both in the vertices of
the underlying 2 ! 2 process and the screening of the internal propagators. For more
details about the microscopic implementation of the running QCD coupling we refer to
Refs. [Uph13; Uph+14; Uph+15].

Finally, before introducing inelastic 2 $ 3 process in the next section, we would like
to comment on the small-angle approximation for the pQCD matrix elements applied
in previous studies within BAMPS [FXG09; Foc11]. In this approximation one exploits
the dominance of small momentum transfers, t̂ ! 0, at larger ŝ and approximates the
matrix elements by only considering the t-channel contribution of the respective process.
Consequently, any contribution of, e.g., the four-gluon vertex is neglected in the small-
angle approximation. Furthermore, for small scattering angles ✓ ! 0, the momentum
transfer can be estimated as q

2 = �t̂ ⇡ q
2

?, where q
2

? is the momentum component
transverse to the initial ingoing parton directions. For example, the differential cross
section of the process gg ! gg in the small-angle approximation is then given by

d�gg!gg

dq2?

����
✓!0

=
9⇡↵2

s�
q
2

? +m
2

D

�2 . (3.13)

As we will see in Chapter 5 and also when discussing our results for the medium created
in heavy-ion collisions in Chapter 7, the loosening of the small-angle approximation and
thereby the consideration of other channels than the t-channel leads to a significant increase
of the scattering rate at small parton momenta.

3.2 Inelastic 2 $ 3 processes

One of the advantages of the partonic transport approach BAMPS is the consistent im-
plementation of elastic scatterings and inelastic Bremsstrahlung/annihilation processes.
These inelastic interactions represent processes from the next order in the perturbative
expansion of Eq. (2.1) on page 6. Furthermore, the inclusion of both gluon emission and
annihilation processes ensures the crucial concept of detailed balance, which is essential
for the statistical treatment of parton interactions. However, the exact calculation of the
2 $ 3 matrix element from pQCD is ambitious since the necessary screening of diver-
gences emerging in the higher order terms is not ad-hoc clear. Therefore we employ within
this work an approximation for the inelastic 2 $ 3 matrix elements first developed by
Gunion and Bertsch [GB82] and recently revised in the context of the partonic transport
approach BAMPS by Fochler et al. [Foc+13]. In this section we briefly recapitulate the
improved Gunion-Bertsch (GB) approximation of Ref. [Foc+13] and introduce how the
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3.2 Inelastic 2 $ 3 processes

differential and integrated cross sections of the 2 $ 3 processes are calculated. For more
details about the actual derivation and a comparison to exact pQCD matrix elements we
refer to Refs. [Foc+13; Uph13].

3.2.1 Gluon radiation via 2 ! 3 Bremsstrahlung processes

The Gunion-Bertsch approximation was first formulated by Gunion and Bertsch [GB82]
for mid-rapidity gluon emissions off hard partonic components within high energy hadron-
hadron collisions. Assuming a quark q with momentum pA from one hadron scatters with
another quark q 0 with momentum pB from the other hadron, the conceivable processes
including an additional gluon emission with momentum k =

⇣
k? cosh y,~k?, k? sinh y

⌘

are depicted in Fig. 3.3, where y and k? are the momentum-space rapidity and transverse
momentum, respectively, of the emitted gluon within the CoM frame of the scattering.
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q’, p2
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(a)
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q’, p2
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(e)

Figure 3.3: The scattering channels of the process qq 0 ! qq 0g as considered in the Gunion-Bertsch
approximation. Depending on the chosen gauge either the first or second row can be neglected
within the calculation.

Due to the high energy of the incoming quarks, the original approximation of Gunion
and Bertsch was formulated in the limits,

k? ⌧

p

ŝ q? ⌧

p

ŝ , (3.14)

assuming both soft gluon emissions k
2

? and soft momentum transfers q
2

? between the
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3 Microscopic processes of partons in the QGP

incoming quarks. Furthermore, after introducing the Lorentz-invariant quantity [Foc+13]

x =
k?
p
ŝ
e
y
, (3.15)

representing the fraction of light-cone momentum transported away by the radiated gluon,
Gunion and Bertsch also stated the third condition

xq? ⌧ k? . (3.16)

However, the original Gunion-Bertsch approximation is strictly only valid at mid-rapidity
and therefore it demands x ! 0. Since the scattering probability within a partonic transport
approach as BAMPS is based on the total cross section of the respective 2 ! 3 process,
also contributions of gluon emissions at larger forward- and backward-rapidity have to be
considered. In order to obtain an improved GB approximation also valid at x > 0, Fochler
et al. introduced two corrections to the original GB approximation [Foc+13; Uph13]:

1. Within the limit x ! 0, a factor (1� x)2 could be omitted during the derivation of
Gunion and Bertsch. When considering x 6= 0 and thereby finite gluon rapidities,
this factor has to be explicitly considered in the final results.

2. The derivation by Fochler et al. demanded for an additional constraint x2
s � k

2

?,
which is equivalent to y � 0. Consequently, this approximation would be in principle
only valid for gluon emissions at mid- and forward rapidities. In order to arrive at an
expression also valid at backward rapidity, Fochler et al. compared the results in the
A

+ = 0 gauge, where the gluon is predominantly emitted from the upper quark line,
with the corresponding A

� = 0 gauge, where the gluons is mostly radiated from the
lower quark line. Combining both results, they could show that a simple expression
for the resulting matrix elements can be obtained by substituting

x ! x :=
k?
p
ŝ
e
|y|
. (3.17)

Combining both corrections, the final result for the 2 ! 3 matrix element for the process
qq 0 ! qq 0g in the improved Gunion-Bertsch approximation reads [Foc+13; Uph13]

|M|
2

qq
0!qq

0
g
= 48⇡↵s|M|

2

qq
0!qq

0(1� x)2

2

64
~k?

k
2

?
+

~q? � ~k?⇣
~q? � ~k?

⌘2

+m
2

D

3

75

2

, (3.18)

where |M|
2

qq
0!qq

0 is the matrix element of the elastic process qq 0 ! qq 0 in the small-
angle approximation as discussed in the previous section. Please note that the diverging
propagators of the internal gluon lines in Eq. (3.18) are screened with a Debye mass
corresponding to the effective screening procedure introduced in Section 3.1.

One of the characteristic features of the high energy limit underlying the Gunion-Bertsch
approximation is the splitting of the 2 ! 3 matrix element into an elastic 2 ! 2 contribu-

tion and a probability for emitting a gluon Pg = 48⇡↵s(1� x)2

~k?
k
2
?
+ ~q?�~k?

(~q?�~k?)
2
+m

2
D

�2
,

|M|
2

XY !X
0
Y

0
g
= |M|

2

XY !X
0
Y

0 Pg . (3.19)
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3.2 Inelastic 2 $ 3 processes

This splitting allows to generalize the previous derivation for the process qq 0 ! qq 0g also
to Bremsstrahlung processes involving other parton flavors by applying the corresponding
elastic matrix elements. For example, from the elastic matrix elements in small angle
approximation one can infer [Foc+13]

|M|
2

qq
0!qq

0
g
=

✓
CF

CA

◆
|M|

2

qg!qgg =

✓
CF

CA

◆2

|M|
2

gg!ggg
, (3.20)

where CF = 4/3 and CA = 3 are again the QCD color factors of a quark and gluon,
respectively.

Based on the Gunion-Bertsch matrix element one can calculate both the differential and
the integrated cross section for a radiative process. However, the total integrated cross
section defined in Eq. (3.2) on page 25 depends on the Cartesian four-momenta pi of
the outgoing partons leading to a nine-dimensional integration in the case of a 2 ! 3
process. In contrast, the discussed Gunion-Bertsch matrix element depends on the squared
momentum transfer q2?, the transverse momentum k

2

? and rapidity y of the emitted gluon,
and the angle � between ~k? and ~q?. After an appropriate variable transformation (for
more details see Refs. [Foc11; Uph13]), one obtains for the total cross section of a radiative
2 ! 3 process between two particles A and B [Uph13]

�2!3 =
1

256⇡4

1

⌫AB

1

ŝ

ŝ/4Z

0

dq2?

ŝ/4Z

k?; min

dk2

?

ymaxZ

ymin

dy

⇡Z

0

d�
��M2!3

��2
X✓

dF

dy1

����
F=0

◆�1

,

(3.21)

where y1 is the rapidity of the outgoing particle with momentum p1 and the function F =
ŝ�2

p
ŝ(q? cosh y1 + k? cosh y)+2q?k? cos�+2q?k?(cosh y cosh y1 � sinh y sinh y1)

denotes the argument of the delta function of Eq. (3.2) on page 25 written in Gunion-
Bertsch variables.

Similar to the previous case of elastic 2 ! 2 interactions the running of the QCD
coupling can be considered by evaluating ↵s

�
Q

2
�

at a characteristic momentum scale
given by either Q2 = q

2

? or Q2 = k
2

? [Uph13].
As we will discuss in detail in Chapter 5, one has to carefully consider coherence effects

when dealing with radiative partonic processes in a hot and dense partonic medium. The
Landau-Pomeranchuk-Migdal (LPM) [LP53b; Mig56] effect describes the coherence of
gluon emissions if the formation time becomes comparable to the mean free path between
subsequent inelastic scatterings and individual gluon emissions begin to overlap, what may
lead to a suppression of radiative processes. Consequently, the specific modeling of the
LPM effect introduced in Chapter 5 constrains the kinematic limits for the gluon rapidity
ymin and ymax, and the minimum transverse momentum k?; min when calculating the total
cross section via Eq. (3.21) [Foc11; Uph13].

3.2.2 Gluon annihilation via 3 ! 2 processes

When considering microscopic processes in a medium, one key concept for achieving and
later preserving thermalization via these processes is detailed balance. It demands that
for each processes, e.g. a + b ! c + d, a corresponding back-reaction c + d ! a + b
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3 Microscopic processes of partons in the QGP

exists, whose matrix element agrees with the matrix element of the forward reaction2.
The fundamental reason for this behavior is the invariance of quantum chromodynamics
under time reversal operations [Uph13]. Consequently, in order to achieve thermalization
within a medium considering the previous 2 ! 3 processes, also the corresponding 3 ! 2
gluon annihilation processes have to be considered. In this section we briefly sketch these
gluon annihilation process based on the improved Gunion-Bertsch approximation from the
previous section and discuss their relevance for high energy partons.

Similar to the cross section of a 2 ! n process given in Eq. (3.2) on page 25 one can
define an object [Foc11]

I3!2 =
1

⌫ABC

Z
d
3
p1

(2⇡)32E1

Z
d
3
p2

(2⇡)32E2

(2⇡)4�(4)(pA + pB + pC � p1 � p2)
��M3!2

��2 ,

(3.22)

which represents the strength of a 3 ! 2 annihilation process between partons A, B and
C. This formulation for the 3 ! 2 interactions allows a straight-forward implementation
of detailed balance by choosing for

��M3!2

��2 the corresponding 2 ! 3 matrix element
in GB approximation as given in Eq. (3.18) on page 32 (while considering the different
degeneracy factors of partons). For example, the gluon annihilation matrix element for the
process ggg ! gg then reads [Foc11]

��Mggg!gg

��2 = 1

⌫g

��Mgg!ggg

��2 , (3.23)

where ⌫g = ⌫polarization
�
N

2

c � 1
�
= 16 is the degeneracy factor of gluons. Furthermore,

as in the radiative case coherence effects can be consistently incorporated into gluon
annihilation process by appropriately choosing the integration limits of Eq. (3.22). For
more details about the specific implementation of annihilation process within the transport
approach BAMPS we refer to Refs. [XG05; XG07; Foc11].

In this work we are mainly focused on the energy loss of energetic partons (E � T ), so
called jets. Due to the enormous energies, the available phase space for gluon annihilation
processes of jets is limited. As a first outlook to our results presented in Chapters 5 to 7,
Fig. 3.4 compares the differential energy loss dE/dx of quarks and gluons resulting from
annihilating 3 ! 2 interactions with the energy loss from elastic 2 ! 2 and radiative
2 ! 3 processes. For more information about the calculation of the differential energy
loss dE/dx and the underlying model assumptions, especially the treatment of coherence
effects, we refer to the later Chapters 4 and 5. Apparently, the contribution of 3 ! 2
process to the energy loss of partons with E > T is negligible both for quarks and gluons.
Please note that the same argument does not hold for E / T , where especially the interplay
between gluon radiation and annihilation leads to a thermalization of the partonic medium.
Based on this result we neglect throughout this work the annihilating 3 ! 2 processes
of jets and only consider 3 ! 2 processes for the simulation of the background medium
evolution of heavy-ion collisions as presented in Chapter 7.

2Only potentially different degeneracy factors of the different particle species have to be considered when calculating
the cross section.
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Figure 3.4: Comparison of the differential energy loss dE/dx of a quark (red) or a gluon (green) with
energy E in a medium with temperature T resulting from either only 3 ! 2 annihilation
processes or from 2 ! 2 and 2 ! 3 processes. The Landau-Pomeranchuk-Migdal effect
underlying the radiative and annihilation processes was modeled by the ✓-LPM approach
(cf. Chapter 5). The QCD coupling was chosen as ↵s = 0.3.
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4 Transport of partons within the QGP

In the previous section we discussed how individual partons scatter with each other via
Debye-screened perturbative quantum chromodynamics. Multiple of these microscopic
scatterings then lead to macroscopic dynamics of the medium that is built up from these
individual partons. One possibility to calculate this evolution is kinetic theory or transport
theory. Within this section we introduce the 3+1-dimensional (3+1D) transport approach
BAMPS (Boltzmann Approach for Multi-Parton Scattering) and review the major building
blocks within BAMPS that were employed within this work for describing the dynamics of
the quark-gluon plasma. For a comprehensive review of the BAMPS framework and details
about its implementation we refer to Refs. [XG05; XG07].

4.1 Partonic transport approach BAMPS

One possible method for describing the evolution of the medium created in ultra-relativistic
heavy-ion collisions is relativistic ideal or viscous hydrodynamics. By solving the un-
derlying differential equations, hydrodynamics simulates the macroscopic dynamics of
the quark-gluon plasma. However, one major drawback of these models is the limited
capability of describing systems far from equilibrium. Such situations are supposed to
occur especially during the early phases of heavy-ion collisions.

Among the promising alternatives to hydrodynamical simulations are models based
on kinetic theory. In kinetic theory, the phase space distribution of partons, which is the
6-dimensional distribution in configuration space ~x and momentum space ~p, is evolved
based on microscopic interactions between individual particles. The kinetic equation de-
scribing, e.g., the evolution of massless partons in the quark-gluon plasma is the relativistic
Boltzmann equation [De 80; Rei09]

p
µ
i @µfi(~x, ~p, t) =

✓
Ei

@

@t
+ ~pi ·

@

@~r

◆
fi(~x, ~p, t) = C

2!2

i + C
2$3

i + . . . . (4.1)

fi(~x, ~p) denotes the one-particle distribution function of parton species i (quarks or gluons)
normalized so that fi(~x, ~p) d

3
x d3

x represents the number of particles from species i in a
given phase space volume (d3

x,d3
p). The terms Ci are called collision terms and describe

the microscopic interactions of partons leading to changes in the distribution functions.
Hence, they are directly related to the rate of particle interactions and may include arbitrary
orders of processes (m ! n). If all collision terms vanish, Ci = 0, one obtains the
evolution equation of the non-interacting, ideal Boltzmann gas. Since, in general, not all
collision terms vanish, the Boltzmann equation is an integro-differential equation, which
is, without any further assumptions, not analytical solvable at the moment.

One possibility for nevertheless solving the Boltzmann equation from first-principles
is the application of numerical techniques. Within this work, we therefore employ the
partonic transport approach BAMPS that solves the full 3+1D evolution of the microscopic
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4 Transport of partons within the QGP

phase space of massless partons, which fulfill the relativistic energy-momentum relation1

E
2 = ~p2 + m

2. The partons scatter within BAMPS both elastically via 2 ! 2 and
inelastically via 2 $ 3 processes as presented in Chapter 3. These scatterings are then
described by collisions terms, or in other words collision rates, C2!2

i and C
2$3

i , which can
be related to the matrix elements of the underlying scatterings by integrating the phase
space distribution over the other scattering partners’ and the outgoing partons’ momenta.
For example, the collision term C

2!2

i for a 2 ! 2 scattering of particles i j $ k l can be
obtained from [Xu04; Uph+12]

C
2!2

i =
1

2Ei

X

j,k,l

Z
d3
pj

(2⇡)32Ej

Z
d3
pk

(2⇡)32Ek

Z
d3
pl

(2⇡)32El

⇥

⇥

✓
1

⌫ij
fkfl

��Mkl!ij

��2 (2⇡)4�(4)(pk + pl � pi � pj)

�
1

⌫kl
fifj

��Mij!kl

��2 (2⇡)4�(4)(pi + pj � pk � pl)

◆
, (4.2)

where ⌫ij = 2 if the particles i and j are indistinguishable and ⌫ij = 1 otherwise. The
second term in the brackets denotes the process i j ! k l (loss term), whereas the first term
describes the back reaction k l ! i j (gain term) of the scattering. The delta functions
preserve energy and momentum of the incoming and outgoing partons when integrating
over the phase space.

The Boltzmann equation and its collision terms are generic and can be applied to arbitrary
particle interactions, which enter the collision term via the matrix elements

��Mij!kl

��2.
Within the present work we employ the partonic processes from perturbative QCD as
introduced in the previous Chapter 3. Contributions to the collision rate from the different
partonic processes are considered in Eq. (4.2) by the sum

P
j,k,l over all possible parton

species contributing to the respective process. Similar to the presented 2 ! 2 collision
term, also a collision term for the inelastic scatterings can be formulated by integrating
additionally over the phase space of the third outgoing parton (cf. eq. (2.14) of Ref. [Xu04]).
Within BAMPS, the matrix elements for these inelastic 2 ! 3 Bremsstrahlung and 3 ! 2
annihilation processes are mostly chosen by the radiative partonic processes calculated
in the Gunion-Bertsch approximation derived in Section 3.2.1. Later in this work we
extend these interactions by effective 1 $ 2 processes calculated from thermal field theory
(cf. Section 5.4).

In order to numerically solve the Boltzmann equation one has to decide how to relate the
previously discussed collision terms with microscopic scattering probabilities for partons.
One possible approach employed in other transport models as, e.g., URQMD [Bas+98;
Ble+99] is the so called geometrical method. In this method one decides whether two
particles scatter with each other based on their geometrical distance. If two partons are
closer than

p
�/⇡, where � denotes the cross section for the microscopic process, both

partons scatter with each other. One major obstacle for applying the geometrical method
within BAMPS is that there is no ad-hoc definition for the distance of three ingoing particles
from the 3 ! 2 processes presented in the previous chapter. Therefore only the dilute outer
regions of a heavy-ion collision are simulated within BAMPS based on the geometrical
method.

1If the relation E2 = ~p2 +m2 holds for the energy and momentum of a parton, it is often called a parton on the mass

shell.
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4.1 Partonic transport approach BAMPS
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Figure 4.1: Sketch of the 3-dimensional cell grid employed for the discretization of phase space in
the stochastic method within BAMPS. As an example, a grid in Cartesian space is chosen
in which the cell volume is given by �

3x = �x�y�z. Each point denotes a particle
distributed in configuration space.

In all other regions, we apply the so called stochastic method for solving numerically
the Boltzmann equation within the BAMPS framework [Xu04]. In this method individual
parton scatterings are described by probabilities obtained from a discretization of the
microscopic phase space distribution fi(~x, ~p). In order to preserve locality of the solution,
individual particles are distributed based on their position ~x in configuration space within an
auxiliary cell grid with cell volumes�3

x as sketched in Fig. 4.1. Depending on the specific
physics problem, an appropriate geometry of the cell grid can be chosen. For example, the
cell grid shown in Fig. 4.1 would be the natural choice for the calculation of a static brick
of quark-gluon plasma, whereas for simulating the expanding bulk medium of a heavy-ion
collision relativistic coordinates as the space-time rapidity ⌘s = log ((t+ z)/(t� z)) may
be helpful. Furthermore, also the evolution time of the system is discretized into time steps
�t. During each time step, all partons from the same cell volume �3

x may interact with
each other. The probability for these interactions can be derived from a discretization of
the collision terms Ci to [Xu04; XG05]

P2!N = vrel�2!N
�t

�3
x

(4.3)

for a 2 ! 2 or 2 ! 3 process, where vrel = s/2E1E2 for massless partons and �2!N is
the cross section of the microscopic process. Furthermore, this stochastic description of
parton interactions within BAMPS can be applied straight-forwardly also to interactions of
arbitrary many incoming partons. Hence, the probability for a 3 ! 2 annihilation process
can be derived to [XG05]

P3!2 =
1

8E1E2E3

I32

�t
�
�3

x
�2 , (4.4)
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4 Transport of partons within the QGP

where Ei is the energy of parton i and I32 is given by the phase space integral over the
3 ! 2 matrix element as presented in Section 3.2.1.

At each time step and for each cell, the probabilities for every combination of partons
within this cell are calculated and it is decided by Monte-Carlo techniques whether a
particular scattering is realized2. If one samples that a scattering occurs, the outgoing
parton momenta are determined based on the differential cross sections given in Chapter 3.
To this end, the momentum transfer t̂ of a 2 ! 2 process or the momenta k

2

? and q
2

? of
a 2 ! 3 process are sampled via either a rejection or a metropolis sampling [Has70].
The specific time of the interaction is randomly distributed within �t, whereas any newly
produced parton from a 2 ! 3 process is added with a random position within the given
cell. The above outlined procedure for numerically solving the Boltzmann equation within
BAMPS is summarized in Algorithm 2.

Algorithm 2: Schematic view of the BAMPS framework for solving the Boltzmann equation.
Modified version based on Ref. [Foc11].
At time t = 0, initialize partons from distribution in configuration and momentum space
while t < tfinal do

foreach cell �
3x do

foreach particle pair (triplet) in the given cell do

Calculate cross section � and probability P
Generate random number r 2 [0, 1)
if r < P then

Sample new momenta of outgoing partons from differential cross section
Assign new momenta to outgoing partons

t = t+�t ;
Propagate particles to time t

Since one discretizes the phase space distribution for numerically solving Eq. (4.1) on
page 37, sufficient statistics is crucial for reliably representing fi(~x, ~p, t) in each cell. To
this end, we artificially increase the number of physical particles n ! nNtest by a constant
scaling factor Ntest. This method for enhancing the statistics in the stochastic method is
commonly called test-particles Ansatz and the corresponding particles are then denoted
as test particles. Test particles are indistinguishable from “physical” particles and hence
are sampled from the same initial distribution for the specific problem at hand. Since an
increased number of particles would also lead to an increased collision rate, the probability
for a single scattering of test particles has to be decreased by P2!N ! 1/NtestP2!N for
2 ! N interactions and by P3!2 ! 1/Ntest

2
P3!2 for 3 ! 2 interactions [XG05]. This

scaling of probabilities then ensures that the physical collision rate or mean free path is
preserved while enhancing the statistics. Furthermore, it should be noted that the scaling
factor Ntest has to be appropriately considered for any observable measuring the absolute
number of particles.

The presented BAMPS framework for solving the Boltzmann equation can be applied to
different physical problems. To this end, the initial condition for solving the Boltzmann
equation, or in other words the initial distribution of partons in configuration and momen-
tum space, has to be chosen accordingly to the specific characteristics of the problem. For
example, the simulations of jets traversing a static, partonic medium in Chapters 5 and 6

2Technically, one samples a random number r 2 [0; 1] and compares it with the probability Pi. If r < Pi the scattering
is realized.
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4.2 Selected results from the BAMPS framework

are initialized by an energetic parton scattering with thermal partons by the introduced
probabilities. The cell grid underlying the stochastic method is then chosen as a Cartesian
brick. In contrast, for the simulation of the partonic phase of a heavy-ion collision at
LHC presented in Chapter 7 the auxiliary cells are adapted to the collision geometry and
are based on the space-time rapidity ⌘s in the longitudinal direction wrt. the beam axis
(cf. Section 7.1.1). The momentum distribution of partons in the bulk medium of these
collisions is obtained by the event generator PYTHIA. For a comprehensive overview about
previous studies within the BAMPS framework we refer to the following section.

4.2 Selected results from the BAMPS framework

Within the present work, we apply the partonic transport approach BAMPS for simulating
jet quenching both in a static brick of quark-gluon plasma and the expanding bulk medium
of ultra-relativistic heavy-ion collisions at LHC. Besides these studies, BAMPS was and is
applied also to other phenomena regarding the microscopic transport of partons:

• Historically, the BAMPS framework was first employed for studies regarding the
thermalization and isotropization of gluonic matter. It could be shown in Refs. [XG05;
XG07] that especially the parton number changing 2 ! 3 and 3 ! 2 processes within
BAMPS lead to a fast equilibration of partons during the partonic phase of heavy-
ion collisions at the Relativistic Heavy-Ion Collider (RHIC). These findings gave
first evidence that microscopic interactions from perturbative chromodynamics are
effective enough for achieving early equilibration times necessary for the applicability
of hydrodynamics to the early phases of the medium evolution.

• Furthermore, comparisons between the measurements of the elliptic flow v2 at RHIC
(cf. Section 2.3.1) and ideal hydrodynamics suggested a small shear viscosity over
entropy ratio ⌘/s for the matter produced in p

sNN = 200 GeV Au + Au collisions
at RHIC. In Ref. [XG08; XGS08] and later in [Wes+11; Uph+15] it was found that
the pQCD processes within BAMPS also lead to a rather small ⌘/s close to the lower
limit 1/(4⇡) found in AdS/CFT (Anti-de Sitter/conformal field theory), which gave
the first explanation for this medium property from purely microscopic interactions.
The shear viscosity over entropy ratio in Ref. [Wes+11] was calculated based on the
Green-Kubo formalism, which measures the shear viscosity by time correlations of
the shear stress tensor in the long wave limit.

• Besides ⌘/s also other medium properties of a quark-gluon plasma were studied
within BAMPS. In Ref. [Gre+13] the heat conductivity of the partonic matter was
calculated, whereas the electric conductivity due to the electric charge of quarks was
determined in Ref. [Gre+14]. Both studies showed numerical values that agree with
other calculations from, e.g., lattice QCD.

• Due to the possibility to simulate the expanding bulk medium within BAMPS, one of
the major results within BAMPS was a significant built-up of elliptic flow v2 during
the partonic phase of ultra-relativistic heavy-ion collisions. Starting with calculations
of v2 for gluon matter [XGS08; XG09] at RHIC, flow observables were studied
also for matter consisting of both quarks and gluons [FXG09; XG10] and within
p
sNN = 2.76 TeV Pb + Pb collisions at the Large Hadron Collider (LHC) [Uph+15].

Both at RHIC and LHC large contributions to the finite elliptic flow measured by
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4 Transport of partons within the QGP

experiments originate from the microscopic interactions of partons. We further
elaborate on these findings in Section 7.1.3, where we discuss the properties of the
medium for the jet quenching studies of this work.

• One of the main assumptions within BAMPS is the applicability of perturbative
quantum chromodynamics not only for the interactions of high energy partons but
also for the interactions between partons within the bulk medium of heavy-ion
collisions. Different to other models, this assumption allows to study jet quenching
and flow phenomena based on the same microscopic framework. In Ref. [FXG09]
first attempts were made in simultaneously describing the nuclear modification factor
RAA of charged hadrons at RHIC and LHC within BAMPS. By applying the small
angle approximation for the 2 ! 2 processes and the original Gunion-Bertsch
approximation [GB82] for the inelastic 2 $ 3 matrix elements, a too strong energy
loss and thereby suppression of charged hadrons was found. In contrast, the improved
Gunion-Bertsch matrix element [Foc+13] leads to a realistic suppression of charged
hadrons at RHIC and LHC while still a significant built-up of v2 during the partonic
phase can be found [Uph+15]. For further results of the suppression of hadrons at
LHC we refer to Section 7.3.

• One of the open questions concerning the medium modification of heavy quarks,
charm and bottom quarks, within heavy-ion collisions is the role of elastic vs. radia-
tive energy loss. Due to the finite mass of heavy quarks collinear gluon emissions
off massive quarks are suppressed, which is commonly called the dead cone effect.
After extending the previous elastic light parton interactions within BAMPS by mas-
sive matrix elements from pQCD, the production of charm and bottom quarks in
heavy-ion collisions was studied in Ref. [Uph+10]. By applying the same framework
as previously for the light flavor, a suppression and flow of heavy-flavor electrons
decaying from heavy flavor quarks was observed at RHIC and LHC [Uph+11]. Due
to the higher precision of the experiments at LHC, also observables regarding open
heavy flavor mesons as, e.g., D± or D0 became measurable. The suppression and
flow of these mesons from (scaled) elastic interactions within BAMPS was studied in
Refs. [Uph13]. The improved Gunion-Bertsch approximation could also be extended
to the heavy flavor section, which allowed to study the influence of radiative processes
on the heavy quarks [Uph+14]. Due to the interplay between the employed effective
description of the Landau-Pomeranchuk-Migdal effect and the dead cone effect, the
suppression of heavy flavor mesons was found to be similar to light hadrons. This
finding explained the similar RAA of inclusive charged hadrons and D-mesons at
LHC. However, the flow of heavy quarks within BAMPS is significantly lower than
the data and could not be explained by the microscopic pQCD interactions.

• Correspondingly to the processes from Chapter 3 also processes from quantum
electrodynamics (QED) can be implemented into the BAMPS framework. Although
the role of QED for energy loss phenomena of jets is negligible due to the small
coupling strength ↵EM in QED, this implementation allowed the study of photon
production within the partonic phase of a heavy-ion collision [Gre+17b; Gre18]. By
considering photon production processes from both binary 2 ! 2 (Compton and
annihilation processes) and Bremsstrahlung 2 ! 3 interactions, a smaller yield of
direct photons could be found from the non-equilibrium dynamics within BAMPS
in comparison with other hydrodynamical models. Reason for this difference is the
chemical under-saturation of quarks in the beginning of the heavy-ion collision.
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4.2 Selected results from the BAMPS framework

• Finally, this work presents a comparison between different descriptions of the Landau-
Pomeranchuk-Migdal effect for jet quenching of single inclusive hadrons and re-
constructed jets. There were also previous studies of the medium modification of
reconstructed jets within the BAMPS approach. The influence of multiple further
scatterings of recoiled medium particles on the momentum asymmetry AJ of the
leading jets was investigated in Ref. [Sen12; Sen+15]. It was found that after an
appropriate background subtraction, mandatory in experimental studies, the momen-
tum asymmetry is insensitive to the recoil of medium partons. In Ref. [Sen+17] the
different energy loss behavior of light and heavy flavor partons was studied by the
suppression and jet shapes of inclusive and b-tagged jets at LHC. B-tagged jets are
jets that have a bottom quark or meson close to the reconstructed jet axis. Both scaled
elastic as well as elastic with radiative heavy flavor interactions showed a realistic
suppression of b-tagged jets at LHC. Furthermore, we proposed in Ref. [Sen+17]
the jet shapes of b-tagged jets as a measure for discriminating different energy loss
mechanisms of light and heavy flavor partons. For more details about the suppression
of reconstructed jets and its underlying modification in terms of jet shapes we refer
to Section 7.4.

This list should be understood as a condensed overview over the efforts from the last
15 years taken within the BAMPS framework to understand nuclear matter under ex-
treme conditions. For more details about other topics including the formation of shock
waves [Bou+10; Bou+12; Bou+14], the built-up of a magnetic field in the early phases of
a heavy-ion collision [GGX17], initial state effects in p + A collisions from partonic trans-
port [Gre+17a], the momentum imbalance of D mesons [Uph+13], or the hadronization
of partons via clustering algorithms3, we refer to the given references. The possibilities
offered by the microscopic interactions in transport approaches as BAMPS are enormous.
Therefore we expect also for the future further studies of phenomena from non-equilibrium
physics in the context of heavy-ion collisions.

3Paper to be published.
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5 Landau-Pomeranchuk-Migdal effect in a
transport approach

One of the main questions of this thesis is whether and how in-medium coherence effects of
gluon emissions, especially the non-Abelian Landau-Pomeranchuk-Migdal (LPM) effect,
can be faithfully described within a dynamical transport approach. To answer this question
we have in this chapter a closer look on the LPM effect and investigate how to implement
it into the BAMPS framework. After revising common state-of-the-art models for radiative
energy loss and discussing the general dependencies of the LPM effect, we introduce three
different approaches for modeling the LPM effect in a partonic transport approach and
study their implications for the radiative energy loss within a brick of partonic matter.
To this end we will calculate observables as the differential emission rates d�/d! or the
length-differential energy loss dE/dx and discuss their energy and path-length dependence.
Conclusively, we compare the three different approaches against each other and estimate
possible consequences of the coherence effects for measurable observables in heavy-ion
collisions.

5.1 What is the Landau-Pomeranchuk-Migdal effect?

5.1.1 A brief history of the radiative energy loss from pQCD

Recent theoretical and experimental studies point to the dominance of radiative processes
for the energy loss of energetic, light partons in comparison to the energy loss originating
from elastic 2 ! 2 scatterings (see, e.g., Ref. [MV11]). While in an elastic scattering the
high energy projectile can lose only a small amount of its energy to medium components,
the emission of a single hard or many soft particles can contribute significantly to the
energy loss of the parent parton. Therefore we revisit in this section the basic concepts
of radiative energy loss in perturbative QCD. To this end we give a brief overview over
the historic development of different state-of-the-art models for radiative energy loss and
discuss their commonalities and differences. For further reading and a detailed access to
the topic of radiative energy loss of partons we recommend some excellent review articles
that were published recently [BSZ00; Gyu+03; Bas+09; Wie09; DEn09; MV11; Arm+12;
MMT13; BM15; QW15].

We discussed in Section 3.2.1 how the gluon emission induced by a single scattering
in a 2 ! 3 process can be calculated from perturbative QCD via an improved version of
the Gunion-Bertsch matrix element. Although the divergences were cured by introducing
thermal masses for the internal propagator, the actual matrix elements within the Gunion-
Bertsch approximation are formulated and derived within vacuum pQCD. However, if the
emissions occur in the hot and dense environment of a quark-gluon plasma further effects
have to be considered.

Due to the uncertainty principle quanta with discrete energy can only be localized
over a finite region in space. Consequently, emission processes should not be treated as
spontaneous but as extended over time. The time needed by the emitted photon (in QED)
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Figure 5.1: Typical diagram for a Bremsstrahlung process in a colored QCD medium. Crosses denote
interactions with the surrounding partonic medium that have to be resummed via pQCD.

or gluon (in QCD) to decohere from the parent parton and form as an independent particle
is called formation time and can be estimated by

⌧f ⇠
!

k
2

?
(5.1)

where ! is the energy of the emitted particle and k? the transverse momentum wrt. the par-
ent parton. The formation time of emissions can be significant, especially of energetic and
collinear emissions. If the formation time of an emission becomes longer than the mean free
path of scatterings by the parent-daughter system within the medium, the scatterings must
not be described incoherently but the elastic scatterings contribute coherently to the initial
emission process. Already in the 1950s Landau, Pomeranchuk and Migdal [LP53a; LP53b;
Mig56] discovered this coherence effect and studied its consequences for Bremsstrahlung
emissions of photons from energetic electrons traversing matter. Therefore this coherence
effect, which was experimentally confirmed in measurements of the photon production
rate from electrons traversing thin gold and carbon foils at SLAC1 [Ant+95; Kle+94], is
commonly coined “Landau-Pomeranchuk-Migdal” (LPM) effect or LPM suppression. It is
called suppression because the overlapping elastic scatterings centers during the formation
time may not act as a source for further 2 ! 3 process since they interfere destructively
with each other. Consequently, the probability for additional emission processes during the
formation time is suppressed in contrast to the case without a medium.

Coherence effects are implicitly considered when calculating the Bremsstrahlung process
in a pQCD environment via deriving the corresponding matrix elements from quantum
field theory. To this end, all matrix elements leading to exactly one additional gluon in the
final state have to be resummed. A diagram for such a calculation is schematically shown
in Fig. 5.1. One of the first attempts undertaken to calculate the Bremsstrahlung process
while considering the LPM effect in the context of perturbative QCD was in the 1990s by
Baier et al. and independently Zakharov (BDMPS-Z) [Bai+95; Bai+96; Bai+97a; Bai+97b;
Bai+98b; Zak96a; Zak96b; Zak97].

Due to the non Abelian nature of QCD the emitted gluons themselves may interact with
the medium, which complicates a rigorous analytical calculation and different approxima-
tions needed to be introduced to solve the problem. Baier et al. [Bai+95] (and most of the
models derived later) calculated the differential gluon emission spectrum off a high-energy

1Stanford Linear Accelerator Center
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5.1 What is the Landau-Pomeranchuk-Migdal effect?

quark traversing a thermal medium in the limit

E � ! � k?, q? � ⇤QCD , (5.2)

where E is the energy of the emitting projectile, ! and k? the energy and transverse
momentum of the emitted gluon wrt. the projectile and q? the momentum transfers from the
medium to the parent-daughter pair. In this eikonal limit the projectile flies on straight lines,
which means that both the energy and momentum of the emitting particle is approximately
not modified. Furthermore, the scattering centers within the medium were treated as
static [GW94] in this model and so they transfer only transverse momentum to the partons,
q
2 = q

2

? + q
2

k ⇡ q
2

?. This assumption neglects any collisional energy loss of the projectile.
In Refs. [Bai+98a; Wie00a] it could be shown that the approach by Baier et al. coincides
with an approach by Zakharov [Zak96a; Zak96b; Zak97], who formulated an independent,
elegant approach for resumming the matrix elements based on a path-integral formulation.
The resummation in this limit leads to the general formula for the emission spectrum
induced by the medium [Arn09b; Arm+12]2
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where dI/d! is the probability density for emitting a gluon with energy ! from a projectile
with energy E, ↵s is the QCD coupling and x = !/E is the energy fraction of the gluon
relative to the projectile. Ps!g(x) is the vacuum splitting function for a parton with flavor
s to emit a gluon as derived in the DGLAP formalism [AP77; Dok77; GL72]. The internal
variables t1 and t2 represent the longitudinal emission points in the amplitude and complex
conjugate amplitude, whereas ~b1 and ~b2 denote transverse positions of projectile compo-
nents in the amplitude and complex conjugate amplitude [Arn09b; ZKW13]. The Green’s
function G
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⌘
solves the time-dependent Hamiltonian of a two-dimensional

Schrödinger equation [Arn09b; Arm+12]
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denotes the three-body interaction rate [Arm+12] of the projectile-gluon system3. The

2Eq. (5.3) and the following equations are given in the notation of [Arn09b] that is slightly different to the original
formulation of Zakharov. However, this formulation closely relates to the AMY formalism discussed later in
Section 5.4. For the differences between both definitions we refer to Ref. [Arn09b], where also a detailed derivation
of the presented formalism is given.

3Cs are again the QCD color factors, CF =
⇣
N2

c � 1
⌘
/(2Nc) = 4/3 for a quark and CA = Nc = 3 for a

gluon [Arn09b].
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individual scatterings are given by the Fourier transform of the elastic scattering rate

�̄2

⇣
~b, t

⌘
=

Z
d2
q?

d�̄el

d2
q?

⇣
1� expi~b·~q

⌘
. (5.6)

For more details about the derivation of the formalism underlying Eqs. (5.3) to (5.6) we
refer to Refs. [Arn09a; Arn09b; CS07].

In order to solve Eq. (5.3), further assumptions about the medium and its interactions
with the projectile are necessary and need to be applied to �̄2

⇣
~b, t

⌘
. One of the possible

assumptions were introduced in the original BDMPS-Z derivation by assuming that the
interactions of the partonic system are numerous and soft during the formation time. This
so called multiple soft-scattering approximation leads to

�̄2

⇣
~b, t

⌘
⇡

1

4
¯̂qb2 , (5.7)

where

q̂ = CR
¯̂q = CR

Z
d2
q?

d�̄el

d2
q?

q
2

? (5.8)

is the transport parameter measuring the average transverse momentum transfer per unit
path length from the medium to the projectile. In this approximation, Eq. (5.4) becomes
the Hamiltonian of a harmonic oscillator that can be solved analytically. The resulting
gluon emission spectrum in the BDMPS-Z formalism then simplifies to [Arn09b]

!
dIBDMPS

d!
= ↵sxPs!g(x) log |cos (!0L)| , (5.9)

where L is the path-length of the projectile and !0 is a complex number given by [Arn09b]

!
2

0 = �i

�
(1� x)CA + x

2
Cs

�
q̂

2x(1� x)E
. (5.10)

Please note that in order to arrive at this result the k? distribution of gluon emissions was
integrated up to infinity allowing arbitrary large emission angles [Cas+11].

As we discuss in the next section by heuristically deriving the signatures of the non-
Abelian LPM effect, the BDMPS-Z emission spectrum results in a �E ⇠

p
E [Bai+95]

behavior and the famous non-linear path-length dependence of the radiative energy loss
�E ⇠ L

2 [Bai+97b] in pQCD.
Wiedemann [Wie00a; Wie01] extended the path-integral formulation by including vac-

uum and medium interference and thereby finite in-medium path length effects that result
in an infrared cutoff in the emissions spectra [Wie09]. Furthermore, this calculation ac-
counted for rescattering effects in the k?-differential emission spectrum and introduced a
finite k? integration [Wie09; Wie00b]. Later these findings were further analyzed for mass-
less [SW03] and massive partons [ASW04] and ended up in the ASW formalism [SW02;
SW03; ASW04] for gluon emissions [Wie09]. The multiple-soft scattering approxima-
tion as realized in ASW is denoted by “ASW-MS” [Arm+12] throughout this work and
coincides with BDMPS-Z for an infinite medium length.

Another common limit for the medium interactions of Eq. (5.3) on the previous page
is the opacity expansion, first studied by Gyulassy, Levai and Vitev (GLV) [GLV00b;
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GLV00a; GLV01; Gyu+03] and later also by Wiedemann in the context of the ASW path-
integral formalism [Wie00a; SW02; SW03; ASW04]. In this limit the elastic scattering
rate, Eq. (5.6) on the facing page, is expanded order-by-order in the number of scatterings
(opacity) n0 L, where n0 is the density of scattering centers along the projectile path and L

is the medium length. Most phenomenological models employing the opacity expansion
cut off the expansion at the leading-order term in the expansion owing to a single hard
scattering during the formation time [QW15]. This single hard scattering limit was also
studied in the context of ASW [SW03] what we will denote as “ASW-SH” [Arm+12]
throughout this work.

The previously introduced models for radiative energy loss all rely on the approximation
of static scattering centers. The temperature of the thermal bath is only necessary for
determining the mean free paths of the partons [Tur+05]. The first formulation of radiative
energy loss while considering the medium components as dynamic, thermal scattering
centers were developed by Arnold, Moore, and Yaffe (AMY) in the context of thermal field
theory. We refer to Section 5.4 for a detailed discussion of the AMY formalism and how to
use it in the context of a partonic transport approach.

Another independent approach for calculating the radiative energy loss a projectile
suffers in the QGP is the Higher-Twist (HT) formalism first developed by Guo and
Wang [GW00; WG01] and later extended by Majumder [Maj12; QM15]. In the HT
formalism the medium is described by 4-point “higher twist” matrix elements considering
vacuum and medium interference effects [Wie09]. For more details about the HT model
we refer to Refs. [GW00; WG01; Maj12].

All previously introduced formulations for the radiative processes in QCD neglect
interference effects of multiple, subsequent gluon emissions. Rather the emission spectrum
of a high-energy projectile is obtained by independently repeating a single gluon emission.
Therefore phenomenological studies related to ASW, GLV and BDMPS-Z mostly employ a
Poissonian Ansatz for the emission of multiple gluons. The resulting energy loss of the
projectile can then be characterized by quenching weights [Bai+01; SW03; QW15],

P (�E) =
1X

n=0

exp�hNgi

n!

"
nY

i=1

Z
d!i

dNg(!i)

d!

#
�

 
�E �

nX

i=1

!i

!
, (5.11)

where dNg(!)/d! is the single emission spectrum and hNgi =
R1
0

d! dNg(!)/d! is the
average number of gluons expected to be radiated. The quenching weights P (�E) give the
probability for a parton with energy E to lose energy�E. We use these quenching weights
in Section 5.5.3 for a comparison of the different LPM approaches that we will implement
into the BAMPS framework. The other two models for radiative energy loss treat multiple
gluon emissions differently: while the AMY rates are mostly used in the context of rate
equations for evolving distribution functions, which we elaborate further in Section 5.4,
phenomenological studies in the HT formalism modify the vacuum DGLAP evolution by
considering vacuum radiation together with additional medium-induced radiation [GW00;
WG01].

The validity of the assumption that subsequent gluon emissions are independent from
each other and thereby do not interfere with each other is at least questionable. However,
our knowledge about the coherence of different gluon emissions and its consequences for
measurable observables is still limited and topic of ongoing research by the community.
Most promising for investigating the interference and (de-)coherence of multiple gluon
emissions is the so called antenna problem [MST11; CI11; MST12c; MST12b; MST12a;
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MT13]. In the antenna problem the coherence or decoherence of gluon emissions is
investigated in the context of a dipole that emits gluons. For more information about this
approach we refer to Ref. [MMT13].

We have mentioned that, in order to find analytical formulations, different kinematic
approximations are necessary in the presented various models of radiative energy loss. For
example, the degradation of the energy of the projectile is neglected in the eikonal limit
since one assumes by ! ⌧ E (cf. Eq. (5.2) on page 47) that the energy of a single gluon
emission is much smaller than the energy of the projectile. This strongly simplifies the
analytical derivation. However, strictly speaking this also violates energy and momentum
conservation. A promising way to circumvent such limitations is the application of Monte-
Carlo methods in the context of radiative energy loss. Such event generators simulate
gluon emissions numerically both in configuration and momentum space. By calibrating
the probability of a single gluon emission to the limit of the respective energy loss model,
such Monte-Carlo models are clean representations of the analytical calculations. Among
their benefits are the straight-forward consideration of energy and momentum conservation
at every gluon emission. Moreover, they are not limited to calculations of leading parton
or hadron energy loss but they can be formulated in a way that all partons are treated
equally. This allows the simulation of the energy loss of a whole parton shower consisting
of the leading parton together with its emitted gluons from both vacuum and medium-
induced radiation forming a shower of partons. These parton showers, or hadron showers
after hadronization, are measurable by modern heavy-ion experiments. Consequently,
phenomenological studies of both the parton energy loss and the in-medium modification
of their surrounding showers by means of pQCD energy loss become reachable.

Different approaches aim to simulate microscopically the radiative energy loss by Monte-
Carlo methods:

• The model JEWEL [ZSW11; ZKW13; FZ14; Zap14; EZ16b; EZ16a; Ela17; MZ16]
is based on the vacuum event generator PYTHIA [SMS06], but extends it by elastic
scatterings with medium components as well as medium-induced gluon radiation.
By analyzing different orders in the opacity expansion of Eq. (5.3) on page 47 and
determining the crucial interference factors between coherent and incoherent gluon
emissions, JEWEL was the first model that considered a stochastic implementation of
the LPM effect by dynamically suppressing gluon emissions. It could be shown in
Refs. [ZSW09; ZSW11; ZW12] that this approach indeed reproduces the parametric
dependencies of the multiple soft scattering limit of BDMPS-Z. We will further
discuss this method in Section 5.3 where we implement a stochastic treatment
of LPM suppression for the radiative processes into the BAMPS framework. By
employing a medium evolution from hydrodynamics, JEWEL is also able to simulate
the jet evolution within heavy-ion collisions. The suppression and fragmentation of
jets was, e.g., studied in Ref. [Lee16].

• The model Q-PYTHIA [ACS09] is also based on the event generator PYTHIA. How-
ever, medium-induced radiation is considered by effectively increasing the default
probability for a vacuum splitting within PYTHIA by adding a contribution that
is proportional to the emission spectrum calculated in the multiple soft-scattering
approximation of BDMPS-Z and ASW.

• Another approach for modeling jet energy loss within PYTHIA is taken by YA-
JEM [Ren08; Ren09a; Ren09b] where the medium-induced radiation is considered

50



5.1 What is the Landau-Pomeranchuk-Migdal effect?

literally by effectively increasing the virtuality of the partons due to a momentum
broadening in the medium via q̂.

• The Monte-Carlo approach MARTINI [JM05; Tur+05; SGJ09; SGQ09; You+11b;
You+11a; You+12; You+13; Par15; Par+16; PJG18] numerically simulates the
AMY rate equation given in Section 5.4 for single gluon emissions. This closely
reproduces the emission spectrum and energy loss as given in the AMY formalism
and can be applied to the hydrodynamically evolving background of a heavy-ion
collision [SJG10b; SJG10a; STV12b; SJG12; Gal+13]. For more information and a
comparison of the AMY formalism within BAMPS to the MARTINI model we refer
to Section 5.4.

• Two Monte-Carlo models that employ the Higher-Twist formalism for gluon radiation
are MATTER [Maj13] and LBT (Linearized Boltzmann-Transport) [Li+11; WZ13;
He+15]. While MATTER simulates jet events by a Sudakov factor similar to the
previous event generators, the LBT model solves a linearized Boltzmann equation by
HTL-inspired elastic scatterings together with HT radiative processes.

• The model LIDO [KXB18a; KXB18b] combines a Langevin treatment of soft
momentum transfers with the linearized Boltzmann equation of LBT for the large
angle scatterings. Recently radiative processes were implemented into LIDO by
gluon radiation calculated in the improved GB approximation (s. Section 3.2.1)
together with a stochastic treatment of LPM suppression. This approach is similar
to our efforts presented in the following sections. However, our approach has the
advantage that we can employ a microscopic description for the expanding medium
of an ultra-relativistic heavy-ion collision, while LIDO is at the moment limited
to a hydrodynamical background. However, the consideration of soft momentum
transfers from HTL-type equations may represent a crucial advantage of LIDO. As
we have seen previously in Chapter 3 and we will see in the following the elastic
interactions within BAMPS are Debye-screened to circumvent the divergence at soft
momentum transfers. Consequently, at large momentum transfers the descriptions
may coincides while at smaller momentum transfers significant difference will occur.

• Finally, a combined effort between different models was formed recently by the
JETSCAPE collaboration [JET+17]. This collaboration aims to apply different models
in their respective limits to the problem of radiative energy loss and build thereby a
multistage model of jet modification. While MATTER is used for the high virtuality
DGLAP evolution, MARTINI and LBT model describe partons closely on the mass
shell and thereby are applied for the low virtuality evolution. Furthermore, MARTINI
relies on the assumption of AMY that one can define a hierarchy in scales and is
therefore only applicable for momenta well above T . This assumption is not present
in LBT which can therefore also be applied to the soft momentum scale of the jet
evolution.

All of these models have their different advantages and limits of applicability. For a
complete overview and further details of the models we refer to Refs. [QW15; Apo+18;
JET+17].

In this work we extend the presented set of models capable for simulating jet energy
loss closely related to analytical models for the radiative energy loss from pQCD by the
partonic transport approach BAMPS. After heuristically deriving the non-Abelian LPM
effect in the next section, we will implement different models for the LPM effect and the

51



5 Landau-Pomeranchuk-Migdal effect in a transport approach

radiative processes from QCD into BAMPS. This will allows us to investigate potential
differences of the different approaches and see what are the consequences for the jet energy
loss within heavy-ion collision that we will study subsequently in Chapter 7.

5.1.2 Heuristic derivation of the LPM effect

Following the discussion of the previous subsection we derive in this section heuristically
the most important characteristics of the non-Abelian LPM effect. To this end, we revise
in the following the argumentation of Refs. [Bai+97b; BSZ00]. This argumentation
is supposed to depict the formal arguments derived in the BDMPS-Z framework while
neglecting factors of O(1) but keeping the relevant characteristics of the coherent emissions
pattern [BSZ00].

Let us assume a projectile parton with high energy E that traverses a medium with length
L. While traversing the medium, the projectile may scatter with medium components with
a rate � or mean free path � ⇠ ��1, respectively. Assuming static scattering centers, these
scatterings transfer a mean transverse momentum q? from the medium to the projectile
while the energy of the projectile is unchanged. Due to the momentum transfers the
projectile increases its virtuality and thereby may induce gluon radiation as, e.g., via the
Bremsstrahlung processes as discussed in Section 3.2.1. Consequently the projectile emits
a gluon with energy ! and transverse momentum k? with respect to the projectile direction.
Since we assume E � !, k?, the resulting energy and momentum change of the projectile
can be neglected and we consider the projectile as eikonal, meaning that the projectile flies
unmodified after a gluon emission.

One of the fundamental findings of quantum mechanics is that two canonically conjugate
variables, as, e.g., position and momentum or energy and time, can only be measured
simultaneously with a finite precision. When considering a Bremsstrahlung process it
follows that the momentum of the emitted parton can only be precisely determined if the
emission is not considered instantaneously but if it is extended over a finite time. This time
is called coherence time oder formation time ⌧f . In other words, during the coherence time
the gluon and its emitting parton cannot be distinguished yet but have to be considered
as the same particle. Formally this coherence effect stems from phase factors that are
implicitly included in the path-integral formalism mentioned in Section 5.1.1.

Following the uncertainty relation the formation time (or coherence time) of the emitted
gluon is

⌧f =
1

k
rest

?
=

!

k
2

?
, (5.12)

where k
rest

? is the transverse momentum of the gluon with respect to the initial direction of
the mother parton in the gluon rest frame and ! and k? are the gluon energy and transverse
momentum boosted with � ⇠ !/k? to the lab frame. At fixed gluon energy ! the more
initial transverse momentum is given to the gluon, the quicker the gluon decoheres from
the mother parton and thereby the smaller the formation time. On the other hand, more
collinear gluons may stay in coherence with their parent partons for a formation time
longer than the mean free path between two scatterings. This effect is the actual Landau-
Pomeranchuk-Migdal (LPM) [LP53b; Mig56] effect and leads to the necessity to not only
deal with incoherent and thereby independent emissions but also consider the coherence
between different scattering centers for the resulting emission pattern.

The LPM effect in QED and QCD differs mainly by the emitted quanta and its possibili-
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ties to interact with the surrounding medium. An emitted photon of a QED Bremsstrahlung
process has a negligible cross section with the surrounding medium. Therefore its forma-
tion time is mainly determined by the initial emission process. In contrast, the emitted
gluon in the non-Abelian QCD case may interact with the medium. Consequently its
transverse momentum is not fixed by the initial emission process but can be modified
by scatterings with the medium during the formation time. These scatterings result in a
random walk of the emitted gluon undergoing a Brownian motion in the transverse space.
Therefore the mean transverse momentum of the gluon after Nscatt scatterings or traveling
a distance l = Nscatt� within the medium can be determined as

hk
2

?i ⇠ q
2

?Nscatt ⇠
q
2

?

�
l ⇠ q̂ l , (5.13)

where we defined the transport coefficient q̂ that quantifies the transverse momentum
broadening per unit path length (cf. Eq. (5.8) on page 48). As a remark, although the
definition of q̂ is straight-forward in this heuristic derivation, a similar ad-hoc definition in
the case of momentum transfers with a high-q? tail is more demanding.

The mean transverse momentum a gluon may gain due to the scatterings during its
formation time is

hk
2

?i
��
⌧f

⇠
q
2

?

�
⌧f ⇠ q̂ ⌧f . (5.14)

This modified transverse momentum should be also taken into account when calculating
the formation time. Consequently the formation time of the gluon is now determined
self-consistently and reads

⌧f ⇠
!

hk
2

?i
⇠

!

q̂⌧f
! ⌧f ⇠

r
!

q̂
. (5.15)

Since q
2

? and � as well as q̂ are properties of the surrounding medium, any difference in
the formation time of different gluon emissions is determined solely by the energy of the
gluon. Gluons with higher energy ! need more time to decohere from the parent projectile
than gluons with smaller energies. This is a first hint that the LPM effect is an effect mainly
affecting gluon emissions with larger energies.

Before discussing the coherence and incoherence of gluon emissions we should discuss
the basic building block of gluon radiation: the single gluon emission without any coher-
ence effect. The actual single gluon emission can be described by the already discussed
2 ! 3 Bremsstrahlung process in the Gunion-Bertsch approximation (s. Section 3.2.1). As
a reminder, in this approximation the Bremsstrahlung process consists of a gluon emission
that is induced by an elastic scattering within the medium. If we assume E � ! (soft

!-limit) [BSZ00] and use the original approximation of Gunion and Bertsch [GB82] it can
be shown that the gluon energy spectrum of a single medium-induced gluon radiation goes
like

dI

d!

����
GB

⇠
1

!
. (5.16)

dI/d! should be understood as the probability distribution for the gluon energy ! in a
single emission.
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Figure 5.2: Sketch of (a) incoherent and (b) coherent gluon emissions. In the incoherent case, the
formation time ⌧f is shorter than the mean free path � between successive scattering centers
and the emissions are formed before the next scattering centers. In the coherent case, ⌧f is
longer than � and the elastic scattering centers contribute coherently to the gluon production.

Since single gluon emissions are induced by a scattering with the medium, the maximum
rate or minimum mean free path for a radiative process is given by �. For incoherent
gluon emissions, meaning gluon emissions resulting from independent scattering centers,
the formation time ⌧f has to be smaller than the mean free path � between successive
scatterings as depicted in Fig. 5.2a. With Eq. (5.15) it follows that this demands

⌧f ⇠

r
!

q̂
< � , (5.17)

which is equivalent to

! < !BH := q
2

?� = q̂�
2
. (5.18)

Gluon emissions with energy smaller than the energy scale !BH are incoherently produced
since they decohere from their parent parton before the next scattering center can be reached.
The regime of independent gluon emissions is commonly called Bethe-Heitler [BH34]
limit of gluon emissions. For the differential emission rate in the Bethe-Heitler limit for
gluons with ! < !BH in a medium with length L it follows [BSZ00]
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where we used that Nincoh = L/� gluons are emitted.
On the contrary, if the formation time of the gluon is larger than the mean free path to the

next scattering center, coherence effects have to be taken into account as shown in Fig. 5.2b.
For gluon energies ! > !BH, the length scale determining the rate of gluon radiation is
no longer the mean free path �, but the formation time ⌧f . All scattering centers during
one formation time act coherently with each other and thereby suppress additional gluon
emissions. Therefore it follows that exactly one gluon is formed during one formation
time. This limit is called LPM limit of gluon emissions. For emissions in the LPM limit
! > !BH it follows
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. (5.20)

Since ! > !BH, gluon emissions in the LPM limit are suppressed by ⇠ 1/
p
! due to the

coherence between subsequent scatterings.
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What happens if the emission is so collinear that the medium interactions are insufficient
for the gluon to decohere the gluon from its parent? This holds if the formation time is
longer than the medium length L and the corresponding limit is called factorization limit.
It is realized for gluon energies ! > !fact, where !fact is defined via

⌧f > L $ ! > !fact :=
q
2

?

�
L
2 = q̂L

2
. (5.21)

These emissions can only be realized if the whole medium act as a single coherent scattering
center. It follows that at maximum one gluon is emitted and the emission rate then reads
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After discussing the differences between a coherent and an incoherent emission pattern
we will discuss in the following the consequences of these differences for the resulting
radiative energy loss. The differential radiative energy loss per unit path length is the first
moment of the differential gluon emission rate and can be written as
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(5.23)

where we built the total differential emission rate from the different limits discussed above.
Before discussing the resulting radiative energy loss, one has to differ between different

regions of medium lengths L. If the medium length L is large and the medium is thick,
there will be no factorization region in which the whole medium can act as a single
scattering center. This holds if !fact > E, which is equivalent to

L > Lc :=

s
E

q̂
. (5.24)

Therefore, for media with length L > Lc the resulting differential energy loss reads
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q̂E . (5.28)

This ⇠
p
E behavior of the radiative energy loss was one of the first surprising results

concerning the non-Abelian LPM effect [Bai+95]. Furthermore, the differential radiative
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energy loss in thick media L > Lc does not depend on the medium length and thereby the
total radiative energy loss goes like �E ⇠ L.

If the medium is thin enough that L < Lc, there is a region in which the medium acts
totally coherently. Therefore for the radiative energy loss follows
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where we neglected the constant factorization contribution
R E

!fact
d! ! d�/d!|

fact
of the

radiative energy loss. The remaining integration then evaluates to
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⇠ q̂ L . (5.32)

Different to the case of a thick medium, the radiative energy loss in a thin medium does
not explicitly depend on the energy of the parent parton. Furthermore, due to the finite
formation time of gluon emissions, the differential radiative energy loss in a thin medium
now depends on the medium length. Consequently, the total radiative energy loss in a
medium with length L scales like �E ⇠ L

2.
In this section we derived heuristically the main signatures of the non-Abelian LPM

effect. Due to finite formation time effects large gluon energies are suppressed in compari-
son to smaller gluon energies that are realized in the incoherent case. This suppression
leads to a radiative energy loss that is quadratical in thin media, while in thicker media the
energy loss is linear since several coherent scattering systems now interact incoherently
for themselves [ZKW13]. In the following we present three different approaches to model
the LPM effect in partonic transport and investigate how reliable the approaches reproduce
the presented parametric dependencies of the LPM effect.

5.2 Parametric LPM suppression (✓-LPM)

As we have seen in the previous section the Landau-Pomeranchuk-Migdal effect is an
effect that originates from the non-local nature of gluon emissions. Due to the finite
formation time, gluon emissions can extend over several mean free paths within the
medium. However, this non-local gluon emissions complicate a treatment within transport
theory, where interactions like scatterings are assumed to be local [KXB18b]. Therefore
the way the LPM effect was considered previously within the partonic transport approach
BAMPS was to parametrically suppress coherent gluon emissions via a suppression factor
in the radiative matrix elements. We will call this approach the ✓-LPM method throughout
this work. In this section we revise this approach and investigate possible signatures
of this parametric Ansatz for the LPM effect. To this end we first revise the previous
implementation as presented in Refs. [FXG10; Foc11; Uph+12] by investigating the
gluon emission pattern and the corresponding radiative energy loss. After that we aim to
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reintroduce more “coherence” into the gluon emissions by introducing the fudge factor
XLPM. This will effectively allow more collinear gluon emissions that contribute to the
energy loss.

5.2.1 Modeling the incoherent limit of the LPM effect

The first attempt to implement the LPM effect into the BAMPS approach was to forbid
gluon emissions that are potentially coherent and thereby only allow incoherent gluon
emissions. This is most easily achieved by ensuring that the formation time ⌧f of a gluon
emission is smaller than the mean free path (MFP) � of the projectile parton. To this end
we introduce a Heaviside theta function in the 2 ! 3 matrix elements that we derived in
Section 3.2.1:

|M23|
2
! |M23|

2⇥
�
�� ⌧f

�
. (5.33)

Choosing the mean free path of the projectile instead of the mean free path of the emitted
gluon corresponds in principle rather to the QED case of the LPM effect and not the QCD
case where the gluon may interact for itself [Uph13; Gre18]. When we discuss a stochastic
approach to the LPM effect in Section 5.3 we will see how the choice of the mean free
path of the gluon, which is additionally evaluated dynamically, alters the emission pattern.

The modified radiative matrix element is then employed for calculating both the differen-
tial cross section and the total cross section. Therefore the calculation of the cross sections
depends via the theta function on the mean free path. At the same time the cross section
also determines the mean free path of the projectile parton. Hence an iterative procedure
has to be applied for the calculation of the mean free path [Uph13],

� = lim
i!1

�i = lim
i!1

1

R22 +R23 (�i�1) +R32 (�i�1)
. (5.34)

Rn are the rates for the different possible processes within BAMPS, elastic 2 ! 2 scatter-
ings and inelastic 2 ! 3 radiative and 3 ! 2 annihilation processes. Since the contribution
of annihilation processes to the rate of high-energy jets is minor and at the same time the
computational effort for these processes is significant, we neglect the annihilation rate for
iteratively calculating the mean free path throughout this work (cf. Section 3.2).

Another important point to discuss for the implementation of ✓-LPM is the choice of
reference frames [Foc11; Uph13]. The mean free path � is defined in the local rest frame
⌃cell of the cell in which the scattering is evaluated, whereas the actual inelastic scattering
has to be considered in the center-of-momentum (CoM) frame ⌃CoM of the scattering.
Moreover, the formation time of the gluon is defined in the frame ⌃trans, where the gluon
momentum is completely transverse to the direction of the projectile parton. Therefore
the mean free path has to be first boosted from ⌃cell to ⌃CoM to ⌃trans before it can be
compared to the formation time of the gluon. With the rules for adding Lorentz boosts the
total boost for the mean free path then reads[Foc11; Uph13]

� = �CoM�trans

⇣
1 + ~�CoM · ~�trans

⌘
=

cosh yp
1� �

2

CoM

(1 + �CoM cos ✓ |tanh y|) , (5.35)

where we used the definition of � = 1/
p
1� �

2. The boost from ⌃CMS to ⌃trans is along
the z-axis in the center-of-momentum frame and can therefore be related to the gluon
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5 Landau-Pomeranchuk-Migdal effect in a transport approach

rapidity y in the CoM frame, �trans = cosh y and �trans = |tanh y|. The angle between the
boost velocities ~�CoM and ~�trans is denoted as ✓.

Consequently, the argument of the theta function can be written as

✓
�
�� ⌧f

�
= ✓

✓
�

�
� ⌧f

◆

= ✓

 
k? �

cosh y

�

p
1� �

2

CoM

(1 + �CoM cos ✓ |tanh y|)

!
,

(5.36)

where we used ⌧f
trans = 1/k? in the frame where the gluon is transverse.

Before we present numerical results concerning the ✓-LPM method we would like to
point out one of the major drawbacks of this approach. Although the theta function in
the radiative matrix elements modifies both the differential and total rate of the 2 $ 3
processes, it does not consider any additional path-length dependence. The gluon emissions
are independent from each other and the finite formation time is only considered in
determining the rate and the energy of the gluon emissions. Every gluon emission is still
considered as localized at one time step. Consequently, the resulting radiative energy loss
will be linear and thereby represents strictly only the case of a thick medium L > Lc as
discussed in Section 5.1.2. Without explicitly considering the finite formation time of the
gluon the reproduction of the thin medium case will not be possible.

This modified matrix element consisting of the improved Gunion-Bertsch matrix element
together with the ✓ function is the previous default way for implementing the LPM effect
within BAMPS. In the following we will discuss the constraints that follow from the
introduced theta function for the phase space of gluon emissions.

Kinematical limits for gluon emissions from the incoherent ✓-LPM approach

As we discussed when evaluating the total cross section in Section 3.2.1 the phase space
for a radiative 2 ! 3 process is firstly constrained by kinematics. Since the energy of
the gluon is limited by the CoM energy

p
ŝ/2 available in the individual collision, the

maximum transverse momentum k? of the gluon is

k? < k
max

? :=

p
ŝ

2 cosh y
. (5.37)

On the other hand, the theta function of Eq. (5.36) additionally constrains the phase space.
Due to the requirement of independent gluon emissions, there is a minimum k? under
which gluon emissions are rejected. This effectively cures the divergence of k? in the
Gunion-Bertsch matrix element. Defining A = �CoM cos ✓ and B = �

p
1� �

2

CoM, the
theta function leads to the condition

k? > k
min

? :=
cosh y + A sinh y

B
(5.38)

for the transverse momentum in the CoM frame. Combining both constraints leads to the
available phase space for gluon emissions [FXG10; Uph+12]. Apparently, the allowed
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Figure 5.3: Phase space distribution of gluon emissions in the yCoM-k?;CoM plane from the ✓-LPM
approach for a quark projectile with different energies E = {12.5 T; 25 T; 250 T} scattering
with parton with fixed “thermal” momentum ppartner = (3 T,−3 T, 0, 0) and a fixed QCD
coupling ↵s = 0.3. Each dot represents a single gluon emission. While the solid lines
depicts the limit imposed by the ✓-LPM method, the dash-dotted lines show the kinematical
limit for the different projectile energies.

phase space is enclosed by the two functions

fmax(y) =

p
ŝ

2 cosh y
and fmin(y) =

cosh y + A sinh y

B
. (5.39)

The overall maximum allowed rapidity range independent from k? can be obtained by the
intersection points of the two functions and is given by [Foc11; Uph13]

yleft/right =
1

2
ln

b⌥
p
�

2a
(5.40)

with a = 1 + A, b = 2 � 2B, c = 1 � A, and � = b
2
� 4ac. For emissions where the

argument of the square root � is negative, no phase space is available and no solution
exists. On the other hand, if b⌥

p
�/2a is negative the rapidity range is not limited and

yleft/right = ⌥1.
Figure 5.3 shows the y-k?-phase space of gluon emissions induced by 2 ! 3 processes in

the improved Gunion-Bertsch approximation of a quark flying in x-direction with energies
E = {12.5 T; 25 T; 250 T} and a thermal particle within a medium with temperature T .
The QCD coupling is fixed to ↵s = 0.3 as it is done throughout the whole section. To
simplify things, the momentum of the thermal scattering partner is fixed by ppartner =
(3 T,−3 T, 0, 0). Both the rapidity yCoM and the transverse momentum of the gluons k?;CoM

are evaluated in the center-of-momentum frame of the respective inelastic scattering. Each
dot represents a single gluon emission. The dashed-dotted lines depict the kinematical
limit for the phase space as given in Eq. (5.37) on the facing page. Obviously with higher
projectile energy also the phase space for gluon emissions opens up and higher transverse
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5 Landau-Pomeranchuk-Migdal effect in a transport approach

momenta are reachable. Furthermore, the solid line shows the LPM limit for the phase
space as given in Eq. (5.38) on page 58. The mean free paths underlying this limit were
calculated iteratively. While the kinematical limit is symmetric in forward- and backward
rapidity, with increasing projectile energies the LPM limit prefers emissions into the
backward rapidity region. Reason for these preferred backward emissions is the phase
space that opens up due to the enormous Lorentz boost of the higher energy projectiles.
Due to the term ⇠ k

�2

? in the GB approximation the emissions prefer a smaller k? and
therefore the density of emissions tend to the smallest allowed k?.

Differential emission rates from the incoherent ✓-LPM approach

After discussing the consequences of the ✓-LPM implementation for quantities in the CoM
system, we present in the following the differential emission rates and the corresponding
radiative energy loss following the ✓-LPM method. To this end, we consider again an
eikonal projectile parton with energy E traversing a medium with temperature T , but this
time scattering with particles whose momentum is thermally distributed. Again, for all
following results the mean free path entering the theta function is iteratively calculated for
each choice of E and T .

Figure 5.4 shows the differential emission rate d�/dk? integrated over rapidity y for a
quark and gluon projectile with energy E = 250 T in media with different temperatures
T . As expected from the discussion about the phase space limitation by the ✓-LPM, small
transverse momenta are indeed suppressed by the ✓-LPM at k? ⇠ O(T ). Due to the
thermally distribution of scattering partners this lower limit is however broadened. Large
transverse momenta are suppressed by the kinematical limit in agreement with Fig. 5.3.
For more collinear gluon emissions the emission rate scales with temperature T . The
differences in the emission rate between a quark and a gluon projectile result from the
different QCD color factors (cf. Chapter 3): On the one hand, gluons emit more other
gluons than quarks at larger k? due to the increased rate of the elastic part of the GB cross
section. On the other hand, at soft k? the different mean free paths (�iterg < �

iter

q ) lead to a
stronger cut-off via the ✓-LPM function for the gluons and thereby, following Eq. (5.38),
less available phase space at soft k?.

The radiative energy loss of the projectile is caused by the emission of gluons with
energy !. Therefore we discuss in the following the differential emission rate d�/d! for
different projectile energies E. In Section 5.1.2 we found that one of the characteristic
features of the non-Abelian LPM effect is the suppression of high energy gluon emissions
leading to d�/d! ⇠ !

�3/2. This effect can also be found when considering the ✓-LPM
implementation as shown in Fig. 5.5. Shown is the differential emission rate d�/d! for the
same setup as in Fig. 5.4 but for projectile energies E = 25 T and E = 250 T. The solid
line shows a fit ⇠ !

�3/2 and demonstrates that the differential emission rate shows the
expected behavior of the LPM effect from a scale ! ⇠ O(T ) up to scales ! ⇠ O(E), where
energy conservation rejects more energetic emissions. This is surprising since the theta
function for ensuring independent emissions, in principle, only considers the incoherent
limit of gluon emissions. Furthermore, similar to the differential rate d�/dk?, also d�/d!
scales approximately with temperature T and the LPM cut-off prevents emissions with
! < !min ⇡ k?; min ⇠ O(T ). Consequently, by showing d�/d! in units of the projectile
energy E we see that the spectrum of a higher energy jet with E = 250 T is broader and
ranges to softer relative energies than the spectrum of a jet with E = 25 T. In other words,
a gluon with ! = T takes away already 4 % of the a jet with E = 25 T while for the more
energetic jet this this is a factor 10 less relative energy. While the spectrum of a quark
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Figure 5.4: Differential emission rate d�/dk? from the ✓-LPM approach for a quark (red) and gluon
(green) projectile with energy E = 250 T scattering in a thermal medium with temperature
T and a fixed QCD coupling ↵s = 0.3. For a numerical check of the scaling with T we show
calculation for different temperatures denoted by different point symbols. The mean free
path � entering the ✓-LPM approach is iteratively calculated for the different flavors and
temperatures.

and gluon projectile is similar at large !, a deviation at small ! is visible. Reason for this
deviation is the different iterated mean free path of a quark and a gluon, �g < �q. As we
have discussed previously, this different mean free path lead to different minimum k? with
the result that the phase space for collinear gluons is stronger constrained than the phase
space of a quark.

The discussed gluon emissions obeying d�/dk? and d�/d! lead to a radiative energy
loss of the projectile. One can calculate the corresponding differential energy loss per unit
path length dE/dx by integrating the differential gluon emissions rate d�/d! weighted
by the gluon energy !. Therefore it depends not only on the number of gluon emissions
but also on their distribution in energy space. Based on this calculation Figure 5.6 shows
dE/dx scaled with temperature T

2 depending on the projectile energy E, again for quark
and gluon projectiles separately. Interestingly, also the expected �E ⇠

p
E behavior

discussed in Section 5.1.2 can be reproduced nicely by the ✓-LPM approach. Due to the
different iterated mean free paths of a quark and gluon projectile the differential energy
loss does not scale with CF/CA between a quark and a gluon. The shorter iterated mean
free path of a gluon forbids more gluon emissions and thereby decreases the rate for gluon
emissions from a gluon. This counteracts the higher QCD color factor of a gluon with the
results that the radiative energy loss of a quark and a gluon projectile is rather comparable
in the ✓-LPM approach for incoherent gluon emissions.

In conclusion, we showed that the effective theta function in the radiative matrix elements
calculated in the Gunion-Bertsch approximation lead to both a d�/d! ⇠ !

�3/2 and
�E ⇠

p
E dependence. In the next section we will phenomenologically introduce

coherent gluon emissions via the theta function and investigate their influence on the
observables.
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Figure 5.5: Differential emission rate d�/d! from the ✓-LPM approach for a quark (red) and gluon
(green) projectile with energy E = 25 T (cross symbol) or E = 250 T (triangle symbol)
scattering in a thermal medium with temperature T and a fixed QCD coupling ↵s = 0.3.
! is given in units of E in order to visualize the contribution to the radiative energy loss.
The mean free path � entering the ✓-LPM approach is iteratively calculated for the different
flavors and temperatures. While the points represent the numerical simulations from BAMPS,
the lines show a fit reproducing the expected LPM behavior d�/d! ⇠ !�3/2.

5.2.2 Effective handling of coherent gluon emissions

Although the implementation of the LPM effect via an effective theta function in the
radiative matrix elements seems to be a legit way to consider and ensure only incoherent
gluon emissions, one misses any coherence between the scattering centers. Therefore we
introduce and investigate in the following a coherence factor XLPM in the theta function of
Eq. (5.33) on page 57 [FXG09; Foc11; Uph+15; Uph13]

⇥
�
�� ⌧f

�
! ⇥

�
��XLPM⌧f

�
. (5.41)

XLPM allows to control how much effective coherence is introduced into the gluon emissions
by rescaling the mean free path (or formation time). Consequently, Eq. (5.36) on page 58
reads then

✓

 
k? �

XLPM

�

cosh yp
1� �

2

CoM

(1 + �CoM cos ✓ |tanh y|)

!
. (5.42)

For XLPM ! 0, the theta function vanishes what completely switches off the cutoff for k?
leading to effectively vacuum-like emissions corresponding to the Bethe-Heitler regime
of no LPM effect at all. Furthermore, this also reintroduces the collinear divergence of
k? so that the resulting cross section diverges without any further screening. On the other
hand, as discussed in the previous section XLPM = 1 allows only incoherent emissions. A
value of 0 < XLPM < 1 then interpolates between the two cases by effectively allowing
gluon emissions that have formation times longer than the mean free path. This means that
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Figure 5.6: Differential radiative energy loss dE/dx per unit path length from the ✓-LPM approach for
a quark (red) and gluon (green) projectile depending on the projectile energy E. The QCD
coupling is again fixed at ↵s = 0.3. While the points represent the numerical results from
BAMPS, the lines depict a fit with the expected LPM behavior dE/dx ⇠

p
E.

by choosing an intermediate value for XLPM additional gluons that could act coherently
with the scattering centers are allowed. However, although XLPM < 1 effectively allows
“coherent-like” emissions, it is important to note that the actual emission are still produced
with a vanishing formation time corresponding to the limit of a thick or even infinite
medium. Therefore the case XLPM < 1 should be rather understood as adding more
collinear gluon emissions to the incoherent spectrum. This then effectively takes into
account “coherent” gluon emissions.

Since there is no physical argument for a specific choice of XLPM we consider for the
moment XLPM as a free “coherence” parameter in the calculation of the radiative processes
considering ✓-LPM suppression. In subsequent sections we will further investigate the
choice of parameters by comparing the approach to other theory models (cf. Section 5.5)
including a stochastic Ansatz for the LPM effect (cf. Section 5.3) and experimental data
(cf. Chapter 7).

Figure 5.7 shows the y-k?-phase space in the CoM frame corresponding to Fig. 5.3
but for a fixed projectile energy of E = 250 T within a medium with temperature T

and different values of XLPM. Again, the scattering partner has a fixed momentum of
ppartner = (3 T,−3 T, 0, 0) and the mean free path underlying the ✓-LPM suppression is
iteratively determined. While the upper limit of the phase space is constant due to the
fixed projectile energy, the lower limit depends on the coherence parameter XLPM. With
decreasing XLPM and thereby increasing number of “coherent” gluon emissions the allowed
phase space grows, both in k? and rapidity y.

The fact that at fixed energy E and decreasing XLPM the phase space for collinear gluon
emissions opens up is also visible in Fig. 5.8 where we show the differential emission
rate d�/dk? of a projectile with energy E = 250 T in a medium with temperature T

for different coherence parameter XLPM. In agreement with Fig. 5.7 a decreasing XLPM
allows more collinear gluon emissions, while the rate for more transverse emissions is
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Figure 5.7: Phase space distribution of gluon emissions in the yCoM-k?;CoM plane from the ✓-LPM
approach with different screening parameters XLPM for a quark projectile with E = 250 T
scattering with a parton with fixed “thermal” momentum ppartner = (3 T,−3 T, 0, 0) and a
fixed QCD coupling ↵s = 0.3. Both the transverse momentum (given in units of the CoM
energy

p
ŝ) and the rapidity are evaluated in the center-of-momentum frame of the respective

scattering. While the gray line depicts the limit imposed by kinematics, the colored lines
show the LPM limit for the different XLPM parameters.

independent from XLPM. For XLPM = 0.01 even very collinear gluon emissions with
k? ⌧ T are allowed. Interestingly, in this region the spectra become flatter. This behavior
originates from the Debye screening m

2

D ⇠ T
2 in the elastic part of the 2 ! 3 process and

the internal propagator term in the GB matrix element ⇠ 1/((~q? � ~k?)
2 +m

2

D).
Using the same parameters, Fig. 5.9 shows the differential emissions spectra d�/d! for

different XLPM values. Different to the distribution of k?, decreasing the value of XLPM
not only allows softer gluon emissions but also the emission of harder gluons up to ! ⇡ E.
Reason for these enhanced hard gluon emissions is that XLPM limits only the minimum
transverse momentum but does not limit the minimum or maximum gluon energy. So a
very collinear gluon may have small k? that is allowed by a decreasing XLPM and at the
same time have an enormous energy ! ⇠ O(E). Consequently the gluon is emitted very
collinearly and adds a contribution to the spectrum at hard !.

Finally, we discuss the differential radiative energy loss dE/dx depending on XLPM as
shown in Fig. 5.10. Although the emissions are softer for decreasing XLPM, the increasing
rate for gluon emissions efficiently counteracts this and thereby the differential energy
loss strongly rises. Furthermore, the difference between quarks and gluons due to their
different iterated mean free paths is larger for smaller values of XLPM. Reason for this is
the non linearity of the screening (cf. Eq. (5.42) on page 62). Therefore the difference
between �g and �q is additionally enhanced by small XLPM values.

In Fig. 5.11 we further elaborate on this dependence by showing dE/dx for two different
projectile energies E depending on XLPM. For small values of XLPM we find the dependence
dE/dx ⇠ log (1/XLPM) for the differential radiative energy loss. At these small XLPM, the
spectrum is dominated by small k? values for which the GB matrix element ⇠ 1/k2

?((~q?�
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Figure 5.8: Differential emission rate d�/dk? from the ✓-LPM approach for different screening param-
eters XLPM and an eikonal quark projectile with energy E = 250 T scattering in a thermal
medium with temperature T and a fixed QCD coupling ↵s = 0.3. The mean free path �
entering the ✓-LPM approach is calculated iteratively.

~k?)
2+m

2

D) can be approximated as ⇠ 1/k2

?. Consequently, the integrated rate at small k?
scales via the lower integration limit like ⇠ log (XLPM). Since the differential energy loss
is more sensitive to the gluon emission rate than on the collinearity of gluon emissions, it
follows that the resulting energy loss also scales like dE/dx ⇠ log (1/XLPM). In contrast,
at larger values of XLPM ⇠ O(1) the screening is significantly stronger so that the minimum
allowed k? is on the order of the Debye mass. Then the Gunion-Bertsch matrix element
cannot be approximated as above and the dependence of dE/dx changes to approximately
dE/dx ⇠ 1/

p
XLPM (not shown).
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Figure 5.9: Differential emission rate d�/d! from the ✓-LPM approach for different screening parame-
ters XLPM and an eikonal quark projectile with energy E = 250 T scattering in a thermal
medium with temperature T and a fixed QCD coupling ↵s = 0.3. The mean free path �
entering the ✓-LPM approach is again calculated iteratively.
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Figure 5.10: Differential radiative energy loss dE/dx per unit path length from the ✓-LPM approach for
different screening parameters XLPM and an eikonal quark (solid lines) and gluon (dashed
lines) projectile depending on the projectile energy E. The QCD coupling is again fixed at
↵s = 0.3 and the MFP is calculated iteratively.
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Figure 5.11: Differential radiative energy loss dE/dx from the ✓-LPM approach depending on the
screening parameter XLPM for an eikonal quark (red) or gluon (green) projectile. The
different point types denote two different projectile energies E = {25 T; 250 T} and the
lines represent fits ⇠ log (1/XLPM). The QCD coupling is again fixed at ↵s = 0.3 and the
MFP is calculated iteratively.
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5.3 Stochastic LPM suppression

One of the findings of Section 5.2 is that the presented ✓-LPM method indeed successfully
describes the ⇠ !

�3/2 dependence of the differential emissions rate as expected from
the non-Abelian LPM effect. However, a simple suppression of gluon emissions based
on a condition for the phase space of the gluon does not take into account the non-
local nature of gluon emissions. Furthermore, the consideration of the mean free path
entering the cutoff function is approximated by the average, iterated mean free path of
the projectile parton. However, as we have shown in Section 5.1.2, also the scatterings of
the gluon and thereby the mean free path of the gluon strongly influences the suppression
of emissions. Finally, the assumption that the average of the mean free path is sufficient
for characterizing the coherence of the process is questionable. Especially calculations in
non-equilibrated systems as, e.g., the heavy ion collisions simulated within BAMPS should
profit by applying a more microscopic procedure for determining the mean free path and
thereby the coherence of the radiative processes.

Consequently, we present in the following an approach for modeling the non-Abelian
LPM effect in a partonic transport approach based on a stochastic Ansatz. Instead of
approximating the distance to the next scattering center by the mean free path, the next
scattering is dynamically determined by evolving the gluon during its formation time as
an ordinary parton following the common pQCD interactions within BAMPS. On the
one hand, this will allow us to consider the gluon interactions as the significant ones for
determining the coherence of the emission process. On the other hand, the crucial distance
to the next scattering center is valid not only on averages but on the microscopical level.
Both will enables us to reliably reproduce the path length dependence of radiative energy
loss in thin and thick media.

Such investigations were done before or are still under active research by several other
groups [ZSW09; ZSW11; ZW12; CBS11; KXB18b]. Zapp, Stachel, and Wiedemann
[ZSW09] were the first introducing a stochastic method for evaluating the LPM suppression
in a dynamic setup. This was done by not only considering the scatterings of the radiated
gluon during the formation time but also suppressing the gluon emissions stochastically
based on their number of scatterings during the formation time. Although our algorithm
for LPM suppression is in the same spirit as the mentioned other approaches, there are
minor differences in the final application to the gluon radiation. In contrast to the approach
by Zapp, Stachel, and Wiedemann [ZSW09] we approximate the initial gluon radiation by
the more realistic Gunion-Bertsch matrix element and thereby consider also a distribution
of k? that is not only determined by the momentum transfer q? from the medium but has a
divergence in k?. Moreover, although we are employing the same improved GB matrix
element as Ke, Xu, and Bass the algorithm of Ref. [KXB18b] treats the soft momentum
transfers in the initial 2 ! 3 process as well as in elastic scatterings of the gluons during
the formation time via a Langevin diffusion. This requires a different suppression factor
and leads to differences to our approach.

5.3.1 Algorithm for stochastic LPM suppression

This section presents the algorithm underlying the stochastic LPM (sLPM) approach as it
was implemented and investigated within BAMPS throughout this work. To this end, we
first discuss the algorithm on a more general level. In the following Section 5.3.2 we will
then apply the algorithm to fixed interactions and investigate whether the signatures of the
QCD LPM effect can be reproduced in a controlled environment. Finally, we investigate
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5.3 Stochastic LPM suppression

in Section 5.3.5 how the sLPM algorithm interplays with the leading-order pQCD cross
sections as introduced in Chapter 3.

Based on the algorithm proposed in Ref. [ZSW11] the sLPM method follows the
arguments of Section 5.1.2 and extends these ideas by numerically suppressing the gluon
emissions. The goal is to formulate an algorithm that is based on Monte-Carlo methods
and that interpolates between coherent and incoherent gluon emissions. To this end, gluon
emissions are proposed via the usual incoherent way and later the potential coherence of
the process is introduced by a reweighting of the emission.

The algorithm for stochastically modeling the non-Abelian LPM effect can be formulated
as follows:

1. Inelastic 2 ! 3 process takes place at time t0

According to the usual probability for a 2 ! 3 process in BAMPS (cf. Eq. (4.3) on
page 39) it is decided that an inelastic process should take place at time t0. The cross
section underlying the probability is the default incoherent cross section and can
either be chosen as fixed (see Section 5.3.2) or calculated via the Gunion-Bertsch
matrix element (see Section 5.3.2). By incoherent cross section we emphasize that at
this stage no coherence of the process is considered yet. In the case of the Gunion-
Bertsch matrix element, the screening of k? is not cured by a theta function as in
the ✓-LPM method (s. Section 5.2) but by other means that we will discuss in the
following sections (s. Section 5.3.4).
In contrast to the usual procedure within BAMPS the Bremsstrahlung process is for
now only a proposed gluon emission. After determining the kinematic properties
of the trial gluon, the formation time of the process is calculated via ⌧f = !/k

2

?,
where ! is the gluon energy and k

2

? is the squared initial transverse momentum of
the gluon wrt. the projectile, both evaluated in the lab frame. Before the formation
time expires, the system of projectile and gluon is indistinguishable. Therefore, at
this stage we do not know yet whether the emission is coherent, incoherent or if it is
suppressed in the end. This can only be decided after the formation time has expired
and the gluon has decohered from the projectile. Since the formation time has to be
evaluated with respect to the projectile parton, this trial gluon is associated with the
projectile parton. Technically speaking, the trial gluon is added to the projectile’s
list of trial gluons. During the formation time the projectile’s energy and momentum
is unmodified. In principle this violates energy and momentum conservation for
the length of formation time since the gluon energy and momentum is considered
both in the projectile and its associated trial gluon list. However, since we apply
the algorithm only in problems that can be solved either in a thermal background or
while the background medium is not modified this should not be a major problem. As
we will see in a moment, after the formation time is finished, energy and momentum
is conserved again.

2. Propagation of parent parton and trial gluon during formation time

In the time step, in which the gluon emissions are proposed and also in each subse-
quent time step t, it is checked whether the trial gluons are still in their formation
time |t� t0| < ⌧f . To this end, the formation time is calculated wrt. the projectile
within this time step. If the formation time has not elapsed yet, the projectile and the
trial gluon are still in a coherent state. Within this coherent state the trial gluon is only
allowed to scatter elastically with the background medium. These scatterings are the
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5 Landau-Pomeranchuk-Migdal effect in a transport approach

coherent scatterings that are resummed, e.g., within the path integral of Eq. (5.3) on
page 47. Furthermore, in the previous ✓-LPM method the mean free path describes
the average of these scatterings. By these scatterings the gluon may accumulate
transverse momentum wrt. the projectile and thereby decreases its formation time
that will then be checked in the next time step.
The projectile parton is allowed to emit further gluons. At first glance, this contradicts
the arguments of Section 5.1.2 where the LPM suppression explicitly means that
during a coherence time no other gluons may be emitted. However, one of the main
arguments for the algorithm of Ref. [ZSW11] was that in a numerical description
of the LPM effect the formation time may not be treated as a dead-time for gluon
production. Rather the projectile is allowed to emit multiple gluons which are
suppressed after completing the formation time as we will see in the next paragraph.
Another argument for this way of considering multiple gluon emissions during
the formation time was given in Ref. [KXB18b]: the crucial interactions for the
coherence or incoherence of a gluon emission are not the inelastic but the elastic
processes of the gluons. If the formation time is a dead time for further gluon
emissions, the inelastic mean free path limits the production of gluons. On the other
hand, if the proposal of different gluon emissions is independent from each other, the
elastic mean free path then represents the crucial scale.

3. Incorporating coherence effects

If |t� t0| > ⌧f the formation time of a trial gluon is elapsed and this gluon is
considered as being decohered from the projectile parton. However, since the trial
gluon was produced in an incoherent way the gluon emission has to be reweighted.
Furthermore, also the emission of multiple gluons during the formation time leads to
an increased probability that has to be corrected. By analyzing different orders in
an opacity expansion of the path integral shown in Eq. (5.3) on page 47 the authors
of Ref. [ZSW11] have demonstrated that the coherent and incoherent limit of gluon
emissions differ by a factor of 1/Ncoh, where Ncoh are the number of coherent elastic
scatterings by the gluon during its formation time. Consequently, gluons that were
produced incoherently have to be accepted only with a probability [ZSW11]

Pcoh =
1

Ncoh
. (5.43)

The elastic part of the initial Bremsstrahlung process that led to the emission pro-
cess is also counted for Ncoh. Therefore the minimum limit of Ncoh is Ncoh = 1
corresponding to a gluon that has not further scattered elastically with the medium.
This is the incoherent or Bethe-Heitler limit where gluon emissions are independent
from each other. On the other hand, the more often the gluon has scattered with
the medium the less probable is the emission due to the increasing coherence of
the process. For Ncoh ! 1 the limit of total coherence is reached and the gluons
are totally suppressed. Consequently, the suppression by Ncoh effectively models
and interpolates between the incoherent and coherent limit of LPM suppression.
Furthermore, due to the consideration of a finite formation time of the whole emis-
sion process instead of an instantaneous production of gluons also the path-length
dependence of the emission process is considered.
If the emission is accepted by the probability Pcoh as part of the evolution history
one may now subtract the energy and momentum of the gluon as they were at time
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⌧f

⌧f

⌧f

· · · · · ·

7 discarded, r 2 [0; 1) > 1/Ncoh

3 accepted, r 2 [0; 1) < 1/Ncoh

7 discarded, ⌧f > L

Figure 5.12: Schematic visualization of the stochastic LPM algorithm for a Bremsstrahlung process
with subsequent elastic scatterings of trial gluons during the formation time.

t0 from the projectile and evolve the gluon as an usual parton itself. This further
treatment depends obviously on the assumptions about the actual energy loss, eikonal
or non-eikonal, and the problem that one wants to solve, energy loss of only the
projectile parton or also the surrounding parton shower. If the gluon emission is
rejected with probability 1� Pcoh the whole gluon emission process is discarded and
the projectile stays unmodified.

4. Discard unformed gluon emissions

After completing the simulation time or medium length L all remaining trial gluon
emissions that are still in their formation time are discarded. The reason for this
rejection can be found in Ref. [ZSW11], where it is argued that for reproducing the
path-integral Eq. (5.3) on page 47 only gluons that are formed prior to leaving the
medium need to be considered.

The presented algorithm for LPM suppression is schematically shown in Fig. 5.12. It
should be understood as rather general since it is formulated independently from a concrete
choice for the underlying elastic and Bremsstrahlung processes. Therefore we demonstrate
in the next section that for a simplified choice of fixed cross sections the algorithm indeed
reproduces the expected analytical dependencies. After that, we apply the algorithm in
Section 5.3.5 to more realistic interactions from pQCD that we discuss in Sections 5.3.3
and 5.3.4.

5.3.2 Benchmarking the algorithm for stochastic LPM suppression

In this section we benchmark the algorithm for stochastically suppressing coherent gluon
emissions as proposed in Section 5.3.1. To this end, we define a simplified model for a
projectile parton emitting gluons with constant rates and investigate the characteristics
of the resulting radiative energy loss. For this model one can then derive analytically
the dependencies of the gluon emission spectra or the radiative energy loss as well as
calculate numerically the corresponding quantities based on the stochastic LPM algorithm.
This will allow us to demonstrate that the proposed algorithm for LPM suppression of
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5 Landau-Pomeranchuk-Migdal effect in a transport approach

Section 5.3.1 indeed shows the characteristic dependencies of the non-Abelian LPM effect,
especially the �E ⇠ L

2 length dependence for the radiative energy loss. Subsequently we
will apply and investigate in Section 5.3.5 the proposed algorithm together with a more
realistic treatment of the partonic interactions based on the improved Gunion-Bertsch
matrix element together with leading-order pQCD cross sections.

Parametric dependencies of the LPM effect in a simplified model

In the simplified model a projectile parton4 of energy E traverses a brick of medium
with length L and temperature T . Neglecting at the moment any coherence effects, the
projectile may emit gluons with energy ! along its trajectory with a constant rate �inel and
thereby mean free path �inel = ��1

inel. Assuming a high projectile energy E, the emitting
parton remains unmodified by the inelastic process and thereby keeps both its energy and
its direction. Furthermore, any elastic processes of the parent parton are neglected at the
moment. Although these assumptions are in principle not necessary in our numerical
calculation (and will be loosed later in Chapter 6), it allows a robust comparison of the
LPM algorithm with the analytical eikonal limit Eq. (5.2) on page 47.

In the incoherent limit of gluon emissions the energy of the emitted gluons ! is ap-
proximately distributed by d�/d! ⇠ !

�1, that corresponds to the small x limit of the
Gunion-Bertsch matrix element [GB82]. While the maximum gluon energy !max is kine-
matically limited by the projectile energy E, the minimum energy !min of the gluon is not
physically limited and will be set to !min ⇠ O

�
10−2 E

�
throughout this section. Therefore

the normalized gluon energy distribution underlying a single gluon emission within the
medium can be written as

!
dI

d!

����
single scatt

⇠
1

log (E/!min)
:=

1

⌫norm
, (5.44)

where we defined the normalization factor ⌫norm := log (E/!min). Based on this distribution
the energies of the trial gluons are sampled before they interact elastically with the medium
during their formation time in order to consider the coherence effects. The initial transverse
momentum of the emitted gluon is set to the fixed value kt; initial that will be discussed in a
moment. This initial fixed transverse momentum k? serves additionally as a !min limit for
the ! distribution due to kinematics.

According to the algorithm of Section 5.3.1 the emitted trial gluons interact elastically
and thereby modify their formation time ⌧f self-consistently. In our simplified model, the
medium transfers a constant transverse momentum ~q? to the emitted gluons per mean free
path �el. The direction of ~q? is transverse to the direction of the projectile but randomly
distributed in the corresponding azimuthal angle. Although each scattering transfers q? to
the gluon, due to the random angle the gluon undergoes a Brownian motion in transverse
space wrt. the projectile. This definition of elastic momentum transfers has the advantage
that the transport parameter q̂ can be straightforwardly defined as q̂ = q

2

?/�el corresponding
to the average momentum transfer squared per unit path length. In contrast, the momentum
transfers q

2

? of the elastic pQCD cross sections presented in Section 5.3.3 may have a
broad distribution and a clear definition of q̂ is not ad-hoc clear.

As described in Section 5.1.1 the analytic arguments of, e.g., BDMPS-Z are formulated
in the kinematical range ! � q?, k?. In order to compare the present simplified model

4In the simplified model the flavors of both the parent and daughter parton as well as the temperature T are arbitrary
since the interactions are fully determined by the chosen values for the mean free paths �inel and �el.
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to these analytical considerations, we assume that the elastic momentum transfers do not
modify the gluon energies but only change the transverse momentum of the gluons. The
energy of the gluon emission is consequently fixed at the value the gluon obtains by the
initial ⇠ 1/! spectrum. Therefore the modification of formation time is only determined
by the elastic kicks leading to a change of direction of the emitted gluons. The formation
time of the gluons is thus dynamically modified by each scattering and can be written

after the i-th scattering as ⌧i = !/

⇣
~k?;initial +

P
i ~q?;i

⌘2

, where ~k?;initial is the initial
transverse momentum directly after the emission and ~q?;i the momentum transfer from the
i-th scattering. In Section 6.2 we discuss the consequences of loosening this assumption
of constant ! and considering also an evolution in ! by momentum transfers with the
medium.

Following the Gunion-Bertsch approximation for a Bremsstrahlung process of a high
energy parton, an inelastic process can be factorized into an elastic part and a probability
to emit an additional gluon. Based on this factorization we assume in the simplified model
that the initial gluon transverse momentum k

2

?;initial ⇡ q
2

? and thereby the initial transverse
momentum is completely determined by the momentum transfer from the medium. This is
in accordance to Ref. [ZSW11], where it is argued that if the final transverse momentum
of the gluon is built up by many interactions within the medium, the transverse momentum
at the initial emission is unimportant. On the other hand, if there are less interactions
the transverse momentum at emission will be dominated by the recoil received by the
medium. In Section 5.3.5 we will see how a more realistic distribution of initial k? by the
Gunion-Bertsch matrix element results in the emission pattern.

One difference between the heuristic discussion of Section 5.1.2 and the presented
simplified model are the definitions of mean free paths. In the analytical derivation the
mean free path is the distance between two subsequent scattering centers with which
the projectile interacts indifferent from whether this scattering center acts as an elastic
scattering center or there is an additional gluon radiation induced. In principle, every
scattering center can also induce a gluon emission. In contrast, the simplified model
is formulated by explicitly differing between elastic scatterings centers acting on the
gluons during formation time and inelastic scattering centers interacting with the projectile.
Between two scattering centers that induce an additional gluon emission is �inel, while the
distance between two scattering centers that only scatter elastically is �el. The definition of
mean free paths in the simplified model aims already to the discussion of the stochastic
LPM approach in the context of the Gunion-Bertsch approximation, in which the 2 ! 3
and 2 ! 2 processes, although both calculated in LO pQCD, are different concepts.
Therefore we discuss in the following how the different definitions of mean free paths end
up in the emission patterns as derived in Section 5.1.2 and label explicitly which mean free
path is intended.

The coherence of emission processes is considered by rejecting trial gluons after they
finished their formation time as described in Section 5.3.1. The acceptance/rejection
criterion Pcoh = 1/Ncoh is determined by the number of scatterings Ncoh of the gluon
during the formation time ⌧f . In terms of the simplified model it follows that

Ncoh =
⌧f

�el
=
r

!

q̂�el
2
=
r

!

q
2

?�el
, (5.45)

where ⌧f =
p
!/q̂ (cf. Eq. (5.15) on page 53) was used. With the suppression factor

⇠ Pcoh the resulting differential emission rate d�/d! of gluons with energy ! per unit
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time step can then be written as

!
d�

d!
=

1

�inel

1

Ncoh
!
dI

d!

����
single scatt

(5.46)

=
1

⌫norm

1

�inel

1

Ncoh
. (5.47)

Depending on the number of coherent scatterings one can therefore distinguish between
two regimes of coherence of the gluon emissions:

• For Ncoh = 1, which means that there is no additional momentum transfer besides
the elastic part of the initial 2 ! 3 process, subsequent scatterings are independent
from each other. The corresponding differential gluon emission rate is therefore only
depending on �inel and reads

!
d�

d!

����
incoherent

=
1

⌫norm

1

�inel
. (5.48)

The energy scale under which these incoherent scatterings take place is given by !BH
as defined in Eq. (5.18) on page 54. For the simplified model it follows for !BH:

!BH = q̂�el
2 = q

2

?�el (5.49)

Therefore although the size of the emission rate is solely determined by the inelastic
mean free path the extension of the incoherent limit is constrained by !BH that is
only depending on quantities related to the elastic interactions.

• If the gluon scatters elastically during the formation time, Ncoh > 1, the differential
gluon emission rate reads

!
d�

d!

����
coherent

=
1

⌫norm

1

�inelNcoh
(5.50)

=
1

⌫norm

1

�inel

s
q̂�el

2

!
=

1

⌫norm

1

�inel

s
q
2

?�el

!
. (5.51)

These coherent emissions are realized for gluons with energies ! > !BH up to a scale
!fact = q̂L

2 (cf. Eq. (5.21) on page 55) and represent the discussed LPM region.

Above ! > !fact the formation time of gluons is on the same order as the complete
medium length L. Therefore in this factorization limit the total medium acts as one coherent
scattering center. However, this region is hard to consider in the numerical simulations.
Since these gluons need at least the whole medium length to decohere from the parent
projectile the gluon emission should have been be started directly at the beginning of the
medium evolution. This is however due to statistics very rarely the case what leads to
the neglection of the factorization region in the following. However, as also argued in
Ref. [ZSW11], due to the steeply falling ! spectrum the actual role of large ! for the
radiative energy loss should be negligible.

The integrated first moment of the gluon emission rate d�/d! gives the differential
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radiative energy loss

dE

dx
=

EZ

!min

d! !
d�

d!
(5.52)

of the projectile parton for a medium with length L. As discussed in Section 5.1.2 the
path-length dependence of the radiative energy loss from the LPM effect differs for thin
and thick media. If the medium length L is smaller than the maximum or critical medium
length Lc, defined by the maximum formation time ⌧f

max,

Lc = ⌧f
max =

s
!
max

q̂
=

s
E

q̂
, (5.53)

again, the whole medium can act as one large coherent scattering center. In contrast, if
the medium is larger than Lc this is not possible since there is no formation time that is
larger than the medium length. Furthermore, different coherent scattering centers then act
as if they were single scattering centers that induce incoherent gluon emissions. In other
words, for thick media there is no factorization region in the gluon energy spectrum but
different coherent scattering centers contribute as incoherent regions to the gluon emission
spectrum.

In the simplified model the differential radiative energy loss in a thick medium L > Lc

then is derived as

dE

dx

����
L>Lc

=

!BHZ

!min

d! !
d�

d!

����
BH

+

EZ

!BH

d! !
d�

d!

����
LPM

(5.54)

=
1

⌫norm

✓
2
�el

�inel

p
q̂E � q̂

�el
2

�inel
�
!min

�inel

◆
(5.55)

=
1

⌫norm

2

�inel

✓p
!BHE �

!BH + !min

2

◆
, (5.56)

where we used the definition of !BH = q̂�el
2. As expected dE

dx

��
L>Lc

shows the characteristic
⇠

p
E dependence in thick media. Furthermore, the energy loss rate is for L > Lc

independent from the medium length L leading to a total radiative energy loss �E ⇠ L as
in the case of the ✓-LPM method.

In our specific treatment of curing the divergence of the 1/!-term by specifying a
minimum gluon energy !min, special attention needs to be paid if !min > !BH for a specific
choice of parameter. Then the Bethe-Heitler part of the gluon spectrum vanishes (first term
in Eq. (5.54)) and the radiative energy loss becomes

dE

dx

����
L>Lc

=
1

⌫norm

2

�inel

⇣p
!BHE �

p
!BH!min

⌘
. (5.57)

The corresponding calculation for the radiative energy loss in a thin medium (L < Lc)
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yields

dE

dx

����
L<Lc

=

!BHZ

!min

d! !
d�

d!

����
BH

+

!factZ

!BH

d! !
d�

d!

����
LPM

+

EZ

!fact

d! !
d�

d!

����
fact

. (5.58)

If we neglect the constant contribution of the factorization region
R E

!fact
d! ! d�

d!

��
fact

, which
will be also neglected in the numerical simulations, it follows

dE

dx

����
L<Lc

⇡
1

⌫norm

✓
2
�el

�inel
q̂L� q̂

�el
2

�inel
�
!min

�inel

◆
(5.59)

=
1

⌫norm

2

�inel

✓
q
2

?L�
!BH + !min

2

◆
(5.60)

This result again reflects the different path-length dependence of the radiative energy loss
in thin media. Due to the coherent scattering centers the energy loss rate itself depends
linearly on the medium length L. It follows that the total energy loss goes like �E ⇠ L

2.
Furthermore, in small media the energy loss is independent from the projectile energy
since hard gluons with ! > !fact and ! ⇠ O(E) are not able to form.

Again, if the minimum energy !min is larger than the energy scale !BH the differential
energy loss in thin media becomes

dE

dx

����
L<Lc

=
1

⌫norm

2

�inel

�
q
2

?L�
p
!BH!min

�
. (5.61)

In summary, the differential gluon emission rate d�/d! and differential radiative energy
loss dE/dx within the simplified model can be written as

!
d�

d!
=

8
<

:

1

⌫norm

1

�inel
, ! < !BH

1

⌫norm

1

�inel

q
q
2
?�el
! , !BH < ! < !fact

(5.62)

and

dE

dx
=

(
1

⌫norm

2

�inel

�
q
2

?L� !̃min

�
, L < Lc

1

⌫norm

2

�inel

�p
!BHE � !̃min

�
, L > Lc

, (5.63)

where we defined

!̃min :=

(
!BH+!min

2
, !min < !BH

p
!BH!min, !min > !BH

. (5.64)

Eqs. (5.62) and (5.63) are the equations we will test in the following to benchmark whether
the proposed Monte-Carlo algorithm can reproduce the expected analytical dependencies.
This procedure is similar to Ref. [ZKW13] and will allow a comparison between the
analytic expectations and the numerical Monte-Carlo approach in a controlled fashion
and thereby provide a deeper understanding for the application of the algorithm to more
realistic partonic interactions.
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Algorithm 3: Schematic view of the algorithm for testing the stochastic LPM effect in the
simplified model.
At t = 0 initialize projectile with energy E := !max and tlast inel. = 0

while t < L do

if |(t+�t)� tlast inel.| > �inel then

Initialize gluon emission with ! 2 [!min;!max] and k2? = q2?
Set tinit = tlast el. = t and Ncoh = 1 for this emission
Set tlast inel. = t
Add gluon to list of trial gluon emissions

foreach trial gluon do

Calculate formation time ⌧f = !/k2?
if |(t+�t)� tinit| < ⌧f then gluon is not formed

if |(t+�t)� tlast el.| > �el then

Transfer constant transverse momentum q2? to gluon momentum k2?
Increase Ncoh = Ncoh + 1

else gluon is formed
if random number r 2 [0; 1) < 1/Ncoh then gluon is accepted

Consider gluon for d�/d! and dE/dx results
else

Discard gluon emission

t = t+�t ;
Propagate projectile and trial gluons to time t

Discard all gluon emissions still in formation time

Testing the Monte-Carlo algorithm by the analytical dependencies

After setting the stage for the simplified model in the previous subsection by discussing
its analytical dependencies we test in this section whether the stochastic LPM algorithm
introduced in Section 5.3.1 numerically reproduces these dependencies. In order to obtain
numerical results we have to first choose concrete values for the input parameters of the
simplified model. We make this choice by having a high energy projectile in mind that
interacts significantly less inelastically with the medium than the emitted gluons interact
elastically during their formation time, �el ⌧ �inel. These elastic momentum transfers
of the gluons during their formation time are supposed to be soft compared to the gluon
energy q? ⌧ !. Consequently, these selected parameters represent the limit of multiple
soft-scatterings of, e.g., the BDMPS-Z approach as discussed in Section 5.1.2. The gluon
energies are distributed according to ⇠ 1/! between !min ⇠ O

�
10−3 E

�
and !max = E,

whereas its initial transverse momentum kt; initial = q? is approximated by the momentum
transfer q? from the medium. Since in the simplified model the temperature T is not an
input parameter, we choose for the following results the jet energy E as the scale of the
problem. The numerical parameters are chosen so that, e.g., for a jet with E = 100 GeV
follows �inel ⇠ O(1 fm), �el ⇠ O

�
10−1 fm

�
, q2? ⇠ O

�
10−1 GeV2� and L ⇠ O(10 fm). The

momentum broadening parameter results then to q̂ ⇠ O
�
1 GeV2/fm

�
. While representing

the multiple soft-scattering limit, this parameter choice also corresponds to realistic values
how they could appear when applying more realistic interactions as we find in Section 5.3.5.
The algorithm employed in this section is summarized in Algorithm 3.

Figure 5.13 shows the differential emission rate d�/d! of gluons with energy ! emitted
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Figure 5.13: Differential rate d�/d! of a projectile with energy E for three medium lengths L from the
simplified model for the partonic interactions and the stochastic LPM algorithm. While the
energy scale !BH, given in a gray dash-dotted line, depends only on the elastic interactions,
the scale !fact depends on the medium length L and is therefore given as dashed lines in the
color corresponding to the respective L. The dotted curve represents a fit with the expected
LPM behavior in the range !BH < ! < !fact.

from a projectile with energy E for different medium lengths L. The two characteristic
regions of the emission rate originating from coherence effects can be indeed reproduced
by the Monte-Carlo algorithm. Soft gluons with energies ! . !BH ⇠ q

2

?�el (depicted as
dashed-dotted line) are produced via incoherent gluon emissions leading to a spectrum that
goes with d�/d! ⇠ 1/!. On the other hand, for harder gluons with energies ! & !BH the
formation times ⌧f of the single emissions start to overlap. Therefore coherence effects
set in and suppress gluon emissions to the steeper d�/d! ⇠ !

�3/2 behavior. For even
larger gluon energies ! & !fact ⇠ q̂L

2 the formation time of emissions is larger than the
medium length with the result that maximal one gluon can be emitted during L since the
whole medium acts effectively as one scattering center. Therefore the emission rate rapidly
vanishes for energies larger than !fact. Since !fact depends on the medium length L the
three different medium lengths result in different energy scales !fact.

Figure 5.14 shows the total radiative energy loss �E resulting from the emission
spectrum presented in Fig. 5.13 depending on the medium length L. The crucial length

scale for the energy loss is given by Lc ⇠

q
E�el/q

2

?. In agreement to the previous
considerations the energy loss resulting from the proposed algorithm differs indeed between
smaller and larger medium lengths: While traversing the thinner medium with L < Lc

leads to a�E ⇠ L
2 behavior, at ⇡ Lc the energy loss behavior changes. At larger medium

lengths L > Lc the energy loss scales like �E ⇠ L. Please note that the rather small
values of energy loss are owed to the specific choice of input parameters. We will find
later when discussing more realistic values that the radiative energy loss may become
significantly larger.

After demonstrating that the proposed Monte-Carlo algorithm indeed reproduces generic
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Figure 5.14: Radiative energy loss �E of a projectile with energy E depending on the medium length
L from the simplified model. The parameters are chosen in correspondence to Fig. 5.13.
The critical length scale Lc is given by Eq. (5.24) on page 55. While the points depict the
numerical results from the algorithm, the lines represent fits for the thin (solid) and thick
(dashed) �E behavior from the LPM effect.

features of the non-Abelian LPM effect we have in the following a closer look at the
other parameters underlying the simplified model. To this end, we will vary in Figs. 5.15
and 5.16 one of the parameters �inel, �el or q2? while keeping the other parameters fixed at
the values discussed previously. This procedure will allow a reliable test for the limits of
the proposed algorithm.

Figure 5.15 shows the differential emission rate d�/d! for varying elastic mean free
path �el (left) and varying momentum transfer q2? (right) of a projectile with energy E in a
medium with length L = 10�inel. And indeed the emission rate shows the characteristic
⇠ !

�3/2-behavior of the QCD LPM effect. The agreement between Monte-Carlo and
analytical expectations is significant. Both energy scales !BH and !fact are functions of
the input parameters q2? and �el in the simplified model. Since the gluon spectrum in the
LPM region (!BH < ! < !fact) only depends on !BH = q

2

?�el (cf. Eq. (5.62) on page 76)
one finds similar spectra in the region ! > !BH for combinations leading to the same !BH
(e.g. q2? = 10−5 E2, �el = �inel and q

2

? = 10−4 E2, �el = 0.1�inel ). On the other hand, the
energy scale !fact =

�
q
2

?/�el
�
L
2 depends on the ratio of q2? and �el. Therefore the upper

limit of the LPM region is different for same values of !BH and thereby similar slopes.
Both effects are visible by a comparison of both plots. The LPM region shrinks for larger
elastic mean free paths, since then the chance for the gluon to interact and decrease its
formation time decreases. If the elastic mean free path is on the order of the medium
length L, corresponding to !BH = !fact, the LPM region entirely disappears leading to the
situation that either incoherent gluons with ! < !BH = !fact are produced or gluons that
were produced by a totally coherent medium.

The interplay of q2? and �el for the gluon emission pattern can further be studied in
Fig. 5.16 (left) where we plotted the gluon emissions spectra for constant values of
q̂ = q

2

?/�el but varying both q
2

? and �el. Although the same value of q̂ underlies the
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Figure 5.15: Differential emission rate d�/d! of a projectile with energy E in a medium with length
L from the simplified model for varying elastic mean free path �el (left) and varying
momentum transfer q2? (right). The respective other parameters are kept fixed. While
the points show results from the numerical simulation, the lines represent the analytical
dependencies from Eq. (5.62) on page 76. Furthermore, the energy scales !BH and !fact are
shown for each �el and q2? value as dashed lines in the corresponding colors if they lie in
the considered ! range.

different calculations the emission spectra differs. This again demonstrates the scaling of
d�/d! with !BH instead of q̂. For larger values of the momentum transfers and elastic
mean free paths the energy scale !BH increases and thereby the region in which the gluons
are produced incoherently.

Since the energy scales !BH and !fact are independent from �inel varying the inelastic
mean free path as in Fig. 5.16 (right) does not modify the LPM region in which the ⇠ !

�3/2-
behavior can be reproduced. The shown part of d�/d! lies entirely in the LPM region. The
smaller the inelastic mean free path and thereby the larger the probability for producing a
gluon emission at first hand, the more gluons are also produced after considering the finite
formation time. This is in agreement with the dependence as formulated in Eq. (5.62) on
page 76.

Finally, after demonstrating that the Monte-Carlo reliably reproduces the d�/d! we
will discuss the parametric dependencies of the resulting differential energy loss dE/dx.
To this end, we show in Figs. 5.17 and 5.18 results for dE/dx depending on the medium
length L for fixed projectile energy E with the same parameters used in the previous results
for d�/d!. The scale that is important for the following results are again the length scale
Lc =

p
E/q̂ given by the maximum formation time of a gluon. Again, in the L > Lc

region the maximum formation time ⌧f
max is smaller than the medium length and for

L < Lc the maximum formation time can be large enough that the whole medium can
be treated as one coherent scattering center and thus the factorization region of the gluon
emission rate is active.

In Fig. 5.17 (left) we show the dE/dx for varying elastic mean free paths �el while
fixing the other input parameters of the Monte-Carlo algorithm. The numerical simulation
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Figure 5.16: Differential emission rate d�/d! of a projectile with energy E in a medium with length L
from the simplified model for varying elastic mean free path �el and momentum transfer q2?
but constant momentum broadening q̂ = 5�inel

−3 (left) and for varying inelastic mean free
path �inel (right). The respective other parameters are kept fixed. Again the points show
results from the numerical simulation and the lines represent the analytical dependencies
from Eq. (5.62) on page 76. The energy scale !BH is shown as dashed lines in the color
corresponding to values of the elastic interaction if they lie in the considered ! range.

agrees again with the analytical expectations. The differential energy loss is the highest
for the longest mean free path �el. We find that with increasing elastic mean free path
�el also the length scale Lc increases. Reason for this is that the formation time of the
gluon emissions ⌧f goes like ⇠

p
�el because of the random walk momentum gain per

scattering and thereby the contribution of coherent emissions increases with increasing
elastic mean free path. On the other hand, for small values of �el the elastic interactions
are so effective that the formation time is negligible and one reaches the incoherent limit
of dE/dx ⇠ const. already for small medium lengths L ⇠ O(2�inel).

The radiative energy loss following a variation of the other parameter controlling the
elastic interactions, q2?, is shown in Fig. 5.17 (right), again depending on L. Although
the behavior seems to be similar to the dependence resulting from the variation of �el
there are subtle differences. Again, varying the elastic momentum transfers q2? leads to
varying values of the critical medium length Lc. However, in Fig. 5.17 (left) the more
effective (smaller �el) the elastic interactions the smaller the resulting differential energy
loss dE/dx. In contrast, we find in Fig. 5.17 (right) that at fixed �el the differential energy
loss increases with more powerful momentum transfers q2?. Reason for this is again the
dependence of dE/dx on the product !BH and not q̂ as given in Eq. (5.63) on page 76.
Moreover, the dependency on q

2

? seems to be stronger since not only Lc depends on q
2

? but
also the energy loss for L < Lc is explicitly depending on ⇠ q

2

?.
After varying �el and q

2

? separately, we show in Fig. 5.18 (left) the variation of both
while keeping the transport parameter q̂ unchanged. Interestingly, although the q̂ is the
same for all curves, one obtains the strongest energy loss for the more powerful, but rarer
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Figure 5.17: Differential radiative energy loss dE/dx of a projectile with energy E depending on the
medium lengths L from the simplified model for varying elastic mean free path �el (left)
and varying momentum transfer q2? (right). Same parameters are chosen as in Fig. 5.15.
While points represent the numerical results from the simulation, the lines correspond to
the analytical derivation from Eq. (5.63) on page 76. The critical length scale Lc is given by
Eq. (5.24) on page 55. The minimum gluon energy that contributes to the radiative energy
loss is !min = 10−1 E.

elastic interactions. Again this represents the dependence of the radiative energy loss on
the parameter !BH that increases for more powerful, rarer gluon interactions.

The last dependence we want to discuss is the dE/dx dependence from the inelastic
mean free path �inel shown in Fig. 5.18 (right). As one could expect from our results
regarding the differential emission rate also the radiative energy loss scales with ⇠ �inel

�1.
In other words, the more gluons are initially proposed, the more gluons are available after
the algorithm and thereby the more energy is lost from these emissions.

We demonstrated in this section by a simplified approach that the proposed algorithm
of Section 5.3.1 indeed reproduces the characteristic features of the non-Abelian LPM
effect. These are the findings we further investigate in the following section by applying
the algorithm to more realistic interactions, namely Debye-screened leading-order pQCD
cross sections for the elastic part and the improved Gunion-Bertsch matrix element for the
inelastic interactions.

5.3.3 Momentum broadening of gluons during formation time

One of the major differences between the LPM effect in QED and QCD is the possibility
of the emitted gluon to interact with the medium. As we have seen in the simplified model
of Section 5.3.2 these interactions modify significantly the formation time of the emitted
gluon and thereby the nature of the respective emission. In the simplified algorithm we
assumed that a gluon gets constant momentum transfers q

2

? in the transverse direction
per elastic mean free path �el during its formation time. However, both the rate for
elastic interactions and the corresponding momentum transfer calculated via pQCD are not
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Figure 5.18: Differential radiative energy loss dE/dx of a projectile with energy E depending on the
medium lengths L from the simplified model for varying elastic mean free path �el and
momentum transfer q2? but constant momentum broadening q̂ = 5�inel

−3 (left) and for
varying inelastic mean free path �inel (right). Same parameters are chosen as in Fig. 5.16.
While points represent the numerical results from the simulation, the lines correspond to
the analytical derivation from Eq. (5.63) on page 76. The critical length scale Lc is again
given by Eq. (5.24) on page 55. The minimum gluon energy that contributes to the radiative
energy loss is again !min = 10−1 E.

constant but depend on the kinematics of the scatterings, namely the center-of-momentum
energy of a scattering and thereby the gluon energy. These dependencies of the elastic
gluon scatterings are to be discussed in the following.

Definition of the transverse momentum transfer q2?

Let us assume that a massless parton with momentum p1 = (E1 = !, ~p1) scatters with a
massless, thermal parton from the medium with p2 = (E2, ~p2) and thereby two partons
with momenta p3 = (E3, ~p3) and p4 = (E4, ~p4) are produced. The transverse momentum
q
2

? that is transfered to pin = p1 in this scattering follows from geometrical considerations
as

q
2

? = E
2

out �
(~pout · ~pin)

2

E
2

in

, (5.65)

where pout is the four-momentum of one of the outgoing momenta and pin is, e.g., the
four-momentum of the gluon elastically scattering with the background medium during its
formation time. Special attention needs to be paid whether pout = p3 or pout = p4: If the
two outgoing flavors are different from each other, scattering from leading-order pQCD are
t-channel (t̂ = (p1 � p3)

2) dominated and therefore pout = p3. On the other hand, if the
outgoing state consists of two partons with the same flavor (e.g. in processes gg ! gg or

83



5 Landau-Pomeranchuk-Migdal effect in a transport approach

qq ! qq), the outgoing partons are interchangeable and one has the freedom to arbitrarily
choose either of the outgoing partons5.

In BAMPS we have access to any information about a single scattering process including,
e.g., the Mandelstam variables t̂ and û. In the case of the same outgoing flavor, this
information allows us a comprehensible way to correlate ingoing with outgoing partons.
If t̂ is small,

��t̂
�� < ŝ/2, we choose pout = p3 since then the process will be dominated

by the t-channel contributions of the 2 ! 2 process. On the other hand, if
��t̂
�� > ŝ/2 the

u-channel dominates and the outgoing partons switch roles. The most intuitive way is then
to choose pout = p4.

As discussed in Section 3.1, for processes with high CoM energy
p
ŝ or equivalent high

gluon energy ! the t-channel
��M

��2 ⇠ t̂
�2 underlying the 2 ! 2 scatterings dominates.

This leads to the commonly used small angle approximation, where it is assumed that
for the momentum transfers q

2

? of a scattering
��t̂
�� = q

2
⇡ q

2

? holds. Although used in
previous studies in the BAMPS framework, the small-angle approximation is explicitly not
used within this work. Rather all leading-order channels as given in, e.g., Ref. [PS95] and
discussed in Chapter 3 are considered for the evaluation of the matrix elements underlying
the elastic scatterings.

Differential scattering rate d�/dq2? from Debye-screened pQCD

In the previous section Section 5.3.2 we used a constant momentum transfer in the elastic
gluon scatterings to demonstrate the stochastic LPM algorithm. In contrast, the more
realistic interactions from pQCD show a distribution of momentum transfers in each
scattering. Figure 5.19 shows the differential scattering rate d�/dq2? depending on the
momentum transfer q2? of a single elastic scattering of a gluon within a thermal medium
with temperature T for different gluon energies 25 T < ! < 250 T. While the scale for the
problem at hand is the temperature T , the screening of the divergence is done via a Debye
mass m2

D ⇠ ↵sT
2. Therefore we will present in the following all results scaled either by

the temperature T or by the proportional Debye mass m2

D. Independent from the gluon
energy !, the distribution is dominated by momentum transfers with small q2? / m

2

D. At
these small momentum transfers the scattering rate is almost flat, which is a consequence of
the Debye screening of the matrix elements prohibiting infinite small values of q2?. On the
other hand, the distribution shows a large tail at high q

2

? that is constrained kinematically by
the energy ! of the gluon. These momentum transfers may transfer a significant amount of
transverse momentum to the gluon by one scattering. This is in contrast to the assumptions,
e.g., in BDMPS-Z where scatterings of the gluon are multiple but soft.

As we mentioned earlier, scatterings at large parton energies, ŝ � m
2

D, are dominated
by t-channel processes. The differential rate of these processes goes like d�/dq2? ⇠�
CR↵

2

sT
3
�
/(t̂�m

2

D)
2, where CR is the color factor of the scattering parton and ↵s is the

QCD coupling constant. This rate leads to increasingly soft momentum transfers that
are screened via a Debye mass m

2

D. Furthermore, in the limit t̂ ! 0 the longitudinal
component of the momentum transfer vanishes so that one may approximate t̂ ⇡ �q

2

?.

5An intuitive choice applicable in the case of a high-energy parton scattering with a thermal parton would be to correlate
pin with the outgoing parton with the higher energy. This minimizes the energy loss and at the same time forbids that
the high energy parton loses a significant amount of its energy while the medium partner has an enormous energy
gain. However, if the energy of pin is on the order of the energy of the scattering partner, the same argument does not
hold.
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Figure 5.19: Differential scattering rate d�/dq2? of gluons with different energies ! (shown by different
colors) scattering in a thermal medium with temperature T via Debye-screened, leading-
order pQCD interactions. q2? is the squared transverse momentum a gluon obtains in a
single elastic interaction as defined in Eq. (5.65) on page 83. The QCD coupling is fixed to
↵s = 0.3. The inset figure shows a zoom in the small q2? < m2

D region.

The differential scattering rate at larger parton energies then reads

d�

dq2?

����
!�mD

⇡
CR↵

2

sT
3

(q2? +m
2

D)
2
. (5.66)

And indeed this behavior can be reproduced in the BAMPS simulation as shown in Fig. 5.20,
where we plotted the differential scattering rate d�/dq2? for a quark and a gluon with
E = 250 T together with corresponding fits.

Furthermore, while our results are calculated via Debye-screened, leading-order pQCD
cross sections, the differential elastic scattering rate was also calculated via Hard-Thermal-
Loops (HTL) by resumming potential effects from thermal field theory. The elastic
scattering rate within HTL reads [AX08; Arn09b; Arm+12]

d�

dq2?

����
HTL

⇠
CR↵

2

s

⇡

N (T )

q
2

?
�
q
2

? +m
2

D

� , (5.67)

where N (T ) = ⇣(3)/⇣(2)(1 + Nf/4)T
3 is the weighted number density of the

medium with temperature T and CR the color factor of the scattering parton (CF =�
N

2

c � 1
�
/(2Nc) = 4/3 for a quark and CA = Nc = 3 for a gluon [Arn09b]). This scat-

tering rate interpolates between the soft and hard momentum transfer region of the HTL
calculation [AX08; Arm+12] and corresponds to the collision kernel as used in the AMY
formalism that we discuss in Section 5.4. In contrast, the Debye-screened interactions
within BAMPS can be understood in the HTL formalism as static scattering centers as
they are used, e.g., in the GLV formalism [Arm+12]. In Fig. 5.20 we compare the HTL
scattering rate, Eq. (5.67), with the Debye-screened, leading-order interactions. While both
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Figure 5.20: Differential scattering rate d�/dq2? of gluons (red) and quarks (green) with energy ! =

250 T scattering in a thermal medium with temperature T via Debye-screened, leading-
order pQCD interactions and QCD coupling ↵s = 0.3. While points represent the numerical
simulations from BAMPS, the solid line represents a fit based on the dependency expected
for static scatterings centers [Arm+12]. The dashed line is a fit based on the d�/dq2?
dependence found by the scattering rate calculated in HTL [Arn09b; Arm+12].

approaches agree at large momentum transfers, they show different behaviors for small
momentum transfers q2? < m

2

D. The Debye screening within BAMPS effectively prevents
a divergence at small momentum transfers. In contrast this divergence occurs in the HTL
case so that arbitrary many, very soft momentum transfers are allowed. Therefore one can
conclude that the interactions within BAMPS show the correct large angle behavior but
lack the soft momentum transfers in comparison with thermal field theory.

This difference between the interaction in BAMPS and HTL calculation was also found
in previous studies within the BAMPS framework [Uph+14]. In these studies the energy
loss rate of heavy quark was calculated via the Born term and compared to corresponding
HTL calculations. It was found that the Debye mass has to be decreased by an effective
factor 22 = 0.2 in order to find an agreement between the HTL rates and the scattering
rate as implemented within BAMPS. Since this study was only valid for heavy quarks and
significant differences and difficulties are expected in a corresponding calculation for light
partons, we leave such a study for another project but keep in mind the differences between
BAMPS and HTL interactions.

Another possibility for improving the elastic scattering rates within BAMPS would be a
procedure as in Ref. [KXB18b], where the large angle scattering is described by Debye-
screened matrix elements as in BAMPS but the softer interactions are calculated within a
Langevin formalism. In this formalism the elastic interactions are not described by single
scatterings but as a diffusion process based on the momentum broadening parameter q̂,
whose values is calculated within HTL. This procedure would bring the BAMPS approach
well beyond its current model assumptions and it remains to be seen whether this approach
is also applicable in the context of the BAMPS framework.
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Total scattering rate �22 from Debye-screened pQCD

We have seen that the momentum transfers q2? resulting from interactions calculated in
leading-order pQCD follow a distribution that is dominated by small q2? interactions with
a long tail up to high q

2

?. In order to further characterize the elastic scattering we show
in Fig. 5.21 the 2 ! 2 scattering rate �22 (Fig. 5.21a) and the mean momentum transfer
q
2

? (Fig. 5.21b) that a quark or gluon experiences in a single scattering depending on the
parton energy ! for different values of the medium temperature T . We show �22 of a quark
or gluon (scaled by the color factor CF

CA
= 4/9) projectile depending on the parton energy !

in units of the Debye mass mD for different temperatures T . The total scattering rate can
be analytically obtained by integrating the differential scattering rate d�/dq2? ,

�22 =

q
2
?;maxZ

0

dq2?
d�

dq2?
, (5.68)

where q
2

?;max is the maximum momentum transfer in a single elastic scattering. This maxi-
mum momentum transfer can be approximated by q

2

?;max ⇠ ↵s

p

!T
3 [Car09; Arm+12] so

that q2?;max/m
2

D ⇠
p
!/T . At large parton energies ! > mD the processes are dominated

by t-channel processes showing the same !-independent behavior for both quarks and glu-
ons. This constant dependence can be understood by employing the differential scattering
rate at ! � mD from Eq. (5.66) on page 85,

�22|!�mD
⇠

CR↵
2

sT
3
q
2

?;max

m
2

D

�
q
2

?;max +m
2

D

� ⇠
CR↵sT

1 +
q

T
!

. (5.69)

The limit ! � mD also implies ! � T , so that the rate at large ! converges to

lim
!!1

�22 ⇠ CR↵sT . (5.70)

Figure 5.21a shows that the parametrization Eq. (5.69) not only explains the gluon and
quark rate at larger ! but also the rate at soft quark energies, so one can infer �q

22
⇡

�22|!�mD
.

While the scattering rate of the quark decreases with decreasing energy, the gluon
rate diverges for softer energies ! ! 0. Reason for this difference is the four-gluon
channel of gg ! gg that only exists for gluons and not for quarks. Interactions of a soft
parton with thermal partons have a small average CoM energy ŝ. In these processes the
s-channel processes are active but the t- and u-channels are negligible. For gluons the
dominant s-channel at these energies is the four-gluon channel d�/dt ⇠ ↵

2

s/ŝ (compare
Chapter 3). One can show that the four-gluon vertex, which does not have a dependence
on the scattering angle, gives a contribution to the rate of the gluon that goes like ⇠ T

2
/!

so that the total gluon rate reads

�g
22

⇠
CA↵

2

sT
3
q
2

?;max

m
2

D

�
q
2

?;max +m
2

D

� +
CA↵
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Figure 5.21: Energy ! dependence of the total scattering rate �22 (Fig. 5.21a) and mean transverse
momentum transfer hq2?i (Fig. 5.21b) of a single elastic scattering via Debye-screened,
leading-order pQCD interactions for a quark (red) or a gluon (green, rate scaled by CF/CA).
The QCD coupling is fixed to ↵s = 0.3. While the points shows the numerical results from
BAMPS, the solid lines denote the analytical dependencies discussed in the text. Different
point types represent different temperatures T in the calculation and serve as an additional
confirmation of the expected scaling behavior in the numerical simulation.

which is validated by the fit in Fig. 5.21a. For ! � mD the four-gluon contribution
vanishes and the gluon rate is again dominated by the t-channel.

Mean transverse momentum transfer hq2?i from Debye-screened pQCD

After discussing how often an elastic scattering occurs we show in Fig. 5.21b the mean
momentum transfer in a single scattering. The mean momentum transfer can be obtained
via the differential scattering rate d�/dq2? by

hq
2
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R
dq2?
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dq
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d�

dq
2
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(5.72)

For harder parton energies ! ' mD the mean momentum transfer obeys a logarithmic !
dependence for both quarks and gluons. This logarithmic dependence is again a typical
signature of the t-channel that dominates at high parton energies. If we employ the
approximated scattering rate of Eq. (5.66) on page 85 for ! � mD we obtain
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Furthermore, although quark and gluons experience different processes in the medium,
the dominance of the t-channel leads to the same mean momentum transfer for quark
and gluons with higher energy !. In contrast, at softer energies ! / mD the mean
momentum transfer of a quark becomes significantly harder than the momentum transfer
of a gluon. Reason for this difference is again the four-gluon channel that is not screened
by a Debye mass. This allows arbitrary soft momentum transfers of the soft gluon in
contrast to a quark where the minimum momentum transfer is limited by the Debye mass.
Furthermore, another reason for the flatness of the mean momentum transfer for ! < mD

is that at these small energies effectively two thermal partons interact with each other. The
distribution of the thermal scattering partner then smears the mean momentum transfer
and the dependence on ! becomes weaker. The only scale of the scattering is then T .

Momentum broadening parameter q̂ from Debye-screened pQCD

The parameter that is commonly used in the jet quenching community for characterizing
medium-induced gluon radiation is the already discussed momentum broadening parameter
q̂. q̂ describes how capable the medium distributes transverse momentum per unit path
length to a parton. This momentum transfer then may act as a source for inducing gluon
radiation. Furthermore, as we have seen earlier, the elastic scatterings that a parton
suffers in a QCD medium may be numerous and mainly soft. Therefore other models
often treat the interactions not as single scatterings but as a diffusion process, where q̂ is
the corresponding transport parameter [KXB18b]. While in principle such a treatment,
especially of the soft sector, would also be possible within BAMPS, such an approach has
difficulties in non-thermal situations, where an ad-hoc way to define a temperature is not
trivial. Therefore we stick within this work to the default picture of individual scatterings
within BAMPS.

In our approach of individual binary scatterings, q̂ can be written as

q̂ =

Z
dq2? q

2

?
d�

dq2?
= �22 hq

2

?i =
hq

2

?i

�22

(5.74)

The resulting q̂ of a quark or gluon (again scaled by CF/CA) with energy ! traversing
a static medium with temperature T is shown in Fig. 5.22. Due to the almost constant
scattering rate at higher parton energies, the increase of q̂ for ! � mD originates from
the increasing mean momentum transfer q2? of an energetic parton. Therefore q̂ depends
logarithmically on the parton energy ! and scales with the respective color factor CF or CA.
Using again the differential scattering rate given by Eq. (5.66) on page 85, the q̂ parameter
at ! � mD can be estimated to
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This dependence on ! is in agreement with other calculations from HTL [Arm+12].
In contrast, at smaller energies ! < mD the q̂ dependence of quarks and gluons again

differs due to the different underlying s-channel processes. The decreasing scattering rate
of quarks at soft energies leads also to a decreasing q̂ for small !. On the other hand, the
diverging scattering rate of a soft gluon is counteracted by arbitrary small momentum
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Figure 5.22: Dependence of the momentum broadening parameter q̂ from elastic scatterings via Debye-
screened, leading-order pQCD interactions for a quark (red) or a gluon (green, scaled by
CF/CA) on the parton energy !. The QCD coupling is fixed to ↵s = 0.3. While the points
show the numerical results from BAMPS, the solid lines denote the analytical dependencies
discussed in the text. Different point types represent different temperatures T and serve as
an additional confirmation of the expected scaling behavior in the numerical simulation.

transfers. Consequently, the contribution of the four-gluon channel to q̂ is
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In result, the ! dependence of q̂ for a quark or gluon can be summarized by

q̂q ⇠ CF ↵
2

s T
3 log

✓
1 +

q
2

?;max

m
2

D

◆
⇠ CF ↵

2

s T
3 log

✓
1 +

r
!

T

◆

q̂g ⇠ CA↵
2

sT
3

✓
log

✓
1 +

q
2

?;max

m
2

D

◆
+

T

!

◆
(5.77)

⇠ CA↵
2

sT
3

✓
log

✓
1 +

r
!

T

◆
+

T

!

◆
.

Figure 5.22 validates the found analytical dependencies of q̂ on the parton energy by
comparison to the numerical results.

Momentum broadening parameter q̂ via Svetitsky formalism

To further elucidate the dependencies of q̂ we confront our calculation with a semi-
analytical calculation. This calculation is based on Ref. [Sve88], where diffusion coeffi-
cients of charm quarks evolving via pQCD interactions in the QGP were calculated. The
charm diffusion coefficient B0 of Ref. [Sve88] corresponds to the momentum broadening
parameter q̂ of light partons if the mass of the quark is set to m = 0 and the corresponding
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5.3 Stochastic LPM suppression

degeneracy factors are considered. The calculation of q̂ is then achieved semi-analytically
by folding an integration over the matrix elements with a thermal distribution for the
scattering partner, what can be seen as averaging the coefficients over a thermal distribu-
tion. However, since the original calculation was done for charm quarks scattering with a
medium consisting of gluons and light quarks, the discussed case of same outgoing flavors
was not considered in the original calculations. In our notation, for the transport parameter
q̂ of a massless parton with energy ! in the process i ! j then follows6

q̂i!j =
1
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1Z
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(5.78)

where � is the angle between the two incoming partons, �CoM and ✓CoM are the azimuthal
and polar angle of the outgoing partons in the center-of-momentum frame. 1/�c

P
|M|

2

is the sum over the relevant Debye-screened matrix elements for the process as derived
in Section 3.1 and q

2

?(~pout) is the single transverse momentum transfer as defined in
Eq. (5.65) on page 83. The split of the integral

R
d(cos ✓CoM) reflects the different outgoing

flavors that are considered for calculating q
2

?. The total q̂ of a quark or gluon is obtained
by a sum of the contribution of the different processes while considering symmetries
of the incoming/outgoing partons and the respective degeneracy factors of quarks ⌫q =
⌫spin⌫antiNfNc = 36 and gluons ⌫g = ⌫polarization

�
N

2

c � 1
�
= 16,
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0 + ⌫anti Nf q̂qq!X ,
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where q̂qq!X = q̂qq!qq +
�
(Nc � 1)/

�
Nf

��2
1/2 q̂gg!qq + ⌫anti q̂qq!q

0
q
0 .

The calculation of q̂ via the formalism of Ref. [Sve88] is independent from the numerical
calculations within BAMPS and are supposed to provide further confidence in the numerical
simulations. And indeed Fig. 5.23 shows that the numerical simulations (shown by points)
agree with the semi-analytical calculations (shown by the solid line) both for quarks and
gluons. An additional advantage of the procedure by Svetitsky is that one easily can
identify the contributions of the different processes by using only the corresponding matrix
elements in the semi-analytical calculations. Consequently, we are able to support the
assumption that the q̂ of gluons is dominated at ! < mD by the process gg ! gg, while
at larger energies both processes gg ! gg and gq ! gq both contribute similarly to q̂.
In contrast, the process gg ! qq is negligible for q̂ over the entire ! range. Furthermore,
the main contribution to the momentum broadening of quarks comes also from the process
gq ! gq . The influence of the corresponding process to gg ! gg, qq ! qq , is already
significantly suppressed.

6In the original Ref. [Sve88] an overall factor 2 was missed that we correctly included.
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Figure 5.23: Dependence of the momentum broadening parameter q̂ from elastic scatterings via Debye-
screened, leading-order pQCD interactions for the different processes of a quark (left) or a
gluon (right) on the parton energy !. The QCD coupling is fixed to ↵s = 0.3. While the
points shows the numerical results from BAMPS, the solid lines denote a semi-analytical
calculation via the Svetitsky formalism [Sve88]. Different line styles denote the different
processes of a quark or gluon in leading-order pQCD.

5.3.4 Screening the k? divergence of the Gunion-Bertsch matrix element

In this section we discuss how the processes as calculated in the (improved) Gunion-
Bertsch approximation differ to the simplified inelastic interactions of Section 5.3.2. To
this end we investigate the emission rate directly from the 2 ! 3 process calculated via
the GB matrix element without any further LPM suppression. This result may then serve
as a reference for a spectrum with no LPM suppression in the following sections, where
we discuss the suppression originating from the algorithm introduced in Section 5.3.1.

As mentioned in the course of Section 5.2 one serious issue when dealing with partonic
processes calculated in pQCD is the screening of soft and collinear divergences. One of
the benefits of the previous ✓-LPM method for modeling the LPM effect in BAMPS was
that the theta function in the matrix elements cured the k?-divergence immanent in the
Gunion-Bertsch matrix element. By forbidding very soft and collinear emissions with small
k? that lead to large formation times longer than the mean free path any divergence for
k? disappears. However, since we are interested in replacing the ✓-LPM by the stochastic
algorithm proposed in Section 5.3.1 while still employing the matrix elements from the
Gunion-Bertsch approximation, special attention needs to be paid to the treatment of these
soft, collinear gluon emissions.

One straight-forward way to cure the k? divergence would be to introduce a global, fixed
k? cutoff k?; min ⇠ const.. However, such a procedure would neglect any dependence of
the screening on both the emitting projectile and the scattering partner from the medium
and gives the same screening for any radiative process. Another choice for a potential
screening scale would be the temperature T or the Debye mass mD. Such a choice of
screening the k? divergence would be similar to assigning a thermal mass to the emitted
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gluons. This approach was followed, for example, in Ref. [KXB18b]. However, this
choice of scaling neglects on the one hand the energy scale of the emitting parton by
setting the scale solely by the scattering partner. On the other hand, since both T and
mD are macroscopic quantities their application in non-thermal situations as, e.g., in the
expanding environment is at least questionable. Furthermore, massive gluons would lead to
a contradiction in the other assumptions within the BAMPS framework, which is formulated
for massless partons on the mass shell. Therefore we choose a more comprehensible way
by a k? cutoff that depends on the scale

p
ŝ of each individual inelastic 2 ! 3 scattering.

This treatment considers the energy scale of the emitting parton as well as the scale given
by the medium. The minimum k? in the CoM frame of a 2 ! 3 scattering is then

k?; min
CoM = ⇠LPM

p

ŝ , (5.81)

where we defined ⇠LPM as the proportionality factor between the cutoff and the center-of-
momentum energy

p
ŝ of the 2 ! 3 process. Due to kinematics the maximum value for

⇠LPM is ⇠LPM = 1/2 (cf. Eq. (5.37) on page 58). In contrast to the screening underlying the
✓-LPM effect this screening does not introduce an additional dependence on the rapidity
y but is symmetric in the forward- and backward rapidity. Furthermore, the center-of-
momentum energy is a Lorentz invariant quantity and can be evaluated in the CoM frame
of the respective 2 ! 3 scattering as well as the lab frame. As a remark, the choice
of k?; min ⇠

p
ŝ for screening the k? divergence should be understood as an arbitrary

choice without a profound physical reasoning. However, as we will see in subsequent
sections this choice can reproduce other theoretical models and experimental data after
adjusting the specific value of ⇠LPM. In contrast, we have checked that a screening with,
e.g., k?; min ⇠ mD does not result in a ⇠

p
E dependence of dE/dx when applied together

with the stochastic LPM algorithm.
The Gunion-Bertsch matrix element is symmetric in the gluon rapidity y (in the CoM

frame). However, the cutoff in the ✓-LPM method given in Eq. (5.36) on page 58 favored
gluon emissions in the backward rapidity region as we demonstrated in Fig. 5.7. The reason
for this preference was the Lorentz boost that was needed for comparing the formation
time evaluated in the CoM frame and the mean free path determined in the lab frame
(cf. Section 5.2). In contrast, the condition from Eq. (5.81) is independent from y and
thereby preserves the symmetry of the gluon rapidity. This is verified in Fig. 5.24 where
we plot the y � k? phase space in the CoM frame of gluon emissions off a quark with
E = 250 T scattering with a fixed “thermal” particle with ppartner = (3T,�3T, 0, 0) in
a thermal bath with temperature T . These are again typical values expected for a high
energy jet traversing the medium produced in ultra-relativistic heavy-ion collisions. As
in Fig. 5.7 the solid lines represent the kinematical limits for gluon emissions as given
in Eq. (5.37) on page 58. The colored dashed lines are the minimum limits of k? given
by three different ⇠LPM values. Indeed the resulting gluon emissions are symmetric in y

without a preferred emission direction. As expected, lower ⇠LPM values allow smaller k?
values and due to the ⇠ 1/k2

? dependence of the GB matrix element, these small k? values
are even sampled preferably. Furthermore, since with lower ⇠LPM values the transverse
component of the gluon momentum may obtain smaller values at same gluon energy there
is more phase space available in the longitudinal component of the gluon momentum.
Therefore with smaller ⇠LPM values, also higher rapidities can be reached. At fixed k? the
emissions with large rapidity lead to more energetic gluon emissions in the lab frame via
!lab = k? cosh (yCoM +�yCoM!lab) due to the Lorentz boost with � = tanh (�yCoM!lab).

The softer k? values that are allowed when choosing smaller ⇠LPM values are additive to
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Figure 5.24: Phase space distribution of gluon emissions in the yCoM-k?;CoM plane from the Gunion-
Bertsch matrix element without LPM suppression screened via different ⇠LPM =

{0.01; 0.05; 0.1} for a quark projectile with energy E = 250 T scattering with parton
with fixed “thermal” momentum ppartner = (3 T,−3 T, 0, 0) and a fixed QCD coupling
↵s = 0.3. Each dot represents a single gluon emission. While the solid lines depicts the
limit imposed by the ✓-LPM method, the dash-dotted lines show the kinematical limit for
the different projectile energies.

the differential emission rate d�/dk? and thereby increase the total emission rate. To this
end we show in Fig. 5.25 the differential emission rate d�/dk? now evaluated in the lab
frame for a quark with energy E = 25 T and E = 250 T scattering with a thermal parton
in a medium with temperature T . Since we consider in this section only the bare Gunion-
Bertsch spectrum screened via

p
ŝ the rates are length-independent and therefore follow

a Bethe-Heitler emission pattern. As expected, a decreasing ⇠LPM value indeed allows
more small k? gluon emissions that are added to the differential rate d�/dk? at small
k? values while leaving the emissions at high k? unaffected for both projectile energies.
Consequently, the available phase space for collinear gluon emissions increases the total
emissions rate with decreasing ⇠LPM. In contrast to the k? limit underlying Fig. 5.24 the
k? cutoff in Fig. 5.25 is broadened due to the thermal distribution of the scattering partner.

Figure 5.26 shows the differential emission rate d�/d! of a quark projectile with
E = 25 T and E = 250 T. Again the energy of both the gluon and the projectile is
evaluated in the lab frame. In order to clearly visualize the ! scaling behavior we weight
the rate by ! and show ! in units of the projectile energy E. The minimum gluon energy
is limited by !min � k?; min. Consequently, smaller ⇠LPM values also allow softer (smaller
!) gluon emissions. In the limit of soft gluon emissions ! ⌧ E the Gunion-Bertsch
matrix element shows the already employed ⇠ 1/! behavior from the simplified model
of Section 5.3.2. While the deviations from 1/! at small ! again arise from the thermal
distribution of the scattering partner, the deviations at high ! originate from the limited
phase space in a 2 ! 3 process to convert the total CoM energy of the Bremsstrahlung
process into the energy of the gluon. The total available energy in the 2 ! 3 process needs
to be distributed among the three outgoing partons. Moreover, the variation of ⇠LPM leads
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Figure 5.25: Differential emission rate d�/dk? from the Gunion-Bertsch matrix element without
LPM suppression screened with varying ⇠LPM for a quark projectile with energy E =

{25 T; 250 T} scattering in a thermal medium with temperature T and a fixed QCD cou-
pling ↵s = 0.3. The different values of ⇠LPM are given by varying colors from small ⇠LPM
(green) to larger ⇠LPM (red) values.

not only to contributions at soft ! but also at intermediate and high ! values up to O(E).
The increased emission rate is distributed over the whole ! range. In other words, while
small ⇠LPM values add softer k? emissions, these emissions do not have to be soft (small !)
but can also be energetic in the longitudinal direction. This is in agreement with Fig. 5.24
where we found an increasing phase space at high rapidities with decreasing ⇠LPM. This is
equivalent with higher-! gluons in the lab frame.

Apparently not only the range for k? and ! but also the rate �GB for producing gluons
via the screened Gunion-Bertsch matrix element depends on the screening parameter
⇠LPM. Figure 5.27 shows the dependence of the total emission rate �GB depending on
the projectile energy E for different values of ⇠LPM. The radiative matrix element in
Gunion-Bertsch approximation factorizes into an elastic part and a probability Pg to emit
a gluon (s. Section 3.2.1. Since we neglect at the moment the LPM effect and screen
the k? divergence without an iterated mean free path, Pg does not depend on the flavor
of the two initial partons initiating the 2 ! 3 process. In contrast the elastic part of the
Gunion-Bertsch matrix element depends on the flavor of the initial scattering partons. This
dependence leads to a scaling for the GB emission rate of quarks and gluons with the
ratio of QCD color factors CF/CA. This expectation is confirmed in Fig. 5.27 where lines
represent the rate of a quark projectile and the points are the corresponding calculations
for a gluon scaled by the color factors. The emission rate for energetic projectiles with
E � T is almost independent from E. As expected, smaller values of ⇠LPM allow more
gluon radiations and thereby show an increasing rate �GB.

The ⇠LPM dependence of the rate can be further studied in Fig. 5.28 where we show
�GB vs. ⇠LPM for a quark projectile and different projectile energies E (shown by different
colors). Almost independent from the projectile energy E the best fit for the rate is
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Figure 5.26: Differential emission rate d�/d! from the Gunion-Bertsch matrix element without
LPM suppression screened with varying ⇠LPM for a quark projectile with energy E =

{25 T; 250 T} scattering in a thermal medium with temperature T and a fixed QCD cou-
pling ↵s = 0.3. The different values of ⇠LPM are given by varying colors from small ⇠LPM
(green) to larger ⇠LPM (red) values. To better visualize the actual share of radiative energy
loss at ! on the total radiative energy loss we scale the rate by !/E.

� ⇠ log 1/⇠LPM + B, where B is a constant. Consequently, the rate logarithmically
diverges for decreasing ⇠LPM.

In summary, the differential emission rate d�/d! resulting from interactions obeying
the improved Gunion-Bertsch matrix element with an effective k? screening ⇠

p
ŝ shows

indeed a similar characteristic !�1 dependence as assumed in Section 5.3.2. The value
of ⇠LPM determines both the total emission rate corresponding to the inelastic mean free
path �inel and at the same time the soft scale of the gluon emission !min. We will see in
the subsequent section how this dependence on ⇠LPM ends up in the resulting emission
rates after applying the sLPM algorithm and discuss how one can fix the value of ⇠LPM by
comparison to other theoretical approaches.

5.3.5 Stochastic LPM with pQCD cross sections

Although the introduced, simplified model for LPM suppression from Section 5.3.2 gave
important first evidence that the proposed algorithm from Section 5.3.1 indeed reproduces
signatures of the non-Abelian LPM effect, the assumptions underlying the interactions
of the model are rather coarse. Therefore we will study in this section how the algorithm
for stochastically describing the coherence from the LPM effect can be applied to more
realistic partonic interactions. While the inelastic interactions of the projectile will be
described by the Bremsstrahlung 2 ! 3 processes in the improved Gunion-Bertsch approx-
imations, the elastic interactions of the gluons during the formation time are calculated,
as usual in BAMPS, based on Debye-screened, leading-order pQCD cross sections. The
previous sections Sections 5.3.3 and 5.3.4 introduced the dependencies following from
these microscopic pQCD interactions. In this section we discuss the possible consequences
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Figure 5.27: Total emission rate �GB from the Gunion-Bertsch matrix element without LPM suppression
screened with varying ⇠LPM for a quark (lines) and gluon (points, scaled by CF

CA
= 9/4)

projectile depending on the projectile energy E. The QCD coupling is fixed to ↵s = 0.3.
The different values of ⇠LPM are again given by varying colors from small ⇠LPM (green) to
larger ⇠LPM (red) values.

of going from fixed elastic and inelastic interactions to more realistic, energy-dependent
pQCD cross sections. To this end, we investigate the dependencies of the scales crucial for
the stochastic LPM, namely !BH, !fact and Lc. Based on these findings we study how the
resulting spectra of gluon emissions and thereby the radiative energy loss are modified.

The stochastic LPM algorithm based on pQCD interactions is schematically shown in
Algorithm 4. As in the simplified model we approximate both the emitting projectile as
well as the emitted gluon as eikonal for the results presented in this section. In other words,
the emitting parton does not lose energy or momentum after an emission but keeps flying
in the same direction with the same energy as before the emission. Furthermore, although
the emitted gluons scatter elastically with the background medium during their formation
time and thereby accumulate transverse momentum, we assume that the energy of the
gluons stays unmodified at the energy that the gluon had when it was produced initially
in the 2 ! 3 process. This procedure simplifies the investigations of the parametric
dependencies significantly. When studying the evolution of partons and their shower in a
static medium (s. Chapter 6) or an expanding heavy-ion collision (s. Chapter 7) we will
loose this approximation later.

Emission rate from GB matrix element and constant momentum transfers

Before investigating the sLPM method together with !-dependent elastic interactions we
set first the stage by combining the Gunion-Bertsch matrix element screened via ⇠LPM
with constant momentum transfers of the emitted gluons during their formation time as
introduced in Section 5.3.2. Figure 5.29 shows the differential emission rate d�/d! for
a fixed value ⇠LPM = 0.01 and varying constant momentum transfer q2? or varying elastic
mean free path �el. For comparison, also the distribution without the stochastic LPM
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Figure 5.28: Total emission rate �GB from the Gunion-Bertsch matrix element without LPM suppression
depending on the screening parameter ⇠LPM for a quark projectile with different energies E
given by varying colors from small E (green) to larger E (red) values. The QCD coupling
is fixed to ↵s = 0.3. While the points show the numerical results, the lines are fits for each
energy � ⇠ log (1/⇠LPM), where B is an unitless fit parameter.

algorithm as presented in Section 5.3.4 is depicted in dashed lines. While the distribution
shows the expected d�/d! ⇠ !

�3/2 behavior for very soft (q2? ! 0) but numerous
(�el ! 0) elastic scatterings, at harder and rarer scatterings the differential emission rate
approaches the ⇠ !

�1 behavior of the improved Gunion-Bertsch approximation without
LPM suppression. This finding gives a first hint that the sLPM algorithm indeed reproduces
the expected scaling from the LPM effect for specific values of the elastic interactions.

Energy scales !BH and !fact with pQCD interactions

One consequence of using pQCD matrix elements in the sLPM method is that the parame-
ters, that control how gluons are modified during their formation times, are not constant
but depend on the gluon energies. Furthermore, instead of a constant momentum transfer,
the gluons suffer different q2? from a distribution that is mainly soft but has a long tail at
hard momentum transfers. As discussed in Section 5.1.2, if the formation time is longer
than the mean free path of a gluon, ⌧f > �el, its elastic scatterings during the formation
time contribute coherently to the emission. By employing the calculations for q2?, �22 and
q̂ of Section 5.3.3, we can estimate via ⌧f = !/q̂ the mean formation time of an emission
obeying pQCD interactions. Since these parameters itself now depend on ! the resulting
formation time reads with Eq. (5.77) on page 90,

⌧f (!) ⇠

r
!

q̂
g(!)

⇠

s
!

CA↵
2

sT
3
�
log

�
1 +

p
!
T

�
+ T

!

� . (5.82)

Figure 5.30 compares this formation time ⌧f (!) with the elastic mean free path �22(!) =
��1

22 (!) of a gluon with energy !/T by employing the results from Section 5.3.3. Please
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Algorithm 4: Schematic view of the algorithm for the stochastic LPM effect based on
pQCD interactions.
At t = 0 initialize projectile with energy E
while t < L do

Sample medium partons based on thermal distribution
foreach medium parton do

Calculate probability P23 for Bremsstrahlung process of projectile with medium
parton

if r 2 [0; 1) < P23 then initialize trial gluon
Sample kt; initial and ! of trial gluon from GB matrix element screened via ⇠LPM
Set tinit = t and Ncoh = 1 for this emission
Add gluon to list of trial gluon emissions

foreach trial gluon do

Calculate formation time ⌧f = !/k2?
if |(t+�t)� tinit| < ⌧f then gluon is not formed yet

Sample medium partons based on thermal distribution
foreach medium parton do

Calculate probability P22 for elastic scattering of trial gluon with medium
parton

if r 2 [0; 1) < P22 then initialize scatter gluon
Sample q2? from elastic 2 ! 2 process
Assign new momentum to trial gluon
Increase Ncoh = Ncoh + 1

else gluon is formed
if random number r 2 [0; 1) < 1/Ncoh then gluon is accepted

Consider gluon for d�/d!, d�/dk? and dE/dx results
else

Discard gluon emission

t = t+�t ;
Propagate projectile and trial gluons to time t

Discard all gluon emissions still in formation time

note again that the momentum transfer hq2?i is again only the mean momentum transfer
that is dominated by the soft momentum transfers and considers the hard q

2

? tail only to a
limited extent.

For hard gluon emissions with energy ! > mD we obtain for the mean formation time
with the results from Section 5.3.3

⌧f (!)
��
!�mD

⇠

s
!

CA↵
2

sT
3 log

�
!
T

� . (5.83)

On the other hand, we found that the rate �22 for elastic gluon scattering at ! � mD is
independent from ! and reads �g

22
⇠ CA↵sT . Consequently, the condition for a radiative

process to be coherent, ⌧f > �el, can be written in terms of the gluon energy

!

T
>

1

CA

log
⇣
!

T

⌘
. (5.84)
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Figure 5.29: Differential emission rate d�/d! of a quark projectile with energy E = 250 T in a medium
with length L = 20 T −1 from radiative processes calculated by the Gunion-Bertsch matrix
element screened via ⇠LPM = 0.01 that are suppressed by the sLPM algorithm with fixed
elastic interactions of the gluons during ⌧f . The QCD coupling is fixed to ↵s = 0.3.
The left plot shows d�/d! for different momentum transfers q2? with constant elastic
mean free path �el. The right plot shows the opposite case: While the elastic mean free
path is varied, the momentum transfer is kept fixed. The green dashed line shows the
corresponding d�/d! behavior if the emissions from the Gunion-Bertsch matrix element
are not suppressed by the sLPM algorithm. To better visualize the expected behavior of the
non-Abelian LPM effect we scale the differential emission rate by !�3/2.

One can show that this condition is fulfilled for ! > 0. Hence, when employing the
discussed !-dependent pQCD cross sections energetic gluon emissions are expected to
be on average always in the regime of coherent gluon emissions (LPM regime) and at
least one elastic scattering occurs during the formation time. This finding is supported by
Fig. 5.30, where ⌧f (!) > �el(!) for ! > mD.

Furthermore, at softer gluon energies ! < mD the mean formation time can be evaluated
with the help of Eq. (5.77) on page 90 to

⌧f (!)
��
!<mD

⇠

s
!

CA↵
2
sT

4

!

=
!

p
CA↵sT

2
. (5.85)

Correspondingly, the mean free path of soft gluons underlying pQCD cross sections goes
like

�el|!<mD
⇠

!

CA↵
2

sT
2
. (5.86)

Interestingly both the mean formation time and the mean free path scale linearly with
gluon energy !. So with decreasing gluon energy, both the formation time decreases
and the rate of the gluon increases due to the four-gluon vertex. Hence it follows that
⌧f ⇡ �el for soft gluon emissions with ! < mD. This scaling behavior is reproduced by
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are highlighted by dashed lines from the condition
⌧f (!) = L. Different point types represent different temperatures T in the numerical
simulation and serve as an additional cross check of the expected scaling behavior.

the numerical calculations shown in Fig. 5.30. Moreover, one can parametrically estimate
that an incoherent regime of gluon emissions, ⌧f < �el, is not depending on the gluon
energy but only on the QCD coupling

↵s .
1

p
CA

=

r
1

3
. (5.87)

In the simplified model of Section 5.3.2 the elastic interactions were determined by
fixed values and we could define energy scales !BH ⇠ �el

2
q̂ (cf. Eq. (5.18) on page 54)

and !fact ⇠ q̂L
2 (cf. Eq. (5.21) on page 55) differing between the Bethe-Heitler, LPM and

factorization regime. Obviously the same arguments do not hold in the case of !-dependent
elastic scatterings, since for all ! regions coherent emission processes with ⌧f ' �el may
occur and therefore a clean definition of !BH is not possible. The scale !fact, at which the
mean formation time is longer than the medium length L and gluons cannot be formed,
can be derived as

!fact(!) ⇠ q̂(!)L2
⇠ q̂(w)|!�mD

L
2
⇠ CA↵

2

sT
3 log

⇣
!

T

⌘
L
2
. (5.88)

In Fig. 5.30 one can read the numerical results for two different medium lengths,
!

eff
fact
�
L = 2 T −1�

⇡ 14 mD and !
eff
fact
�
L = 4 T −1�

⇡ 110 mD. For ! > !fact the emis-
sion rate is strongly suppressed since gluons can only be formed by stochastically large
momentum transfers during the formation time.

In conclusion, the !-dependence of the elastic scatterings lead to the finding that on
average all gluon emissions are produced coherently. At ! > mD the formation time
increases with increasing energy while the rate is constant. On the other hand, at soft
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The QCD coupling is fixed to ↵s = 0.3. The k? of the initial 2 ! 3 process is screened
via ⇠LPM = 0.01 and the corresponding d�/d! directly from the Gunion-Bertsch matrix
element without LPM suppression can be found by the blue dashed line. The energy scales
!fact found in Fig. 5.30 are denoted by dashed vertical lines depending on L. We fit the
expected behavior d�/d! ⇠ !�3/2 in the intermediate ! region from the non-Abelian
LPM effect shown by the dotted lines separately for each L value.

gluon energies ! < mD the average formation time is comparable with the elastic mean
free path. Therefore, one can infer that there is no gluon energy region where gluons are
produced mainly incoherently. However, one feature of the presented algorithm is that it is
formulated in a stochastic way: Whether a gluon emission is considered as incoherent or
coherent is dynamically evaluated for each emission. Consequently, also a gluon whose
mean free path is on the same order as the formation time can be produced incoherently if
it is decided stochastically that it does not scatter during its formation time.

Differential emission rate from sLPM with pQCD interactions

After introducing the energy scales underlying the LPM effect in terms of !-dependent
quantities, we show in Fig. 5.31 the differential emission spectra d�/d! of an eikonal
energetic quark with energy E = 250 T (corresponding to E = 100 GeV at T = 0.4 GeV)
for different medium lengths L. In Fig. 5.31 and all other results in this section we keep
the minimum initial transverse momentum k? of a 2 ! 3 process at one percent of the
CoM energy by fixing the screening parameter to ⇠LPM = 0.017. We depict the discussed
effective energy scales !eff

fact by dashed vertical lines in the corresponding colors as in
Fig. 5.30. The blue dashed curve denotes the differential emissions rate d�GB/d! of the
Gunion-Bertsch matrix element without any stochastic LPM suppression as calculated in
Section 5.3.4.

7We study the sensitivity of the stochastic LPM algorithm on ⇠LPM later in this section.
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As defined in Section 5.3.1 the sLPM algorithm suppresses emissions ⇠ 1/Ncoh, where
Ncoh are the number of elastic scatterings during the gluon formation time. The resulting
differential emission rate is then

d�

d!
⇠

1

Ncoh

d�GB

d!
(5.89)

According to the considerations regarding the energy scales we can write the mean sup-
pression factor as

1

Ncoh(!)
⇠
�el(!)

⌧f (!)
⇠

1

�g
22
(!)⌧f (!)

(5.90)

with ⌧f (!) given in Eq. (5.82) on page 98 and �g
22
(!) from Eq. (5.71) on page 87. Again

we are interested in the limits ! > mD and ! < mD. For hard gluons the suppression
factor evaluates to

1

Ncoh

����
!>mD

⇠

s
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!
T

�

CA

!
T

. (5.91)

Different to the discussed estimation in the simplified model, the !-dependence of the
elastic scatterings adds a logarithmic term to the expected d�/d! ⇠ !

�3/2 behavior. This
is in agreement with Fig. 5.31 where at higher gluon energies a deviation to the fit ⇠ !

�3/2

is recognizable. Furthermore, the shape of the spectrum at hard gluon energies is on the
one hand limited by the initial production of gluon at these energies via the Gunion-Bertsch
matrix element. As we discussed in Section 5.3.4 at these energies ! ⇡ E the phase space
of a 2 ! 3 is very limited since the energy has to be distributed among three outgoing
partons and is thereby strongly suppressed. On the other hand, the long formation time of
hard gluons prohibits a formation time if the medium length L is shorter than the maximum
formation time. This additionally suppresses gluon emissions for ! > !

eff
fact as one can see

in Fig. 5.31.
Moreover, gluons with softer energy ! < mD are suppressed by

1

Ncoh

����
!<mD

⇠
1p
CA↵

2

s

. (5.92)

The ! dependence of the elastic scatterings, and especially the mentioned four-gluon
vertex, lead to a suppression that does not depend on the gluon energy. This effect is also
visible in Fig. 5.31 where the difference between d�/d! and d�GB/d! is approximately
constant for ! / mD. The suppression of gluon emissions in both d�/d! and d�GB/d!
at ! / 0.5mD ⇡ T is due to the screening via ⇠LPM which introduces a minimum k? as
discussed in Section 5.3.4 that is smeared by the thermal distribution of the scattering
partner in the initial 2 ! 3 process.

Number of coherent scatterings during formation time

The previous discussions concerning the mean formation time and q̂ always assumed that
the broad distribution of q2? can be approximated by a mean momentum transfer per mean
free path. In other words, a gluon suffers multiple rather uniform and soft scatterings
during its formation time. In order to investigate the validity of this picture we show in
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Figure 5.32: Phase space for gluon emissions from the sLPM approach in the !-k? plane of a quark
with E = 250 T in a medium with temperature T and length L = 20 T −1. In the left panel
we show only gluon emissions that did not scatter elastically during the formation time
⌧f . Furthermore, while the middle panel shows the phase space for emissions with exactly
one additional elastic scattering during ⌧f , the right panel shows the remaining emissions
with Nscatt > 1. The gluon energy ! and the transverse momentum k? of the gluons
are evaluated in the lab frame. While each point corresponds to a single gluon emission,
the lines shows the limit for phase space based on the maximum allowed formation time
⌧f = !/k2?. The QCD coupling is fixed to ↵s = 0.3 and the k? of the initial 2 ! 3

process is screened via ⇠LPM = 0.01.

Fig. 5.32 the single gluon emissions of a quark with E = 250 T in the !-k? plane for a
rather long medium length L = 20 T −1. Each point denotes a single gluon emission and its
energy ! and transverse momentum k? at the moment when it reaches its formation time.
Different to previous scatter plots, ! and k? are evaluated in the lab frame and not in the
CoM frame of the initial 2 ! 3 process. The lines correspond to the maximum formation
time ⌧f = !/k

2

? in a medium with length L = 10 T −1. In Fig. 5.32 we differ between three
cases: in the left panel we show the emissions for which no additional elastic scattering
occurred during the formation time, so Nscatt = 0. Please note, while Ncoh measures the
number of scatterings during the formation time including the elastic interaction of the
initial 2 ! 3 process, we define Nscatt with the numbers of additional elastic scatterings
during the formation time. The gluons that can be formed without an additional elastic
scattering are mostly either soft (small !) or have a significant transverse momentum k?
already from the initial 2 ! 3 process. Obviously, the sharp edge at ! = k? is dictated
by the kinematics of the initial 2 ! 3 process without further interactions. In the central
panel we show emissions that experienced exactly one scattering during the formation time,
Nscatt = 1. By comparing the left and central panel one finds at small ! an enhancement
of gluons with k? > !. This indicates that indeed already a single scattering can transfer
sufficient transverse momentum to a soft gluon so that it gets immediately formed. Finally,
the right panel of Fig. 5.32 shows all emissions with Nscatt > 1. These multiple collision
transfer a significant amount of transverse momentum that is especially needed by hard
gluons ! ⇠ O(E) for getting formed. From the finding that these hard gluons appear
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only if they scattered Nscatt > 1 times during the formation time one can infer that indeed
multiple scatterings are necessary to form the energetic gluon emissions.

Path-length dependence of emission rates in the sLPM approach

One of the major characteristics of the non-Abelian LPM effect is the path-length depen-
dence of the corresponding radiative energy loss. As we discussed in Section 5.1.2 the
radiative energy loss is expected to depend quadratically on the medium length. Therefore
we will study in the following the path length dependence of both the differential emission
rate d�/d! and the differential energy loss dE/dx depending on the medium length L.
We show in Fig. 5.33 again the gluon emissions of a quark with E = 250 T in the !-k?
plane, this time depending on the emission time t when the gluon completes its formation
time. Please note that the clear cut at soft ! stems from the minimum energy of an emission
that is limited by the k? screening via ⇠LPM = 0.01 at around one per mill of the projectile
energy E. The lines denote the maximum formation time ⌧f

max = !/k
2

? = t a gluon
can have to be formed before time t. This limits the possible minimum k? of a gluon
at a given gluon energy !. Since the formation time increases with increasing gluon
energy, hard partons are suppressed at early times unless their transverse momentum wrt.
to the emitting parton is large enough to early decohere from the projectile. Therefore at
t = 1 T −1 mainly soft gluons that have a significant transverse momentum are emitted.
Gluons that were produced more collinearly or harder are still in their formation time at
this stage. At later times also these gluons can be formed and contribute to the emission
spectra. Furthermore, also gluons with higher transverse momentum and softer energy and
thereby small formation time contribute at later times. These emissions were started late in
the evolution so that they complete their short formation time not until t = 6 T −1.

For a more quantitative analysis we plot in Figs. 5.34 and 5.35 the length dependence
of both differential rates d�/dk? and d�/d!. Again, the calculations were done for an
energetic quark with E = 250 T and ⇠LPM = 0.01. In contrast to the previous scatter plot
we show the differential rates for different medium lengths L (denoted by varying colors)
that represent the emission rate not at a given time but the cumulative sum of emissions up
to this time.

Due to the sLPM algorithm the emission rates are indeed path-length dependent in
contrast to, e.g., the processes from the ✓-LPM approach. In Fig. 5.34 we plot the
differential emission rate d�/dk? in units of the temperature T for two projectile energies
E = {25 T; 250 T} in comparison with the emission rate d�GB/dk? from the Gunion-
Bertsch matrix element without any LPM suppression. At small medium lengths L ⇡ 1 T −1

the emissions are strongly suppressed due to the limited allowed formation, which is in
agreement with the findings from Fig. 5.33. By comparing with d�GB/dk? we infer
that only the gluons with the largest transverse momentum k? > T from the initial
2 ! 3 process are able to form in these thin media. By increasing the medium length L

gluons are able to accumulate more transverse momentum. Consequently they begin to
thermalize so that the k? distribution shifts from k? ⇡ 0.1 T, given by the k? screening
via ⇠LPM in the initial 2 ! 3 process, to k? ⇠ O(T ). So the resulting emission rate
in the sLPM approach is much more transverse than the initial 2 ! 3 processes. The
increased transverse momentum leads additionally to decreasing formation times so that
more and more gluons are able to complete their formation time during L. This behavior
is similar for both projectiles energies E = 25 T and E = 250 T. Above medium
lengths L ⇡ 3 T −1 the emission rate does not change any more and becomes almost
path-length independent. The length at which this maximum emission rate is reached
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Figure 5.33: Time evolution of the phase space for gluon emissions from the sLPM approach in the
!-k? plane of a quark with E = 250 T in a medium with temperature T . In the different
panels different evolution times t are depicted. The gluon energy ! and the transverse
momentum k? of the gluons are evaluated in the lab frame. While each point corresponds
to a single gluon emission, the lines shows the limit for phase space based on the maximum
allowed formation time t = ⌧f = !/k2?. The QCD coupling is fixed to ↵s = 0.3 and the
k? of the initial 2 ! 3 process is screened via ⇠LPM = 0.01.

is given by the scale Lc ⇠
p

E/q̂(E) of Section 5.1.2 that corresponds to the medium
length at which the hardest gluon with ! = E can still be formed and hence depends on
E. With q̂g(E = 25 T) ⇡ 7 T3 and q̂g(E = 250 T) ⇡ 15 T3 from the results discussed in
Section 5.3.3, it follows Lc(E = 25 T) ⇡ 1.9 T −1 and Lc(E = 250 T) ⇡ 4.1 T −1. Even the
interactions within larger medium lengths L > Lc are insufficient to form more collinear
gluons and the rate becomes path-length independent.

To complete our picture of emissions in the sLPM algorithm we show in Fig. 5.35
the medium length dependence of ! d�/d!, of a quark projectile again for two different
projectile energies E = {25 T; 250 T} and in comparison with the corresponding rate
d�GB/d! from the GB matrix element without LPM suppression. Since we aim to
characterize the actual radiative energy loss from the sLPM algorithm, please note that we
weight the rate by the gluon energy ! in units of the projectile energy E. This weighted
emission rate ! d�/d! then directly visualizes how the different ! regions contribute to
the radiative energy loss.

At small medium lengths we find again a strong suppression of emission. Since harder
gluons have on average a longer formation time, the spectrum at higher gluon energies is
stronger suppressed in comparison to more thermal gluon emissions. The main contribution
to the energy loss in thin media therefore originates from soft gluon emissions around
! ⇡ 10−2 E for both projectile energies. With increasing medium lengths again also harder
gluons are able to form. At a scale of L ⇡ Lc the emission rate again becomes independent
from the medium length L. Both distributions show even at thick medium lengths L > Lc

a suppression in comparison to the initial d�GB/d! distribution. This again demonstrates
that the sLPM algorithm additionally screens very collinear and energetic emissions wrt. to
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Figure 5.34: Differential emission rate d�/dk? of a quark projectile with energy E = 25 T (left) and
E = 250 T (right) in a medium with temperature T and different medium lengths L from
the sLPM approach. The different values of L are given by varying colors from small L
(green) to larger L (red) values. The QCD coupling is fixed to ↵s = 0.3 and the k? of the
initial 2 ! 3 process is screened via ⇠LPM = 0.01. The corresponding d�/dk? directly
from the Gunion-Bertsch matrix element without LPM suppression can be found by the red
dashed line.

the initial GB matrix element. The contribution to the radiative energy loss when assuming
no LPM suppression is flat, so all emission between ! ⇡ 10−2 E and ! ⇡ 10−1 E contribute
equally to the radiative energy loss. On the contrary, as we have already seen in Fig. 5.31,
the differential emission rate for an energetic projectile goes for large medium lengths
⇠ !

�3/2 with a mild maximum around thermal energies ! ⇠ O(T ). For less energetic
projectiles E = 25 T already the distribution from the Gunion-Bertsch matrix element is
not flat but shows deviation to the ⇠ !

�1 behavior. This shape is also slightly recognizable
at small medium lengths, when the influence of the initial production distribution is
significant. At larger medium lengths the radiative energy loss of a less energetic projectile
is again dominated by thermal gluon energies, ! ⇠ O(T ). Due to the limited phase space
the distribution does not reach as far as in the case of E = 250 T.

Path-length dependence of the radiative energy loss in the sLPM approach

The emitted gluons take away energy from the projectile and thereby lead to a radiative
energy loss. We have seen in the simplified model of Section 5.3.2 that path-length
dependent emission rates correspond to a path-length dependent radiative energy loss.
Therefore we will study in the following the path length dependence of radiative energy
loss in terms of the differential energy loss dE/dx. Before discussing these modifications,
we would like to comment on the concrete definition of the term “energy loss” in the
present context. In other models (including the previously discussed, simplified model), the
radiative process is similar to a 1 ! 2 process. The energy loss that the projectile witnesses
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Figure 5.35: Differential emission rate d�/d! of a quark projectile with energy E = 25 T (left) and
E = 250 T (right) in a medium with temperature T and different medium lengths L from
the sLPM approach. The different values of L are given by varying colors from small
L (green) to larger L (red) values. We scale d�/d! by !/E in order to better visualize
the contribution of the different ! to the total radiative energy loss. The QCD coupling
is fixed to ↵s = 0.3 and the k? of the initial 2 ! 3 process is screened via ⇠LPM = 0.01.
The corresponding d�/d! directly from the Gunion-Bertsch matrix element without LPM
suppression can be found by the red dashed line.

is completely determined by the energy that the emitted gluon takes away. Therefore we
could define dE/dx by integrating the gluon spectrum as in Eq. (5.52) on page 75.

In contrast, the radiative processes in this section are 2 ! 3 Bremsstrahlung processes.
Therefore the energy loss that the projectile suffers consists of the energy that the gluon
carries away and an additional contribution of the 2 ! 2 part of the initial 2 ! 3 process.
The energy of the incoming partons is distributed among three final state partons. However,
the previously discussed differential emission rates were calculated based on only the
gluon energy. Therefore the integration of these gluon rates in order to obtain dE/dx as
defined in Eq. (5.23) on page 55 will not lead to the total radiative energy loss but neglect
the 2 ! 2 contribution. Since we are interested in the total radiative energy loss of the
projectile we show in the following the results including the elastic 2 ! 2 contribution.
Later, Fig. 5.38 will then quantify the difference between the two definitions of energy
loss.

Moreover, in contrast to our results, e.g., in Section 5.2 we have seen that the gluon
emission rate of the stochastic LPM depends on the medium length L. Therefore we
would like to point out that it is necessary to evaluate dE/dx as the derivative per time
step, dE/dx = �E(�t)/�t, instead of evaluating it via a ratio of the total energy loss
dE/dx = �E(L)/L per medium length L. This procedure will give the correct path
length dependence also for small medium lengths, where the energy loss rate will be L

dependent.
Figure 5.36 shows the length dependence of the differential energy loss dE/dx of

a quark (denoted as triangles) and a gluon (scaled by CF/CA and denoted by squares)
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Figure 5.36: Differential radiative energy loss dE/dx of a quark (triangles) or gluon (squares, scaled by
CF/CA) projectile with energies E = 25 T (red) or E = 250 T (green) in a medium with
temperature T depending on the medium length L. The QCD coupling is fixed to ↵s = 0.3
and the k? of the initial 2 ! 3 process is screened via ⇠LPM = 0.01. The critical length
scales Lc are given by dashed lines in the color of the corresponding projectile energy.

projectile for two different projectile energies E = {25 T; 250 T}. Since both the inelastic
2 ! 3 processes from the Gunion-Bertsch matrix element and the elastic 2 ! 2 processes
from pQCD scale approximately with CF/CA, also the radiative energy loss from the
sLPM method scales with the ratio of QCD color factors. The differential energy loss
increases approximately linearly with increasing medium length for both projectile energies
before becoming constant at larger medium lengths. This is the expected behavior of the
QCD LPM effect as discussed in Section 5.1.2: up to the length scale Lc =

p
E/q̂(E)

(cf. Eq. (5.24) on page 55) the medium may act as a single coherent scattering center before
at larger medium length combined coherent scattering centers contribute incoherently to
the energy loss. The corresponding values for Lc of the two shown projectile energies,
Lc(E = 25T ) ⇡ 1.9 T −1 and Lc(E = 250 T) ⇡ 4.1 T −1, are depicted in Fig. 5.36 by
dashed lines. Since Lc is the maximum formation of a gluon emitted by a projectile
with energy E a further increase of the medium length to L > Lc does not increase
the energy loss rate and it becomes almost independent from the medium length L with
values dE/dx(E = 25 T, L > Lc) ⇡ 9/4CR T

2 and dE/dx(E = 250 T) = 45/4CR T
2,

where CR is the color factor of the projectile. As we have seen previously the main
contribution to the radiative energy loss comes from emissions with thermal gluon energies.
Therefore the less energetic projectile loses relatively twice as much energy per unit
path length than the more energetic projectile (1/E dE/dx(E = 25 T) = 0.09CR T vs.
1/E dE/dx(E = 250 T) = 0.045CR T ).

The dependence of the radiative energy loss on the projectile energy leads to the other
important signature of the non-Abelian LPM effect: As discussed in Section 5.1.2 the
coherence of scattering centers during the formation time leads to a ⇠

p
E dependence

of dE/dx at high projectile energies (cf. Eq. (5.28) on page 55). Therefore we show in
Fig. 5.37 the differential energy loss rate dE/dx of a quark and a gluon depending on the
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Figure 5.37: Differential radiative energy loss dE/dx of a quark (triangles) or gluon (squares, scaled
by CF/CA) projectile for medium lengths L = 2 T −1 (red) or L = 10 T −1 (green) in a
medium with temperature T depending on the projectile energy E. The QCD coupling
is fixed to ↵s = 0.3 and the k? of the initial 2 ! 3 process is screened via ⇠LPM = 0.01.
While the points show the numerical results from BAMPS, the solid lines show a fit with
the expected dE/dx ⇠

p
E behavior from the non-Abelian LPM effect.

projectile energy E for two different medium lengths L = 2 T −1 and L = 10 T −1. And
indeed, the radiative energy loss dE/dx obtained by the sLPM method depends ⇠

p
E on

the projectile energy.
For completeness we show in Fig. 5.38 the integrated energy loss�E of a quark for two

projectile energies E depending on the medium length L. Up to a scale Lc the energy loss
shows the well-known ⇠ L

2 dependence of the non-Abelian LPM effect as first proposed in
Ref. [Bai+97b]. Above this scale the linear L dependence of incoherent gluon production
is recovered. Following the previous discussion about the definition of “energy loss” we
differ in Fig. 5.38 between two different definitions for�E: either only the radiated energy
due to the gluon emission (�E

rad) or both the radiated energy and the energy loss due to
the 2 ! 2 part of the 2 ! 3 (�E

22 +�E
rad) contribute to the energy loss. The energy

loss due to the elastic part of the 2 ! 3 process contributes approximately 20–30 % to the
total radiative energy loss. The corresponding results for a gluon projectile would be again
scaled by CF/CA (not shown).

Dependence of the sLPM approach on the screening parameter ⇠LPM

Finally, after we demonstrated the main dependencies of the sLPM algorithm in terms of
path-length and energy dependence it remains a discussion of the interplay between the
LPM suppression and the k? screening underlying the Gunion-Bertsch matrix element of
the initial 2 ! 3 process. As a reminder, the transverse momentum k? of the gluon in
the GB approximation diverges in the limit k? ! 0. Different to the ✓-LPM approach of
Section 5.2, where the parametric suppression via the theta function cures the collinear
divergence, we introduced in Section 5.3.4 an effective parameter ⇠LPM that limits the
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Figure 5.38: Radiative energy loss �E of a quark with energy E = 25 T (red) or E = 250 T (green) in
a medium with temperature T depending on the medium length L. The QCD coupling is
fixed to ↵s = 0.3 and the k? of the initial 2 ! 3 process is screened via ⇠LPM = 0.01. The
solid lines correspond to the previous results for the energy loss consisting of the energy
taken away by the gluon and an elastic contribution from the 2 ! 2 scattering of initial
2 ! 3 process. In contrast, the dashed lines show the results for the radiative energy loss
neglecting the 2 ! 2 contribution by only integrating the radiated gluon energies.

minimum k? of a 2 ! 3 proportionally to the CoM energy
p
ŝ. While we study in this

section the general dependence of the LPM algorithm on the parameter ⇠LPM we will
calibrate ⇠LPM in Section 5.5 by comparing the algorithm with other LPM models.

We begin this investigation again by studying the LPM algorithm in the scenario of
screened 2 ! 3 processes from the Gunion-Bertsch approximation together with constant,
!-independent elastic interactions of the gluons during their formation time. This corre-
sponds to the studies from Fig. 5.29, where we changed the simplified elastic interactions
of gluons while employing the Gunion-Bertsch matrix elements for the radiative part. In
Fig. 5.39 we show the differential emission rate d�GB/d! , scaled by !�3/2, for a constant
momentum transfer q2? = 0.06 T2 per mean free path �el = 1 T −1 and different values
of ⇠LPM. As projectile we choose a quark with energy E = 250 T. In Section 5.3.5 we
could show that this specific choice of elastic interactions indeed reproduced the expected
d�/d! ⇠ !

�3/2 behavior of the QCD LPM effect for ⇠LPM = 0.01. Figure 5.39 shows
that this behavior also can be found for larger values of ⇠LPM. However, the range over
which it is reproduced shrinks with increasing ⇠LPM. This in agreement with the study of
the emission rate via the initial 2 ! 3 process in GB approximation that we presented
in Fig. 5.26. By increasing ⇠LPM and thereby forbidding collinear gluons we found that
the ! region where the emission rate goes like d�/d! ⇠ 1/! diminished. After applying
the LPM algorithm this is reflected by a shrinking ⇠ !

�3/2 region. On the contrary, the
emission rate at higher gluon energies is not affected by the choice of ⇠LPM. This is different
to the initial Gunion-Bertsch distribution where we found that also collinear gluons allowed
by small ⇠LPM values may end up at high ! in the distribution. Reason for this is that the
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Figure 5.39: Differential emission rate d�/d! of a quark projectile with energy E = 250 T in a medium
with length L = 10 T −1 from radiative processes calculated by the Gunion-Bertsch matrix
element screened with different ⇠LPM values (denoted by different colors) and subsequently
suppressed by the sLPM algorithm with fixed elastic interactions of the gluons during ⌧f .
The QCD coupling is fixed to ↵s = 0.3. To better visualize the expected behavior of the
non-Abelian LPM effect we scale the differential emission rate by !�3/2.

formation time condition of the sLPM algorithm forbids gluons with these small transverse
momenta at high gluon energies due to their larger formation time.

In the following we present the results from the LPM algorithm together with the !
dependent pQCD interactions of the gluons during ⌧f . Figure 5.40 shows the differential
emission rates ! d�/d! (left) and d�/dk? (right) of a quark projectile with energy E =
250 T and a medium length L = 10 T −1 for different screening parameter ⇠LPM. For both
distributions a larger value of ⇠LPM forbids collinear gluon emissions and the rate decreases.
The d�/d! ⇠ !

�3/2 behavior shifts to an almost Gaussian distribution at high values
of ⇠LPM ⇡ 0.1. This decreasing rate not only affects the soft region of the spectrum but
also the hard component of the projectile. Same holds for the transverse momentum
distribution: we found in the initial distribution from the GB matrix elements (compare
Section 5.3.4) that small values of ⇠LPM add collinear gluon emissions to the spectrum. In
contrast small values of ⇠LPM not only increase the rate of collinear gluon emissions but
also emissions at larger k?. Reason for this is that more collinear gluon emissions in the
beginning, also have on average a longer formation time in which they may accumulate
transverse momentum. Therefore these emissions appear at transverse momenta k? ' 3 T.

The increased emission rate with decreasing ⇠LPM also leads to an increasing radiative
energy loss as we can deduce from Fig. 5.41, where we study dE/dx for a quark depending
on the medium length L (left) and the projectile energy E (right). While varying ⇠LPM
indeed leads to a varying dE/dx the underlying length scale Lc remains constant. This
finding will allow us in Section 5.5 and Chapter 7 to calibrate ⇠LPM and thereby the k?
screening by comparing the algorithm to either other LPM models or experimental data.

Correspondingly to Fig. 5.11, where we have shown the XLPM dependence of dE/dx
in the ✓-LPM approach, Fig. 5.42 shows the ⇠LPM dependence of dE/dx in the stochastic
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Figure 5.40: Differential emission rate d�/d! (Fig. 5.40a) and d�/dk? (Fig. 5.40b) of a quark projectile
with energy E = 250 T in a medium with temperature T and length L = 10 T −1 for varying
k? screening with ⇠LPM in the sLPM approach. The different values of ⇠LPM are given by
varying colors from small ⇠LPM (green) to larger ⇠LPM (red) values. The QCD coupling is
fixed to ↵s = 0.3. We scale d�/d! by !/E in order to better visualize the contribution of
the different ! to the total radiative energy loss.

LPM approach. In Fig. 5.11 we found that the radiative energy loss in the ✓-LPM approach
scales like ⇠ logXLPM at small XLPM. Also the emission rate in the stochastic LPM
approach shown in Fig. 5.28 leads to a dE/dx ⇠ log 1/⇠LPM +B dependence.

In conclusion, we demonstrated and validated the proposed algorithm for stochasti-
cally suppressing coherent gluon emissions in this section by discussing the parametric
dependencies of both the gluon emission rate and the resulting radiative energy loss. Both
the simplified, energy independent interactions and the !-dependent interactions from
LO pQCD reproduced the expected signatures of the non-Abelian LPM effect. After we
introduce in the next section another method for considering the suppression from the LPM
effect we will use in Section 5.5 the screening parameter ⇠LPM to compare the algorithm
with other approaches for modeling the coherence effects from the LPM effect within
BAMPS.
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Figure 5.41: Differential radiative energy loss dE/dx of a quark (lines) or gluon (squares, scaled by
CF/CA) projectile with a k? screening with varying ⇠LPM in the sLPM approach and
depending on the medium length L (left) or projectile energy E (right). The different values
of ⇠LPM are given by varying colors from small ⇠LPM (green) to larger ⇠LPM (red) values.
The QCD coupling is fixed to ↵s = 0.3.
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5.4 LPM suppression via the AMY formalism

So far we treated the LPM suppression originating from the coherence of gluon emissions
via effective approaches, namely either via a parametric suppression function (✓-LPM)
or via considering a finite, dynamically evaluated formation time for emitting gluons
(sLPM). Among the advantages of these methods was that they were applicable mainly
on the microscopic level: Whether emissions are coherent or not is decided based on
properties of the respective single scattering, not on macroscopic properties as, e.g., the
temperature T . Only the screening of the internal propagator via the Debye mass was
evaluated on the macroscopic scale. Furthermore, in the sLPM approach the interactions
of the gluons during formation time were explicitly evaluated and thereby in principle also
potential effects of these scatterings could be considered. On the other hand, the presented
approaches have the drawback that they phenomenologically introduced the suppression of
gluon emissions and thereby can only provide guidance to a reliable LPM implementation.

In this section we discuss an implementation for the LPM effect that is closer to a rigorous
theoretical QCD calculation by applying rate equations based on the AMY formalism
(cf. Section 5.1.1). Starting from the thermal emission rate for photon and gluon emission
as calculated by Arnold, Moore, and Yaffe (AMY) [AMY01b; AMY02b; AMY02a] we
review how to calculate the differential emission rate d�/dk for a single parton to emit
a gluon as it is used, e.g., in the Monte-Carlo model MARTINI [Tur+05; Tur06; JM05;
SGJ09; You+11a]. In this approach the coherent scatterings during the formation time
are resummed within thermal field theory and by that can be absorbed in an effective
“1 $ 2” emission/absorption rate. Although 1 $ 2 splitting processes are, in principle,
kinematically forbidden for massless partons, these effective 1 $ 2 emission rates can then
be implemented into BAMPS allowing to study the gluon spectrum and radiative energy
loss of partons via AMY in BAMPS. By using these effective rates microscopic information
about the coherent scatterings during the formation time is lost. Furthermore, this approach
has the drawback that due to the application of thermal field theory the medium that the
jet traverses has to be thermal. We will further discuss this issue and its consequences
for observables later when applying the formalism in non-thermal situations of heavy-ion
collisions Chapter 7.

5.4.1 Thermal emission rate for gluons from AMY

Assuming a clear separation of scales T � gs T � g
2

sT in a thermal bath with temperature
T and QCD coupling gs =

p
4⇡↵s, Arnold, Moore, and Yaffe were able to calculate the

thermal emission rate of both photons and gluons [AMY01b; AMY02b]. By resumming all
possible ladder diagrams and thereby calculating the gluon self-energy via a leading-order
hard thermal loop calculation, coherence effects originating from scatterings during the
emission process can be explicitly considered. Consequently, the AMY calculation provides
an emission rate that is valid both for the Bethe-Heitler and the LPM regime [Tur+05].
The resummed scattering centers have thermal and by that dynamical momenta instead of
static scattering centers. This was a major improvement in comparison to other radiative
pQCD energy loss calculations. On the other hand, to achieve these dynamic scattering
centers the AMY formalism has to be formulated in the thermodynamical limit and thereby
in momentum space, which is tantamount to an infinite-sized thermal medium. As we have
seen previously, thick media lead to an emission pattern that shows a length independent
differential rate d�/dk and thereby dE/dx ⇠ const.. Therefore the resulting radiative
energy loss within AMY will be �E / L. Furthermore, since AMY expects partons to be
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close to the mass shell the original AMY formulation that we discuss in this section only
considers the medium-induced radiation of partons and no interference between vacuum
and medium radiation. In Ref. [CG10] the AMY formalism was extended by re-solving the
path-integral discussed in Section 5.1.1 and thereby incorporating both finite-size effects
and vacuum-medium interference. For more details about the actual derivation of the AMY
formalism and the underlying HTL calculation we refer to Refs. [AMY01b; AMY01a;
AMY02b; AMY02a], where also the previously developed problem of photon emissions
in thermal field theory is covered.

In the AMY formalism, the thermal emission rate for gluons with energy k per unit
volume in a thermal bath with temperature T via the processes q ! qg and qq ! g
is [AMY02b; Tur06]

k
dRg

d3~k
=

g
2

s

16 (2⇡)3k4

X

s

Ns ds Cs

+1Z

�1

dpk
2⇡

fF (pk + k) [1� fF (pk)] [1 + fB(k)]

⇥
p
2

k + (pk + k)2

p
2

k(pk + k)2

Z
d2~h

(2⇡)2
2~h · Re ~F(~h, pk + k, pk, k) . (5.93)

pk is the longitudinal momentum of the emitting (absorbing) quark and is on the order of
pk ⇠ T . Since the emitting quark is on the mass shell and its transverse momentum is q? ⇠

gT , its energy is p ⇠ pk +O
�
g
2

sT
�
. Therefore we identify the longitudinal momentum pk

with the energy p of the quark and use it interchangeably. Cs is the respective color factor
(for gluons CA = 3, for quarks CF = 4/3), fF (p) = 1/(ep � 1) and fB(p) = 1/(ep + 1)
are the Fermi- and Bose distribution functions, and

�
p
2 + (p+ k)2

�
/
�
p
2(p+ k)2

�
is the

common DGLAP splitting function for the process q ! qg [AP77; Dok77; GL72].
In contrast to the case of photon emissions off a quark [AMY02b], both the emitting

quark and the emitted gluon suffer kicks in the transverse direction that have to be re-
summed. Therefore Eq. (5.93) should include integrations over both transverse momenta
p? of the quark and k? of the gluon in order to evaluate this transverse kicks. However, in
Ref. [AMY02b] the authors exploited the rotational invariance of the problem and intro-
duced the internal quantity ~h = (k⇥ p)⇥ ek that points in a direction nearly collinear to
~p, ~k and ~p� ~k and thereby measures the collinearity of the final state [Tur+05]. ~h is of
the order O

�
gsT

2
�

and therefore small compared to ~p · ~k [SGJ09]. This allows to replace
the ~p? and ~k? integration by an integration over ~h in the transverse space in Eq. (5.93).

The vector ~F(~h, p+ k, p, k) is the solution of the integral equation [AMY02b; Tur06]

2~h = i�E(~h, p, k)~F(~h) + g
2

s

Z
d2
~q?

(2⇡)2
C(~q?)

n
(Cs � CA/2)[~F(~h)� ~F(~h�k ~q?)]

+(CA/2)[~F(~h)� ~F(~h+(p+ k)~q?)]

+(CA/2)[~F(~h)� ~F(~h�p~q?)]
o
,

(5.94)

that describes how the state |p+ ki hp, k| evolves in time [Tur06]. The energy difference
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�E in Eq. (5.94) between the initial and final state

�E(~h, p, k) =
~h2

2pk(p+ k)
+

m
2

k

2k
+

m
2

p

2p
�

m
2

p+k

2(p+ k)
(5.95)

is related to the inverse formation time of the emission process. The masses mp, mk, and
mp+k are the thermal masses of the external propagators and are either m2

q = 2/9m2

D

or m2

g = m
2

D/2 depending on the respective splitting, where the thermal Debye mass is
m

2

D = 3/2g2sT
2. The Debye-screened collision kernel for the elastic interactions during

the formation time is

C(~q?) =
m

2

D

~q2

?
�
~q2

? +m
2

D

� . (5.96)

Since the collision term in Eq. (5.94) on the preceding page involves only differences in
the form of [~F(~h)� ~F(~h�pi ~q?)], which vanish for q? ! 0, infrared divergences of the
collision integral are automatically canceled [AMY02b].

As a remark, the corresponding result for photon emission from a thermal bath in the
AMY formalism can be obtained by replacing Cs in Eq. (5.93) on the facing page by
the electrical charge q

2

s , setting CA = 0 inside the collision integral of Eq. (5.94) on the
preceding page and using the photon thermal mass in Eq. (5.95) [AMY02b]. Therefore the
procedure we discuss in this section can be straight-forwardly generalized also to the case
of photon emissions, what was done in Refs. [Gre+17b; Gre18].

Since the energy of the quark has values p = [�1;1] in Eq. (5.93), the spectrum of
gluons with energy k gets contributions from different p. The different p regions represent
different underlying physical processes: While p > 0 corresponds to the contribution of
a quark emitting a gluon via Bremsstrahlung (q ! qg), the p < �k region describes
the same Bremsstrahlung from an antiquark (q ! qg) and the case �k < p < 0 is
an antiquark annihilating with a quark resulting in a gluon with energy k. It can be
shown [Gre18] that the p integration can be written as

+1Z

�1

dp

2⇡
G(p, k) = 2

+1Z

0

dp

2⇡
G(p� k, k)

✓
⇥(p� k) +

1

2
⇥(k � p)

◆
, (5.97)

where we defined

G(p, k) = fF (p+ k) [1� fF (p)] [1 + fB(k)]⇥

⇥
p
2 + (p+ k)2

p
2(p+ k)2

Z
d2~h

(2⇡)2
2~h · Re ~F(~h, p+ k, p, k) . (5.98)

Thus, while prohibiting a double counting in the quark-antiquark annihilation with the
term 1/2⇥(k � p), the contribution of quarks and antiquarks to the gluon spectrum is the
same and can be considered by a factor 2 together with a shift G(p, k) ! G(p� k, k).

The integral equation Eq. (5.94) on the preceding page describes the actual resummation
of ladder diagrams by integrating over the momentum transfers ~q2

?. Due to the complexity
of this equation it is solved numerically by Fourier transforming it and applying the impact

parameter method [AGZ02; Aur+02]. For more details about this procedure and the
numerical calculation of the kernel G(p� k, k) we refer to Appendix C.
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Figure 5.43: Partonic processes in the AMY formalism.

5.4.2 From thermal rates to transition rates for gluon emissions in AMY

The emission rate dRg
/d3~k in Eq. (5.93) on page 116 is the rate for producing gluons with

energy k per unit volume and unit time. For reproducing this rate within BAMPS we need
to define a transition rate d�/dk that gives the rate for a single parton with energy p to
emit (absorb) a gluon/quark with energy k. This is achieved by realizing that the thermal
emission rate kdRg

/d3~k can also be obtained by folding the number of emitters in the
medium per unit volume with the differential emission rate per time d�/dk of a single
parton with energy p [Tur06]

k
dRg

d3~k
=
X

p

Number of quarks with p

Volume
k
d�

d3~k
(5.99)

=
X

s

Ns ds

Z
d3
~p

(2⇡)3
fF (p) k

d�

d3~k
(5.100)

=
X

s

Ns ds

1Z

0

dp

(2⇡)3
fF (p)

p
2

k

d�

dk
(p, k) . (5.101)

Comparing Eq. (5.93) on page 116, including the considerations from Eq. (5.97), with
Eq. (5.99) one arrives at the rate of an 1 $ 2 process for a quark with energy p to
emit/absorb a thermal parton (gluon or antiquark) with energy k [Tur06; SGJ09]:

d�(p, k)

dk
=

Csg
2

s

16⇡p7
1

1± e
�k/T

1

1± e
�(p�k)/T

⇥

8
>>><

>>>:

1+(1�x)
2

x
3
(1�x)

2 , q $ qg

Nf
x
2
+(1�x)

2

x
2
(1�x)

2 , g $ qq

1+x
4
+(1�x)

4

x
3
(1�x)

3 , g $ gg

9
>>>=

>>>;
⇥

Z
d2~h

(2⇡)2
2~h · Re ~F(~h, p, k) , (5.102)

where we introduced x = k/p.
In contrast to photons, gluons itself may scatter with other partons in the medium and

by that emit other gluons via medium-induced radiation. The corresponding additional
processes of a gluon, g ! gg and g ! qq , can be obtained with the same procedure
as above and are shown in Eq. (5.102) and in Fig. 5.43. For the different processes the
corresponding DGLAP splitting kernel (given in the curly braces of Eq. (5.102)) has to be
used and the masses mp, mk and mp�k in the inverse formation time �E of Eq. (5.94) on
page 116 have to be chosen appropriately. Furthermore, for the process g ! qq the color
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factors in the collision integral have to be switched [Tur06; SGJ09],

(Cs � CA/2) [~F(~h)� ~F(~h�k ~q?)] ! (CA/2) [~F(~h)� ~F(~h�k ~q?)] (5.103)

(CA/2) [~F(~h)� ~F(~h+(p+ k)~q?)] ! (Cs � CA/2) [~F(~h)� ~F(~h+(p+ k)~q?)] .
(5.104)

While we previously characterized the underlying physical processes in AMY by their p
value at fixed k, same can be done for the transition rate d�/dk at fixed p but depending
on k:

• Considering the process q $ qg, shown in Fig. 5.44, the range p > k > 0 corre-
sponds to the emission of a gluon with energy k from a quark with energy p leading
to an energy loss for the outgoing quark of energy p� k < p. On the other hand, the
region k < 0 corresponds to a gluon from the thermal bath that is captured leading to
an net energy gain for the quark p� k > p. In both cases the incoming quark keeps
its flavor. In contrast, the remaining region k > p > 0 of the process corresponds to
the case where the incoming quark annihilates with an thermal antiquark with energy
p� k < 0 in order to produce a gluon with energy k. Thereby the incoming quark
changes its flavor and becomes a gluon.

q q

g

p p - k

k

(a) Bremsstrahlung

q

g

q

p

k < 0

p-k > p

(b) Absorption of gluon

q

q

g

p

(p - k) < 0

k

(c) Absorption of antiquark

Figure 5.44: Schematic representation of the different k regions in the process q $ qg.

• Different to q $ qg the process g $ gg (Fig. 5.45) has a symmetric final state.
Therefore, in order to avoid a double counting of the final states, the k-range is
limited to k < p/2. For k = p/2 the two outgoing gluons share equally the incoming
energy, while for k > p/2 the outgoing gluons switch roles. Consequently the region
0 < k < p/2 corresponds again to the emission of a gluon with energy k from this
time a gluon with energy p, which leads to an energy loss of the incoming gluon
(p� k < p). On the other hand, the region k < 0 corresponds to two gluons fusing
to produce a gluon with an increased energy p� k > p.

g g

g

p p - k

k

(a) Bremsstrahlung

g

g

g

p

k < 0

p-k > p

(b) Absorption of thermal gluon

Figure 5.45: Schematic representation of the different k regions in the process g $ gg.

• Finally, the process g $ qq (Fig. 5.46) describes, for the region p > k > 0, the
production of a quark-antiquark pair, where the quark has energy p � k and the
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antiquark k. Also the region k > p > 0 corresponds to a production of a quark-
antiquark pair, yet with switched roles of the outgoing partons, this time the antiquark
has energy p� k and the quark energy k. Therefore, again the k-range is limited to
k < p/2 in order to avoid a double counting of final states. The remaining region of
k < 0 corresponds to the case where a gluon with energy p fuses with a quark from
the thermal bath with energy k to produce a quark with higher energy p � k > p.
Analogous to the region k > p > 0 of the process q $ qg, this process converts the
incoming gluon into a quark with energy larger energy p� k > p.

g q

q

p p - k

k

(a) Quark-antiquark production

g

q

q

p

k < 0

p-k > p

(b) Absorption of quark/antiquark

Figure 5.46: Schematic representation of the different k regions in the process g $ qq .

5.4.3 Semi-analytical results for gluon radiation from AMY

In the following we will present results for both the actual AMY rates and their imple-
mentation within the BAMPS framework. To this end, we tabulate both the differential
rates d�/dk and their corresponding integrated rates �(p) =

R
dk d�/dk(p, k) obtained

via the numerical calculation discussed in Appendix C. These tables are then read during
the simulation and combinations of p and k that were not tabulated are obtained via two-
dimensional interpolation routines from the GSL[Gal+] computing library. For numerical
accuracy we split these tables in two p regions, 0.15 T < p < 1.5 T and p > 1.5 T. Since
Eqs. (5.94) and (5.102) on page 116 and on page 118 scale both with temperature T

and the QCD coupling g
2

s the tables are calculated for unitless quantities, so T and g
2

s are
multiplied to the rate during runtime. As one can see, e.g., in the splitting kernel of q $ qg,�
1 + (1�x)2

�
/
�
x
3(1�x)2

�
, the emission rate within AMY diverges for x = k = 0 and

x = 1 ! k = p. Therefore, when tabulating the emission rate d�/dk, these divergences
are omitted in a range �k = 0.05 T around k = 0 and k = p.

In Fig. 5.47 we show our calculation of the differential emission rate d�/dk in the AMY
formalism for the process q $ qg for a fixed value p = 45 T and a QCD coupling of
↵s = 0.3. The result is obtained directly from the tabulated values and therefore close to
the actual AMY formalism. While the divergence at k = 0 is clearly identifiable, the other
divergence at k = p is not visible due to numerical accuracy. The three different regions
corresponding to the processes q ! qg, qg ! q and qq ! g are separated by dashed
lines at k = 0 and k = p. At small |k| / 2T the distribution is rather symmetric. This
means that the rates of emitting a gluon and absorbing a soft gluon are similar. In contrast,
the Bremsstrahlung contribution of q ! qg is dominated between k ⇡ 2 T and k = p by
the LPM effect and therefore scales as expected with d�

dk ⇠ k
�3/2 (s. Section 5.1.2). For

k > p the rate for quark-antiquark annihilation is steeply decreasing with increasing gluon
energy.

The p dependence of d�/dk is shown in Fig. 5.48 where we plot d�/dk of the three
different processes q $ qg, g $ gg and g $ qq for different values of p, again for a
constant QCD coupling ↵s = 0.3. As discussed previously the distribution of g $ gg
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Figure 5.47: Differential emission rate d�/dk from the q ! qg process of the AMY formalism for
a projectile with energy p = 45 T emitting partons with energy k in a medium with
temperature T and a fixed QCD coupling ↵s = 0.3. The different k regions from different
underlying physical process are separated by dashed lines. While the divergence at k = 0

is clearly visible, the divergence at k = p is due to numerical accuracy only mildly
recognizable. The dashed gray line shows a fit with the expected d�/dk ⇠ k�3/2 behavior.

and g $ qq are limited by k = p/2 since then the process can be obtained by switching
the final state partons. The distribution of the processes q $ qg and g $ gg are
almost independent from p at small k values. So soft gluons are emitted and absorbed
independently from the energy of the projectile. The different p values mainly constrain
the maximum allowed emitted gluon/quark energy and thereby the limit of the distribution.
On the other hand, the distribution of the process g $ qq strongly depends on the energy
of the gluon. Soft gluons will hence more likely split into a quark-antiquark pair than a
gluon with larger energy p.

Due to the different color factors CF and CA, a hard gluon will radiate more than a hard
quark. In Fig. 5.49 we show the integrated rate �(p) =

R
dk d�/dk(p, k) for the different

processes q $ qg, g $ gg and g $ qq . Indeed, at large energies p the difference
between quark and gluon Bremsstrahlung is exactly CF/CA. The rate of g $ gg at softer
energies then increases stronger than the rate of q $ qg. As already identified in the
differential rate, the rate for g ! qq strongly depends on the energy p of the gluon. While
the rate at thermal energies p / T comparable to the rate of q $ qg, its contribution at
higher energies is negligible in comparison with the more dominant process g ! gg.

5.4.4 Implementing the effective 1 $ 2 processes into BAMPS

After discussing the semi-analytical results for the AMY emission rate we introduce the
evaluation of the effective 1 $ 2 processes within the BAMPS framework. One already
existing approach that uses the discussed transition rates in a numerical simulation is
the Monte-Carlo model MARTINI [JM05; Tur06; SGJ09; SGQ09]. By combining the
transition rate with Fokker-Planck type equations MARTINI compute the evolution of the
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Figure 5.48: Differential emission rate d�/dk for different projectile energies p and processes from the
AMY formalism. The different values of p are given by varying colors from small energies
(green) to larger energies (red). We show in the left panel the rate of the process q $ qg,
in the middle panel the rate of the process g $ gg and in the right panel the rate of the
process g $ qq . The QCD coupling is fixed to ↵s = 0.3.

jet-momentum distribution in a hydrodynamic background [SGJ09]. The evolution of the
hard quark/antiquark and gluon distributions then reads [JM05],

dPqq̄(p)

dt
=

Z

k

Pqq̄(p+k)
d�q

qg(p+k, k)

dk
+ 2Pg(p+k)

d�g
qq̄(p+k, k)

dk
� Pqq̄(p)

d�q
qg(p, k)

dk
,

dPg(p)

dt
=

Z

k

Pqq̄(p+k)
d�q

qg(p+k, p)

dk
+Pg(p+k)

d�g
gg(p+k, k)

dk

�Pg(p)

✓
d�g

qq̄(p, k)

dk
+

d�g
gg(p, k)

dk
⇥(2k�p)

◆
, (5.105)

where Pqq̄ is the distribution of both quarks and antiquarks, Pg is the distribution of gluons,
and the superscript of d�/dk represents the initial state, whereas the subscript denotes
the final state flavors, respectively. Positive contributions are gain terms and negative
contributions represent loss terms for partons with energy p.

The probability for a microscopic scattering within BAMPS is proportional to the cross
section of this process (cf. Chapter 4). For an 1 $ 2 splitting/absorption process the
probability to occur is then correspondingly given by

P1$2 = �t�1$2(p) = �t

Z
dk

d�

dk
(p, k) , (5.106)

where �t is the time step in the simulation and �1$2 the integrated rate for a parton with
energy p. In contrast to the other scattering probabilities within BAMPS the probability for
the 1 $ 2 process does not depend on the discretization in coordinate space, namely the
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Figure 5.49: Total emission rate � depending on the projectile energy p for the different processes from
the AMY formalism. In order to demonstrate the scaling of q $ qg and g $ gg at high
projectile energies we scale the process g $ gg by CF/CA. The QCD coupling is fixed to
↵s = 0.3. The numerical artifact at p = 1.5T originates from using two different tables for
p < 1.5T and p > 1.5T .

cell volume, but only on the time step. However, since the AMY rate is calculated for a
thermal bath, the quantities in AMY as, e.g., the projectile energy p or the temperature T

have to be evaluated in the local rest frame of the cell. While this is trivial for the static,
thermal medium in this chapter, the boost to the local rest frame has to be considered when
applied in the expanding medium of a heavy-ion collision (s. Chapter 7). Furthermore, in
the expanding scenario also the definition of the temperature in the AMY formalism needs
further consideration.

If it is decided that a parton undergoes a 1 $ 2 process, both the actual process and the
corresponding k is sampled based on the differential emission rate d�/dk. For example,
if for an emitting quark a negative value for k is sampled, the quark absorbs a thermal
antiquark from the medium and thereby gains energy to p + |k|. On the other hand, if a
value of 0 < k < p is sampled, a gluon is generated that takes away an energy k from the
quark. We have seen that the transverse momentum of both the emitter and the emitted
parton are O(gsT ). Therefore we neglect any transverse momentum of the emitting or
emitted parton: all outgoing partons fly in the same direction as the ingoing partons while
shifting the energies between the partons. In the case of g ! qq the flavor of the outgoing
quarks is randomly determined.

It is important to note, that although the coherent scatterings of the gluon and quark
during the formation time were explicitly considered in the derivation of the AMY formal-
ism, they are not explicitly simulated in contrast to the previous sLPM approach. Rather
the emitting parton undergoes an effective 1 $ 2 process (or in the case qq ! g a
“1 ! 1” process) within the surrounding thermal medium for which the scatterings were
resummed into the effective rate. Also the absorbed thermal antiquark in a qq ! g process
is assumed to come from a thermal distribution. This procedure obviously neglects the
microscopic nature of the single scattering processes and consequently any back reaction of
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Figure 5.50: Differential energy loss dE/dx depending on the projectile energy p for the different
processes q ! qg, g ! gg and g ! qq from the AMY formalism. The QCD coupling is
fixed to ↵s = 0.3. While the points show the numerical results from BAMPS simulations,
the solid lines are obtained by directly integrating the AMY emission spectra. The additional
dashed lines show the expected dE/dx ⇠

p
p behavior of the non-Abelian LPM effect.

these scatterings to the medium. This is a valid assumption in the case of a high energy jet
traversing a static thermal medium but can have limitations if applied to situations where
either the emitting parton is rather thermal p ⇠ O(T ) or in a non-thermal background.

5.4.5 Validating the numerical implementation of AMY

In order to validate the discussed implementation we compare in Fig. 5.50 the differential
energy loss rate dE/dx of a parton with energy E in the AMY formalism, obtained via (a)
a semi-analytic calculation,

dE

dx
(p) =

{p;p/2}Z

0

dk k
d�

dk
(p, k) (5.107)

and (b) the numerical simulation of the 1 ! 2 processes within the BAMPS framework.
The results for q ! qg and g ! gg only consider the respective Bremsstrahlung process,
which is tantamount to 0 < k < {p; p/2}. Concerning the potential double counting
in the process g ! gg, in the BAMPS simulation the softer gluon is identified with the
momentum k in order to be consistent with the k = p/2 limit in the AMY formalism.
The semi-analytical calculation and the simulation agree nicely proving the validity of the
discussed numerical implementation of the AMY formalism within BAMPS. Furthermore,
as expected by the considerations of Section 5.1.2 the dE/dx within the AMY formalism
shows the dE/dx ⇠

p
E signature of the non-Abelian LPM effect.

To further check the numerical procedure implementing the AMY rates within BAMPS
we also show in Fig. 5.51 a comparison of our numerical simulation of AMY within
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Figure 5.51: Time evolution of the energy distribution of an initial quark jet with Einit = 10 GeV from
BAMPS with AMY interactions (shown by lines) in comparison with the corresponding
results of MARTINI taken from Ref. [SGQ09] (shown by points). The jet traverses a
medium with temperature T = 0.3 GeV and the QCD coupling is fixed to ↵s = 0.3. The
color of the distribution depicts different evolution times t of the jet in the medium.

BAMPS to the previously mentioned MARTINI model [SGQ09]. Shown is the evolution
of the energy distribution of a quark with initial energy E = 10 GeV that traverses a
thermal medium with temperature T = 0.3 GeV and constant QCD coupling ↵s = 0.3.
Different to the other calculations in this chapter the quark is not assumed to be eikonal, so
every emission/absorption process indeed changes the energy of the emitting quark. The
agreement between BAMPS and AMY at both t = 2 fm and t = 5 fm is compelling.

This section concludes the discussion about how to implement the LPM effect into
the partonic transport approach BAMPS as it was done in the present work. We defined
three different ways how to model the coherence of gluon emissions either parametrically
or dynamically, either microscopically or from a more macroscopic picture. In the next
section we will compare these approaches among each other and confront it with other
models for the radiative energy loss in pQCD.

5.5 Comparison of different LPM approaches

In the previous sections we discussed three different approaches for investigating the LPM
effect in a partonic transport model: an effective parametrization via a theta function in
the radiative matrix elements, a stochastic suppression by explicit elastic scatterings of the
emitted gluons during their finite formation time and an Ansatz incorporating the radiative
rates calculated via hard thermal loops, namely the AMY formalism. The different model
assumptions are summarized in Table 5.1. In this section we discuss potential differences
and their origins between the presented models. First, we will study in the next subsection
the differences between the microscopic formulations, ✓-LPM and stochastic LPM, and the
AMY formalism based on macroscopic quantities. In doing so we calibrate the microscopic

125



5 Landau-Pomeranchuk-Migdal effect in a transport approach

approaches to the AMY formalism and compare them against each other to see how their
emission patterns differ. Finally, we will confront the three approaches with different
other calculations of radiative energy loss in pQCD and find potential similarities and
differences.

✓-LPM stochastic LPM AMY

characteristics microscopic
scattering

microscopic
scattering

thermal
rate

underlying processes 2 ! 3 2 ! 3 + 2 ! 2 “1 $ 2”
finite formation time ⌧f 7 3 7
scatterings during ⌧f 7 3 (LO-pQCD) 3 (HTL)
parametric coherence ⇠ ✓

�
�� ⌧f

�
3 7 7

stochastic coherence ⇠ 1/Ncoh 7 3 7

Table 5.1: Comparison of the model assumptions in the different LPM approaches studied in this work.

5.5.1 Effective LPM approaches vs. AMY formalism

Both effective approaches for the LPM effect within BAMPS, the ✓-LPM model of Sec-
tion 5.2 and the stochastic LPM algorithm of Section 5.3, initiate a potential gluon emission
by a 2 ! 3 process calculated in the improved Gunion-Bertsch approximation (cf. Chap-
ter 3). After we presented in the previous sections how both approaches depend on their
respective screening parameter, we will compare in this section both approaches to the
more formal AMY calculation where such a free parameter does not exist. This will allow
us to determine values for the screening parameters that reproduce a more formal LPM
suppression.

Model differences between AMY and the effective LPM approaches

In the ✓-LPM approach we model the LPM suppression by constraining the allowed
phase space with the help of a theta function in the radiative matrix element. This theta
function ensures that the formation time of a gluon is smaller than the mean free path
of the projectile to the next scattering center. Consequently the emissions are produced
incoherently. The contribution of coherent gluon emissions is then added by effectively
increasing the phase space by the parameter XLPM. On the contrary, in the sLPM approach
the gluon scatterings during the formation time are explicitly simulated. This allows to
dynamically decide for each emission how coherent scatterings contribute to the radiative
process. After formation, the gluons are suppressed based on their number of coherent
scatterings during the formation time. We found that there is no ad-hoc way of screening
the k? divergence of the initial 2 ! 3 matrix element in this approach. Therefore we
introduced the parameter ⇠LPM that effectively controls the minimum transverse momentum
k?; min = ⇠LPM

p
ŝ.

Both parameters XLPM and ⇠LPM logarithmically affect both the radiative energy loss and
the underlying emission rates in the effective implementations for the LPM effect. In the
AMY formalism the k? divergence of the radiative processes is cured by resumming an
arbitrary number of interactions of the gluons within their formation time. The resulting
transverse momentum k? of the gluon is expected to be on the order k? ⇠ O(gsT ) and
thereby negligible. Gluons are produced collinearly wrt. the emitting parton and only
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Figure 5.52: Differential radiative energy loss dE/dx of a quark (left) or gluon (right) projectile depend-
ing on the projectile energy E from the ✓-LPM approach with varying XLPM in comparison
to AMY. The different values of XLPM are given by varying colors from small XLPM (green)
to larger XLPM (red) values. Each given numerical value corresponds to a shown line. The
mean free path entering the ✓-function is calculated iteratively and the QCD coupling is
fixed to ↵s = 0.3.

transfer energy away from the projectile. Consequently, a comparison of the k? spectra of
the effective approaches and AMY are unrewarding in the following.

The energy loss of a projectile in the AMY formalism is exclusively caused by the
radiation of gluons. Therefore the energy loss of the projectile can be calculated by
integrating the !-differential emission rate. In contrast, the radiative energy loss of the
2 ! 3 underlying the ✓-LPM and sLPM approaches has an additional 2 ! 2 component
(cf. Section 5.3.5). Therefore we define the energy loss in these approaches as the total
energy loss of the projectile including the elastic component. For the comparison of the
radiative processes for a gluon, g ! gg in the AMY formalism or, e.g., gg ! ggg in the
other two approaches, one needs to take into account a consistent handling of symmetric
outgoing partons. We decide to take the limit of soft gluon emissions and track the outgoing
gluon with the higher energy as the outgoing projectile in the different approaches.

Furthermore, the AMY model is calculated in the thermodynamic limit, which is equiv-
alent with a calculation solely in momentum space. The traversed medium is assumed
to be infinite and hence the validity of the AMY formalism in thin media is questionable.
Also the emissions rates and thereby the differential energy loss of the ✓-LPM approach is
independent from the medium length L. Consequently, the following comparison between
✓-LPM and AMY will be independent from the specific choice of medium length.

Comparison of ✓-LPM and AMY

We show in Fig. 5.52 the differential radiative energy loss dE/dx of a quark or gluon
projectile for the AMY formalism and the ✓-LPM approach employing different screening
values XLPM (given by different colors). Since the mean free path itself depends on the
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inelastic radiation rate in the ✓-LPM approach we calculated the underlying mean free
path again iteratively for each XLPM (cf. Section 5.2). We choose also a constant value
of ↵s = 0.3 for the QCD coupling. As we found previously in Section 5.2 a decreasing
value of XLPM allows more collinear gluon emissions and thereby increases the radiative
energy loss. The best agreement between the AMY formalism and the ✓-LPM approach
is given at XLPM := X

AMY
LPM = 0.05 for both quark and gluon projectiles. This rather

small value of XLPM could have been expected since the AMY formalism is calculated
in the small k? approximation, where the transverse momentum of gluon emissions are
k? ⇠ O(gsT ) ! 0. We have seen in Section 5.2 that the radiative energy loss of quarks
and gluon in the ✓-LPM approach does not scale with the color factor CF/CA due to the
iterative calculation of the mean free path underlying the theta function. Interestingly this
difference in the radiative energy loss is captured also in the AMY formalism where the
elastic interactions of the quark-gluon system are formally resummed.

In the AMY formalism the k? divergence is cured by resumming the elastic scatterings
of the gluons during the formation time to arbitrary orders. However, a same argument
does not hold for the soft ! divergence from AMY originating from the DGLAP splitting
kernel (cf. Section 5.4). The effective k? screening of the ✓-LPM effect on the contrary
does not only lead to a screening in k? but also a suppression of very soft (small !)
gluon emissions. This difference can be seen in Fig. 5.53 where we show the !-weighted
differential emission rate ! d�/d! of a quark (left) and gluon (right) projectile for different
energies E (shown by different colors) comparing the AMY calculation with the ✓-LPM
approach together with the previously fixed value X

AMY
LPM . The distribution is again plotted

in units of E in order to visualize the contribution of the different projectile components to
the energy loss. The different treatment of the soft divergence is visible by the discrepancy
of both approaches at very soft components. On the other hand, at hard gluon energies,
! ⇡ O(E) in the quark case and ! ⇡ O(E/2) in the gluon case, again the kinematical
differences between a 1 ! 2 process, where the emitted gluon may take away all the
energy, and a 2 ! 3 process, where the outgoing phase space has to be distributed among
three final state partons, is recognizable. The spectrum within the ✓-LPM approach is
suppressed at high gluon energies, while in the AMY formalism the divergence at ! = E

from the DGLAP splitting kernel is visible.
In order to reproduce nevertheless the energy loss of AMY the emission rate of the

✓-LPM approach has to compensate the suppression of soft and high ! gluon emission
by a higher rate of gluon emissions at intermediate regions. For a quark projectile with
energy E = 250 T, which corresponds to a quark with E = 100 GeV in a medium with
temperature T = 0.4 GeV, this intermediate region reaches from ! ⇡ 2 · 10−3 E up to
! ⇡ 2 · 10−1 E. Please note that this difference in the intermediate ! region is more
pronounced in the quark case than in the gluon case since the divergence at ! = E does not
occur in the gluon case and therefore does not have to be compensated. One can conclude
that, although the final radiative energy loss of the AMY formalism is well reproduced
by choosing X

AMY
LPM in the ✓-LPM model the underlying spectrum shows differences by

overestimating the intermediate ! region in the ✓-LPM approach.

Comparison of stochastic LPM and AMY

We demonstrated in Section 5.3 that the finite formation time of gluon emissions in the
sLPM approach leads to length dependent gluon emissions rates and thereby to a linear
L dependence of the radiative energy loss dE/dx. In contrast the AMY formalism is
formulated in the approximation of an infinite, thermal medium. Therefore we compare
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Figure 5.53: Differential emission rate d�/d! of a quark (left) or gluon (right) projectile with different
energies E from the ✓-LPM approach with XLPM = 0.05 in comparison to AMY. The
different values of E are given by varying colors from small E (green) to larger E (red)
values. The mean free path entering the ✓-function is calculated iteratively and the QCD
coupling is fixed to ↵s = 0.3. We scale d�/d! by !/E in order to better visualize the
contribution of the different ! to the total radiative energy loss.

in the following the radiative energy loss of AMY with the radiative energy loss in the
sLPM algorithm for a large medium length L = 20 T −1, where also the stochastic LPM
shows a path-length independence. This choice of L = 20 T −1 corresponds, e.g., for a
medium temperature T = 0.4 GeV to L = 10 fm and is longer than the typical critical
medium length Lc even for the more energetic projectiles E = 250 T. Figure 5.54 shows
dE/dx depending on the projectile energy E for a quark (left) and gluon projectile (right)
calculated via the stochastic LPM implementation for different values of ⇠LPM together with
the results from AMY. This plot corresponds to Fig. 5.52, where we compared the ✓-LPM
approach with AMY. Again, in order to reproduce the enormous radiative energy loss in
AMY a small value of the screening parameter ⇠LPM has to be chosen. In the case of a
quark, ⇠LPM := ⇠

AMY; q
LPM = 0.01 gives the best agreement with AMY. This parameter choice

corresponds to an average minimum transverse momentum k?; min = ⇠LPM
p
ŝ ⇡ 0.4 T

for a quark with E = 250 T, where we used hŝi = 6E T for the average center-of-
momentum energy of a scattering between the jet and a thermal particle. The sLPM
approach reproduces the energy dependence from AMY for the radiative energy loss of
a quark over a wide E range. In contrast, in the case of a gluon projectile the sLPM
approach favors a screening parameter ⇠LPM := ⇠

AMY; g
LPM = 0.015. This choice then agrees

with AMY at hard projectile energies but the different shape of dE/dx leads to slight
deviations at softer projectile energies. Reason for this different choice of ⇠AMY

LPM for quarks
and gluons is the already discussed CF/CA-scaling of the radiative energy loss dE/dx
within the sLPM model. In order to nevertheless calibrate the sLPM model to the AMY
formalism we take into account the different scaling of the energy loss of quarks and
gluons phenomenologically by different values of ⇠LPM.

In order to further study the radiative energy loss, Fig. 5.55 shows again the differential
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Figure 5.54: Differential radiative energy loss dE/dx of a quark (left) or gluon (right) projectile in a
medium with temperature T and length L = 20 T −1 depending on the projectile energy E
from the sLPM approach with varying ⇠LPM in comparison to AMY. The different values of
⇠LPM are given by varying colors from small ⇠LPM (green) to larger ⇠LPM (red) values. The
QCD coupling is fixed to ↵s = 0.3.

emission rate ! d�/d! for both AMY and the stochastic LPM approach employing the just
fixed values of ⇠AMY

LPM . Similar to the ✓-LPM approach the spectra differ from each other
both at soft and high gluon energies. Reason for this is again the limited phase space of
the 2 ! 3 process at high ! and the screening of collinear gluons at soft !. In contrast to
the ✓-LPM approach, the sLPM algorithm leads to the same d�/d! at soft ! for different
projectile energies. Reason for this scaling is the dependence of the k? screening on the
CoM energy

p
ŝ, which itself depends on the projectile energy. The similar suppression

at hard and soft gluon energies lead to a similar overestimation of the differential rate at
intermediate gluon energies as in the ✓-LPM approach.

Comparison to AMY formalism with finite formation time

Caron-Huot and Gale successfully extended in Ref. [CG10] the AMY formalism by
introducing finite-size effects. To this end, they started by the path-integral formulation of
radiative energy loss from [Zak97] and Fourier transformed the path-integral. By cleverly
rearranging the time integrations they arrived at a time-dependent emission rate

d�a
bc(t)

d!
=

P
a
bc(x)

⇡E
Re

tZ

0

dt1

Z

~q,~p

i~q · ~p

�E{~q}
C(t)K(t,~q; t1, ~p) , (5.108)

where t1 is the time of the last scattering during the formation time, P a
bc(x) are the DGLAP

splitting kernels, �E{~q} is the inverse formation time and C(t)K(t,~q; t1, ~p) the time-
dependent emission kernel from the AMY formalism. This equation can then be solved
numerically. For more information about the derivation as well as its numerical calculation
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Figure 5.55: Differential emission rate d�/d! of a quark (left) or gluon (right) projectile with different
energies E from the sLPM approach with ⇠LPM = 0.01 for the quark and ⇠LPM = 0.015 for
the gluon in comparison to AMY. The different values of E are given by varying colors
from small E (green) to larger E (red) values. The QCD coupling is fixed to ↵s = 0.3.
Again we scale d�/d! by !/E in order to better visualize the contribution of the different
! to the total radiative energy loss.

we refer to Ref. [CG10], where it was also shown that other models for the radiative energy
loss, namely BDMPS-Z and GLV, could be reproduced as specific limits of Eq. (5.108) on
the preceding page.

Figure 5.56 shows the time t dependence of the differential emission rate of gluons with
! = 7.5 T and ! = 20 T from a quark with energy E = 40 T as calculated in Ref. [CG10]
together with the corresponding rate from the sLPM implementation with ⇠LPM = ⇠

AMY
LPM

and AMY. Indeed the AMY emission rate can be viewed as the large t limit of Eq. (5.108)
on the facing page. At small times t the finite-size effects suppress the rate in comparison
with AMY. This finding is also seen in the sLPM approach, however, the rate in the
sLPM approach builds up slower than the rate from Eq. (5.108) on the preceding page.
Furthermore, as in Fig. 5.55 the rate at large t from the sLPM implementation shows
slight deviation in comparison to the result by Caron-Huot and Gale. One reason for these
discrepancies could be the different elastic interactions calculated either from leading-order
pQCD in the sLPM approach or HTL in the AMY formalism.

5.5.2 Parametric vs. stochastic LPM

After we discussed the differences between the effective LPM approaches and AMY within
BAMPS and thereby found potential values for the screening parameters XAMY

LPM = 0.05 and
⇠

AMY; q
LPM = 0.01 for quarks and ⇠AMY; g

LPM = 0.015 for gluons, respectively, we compare in this
section both effective LPM implementations, ✓-LPM and stochastic LPM, with each other.
While the ✓-LPM method parametrically suppresses gluon emissions, the gluons from
the sLPM algorithm scatter elastically during the formation time and are subsequently
suppressed stochastically.
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Figure 5.56: Time evolution of the differential emission rate d�/d! at ! = 7.5 T (red) or ! = 20 T
of a quark projectile with E = 40 T traversing a medium with temperature T from the
sLPM approach with ⇠LPM = 0.01 in comparison with the semi-analytical results from
Ref. [CG10]. The results from the BAMPS framework are shown by points and the results
from Caron-Huot and Gale are given by solid lines. Additionally, we show in dashed lines
the corresponding rate from the AMY formalism representing the infinite L limit of the
calculation by Caron-Huot and Gale.

One major consequence from this different treatment is that the sLPM algorithm explic-
itly considers the finite formation time of the gluon emissions. Therefore the differential
emission rates d�/d! and d�/dk? in the sLPM method are path-length dependent. On the
other hand, the rates from the ✓-LPM approach have no path-length dependence. Therefore
we choose for the following results as in the previous section L = 20 T −1, which is in the
large L > Lc region, where also the stochastic LPM follows a path-length independent rate.
Later we will then present potential differences emerging from the path-length dependence
of the sLPM algorithm.

In Fig. 5.57 we show the radiative energy loss dE/dx of a quark and gluon projectile
from the ✓-LPM approach in comparison to the large L = 20 T −1 radiative energy loss
from the sLPM algorithm. Due to the specific choice of screening parameters the radiative
energy losses in the ✓-LPM and sLPM approach looks unsurprisingly similar: While the
energy loss in the ✓-LPM is slightly higher for a quark, the gluon energy loss is slightly
higher in the sLPM approach.

Figure 5.58 shows the total emission rate underlying the radiative energy loss of the two
LPM models. Both LPM methods show a total emission rate that is rather independent for
the shown projectile energies E > 25 T. The total rate of gluon emissions in the sLPM
approach is smaller than the corresponding rate in the ✓-LPM approach for both quark and
gluon projectiles. This difference even slightly increases at higher projectile energies since
the sLPM approach has a decreasing rate for increasing projectile energies due to hard
! emissions that are suppressed due to their long formation time. One can conclude that
although the radiative energy loss in the ✓-LPM and sLPM approach is comparable, the
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Figure 5.57: Differential radiative energy loss dE/dx of a quark (solid lines) or gluon (dashed lines)
projectile in a medium with temperature T and length L = 20 T −1 depending on the
projectile energy E from the ✓-LPM (red) and the sLPM approach (green). The screening
parameters are chosen by XAMY

LPM = 0.05 in the ✓-LPM and ⇠AMY; q
LPM = 0.01 or ⇠AMY; g

LPM =

0.015 in the stochastic LPM approach in order to reproduce the corresponding differential
energy loss from the AMY formalism. The mean free path entering the ✓-LPM approach is
calculated iteratively and the QCD coupling is fixed to ↵s = 0.3.

✓-LPM needs more gluon emissions to achieve this energy loss in comparison to the sLPM
calculation.

To further investigate the origin of the different emission rates we present in Fig. 5.59
the weighted differential emission rates ! d�/d! for both approaches. In the left panel
we show d�/d! from a quark, while the emission rates from a gluon are depicted in the
right panel. For all shown projectile energies, the differential emission rates at gluon
energies ! ! E are higher in the stochastic LPM approach than the corresponding rates
from the ✓-LPM approach. Reason for these higher rates in the stochastic LPM method is
the possibility of energetic gluon emissions to accumulate transverse momentum during
their formation time and thereby to finish their formation time. In contrast, these gluon
emissions are not allowed in the ✓-LPM approach where only the initial k? and ! of the
2 ! 3 Bremsstrahlung process are considered. Therefore, in order to achieve a similar
radiative energy loss wrt. the AMY formalism, this lack of gluons at high ! needs to
be compensated in the ✓-LPM approach by allowing more gluons at soft energies. This
explains the significantly larger emission rate in the ✓-LPM approach found in Fig. 5.58
for the specific choice of screening parameters calibrated to the AMY radiative energy
loss. Furthermore, the different screening procedures of soft gluon emissions in the ✓-LPM
approach (k?; min ⇠ �/�) and the stochastic LPM approach (k?; min ⇠

p
ŝ) lead to different

dependencies of the emission rate at soft ! from the projectile energies. Therefore, the
agreement between both approaches is better at smaller projectile energies than at large
projectile energies.

The previous result can be further confirmed by showing in Fig. 5.60 the differential
emission rate d�/dk? from both effective LPM approaches. Again, while the gluon
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Figure 5.58: Total emission rate � of a quark (solid lines) or gluon (dashed lines) projectile in a medium
with temperature T and length L = 20 T −1 depending on the projectile energy E from the
✓-LPM (red) and the sLPM approach (green). The screening parameters are chosen by
XAMY

LPM = 0.05 in the ✓-LPM and ⇠AMY; q
LPM = 0.01 or ⇠AMY; g

LPM = 0.015 in the stochastic LPM
approach in order to reproduce the corresponding differential energy loss from the AMY
formalism. The mean free path entering the ✓-LPM approach is calculated iteratively and
the QCD coupling is fixed to ↵s = 0.3.

emissions in the ✓-LPM approach are suppressed directly in the 2 ! 3 matrix element, the
gluons in the sLPM approach accumulate transverse momentum k? while they complete
their formation time. Therefore, the gluon emissions in the ✓-LPM approach show a peak
at soft k? ⇡ 10−1 T, whereas the gluons from the sLPM approach thermalize during their
formation time so that their final distribution peaks at k? ⇡ T . This effect is again further
amplified by the different choices of screening procedures in both approaches.

Finally, we show in Fig. 5.61 the radiative energy loss of both approaches for different
projectile energies E depending on the medium length L. As mentioned earlier, the
sLPM approach incorporates length-dependent emission rates up to the critical path length
L ⇡ Lc due to the finite formation time of gluon emissions. In contrast, the ✓-LPM
approach has L-independent rates since the suppression of gluons is evaluated by iterating
the mean free path. Since the critical path length Lc depends on the projectile energy
E, the length dependent radiative energy loss persists up to L ⇡ 5 T −1 for a quark with
E = 25 GeV and up to L ⇡ 10 T −1 for a quark with E = 250 GeV. For thicker media the
dE/dx of the sLPM approach reaches the L-constant dE/dx from the ✓-LPM approach
that we discussed in Fig. 5.57.
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Figure 5.59: Differential emission rate d�/d! of a quark (left) or gluon (right) projectile in a medium
with temperature T and length L = 20 T −1 from the ✓-LPM (solid lines) and the sLPM
approach (dashed lines) for different projectile energies E given by varying colors from
small E (green) to larger E (red) values. The screening parameters are chosen by XAMY

LPM =

0.05, ⇠AMY; q
LPM = 0.01 and ⇠AMY; g

LPM = 0.015 in order to reproduce the differential energy
loss from the AMY formalism. We scale d�/d! by !/E in order to better visualize the
contribution of the different ! to the total radiative energy loss. The mean free path entering
the ✓-LPM approach is calculated iteratively and the QCD coupling is fixed to ↵s = 0.3.
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Figure 5.60: Differential emission rate d�/dk? of a quark (left) or gluon (right) projectile in a medium
with temperature T and length L = 20 T −1 from the ✓-LPM (solid lines) and the sLPM
approach (dashed lines) for different projectile energies E given by varying colors from
small E (green) to larger E (red) values. The screening parameters are chosen by XAMY

LPM =

0.05, ⇠AMY; q
LPM = 0.01 and ⇠AMY; g

LPM = 0.015 in order to reproduce the differential energy loss
from the AMY formalism. The mean free path entering the ✓-LPM approach is calculated
iteratively and the QCD coupling is fixed to ↵s = 0.3.
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Figure 5.61: Length dependence of the differential radiative energy loss dE/dx of a quark (left) or
gluon (right) projectile in a medium with temperature T from the ✓-LPM (solid lines) and
the sLPM approach (dashed lines) for different projectile energies E given by varying
colors from small E (green) to larger E (red) values. Same parameters used as in Fig. 5.60.
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5.5.3 Comparison to other radiative energy loss calculations

The results from the comparison of the different LPM approaches studied in the previous
section are summarized in Table 5.2. In order to further improve our picture of the radiative
energy loss emerging from the non-Abelian LPM suppression, we confront in this section
our three implementations of the LPM effect with other models for the radiative energy
loss.

✓-LPM stochastic LPM AMY

screening parameter XAMY
LPM = 0.05 ⇠AMY; q

LPM = 0.01 -
⇠AMY; g

LPM = 0.015

differential rate d�/d!
. . . at soft ! d�/d!|✓-LPM > d�/d!|sLPM d�/d!|AMY ! 1

. . . at hard ! d�/d!|✓-LPM < d�/d!|sLPM d�/d!|AMY ! 1

. . . at ! ! 0 ! 0 ! 0 ! 1

. . . at ! ! E ! 0 ! 0 ! 1

. . . d�/d! ⇠ !�3/2 (3) 3 3

differential rate d�/dk?
· · · collinear (k? = 0) emissions 7 7 3
· · · d�/dk? shifted to thermal k? 7 3 7
· · · d�/dk? peaked at k?; min 3 7 7

energy loss dE/dx
. . . dE/dx ⇠

p
E 3 3 3

. . . dE/dx ⇠ L for L < Lc 7 3 7

. . . dE/dx ⇠ const. for L > Lc 3 3 3

. . . scaling with CF/CA 7 3 7

Table 5.2: Comparison of the characteristics of the different LPM approaches after the effective ap-
proaches were calibrated to the AMY formalism.

Comparison to BDMPS-Z

As we have introduced in Section 5.1.1, one of the first investigations of the non-Abelian
LPM effect in the context of parton energy loss was undertaken in the BDMPS-Z ap-
proach [Bai+95; Bai+97a; Bai+98a]. By assuming the scatterings of the quark-gluon sys-
tem during its formation time as multiple and soft, Baier et al. predicted a

p
E dependence

of the energy loss [Bai+95] as well as a L2 dependence of �E at thin media [Bai+97b]. In
the following we will investigate the differences between BDMPS-Z and the three different
LPM approaches in BAMPS.

The probability distribution for emitting gluons in the BDMPS-Z formalism can be
written as in Eq. (5.9) on page 48 or in the small x ! 0 limit as given in, e.g., Ref. [Cas+11],

!
dIBDMPS

d!
⇠

2↵sCR

⇡
log

����cos
✓
(1 + i)

r
!c

!

◆���� (5.109)

where the critical gluon energy !c is equivalent to !fact in our notation. We tested that
both formulas Eq. (5.109) and Eq. (5.9) on page 48 indeed agree numerically. As we
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have discussed in Section 5.1.2 the BDMPS-Z spectrum can be considered in the limiting
cases [Cas+11]

!
dIBDMPS

d!
⇠

2↵sCR

⇡

(p!c
2! for ! ⌧ !c

1

12

�!c
!

�2 for ! � !c

. (5.110)

This again demonstrates the familiar ⇠ !
�3/2 behavior in the LPM region and the strongly

suppressed emissions in the factorization region ! > !fact.
Figure 5.62 shows a comparison of the emission spectrum given by Eq. (5.109) and

the ✓-LPM approach in BAMPS for a quark or a gluon projectile with energy E in a
medium with temperature T and two different lengths L. The crucial parameter in the
radiative energy loss from the BDMPS-Z formalism is the momentum broadening parameter
q̂. We determine this parameter for the presented comparison by calculating it via the
leading-order Debye-screened elastic scatterings from pQCD as described in Section 5.3.3.

Furthermore, for comparison we also show the corresponding emission rate from the
AMY formalism. As found, e.g., in Refs. [Arn09b; Arn09a; Arm+12] it can be shown that
the long path-length limit of the BDMPS-Z approach coincides with the AMY formalism
in the limit of multiple soft scatterings. However, since the BDMPS-Z formalism depends
on the choice of q̂ and our result for q̂ is based on the discussed Debye-screened elastic
interactions within BAMPS instead of scatterings from HTL, we find differences in the
emission spectrum of BDMPS-Z and the AMY formalism. These differences are smaller at
large medium lengths and increase by decreasing medium lengths when also finite-size
effects in the BDMPS-Z set in that are missing in the AMY formalism.

The screening parameter entering the ✓-LPM approach was chosen previously by X
AMY
LPM

in order to reproduce the AMY formalism. However, this choice of screening parameter
shows too many gluon emissions in comparison to the given BDMPS-Z results of quarks and
gluons at all medium lengths. Therefore we additionally show a different parameter choice
of XLPM = X

BDMPS
LPM := 0.3 that shows the closest agreement with the BDMPS-Z gluon

emission spectrum of a quark projectile at large medium length L = 10 fm. Interestingly,
as we will see later in Chapter 7 this parameter choice also reproduces the suppression of
charged hadrons in central heavy-ion collisions. For both parameter choices, at smaller
! again screening effects set in due to the choice of k? screening. While the parameter
choice X

BDMPS
LPM reproduces the emission rate of a quark, the ✓-LPM approach with this

parameter overshoots the BDMPS-Z spectra of a gluon. Reason for this difference is that
the BDMPS-Z formalism in the small-x limit scales by the ratio of color factors CF/CA,
whereas the ✓-LPM approach does not. Furthermore, the ✓-LPM approach lacks the length
dependence due to the finite formation time of emissions. Consequently, the spectra at
small medium lengths of the ✓-LPM approach and BDMPS-Z differ. This difference is
stronger at higher gluon energies, since these emissions have on average a longer formation
time ⌧f and the missing effect of finite formation times becomes more significant.

In contrast to the ✓-LPM approach, the stochastic LPM approach introduced in Sec-
tion 5.3 of this work, considers the finite formation time of gluon emissions and thereby a
path-length dependence of the emission rate. Hence we show in Fig. 5.63 our results from
the sLPM approach in comparison to BDMPS-Z. We use the same parameters entering the
BDMPS-Z formalism as in Fig. 5.62. The screening parameter ⇠LPM of the sLPM approach
is again either fixed by the values ⇠AMY; q

LPM or ⇠AMY; g
LPM for reproducing the AMY radiative

energy loss or, similar to the previous procedure, by ⇠BDMPS
LPM := 0.05 in order to reproduce
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Figure 5.62: Emission spectrum dN/d! of a quark (left column) or gluon (right column) projectile
with energy E = 100 GeV in a medium with temperature T = 0.4 GeV and length
L = 10 fm (upper row) and L = 1 fm (lower row). While the points show the numer-
ical results from the ✓-LPM approach in BAMPS for two different choices of screening
parameters, XAMY

LPM (triangles) or XBDMPS
LPM (squares), the solid lines show the results from

the AMY formalism (yellow) and the BDMPS-Z approach (blue). We scale the emission
spectrum by by ! in order to better visualize the contribution of the different ! to the
total radiative energy loss. The mean free path entering the ✓-LPM approach is calcu-
lated iteratively and the QCD coupling is fixed to ↵s = 0.3. The momentum broadening
parameter q̂ of a quark (q̂q(E = 100 GeV, T = 0.4 GeV) = 2.12 GeV2/fm) or a gluon
(q̂g(E = 100 GeV, T = 0.4 GeV) = 4.85 GeV2/fm) entering the BDMPS-Z calculation is
determined by the elastic BAMPS interactions as described in Section 5.3.3.

the BDMPS-Z emission rate of a quark at large medium length L = 10 fm. Again we
additionally show the corresponding AMY emission rate.

As the ✓-LPM approach, the stochastic LPM calibrated to the AMY formalism overes-
timates the gluon emission rate of a quark at intermediate gluon energies in a medium
with length L = 10 fm. On the other hand, due to the separate screening parameters for
a quark or gluon projectile, the agreement between the stochastic LPM with ⇠AMY; g

LPM and
BDMPS-Z gets better in the case of a gluon projectile at L = 10 fm. While the other
parameter choice ⇠BDMPS

LPM shows an agreement in the intermediate ! > 10 GeV region of
dN/d! for a quark in a medium with L = 10 fm, this parameter choice underestimates
the corresponding emission rate of a gluon projectile. Furthermore, the larger parameter
⇠

BDMPS
LPM cuts off stronger the soft gluon energies and hence the deviations of the stochastic

LPM from BDMPS-Z at small ! increase.
At smaller medium lengths the spectrum of the sLPM approach is suppressed due to

the finite formation time of emissions. Although the magnitude of the spectrum becomes
comparable between BDMPS-Z and the sLPM approach at L = 1 fm, emissions with
! ' 1 GeV are suppressed in the BDMPS-Z formalism while the spectrum from the
sLPM method get its main contribution from this ! region for both ⇠LPM parameter
choices. Reason for this differences are again the different elastic scatterings within the
BAMPS approach that neglect the soft momentum transfers as they are predicted by HTL
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Figure 5.63: Emission spectrum dN/d! of a quark (left column) or gluon (right column) projectile with
energy E = 100 GeV in a medium with temperature T = 0.4 GeV and length L = 10 fm
(upper row) and L = 1 fm (lower row). While the points show the numerical results
from the sLPM approach in BAMPS for the two different choices of screening parameters,
⇠AMY; q

LPM or ⇠AMY; g
LPM (triangles) or ⇠BDMPS

LPM (squares), the solid lines show the results from
the AMY formalism (yellow) and the BDMPS-Z approach (blue). We scale the emission
spectrum by by ! in order to better visualize the contribution of the different ! to the total
radiative energy loss. The QCD coupling is fixed to ↵s = 0.3. The momentum broadening
parameter q̂ of a quark (q̂q(E = 100 GeV, T = 0.4 GeV) = 2.12 GeV2/fm) or a gluon
(q̂g(E = 100 GeV, T = 0.4 GeV) = 4.85 GeV2/fm) entering the BDMPS-Z calculation is
determined by the elastic BAMPS interactions as described in Section 5.3.3.

calculations. While in the ✓-LPM approach these interactions enter the suppression by
iterating a mean free path, in the sLPM approach the scatterings are explicitly evaluated
and the influence of these scatterings becomes significant. It remains to investigate how a
more realistic treatment of the elastic scatterings modifies the differences to the BDMPS-Z
spectrum.

Comparison to ASW

Another approach for solving the path-integral Eq. (5.3) on page 47 for gluon emissions
calculated in pQCD is the ASW formalism by Armesto, Salgado, and Wiedemann. This for-
malism investigated the gluon radiation in both common limits of multiple soft-scatterings
(“ASW-MS”) and a single hard scattering (“ASW-SH”) during the formation time of an
emission. While “ASW-SH” is strongly connected to the GLV formalism discussed in
Section 5.1.1, the “ASW-MS” calculation extends the BDMPS-Z formalism by finite-length
effects as formation time effects at small L or a finite transverse momentum k? of the
emissions [Arm+12]. Consequently a comparison to both limits of the ASW model allows
a further investigation of the characteristics of the presented LPM approaches.

A quantity for characterizing the radiative energy loss of a parton that is commonly
attributed to ASW are the quenching weights P (�E/E), given in Eq. (5.11) on page 49.
Based on a Poissonian Ansatz for multiple gluon emissions [SW02; SW03], the quenching
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Figure 5.64: Quenching weights P (�E/E) of a quark (left column) or gluon (right column) projectile
with energy E = 100 GeV in a medium with temperature T = 0.4 GeV and length
L = 10 fm. While the points show the numerical results from the ✓-LPM approach in
BAMPS for the two different choices of screening parameters, XAMY

LPM (triangles) or XBDMPS
LPM

(squares), the lines show the calculations from the AMY formalism (yellow) and the ASW
approach (blue). The ASW results are shown for the multiple-soft scattering limit “ASW-
MS” (solid) and the single hard scattering limit “ASW-SH” (dashed). The momentum
broadening parameter q̂ of a quark or a gluon entering the ASW calculations is determined
by the elastic BAMPS interactions as described in Section 5.3.3. The distributions are
normalized to unity in the range 0 < �E/E < 1. The mean free path entering the ✓-LPM
approach is calculated iteratively and the QCD coupling is fixed to ↵s = 0.3.

weights give the probability for a parton with energy E to radiatively lose the energy
�E. This probability can also be calculated in the BAMPS framework employing both
the effective LPM approaches, ✓-LPM and sLPM, and the AMY formalism, what allows a
subsequent comparison to both ASW limits.

Figure 5.64 shows the quenching weights calculated in the ✓-LPM approach in compari-
son with calculations obtained from “ASW-MS” and “ASW-SH”. The quenching weights
of all different approaches are calculated for a quark (left) or gluon (right) projectile with
energy E traversing a medium with temperature T and length L. As for the comparison
with BDMPS-Z, the momentum broadening parameter q̂ necessary for the ASW calcula-
tions is calculated by the Debye-screened elastic interactions in the BAMPS framework as
presented in Section 5.3.3. The parameter µ2 in the “ASW-SH” case represents the mean
momentum transfer in the single-hard-scattering limit. We choose its value by µ

2 = q̂ L,
what represents the situation that the transverse momentum a gluon can accumulate in
a medium with length L and momentum broadening q̂ in the “ASW-MS” limit is trans-
ferred in one single hard scattering in the “ASW-SH” limit. Large values of �E/E ! 1
correspond to jets that lose almost their complete energy after traversing the medium
and thereby are stopped by the medium. On the other hand, small values �E/E ! 0
correspond to jets that lose almost no energy radiatively in the medium. Both ASW limits
show a broad distribution of quenching weights with a mild peak around �E ⇡ 0.2 E,
both for a quark and a gluon projectile. As one expects from the QCD color factors,
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Figure 5.65: Quenching weights P (�E/E) of a quark (left column) or gluon (right column) pro-
jectile with energy E = 100 GeV in a medium with temperature T = 0.4 GeV and
length L = 10 fm. The QCD coupling is fixed to ↵s = 0.3. While the points show
the numerical results from the sLPM approach in BAMPS for the two different choices
of screening parameters, ⇠AMY; q

LPM or ⇠AMY; g
LPM (triangles) or ⇠BDMPS

LPM (squares), the lines
show the calculations from the AMY formalism (yellow) and the ASW approach (blue).
The ASW results are shown for the multiple-soft scattering limit “ASW-MS” (solid)
and the single hard scattering limit “ASW-SH” (dashed). The momentum broadening
parameter q̂ of a quark (q̂q(E = 100 GeV, T = 0.4 GeV) = 2.12 GeV2/fm) or a gluon
(q̂g(E = 100 GeV, T = 0.4 GeV) = 4.85 GeV2/fm) entering the ASW calculations is de-
termined by the elastic BAMPS interactions as described in Section 5.3.3. The distributions
are normalized to unity in the range 0 < �E/E < 1.

the distribution of a gluon has a higher tail in comparison to the quark. By adjusting
the momentum transfer µ2 based on q̂, the quenching weights of the “ASW-MS” and
“ASW-SH” limits are comparable with a slightly harder distribution from the single hard
scattering limit. The quenching weights from the AMY formalism are shifted significantly
to higher �E values again demonstrating the enormous radiative energy loss of the AMY
formalism without finite-size effects. Not surprisingly, the quenching weights from the
✓-LPM method screened with X

AMY
LPM are close to the results from the AMY formalism.

On the other hand, the choice of XBDMPS
LPM that we motivated in the previous subsection by

fitting to the large L emission spectra from the BDMPS-Z approach shifts the quenching
weights from the ✓-LPM closer to the results obtained from ASW.

Finally, we show in Fig. 5.65 the results for the quenching weights of a projectile with
energy E traversing a medium with temperature T and length L obtained from numerical
simulations with the sLPM approach in the BAMPS framework. For the ASW and AMY
results we employ the same parameters as in Fig. 5.64. The k? screening within the sLPM
approach is controlled again either by ⇠AMY; q

LPM and ⇠AMY; g
LPM or by ⇠BDMPS

LPM . Due to the fit to the
AMY emission spectrum the quenching weights obtained by ⇠AMY; q

LPM and ⇠AMY; g
LPM reproduce

the strong energy loss distributions of the AMY formalism. Interestingly, the choice of
⇠

BDMPS
LPM that we obtained previously by comparing the sLPM approach to the BDMPS-Z

formalism closely reproduces the quenching weights calculated in the ASW formalism.
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5.5 Comparison of different LPM approaches

In summary, we demonstrated in this section that the three different approaches for
implementing the LPM effect in the partonic transport model BAMPS are comparable to
other, more formal approaches for the radiative energy loss from pQCD. Obviously such
a modeling of quantum coherence effects in a transport approach can only be fulfilled
by limited accuracy and compromises have to be made. It remains to be seen whether
and how these compromises and limitations end up in the final calculation of measurable
observables within heavy-ion collisions as we will discuss in Chapter 7.
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6 Evolution of jets in a brick of
quark-gluon plasma

In the previous chapter we introduced and discussed the different LPM approaches investi-
gated in this work. To this end, we studied the dependencies of both the radiative energy
loss and the underlying gluon emission spectra of an energetic parton traversing a static
medium by comparing different common models for radiative energy loss.

One of the main assumptions of these models is an eikonal evolution of the partonic
projectiles, which is equivalent to resetting the projectile energy and momentum after each
scattering within the medium. While this eikonal limit is a justified assumption for energetic
partons and simplifies the analytical calculations, its validity becomes questionable if it is
applied at softer parton energies where the energy loss of a parton may become comparable
to its energy. We therefore extend in this chapter the previous eikonal studies by discussing
the non-eikonal evolution of a parton projectile traversing a static, thermal medium with
length L and temperature T . By scattering elastically and radiating gluons the projectiles
lose energy and modify their momentum after each interaction with medium particles
so that their energy and momentum evolves with time t. The previous results from the
eikonal limit can then be found as the actual energy loss of the projectile at a specific time
(and projectile energy) in the projectile evolution. Different to the case of an energetic
parton traversing an expanding heavy-ion collision as discussed in the next Chapter 7, all
macroscopic properties of the medium in this section are kept fixed during the simulation,
which allows a comprehensible study of the parton evolution and serves as a link between
the theoretical results from the previous and the experimental results from the subsequent
chapter.

Before discussing in Section 6.2 the evolution of a parton via radiative processes from
the three different LPM methods as introduced in Chapter 5, we complete in Section 6.1
our picture for the partonic energy loss by introducing the energy loss from only elastic
2 ! 2 interactions. We then compare in Section 6.2 the radiative parton evolution and
investigate how the different LPM approaches end up in the full evolution of an energetic
projectile in a static quark-gluon plasma. As we discussed in Section 2.3.2 partons radiate
due to their virtuality also in vacuum and thereby build parton showers. While the previous
studies considered the evolution of a single, energetic parton and thereby neglecting these
vacuum splittings, Section 6.3 studies the evolution of a parton shower consisting of both
the leading, most-energetic parton and its surrounding parton shower. To this end, we
investigate the energy and momentum loss of reconstructed jets and find the origin of the
energy loss in the modification of the distribution of jet components by studying the jet
shapes in comparison to the corresponding vacuum distributions.

6.1 Evolution of partons via elastic interactions

In the previous chapter we assumed that the elastic scatterings of an emitted gluon during its
formation time only deflects the gluon and consequently increase its transverse momentum
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Figure 6.1: Differential radiative energy loss dE/dx per unit path length from elastic 2 ! 2 scatterings
for a quark (red) and gluon (green, scaled by CF/CA) projectile depending on the projectile
energy E. The QCD coupling is fixed at ↵s = 0.3. While the points represent the numerical
results from BAMPS, the lines depict a logarithmic fit dE/dx ⇠ log (E/T ). For a numerical
check of the scaling with T we show calculations for different temperatures denoted by
different point symbols.

wrt. the parent parton. This leads to modifications of the formation time of the gluon in
radiative processes obeying the LPM effect. However, elastic interactions of partons do
not only deflect the partons but may also lead to an energy transfer between the scattering
particles. For example, if we assume a projectile parton with energy E � O(T ) traversing
an infinite thermal medium with temperature T , even if this parton only scatters elastically,
it transfers energy in each scattering to medium components and will eventually thermalize
to a projectile energy E ⇠ O(T ).

Since the elastic interactions described by leading-order pQCD are dominated by soft
momentum transfers (t̂ ! 0) the energy loss is expected to be smaller than the energy loss
resulting from radiative processes, where hard or multiple gluon emissions can transfer
a significant amount of energy away from the projectile. However, the introduction of a
Debye mass in the elastic matrix elements constrains the minimum momentum transfer and
thereby the potential minimum energy transfer. Moreover, in former BAMPS simulations
the small angle approximation was applied to the 2 ! 2 interactions simplifying the elastic
scatterings by considering only a transverse momentum transfer q2? in the underlying
matrix elements. In contrast, we loose this approximation in the present work and consider
the 2 ! 2 pQCD matrix elements in terms of the Mandelstam variable t̂ that explicitly
considers also longitudinal momentum transfers. Both effects may enhance the resulting
elastic energy loss of the projectile.

Before discussing the non-eikonal evolution of a parton projectile via elastic scatterings,
we extend the previous studies of Chapter 5 and show in Fig. 6.1 the differential energy loss
dE/dx of an eikonal quark or gluon with projectile energy E in a medium with temperature
T from purely elastic 2 ! 2 interactions. This corresponds to, e.g., Figs. 5.6, 5.37 and 5.50
for the radiative energy loss. Due to the dominance of the t-channel ⇠ 1/

�
t̂�m

2

D

�2 in
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Figure 6.2: Time evolution of the energy distribution P (E(t)) of an initial quark projectile with initial
energy E0 = 25 T (left) or E0 = 250 T (right) that scatters only elastically in a medium with
temperature T . The QCD coupling is fixed to ↵s = 0.3. The color of the distribution depicts
different evolution times t of the projectile in the medium.

the 2 ! 2 pQCD matrix elements at high CoM energies, the elastic energy loss shows a
logarithmic dependence at high projectile energies E � T . Furthermore, at these energies,
the matrix elements between a quark and a gluon only differ by the different QCD color
factors CR, CF = 4/3 for a quark and CA = 3 for a gluon projectile. Consequently also
the elastic energy loss of a quark or a gluon scales by CR. Comparing the elastic energy
loss with our results from Chapter 5 we find that the elastic energy loss is indeed almost a
magnitude smaller than the various radiative energy losses (cf. Figs. 5.6, 5.37 and 5.50).
However, for softer projectile energies even the elastic interactions may lead to a significant
relative energy loss of the projectile.

After introducing the eikonal elastic energy loss, we study in the following the non-
eikonal evolution of parton projectiles via elastic 2 ! 2 scatterings. Each elastic scattering
of the projectile may modify its energy and momentum so that the projectile energy evolves
with time. Due to the stochastic nature of the individual scatterings within the medium,
the evolution of the same initial projectile may show a broad distribution. Figure 6.2
shows the energy distribution P (E) = 1/N dN/dE depending on the evolution time t of
a quark projectile with initial energy E0 scattering only via elastic 2 ! 2 processes with
medium particles in a medium with temperature T . The quark projectile is initialized with
two different energies E0 = 25 T (left) and E0 = 250 T (right), which corresponds to an
initial distribution P (E) = �(E � E0). The distributions show a broader maximum at
E ⇠ O(T ), a narrow peak at E ⇠ E0, and a minimum between both maxima. While the
broad maximum at E ⇠ O(T ) grows with proceeding evolution time t, the narrow peak at
E = E0 shrinks and slightly broadens at the same time. This behavior is more pronounced
in the case of the “softer” projectile with initial energy E0 = 25 T. Reason for these two
regions are the different possible elastic channels that are active for a quark. As we have
already seen in Section 5.3.3, the dominant elastic process of a quark at higher energies is
the process gq ! gq . In this process, both the t-channel and the u-channel are active. The
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Figure 6.3: Mean energy loss �E(t) = E0 � E(t) depending on time t for a quark (solid lines) or
gluon (dashed lines, scaled by CF/CA) projectile with initial energy E0 = 25 T (red) or
E0 = 250 T (green) scattering via elastic 2 ! 2 in a thermal medium with temperature T
and fixed QCD coupling ↵s = 0.3. The energy loss is normalized by the initial projectile
energy E0.

t-channel leads to a soft momentum transfer and thereby a smaller energy loss of the quark.
Therefore the quark energy is only slightly modified and broadens the peak at E = E0. On
the other hand, if the quark interacts via an active u-channel the momentum transfer is
large and the scattered, thermal gluon takes away a significant amount of the CoM energy.
In contrast the quark leaves the scattering with thermal momenta, which results in a peak
in the quark energy distribution at E ⇠ O(T ). Obviously, at very late evolution times
both maxima will end up in the thermal region, since also multiple t-channel processes
eventually lead to a thermalization of the projectile.

In order to further characterize the evolution of the projectile energy, we show in
Fig. 6.3 the mean elastic energy loss �E(t) := E0 � E(t) of a quark (solid lines) or
gluon (dashed lines) projectile with two different initial energies E0 = {25 T; 250 T}
depending on the evolution time t. We found in Fig. 6.1 that the elastic energy loss depends
logarithmically on the projectile energy. Consequently, the relative elastic energy loss
�E(t)/E0 is larger for smaller initial projectile energies E0. Furthermore, at earlier times
the difference between a quark and gluon projectile is determined by the different QCD
color factors for all different initial projectile energies E0 and hence the energy loss scales
as �Eq ⇠ CF/CA�Eg. With increasing evolution time this scaling does not longer hold
for smaller initial projectile energies. Due to the higher mean energy loss of a gluon,
a gluon projectile degrades its energy faster than a quark projectile and reaches earlier
a thermal projectile energy. When a parton has thermalized, it does, on average, not
further change its energy after an elastic scattering. This reduces the mean elastic energy
loss of a gluon in comparison to a quark projectile whose energy is not thermal yet. In
contrast, projectiles with higher initial energies E0 need a longer evolution time before
they thermalize. Therefore the scaling with QCD color factors holds at the higher initial
energy up to longer evolution times t ' 20 T −1.
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Figure 6.4: Mean energy loss �E(t) = E0�E(t) depending on time t for a quark projectile with initial
energy E0 = 25 T (red) or E0 = 250 T (green) scattering via elastic 2 ! 2 in a thermal
medium with temperature T = 0.4 GeV and either a running QCD coupling (solid lines) or
fixed QCD coupling ↵s = 0.3 (dashed lines). The energy loss is normalized by the initial
projectile energy E0.

In Section 3.1 we introduced how the running of the QCD coupling can be considered in
the BAMPS framework. The QCD coupling is then microscopically evaluated by setting
the relevant scale at the momentum of the internal propagator in a 2 ! 2 process (either
ŝ, t̂ or û = �ŝ� t̂). Figure 6.4 compares the elastic energy loss employing a fixed QCD
coupling with ↵s = 0.3 and the running QCD coupling by showing the time evolution of
�E for a quark with different initial projectile energies E0 = {25 T; 250 T} traversing a
medium with temperature T . At an initial projectile energy of E0 ⇡ 250 T, the evolution
and the energy loss with a running QCD coupling is comparable to the case of a fixed
↵s = 0.3. On the other hand, for softer initial projectiles the QCD coupling increases
due to the softer momentum scales so that the energy loss is stronger for a projectile with
E0 = 25 T with running coupling compared to the fixed coupling case with ↵s = 0.3.
Please note, that due to the specific choice of Debye screening in combination with our
implementation of the running coupling based on the microscopic momentum transfer, the
energy loss considering the running coupling does not scale with temperature. Therefore
we calculated the energy loss for an explicit temperature of T = 0.4 GeV, which could be
a typical temperature in the inner region of an ultra-relativistic heavy-ion collision.

In this section we reviewed the elastic energy loss of an energetic projectile traversing
a static and thermal quark-gluon plasma. We find that the differential energy loss from
elastic scatterings is indeed significantly smaller than the energy loss from gluon radiation.
However, we also find that for “softer” projectiles with E < 30 T the accumulated elastic
energy loss when traversing the medium leads to a thermalization of these projectiles.
We continue this discussion in the next section where we investigate the evolution of the
projectile energy following the radiative processes with LPM suppression from Chapter 5.
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6 Evolution of jets in a brick of quark-gluon plasma

6.2 Evolution of partons via radiative interactions

The previous section discussed the evolution of an energetic projectile in a static, thermal
medium via only elastic interactions. In this section we study the in-medium evolution
of a projectile while considering the radiative processes as introduced in Chapter 5. This
will extend the previous eikonal considerations by allowing both the projectile (and the
emitted gluons in the stochastic LPM approach) to modify its energy and momentum
after each interaction and thereby evolve with time. While Section 6.2.1 compares the
energy evolution of an energetic projectile in the different LPM approaches, Section 6.2.2
presents the different emission patterns from a non-eikonal parton evolution. Finally,
in Section 6.2.3 we discuss how the flavor of the projectile is modified while traversing
dynamically the static medium. Throughout this section, the screening parameter employed
in the effective LPM approaches are chosen by X

AMY
LPM = 0.05 or ⇠AMY; q

LPM = 0.01 and
⇠

AMY; g
LPM = 0.015, respectively, as we found in Section 5.5.1 when comparing dE/dx to the

AMY formalism.

6.2.1 Non-eikonal energy evolution

The effective LPM approaches studied in this work, namely the ✓-LPM and stochastic
LPM approach, rely on the parameters constraining the collinear and soft gluon emissions
at small transverse momentum k?. In Chapter 5 we determined values for these screening
parameters by comparing the differential radiative energy loss dE/dx of the ✓-LPM and
stochastic LPM method to the AMY formalism. However, this comparison assumed an
eikonal evolution of both the projectile and, in the case of the stochastic LPM method,
the emitted gluons while traversing the static medium. Furthermore, the stochastic LPM
algorithm shows a path-length dependence of the differential radiative energy loss dE/dx.
Consequently the screening parameter were determined within a large medium with length
L = 20 T −1, where the differential radiative energy loss is expected to be independent
from the medium length. It remains to be studied how the different path-length dependence
affects a projectile that evolves non-eikonally and thereby dynamically changes its energy
and momentum with time.

Before presenting the results for the non-eikonal evolution via radiative process, we first
discuss assumptions necessary in the different LPM approaches if they are applied to a
non-eikonal scenario:

• A crucial ingredient for the ✓-LPM approach is the mean free path � entering the
theta function in the radiative matrix element (cf. Section 5.2). Since � depends on
both the projectile energy E and the medium temperature T , the mean free path of
the projectile has to be determined at each time t since the projectile energy E(t) may
change with time. In order to increase the numerical efficiency of the simulations we
therefore tabulated the mean free path �(E, T ) before the simulations and interpolate
these offline values at runtime.

• Different to the ✓-LPM approach the emitted gluons from the stochastic LPM method
scatter themselves elastically during their formation and thereby modify their for-
mation time. Hence loosening the eikonal approximation of the stochastic LPM not
only affects the projectile energy as in the ✓-LPM approach but also may modify
the resulting gluon emission spectrum. However, we demonstrate in Appendix B
that assuming non-eikonal emitted gluons only affects the soft ! < O(T ) emissions
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6.2 Evolution of partons via radiative interactions

that thermalize during their formation time and therefore reach energies ! ⇠ O(T ).
In contrast, the differential emission rate d�/d! at ! > O(T ) and the resulting
radiative energy loss dE/dx are independent from the choice of non-eikonal emitted
gluons.

• Different to the ✓-LPM approach, where a gluon emission occurs instantaneously, the
gluon emissions in the stochastic LPM approach are extended over a finite formation
time. During this formation time the projectile and the proposed gluon are formally
speaking indistinguishable. However, when allowing evolving projectile energies one
has to decide when to subtract the radiated gluon energy and/or momentum from the
parent parton. We present in Appendix B a comparison of different possibilities for
subtracting the gluon energies in a non-eikonal simulation. For the moment we define
the stochastic LPM approach by subtracting the energy of the proposed gluon from
the projectile parton after it is successfully formed and discard the gluon emission
if it suppressed by Pcoh. This specific choice emphasizes the finite formation time
before the parent parton loses the radiative energy.

• In the AMY formalism not only processes describing gluon Bremsstrahlung but also
flavor changing processes as g ! qq or qq ! g are considered (cf. Section 5.4).
We present in Section 6.2.3 that these processes significantly change the identity of
the initial quark or gluon projectile. For the moment we ignore this flavor conversion
and show the results for the evolution of the projectile indifferently whether the
projectile changed its flavor at some point during the evolution.

In the following, we study the case of a parton projectile with initial energy E0 traversing
a static and thermal medium with temperature T . The projectile interacts for the moment
only via the radiative processes from the different LPM approaches, which we presented
in Chapter 5 and extended by the considerations above. Different to the eikonal limit, the
energy and momentum of the projectile are not reset after each scattering. The previous
eikonal limit can then be found in the dynamical evolution as the actual energy loss of
the projectile with energy E(t) at a given time t in the evolution. Figure 6.5 compares the
energy distribution P (E) at different evolution times t =

�
5 T −1; 10 T −1; 15 T −1; 20 T −1 

of the different LPM approaches for a quark projectile with initial high energy E0 = 250 T.
For a medium with, e.g., temperature T = 0.4 GeV this corresponds to a projectile energy
E = 100 GeV and times t = {2.5 fm; 5 fm; 7.5 fm; 10 fm}.

At evolution time t = 5 T −1 all LPM approaches show a maximum of the energy
distribution at E ⇡ E0: While the stochastic LPM approach and the AMY formalism show
a significant amount of projectiles that have not lost energy yet, in the ✓-LPM approach less
projectiles were unaffected by the radiative processes leading to a mild shift of the whole
distribution to smaller E < E0. One reason for the different behavior between the ✓-LPM
and the stochastic LPM at early times is the finite formation time of gluon emissions in
the stochastic LPM approach. Due to the specific choice of energy subtraction the actual
radiative energy loss is delayed to the end of the formation time. Hence, especially large !
emissions are forbidden at early times due to their, on average, longer formation time.

Moreover, due to the divergence at ! = E in the AMY formalism (cf. Section 5.4), the
energy distribution of AMY shows a strong peak at E = 0 already at the early evolution
time. This represents situations in which the projectile loses all its energy by emitting a
single hard gluon. Such a situation is however not possible in the stochastic LPM approach
since such a gluon emission would have a large formation time and is forbidden at early
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Figure 6.5: Distribution P (E) = 1/NdN/dE of the projectile energy E at different times t for a quark
projectile with initial energy E0 = 250 T traversing a static medium with temperature T via
the radiative processes from either the ✓-LPM (red), the stochastic LPM (green) or the AMY
(yellow) approach. The screening parameters of the effective LPM approaches are chosen by
XAMY

LPM = 0.05 and ⇠AMY; q
LPM = 0.01 for reproducing dE/dx of AMY and the QCD coupling

is fixed to ↵s = 0.3. The projectile energy E at time t is normalized by the initial projectile
energy E0.

times. Therefore the distribution of the stochastic LPM approach shows no maximum for
small projectile energies at early times.

With progressing evolution time the energetic projectile loses energy in all LPM ap-
proaches and thereby the distributions shift to smaller values of E. Due to the missing
path-length dependence, a projectile in the ✓-LPM approach loses energy rather uniformly.
This leads to a uniform shift of the projectile energy distribution as a whole with increasing
evolution time. In contrast, the finite formation time of the stochastic LPM approach
leads to a more stochastic energy loss since the distribution at time t obtains contributions
also from emissions started at earlier times. For example, a projectile may start a hard
gluon emission at an early time that is formed later in the evolution. At this later time the
projectile, which in the mean time could have radiated other (softer) gluons, loses almost
all of its energy due to the earlier hard emission. This leads to the second maximum of the
stochastic LPM approach at softer projectile energies. On the contrary, the non-uniform
distribution of the AMY formalism is again caused by the divergences ! ! 0 and ! = E

in the differential emission rate. This is similar to an all-or-nothing situation, where
the projectile loses either almost no energy or almost all of its energy in a single gluon
emission.

At later time t = 20 T −1, corresponding to, e.g., t = 10 fm in a medium with temperature
T = 0.4 GeV, all three LPM approaches show distributions with maxima at energies
E ⇠ O(T ). These maxima hint to situations in which the energetic projectiles lost so
much energy that they start to thermalize within the medium. This thermalization process
is even more pronounced for a “softer” quark projectile with initial energy E0 = 25 T as
shown in Fig. 6.6. Already after t ⇡ 10 T −1 all three LPM approaches show distributions

152



6.2 Evolution of partons via radiative interactions

 0

 2

 4

 6

 8

 10

 0  0.5

t T = 5

P(
E 

/ E
0)

 

E / E0

�-LPM
sLPM
AMY

 0  0.5

t T = 10

 0  0.5

t T = 15

 0  0.5  1

t T = 20

quark
E0 / T = 25
�s = 0.3
XLPM = XLPM

AMY;q

�LPM = �LPM
AMY;q

Figure 6.6: Same figure as Fig. 6.5 but with initial projectile energy E0 = 25 T.

in which most of the projectiles have already thermal energies. At later times also the
remaining more energetic projectiles are shifted to these thermal energies forming a thermal
distribution.

The presented energy evolution of the three LPM approaches can be further studied
by considering the mean of the presented distributions. Figure 6.7 shows the mean
projectile energy E(t) depending on time t for a quark or gluon projectile with initial
energy E0 = 25 T (left) or E0 = 250 T (right). Due to the vanishing formation time in the
✓-LPM and AMY method, both evolutions are similar at early times for quark and gluon
projectiles with smaller and larger projectile energies. At later times the mean radiated
energy in the ✓-LPM approach is larger than in the other two approaches. On the other
hand, the stochastic LPM approach matches the evolution of the AMY formalism at these
later times. Due to the larger QCD color factors the initial gluon projectiles show a stronger
energy degradation with time for all LPM approaches.

In the previous section we discussed the non-eikonal evolution of a projectile that only
scatters elastically via 2 ! 2 processes within the medium. We found that the differential
energy loss is significantly smaller for elastic interactions than for the presented radiative
processes. This result is confirmed by Fig. 6.8 that shows the mean projectile energy E(t)
vs. time t for a quark projectile with initial energy E0 = 25 T (left) or E0 = 250 T (right)
interacting via either only radiative processes or via both elastic and radiative processes.
In all three different LPM approaches the inclusion of elastic interactions in the projectile
evolution leads to a mild increase of the energy loss.

Finally, we investigate the interplay between the running QCD coupling and the different
LPM approaches. As described in Chapter 3 the running of the QCD coupling is considered
in a 2 ! 3 Bremsstrahlung process within BAMPS by setting the relevant scale to both
the transverse momentum transfer q2? of the elastic part and to the transverse momentum
k
2

?; GB of the emitted gluon. However, as it was pointed out in Ref. [KXB18b], due to the
elastic scatterings of the gluon during its formation time in the stochastic LPM approach,
this transverse momentum may not be the correct scale at the time the gluon is finally
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Figure 6.7: Mean projectile energy E(t) depending on time t for a quark (solid lines) or gluon (dashed
lines) projectile with initial energy E0 = 25 T (left) or E0 = 250 T (right) traversing a
static medium with temperature T via the radiative processes from either the ✓-LPM (red),
the stochastic LPM (green) or the AMY (yellow) approach. The screening parameters
of the effective LPM approaches are chosen by XAMY

LPM = 0.05 and ⇠AMY; q
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⇠AMY; g
LPM = 0.015 for reproducing dE/dx of AMY and the QCD coupling is fixed to ↵s = 0.3.

The projectile energy E(t) is normalized by the initial projectile energy E0. The blue dashed
lines denote the mean thermal energy in a medium with temperature T .

formed. Rather the transverse momentum after the formation time, k2

?, should have been
chosen in the initial Bremsstrahlung process. In order to consider this potentially different
scales, the gluon emissions of the stochastic LPM approach with running coupling are a

posteriori suppressed by an additional suppression factor

Prunning ↵s
=

↵s

�
k
2

?
�

↵s

�
k
2

?; GB
� . (6.1)

On the other hand, the original AMY formalism did not consider the running of the QCD
coupling. Recently, Park et al. [Par+16] extended the MARTINI framework, that is closely
related to AMY, with a running coupling. To this end, they estimated the scale at which the
coupling should be evaluated by the mean transverse momentum a gluon can obtain during
its formation time. Since such a calculation is out of the scope for the present work, we
postpone this study to a future work and depict in the following only the result for AMY
employing a constant QCD coupling of ↵s = 0.3.

We compare in Fig. 6.9 the evolution of the projectile energy with a fixed QCD coupling
↵s = 0.3 to the case of a running QCD coupling by showing the corresponding energy
evolution for a quark projectile with initial energy E0 = 25 T (left) and E0 = 250 T (right)
traversing a static medium with temperature T via elastic 2 ! 2 processes and the radiative
processes from the different LPM approaches. Although the modeling of the running
coupling is different for the ✓-LPM and stochastic LPM approach, the effect of the running
QCD coupling is comparable in both approaches. As in the elastic case of Section 6.1 the
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Figure 6.8: Mean projectile energy E(t) depending on time t for a quark projectile with initial energy
E0 = 25 T (left) or E0 = 250 T (right) traversing a static medium with temperature T either
via only radiative processes (dashed lines) or via both elastic 2 ! 2 and radiative processes
(solid lines). The radiative processes are either described by the ✓-LPM (red), the stochastic
LPM (green) or the AMY (yellow) approach. The screening parameters of the effective LPM
approaches are chosen by XAMY
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AMY and the QCD coupling is fixed to ↵s = 0.3. The projectile energy E(t) is normalized
by the initial projectile energy E0. The blue dashed lines denote the mean thermal energy in
a medium with temperature T .

running coupling affects mostly the softer projectile energies wrt. to the fixed coupling
of ↵s = 0.3 while the more energetic projectiles show a similar evolution as in the fixed
coupling case. The stronger coupling at softer initial projectile energy E0 = 25 T leads to
a stronger energy degradation for both LPM approaches.

6.2.2 Non-eikonal gluon emission patterns

Although the LPM models were calibrated to each other by comparing the differential
radiative energy loss dE/dx, the underlying gluon emission rates d�/d! and d�/dk?
showed differences in Section 5.5.2. In this section we investigate how these differences
end up in the emission patterns of an energetic projectile dynamically evolving within the
medium. These emission patterns can then be understood as a folding of different gluon
emission rates from different stages in the evolution of the projectile energy E(t).

We show in Fig. 6.10 the gluon emission spectrum ! dN/d! of a quark projectile with
initial energy E0 = 250 T traversing a medium with temperature T for two different
evolution times t = 1 T −1 (left) and t = 10 T −1 (right). With progressing evolution time
the number of emitted gluons increases. Due to the missing path-length dependence in
d�/d! the ✓-LPM and AMY results shows a linear t dependence in the gluon emission
spectra. On the other hand, the finite formation time in the stochastic LPM method
suppresses the spectrum at early times and catches up the spectrum at later times when
the harder gluons finish their formation time. Besides the suppression of very soft gluon
emissions with ! / 10−3 E0, due to the chosen screening procedure in the ✓-LPM and
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Figure 6.9: Mean projectile energy E(t) depending on time t for a quark projectile with initial energy
E0 = 25 T (left) or E0 = 250 T (right) traversing a static medium with temperature T
via both elastic 2 ! 2 and radiative processes from the ✓-LPM (red), the stochastic LPM
(green) or the AMY (yellow) approach. Solid lines denote the results with a running QCD
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LPM = 0.01 for reproducing dE/dx of AMY. The projectile energy E(t) is again
normalized by the initial projectile energy E0 and the blue dashed lines denote the mean
thermal energy in a medium with temperature T .

stochastic LPM method, the spectra of all three approaches are similar at the later time
t = 10 T −1. Consequently, we expect that the energy loss of partons from the different
LPM approaches is similar in larger heavy-ion media, whereas there should be differences
in thinner media.

As we discussed in Section 5.4, the transverse momenta of gluon emissions are k? ⇠

O(gsT ) and therefore neglected in the presented AMY formalism. On the other hand, we
found in Section 5.5.2 that the transverse momentum distribution of an eikonal projectile
differs between the two effective LPM approaches, ✓-LPM and stochastic LPM. Same still
holds in the case of a non-eikonal projectile as shown in Fig. 6.11 where we present the
gluon emission spectrum k? dN/dk? of a quark projectile with initial energy E0 = 250 T
at the two evolution times t = 1 T −1 (left) and t = 10 T −1 (right). While in the stochastic
LPM approach collinear gluons are suppressed at early times due to their longer formation
time, the ✓-LPM approach shows already at early times a significant contribution of gluons
at k? ⇡ 10−3 E0. Overall the spectrum of the stochastic LPM is suppressed wrt. the
spectrum from the ✓-LPM approach.

In contrast, at later times the gluons from the stochastic LPM approach accumulated
enough k? via elastic scatterings to finish their formation time. Consequently, the spectrum
of the stochastic LPM increases and passes the spectrum of the ✓-LPM method. Due to the
thermalization of soft gluons in their formation time, the spectrum of the stochastic LPM
at soft k? shows a depletion wrt. the ✓-LPM spectrum where such a thermalization cannot
occur.
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coupling is fixed to ↵s = 0.3.

6.2.3 Flavor conversion of projectiles

The inelastic processes from the ✓-LPM or stochastic LPM approach are based on an
(initial) 2 ! 3 Bremsstrahlung process. In the Gunion-Bertsch approximation of this
2 ! 3 process the matrix element can be separated into an elastic 2 ! 2 contribution
and a probability for emitting an additional gluon. In BAMPS, Bremsstrahlung processes
are neglected whose elastic contribution is purely in the s-channel such as gg ! qqg or
qq ! q 0q 0g [Foc11]. These processes change the identity of the incoming partons and are
therefore clearly out of the scope of the applied Gunion-Bertsch approximation.

In contrast, the AMY formalism does not rely on this approximation and therefore
explicitly considers the quark-antiquark production process from a gluon, g ! qq , where
a hard gluon “emits” a soft antiquark (or quark) and thereby becomes a quark (or antiquark).
Furthermore, also annihilation processes as qq ! g or qg ! q are calculated in AMY. In
these processes a hard parton captures a soft parton from the medium and thereby changes
its parton flavor. As we found in Section 5.4, both the “soft (anti-)quark emission” and the
annihilation processes can be mainly found at softer projectile energies E ⇠ O(T ). In the
following we study how these flavor conversion processes affect the evolution of parton
projectiles in a static medium.

We show in Fig. 6.12 the probability Ni/Ntotal for an initial quark (left) or gluon (right)
projectile with initial energies E0 = 25 T or E0 = 250 T to change its initial parton flavor
while traversing a static medium with temperature T . While Ntotal gives the total number
of projectiles in the simulation, Ni gives the number of projectiles with flavor i at evolution
time t. The role of the flavor changing processes for an initial quark seems to be minor for
both initial projectile energies: while almost all quark projectiles with E0 = 250 T kept
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Figure 6.11: Emission spectrum k?dN/dk? at time t = 1 T −1 (left) or t = 10 T −1 (right) of a non-
eikonal quark projectile with the same parameters as in Fig. 6.10.

their initial flavor, only 10 % of the softer quark projectiles with E0 = 25 T changed its
flavor to a gluon projectile after t = 15 T −1.

On the other hand, the conversion probability for an initial gluon projectile is significantly
increased due to the additional pair production process g ! qq . Furthermore, the stronger
radiative energy loss of a gluon leads faster to an energy degradation with the result that
the softer gluon projectiles are faster sensitive to the flavor changing processes. Both
leads to the result that after t ⇡ 14 T −1 in the case of the higher initial gluon energy
E0 = 250 T and already after t ⇡ 6 T −1 for the lower initial gluon energy E0 = 25 T more
quarks/antiquarks projectiles are in the simulation than gluon projectiles. The annihilation
processes of the emerging quark projectiles are not capable to revert the conversion
processes but only attenuate a further quark conversion for softer projectiles at later times.

As mentioned above, the 2 ! 3 processes in BAMPS preserve the projectile flavor
and hence an incoming gluon (quark) projectile leaves the interaction as a gluon (quark)
projectile. In order to bring the presented results for the flavor conversion in the AMY
formalism into a broader context, we show therefore in Fig. 6.13 the conversion probability
Ni/Ntotal from only elastic 2 ! 2 processes. Different to the radiative Gunion-Bertsch
processes, the elastic interactions also consider s-channel dominated processes as gg ! qq
or qq ! q 0q 0 that change the incoming parton flavor. The decision which parton is tracked
as the projectile after each elastic scattering is determined by evaluating the transferred
momentum in this scattering (cf. Section 5.3.3). While the flavor conversion of an initial
quark via only elastic scatterings is comparable to the AMY formalism, the probability of
a gluon to change its flavor is significantly lower in the case of only elastic scatterings.
Again softer projectiles are more sensitive to the flavor conversion processes since then
s-channel processes are active. However, even after t = 20 T −1 only ⇡ 30 % of the gluons
became a quark projectile.
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6.3 In-medium modification of parton showers

As we learned in Section 2.3.2 the concept of a single, color charged projectile traversing
the QCD medium created in a heavy-ion collision is a rather academic definition of jet
quenching. Due to their high virtuality, hard scattered partons from initial nucleon-nucleon
scatterings branch via 1 ! 2 process in order to reduce their virtuality already in the case
without a subsequent in-medium evolution. These splittings then form a spray of partons
consisting of a leading parton, which is the most energetic parton corresponding to the
remainder of the initial single projectile, and its surrounding parton shower. While this
parton system traverses the medium, the previous “vacuum” splittings are supplemented
by additional medium-induced gluon radiation as discussed in Chapter 5. Modern jet
reconstruction algorithms (cf. Section 2.3.2) define then a posteriori macroscopic objects
based on these parton showers that are supposed to characterize the energy loss of the
initial shower-initiating parton.

In this section, we discuss the in-medium modification of these reconstructed jets in
a static and thermal QCD medium and work out how the different assumptions from
the presented LPM approaches influence the shower evolution. To this end, we first
introduce in Section 6.3.1 how parton showers are generated and subsequently evolved
within the BAMPS framework. By investigating the energy loss of reconstructed jets and
the distribution of partons around the reconstructed jet axis in terms of shower shapes,
as we define in Section 6.3.2, we discuss the underlying mechanisms for the medium
modification of parton showers: While Section 6.3.3 studies the modification of jets by
only radiative processes from the different LPM approaches, in Section 6.3.4 the shower
partons are allowed to also scatter elastically and thereby transport additional energy in
and out of the reconstructed jets. Finally, in Section 6.3.5 also recoiled medium partons
are reconstructed within the jets that may restore missing energy from the jets by staying
close to the jet axis.

6.3.1 Modeling parton showers in BAMPS

In the following we briefly revise how parton showers are generated from initial energetic
projectiles and subsequently evolved within BAMPS. For more details about the simulation
of parton showers and their subsequent reconstruction into jets within BAMPS we refer to
Refs. [Sen12; Sen+15; Sen+17].

In BAMPS we assume that partons are on the mass shell and thereby they are, due to
energy and momentum conservation, not able to split via 1 ! 2 splittings as described
by the vacuum DGLAP equation [AP77; Dok77; GL72]1. In order to still consider the
vacuum splitting processes we employ the final-state shower routines of the Monte-Carlo
event generator PYTHIA [SMS06] for generating the initial parton showers. The event
generator PYTHIA simulates collisions of particles at high collision energies, as e.g. p + p
collisions at the Large Hadron Collider (LHC). To this end, it incorporates processes based
on both QED and QCD as well as non perturbative effects as, e.g., string fragmentation.
For more details about PYTHIA and its applications to other fields of high-energy physics
we refer to Refs. [SMS06; SMS08].

In PYTHIA, partons from initial hard processes, for example a hard partonic process in
the beginning of a p + p collision, undergo initial- and final-state shower processes. While

1In contrast, the radiative processes from the AMY formalism are in principle n ! n+ 1 processes involving multiple
elastic scatterings within the medium. These scatterings are resummed in AMY and then modeled by effective
“1 ! 2” process.
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the initial-state shower increases the virtuality Q
2 from partons before the hard partonic

2 ! 2 process, the final-state shower decreases the virtuality after the hard scatterings until
the partons fragment into hadrons. This shower evolution in Q

2 is described by 1 ! 2
splitting processes based on the DGLAP splitting kernels Pa!bc(z) (cf. Section 5.4). The
differential probability for a parton a to split into two partons b with energy fraction z and
c with energy fraction 1� z is then given by [SMS06]

dPa =
X

b,c

↵s

2⇡
Pa!bc(z) dt dz , (6.2)

where we defined t = log
�
Q

2
/⇤QCD

�
and ⇤QCD is the QCD scale parameter. The sum in

Eq. (6.2) runs over all possible splitting processes as q ! qg or g ! gg [SMS06]. Based
on this probability one builds the evolution in the virtuality Q

2 or t by defining Sudakov
factors,

Sa(t) = exp

0

@�

tZ

t0

dt0
X

b,c

Ia!bc

�
t
0�
1

A , (6.3)

where Ia!bc

�
t
0� =

R
dz ↵s/(2⇡)Pa!bc(z) is the probability for a splitting at a given

virtuality t
0. The Sudakov factors Sa(t) then give the probability for no branching between

virtualities t0 and t and thereby determine at which virtuality the next splitting should occur.
Hence the virtuality t or Q2 can be considered as the evolution variable corresponding
to, e.g., the time t in the in-medium evolution in BAMPS. The energy sharing between
the daughter partons at each splitting is evaluated based on the splitting kernels. Vacuum
coherence effects as angular ordering (for a pedagogical review see, e.g., chapter 3
of Ref. [DKT89]) are explicitly considered in this evolution by choosing appropriate
kinematical limits at each splitting.

The Q
2 evolution in PYTHIA is stopped at a scale Q

2

0 = 1 GeV [SMS06], where the
hadronization via string fragmentation begins. Since we are interested in the in-medium
modification of parton showers, we do not fragment the partons into hadrons but evolve
them within the static BAMPS medium. The remaining virtuality Q

2

0 is then discarded by
setting the massless partons on the mass shell E2 = ~p2 +m

2 = ~p2. While we preserve
the energy and momentum direction of each parton, the single momentum components are
not conserved.

Inserting fully evolved vacuum parton showers into the BAMPS medium assumes that
the vacuum evolution and the subsequent in-medium evolution can be treated separately.
However, in nature it seems more realistic that both vacuum and medium interactions occur
simultaneously. This potential interference between vacuum and medium processes is still
under debate in the community. One possibility to improve the presented method would be
to introduce a similar evolution in Q

2 via 1 ! 2 splittings directly in BAMPS in addition
to the medium-induced 2 ! 3 Bremsstrahlung processes. However, such a study is out of
the scope for the present work but should be postponed to a later stage.

In this section the described parton showers are evolved through a static, thermal medium
with temperature T within the common BAMPS framework. This serves as a baseline
study for the later investigation of reconstructed jets within expanding QCD media from
ultra-relativistic heavy-ion collisions in Section 7.4. In each event exactly one parton
shower consisting of multiple partons (as described previously) is inserted into the medium.
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6 Evolution of jets in a brick of quark-gluon plasma

The initial virtuality of the shower initiating projectile is chosen as Qmax = 2E0, where E0

is the initial projectile energy2.
As in the previous section the energy and momentum of each evolving parton is modified

by interactions within the medium. We expect different effects that modify the evolution
of parton showers:

• While traversing the medium, the leading parton and its surrounding shower partons
may emit gluons via the medium-induced radiative processes defined by the different
LPM approaches from Chapter 5. On the one hand, the Bremsstrahlung processes
from the two effective LPM approaches may emit gluons to larger angles and thereby
widen the parton showers. On the other hand, the more collinear emissions from
AMY may have the opposite effect and narrow the distribution around the jet axis.
We investigate both effects in Section 6.3.3, where we simulate the modification of
parton showers by only radiative processes. In order to simplify the present problem
and thereby providing a clean comparison of the different LPM approaches, we
exclude for the moment radiative processes of the medium-induced gluon radiation
itself. Only the initial shower partons are modified by the inelastic processes3.

• In addition to the previous radiative processes, the parton showers in Section 6.3.4
are allowed to also scatter elastically via 2 ! 2 processes from Sections 3.1 and 6.1.
These elastic processes of both the initial parton showers and the emitted gluons
from medium-induced radiation may additionally transport energy away from the
initial projectile and thereby broaden the parton showers.

• For the previous considerations, we assumed that the scattered partons from the ther-
mal background medium instantly thermalize again and therefore do not contribute
to the modification of parton showers. In Section 6.3.5 we explicitly attribute also
the scattered medium particles to the evolving shower and thereby study the effect of
these “recoiled” medium partons on the parton showers.

In order to characterize the medium modification of the initial parton and its surrounding
shower we reconstruct jets based on the shower partons via the jet reconstruction algorithms
provided by the FASTJET package [CSS12; CS05] (cf. Section 2.3.2). The jets are
reconstructed with the anti-k? algorithm [CSS08] that clusters partons into jets while
preferring clusters around hard partons. Since the anti-k? algorithm is both infrared
and collinear safe and thereby should be robust against soft hadronization effects, we
reconstruct jets on the parton level. Furthermore, the anti-k? algorithm leads to circular jet
shapes in the y � �-plane, where y is the momentum rapidity and � the azimuthal angle
of the partons. The resolution parameter of the clustering algorithm is given by the jet
reconstruction radius4

R. A larger jet radius, corresponding to a small resolution, clusters
partons into the same jet that are more distant in y and �. Therefore jets reconstructed
with larger jet radii in a medium are more sensitive to a contamination with background
momentum. On the other hand, a smaller jet radius resolves also single gluon emissions of

2In the case of a p +p collision this initial virtuality Qmax of the shower-initiating parton is determined by the scale of the
hard partonic process. Same arguments do not hold in our case of a partonic projectile initialized in a static medium
and therefore the choice for Qmax is rather arbitrary and mainly based on an example file of Q-PYTHIA [ACS09].

3In Section 7.4, where we compare our calculations to experimental results for the quenching of reconstructed jets we
will investigate the case if the medium-induced gluon radiation is allowed to further emit other gluons.

4Although the anti-k? algorithm does not rely on the definition of a jet cone (cf. Section 2.3.2), the jet radius R is
often denoted as cone radius. This terminology is reasonable since the anti-k? algorithm produces approximately
circular jet shapes and therefore we use both terms for R interchangeably in the following.
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6.3 In-medium modification of parton showers

the parton shower. However, with decreasing R ! 0 one only measures the energy loss of
the leading parton. In the following studies we employ an intermediate value of R = 0.3
as it is chosen in most of the experimental studies of jet quenching in heavy-ion collisions.
Since we insert one parton shower per event, all results in this section are calculated for
the modification of the leading jet—the jet with the highest energy in each event.

6.3.2 Measuring parton distributions around jets

After discussing in the previous section how parton showers are generated and evolved
within BAMPS, we discuss in this section how we measure the modification of the shape
of these parton showers. First defined by the CMS collaboration [CMS13b], the jet
shape observable ⇢(r) measures the radial distribution of energy or momentum within a
reconstructed jet. To this end, the momentum distribution within the jets is normalized
to the reconstructed jet momentum measured in the detectors. Different to experimental
studies of jet quenching the initial energy of the shower-initiating parton is available in
our numerical simulations. This allows a slightly different definition of jet shapes in
contrast to the experimental jet shapes that we will study later in Section 7.4.3. Relating
the distribution of energy around each jet to the initial energy E0 of the shower-initiating
parton instead of the reconstructed jet energy Ejet we may define shower shapes ⇢̂(r) as5

⇢̂(r) =
1

�r

X

ri2[r��/2,r+�/2)

E
i
parton

E0

(6.4)

where E
i
parton is the energy of a single parton and ri =

q�
�i � �jet

�2
+
�
yi � yjet

�2 is the
distance of parton i to the reconstructed jet axis given by azimuthal angle �jet and rapidity
yjet in the �-y plane. The shower shapes are calculated separately for each jet and then
measure the total amount of parton energy in an annulus from r� �r/2 to r+ �r/2 around
each jet axis as sketched in Fig. 6.14. This definition of shower shapes ⇢̂(r) allows to study
the distribution of the initial projectile energy around the jet axis, whereas the common
definition of jet shapes ⇢(r) [CMS13b], aims to describe the medium modification of
distributions within the reconstructed jets.

In the following sections we will calculate the medium modification of shower shapes
together with the evolution of the reconstructed jet energy from a parton shower traversing a
thermal QCD medium. This procedure will allow us to develop a consistent and differential
picture for the in-medium modification of parton showers and help us understanding the
roles of both elastic and radiative processes from different LPM approaches.

6.3.3 Medium-induced gluon radiation of parton showers

In this section we compare the medium modification of reconstructed jets via only radiative
processes defined by the three different LPM approaches presented in Chapter 5. To this
end we generate parton showers by PYTHIA based on an initial quark or gluon projectile

5An additional difference between this definition of shower shapes ⇢̂(r) and the common definition of jet shapes ⇢(r)
in heavy-ion collisions [CMS13b] is that the shower shapes measure the distribution of energy instead of transverse
momentum p? of particles wrt. the beam axis around each jet. However, since the distinct direction of a beam axis
does not exist in the context of a static medium, the natural choice of kinematic quantity is then the particle energy E.
For more details about the common definition of jet shapes and the study of its medium modification in heavy-ion
collisions we refer to Section 7.4.3.
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6 Evolution of jets in a brick of quark-gluon plasma

r

R

Figure 6.14: Schematic visualization of the shower shape definition.

with energy E0 and subsequently evolve them within a static, thermal medium with
temperature T . In order to provide a clean observation of the underlying mechanisms
for the medium-modification of parton showers from the different LPM approaches, only
the initial shower partons participate in the radiative processes. The emitted gluons from
medium interactions are only allowed to stream freely. For a study of the effect of further
elastic scatterings of these gluons we refer to Section 6.3.4. The effective LPM approaches
✓-LPM and stochastic LPM are calibrated to the AMY formalism by choosing the screening
parameters XAMY

LPM and ⇠AMY
LPM for reproducing the differential radiative energy loss dE/dx

of AMY (cf. Section 5.5.1). Due to its diverging rate at soft parton energies, we further
limit the radiative evolution of parton showers in the AMY formalism by a minimum parton
energy Emin = 3T . The jets are subsequently reconstructed by the anti-k? algorithm and a
jet radius of R = 0.3 based on both the modified shower partons and the medium-induced
gluon radiation.

Energy loss of reconstructed jets from medium-induced gluon radiation

Figure 6.15 shows the energy distribution P
�
Ejet

�
= 1/NdN/dEjet of the leading jet at

different times t reconstructed from a parton shower that has been initialized by a quark
with energy E0 = 250 T and subsequently evolved for time t within a static medium
with temperature T . Already the leading jet energy from PYTHIA before the in-medium
evolution shows a broad distribution: while most of the projectile energy is recovered in
the reconstructed jets, already at t = 0 T −1 there are reconstructed jets that miss half of
their initial projectile energy due to vacuum 1 ! 2 branchings out of the jet cones. With
progressing time this initial distribution is further modified due to medium interactions.
While both effective LPM approaches show a strong shift to smaller jet energies, the jet
energy distribution from AMY broadens and shifts to values Ejet > E0. The jet energy
distribution from the ✓-LPM approach shows the strongest shift to small jet energies.

Based on the jet energy distributions, Fig. 6.16 shows the mean jet energy Ejet(t)
depending on time t for the leading jet reconstructed from a shower initiated by either a
quark or gluon with energy E0 = 250 T for the same interactions as in Fig. 6.15. While
for a quark-initiated shower the initial vacuum splittings from PYTHIA lead to a missing
energy of ⇡ 15 % in the initial jets reconstructed with R = 0.3, the larger QCD color
factor of gluons increases this lack of energy to ⇡ 25 % wrt. the initial projectile energy.
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Figure 6.15: Energy distribution P
�
Ejet

�
at different times t =

n
0 T −1

; 5 T −1
; 10 T −1

; 20 T −1
o

of a
leading jet reconstructed from parton showers initiated by a quark with initial energy
E0 = 25 T that traverses a static medium with temperature T via only radiative processes
from either the ✓-LPM (red), the stochastic LPM (green) or the AMY (yellow) approach.
The left panel shows the corresponding jet energy distribution directly from PYTHIA without
any medium-modification. The screening parameters of the effective LPM approaches
are chosen by XAMY

LPM = 0.05 and ⇠AMY; q
LPM = 0.01 for reproducing dE/dx of AMY and the

QCD coupling is fixed to ↵s = 0.3. Jets are reconstructed via the anti-k? algorithm and
a jet radius of R = 0.3. The leading jet energy Ejet at time t is normalized by the initial
projectile energy E0.

In agreement with the previously discussed distributions of jet energy, both effective LPM
approaches show a loss of energy out of the leading reconstructed jets. On the other hand,
the reconstructed jets from AMY interactions gain energy with time so that the leading
jet reconstructed from a quark shower has more energy after t ⇡ 10 T −1 than the initial
shower-initiating quark. The jets reconstructed from gluon-initiated showers lose more
energy than the corresponding quark showers due to the higher QCD color factor CA, both
in vacuum and in the medium-induced gluon radiation of the different LPM approaches.

In contrast to the energy loss of a single projectile, the energy loss of a reconstructed
is a multi-particle effect originating from both the energy loss of single partons and the
emission of energy out of the jet cones. Hence, although the single parton radiative energy
losses are comparable, the underlying mechanisms of the different LPM approaches lead
to the presented different jet energy evolutions:

• In the AMY formalism gluons are emitted collinearly and therefore the emitted gluons
stay closely to the reconstructed jet axis. Consequently the leading jet energy shows
less medium modification than the effective LPM approaches, ✓-LPM and stochastic
LPM, that explicitly consider also non collinear gluon emissions. Furthermore, the
additional collinear gluon radiation from AMY fills gaps in the y-� plane within the
jets and thereby allows partons from the initial parton shower, that were previously
emitted out of the jet cones, to be reconstructed in the leading jet. Hence the
reconstructed jet after time t may have energy Ejet > Ejet(t = 0). In addition to this,
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Figure 6.16: Leading jet energy Ejet depending on time t reconstructed from parton showers initiated by
a quark (solid lines) or gluon (dashed lines) with initial energy E0 = 250 T that traverses a
static medium with temperature T via only radiative processes from either the ✓-LPM (red),
the stochastic LPM (green) or the AMY (yellow) approach. The screening parameters of the
effective LPM approaches are chosen by XAMY

LPM = 0.05 and ⇠AMY; q
LPM = 0.01 for reproducing

dE/dx of AMY and the QCD coupling is fixed to ↵s = 0.3. Jets are reconstructed via
the anti-k? algorithm and a jet radius of R = 0.3. The leading jet energy Ejet at time t is
normalized by the initial projectile energy E0.

the effective 1 $ 2 processes in AMY implicitly resum elastic interactions with the
medium and allow emissions with ! > E (cf. Section 5.4). This leads to leading jet
energies with Ejet > E0.

• In both effective LPM approaches, the single partons lose energy to the medium
(comparable to the AMY formalism) and non-collinear gluons are emitted to larger
angles and thereby not reconstructed within the leading jet. However, the finite
formation time of the stochastic LPM approach delays these emission processes.
Consequently the energy loss of reconstructed jets in the stochastic LPM is slower
than in the ✓-LPM approach, where gluon emissions are instantaneously produced
and the leading jet energy distribution is shifted faster to lower energies.

• The jet energy loss due to radiative processes from the ✓-LPM approach is stronger
than the other LPM approaches since both discussed effects, collinear gluon emis-
sions and finite formation time, play no role for the parametrically suppressed gluon
emissions.

Modification of shower shapes from medium-induced gluon radiation

In order to further characterize the jet energy loss from medium-induced radiative processes,
we show in Fig. 6.17 the shower shape ⇢̂(r) distribution of the leading jet reconstructed
from parton showers initiated by a quark with initial energy E0 = 250 T at different times
t =

�
1 T −1; 10 T −1; 20 T −1 in a thermal medium with temperature T . These shower
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Figure 6.17: Time t evolution of shower shapes ⇢̂(r) from parton showers initiated by a quark with initial
energy E0 = 250 T that traverses a static medium with temperature T via only radiative
processes from either the ✓-LPM (red), the stochastic LPM (green) or the AMY (yellow)
approach. The initial shower shapes obtained by PYTHIA without medium modification are
shown by gray dashed lines. Jets are reconstructed via the anti-k? algorithm and a jet radius
of R = 0.3. The screening parameters of the effective LPM approaches are chosen by
XAMY

LPM = 0.05 and ⇠AMY; q
LPM = 0.01 for reproducing dE/dx of AMY and the QCD coupling

is fixed to ↵s = 0.3.

shapes are compared to the initial distribution obtained from the vacuum splittings by
PYTHIA. At early times the distributions from the different LPM approaches are close
to each other, although the stochastic LPM and AMY shows slightly less energy at larger
radii r > 0.1. Reason for this suppression is again the finite formation time in the
stochastic LPM approach and the collinear emissions from AMY. With progressing times
the distributions of the effective LPM approaches show a depletion of energies at the center
of the jets, at r < 0.1, while at the same time the distributions at larger angles increases.
The energies at large angles stem from partons that are emitted non-collinearly, whereas
the radiative energy loss of hard shower partons decreases the distribution at smaller angles.
Again, the finite formation time within the stochastic LPM slows down the shift of ⇢̂(r).
On the contrary, the collinear interactions from AMY only slightly influence the shower
shapes: While both the inner core and the outer edge of the reconstructed jets seem to be
unmodified, the intermediate r region is enhanced wrt. the vacuum distribution.

The previous findings for the medium modification of leading jet shower shapes are
extended in the following by differentially investigating which partons contribute to the
shower shapes at given r in the different LPM approaches. To this end, Fig. 6.18 shows
the contributions of different parton flavors to the ⇢̂(r) distribution at time t = 20 T −1 of
a quark-initiated shower with initial projectile energy E0 = 250 T for the different LPM
approaches. In the left panel we show the corresponding initial shower shape distribution
from PYTHIA without any medium modification. The inner core of the vacuum distribution
is maximum at small angles representing the leading quark of the quark-initiated parton
showers. At larger angles the shower shapes mainly consist of energies from gluons emitted
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Figure 6.18: Contribution of different parton flavors, quarks (dashed lines) and gluons (dashed-dotted
lines), to the total shower shape ⇢̂(r) (solid lines) of a parton shower initiated by a quark
with initial energy E0 = 250 T that traverses a static medium with temperature T via
only radiative processes from either the ✓-LPM (red), the stochastic LPM (green) or the
AMY (yellow) approach. The initial shower shapes obtained by PYTHIA without medium
modification are shown by gray dashed lines in the left panel. Jets are reconstructed via the
anti-k? algorithm and a jet radius of R = 0.3. The screening parameters of the effective
LPM approaches are chosen by XAMY

LPM = 0.05 and ⇠AMY; q
LPM = 0.01 for reproducing dE/dx

of AMY and the QCD coupling is fixed to ↵s = 0.3.

to larger angles in the medium. After traveling for t = 20 T −1 within the medium with
temperature T the contribution of quarks to the shower shapes is suppressed in all different
LPM approaches, whereas the shower shape distributions are dominated by gluons over
the entire r range.

Furthermore, we show in Fig. 6.19 the same shower shapes of a quark-initiated shower
with E0 = 250 T as in Fig. 6.18 but differentially in the energy ! of partons contributing to
⇢̂(r) at an given angle r. In the shower shape distribution from PYTHIA a clear hierarchy
in the parton energies is identifiable. The leading partons with ! > 0.8 E0 contribute to
shower shapes only at very small angles r / 0.02. Emissions with decreasing energies w
contribute to the shower shapes at increasing angle r. Consequently only softer partons
with ! < 0.05 E0 are emitted to larger angles and thereby contribute at r ! R. There is
no contribution of thermal partons with ! < 0.01 E0 ⇠ O(T ).

After the parton showers have traversed the medium for t = 20 T −1 the !-differential
distributions of ⇢̂(r) are modified:

• In all three LPM approaches the leading parton has lost significantly energy so that
there is almost no contribution of partons with Eparton > 0.8 E0 to the shower shapes
after t = 20 T −1.

• Both effective approaches show again a similar behavior: While the inner core is
diminished by the energy loss of the leading partons, especially the contribution of
gluon emissions with ! < 0.05 T is enhanced wrt. the vacuum distribution. This
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Figure 6.19: Contribution of different parton energies ! to the total shower shape ⇢̂(r) (solid lines) of a
parton shower initiated by a quark with initial energy E0 = 250 T that traverses a static
medium with temperature T via only radiative processes from either the ✓-LPM (red), the
stochastic LPM (green) or the AMY (yellow) approach. Same parameters as in Fig. 6.18.

enhancement is situated at larger angles r > 0.1 representing the emissions of (semi-
)soft gluons to large angles. Main difference between the ✓-LPM and stochastic LPM
approach is the slightly stronger energy loss of leading partons that can be identified
by less contribution of ! > 0.2 E0 to the shower shapes.

• On the contrary, the shower shapes from the AMY formalism show a different
behavior: While the inner core consisting of the leading parton is suppressed, the
emitted energy stays close to the jet axis. Also the other ! regions mainly contribute
at smaller angles r ⇡ 0.02 leading to a collimation of energy in the core of the jets.
Only emissions with soft energies ! < 0.05 E0 deploy energy at larger angles. Due
to the divergence at ! ! 0 in the AMY formalism the relative contribution of thermal
partons is significantly larger than in both other LPM approaches.

In conclusion, we found in this section that the effective LPM approaches, ✓-LPM and
stochastic LPM, show similar in-medium modifications of high-energy parton showers,
whereas the radiative processes from the AMY formalism differently modify the parton
showers due to the collinearity of gluon emissions. In the next section we discuss how the
transport of both the initial parton showers and the medium-induced gluon radiation via
elastic processes affect the medium modification of parton showers.

6.3.4 Broadening of parton showers by elastic interactions

In the previous section the in-medium modification of parton showers was caused by
medium-induced gluon radiation that both decreased the energy of shower partons and
at the same time emitted energy out of the reconstructed jets. However, while this rather
academic treatment of jet modification allows a clean investigation of the different LPM
approaches, it neglects the further transport of emitted partons in and out of the jet cones.
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Figure 6.20: Leading jet energy Ejet depending on time t reconstructed from parton showers initiated
by a quark with initial energy E0 = 250 T that traverses a static medium with temperature
T . While the dashed lines denote results from parton showers that are modified by only
medium-induced gluon radiation (“only rad.”), the solid lines shows the jet energy evolution
based on parton showers that are modified by both elastic scatterings and radiative processes
(“el.+rad.”) from the ✓-LPM (red), the stochastic LPM (green) or the AMY (yellow)
approach. The screening parameters of the effective LPM approaches are chosen by
XAMY

LPM = 0.05 and ⇠AMY; q
LPM = 0.01 for reproducing dE/dx of AMY and the QCD coupling

is fixed to ↵s = 0.3. Jets are reconstructed via the anti-k? algorithm and a jet radius of
R = 0.3. The leading jet energy Ejet at time t is normalized by the initial projectile energy
E0.

Therefore we study in this section how additional elastic 2 ! 2 processes of both the initial
shower partons from PYTHIA and the medium-induced gluons affect the modification of
parton showers. To this end, we again generate parton showers by PYTHIA based on an
initial quark or gluon projectile with energy E0 and subsequently evolve them within a
static, thermal medium with temperature T via both elastic and radiative processes from
the different LPM approaches. The effective LPM approaches ✓-LPM and stochastic LPM
are again calibrated to the AMY formalism and the radiative evolution of parton showers in
the AMY formalism is limited by a minimum parton energy Emin = 3T . On the contrary,
the same limit does not hold for the elastic scatterings, hence even very soft gluons are
allowed to scatter elastically. The jets are again reconstructed by the anti-k? algorithm and
a jet radius of R = 0.3.

We compare in Fig. 6.20 our previous results for the modification of jets via only medium-
induced gluon radiation to the case where the partons are also allowed to scatter elastically
via 2 ! 2 from Section 3.1. We found in Section 6.1 and Section 6.2 (cf. Fig. 6.3) that
the contribution of 2 ! 2 scatterings to the energy loss of single partons is subordinate.
However, besides the elastic energy loss of single partons, 2 ! 2 processes may lead to a
transport of emitted gluons (or other shower partons) out of the reconstructed jets. This
effect can be identified in Fig. 6.20, where the energy loss of reconstructed jets from all
three LPM approaches is significantly increased in comparison to our previous results
from only medium-induced gluon radiation. In the AMY formalism, the elastic transport
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via either only radiative processes (dashed lines) or via elastic and radiative processes
(solid lines) from either the ✓-LPM (red), the stochastic LPM (green) or the AMY (yellow)
approach. Jets are reconstructed via the anti-k? algorithm and a jet radius of R = 0.3.
The screening parameters of the effective LPM approaches are chosen by XAMY

LPM = 0.05
and ⇠AMY; q

LPM = 0.01 for reproducing dE/dx of AMY and the QCD coupling is fixed to
↵s = 0.3.

of partons out of the reconstructed jets significantly displaces the previously found energy
gain of the reconstructed jets, which was caused by collinear gluon emissions within AMY
that were still reconstructed within the jets. Also the jet energy evolutions of both LPM
approaches show an increased energy loss out of the reconstructed jets. Only at early
times the result from the stochastic LPM shows again a slower jet energy evolution due to
the finite formation time of gluon emissions and thereby path-length dependence of the
radiative energy loss. In summary, it can be stated that the additional elastic scatterings
of the parton shower levels the jet energy evolution within AMY to the effective LPM
approaches.

Figure 6.21 further investigates the role of additional elastic 2 ! 2 scatterings for the
modification of parton showers by comparing the previous result for the shower shapes ⇢̂(r)
to the case where the shower partons are also allowed to scatter elastically. The jet shapes of
both effective LPM approaches, namely the ✓-LPM and stochastic LPM approaches, show
the same strong depletion of energy at intermediate up to large angles r ! R wrt. the jet
axis. This depletion again represents the elastic transport of partons out of the reconstructed
jets, which causes the increased jet energy loss presented in Fig. 6.20. At small angles
r / 0.02 the distributions of both ✓-LPM and stochastic LPM show an enhancement when
considering the elastics scatterings. Reason for this effect is a “wobbling” jet axis due to
the elastic scatterings of the leading partons that lead to a “pseudo-collimation” of partons
around the jet axis. Although the shower shape distribution from only medium-induced
gluon radiation differs between AMY and both effective approaches, the inclusion of
elastic scatterings leads to similar shower shape distributions after t = 20 T −1 in all three
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Figure 6.22: Shower shape distribution at larger angles r 2 [0;⇡] for the same calculations as in
Fig. 6.21.

LPM approaches. Furthermore, the contribution of partons at intermediate angles r > 0.1
is significantly larger for the AMY interactions. This is reasoned by the missing initial
transverse momentum of partons in the AMY formalism, so that emitted partons from AMY
can only be transported to intermediate angles.

Consequently, the question arises where the missing energy of the reconstructed jets has
been transported to. We answer this question in Fig. 6.22, where we compare the same
shower shape distributions as presented in Fig. 6.21 within a larger region r 2 [0; ⇡]. Since
the jet energy is determined by partons with angle r < R the distribution of partons at
larger angle provide insight where the lost energy of the reconstructed jets can be found.
All shower shape distributions show a dip at r = R. This dip is caused by the clustering
of particles to reconstructed jets. During the jet reconstruction only partons are clustered
to the same jet that have minimum distances in rapidity y and azimuthal angle � between
each other. Consequently the reconstructed jets represent clusters with optimized distances
r < R and therefore partons with r = R are suppressed6. For angles r > R the ⇢̂(r)
distributions from only medium-induced gluon radiation split up between the different
LPM approaches: While the distribution from the stochastic LPM shows the strongest
contribution at large angles due to the more transverse gluon emissions (cf. Section 6.2.2),
the distribution of the AMY formalism is strongly suppressed due to the collinearity of
gluon emissions. After including the additional elastic scatterings of shower partons,
the ⇢̂(r) distributions from the different LPM approaches become approximately flat for
increasing r. While the distributions from ✓-LPM and stochastic LPM already without the
elastic scatterings show a significant contribution of parton energies at large angles, the
elastic scatterings together with the radiative processes from AMY lead to the strongest
enhancement of parton energies at large angles. Reason for this enhancement are very
soft gluon emissions with energies ! ⌧ T emerging from the divergence at ! ! 0 in

6If one uses a simple cone in y and � around, e.g., the leading parton to define a reconstructed jet, such a dip cannot be
found.
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thermal medium parton recoiled medium parton

shower parton shower parton

Figure 6.23: Sketch for an elastic scattering of a shower parton with a thermal parton from the back-
ground medium. The corresponding sketch for a 2 ! 3 Bremsstrahlung process has an
additional gluon emitted from one of the outgoing legs.

the AMY formalism. Due to the large elastic scattering rate of soft gluons (cf. Fig. 5.21a)
these emissions gain energy by elastic scatterings within the medium. For example, if a
soft parton with ! ⌧ T scatters elastically with a thermal parton (energy ⇠ O(T )) there
are processes with a large momentum transfer (

��t̂
�� > ŝ/2) so that the initially soft parton

leaves the collision with a higher, thermal energy. As a result, the diverging emission
rate within AMY together with the increased elastic scattering rate leads to a significant
contamination of the reconstructed jets with energy from the background medium. This
contamination however disguises the actual energy loss of the reconstructed jets and
thereby the modification of the initial parton showers that we are interested in. Therefore
we discuss in the following section how to appropriately consider the medium contribution
to the reconstructed jets and subsequently subtract the undesired contamination of jets.

6.3.5 Role of recoiling medium partons

In the previous section we found that reconstructed jet momenta get contaminated by
scatterings with thermal medium partons. Although this transfer of energy from the medium
to parton showers is reasonable, it complicates the study of in-medium modification of the
initial parton showers. Therefore we study in this section how to appropriately consider the
unintended medium contribution from elastic scatterings and how to subtract this energy
appropriately from the reconstructed jets.

The scattering of a shower parton with a thermal parton from the background medium
is sketched in Fig. 6.23. For the previous results concerning the medium modification of
reconstructed jets we assumed that each outgoing parton can be related to an incoming
parton based on the respective momentum transfer of the elastic scattering as described
in Section 5.3.3. Hence, we assigned to one of the outgoing partons the role of a shower
parton that is allowed to further emit and scatter like the initial shower partons. The other
outgoing parton is then regarded as the recoiled medium parton that instantly thermalizes
and thereby does not contribute to the parton shower evolution. As we saw previously
the discrimination between shower and thermal background partons becomes difficult in
the case of soft shower partons interacting with harder thermal partons. Furthermore, the
assumption of an instant thermalization of recoiled medium partons seems questionable
at least for larger outgoing parton energies. These recoiled partons that incorporate
some energy from the parton showers may stay in the vicinity of the parton shower and
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6 Evolution of jets in a brick of quark-gluon plasma

thereby restore energy in the reconstructed jets that is neglected in the case of an instant
thermalization. Therefore we include in the following the recoiled medium partons of both
elastic scatterings and the 2 ! 3 Bremsstrahlung processes in the ✓-LPM and stochastic
LPM approaches when reconstructing jets and study how this medium recoil modifies the
resulting reconstructed jets.

After discussing the treatment of recoiling medium partons we have to appropriately
subtract the energy from the incoming thermal partons contaminating the reconstructed
jets with background medium. To this end, we follow an approach previously applied in
different approaches [Sen+15; EZ16a] and reconstruct jets by including both the shower
partons and the recoiled medium partons together with very soft copies of the scattered
thermal partons before the respective scatterings. While preserving their direction, the
energy and momentum of these soft copies is scaled down7 to soft scales so that they do
not modify the resulting reconstructed jet energies. For each jet we then find soft copies of
medium partons that are reconstructed within the jet and note their energy and momentum.
The sum of these energies and momenta represents the amount of thermal energy and
momentum that is reconstructed within the jets and has to be therefore subtracted from the
jets. Consequently, the background subtracted jet energies are obtained by subtracting the
background four-momentum from the previously reconstructed jet four-momentum. If the
resulting energy of a background subtracted jet becomes negative, this jet is discarded.

In Fig. 6.24 we compare our previous results for the jet energy evolution without recoil
to the evolution of reconstructed jets including the recoiled medium and the discussed
subtraction method. And indeed with progressing time the jet energy loss is significantly
weakened by recoiled medium partons staying in the reconstructed jets. In the ✓-LPM and
stochastic LPM approach the recoil effect is considered both in the elastic scatterings of the
emitted gluons and the radiative 2 ! 3 Bremsstrahlung processes. This leads to a stronger
weakening of jet energy loss in both approaches than in the AMY method, where the
coherent, elastic interactions are resummed into an effective 1 ! 2 process and therefore
no recoiling parton exists.

Finally, in Fig. 6.25 we further investigate the role of recoil by showing the shower shape
distributions from the different LPM approaches including both the shower partons and the
recoiled medium partons. The inclusion of recoiled medium partons that are subtracted in
the reconstructed jets further enhances the distributions of ⇢̂(r). The contribution of back-
ground energies to the shower shapes is calculated based on the energies of the scattered
medium partons before the scatterings and increases for larger angles r. After subtracting
the background contribution we find that the resulting shower shape distributions from the
different LPM approaches are comparable. While the inner core of the jets is suppressed
due to the leading parton energy loss, the distribution of ⇢̂(r) at intermediate angles is flat
representing gluons that are transported to larger angles via elastic scatterings.

In conclusion, we may retain that the different LPM approaches lead to different jet
energy losses and shower shape distributions when neglecting the transport of emitted
gluons out of the jet cones and that scattered medium partons may remain close to the
jet axis. However, when considering both effects, the resulting medium-modifications of
parton showers following the different LPM prescription become similar indicating that
the role of the specific choice of LPM approach for the modification of reconstructed jets
is minor.

7The energy and momentum of the parton is divided by the scaling factor 1 · 108.
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Figure 6.24: Leading reconstructed jet energy Ejet depending on time t from parton showers initiated by
a quark with initial energy E0 = 250 T that traverses a static medium with temperature T
via elastic scatterings and radiative processes from the ✓-LPM (red), the stochastic LPM
(green) or the AMY (yellow) approach. While the dashed lines denote parton showers
without recoil, the solid lines show the results in which also the medium recoil is considered
in the reconstructed jets and the medium contribution is subtracted as discussed in the text.
The energy evolution of the leading parton via the respective LPM approach is given by
the dotted line. The screening parameters of the effective LPM approaches are chosen by
XAMY

LPM = 0.05 and ⇠AMY; q
LPM = 0.01 for reproducing dE/dx of AMY and the QCD coupling

is fixed to ↵s = 0.3. Jets are reconstructed via the anti-k? algorithm and a jet radius of
R = 0.3. The leading jet energy Ejet at time t is normalized by the initial projectile energy
E0.
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Figure 6.25: Shower shapes ⇢̂(r) with recoiling medium from parton showers initiated by a quark with
initial energy E0 = 250 T that traverses a static medium with temperature T via elastic
scatterings and radiative processes from either the ✓-LPM (red), the stochastic LPM (green)
or the AMY (yellow) approach. While the dashed lines depict the previously results for
⇢̂(r) without recoil, the dashed-dotted lines denote the shower shapes including recoiled
medium partons but not subtracting the background contamination. The shower shapes
with recoil and after subtracting the background contamination (dotted lines) are given by
the solid lines. Jets are reconstructed via the anti-k? algorithm and a jet radius of R = 0.3.
The screening parameters of the effective LPM approaches are chosen by XAMY

LPM = 0.05
and ⇠AMY; q

LPM = 0.01 for reproducing dE/dx of AMY and the QCD coupling is fixed to
↵s = 0.3.
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7 Jet quenching in ultra-relativistic
heavy-ion collisions

In the previous chapters we introduced different ways to consider the non-Abelian LPM
effect within the partonic transport approach BAMPS. We found that, although we cali-
brated the radiative energy loss from the different approaches to each other, the proposed
LPM methods show different characteristics for the energy and momentum modification
of jets traversing a static and thermal quark-gluon plasma. In order to further clarify
these differences we simulate in this chapter the jet modification from the different LPM
approaches within expanding, non-thermal bulk media and confront these results with
various experimental observables for jet quenching as measured in Pb + Pb collisions with
p
sNN = 2.76 TeV at the LHC. This will enable us to characterize the different LPM

approaches under realistic conditions and thereby allow us to identify key properties for
the jet quenching in ultra-relativistic heavy-ion collisions within BAMPS.

After introducing in the next section how the expanding, partonic medium of a heavy-
ion collision is simulated within BAMPS, we present in Section 7.1 the properties of the
medium created in Pb + Pb collisions at the LHC as calculated from microscopic pQCD
interactions. In Section 7.3 we then embed high energy partons into these expanding media
and examine how their partonic and, after fragmentation, hadronic spectra are modified
in the medium due to the elastic and radiative processes defined by the different LPM
approaches. Finally, in Section 7.4 we take advantage of the reconstruction of parton
showers and study differentially the in-medium modification of reconstructed jets from the
different LPM approaches.

7.1 Evolution of the bulk medium

Before investigating the modification of hard probes traversing the matter created in
heavy-ion collisions at LHC, we first discuss in this section the underlying and expanding
bulk medium as simulated within BAMPS. Different to other attempts in the heavy-ion
community, one major goal of the BAMPS framework is to explore the applicability of
perturbative QCD to both the physics of the hard jet regime and the soft bulk medium
of ultra-relativistic heavy-ion collisions. In the next Section 7.1.1, we introduce how the
distributions of soft partons in the bulk medium are initialized and subsequently evolved
within BAMPS forming an expanding quark-gluon plasma. Section 7.1.2 presents then
properties as, e.g., the temperature or density of this hot and dense matter following from
the specific choice of microscopic pQCD interactions within BAMPS. While the study of
these properties is interesting for its own, they will also serve later as input parameters for
the interactions of jets probing the medium. Finally, we demonstrate in Section 7.1.3 that
the chosen setup for the underlying medium leads to a significant built-up of elliptic flow
via microscopic pQCD interactions.
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7 Jet quenching in ultra-relativistic heavy-ion collisions

7.1.1 Modeling the soft background medium

Hydrodynamical models are successful in describing the expansion of the medium created
in ultra-relativistic heavy-ion collisions by a thermal fluid with small or vanishing shear
viscosity-over-entropy ratio ⌘/s. However, especially in the beginning of the nucleus-
nucleus collision the applicability of an equilibrium theory as hydrodynamics to the
anisotropic distribution of parton momenta is questionable. In contrast, by numerically
solving the Boltzmann equation the interactions within BAMPS do not rely on an equilib-
rium but can also be applied to non-equilibrium situations as they presumably can be found
in the early stages of a heavy-ion collision. In this section we briefly outline our strategy
for simulating heavy-ion collisions within the BAMPS framework. For more details about
the different stages and their underlying assumptions we refer to Refs. [XG05; XG07;
Uph+15].

Initial distribution of soft partons

The BAMPS framework describes scatterings of partons within a medium via the micro-
scopic processes from Chapter 3. In order to simulate ultra-relativistic heavy-ion collisions
at, e.g., RHIC and LHC, an appropriate initial state has to be defined that is then subse-
quently evolved by the BAMPS interactions. However, a description for the complex initial
state of a heavy-ion collision from first-principles is still difficult and topic of ongoing re-
search. One promising approach could be the color-glass-condensate (CGC) that describes
the colliding nuclei as Lorentz-contracted discs consisting, due to the high beam energies,
predominantly of gluons [McL; IV04; Wei05]. Recently, there were studies [Gre+17a]
in our group that combined such a CGC-like initial state based on classical Yang-Mills
dynamics (IP-GLASMA [STV12c; SST19]) with the medium evolution from BAMPS in
order to study the importance of initial and final state effects in p + A collisions.

In this work we choose another model for the initial state of the heavy-ion collisions that
was first developed by Uphoff [Uph09; Uph+10]. Within this approach, the single nucleon-
nucleon scatterings of the colliding nuclei are simulated by the event generator PYTHIA
(cf. Section 6.3) and distributed in configuration space by a Glauber calculation [Gla06;
Mil+07] (cf. Appendix D). This procedure then models the initial state of the heavy-ion
collision as a superposition of independent p + p collisions [Uph09].

Within PYTHIA, the nucleon-nucleon scatterings are described as p + p collisions that
are terminated at the partonic scale before the fragmentation to hadrons. Depending on the
momentum transfer of the initial partonic process underlying the p + p collision, PYTHIA
events can be separated into hard and soft events. The hard events scale with the number
of binary nucleon-nucleon collisions, Ncoll [Uph09], whereas the soft events from PYTHIA
then fill up the remaining energy that is deployed by the two nuclei in the collision region.
By employing a Woods-Saxon density profile (cf. Appendix D) for the colliding nuclei,
the number of binary nucleon-nucleon collisions, Ncoll, and the number of participating
nucleons, Npart, can be calculated within the Glauber model for a given impact parameter
b. In Appendix D we outline such a Glauber calculation and give numerical values for
Npart and Ncoll obtained for typical impact parameters employed in the following study.
Furthermore, we compare in Appendix D these values for Npart and Ncoll to centrality
classes defined by the experiments at LHC in order to allow a reliable comparison of our
results in this chapter to experimental data. For more details about the presented initial
state and its implementation into the BAMPS framework we refer to Refs. [Uph09; Uph+10;
Uph13]
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Expansion of the background medium

The parton distributions initialized by the previous introduced “PYTHIA+Glauber” model
are subsequently evolved via the microscopic processes as introduced in Chapter 3. After
finishing their initial formation time�⌧f = cosh y/p?, where y and p? are the momentum-
space rapidity and transverse momentum, respectively, the partons are allowed to scatter
elastically via 2 ! 2 collisions as well as via inelastic scatterings, 2 ! 3 Bremsstrahlung
processes and 3 ! 2 annihilation processes. While we previously neglected annihilation
processes for the energetic jets1, the inclusion of these processes at soft momenta ensures
detailed balance, which is crucial at thermal momenta.

Although the LPM effect is more dominant at high parton energies due to the longer
formation time of gluon emissions with higher energies, it should also be considered for
the inelastic interactions of softer medium partons. Since the AMY formalism is, strictly
speaking, only valid within a thermal bath and does not consider the back reaction of the
resumed elastic scatterings to the medium, it is not ad-hoc clear how it could be applied
to the inelastic processes of partons from the non-thermal background of a heavy-ion
collision.

Furthermore, within the stochastic LPM approach gluon emissions are suppressed after
finishing their formation time due to the potential coherence of elastic scatterings during
the formation time. In the context of medium interactions, the stochastic LPM method
could lead to situations in which a gluon emission from a medium parton is suppressed
after its formation time. Consequently, the interactions of the gluon with other medium
partons during its formation time have to be undone. Obviously, this would change the
whole medium history and thereby lead to a significant numerical effort of bookkeeping
the different fulfilled and rejected medium evolutions. One potential solution for this
issue could be a reweighting procedure for the interactions of gluon emissions during their
formation time. Such a study of the stochastic LPM for medium interactions is out of the
scope for the present work.

Consequently, we describe in the following the LPM effect for both the 2 ! 3
Bremsstrahlung and 3 ! 2 annihilation processes between medium partons by the ✓-LPM
approach. This allows a microscopic treatment of medium scatterings while the coherence
of gluon emissions is effectively considered. As we demonstrated in Refs. [Uph+15] the
choice of the ✓-LPM approach with a screening parameter XLPM = 0.3 shows both a
realistic suppression of charged hadron spectra and at the same time a significant built-up
of elliptic flow in the bulk medium. While the choice of XLPM = 0.3 was originally
motivated by a comparison to RHIC data, we will show later in this chapter that this choice
is also successful in describing experimental data for LHC.

For numerically solving the Boltzmann equation, the BAMPS framework relies on the
stochastic method for the scatterings of partons. As we have seen in Chapter 4 whether a
parton scatters is determined by calculating its transition rate in a given cell in configuration
space. While this cell grid was constant in the case of a static, thermal medium in the
previous chapters, the rapidly expanding medium of a heavy-ion collisions requires a grid
that dynamically adjusts to the current evolution. Due to the high velocities of the colliding
nuclei, the longitudinal expansion of the medium has to be considered relativistically.
Therefore the appropriate coordinate choice for describing the longitudinal expansion
of the collisions is the space-time rapidity, ⌘s = 1/2 log (t+ z)/(t� z), where z is the

1The 3 ! 2 annihilation processes were neglected previously and will be neglected later for the hard jet regime since
the cross section for annihilation strongly depends on the CoM energy of the collision and thereby is suppressed for
energetic partons (cf. Section 3.2).
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longitudinal space coordinate of a particle and t is the time. In contrast to the transverse
cells, the cells in ⌘s direction are dynamically adjusted so that a similar number of test-
particles are in each ⌘s-bin at each time step. Typical values for the central ⌘s bin are then
�⌘s ⇡ 0.14 in central and �⌘s ⇡ 0.22 in more peripheral Pb + Pb collisions at LHC. This
adjusting leads to approximately equally sized bins in the longitudinal direction, indicating
an almost Bjorken-type expansion [XG09; Foc11]. In the transverse space wrt. the beam
axis, the cell configuration is constant with cell widths of �x = �y = 0.5 fm for central
and �x = �y = 0.2 fm collisions.

In the outer regions of the collision, where the number and energy density is significantly
reduced, the stochastic method for particle scatterings is not applicable anymore and scat-
terings are calculated via geometrical scatterings. Instead of deciding stochastically when
partons scatter, in the geometrical method two partons scatter when they are geometrically
closer to each other than

p
�/⇡ [Xu04], where � is the cross section of the respective

collision. For more details about this method and its drawbacks we refer to Ref. [Xu04].
In order to provide enough statistics in each cell for applying the stochastic method, the

number of partons has to be scaled by Ntest (cf. Chapter 4). This scaling is considered within
BAMPS by inserting Ntest initial events from PYTHIA into the simulation. The numerical
values for Ntest are then chosen so that a sufficient number of test particles is guaranteed in
each cell2. For LHC simulations, this leads to values ranging from Ntest(b = 0 fm) = 8 in
central collisions up to Ntest(b = 13.2 fm) = 918 in very peripheral, more dilute collisions
(cf. Appendix D).

Freeze-out and hadronization of partons

The microscopic processes from pQCD are obviously only applicable for interactions
of partons, namely quarks and gluons. With progressing evolution time, the medium
created by the initial nucleus-nucleus collision expands and thereby cools down reaching
temperatures where the underlying degrees of freedom are not longer partons but change
to hadrons. Although there are first-principle QCD calculations for the macroscopic
transition from partons to hadrons [Phi13], our understanding of the microscopic processes
underlying this phase transition are still limited. While energetic partons as, e.g., jets
fragment into hadrons, what can be described by fragmentation functions measured in
elementary e+ + e� collisions and is discussed in Section 7.3.1, a similar procedure for
the soft components does not exist at the moment. Some models aim to describe the
hadronization by recombining soft partons together building compound hadrons [Fri+03],
whereas other models circumvent a microscopic hadronization by coarse-graining the
single partons, applying an equation of state from lattice QCD (lQCD) and afterwards
particularizing the fields again via the Cooper-Frye method [CF74; Pet+08; HP12]. Also
in our group there are first attempts to develop an effective hadronization of partons on
the microscopic scale by numerically clustering partons while preserving macroscopic
properties of the matter3.

Within this work we stick to the method employed previously for simulating heavy-ion
collisions [XG05; XG07; XGS08; XG09; XG10; FXG09; Uph+15] in BAMPS: if a cell
reaches a critical energy density of ✏c = 0.6 GeVfm3 we terminate the evolution of all
partons within this cell4. The choice of a critical energy density ✏c instead of a critical
temperature Tc allows the application of this approach also in non-equilibrium situations.

2In LHC simulations a total number of N ⇡ 1 · 106–2 · 106 particles has proven to be successful.
3Paper to be published.
4The choice of ✏c = 0.6 GeVfm3 corresponds via ✏c = 48/⇡2T 4

c to a critical temperature of Tc = 175 MeV for a pure
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Below ✏c, hadronization effects come into the play that cannot be described within BAMPS
and therefore the partons stream freely until the simulation ends. As a result, after a
simulation time of t = 10 fm the expanded medium of a central collision at LHC is frozen
out at mid-rapidity and no further collisions occur in this region.

7.1.2 Properties of the expanding quark-gluon plasma

After introducing our setup for simulating heavy-ion collisions within the BAMPS frame-
work, we present in this section numerical results for the (macroscopic) properties
of the expanding partonic matter in central and peripheral heavy-ion collisions with
p
sNN = 2.76 TeV at the LHC. In contrast to simulations within hydrodynamical models,

where such properties as, e.g., temperature T or particle density n follow from macroscopic
evolution equations, these quantities are calculated dynamically from the microscopic
distributions of partons within BAMPS. As mentioned previously, the parton distributions
are evolved within BAMPS via the discussed pQCD interactions: elastic 2 ! 2 scatterings
and inelastic 2 $ 3 processes. By solving the 3+1D Boltzmann transport equation, these
calculations do not rely on thermal phase space distributions in equilibrium but may also
be applied in non-equilibrium situations as, e.g., during the initial stages of a heavy-ion
collisions. Consequently, these studies allow a quantitative comparison to other models for
the heavy-ion background, as e.g. relativistic (ideal/viscous) hydrodynamics, and thereby
shed light on the role of non-equilibrium effects in the medium evolution.

Furthermore, the properties of the bulk medium obviously also determine the energy
loss of hard probes traversing it. Experimentally speaking, by studying the modification
of jets one aims for measuring and characterizing exactly these medium properties of the
quark-gluon plasma. But also in theoretical models the medium properties enter the various
energy loss calculations. For example in the BAMPS framework, the Debye mass m

2

D

determines the screening of the elastic and inelastic pQCD matrix elements, whereas the
temperature T sets the medium scale in the radiative processes from the AMY formalism.

Different to the macroscopic evolution in hydrodynamics, one needs to integrate different
moments of the one-particle phase space distribution f(~x, ~p) in order to obtain macroscopic
quantities from microscopic particle distributions. Following Ref. [Uph13], the phase space
integrations can be evaluated numerically within BAMPS by substituting the integration
with a summation over massless parton momenta ~pi or energies Ei = |~pi|. For example,
the zeroth moment of f(~x, ~p) can be obtained from

di

Z
d3
p

(2⇡)3
1

E
fi(~x, ~p) !

1

V Ntest

X

i

1

Ei
, (7.1)

where di is the degeneracy and fi the one-particle phase space distribution of parton species
i, Ntest the number of test particles and the sum runs over all partons with species i in a
given space volume V .

While the momentum integrations of these calculations are performed within the entire
momentum space, one has to choose a proper integration volume in configuration space
in order to preserve locality within the fluid. One way for defining a configuration space
region could be the already introduced dynamical cell grid underlying the calculation of
scattering probabilities via the test-particles method within BAMPS (cf. Section 7.1.1).

gluonic Boltzmann gas or Tc ⇡ 133 MeV after including also quark degrees. For larger values of ✏c the medium
evolution is stopped earlier leading, e.g., to a ⇡ 20 % decrease of flow for ✏c = 1 GeVfm3 [XG09].
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7 Jet quenching in ultra-relativistic heavy-ion collisions

This possibility is chosen, e.g., for the calculation of the temperature and flow velocity
entering the AMY emission rates as we will present later in this section. Another way for
choosing the integration region exploits the cylindric geometry of a heavy-ion collision
and calculates the macroscopic quantities based on a ring structure as shown in Fig. 7.1.
In order to consider relativistic effects in the expansion of the heavy-ion collisions, the
longitudinal coordinate of this ring structure is chosen by the space-time rapidity ⌘s, which
is given in bins coinciding with the bins of the previous test-particles grid. This leads to,
e.g., a width �⌘s ⇡ 0.15 for the central ⌘s bin in central collisions at LHC. In the transverse
direction we assume an azimuthal symmetry and hence define rings with radii x? in which
the respective quantities are averaged. While this assumptions is obviously justified for
central Pb + Pb collisions, its validity in more peripheral collisions becomes limited and
could be substituted by a more elliptic geometry in a future study. The ring structure is
employed within the BAMPS framework for calculating e.g. the Debye masses and the
energy densities entering both the 2 ! 2 and 2 $ 3 interactions.

x

y

⌘s

⌘s = 0

(a) Side view

~x?

y

x

(b) Front view

Figure 7.1: Simplified geometry of a central heavy-ion collision. The transverse plane is spanned by
the x- and y-axis, whereas the space-time rapidity ⌘s characterizes the longitudinal direction
wrt. the beam axis. This ring structure is employed for calculating macroscopic quantities
(cf. text).

In the following, we present numerical results for various macroscopic quantities
calculated based on 15–20 independent BAMPS events5 for Pb + Pb collisions with
p
sNN = 2.76 TeV and impact parameters b = 3.6 fm representing 0–10 % central colli-

sions or b = 10.3 fm representing 40–50 % peripheral collisions, respectively. As men-
tioned in Section 7.1.1, due to the limitations of the stochastic LPM and AMY method in
the context of medium-medium interactions, we describe the LPM effect in the inelastic in-
teractions of medium partons via the ✓-LPM approach. For the screening of collinear gluon
emissions we choose the previously applied screening parameter XLPM = 0.3 [Uph+15],
which showed a realistic suppression of jets and a significant flow for RHIC collisions and,
as we see later, also for collisions at the LHC.

5As discussed previously, we neglect physical fluctuations of the initial state. Consequently, different heavy-ion events
within BAMPS simulate the same unique medium evolution. Potential fluctuations between the events are not physical
but emerge from limited statistics. Furthermore, due to the scaling with test particles, each of these events is already
a superposition of several realizations of the same heavy-ion medium, which justifies the rather small amount of
independent simulations. The scaling with test particles obviously has to be considered when averaging the partons
later in this section.
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7.1 Evolution of the bulk medium

Number density n and energy density ✏

The number density n of partons, namely quarks and gluons, is given by the first moment
of the phase space distribution f(~x, ~p) and hence can be derived to

n = ng + nq =

Z
d3
p

(2⇡)3
�
dgfg(~x, ~p) + dqfq(~x, ~p)

�
, (7.2)

where dg = dpolarization
�
N

2

c � 1
�

= 16 is the degeneracy of a gluon and dq =
dspindantiNfNc = 36 is the degeneracy of a quark, respectively. For an equilibrated medium
with temperature T , the number density neq(T ) evaluates via the equilibrium phase space
distribution feq ⇠ exp (�E/T ) to

neq(T ) =

�
dg + dq

�

⇡
2

T
3
. (7.3)

When discussing medium properties of a relativistic fluid, the definition of an appropriate
reference frame is mandatory. The natural choice for this reference frame is the local rest

frame (LRF) of the fluid. Since the number density is not a Lorentz invariant quantity,
Eq. (7.2) needs therefore an additional Lorentz factor � = (1� �

2)�1/2 for boosting the
lab quantities to the local rest frame, so that nLRF = n/� follows. For a quantitative study
of the flow velocity ~� within BAMPS simulation we refer to the end of this section.
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Figure 7.2: Time evolution of the number density nLRF (left) and the energy density ✏LRF (right) within
a ring at mid-rapidity and with radius x? calculated within BAMPS for a central psNN =

2.76 TeV Pb + Pb collision. The different colors denote different radii of the considered rings.
The gray dotted line denotes the chosen value of the critical energy density ✏c below which
the partons stream freely.

We show in the left plot of Fig. 7.2 the time evolution of nLRF within transversal rings
(cf. Fig. 7.1) from the central ⌘s slice of a central Pb + Pb collision with p

sNN = 2.76 TeV
and impact parameter b = 3.6 fm. Obviously the density is the highest in the center
of the collision at early times. In the core of the collision, x? < 1.5 fm the density is
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7 Jet quenching in ultra-relativistic heavy-ion collisions

n ⇡ 200 fm−3 and thereby approximately two magnitudes larger than common nuclear
densities nnucl ⇠ O

�
1 fm−3�. With progressing time both the inner and outer regions

of the heavy-ion collision rapidly dilute. After t = 10 fm the densities of all rings are
below 1 fm−3. A high number density obviously leads to an increased number of potential
scattering partners and, roughly speaking, to an increased energy loss of jets. Consequently,
we expect that the main contribution to the energy loss of jets originates in the center of
the collision zone.

The energy density ✏ of a cell determines within BAMPS when the medium cooled down
sufficiently so that the application of partonic interactions becomes questionable. Hence, if
the energy density of cell is below the critical energy density ✏c the partonic interactions
terminate and all partons in this cell stream freely. The energy density is given by the
second moment of the phase space distribution f(~x, ~p),

✏ =

Z
d3
p

(2⇡)3
E

2
�
dgfg(~x, ~p) + dqfq(~x, ~p)

�
. (7.4)

Inserting as above the equilibrium phase space distribution feq ⇠ exp (�E/T ) leads to
the energy density in equilibrium,

✏eq =
3
�
dg + dq

�

⇡
2

T
4
. (7.5)

Again, the energy density is not a Lorentz invariant quantity and hence the energy density
has to be Lorentz transformed in order to obtain the local rest frame observable. The
energy density can also be found as the T̂

00 component of the energy-momentum tensor

T̂
µ⌫ =

Z
d3
p

(2⇡)3
1

E
p
µ
p
⌫
f(~x, ~p) . (7.6)

Employing the flow velocity ~� and the Lorentz transformation rule of a tensor T̂ µ⌫
LRF =

⇤µ
↵⇤

⌫
�T̂

↵� , where ⇤µ
↵ is the Lorentz matrix, one obtains6

✏LRF = �
2
T̂

00 + �
2
�
2

xT̂
11 + �

2
�
2

y T̂
22 + �

2
�
2

z T̂
33

� 2�2�xT̂
10
� 2�2�yT̂

20
� 2�2�zT̂

30 (7.8)

+ 2�2�x�yT̂
21 + 2�2�x�zT̂

31 + 2�2�y�zT̂
32
.

The right hand side of Fig. 7.2 shows the time evolution of the local rest frame energy
density for the same ring structure at central ⌘s as for the previous number density study.
Similar to the number density the energy density is highest at early times with values
✏ ⇡ 5 · 102 GeV/fm3 in the inner core and still ✏ ⇡ 4 GeV/fm3 in very peripheral regions.
The outer regions of the collision zone are already at early stages frozen out. Since the
energy density rapidly decreases, also the inner core of the collision reaches values ✏ < ✏c

6For the discussed problem again the application of cylindrical coordinates is rewarding. Using the energy-momentum
tensor in cylindrical coordinates, one obtains

✏LRF = �2T̂ 00 � 2�2�rT̂
0r � 2�2�zT̂

z0 + �2�rT̂
rr + �2�2

z T̂
zz + 2�2�r�zT̂

zr , (7.7)

where ~� = (�r,�z) is the boost velocity in cylindrical coordinates.
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7.1 Evolution of the bulk medium

after t ⇡ 6 fm. This finding justifies the choice of simulation time t = 10 fm for the jet
quenching studies presented in this work.

Debye mass m2
D

In principle, the pQCD matrix elements of partonic processes in a hot and dense environ-
ment have to be calculated within thermal field theory. Since these formal calculations
are highly demanding to implement into a transport approach, we discussed in Chapter 3
that within BAMPS we describe scattering processes of partons within the quark-gluon
plasma by Debye-screened, vacuum pQCD matrix elements. The divergences emerging
in the internal propagators of these matrix elements are effectively screened by a thermal
mass of partons,

|M|
2
⇠

1

t̂
2

! |M|
2
⇠

1
�
t̂�m

2

D

�2 . (7.9)

Consequently, the value of the Debye mass strongly affects both the softness of momentum
transfers and, at the same time, the total rate of the different 2 ! 2 and 2 ! 3 scattering
processes. Although the Debye mass is originally derived in thermal field theory, it can
conceptually also calculated in non-equilibrium situations by the zeroth moment of the
phase space distribution: The Debye mass screening an internal gluon propagator is defined
as [Won96; XG05; Uph+12]

m
2

D = ⇡↵sdg

Z
d3
p

(2⇡)3
1

p

�
Ncfg +Nffq

�
, (7.10)

whereas the Debye mass of an internal quark propagator reads

m
2

q = 4⇡↵s
N

2

c � 1

2Nc

Z
d3
p

(2⇡)3
1

p

�
fg + fq

�
. (7.11)

In a thermal medium that obeys an equilibrated phase space distribution feq ⇠

exp (�E/T ), the corresponding Debye masses in equilibrium are

m
2

D; eq(T ) =
8↵s

⇡

�
Nc +Nf

�
T

2 (7.12)

and

m
2

q; eq(T ) =
2↵s

⇡

N
2

c � 1

Nc
T

2
. (7.13)

Different to the previously discussed densities, the Debye mass is Lorentz invariant and
hence a discussion of the reference frame in which the Debye mass is calculated is not
necessary.

Figure 7.3 shows both the gluon and quark Debye mass scaled by the QCD coupling
↵s for transversal rings in the central ⌘s slide of a central Pb + Pb collision with p

sNN =
2.76 TeV and an impact parameter b = 3.6 fm. The largest Debye mass and thereby
strongest screening of matrix elements can be found in the center of the collision at early
times, when the densities are the highest. With progressing evolution time t the Debye
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7 Jet quenching in ultra-relativistic heavy-ion collisions

masses drop from these high values m2

D/↵s ⇠ O(10 GeV) to significantly lower values
m

2

D/↵s ⇠ O
�
10−1 GeV

�
at the end of the collision. Due to the different degeneracy factors

entering the Debye mass, the gluon Debye mass is approximately one magnitude larger
than the gluon Debye mass over the entire medium evolution. In contrast to the enormous
number densities at the beginning of the collision, the larger screening from these high
Debye masses decreases the scattering rate of partons.

10-3

10-2

10-1

100

101

 0  2  4  6  8  10

Pb+Pb, ��s=2.76 TeV
b = 3.6 fm, �c = 0.6 GeV/fm3

central �s

2�2, 2 � 3
XLPM = 0.3, running �s

m
D2 /�

s [
G

eV
2 ]

t [fm]

mD;g
2/�s

mD;q
2/�s

x� < 1.5 fm
4.5 fm < x� < 5.5 fm

Figure 7.3: Time evolution of the gluon (solid line) and quark (dashed line) Debye mass calculated within
BAMPS for a ring at mid-rapidity with radius x? < 1.5 fm (red) or 4.5 fm < x? < 5.5 fm
(green) within a central psNN = 2.76 TeV Pb + Pb collision. The Debye masses were scaled
by the employed fixed QCD coupling ↵s = 0.3.

Effective temperature T

In contrast to hydrodynamical models, the microscopic transport of partons via the Boltz-
mann equation does not explicitly rely on thermal distributions in equilibrium. The
microscopic interactions do not differ between a thermalized or a strongly anisotropic
system. While this allows a simulation of non-equilibrated systems as the initial stages
of heavy-ion collisions, special attention needs to be payed when calculating equilibrium
quantities, as e.g. the temperature T , from non-equilibrated phase space distributions.
Especially, in situations far from equilibrium the definition of a temperature is not unique.

In the following, we discuss different ways to define an effective temperature T and
study differences when applied to the medium evolution in a heavy-ion collision. We have
seen that various macroscopic quantities can be derived from moments of the phase space
distribution f(~x, ~p). The respective equilibrium values could be obtained by considering
the thermal phase space distribution feq ⇠ exp (�E/T ). Combinations of these equilib-
rium quantities evaluated in the local rest frame are then proportional to the temperature
T . Assuming that the system is close to equilibrium, one may approximate effective
temperatures by inserting values for the different quantities obtained from arbitrary phase
space distribution. Depending on the employed moments one can then define different
effective temperatures:
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7.1 Evolution of the bulk medium

• From Eq. (7.3) on page 183 and Eq. (7.5) on page 184 we find that the ratio of the
number density nLRF (first moment) and the energy density ✏LRF (second moment) in
equilibrium yields the temperature of a thermal system,

Tideal =
✏LRF

3nLRF
. (7.14)

This is equivalent to the ideal gas law giving the mean energy per particle, hEi ⇠

N T , in a medium with temperature T . The numerical values for nLRF and ✏LRF
can be obtained from the microscopic phase space distribution within BAMPS via
Eq. (7.2) on page 183 and Eq. (7.4) on page 184.

• Another possible definition of temperature is via the equilibrium Debye mass m2

D,
hence only from the zeroth moment of the phase space distribution. With Eq. (7.12)
on page 185 follows

Tm
2
D
=

s
m

2

D⇡

8
�
Nc +Nf

� . (7.15)

The numerical values for m2

D can be obtained from the microscopic phase space
distribution within BAMPS via Eq. (7.10) on page 185.

• Similar to the previous effective temperature via the Debye mass, an effective tem-
perature can also be defined based on the energy density ✏LRF from Eq. (7.5) on
page 184, as

T✏ =
4

s
✏LRF⇡

2

3
�
dg + dq

� . (7.16)

The numerical values for ✏LRF can be obtained from the microscopic phase space
distribution within BAMPS via Eq. (7.8) on page 184.

• Finally, in the appendix of Ref. [AMY02a] the definition of an effective temperature
was discussed in the context of the AMY formalism in non-equilibrium situations.
One can show that this definition of temperature coincides with the ratio of the
number density nLRF and the Debye mass m2

D
7,

TAMY =
⇡

2

CFnq; LRF + CAng; LRF

m
2

D/↵s

. (7.17)

The numerical values for nLRF and m
2

D can be obtained from the microscopic phase
space distribution within BAMPS via Eq. (7.2) on page 183 and Eq. (7.10) on
page 185.

Please note that the temperature is a Lorentz invariant quantity, as e.g. the Debye mass,
and can therefore be evaluated in any reference frame.

7In the numerical simulations within BAMPS the effective temperature TAMY is calculated via TAMY =
1
2� (CFNq+CANg)

CF
P

q
1

Eq
+CA

P
g

1
Eg

, where the factor 1/� considers the boost in the local rest frame and the sums run over

all partons in a given cell or ring.
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7 Jet quenching in ultra-relativistic heavy-ion collisions

As shown in Fig. 7.4 the different temperature definitions lead to different effective
temperatures in the beginning of the collision, where the system is supposed to be far from
equilibrium. Shown is the temperature profile within two rings x? < 1.5 fm and 4.5 fm <

x? < 5.5 fm from the central ⌘s slice of a central Pb + Pb collisions with p
sNN = 2.76 TeV

and b = 3.6 fm. At early times the medium shows a very high effective temperature
T > 1 GeV in the inner collision region, which is approximately one magnitude larger
than common predictions for the critical/crossover temperature Tc ⇠ O(150 MeV) from
lattice QCD. However, we would like to note that the concept of a temperature in this
early, non-equilibrated stage is highly questionable. This issue can also be seen by the
different T evolutions from the different definitions of temperatures at this early time.
With progressing time the system then expands and consequently cools down reaching
temperatures T < O(Tc). Since we derived the various definitions for an effective
temperature from equations for a thermal system, we expect that the different temperature
definitions lead to the same temperature after the heavy-ion medium has equilibrated. An
indeed, at these later times the different temperature definitions converge to the same
temperatures what can be attributed to the thermalization of the medium. Interestingly,
the effective temperatures calculated from the ratio of two moments, Tideal and TAMY,
show significantly higher values for the effective temperature at early times than the
temperatures from the other two definitions Tm

2
D

and T✏, each employing only one moment
of the phase space distribution. Furthermore, while Tideal and TAMY show similar values for
the temperature in the inner and outer ring, Tm

2
D

and T✏ show lower temperatures in the
outer than in the inner ring.
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Figure 7.4: Time evolution of the effective temperature T calculated by different temperature definitions
(cf. text) within BAMPS for a ring at mid-rapidity with radius x? < 1.5 fm (left) or 4.5 fm <
x? < 5.5 fm (right) within a central psNN = 2.76 TeV Pb + Pb collision.

Finally, we would like to note that, while the interactions from leading-order pQCD
do not explicitly rely on a temperature, the emission rates from the AMY formalism are
calculated based on thermal field theory and therefore directly depend on the medium
temperature T . Hence, the temperature presented in this section will be an input parameter
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7.1 Evolution of the bulk medium

for the jet quenching studies via radiative processes from the AMY formalism later in this
chapter.

Chemical fugacities n/neq

After studying the thermalization of the hot and dense matter created in heavy-ion collisions
at LHC, we study in the following the chemical equilibration of the partonic medium.
Based on the previously discussed effective temperatures one can calculate via Eq. (7.3)
on page 183, the number densities of quarks and gluons that should be found in a medium
with temperature T . Relating these equilibrium values with the actual densities found in
the heavy-ion collisions then defines the chemical fugacities n/neq of quark and gluons.
Figure 7.5 shows these fugacities from the different T definitions for an inner ring with
radius x? < 1.5 fm of the central ⌘s slice of a p

sNN = 2.76 TeV Pb + Pb collision as
introduced before. Due to the difficulties when defining the temperature at early times
both the quark and gluon fugacities from the different definitions deviate at early times.
Again, at later times the equilibrium densities converge to a comparable value. In general,
one can state that the quarks are chemically under-saturated over the whole medium
evolution independent from the employed temperature definition. On the other hand,
gluons are chemically over-saturated in the various temperature scenarios. Due to the
enormous collision energy at LHC, the initial partons from the nucleon-nucleon collisions
are predominantly produced from the small-x limit in the parton distribution functions of
the nucleons. In this region, gluons are produced with a significantly higher probability
than quarks. Consequently, the over-saturation of gluons during the medium evolution can
be attributed to the enhanced production of gluons already in the initial state of the heavy-
ion collision. This chemical over-population of gluons led recently to studies investigating
the potential formation of glueballs in the heavy-ion collisions at RHIC and LHC [Stö+15;
Sto+16]. As one can find in pure Yang-Mills lattice gauge theory such matter consisting of
glueballs is supposed to show a first-order phase transition.

Local flow velocity ~�

As we already mentioned, the appropriate reference frame for evaluating most of the
previously introduced macroscopic quantities is the local rest frame of the medium, in
which flow effects of the medium vanishes. Furthermore, also the emission rates from the
AMY formalism were derived in a medium at rest. Consequently, parton momenta have to
be boosted to the local rest frame before applying the AMY emission rates. The local flow
velocity � can be calculated within BAMPS by

~� =

P
i ~piP
i Ei

, (7.18)

where the sum runs over all parton momenta in a given volume V .
Different to the previously discussed quantities, the flow velocity ~� is obviously a vector

with both magnitude and direction. Therefore, for also resolving the flow direction in non
central heavy-ion collisions, we substitute the previously employed ring structure by a
finer cell grid in (x, y, ⌘s) similar to the cell grid previously employed for calculating the
scattering probabilities within BAMPS. Since this cell grid averages over smaller regions
in configuration space, it decreases the statistics of the calculation. In order to still ensure
a sufficient statistics, we therefore calculate the flow velocity based on clusters consisting
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Figure 7.5: Time evolution of the fugacities n/neq of quarks (red) and gluons (green) calculated based
on the different temperature definitions (cf. text) within BAMPS for a ring at mid-rapidity
with radius x? < 1.5 fm within a central psNN = 2.76 TeV Pb + Pb collision.

of multiple neighboring cells. In other words, if a cell consists of an insufficient number of
partons also the partons from the direct neighboring cells are considered for the calculation
of the flow velocity within this cell. Numerical checks have shown that clusters with
a minimum number of Nmin

cell ⇠ O(30) partons show an adequate statistics to define a
reliable flow velocity. To be consistent, this cell geometry is also employed later for the
temperature entering the energy loss in heavy-ion collisions via radiative processes from
the AMY formalism.

We present in Fig. 7.6 the local flow velocity � in the central ⌘s region of a central
(b = 3.6 fm) Pb + Pb collision at LHC. While the direction of each arrow represents the
direction of the flow velocity in a given cell, its color denotes the magnitude of the flow in
this cell. In the beginning of the collision, parton momenta are given by the momentum
distribution from PYTHIA that are distributed in the circular collision zone of the central
collision. Since different nucleon-nucleon collisions are assumed to be independent from
each other, also the resulting flow velocities in each cell show a random distribution with
rather small flow. With progressing time, the radial pressure gradients in the medium rise,
what leads to a strong radial expansion of the medium. This radial expansion is strongest
in the outer region, where the medium is more dilute and hence giving the medium more
freedom to expand. At late times, the medium becomes so dilute that the clusters do
not satisfy the minimum number requirement and hence no reliable flow velocity can be
defined anymore.

In contrast to central heavy-ion collisions, more peripheral collisions show an almond
shape of the initial transversal collision zone and thereby an initial eccentricity in con-
figuration space. Also the medium simulated within BAMPS shows this eccentricity as
demonstrated in Fig. 7.7, where we present the flow velocities as before but for peripheral
collisions with impact parameter b = 10.3 fm. Again the initial flow velocities from
PYTHIA are rather small but develop with progressing time due to the increasing density
gradients. The initial asymmetric eccentricity leads to a significantly stronger flow in the
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Figure 7.6: Time evolution of the local flow velocity ~� at mid-rapidity within a central psNN = 2.76 TeV
Pb + Pb collision. Each arrow points into the direction of the flow velocity in a given cell
(cf. text). The color of the arrow corresponds to the magnitude of the flow in this cell.
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7.1 Evolution of the bulk medium

x-direction than in the perpendicular y-direction. This is reasonable because the medium
has more space to expand in this more dilute x-direction. Furthermore, again the flow
velocity is higher in the outer, more dilute regions of the collision than in the denser,
central region. While we presented in this section a more qualitative discussion of the flow
velocity, the next section discusses the built-up of flow more quantitatively in terms of the
elliptic flow v2.

7.1.3 Elliptic flow of the background medium

As introduced in Section 2.3.1 and also demonstrated qualitatively in the previous section,
the anisotropy in configuration space of the initial state in peripheral heavy-ion collisions
leads to different medium expansions in the x- and y-direction transverse to the beam axis.
Consequently, this anisotropic flow of the medium leads also to a transverse momentum
asymmetry of the partons flying within this medium. This asymmetry in the transverse
momenta px and py are supposed to be more pronounced, the stronger the interactions
between partons are. In the following we present quantitative results for this momentum
asymmetry by studying the elliptic flow v2 of partons in peripheral (b = 10.3 fm) Pb + Pb
collisions with p

sNN = 2.76 TeV. In Section 2.3.1 we have shown that the elliptic flow
v2 is the second harmonic coefficient of a Fourier expansion of the azimuthal particle
distribution dN/d�. One can show that this coefficient can be written on the particle level
as [VZ96]

v2 =
p
2

x � p
2

y

p
2

?
, (7.19)

where px and py are the momentum components of a parton in x- and y-direction, re-
spectively. The angle � is defined relative to the event plane, which is given by the plane
spanned by the beam axis and the impact parameter. While a definition of the event
plane is straight-forward in theoretical simulations, a significant part of the experimental
effort in studying the elliptic flow is attributed to the precise determination of the event
plane in the respective event. In order to circumvent this costly procedure, flow studies
in experiments are mainly employing correlations between particles, so called cumulants,
in order to describe the different flow coefficients vn. As shown in Ref. [BSV10] the
four-particle cumulant v2{4} is the cumulant closest to the theoretical description of v2
given in Eq. (7.19).

In Ref. [Uph+15] we could demonstrate that the previously chosen parameter set for the
microscopic medium interactions within BAMPS, consisting of elastic, Debye-screened
2 ! 2 and the inelastic 2 $ 3 processes obeying the ✓-LPM effect with XLPM = 0.3, are
responsible for a significant built-up of flow in the partonic phase of a heavy-ion collision.
However, due to the confinement in QCD, experiments obviously are only able to measure
the elliptic flow v2 of hadrons. On the other hand, since the current version of BAMPS lacks
a microscopic hadronization prescription, one can only calculate the flow of the medium
on the partonic level within BAMPS. Therefore, one has to be cautious when comparing the
partonic v2 with the hadronic v2 measured at LHC. One common argument to yet compare
both observables is that there is no reason to expect that a phase transition, first-order or
crossover, should affect the integrated flow within the medium8. Although this assumption
clearly needs further evidence from models incorporating a (microscopic) hadronization
of partons, we study in the following how the chosen microscopic interactions lead to a

8In other words: “What flows, that flows.”
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7 Jet quenching in ultra-relativistic heavy-ion collisions

finite elliptic flow in peripheral heavy-ion collisions and compare our simulation results to
experimental results for v2{4}.
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Figure 7.8: Centrality dependence of the integrated elliptic flow v2 from only elastic 2 ! 2 interactions
within p

sNN = 2.76 TeV Pb + Pb collisions. While the lines denote BAMPS simulations
varying crucial 2 ! 2 parameters, the points denote experimental results measured at the
LHC [CMS13a; ALI10a].

First we show in Fig. 7.8 the integrated elliptic flow v2 depending on the collision cen-
trality in terms of the number of participants Npart for BAMPS medium evolutions with only
elastic 2 ! 2 processes and neglecting any inelastic 2 $ 3 processes. While employing
a running coupling for the elastic scatterings, the pure elastic 2 ! 2 interactions show a
partonic elliptic flow that is approximately a factor ⇡ 2 smaller than the corresponding
measured elliptic flow from the experiments at LHC. Hence, medium interactions from
only elastic 2 ! 2 scatterings calculated in pQCD are not able to explain the significant
elliptic flow measured at LHC. Only after scaling the 2 ! 2 cross sections and thereby
the elastic scattering rate, �22 ! K�22, with an effective factor K = 3.5 the partonic
v2 from BAMPS is on the order of the experimental results. This still surprisingly high
flow from purely elastic interactions is mainly caused by the interplay of the four-gluon
vertex (cf. Sections 3.1 and 5.3.3) in the 2 ! 2 matrix elements and the running of the
QCD coupling at small parton energies. At these small parton energies, the 2 ! 2 cross
section of a gluon diverges due to the four-gluon vertex |M| ⇠ 1/ŝ. At the same time,
the soft momentum transfers of soft partons additionally enhance the 2 ! 2 scattering
rate via the running QCD coupling. This inclusion of the running coupling can be blamed
for approximately half of the elliptic flow from 2 ! 2 interactions as it can be seen by
comparison to the v2 from only 2 ! 2 scatterings and a fixed QCD coupling ↵s = 0.3,
which has to be scaled by K = 7 in order to reproduce the experimental results.

The strong elliptic flow from gluon interactions is also demonstrated in Fig. 7.9, where
we compare the integrated, elliptic flow depending on Npart of quarks and gluons, this
time from both elastic and inelastic 2 $ 3 medium interactions obeying the ✓-LPM
approach. The screening parameter XLPM entering the ✓-LPM approach is given by either
XLPM = 1.0 or XLPM = 0.3. While the former value effectively corresponds to pure
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Figure 7.9: Centrality dependence of the integrated elliptic flow v2 from elastic 2 ! 2 and inelastic
2 $ 3 interactions employing a running QCD coupling within p

sNN = 2.76 TeV Pb + Pb
collisions. While the different colors represent the elliptic flow of different parton species,
the line type compares two different choices for the screening entering the ✓-LPM approach.
Again, the points represent experimental results obtained at the LHC [CMS13a; ALI10a].

incoherent gluon emissions (cf. Section 5.2), the latter value agrees with the fit parameter
obtained in previous studies concerning v2 at RHIC and LHC [Uph+15]. Due to the higher
QCD color factor of gluons and the mentioned enhancement from the four-gluon vertex,
the integrated flow of gluons is indeed significantly larger than the flow of quarks for both
choices of screening parameters. The resulting total, partonic v2 is obtained by weighting
the flavor-differential flows with the distribution of the different parton species. Due to
the abundance of gluons wrt. to quarks (see the discussion about fugacities in the previous
section) the total elliptic flow of partons is closer to the gluon v2 than to the quark v2. The
inelastic 2 $ 3 processes partly compensate the K = 3.5 factor needed in the pure elastic
scenario.

As mentioned earlier, the built-up of flow strongly depends on the strength of the
medium interactions. Hence the smaller screening parameter XLPM = 0.3, which screens
less transverse momentum and thereby increases the 2 $ 3 scattering rate, shows a
stronger elliptic flow than the larger parameter XLPM = 1.0. Moreover, the choice of
the screening not only affects the scattering rate but also determines how collinear gluon
emissions may be. Therefore a smaller value of XLPM additionally enhances the built-up
of flow by emitting gluons that fly more collinear with their emitting parent partons and
thereby increase the flow in this direction. However, even the significant total flow from
XLPM = 0.3 shows approximately ⇡ 20 % less flow than the experiments at LHC. Reasons
for this deviation could be the lack of initial state fluctuations within BAMPS9 and a
potential missing after-burner from interactions in the hadronic phase of the heavy-ion

9Especially higher Fourier coefficients vn with n > 2 are sensitive to these initial state fluctuations. Since these
fluctuations are not considered within BAMPS at the moment, these coefficients are supposed to vanish in the current
BAMPS simulations and therefore we skip these studies within the present work.
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Figure 7.10: Transverse momentum p? dependence of the elliptic flow v2 of quarks (red) or gluons
(green) from either scaled (K = 3.5) elastic 2 ! 2, or elastic 2 ! 2 and inelastic
2 $ 3 interactions employing a running QCD coupling within p

sNN = 2.76 TeV Pb + Pb
collisions. Again, the points represent experimental results obtained at the LHC [CMS13a;
ALI10a].

collision. In Ref. [AP13] it could be shown that such hadronic effects may contribute up
10–15 % to the integrated, elliptic flow.

Finally, we present in Fig. 7.10 the p?-differential elliptic flow v2 of quarks and gluons
in the same peripheral Pb + Pb collision as above either from the scaled, purely elastic
interactions or elastic and inelastic processes from the ✓-LPM approach with XLPM = 0.3.
The main contribution to the flow stems from partons with p? ' 2 GeV. Again the
flow of gluons is stronger than the corresponding flow of quarks. Interestingly, the flow
from elastic interactions scaled with K = 3.5 are remarkably similar to the flow from
2 ! 2 and 2 $ 3 interactions with XLPM = 0.3 at small transverse momenta. This
indicates that the amount of flow is mainly determined by the scattering rate and not the
collinearity of gluon emissions. Only at higher parton p? the two scenarios deviate from
each other since the v2 at high p? is supposed to be more sensitive to the underlying
energy loss of partons than bulk medium effects (cf. Section 7.3.3). In the case of the
integrated elliptic flow we justified a comparison between partonic and hadronic results
by the assumed invariance under a phase transition. A similar argument does not hold
for the differential elliptic flow v2(p?). The transverse momentum of a parton should be
rather different from the corresponding hadron momentum. Since fragmentation functions
as presented in Section 7.3.1 are only valid for hard parton momenta, other descriptions
for the hadronization of soft partons have to be implemented within BAMPS in the future.
Until then, more than a qualitative comparison of partonic flow observables within BAMPS
to experimental data for the flow of hadrons should not be dared.
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7.2 Combining the hard and soft regimes of a heavy-ion collision

7.2 Combining the hard and soft regimes of a heavy-ion
collision

Unfortunately the properties of the expanding quark-gluon plasma investigated in the
previous section are not directly accessible in experiments: Due to the short lifetime of
the medium and the confinement of partons into hadrons, only the final hadronic products
of a heavy-ion collision can be measured in the detectors. As we have seen in Chapter 2,
one of the most prominent observables for investigating the medium created in Pb + Pb
collisions at LHC is jet quenching. Therefore we extend in the following sections our
studies of Chapter 6 and investigate how the previously defined different descriptions for
the non-Abelian LPM effect, ✓-LPM, stochastic LPM and AMY, influence the resulting
energy loss in expanding, partonic matter as it is expected in ultra-relativistic heavy-
ion collisions. Before presenting our numerical results for jet quenching, we outline in
this section how to appropriately generate hard events consisting of either only leading
partons—the partons with highest transverse momentum p?— or whole parton showers
that subsequently traverse the bulk medium introduced in Section 7.1.

One of the advantages of jet simulations within BAMPS is that the jet energy loss as
well as the medium evolution of a heavy-ion collision may be simulated microscopically

within one common framework. The jet partons scatter with medium partons via the
same pQCD interactions as the medium partons scatter between each other10. This is
different to other jet quenching calculations that determine the energy loss by a Monte-
Carlo procedure embedded into a macroscopically evolving hydrodynamical background.
In these approaches, the jet modification is mostly described by perturbative quantum
chromodynamics, whereas the medium evolution is given by ideal/viscous hydrodynamics.

High-p? partons originate from initial hard partonic interactions between nucleons from
the colliding nuclei. Due to momentum conservation they are, in leading order, produced
in pairs that leave the initial hard partonic process back-to-back in the transverse direction.
Already in p + p collisions the production probability for these high-p? partons and
hadrons, rapidly decreases with increasing transverse momentum p?. Reason for this rare
production is the necessary hard momentum transfers in the initial partonic interactions of
two colliding nucleons, which can be described by perturbative quantum chromodynamics.
Consequently, one finds also in a single heavy-ion collision, if at all, at most one high
energy di-jet pair, which subsequently traverses the soft bulk medium as discussed in the
previous section before reaching the detector. The measurement and simulation of these
few jet events is challenging both for experiments and theory. Simulations within a 3+1D
transport approach benefit from the availability of microscopic phase space information of
each particle at any given time. This information allows us to record and afterwards “offline
reconstruct” the bulk medium evolution of a heavy-ion collision within BAMPS. To this
end, every scattering of a parton as well as the macroscopic information presented earlier
are saved during the medium evolution. We then take advantage of this setup and embed a

posteriori high energy jets into the bulk medium at the beginning of the simulation. This
procedure significantly enhances the possible statistics since only events are simulated that
definitely contain a high-energy parton.

10Strictly speaking, this statement only holds if the ✓-LPM approach is chosen in the radiative processes of jet interactions
with the medium. However, due to the higher formation times of energetic partons, coherence effects as introduced
by the different LPM prescriptions should affect mostly the high momentum region of the parton distribution and
could in principle be neglected in the bulk medium evolution. It remains to be seen in a future study whether this
assumption is justified.
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7 Jet quenching in ultra-relativistic heavy-ion collisions

Our numerical strategy for simulating these hard events within BAMPS can be formulated
as follows:

Generating high p? partons from initial hard processes

The jet quenching observables studied within this work can be separated into two categories:
the suppression of individual parton/hadron spectra and the medium modification of whole
parton showers, which are afterwards reconstructed into jets. Depending on the specific
observable one may choose between two different descriptions for the initial state:

• When studying the suppression of single parton or hadron spectra, one is interested in
the energy and momentum loss of only the leading parton emerging from the initial
hard partonic process. Therefore it is sufficient to embed individual partons into the
recorded expanding medium while neglecting any additional initial- and final-state
state radiation of the partons (cf. Section 6.3.1). The momentum distribution of
these single partons can be modeled based on the mini-jet model [KLL87; EKL89]
extended to hard parton momenta. In the mini-jet model the production probability
of jets is given by a folding of parton distribution functions (PDFs) with the leading-
order cross sections corresponding to the factorization theorem in pQCD [CSS89].
The production cross section for a pair of jets can then be written as [WG91]

d�jet
dp2? dy1 dy2

=
X

a,b

x1fa

�
x1, p

2

?
�
x2fb

�
x2, p

2

?
� d�a!b

dt̂
, (7.20)

where yi and xi denote the momentum-space rapidity and light-cone momentum frac-
tion of parton i and d�a!b/dt̂ gives the differential cross section for the underlying
partonic process calculated in leading-order pQCD. The sum runs over all possible
parton species a and b, namely quarks and gluons. The functions fa

�
x1, p

2

?
�

and
fb

�
x2, p

2

?
�

represent the PDFs of partons a and b within either a free proton or a nu-
cleon (nPDF). In the following studies, we choose for the PDFs the well-established
CTEQ6L parametrization [Pum+02] as provided by the LHAPDF library [Buc+15].
The initial distribution in configuration space of these parton pairs is determined by
the same Glauber calculation as for the bulk medium (cf. Section 7.1.1).
By integrating the momentum distribution one can calculate via Njets(|~b|) =

�jetTAB (~b) [Uph+12] the number of jet pairs expected in a heavy-ion collision with
given impact parameter ~b, where TAB is the nuclear overlap function as discussed in
Appendix D. Since both the PDFs and the partonic cross section diverges for soft
parton momenta, an appropriate cut in the p? distribution, has to be introduced. In
previous studies [XG05; XGS08; FXG09] the mini-jet model was not only applied
to energetic jets within BAMPS but also to the initial state of the soft bulk medium.
To this end, the parton spectrum was cut at an value of p?;0 = 2 GeV, while any
softer parton production was effectively described by a K = 2 factor in Eq. (7.20).
In contrast, in the present study we apply the mini-jet model only for the embedded
jet events and we are therefore only interested in the hard part of the partonic spectra.
Furthermore, since the nuclear modification factor RAA only measures the relative
suppression between an initial and a final spectrum, we may neglect the absolute
normalization of the parton spectra and sample a fixed number of initial jets per event,
Njets ⇠ O

�
105�, based on Eq. (7.20) with an arbitrary momentum cut p?;0. This
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7.2 Combining the hard and soft regimes of a heavy-ion collision

cut then only determines the considered p? range for the simulation of jets and the
actual suppression is calculated by comparing the initial, arbitrary normalized parton
distribution with the final parton spectra after its evolution within the expanding
BAMPS medium. While this obviously prevents a quantitative comparison of the
resulting spectra to experimental results, it significantly improves the statistics in the
simulations up to arbitrary high transverse momenta. In the next section we introduce
an appropriate method for obtaining hadronic results from the partonic spectra in
order to reliably compare the spectra from BAMPS to experimental data. For more
details about the simulation strategy of leading partons within an expanding BAMPS
medium we refer to Refs. [FXG09; Foc11; Uph+12; Uph+15].

• Due to their enormous virtuality, the high-p? partons emerging from hard partonic
processes of the interacting nucleons initiate vacuum splittings in order to reduce their
virtuality and thereby form parton showers. For studying the subsequent medium
modification of parton showers traversing expanding heavy-ion media, we insert
these parton showers consisting of a leading parton and its surrounding parton cloud
into the BAMPS bulk medium evolution. As in our previous studies from Section 6.3
regarding the energy loss of reconstructed jets in a static partonic medium, the initial
vacuum splitting processes are described by PYTHIA. Therefore we initialize the
momentum distribution of shower partons by partonic p + p events from PYTHIA
that consist of two parton showers emerging from the two back-to-back partons of
the hard partonic process. In order to enhance the statistics of these di-jet events
and ensure that indeed a hard process has occurred in a given event, we choose only
PYTHIA events with an initial partonic processes from QCD (i.e. forbidding e.g.
QED processes11) that has a minimum momentum transfer p0?

12. Furthermore, this
minimum p? allows us to specify the p? region studied by the reconstructed jets. The
momenta of the partons initializing the hard partonic process are again distributed
based on the CTEQ6L [Pum+02] parton distribution functions. As in Section 6.3 the
final-state shower of the outgoing virtual partons is stopped at the typical hadronic
mass scale Q0 = 1 GeV, which is the default value within PYTHIA. Any subsequent
hadronization within PYTHIA is switched off in order to calculate the subsequent
in-medium evolution of the parton shower within BAMPS. According to our previous
procedure for embedding leading partons into the bulk medium, the spatial insertion
point of a parton shower is sampled by a Glauber modeling based on a Woods-Saxon
density profile.

Please note, that this distinction between leading partons and parton showers in the
initial state is not physical but mainly owed to the limited production probability of partons.
Simulating only the leading parton of a hard event significantly improves the numerical
efficiency for studies regarding RAA. However, due to the initial vacuum splittings both
approaches may lead to slightly different slopes both in the initial partonic spectra and
thereby also the partonic RAA. We have checked that the subsequent fragmentation into
hadrons (cf. Section 7.3.1) effectively moderates any potential differences in the resulting
RAA of charged hadrons.

11This requirement corresponds to setting MSEL = 1 in PYTHIA 6.4.
12This requirement corresponds to setting CKIN(3) = p0? in PYTHIA 6.4.
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7 Jet quenching in ultra-relativistic heavy-ion collisions

Interactions between hard jet and soft medium partons

The high-p? partons generated from the previously presented initial states are subsequently
evolved within offline recorded BAMPS events. At each time step, these partons from
the hard jet event, either only single partons or whole parton showers, interact with
medium partons that are located in the same cell based on the common BAMPS scattering
probabilities13. This embedding of hard events into a soft background medium is sometimes
called perturbative method, since one assumes that the modification of the bulk medium
due to the jets is perturbatively small. Consequently, within this setup any medium response
resulting from jet energy loss is neglected. In other words, the already recorded medium
evolution is not affected by the jet-medium interactions. Furthermore, also interactions
between jet partons are forbidden. This ignores possible effects of collective behavior
between shower particles as, e.g., Mach cone structures [Bou+14].

For studies of the leading parton suppression in terms of RAA, we are only interested in
the medium modification of individual hard partons. Consequently, after each interaction
of a jet parton with a medium parton we decide, based on the respective momentum transfer
of the scattering, which of the outgoing partons should be tagged and considered as the
corresponding outgoing hard parton further evolving within the medium. This procedure
corresponds to our studies of the non-eikonal parton evolution in a static medium presented
in Sections 6.1 and 6.2.

In contrast, reconstructed jets are calculated based on parton showers containing hard
leading partons as well as softer shower partons. As we discussed in Section 6.3 the
momentum scale of these shower partons may be on the order of the soft scale of the
underlying bulk medium. Hence, especially in studies regarding the medium modification
of reconstructed jets, an ad-hoc discrimination between soft partons of the showers and soft
partons from the underlying bulk medium becomes difficult. While the former is supposed
to contribute to the reconstructed momenta of jets, any background contamination of jets
by reconstructing thermal medium partons in the parton showers should be prohibited.
In experiments this problem of medium momentum contaminating the reconstructed
jet momenta is solved by subtracting an event-by-event averaged background medium
momentum from the reconstructed jets. Due to the microscopic information provided by the
BAMPS framework we are in principle able to discriminate between shower partons from
the initial PYTHIA events, scattered medium partons from the underlying bulk medium, and
partons from the surrounding medium that have not interacted with any parton shower (yet).
Consequently, one scenario for studying jet quenching within heavy-ion collisions with
BAMPS is to reconstruct jets based on only the medium-modified initial shower partons
and their medium-induced gluon radiation, and neglect both the recoiled medium partons
and the surrounding non-interacting bulk medium. We denote this simulation method for
reconstructed jets as “no recoil” in the following studies.

However, as we discussed in Section 6.3.5 the recoiling medium partons may have
obtained a significant amount of energy and momentum of the initial parton shower by
scattering with shower partons. If we neglect these recoiled medium partons we assume
that this momentum components instantaneously have thermalized within the bulk medium.
Depending on the specific outgoing momentum of the recoiled partons, this assumption is at
least questionable. Even recoiled partons scattered to larger angles from the reconstructed
jet axis may be transported back to the reconstructed jets by further scatterings within
the bulk medium and thereby weaken the resulting reconstructed jet energy loss. In

13In order to increase the numerical efficiency we limit the microscopic scatterings by ŝ > 1.1⇤QCD.
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7.3 Suppression of inclusive hadron spectra

Ref. [Sen+15], we studied the influence of these multiple further scatterings of recoiled
medium particles on the momentum imbalance AJ of the leading reconstructed jets in
heavy-ion collisions. We found that after an appropriate background subtraction, at least the
momentum imbalance AJ is insensitive to further scatterings of recoiled medium partons.
In order to investigate the effect of recoiling medium partons on the nuclear modification
factor Rjet

AA and jet shapes observables of reconstructed jets we define a second scenario
for studying reconstructed jets within BAMPS, which we call “with recoil+subtraction”
method in the following. This scenario is based on similar studies regarding the energy loss
of reconstructed jets in the event generator JEWEL [EZ16a] as introduced in Section 6.3.5.
Opposite to the “no recoil” method we assume in this scenario that recoiled medium partons
do not interact further but stream freely after their interaction with shower partons. At each
shower-medium interaction we keep track of both the momentum of the medium parton
before the interaction and the momentum of the parton after the interaction. The final jets
are then reconstructed based on both the medium-modified shower partons and the recoiled
medium partons. As described in Section 6.3.5 we additionally insert ultra-soft duplicates
of the scattered medium partons before the respective shower-medium interaction into the
jet clustering algorithm. If such a ghost particle is reconstructed within a jet, its momentum
before the interaction is subtracted14 from the final reconstructed jet since this momentum
represents the contamination of jets by the bulk medium. For more details about this recoil
and subsequent subtraction procedure we refer to Section 6.3.5.

Hadronization of parton spectra and reconstruction of jets

As for the bulk medium, at the moment there is no reliable microscopic description for
the hadronization of high-p? partons. One effective way to describe the hadronization on
the spectra level are fragmentation functions as introduced in Section 7.3.1. Measured in
more elementary particle collision, fragmentation functions provide probabilities for hard
partons to fragment into hadrons with a given momentum. These fragmentation functions
are applied within this work for our results of the suppression of charged hadrons in terms
of RAA presented in Section 7.3.

On the other hand, jet clustering algorithms aim to reconstruct the initial hard parton by
combining shower partons. Among the requirements for these clustering algorithm are the
collinear and infrared safety (cf. Section 2.3.2). This makes algorithms, as e.g. the anti-k?
algorithm employed in this work, robust against hadronization effects that act mostly at
soft momentum scales. Consequently, we assume that reconstructed jets on the partonic
and the hadronic level are similar and therefore obtain our results for the modification of
reconstructed jets purely on the partonic level. Whether this assumption is justified, needs
to be proven by hadronic simulations in which partonic information are available.

7.3 Suppression of inclusive hadron spectra

After we have introduced our strategy for simulating hard events within BAMPS in the
previous section, we present in this section our numerical results for jet quenching in
terms of the nuclear modification factor RAA (cf. Eq. (2.7) on page 19). To this end,
we introduce in Section 7.3.1 how hard parton spectra calculated within BAMPS can
be reliably converted to hadronic spectra via experimentally determined fragmentation
functions. These fragmented hadron spectra then allow us in Section 7.3.2 to study the
14Strictly speaking, its four-momentum is subtracted from the four-momentum of the reconstructed jet.
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7 Jet quenching in ultra-relativistic heavy-ion collisions

suppression of leading partons/hadrons in central psNN = 2.76 TeV Pb + Pb collisions
and compare it with experimental data measured at the LHC. This comparison with data
allows us to further clarify differences and similarities of the different LPM approaches.
In order to investigate how the different path length dependences of the radiative energy
loss from the different LPM approaches ends up in the final observables, we study in
Section 7.3.3 both the RAA in more peripheral Pb + Pb collisions and the elliptic flow v2 at
high transverse momentum p?. In these peripheral collisions, the path length of partons
flying in-plane (x-direction) and out-of-plane (y-direction) is significantly different, so
that the resulting energy loss of partons is supposed to be sensitive to the in-medium
path-length.

7.3.1 Fragmentation functions

For a reliable comparison of our partonic results to experimental data from LHC the parton
spectra from BAMPS have to be hadronized appropriately. To this end, we employ in the
following fragmentation functions previously studied within the BAMPS framework in the
context of jet quenching at RHIC based on the original Gunion-Bertsch approximation. For
more details about this procedure we refer to these Refs. [FXG09; Foc11].

Different to the considerations regarding the hadronization of soft partons, where effects
as recombination [Fri+03] are supposed to be dominant, energetic partons fragment into
hadrons. Although the microscopic processes of this fragmentation from partons to hadrons
are not entirely understood, one can describe the fragmentation processes effectively by
fragmentation functions (FF). The fragmentation functions Dh
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studies for the fragmentation within BAMPS [FXG09; Foc11]. Assuming the factorization
theorem from QCD, these fragmentation functions can be obtained experimentally by
global fits to experimental data from more elementary particle collisions as, e.g. e+ +
e� or p + p collisions and may be subsequently applied also in the context of heavy-ion
collisions. For the results within this work we employ the AKK15 parametrization [AKK08]
of the fragmentation functions. We have checked that the results for RAA do not depend
strongly on the specific choice of FF parametrization by calculating the RAA also for an
other parameterization (KKP parametrization [KKP00], not shown).
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where the sum runs over the different parton species i.
Before presenting numerical results for this folding we would like to discuss the draw-

15AKK stands for the authors ALBINO, KNIEHL and KRAMER.
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7.3 Suppression of inclusive hadron spectra

backs of the presented procedure of folding parton spectra with fragmentation functions.
Due to the folding any microscopic information from which parton a given hadron origi-
nates is lost. A specific hadron rather obtains probabilistic contributions from different
partons based on the respective fragmentation function. This leads to another issue, namely
that the energy and momentum of a parton is microscopically not conserved when it is
fragmented to hadrons. While it contributes with momentum fraction z to a hadron, its
remaining momentum 1� z is not considered microscopically. To solve both issues, one
could substitute the current calculation of spectra at the probabilistic level to a microscopic,
effective description of the fragmentation processes. This would allow an explicit conser-
vation of energy and moment at every fragmentation step. Since this is out of scope for the
current work, we postpone this for a future study.
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Figure 7.11: Probability for a quark (solid line) or gluon (dashed line) with transverse momentum pi? to
fragment into a charged hadron with transverse momentum ph?.

Nevertheless, in order to quantify probabilistically the origin of a hadron we show in
Fig. 7.11 the probability P

h
i (p

i
?; p

h
?) for a charged hadron h with transverse momentum p

h
?

to originate from either a quark or gluon with transverse momentum p
i
?. This probability

can be obtained by [Foc11]
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For the partonic spectra dNi/dp
2

?dy in Fig. 7.11 we employ the initial state distribution of
hard events from central Pb + Pb collisions with p

sNN = 2.76 TeV obtained by the mini-jet
model of Section 7.2. The medium modification of these parton spectra is studied in the
next section by calculating the nuclear modification factor RAA.

As already mentioned, a final hadron gets contributions from different parton flavors
and parton momenta. While a hadron with p

h
? = 10 GeV originates from a rather narrow

distribution of parton momenta peaked at pi? ⇡ 2ph?, the distribution for more energetic
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7 Jet quenching in ultra-relativistic heavy-ion collisions

hadrons with p
h
? = 50 GeV is significantly broader ranging from p

i
? ⇡ 1.6 ph? to p

i
? > 3 ph?.

Consequently, the hadronic spectrum at higher hadron momenta will be more sensitive to
effects from different parton momentum regions.
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Figure 7.12: Probability for a charged hadron with transverse momentum ph? to origin from either a
quark (red) or a gluon (green).

Depending on the hadron momentum the contributions of quarks and gluons to the
hadronic spectrum differ: while at higher hadron momentum p

h
? the quark and gluon

distribution is on the same order, hadrons with smaller momentum are predominantly
originating from a gluon. This can also be seen in Fig. 7.12, where we calculate P h(ph?) =R
dz P h

i (p
i
?; p

h
?) in order to obtain the probability for a given hadron with momentum

p
h
? to originate from a specific parton flavor. And indeed, softer charged hadrons with
p
h
? ⇡ 10 GeV originate ⇡ 80 % from gluons and only ⇡ 20 % from quarks. On the other

hand, at larger hadron momenta p
h
? > 45 GeV the role of quarks and gluons switches and

hadrons originate predominantly from quarks.

7.3.2 Suppression of hadrons in central collisions

After setting the stage in the previous sections, we present in this section the suppression
of charged hadrons from the different LPM approaches in p

sNN = 2.76 GeV Pb + Pb colli-
sions at LHC. This will allow us to check whether the chosen assumptions and parameters
for the radiative processes of partons show indeed a realistic energy loss of energetic jets
traversing the expanding hot and dense matter. Furthermore, this comparison will help
us to discriminate between the different dependences of the studied LPM approaches,
namely the different path length dependencies at small medium lengths and the differential
distribution of transverse momenta around the jets. As we discussed in Section 7.1 the
bulk medium underlying the RAA results presented in this section are simulated by both
elastic 2 ! 2 and inelastic 2 $ 3 interactions from the ✓-LPM approach with a screening
parameter XLPM = 0.3 and a microscopically running QCD coupling.

As introduced in Section 2.3.2, the nuclear modification factor RAA measures the sup-
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7.3 Suppression of inclusive hadron spectra

pression of hadron spectra by comparing the p? spectra measured in heavy-ion collisions
with the corresponding spectra in p + p collisions scaled by the number of binary nucleon
scatterings Ncoll. Within BAMPS this ratio is obtained by comparing the initial fragmented
hadron spectra based on the mini-jet model to the final hadron spectra after the simulation
in BAMPS and the subsequent fragmentation.

RAA from purely elastic interactions
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Figure 7.13: Nuclear modification factor RAA of charged hadrons calculated from only elastic 2 ! 2

interactions within central psNN = 2.76 TeV Pb + Pb collisions together with experimental
data measured by the experiments at LHC [ALI10b; CMS12e; ATL15]. The different lines
represent different parameter choices for the elastic interactions.

In Fig. 7.13 we begin our study by presenting the nuclear modification factor RAA calcu-
lated from only elastic interactions of partons and thereby neglecting any radiative energy
loss in comparison with experimental data measured by the experiments at LHC [ALI10b;
CMS12e; ATL15]. As for the elliptic flow v2, the choice of purely elastic interactions with
a running QCD coupling does not show a sufficient suppression of hadrons. Only after
enhancing the interactions of partons by increasing the elastic scattering cross section by
a K = 3.5 factor, the suppression becomes realistic. Moreover, we have seen earlier in
this work that the running QCD coupling effectively leads to an increased scattering rate
wrt. to a constant coupling ↵s = 0.3. Consequently, when choosing a fixed ↵s = 0.3 the
K factor has to increase in order to compensate the decreased scattering rate.

RAA from effective LPM approaches

We have seen in the previous discussion that elastic 2 ! 2 scatterings (with K = 1.0)
described by pQCD are insufficient for reproducing the experimental data for RAA. Hence,
we present in Fig. 7.14 results for RAA including elastic 2 ! 2 as well as the discussed
radiative processes following the effective LPM approaches, ✓-LPM and stochastic LPM, in
comparison with experimental data for central LHC collisions. For the screening parameters
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of both effective LPM approaches we chose the values XLPM = 0.05 or ⇠AMY; q
LPM = 0.01 and

⇠
AMY; g
LPM = 0.015 showing the best agreement with the differential energy loss dE/dx from

AMY (cf. Section 5.5.1). This will allow us later to bring the results into a broader context
by comparing to the RAA based on gluon emissions from AMY.
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Figure 7.14: Nuclear modification factor RAA of charged hadrons calculated with elastic 2 ! 2 and
radiative 2 ! 3 interactions employing effective LPM approaches within central psNN =

2.76 TeV Pb + Pb collisions together with experimental data measured by the experiments
at LHC [ALI10b; CMS12e; ATL15]. The screening parameter of both the ✓-LPM (red)
or stochastic LPM (green) approach is calibrated to the dE/dx of the AMY formalism
(cf. Chapter 5). The QCD coupling is either chosen by ↵s = 0.3 (solid line) or by a running
↵s (dashed line). Measured data by the experiments at LHC [ALI10b; CMS12e; ATL15] is
given by gray points.

The QCD coupling is either fixed to a constant value of ↵s = 0.3 or described by the
running QCD coupling evaluated at the microscopic scale of the respective momentum
transfers. In the constant coupling case the different LPM approaches show a similar
suppression behavior: While the hadron spectra are suppressed with RAA ⇡ 0.1 at
p? = 10 GeV, the RAA rises almost linearly with increasing p? up to RAA ⇡ 0.4 at p? =
120 GeV. However, both LPM approaches show a significantly too strong suppression
in comparison to data. This too strong suppression is even more enhanced if a running
QCD coupling is considered. While the suppression at p? ⇡ 10 GeV from the ✓-LPM
and stochastic LPM approach are similar, at higher hadron energies effects from the
finite formation time of more energetic partons enters the radiative energy loss from the
stochastic LPM approach.

At least for the ✓-LPM approach this result of a too strong suppression is not surprising
if one considers our previous results concerning RAA at RHIC and LHC, where a screening
parameter XLPM = 0.3 showed the best agreement with experimental data [Uph+15]. This
finding is recapitulated in Fig. 7.15, where we depict the RAA of charged hadrons simulated
within BAMPS via elastic and radiative processes from the ✓-LPM approach for different
screening parameters XLPM. As shown before, the value XLPM = 0.05 obtained by fitting
dE/dx to the AMY radiative energy loss strongly overshoots the suppression measured by
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experiments. On the other hand, the case XLPM = 1.0 representing gluon emissions that
are purely incoherently produced (cf. Section 5.2.1) via the employed ✓-function, show
a too mild energy loss of partons. Only an intermediate value of XLPM = 0.3, which
effectively also incorporates some pseudo-coherent gluon emissions, shows a realistic
suppression of charged hadrons. The logarithmic dependence of the radiative energy loss
on the screening parameter XLPM found in Section 5.2.2 is also identifiable in the RAA:
While increasing XLPM by a factor of 10/3 from XLPM = 0.3 to XLPM = 1.0 leads to a
⇡ 50 % weaker suppression at p? ⇡ 60 GeV, at the same p? decreasing XLPM by a factor
of 6 (from XLPM = 0.3 to XLPM = 0.05) leads also to only a ⇡ 60 % stronger suppression
of charged hadrons. In other words, the nuclear modification factor is less sensitive to
XLPM at smaller values than for larger values of the screening parameter.
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Figure 7.15: Nuclear modification factor RAA of charged hadrons within central psNN = 2.76 TeV
Pb + Pb collisions calculated with elastic 2 ! 2 and radiative 2 ! 3 interactions employing
the ✓-LPM approach with different values of screening parameter XLPM. The QCD coupling
is chosen as microscopically running. Measured data by the experiments at LHC [ALI10b;
CMS12e; ATL15] is given by gray points.

As for the ✓-LPM approach, the screening parameter ⇠LPM of the stochastic LPM can be
fitted by a comparison to experimental data. Figure 7.16 shows the suppression of charged
hadrons calculated within BAMPS while employing the stochastic LPM approach with
different values of ⇠LPM. Since we are anyhow fitting to experimental data and to simplify
things, we choose the same screening parameter for both quark and gluon projectiles. The
best agreement with data can be found for ⇠LPM = 0.05. Due to the found logarithmic
dependence of the radiative energy loss on ⇠LPM a stronger screening ⇠LPM > 0.05 leads to
less suppression, whereas a smaller value ⇠LPM < 0.05, as we have seen previously, leads
to a too strong suppression of charged hadrons.

Since at the moment there is no physical argument for a specific choice of screening
parameter, we fix these values obtained for XLPM = 0.3 and ⇠LPM = 0.05 within the
remaining work. After introducing the suppression from the AMY formalism in the next
section, we then calculate other jet quenching observables based on these set interactions
in order to find potential differences between the LPM approaches.
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Figure 7.16: Nuclear modification factor RAA of charged hadrons within central psNN = 2.76 TeV
Pb + Pb collisions calculated with elastic 2 ! 2 and radiative 2 ! 3 interactions employing
the stochastic LPM approach with different values of screening parameter ⇠LPM. The QCD
coupling is chosen as microscopically running. Measured data by the experiments at
LHC [ALI10b; CMS12e; ATL15] is given by gray points.

RAA from the AMY formalism

Both effective LPM approaches are defined completely by microscopic Bremsstrahlung
processes that do not rely on thermalized parton distributions. In contrast, the emissions
rates from the AMY formalism are calculated in a static, thermal medium. Hence, the
temperature T is the quantity defining the radiative processes within the medium and
thereby the coupling between jets and the background. Furthermore, while the microscopic
interactions via elastic scatterings and both effective approaches are evaluated in the center-
of-momentum frame of the scattering partons, such a frame obviously does not exist in a
1 $ 2 process from AMY. Here it is rather the local rest frame of the cell to which the
respective parton belongs. This frame can be obtained by boosting the partons of each
cell with the corresponding � as presented in Section 7.1.2. By boosting the partons one
explicitly considers the local flow of the bulk medium and ensures a correct application of
the AMY rates in the expanding medium.

As we have discussed in Section 7.1.2, especially during the early stages of the heavy-ion
collision an unique definition of temperature is out of reach. Therefore we calculate the
following results based on two different temperature definitions, namely the effective tem-
perature TAMY from the AMY formalism (cf. Eq. (7.17) on page 187) and the temperature
calculated via the energy density T✏ (cf. Eq. (7.16) on page 187).

In Fig. 7.17 we present our results for the suppression of charged hadrons within BAMPS
from elastic and radiative processes given by the AMY emission rates. And indeed the
different temperature definitions lead to different suppressions of charged hadrons. While
both temperature definitions show almost the same p? behavior, the definition via only
the second moment of the phase space distribution, namely T✏, leads to ⇡ 50 % less
suppression at p? = 100 GeV than the temperature definition by AMY. This result agrees
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with our previous calculation for the temperature evolution within the medium in Fig. 7.4.
We found that during almost the whole medium evolution TAMY shows higher temperature
values than the T✏ definition. Especially during the strongly non-equilibrated phase at very
early times t < 0.2 fm, the difference between both definitions is almost a factor of ⇡ 2.
The much higher temperatures in the TAMY scenario then inevitably lead to an increased
energy loss and thereby a stronger suppression of charged hadrons.
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Figure 7.17: Nuclear modification factor RAA of charged hadrons within central psNN = 2.76 TeV
Pb + Pb collisions calculated with elastic 2 ! 2 and radiative 2 ! 3 interactions employing
the 1 $ 2 processes from AMY. For the calculation of the thermal AMY emission rate the
different temperature definitions from Section 7.1.2 are applied. Furthermore, the RAA

calculated within the MARTINI [You+13; Par+16] is shown employing the AMY radiative
energy loss within a hydrodynamical background. The QCD coupling is chosen by a fixed
↵s. Measured data by the experiments at LHC [ALI10b; CMS12e; ATL15] is given by gray
points.

Furthermore, we show in Fig. 7.17 again experimental data from the experiments at the
LHC. Both temperature definitions significantly overestimate the suppression of charged
hadrons. Also the shape of RAA is flatter in the simulations, whereas the experimental
data strongly rises in the intermediate p? = 10–50 GeV region. For a further check,
we compare our numerical results to calculations from the Monte-Carlo model MAR-
TINI [SGJ09; You+13; Par+16] (cf. Section 5.1.1). Although MARTINI employs the AMY
emissions rates for jets embedded within the 3+1D viscous hydrodynamic framework
MUSIC [SJG11; STV12a; GJS13; STV12c], we expect that both approaches are supposed
to show similarities. However, without any further modification the results from BAMPS
show a ⇡ 40 % stronger suppression than MARTINI. One main reason for this difference
is the initial non-equilibrium phase of the heavy-ion collision. Since MARTINI relies on
hydrodynamics, it is only applicable after some thermalization time ⌧0. Hence, while the
AMY energy loss within MARTINI does not start before ⌧0 = 0.6 fm, partons within BAMPS
may radiate already at these early times. These emissions at the early high temperatures
significantly contribute to the energy loss within BAMPS. If also partons within BAMPS are
only allowed to radiate after ⌧0 = 0.6 fm, as shown in Fig. 7.17, this increases the RAA by
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⇡ 15–20 %. Furthermore, the results within MARTINI were obtained for a fixed coupling
↵s = 0.27. If we also choose this smaller value for the QCD coupling, the results of both
BAMPS with AMY interactions and MARTINI are comparable. This again demonstrates
the applicability of the chosen approach for incorporating the AMY emission rates in
the partonic transport approach BAMPS. However, both results slightly overestimate the
suppression measured by the experiments. At the same time the p? dependence seems to
be too flat in comparison with data, where a non-linear rise of RAA for increasing p? is
found. In Refs. [Par15; Par+16] Park et al. could demonstrate that main reasons for this
discrepancy between MARTINI and experiments can be attributed to the running of the
QCD coupling and finite size effects, or in other words finite formation times of gluons.
Different to our microscopic evaluation of the running coupling for the effective LPM
approaches, ↵s

�
Q

2
�

is calculated within MARTINI based on the transverse momentum a
gluon may accumulate during its formation time. It remains to be seen in a future study,
whether the incorporation of both effects into the AMY interactions within BAMPS can
also lead to a more realistic suppression of hadrons.

Comparison of RAA from different LPM approaches

After presenting in the previous section the suppression of charged hadrons within the
different LPM approaches we compare within this section the approaches and aim to
identify possible similarities and differences. To this end, we shows results from the
effective LPM approaches, ✓-LPM and stochastic LPM, with screening parameters fixed
in the previous section and the RAA from AMY calculated based on the more realistic
temperature definition T✏ via the energy density. The partons may radiate within the
AMY scenario only after ⌧0 = 0.6 fm, whereas in both effective approaches the partons
may radiate also at earlier times. Furthermore, while the results for the effective LPM
approaches incorporate the running of the QCD coupling, the results for the AMY rates are
given by a constant coupling ↵s = 0.3.

In Fig. 7.18 we recapitulate our results from the previous section by quantitatively
comparing the different LPM approaches side by side and to the experimental data. The
AMY emission rates lead to the strongest suppression that is approximately 50 % stronger
than both effective approaches in the studied p? range. Furthermore, the shape from AMY
is significantly flatter than both other approaches, what can be attributed to the missing
decreased interaction rates of emissions at higher parton energies due to the running QCD
coupling.

Both effective LPM approaches are comparable to the experimental data at interme-
diate p? = 20–40 GeV. However, at higher p? the stochastic LPM shows ⇡ 15 % less
suppression than the ✓-LPM approach. This different behavior originates from the LPM
effect dominating the radiative energy loss at high p?. While the stochastic LPM explicitly
considers a finite formation time of gluon emissions that especially at high p? decreases
the emission rate and thereby weakens the suppression, the ✓-LPM only suppresses the
gluon emissions via the theta function.

The presented results for the suppression of charged hadrons within BAMPS originate
from the energy loss at the partonic level. Hence, we compare in Fig. 7.19 the underlying
partonic RAA results from the different LPM approaches. We found previously that the
radiative energy loss of quarks and gluons is similar in the ✓-LPM approach due to the
employed different mean free paths of quarks and gluons in the radiative matrix elements.
On the other hand, in the stochastic LPM and AMY approaches we demonstrated that
the difference between the quark and gluon radiative energy loss is close to the ratio 9/4
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Figure 7.18: Comparison of the nuclear modification factor RAA of charged hadrons within central
p
sNN = 2.76 TeV Pb + Pb collisions calculated with elastic 2 ! 2 and radiative 2 !

3 interactions employing the different LPM approaches. The values of the screening
parameter underlying the effective LPM approaches are fixed to XLPM = 0.3 and ⇠LPM =

0.05 representing the best agreement with experimental data [ALI10b; CMS12e; ATL15].

between the QCD color factors of gluons (CA = 3) and quarks (CF = 4/3). This increased
energy loss of gluon projectiles wrt. to quark projectiles can also be found in the stronger
suppression of gluons than quarks in Fig. 7.19. Interestingly, the interplay between the
different initial spectra of quarks and gluons and the elastic and radiative energy loss
within the ✓-LPM approach also leads to a significantly stronger suppression of gluons wrt.
quarks. Furthermore, while the running QCD coupling leads to the already discussed rise
of RAA with increasing p?, the AMY approach with a constant QCD coupling leads to an
almost flat partonic suppression.

After applying fragmentation functions, the three LPM approaches show almost the
same suppression behavior: At high transverse momentum p? ' 60–80 GeV the hadron
RAA resembles the quark RAA, whereas at softer transverse momentum the hadron sup-
pression tends to the suppression of gluons. Reason for this effect is the applied choice
of fragmentation function as we shown in Fig. 7.11. Interestingly, although the radiative
energy loss from the AMY formalism leads to an almost flat partonic RAA, the different
contributions of quarks and gluon via the fragmentation function lead to a slight rise of the
hadron RAA. This rise is even more enhanced in the case of the effective LPM approaches,
where additionally the running QCD coupling is considered.

Finally, we take advantage of the employed fragmentation function and present in
Fig. 7.20 the suppression of different hadron species from the three LPM approaches
together with data from the ALICE collaboration [ALI12c]. In all three LPM approaches
the suppression of pions, kaons and protons is similar and resembles the suppression of
the previously presented results for the inclusive charged hadrons. Since the interactions
within BAMPS are not sensitive to the specific parton flavor, any difference between the
energy loss of the different hadron species would originate from the interplay of the initial
flavor distribution from the mini-jet model and the applied fragmentation functions. Our
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Figure 7.19: Comparison of the nuclear modification factor RAA of different parton species and charged
hadrons within central psNN = 2.76 TeV Pb + Pb collisions calculated with elastic 2 ! 2

and radiative 2 ! 3 interactions in the different LPM approaches. Same values of the
screening parameter underlying the effective LPM approaches as in Fig. 7.18. Measured
data by the experiments at LHC [ALI10b; CMS12e; ATL15] is given by gray points.

result agrees with the experimental data where also no difference in the suppression of
the different hadron species at high transverse momentum was found. This demonstrates
that the suppression at high transverse momentum is neither caused by a mass ordering of
hadrons nor by differences in the fragmentation of mesons and baryons [ALI12c].

7.3.3 Measuring the path-length dependence in peripheral collisions

One characteristic feature of the energy loss, we are interested to study within this work,
is the path-length dependence. As we have seen earlier, due to the finite formation of
gluon emissions the radiative energy loss from the stochastic LPM approach differs from
both other LPM approaches by its ⇠ L

2 path-length dependence in thin media. Since
different centralities represent different medium sizes and geometries, different path-length
dependences are supposed to be identifiable by comparing the suppression in central
with more peripheral collisions. Within this section we aim to investigate the path-length
dependence by studying the suppression of charged hadrons in more peripheral collisions
and the elliptic flow v2 at high transverse momentum.

Before presenting the results for the radiative processes from the different LPM ap-
proaches within BAMPS, we show in Fig. 7.21 the RAA for psNN = 2.76 TeV Pb + Pb
collisions with different centralities from only elastic 2 ! 2 scatterings scaled by K = 3.5,
which we found reproducing the RAA of central LHC collisions. The elastic interactions
within BAMPS have no length dependence, hence the resulting differential energy loss
�E depends linearly, �E ⇠ L, on the medium length L. The RAA data for the different
centralities are similar with a trend to less suppression at higher p? in more peripheral col-
lisions. In spite of the linear path-length dependence, the scaled 2 ! 2 interactions within
BAMPS, after they are calibrated to the suppression in central collisions, also reproduce the
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Figure 7.20: Comparison of the nuclear modification factor RAA of different hadron species within
central psNN = 2.76 TeV Pb + Pb collisions calculated with elastic 2 ! 2 and radiative
2 ! 3 interactions in the different LPM approaches. Same values of the screening
parameter underlying the effective LPM approaches as in Fig. 7.18. Measured data for the
different hadron species by the ALICE collaboration [ALI12c] is given by gray points.

suppression in more peripheral collisions. Obviously, the different suppression in collisions
with different centralities neither depends on the emitted gluons from radiative processes
nor on a �E ⇠ L

2 dependence predicted for the non-Abelian LPM effect but can be
described by purely (scaled) elastic scatterings. Consequently, the centrality dependence
of charged hadron suppression is completely determined by the choice of Debye-screened
2 ! 2 scatterings with a microscopically evaluated running QCD coupling.

One reason for the necessary scaling factor K = 3.5 in the elastic scenario could again
be the lack of radiative processes. In Fig. 7.22 we compare the RAA from elastic scatterings
(K = 1) and radiative processes described by the different LPM approaches for different
centralities. Although the suppression in the AMY formalism decreases for more peripheral
collisions, the overall trend of a too strong suppression in the AMY formalism is confirmed
also in more peripheral collisions. Again, the inclusion of finite size effects (cf. calculation
by Caron-Huot and Gale in Ref.Section 5.5.1) could further decrease the suppression by the
AMY rates. On the other hand, both effective LPM approaches showed a better agreement
in central collisions. With decreasing centrality, both approaches show less suppression.
However, at peripheral collisions also these two approaches show a stronger suppression
than the data. Since the stochastic LPM approach showed already less suppression in
central collision, the agreement of the stochastic LPM seems to be slightly better than the
suppression from the ✓-LPM approach.

Another observable that is supposed to be sensitive to the path-length dependence of
energy loss is the momentum asymmetry v2 = (p2x � p

2

y)/p
2

? at high transverse momentum
p?. While, at softer momentum, v2 represents the asymmetric flow of bulk medium partons
originating from the initial eccentricity (cf. Sections 2.3.1 and 7.1.3), the v2 for hard
particles may originate from the different path lengths in the almond shaped collisions
zones of peripheral collisions. In these collisions partons flying in the out-of-plane direction
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Figure 7.21: Centrality dependence of the nuclear modification factor RAA of charged hadrons within
p
sNN = 2.76 TeV Pb + Pb collisions calculated with only scaled (K = 3.5) elastic 2 ! 2

interactions. The QCD coupling is described by a running ↵s. Measured data by the
experiments at LHC [ALI10b; ALI12b; CMS12e] is given by gray points.

(in our notation the y-direction) have on average a longer in-medium path length than
partons flying perpendicular in the in-plane direction (in our notation the x-direction).
Parametric studies [BGT11; BG14] have shown in a simplified scenario that a quadratical
path-length dependence of energy loss can successfully describe the finite v2 at high p?.

Again, the experimental data for v2 at high transverse momentum can only be measured
for colorless hadrons. Consequently, we apply fragmentation functions to our partonic
results similar to our considerations for the fragmentation of parton spectra into hadronic
spectra from Section 7.3.1. For the hadronic v2 at a given p? it follows [Foc11]
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where we used the quantities defined in Section 7.3.1.
We present in Fig. 7.23 our result for the momentum asymmetry v2 at high p? from the

different LPM approaches for peripheral (b = 10.3 fm) Pb + Pb collisions together with
data measured by experiments at the LHC. Furthermore, we again depict as a baseline
the v2 from the scaled (K = 3.5), purely elastic 2 ! 2 scatterings. Both the data and
our simulations show a finite v2 for energetic hadrons with momenta p? > 10 GeV. The
interactions from the ✓-LPM approach and the scaled purely elastic interactions show the
smallest momentum asymmetry with an almost flat p? dependence in the studied p? range.
On the other hand, the finite formation time of gluon emissions in the stochastic LPM
approach leads to a slight increase of v2 with decreasing p?. The strongest momentum
asymmetry can be found in the results based on the AMY emission rates. Due to the
collinear gluon emissions within AMY the direction of emitted gluons is the same as the
direction of the parent parton. At the same time, the emission rates within AMY explicitly
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Figure 7.22: Centrality dependence of the nuclear modification factor RAA of charged hadrons within
p
sNN = 2.76 TeV Pb + Pb collisions calculated with elastic 2 ! 2 and radiative 2 !

3 interactions employing the different LPM approaches. The values of the screening
parameter underlying the effective LPM approaches are fixed to XLPM = 0.3 and ⇠LPM =

0.05 representing the best agreement with experimental data for RAA in central collisions.
The QCD coupling is either described by a running ↵s or ↵s = 0.3. Measured data by the
experiments at LHC [ALI10b; ALI12b; CMS12e] is given by gray points.

depend on the local flow of partons, which is different in the x- and y-direction. Both
effects together lead to an enhancement of the transverse momentum asymmetry in the
AMY formalism. However, all different LPM approaches within BAMPS underestimate the
asymmetry in the intermediate p? = 10–30 GeV region.
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Figure 7.23: Elliptic flow v2 of charged hadrons at large transverse momentum p? from elastic 2 ! 2

and radiative 2 ! 3 interactions based on the different LPM approaches in peripheral
p
sNN = 2.76 TeV Pb + Pb collisions together with experimental data measured at the LHC.

The values of the screening parameter underlying the effective LPM approaches are fixed
to XLPM = 0.3 and ⇠LPM = 0.05 representing the best agreement with experimental data
for RAA in central collisions. The QCD coupling is either described by a running ↵s or
↵s = 0.3. Measured data by the experiments at LHC [CMS12a; ALI12a] is given by gray
points.

7.4 Medium modification of reconstructed jets

In the previous section we studied the differences of the radiative processes from the
different LPM approaches by the modification of leading partons and hadrons. We found
that the measured suppression of charged hadron spectra in central Pb + Pb collisions
at LHC can be explained by elastic and radiative processes from both effective LPM
approaches, whereas the AMY formalism leads to a slightly stronger suppression than the
data. In the following we extend this study of jet quenching in central Pb + Pb collisions
by evolving parton showers as introduced in Section 6.3.1 within the expanding BAMPS
medium and reconstructing jets based on these showers. In contrast to the RAA of charged
hadrons, such a study of the in-medium modification of partons showers benefits from
information about the medium modification of several partons instead of only the leading
parton or hadron. Hence, also differential information about, e.g., the angular structure
of the radiative energy loss can be investigated. Furthermore, since different partons with
different energies may contribute to the same reconstructed jet, these are intrinsically
sensitive to different parton energy regions. Effects visible in the modification of only
individual partons are enhanced since they concern multiple partons reconstructed into jets.
In order to study the energy loss of reconstructed jets in expanding media we present in
Section 7.4.1 the nuclear modification factor Rjet

AA of inclusive reconstructed jet spectra
continuing previous studies of reconstructed jets in BAMPS [Sen+17]. Already in p + p
collisions, different vacuum evolutions of the parton showers originating from the initial
back-to-back partons lead to an imbalance of transverse momenta of the two leading
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7.4 Medium modification of reconstructed jets

reconstructed jets. In Section 7.4.2 we study how additional medium interactions of these
partons enhance this asymmetry and thereby carry on our studies from Ref. [Sen+15]. We
conclude this section by investigating in Section 7.4.3 the medium modification of jet
shapes in expanding media from the different LPM approaches.

7.4.1 Suppression of reconstructed jet spectra

Correspondingly to our previous studies for characterizing the energy loss of leading
partons by the suppression of parton and hadron spectra, we begin the studies of this
section by the suppression of reconstructed jet spectra in central psNN = 2.76 TeV Pb + Pb
collisions. By following the simulation strategies introduced in Section 7.2, Fig. 7.24
compares the reconstructed R

jet
AA simulated by the different LPM approaches within BAMPS

with experimental data from the ALICE [ALI15] and CMS [CMS17] experiments. Jets
are reconstructed by the anti-k? algorithm with a rather small jet resolution parameter
R = 0.2. As a baseline, we also show the corresponding R

jet
AA from the purely elastic

2 ! 2 processes scaled by K = 3.5. Please note that the measurements of ALICE and
CMS differ in the considered jet rapidity range and we present our results in the wider
rapidity range |y| < 2. Furthermore, for the results of the ALICE experiment only jets
were considered that contain a hadron with at least p? > 5 GeV. Since parton and hadron
momenta are difficult to compare we neglect this experimental prerequisite in our results
and assume that every reconstructed jet contains a hard parton.
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Figure 7.24: Nuclear modification Rjet
AA of reconstructed jets with cone radius R = 0.2 from either

scaled (K = 3.5) elastic 2 ! 2 interactions (purple) or elastic 2 ! 2 and radiative
2 ! 3 interactions based on the different LPM approaches in central psNN = 2.76 TeV
Pb + Pb collisions together with experimental data measured at the LHC. The left panel
shows the Rjet

AA without medium recoil effects, whereas the right panel considers recoiling
medium partons that are appropriately subtracted subsequently. The values of the screening
parameter underlying the effective LPM approaches are fixed to XLPM = 0.3 and ⇠LPM =

0.05 representing the best agreement with experimental data for the charged hadron Rjet
AA

in central collisions. The QCD coupling is either described by a running ↵s or ↵s = 0.3.
Measured data by the experiments at LHC [ALI15; CMS17] is given by gray points.
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7 Jet quenching in ultra-relativistic heavy-ion collisions

For both scenarios “no recoil” and “with recoil+subtraction”, the different LPM ap-
proaches as well as the scaled elastic interactions lead to a strong suppression of jet spectra
within BAMPS wrt. the initial jet spectra from PYTHIA. While this strong suppression can
also be found in the data at “softer” jet momenta p? ⇡ 50 GeV, the measured suppression
at higher jet momenta p? ⇡ 60–100 GeV decreases almost linearly before showing for
p? ' 140 GeV a flatter suppression around R

jet
AA ⇡ 0.6. In contrast, our results from the

different LPM approaches show the strong suppression R
jet
AA ⇡ 0.2–0.4 over the whole

studied p? range. We find the strongest suppression for the AMY interactions, whereas
the stochastic LPM shows the mildest suppression of reconstructed jets. Also the inclu-
sion of recoiling partons only mildly restores the reconstructed jet momenta and thereby
counteracts the strong suppression of jets. Reason for this mild effect is the rather small
jet radius employed for these results. Interestingly, the best agreement with the data at
p? ' 140 GeV can be found for the scaled elastic interactions and the stochastic LPM
approach. Obviously, the radiative processes of the ✓-LPM and AMY formalism, which
both neglect the finite size of gluon emissions, overestimate the energy loss out of the jet
cones.
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Figure 7.25: Nuclear modification Rjet
AA of reconstructed jets with R = 0.4 from either scaled (K = 3.5)

elastic 2 ! 2 interactions (purple) or elastic 2 ! 2 and radiative 2 ! 3 interactions based
on the different LPM approaches in central psNN = 2.76 TeV Pb + Pb collisions together
with experimental data measured at the LHC. Same parameters chosen as in Fig. 7.24.
Measured data by the experiments at LHC [CMS17; ATL14] is given by gray points.

After discussing R
jet
AA for a smaller jet radius, we present in Fig. 7.25 the corresponding

results for the suppression of jets reconstructed with a larger cone radius R = 0.4 together
with experimental data obtained by the ATLAS and CMS collaboration at the LHC. At
larger radii more shower momentum from larger emission angles can be reconstructed into
the jets what leads to an increased R

jet
AA over the p? range measured by the experiments. In

contrast, our simulations without recoiled medium partons are almost insensitive to the
larger choice of R. The different LPM approaches and the scaled elastic interactions show
a too strong suppression of jets with R = 0.4 when neglecting the influence of recoiling
medium partons. Only the inclusion of recoiling medium partons into the reconstructed
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7.4 Medium modification of reconstructed jets

jets leads to a visible difference of the R
jet
AA with R = 0.2 and R = 0.4. Consequently, the

R
jet
AA simulated by the scaled elastic interactions and the stochastic LPM effect can again

explain the suppression of jets at R = 0.4, whereas both other LPM approaches still show
a too strong suppression.

In order to explain the found strong suppression of reconstructed jets, we study in
Figs. 7.26 and 7.27 the average momentum loss h�p?i of reconstructed jets underlying
the previous jet Rjet

AA results. To this end, we exploit the information about the initial state
of the respective parton shower and define h�p?i = p

PYTHIA
? � p

BAMPS
? , where p

BAMPS
? is the

momentum of a final reconstructed jet after the BAMPS simulation. p
PYTHIA
? is then the

transverse momentum of the reconstructed jet from the initial state that is reconstructed
closest to the respective final jet in the � � y plane. Different to experiments, where
information about the initial state of a specific reconstructed jet are out of reach, this allows
us to calculate the actual momentum loss of reconstructed jets traversing the heavy-ion
medium.
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Figure 7.26: Mean transverse momentum loss �p? of jets reconstructed without medium recoil and
with cone radius R = 0.4 (left) or R = 0.2 (right) after traversing a central psNN =

2.76 TeV Pb + Pb collision wrt. the related unquenched reconstructed jet from PYTHIA with
transverse momentum pPYTHIA

? . The jets interact with the medium by either only scaled
(K = 3.5) elastic interactions or elastic and radiative interactions employing the different
LPM approaches.

Figure 7.26 shows the average momentum loss of reconstructed jets for both employed
cone radii R = 0.2 and R = 0.4 without recoiling medium partons. In agreement with our
results for the suppression of jets, we find that the momentum loss of reconstructed jets
is strongest for the radiative processes from the AMY formalism, whereas the stochastic
LPM approach shows the mildest jet momentum loss. Furthermore, as the R

jet
AA, also the

momentum loss of jets calculated within BAMPS is rather insensitive to the difference of
both employed cone radii. We found previously that one characteristics of the LPM effect
in QCD is the energy dependence �E ⇠

p
E of jet energy loss. This dependence can also

be found in the p? dependence of the average jet momentum loss from the different LPM
approaches as denoted by fits ⇠ p

p?. Interestingly, the interplay of energy loss of the
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7 Jet quenching in ultra-relativistic heavy-ion collisions

leading parton and transport of partons out of the reconstructed jets also leads to this
p
E

dependence in the pure elastic scenario, where obviously no LPM effect is considered.
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Figure 7.27: Mean transverse momentum loss �p? of jets reconstructed with medium recoil and
cone radius R = 0.4 (left) or R = 0.2 (right) after traversing a central psNN = 2.76 TeV
Pb + Pb collision wrt. the related unquenched reconstructed jet from PYTHIA with transverse
momentum pPYTHIA

? . The lines correspond to the fit results obtained without medium recoil
in Fig. 7.26. Again, the jets interact with the medium by either only scaled (K = 3.5) elastic
interactions or elastic and radiative interactions employing the different LPM approaches.

Finally, we compare in Fig. 7.27 the fitted p? dependence of h�p?i from Fig. 7.26
without recoil to the average momentum loss of the different approaches when considering
recoiling medium partons. While the recoil has almost no effect to the momentum loss of
AMY interactions, where in the effective 1 $ 2 processes no recoiling partons are present,
the momentum loss is significantly decreased in the other approaches. Especially the scaled
elastic interactions benefit due to the increased scattering rate from the effect of recoiling
medium partons. Furthermore, with increasing cone radius R more recoiling medium
partons at larger angles can be restored within the jets. Consequently, the recoil effect is
stronger for jets reconstructed with R = 0.4 than for the smaller jet radius R = 0.2.

7.4.2 Momentum asymmetry of reconstructed jets within BAMPS

After characterizing the different medium modification of reconstructed jets from the
LPM approaches in terms of the suppression of individual jets, we briefly present in this
section results for the momentum imbalance AJ of the leading reconstructed jets in central
p
sNN = 2.76 TeV Pb + Pb events at the LHC. Already in p + p collisions, the two parton

showers originating from the virtual partons of hard partonic process differ due to the
stochastic nature of QCD splittings. This difference can be characterized by the momentum
imbalance AJ defined as

AJ =
p?; leading � p?; subleading

p?; leading + p?; subleading
, (7.25)
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7.4 Medium modification of reconstructed jets

where p?; leading (p?; subleading) is the transverse momentum of the reconstructed jet with the
highest (second highest) p?. After traversing the bulk medium of a heavy-ion collision this
initial momentum imbalance could be in principle enhanced by the different in-medium
path lengths of both parton showers. We found previously in Ref. [Sen+15] for the
radiative processes from the ✓-LPM effect that the resulting momentum imbalance is
mainly determined by the imbalance already present in the initial AJ distribution from
PYTHIA and not by the difference in path length given by the initial spatial production
point. In this section we check whether this result still holds for the other LPM approaches
studied within this work. For more details about the calculation of AJ and especially the
consideration of detector effects we refer to Ref. [Sen+15].
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Figure 7.28: Momentum asymmetry AJ of the two leading reconstructed jets from either scaled (K =

3.5) elastic 2 ! 2 interactions (purple) or elastic 2 ! 2 and radiative 2 ! 3 interactions
based on the different LPM approaches in central psNN = 2.76 TeV Pb + Pb collisions
together with experimental data measured at the LHC. Same parameters chosen as in
Figs. 7.24 and 7.25. The left panel shows the AJ distribution without medium recoil
effects, whereas the right panel considers recoiling medium partons that are appropriately
subtracted subsequently. Measured data by the CMS experiment at LHC [CMS11b] for
the momentum imbalance in p + p collisions is given by gray bars, whereas the results
measured in Pb + Pb collisions is denoted by gray points.

Figure 7.28 compares the normalized distribution of AJ from the different LPM ap-
proaches and the scaled elastic interactions to experimental data obtained by the CMS
collaboration. Jets are reconstructed with a cone radius R = 0.3 in the rapidity region
|y| < 2. We employ the same trigger conditions as defined by the experimental study.
While the left panel shows calculations without recoil, the right panel includes also the
recoiling medium partons whose medium momenta are appropriately subtracted. The final
reconstructed jet momenta were smeared by a Gaussian ⇠

p
p? obtained by a compari-

son of the initial PYTHIA distribution with results for psNN = 2.76 TeV p + p collisions
(cf. Ref. [Sen+15]). As already suspected, the distribution of momentum imbalance is
rather insensitive to the specific energy loss of the parton showers. Both effective LPM
approaches as well as the scaled elastic interactions show a realistic distribution of AJ,
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7 Jet quenching in ultra-relativistic heavy-ion collisions

both with and without recoiling medium partons. Only the radiative process from the AMY
formalism show a slightly too strong enhancement of events at values AJ ' 0.3. This is in
accordance with AJ results from the MARTINI framework, where the best agreement with
data was found for slightly smaller values of the QCD coupling ↵s = 0.25–0.3 [You+11a].

The similarity of AJ calculated by the broad range of different assumptions about the
underlying partonic energy loss confirms our previous results in Ref. [Sen+15]. The result-
ing momentum imbalance of leading jets is mainly caused by the momentum imbalance
already present in the initial state that is further enhanced by the in-medium interactions.
The physical relevance of AJ as an observable for studying the characteristics of final-state
jet energy loss is therefore at least questionable.

7.4.3 Modification of jet shapes in heavy-ion collisions

After studying the different LPM approaches in terms of Rjet
AA and the momentum imbalance

AJ we conclude this section by extending our previous studies from Section 6.3 regarding
the medium modification of shower shapes ⇢̂(r). We found that the shower shapes from
the different LPM approaches look similar when considering recoil effects of the scattered
medium partons.

In this section we investigate whether this finding still holds in the expanding medium
of heavy-ion collisions. To this end, we calculate in this section the jet shapes ⇢(r) defined
as [CMS13b]

⇢(r) =
1

Njets

X

jets

1

�r

X

ri2[r��/2,r+�/2)

p?
i
parton

p
jet
?

. (7.26)

After normalizing the jet shape distribution to the cone radius R, it represents the distribu-
tion of momentum around the jet axis within the reconstructed jets. Different to the shower
shapes defined in Eq. (6.4) on page 163, jet shapes relate the distribution of momenta
around the jet axis to the respective reconstructed final jet momenta and not to the initial

shower-initiating parton. This allows to apply the concept of jet shapes also in experimental
studies concerning jet quenching in ultra-relativistic heavy-ion collisions. By comparing
jet shape distributions ⇢(r) from p + p collisions with distributions measured in Pb + Pb
collisions, one aims to identify characteristics of the underlying processes leading to the
observed medium modification of jets.

In Fig. 7.29 we present results for the ratio of jet shapes simulated by the different
LPM approaches within central (b = 3.6 fm) BAMPS events and the corresponding initial
jet shapes from the PYTHIA initial state before the BAMPS evolution. While the left
panel shows the jet shape ratio without recoiling medium partons, the right panel includes
recoiling medium partons, whose medium contamination is subtracted from the jet shape
distribution. These ratios are compared to experimental data obtained by the CMS collabo-
ration in 0–10 % Pb + Pb collisions with p

sNN = 2.76 TeV. As in the static medium, the
different LPM approaches show similar medium modifications of ⇢(r). While the inner
core r < 0.05 of jets is almost unmodified wrt. PYTHIA, the medium interactions of the
parton showers lead to a significant enhancement of momenta at larger angles from the jet
axis. This enhancement is even stronger when also considering recoiling medium partons
that mostly contribute at these larger angles to the reconstructed jets. When considering
the medium recoil, the stochastic LPM approach shows the strongest enhancement of
momenta at large angles r ⇠ O(R). Reason for this enhancement in the stochastic LPM
approach is the more transverse emission rate d�/dk? found in Section 5.5. In contrast,
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Figure 7.29: Medium modification of the jet shapes ⇢(r) of reconstructed jets with cone radius R = 0.3
from either scaled (K = 3.5) elastic 2 ! 2 interactions (purple) or elastic 2 ! 2 and
radiative 2 ! 3 interactions based on the different LPM approaches in central psNN =

2.76 TeV Pb + Pb collisions together with experimental data measured at the LHC. Same
parameters chosen as in Figs. 7.24, 7.25 and 7.28. The left panel shows the jet shapes
without medium recoil effects, whereas the right panel considers recoiling medium partons
that are appropriately subtracted subsequently. Measured data by the CMS experiment at
LHC [CMS13b] is given by gray points.

the pure elastic interactions scaled by K = 3.5 differ from the radiative processes of the
different LPM approaches by showing a depletion of momentum at larger angles r > 0.15
when neglecting the medium recoil. This depletion is caused by the strong 2 ! 2 transport
of initial shower partons to large angles out of the jet cones, which are not replenished by
radiative processes of the hard partons. Only after including the recoiling medium partons
this depletion is recovered by recoiled medium partons at this angles that are reconstructed
within the jets leading to similar jet shape ratios as in the radiative scenarios from the
different LPM approaches. In general, both the scaled elastic interactions and the radiative
interactions from the different LPM approaches explain the jet shape modification at small
to intermediate angles but overestimate the modification at larger angles r ! R.

In order to further elaborate on the underlying mechanisms leading to the medium
modification of jet shapes we show in Fig. 7.30 the jet shapes from the different LPM
approaches underlying Fig. 7.29 in the broader range r 2 [0; 1] and compare them with the
initial jet shapes from PYTHIA. For the different LPM effects, already the jet shapes without
recoil show an enhancement of momenta at angles r > R wrt. the distribution from PYTHIA.
This enhancement is caused by the radiative processes either emitting partons directly to
larger angles (effective LPM approaches) or emitting collinear partons that are subsequently
transported to this larger angles (AMY). In contrast, the pure elastic interactions show a
depletion of partons at large angle r > R wrt. PYTHIA, again demonstrating the strong
transport of initial partons to larger angles relative to the jet axis.

Furthermore, we show in Fig. 7.30 both jet shape distributions from straight-forwardly
considering the recoiling medium partons without subtracting the medium contamination
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Figure 7.30: Comparison of the different contributions to the medium-modified jet shapes ⇢(r) of jets
reconstructed with cone radius R = 0.3 from either scaled (K = 3.5) elastic 2 ! 2

interactions (purple, left panel) or elastic 2 ! 2 and radiative 2 ! 3 interactions based
on the different LPM approaches in central psNN = 2.76 TeV Pb + Pb collisions. Same
parameters chosen as in Fig. 7.29. In addition, the unmodified jet shape distribution directly
from PYTHIA simulations are given by blue lines.

and after subtracting the medium contamination. This medium contamination is strongest
at larger angles from the jet axis. On the other hand, the core of the jet consists of almost
only shower partons. The recoiled medium partons contribute mostly in the intermediate
region R < r < 0.6. Only the jet shapes from the scaled elastic interactions get significant
contributions from recoiling medium partons also at larger angles r > 0.6.
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8 Conclusion

In this chapter we summarize the studies undertaken in this thesis and highlight the main
findings about the implementation of the non-Abelian LPM effect into a partonic transport
approach. Finally, we conclude this work by giving suggestions for future studies regarding
jet quenching in BAMPS.

8.1 Summary

Ultra-relativistic heavy-ion collisions are the tool for investigating hot and dense QCD
matter as it is supposed to have existed in the early phases of the universe. Among the
most promising observables for studying this quark-gluon plasma is jet quenching—the
energy and momentum loss of high energetic partons that traverse the expanding heavy-ion
collision. Measuring the strength of jet quenching then reveals information about the
characteristics and properties of the produced matter. In this work jet quenching has
been studied in the partonic transport approach BAMPS. BAMPS numerically solves the
3+1-dimensional Boltzmann equation for partons on the mass shell by considering both
binary 2 ! 2 interactions described by leading-order perturbative QCD and radiative
2 ! 3 processes calculated in an improved Gunion-Bertsch approximation. In order to
cure divergences emerging from the internal gluon and quark propagators, Debye masses
are introduced that effectively screen the interactions within the hot partonic environment.
One of the advantages of BAMPS is the possibility to describe both jet quenching and the
evolution of the underlying bulk medium based on the same microscopic interactions.

When considering radiative processes of high energy partons in a medium, coherence
effects as the Landau-Pomeranchuk-Migdal (LPM) effect are crucial for the resulting jet
energy loss. Due to the finite formation time of emissions, subsequent scattering processes
may act coherently and thereby suppress further emissions. While this effect can be found
for both photon and gluon emissions, the emitted gluons from radiative QCD processes
are allowed to scatter themselves with the surrounding medium so that the formation time
of the emissions may be further modified after the emission. Consequently, analytical
calculations for the non-Abelian LPM effect show characteristic dependencies of, e.g., the
gluon emission spectrum d�/d! ⇠ !

�3/2 at high gluon energies or the radiative energy
loss dE/dx ⇠ L in thin and dE/dx ⇠ const. in thick media.

Furthermore, an emission process obeying the LPM effect cannot be regarded as local-
ized but only as extended over a finite region of space. This finite formation time then
complicates a formal treatment of the LPM effect within transport approaches, where
interactions are assumed to be local. Therefore a main goal of this work was the systematic
study of different approaches for implementing the LPM effect in the partonic transport ap-
proach BAMPS. To this end, we compared three different descriptions for the non-Abelian
LPM effect in three different energy loss scenarios: first we examined the energy loss of
an eikonal projectile traversing a static and thermal brick of quark-gluon plasma, then the
corresponding case of a non-eikonal projectile, and finally the energy loss of jets within
the expanding medium of an ultra-relativistic heavy-ion collision.
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Energy loss in the eikonal limit

Our assumptions and results for the radiative energy loss of an eikonal projectile obeying
the different LPM approaches can be summarized as follows:

• In previous studies, the ✓-LPM approach was the only implementation for effectively
considering the LPM effect within BAMPS. By introducing a theta function in the
radiative matrix elements underlying the 2 $ 3 processes, the ✓-LPM approach
ensures that only emissions are allowed whose formation time is shorter than the
mean free path to the next scattering processes. This treatment then corresponds to
the incoherent (Bethe-Heitler) case of gluon emissions. After iterating the mean free
path of an emission, we find that indeed already these “incoherent” processes show
a d�/d! ⇠ !

�3/2 and a dE/dx ⇠
p
E dependence, which are both characteristic

for the non-Abelian LPM effect. However, although the formation time of gluon
emissions is considered via the theta function, gluons are produced instantaneously at
the position of the initial 2 ! 3 process. Therefore the ✓-LPM effects lacks any finite
formation time effects and thereby shows a dE/dx ⇠ const. behavior independent
from the medium length L.
In order to effectively consider also the coherence of gluon emissions, we introduce
the screening parameter XLPM controlling the soft-k? divergence of the 2 ! 3 pro-
cess in the improved Gunion-Bertsch approximation. Although the individual gluons
are still produced incoherently in the 2 ! 3 process, a smaller XLPM effectively
increases the emission rate by opening the phase space for gluon emissions. The
interplay between this screening and the employed theta function leads to a logarith-
mic dependence of the resulting radiative energy loss in the ✓-LPM approach on the
parameter XLPM.

• In contrast to the previous ✓-LPM effect, the stochastic LPM effect (sLPM) explicitly
considers the finite formation time of gluon emissions by replacing the mean free
path between scatterings by microscopic 2 ! 2 scatterings of the gluons during their
formation time. Following previous studies [ZSW09; ZSW11; ZW12; KXB18b],
the stochastic LPM approach then interpolates between the coherent and incoherent
case by stochastically suppressing a posteriori radiation processes depending on the
number of elastic scatterings necessary for forming the emitted gluons.
Before calculating the actual radiative jet energy loss, we validated our description
of the Monte-Carlo algorithm by using a simplified setup of constant elastic and
radiative interactions (constant mean free paths �, constant momentum transfers
q
2

?, . . . ). By varying these simplified interactions we demonstrated that the sLPM
approach indeed shows the expected analytical dependencies of the non-Abelian
LPM effect for different medium lengths L and projectile energies E.
On the contrary, the 2 ! 2 interactions as calculated in leading-order pQCD and
considered in the usual BAMPS framework are not constant but follow distributions
depending on, e.g., the CoM energy

p
ŝ of the respective microscopic scattering.

Therefore we further clarified these dependencies by investigating the capability of
elastic scatterings within BAMPS to broaden the transverse momentum of gluons
during their formation time. To this end, we compared our Debye-screened 2 !

2 processes to the differential elastic scattering rate calculated within the HTL
approximation and find that the Debye-screening within BAMPS leads to a significant
reduction of soft momentum transfers q2? / T

2, whereas the large-angle scatterings
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(q2? > T
2) are comparable to the HTL calculation. Moreover, we studied the energy

dependence of the elastic scattering rate �22 and the mean momentum transfer hq2?i
for Debye-screened 2 ! 2 scatterings. We find that the four-gluon vertex of the
process gg ! gg, which is implicitly considered in our choice of pQCD matrix
elements and neglected in the t-channel dominated HTL calculations, leads to a
diverging scattering rate and thereby a diverging momentum broadening coefficient
q̂ at small gluon energies. On the other hand, at larger gluon energies (! � mD) we
are able to reproduce the common q̂ ⇠ log (!/T ) behavior. We further confirmed
these findings by calculating q̂ with a semi-analytical formalism employing the same
choice of pQCD interactions. This allowed us to further discriminate between the
contributions of different partonic processes to the total momentum broadening q̂.
Furthermore, also the 2 ! 3 Bremsstrahlung processes calculated in an improved
Gunion-Bertsch approximation are not constant but show characteristic distributions
for, e.g., the transverse gluon momenta k?. While the k?-divergence of the Gunion-
Bertsch matrix element is effectively screened via the theta function in the ✓-LPM
approach, same arguments do not hold anymore for the stochastic LPM approach.
Hence, we introduced by the screening parameter ⇠LPM, which is defined via k?; min =
⇠LPM

p
ŝ, a similar effective screening of infrared transverse momenta to the stochastic

LPM approach and studied its dependencies while neglecting any LPM suppression
from the sLPM algorithm. This allowed us to demonstrate that the differential
emission rate from purely the Gunion-Bertsch matrix element together with the
⇠LPM screening shows the expected d�/d! ⇠ 1/! (Bethe-Heitler) limit for gluon
emissions.
In order to further clarify the interplay between the stochastic LPM algorithm and
the 2 ! 2 and 2 ! 3 processes from BAMPS, we calculated the differential emission
rates d�/d! and d�/dk?, and the differential radiative energy loss dE/dx of an
eikonal projectile with energy E traversing a static medium with length L. While at
intermediate gluon energies the stochastic suppression of gluon emissions reproduces
the expected d�/d! ⇠ !

�3/2 behavior of the non-Abelian LPM effect, the resulting
d�/d! shows differences to the analytical expectations at both small and large
gluon energies due to the initial 2 ! 3 process: at small gluon energies the rate
is suppressed due to the introduced effective k? screening , whereas at high gluon
energies the available phase space of a 2 ! 3 process forbids emissions with
! ! E. Moreover, the finite formation time of gluon emissions leads to the expected
dE/dx ⇠ L behavior in thin media and the dE/dx ⇠ const. dependence in thick
media. As in the ✓-LPM approach, the radiative energy loss in the stochastic LPM
approaches depends logarithmically (dE/dx ⇠ log (1/⇠LPM)) on the introduced
screening parameter ⇠LPM.

• While both effective LPM approaches, the ✓-LPM and stochastic LPM methods,
rely on screening parameters for curing the k? divergence originating in the Gunion-
Bertsch matrix element, other pQCD calculations for gluon radiation prevent this
divergence by resumming an infinite number of emission diagrams. One of these
approaches is the AMY formalism, which is a thermal field theory calculation for
gluon emission. Assuming a clear separation of scales, one can show within AMY
that the transverse momentum of gluon emissions is of order k? ⇠ O(gsT ), which
can be neglected in the small coupling limit. In the course of this work, we recal-
culated the collinear gluon emission rate from AMY and implemented it into the
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BAMPS framework. In contrast to both other LPM approaches, the 1 $ 2 processes
from AMY are defined by an emission rate, which is in general only valid in a
thermal system with infinite medium length. Consequently, the resulting emission
rate from AMY shows the expected d�/d! ⇠ !

�3/2 behavior of the non-Abelian
LPM effect but lacks the correct limit of radiative energy loss in thin media. We
confirmed our implementation of AMY into the BAMPS framework by comparing
it to MARTINI, which is an other model implementing the AMY emission rate into
dynamical simulations of the quark-gluon plasma.

After introducing the different descriptions for the LPM effect in a partonic transport
approach, we further studied the non-Abelian LPM effect within BAMPS by comparing the
LPM methods. Since there is no physical argument for a specific choice of the screening
parameters underlying the effective LPM approaches, we first determined their values by a
comparison between their differential energy losses dE/dx(E) in thick media with the
corresponding energy loss within AMY. While we found the best agreement in the ✓-LPM
approach for XAMY

LPM = 0.05, the screening parameters in the stochastic LPM approach
are determined to ⇠AMY; g

LPM = 0.015 for eikonal gluon and ⇠AMY; q
LPM = 0.01 for eikonal quark

projectiles. However, although the radiative energy losses are calibrated to each other,
the underlying emission rates d�/d! and d�/dk? show significant differences: While
the AMY formalism shows a diverging emission rate at both ! ! 0 and ! ! E, both
effective approaches have vanishing rates at small and high gluon energies. Reasons for
these differences are different assumptions about the underlying elastic interactions of
gluons during their formation time (Debye-screened 2 ! 2 processes vs. HTL elastic
scatterings), the screening of collinear gluon emissions (screening with minimum k?
vs. resummation of ladder diagrams) and the initial gluon emission process (2 ! 3
Bremsstrahlung process vs. 1 ! 2 DGLAP emission). The stochastic LPM approach
differs from both other approaches by explicitly considering the finite formation time of
gluon emissions and therefore showing a different behavior at small medium lengths wrt.
to the AMY formalism and the ✓-LPM approach. Due to the microscopic interactions
of gluons during their formation time, the rate d�/dk? shows a thermal distribution in
the stochastic LPM approach, whereas the ✓-LPM allows significantly smaller transverse
momenta. Furthermore, the stochastic suppression of gluons leads to less, harder gluon
emissions in the stochastic LPM approach, whereas the ✓-LPM approach has a softer and
higher gluon emission rate.

Energy loss of non-eikonal projectiles and medium modification of parton
showers

While the previous results were obtained for eikonal projectiles traversing a static quark-
gluon plasma, we further compared the different LPM approaches in the case of non-
eikonal projectiles. Such projectiles degrade their energy while traversing the medium and
therefore the time dependence of their projectile energy can be understood as a convolution
of the energy loss at different projectile energies. As expected, the contribution of elastic
2 ! 2 scatterings to the total energy loss of high energy partons is found to be minor
wrt. the radiative energy loss. When comparing the LPM descriptions in the non-eikonal
scenario, projectiles suffering from radiative energy loss via the ✓-LPM approach lose
energy most rapidly. On the contrary, the radiative energy loss from the AMY formalism
and the stochastic LPM approach are surprisingly similar: While in the AMY formalism
the divergences at small and large ! lead to an “all-or-nothing” kind of energy loss, the
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finite formation time in the stochastic LPM method delays the radiative energy loss via
collinear and high energy gluons to later times. In all three methods, gluon projectiles
lose significantly faster energy than corresponding quark projectiles due to their increased
QCD color factors.

In order to further characterize the distribution of gluon radiation around the projectiles,
we extended our study of the different LPM descriptions by investigating the medium
modification of parton showers consisting of a leading parton projectile together with its
surrounding parton cloud. To this end, we reconstructed jets with the anti-k? algorithm
and a resolution R = 0.3 based on parton showers originating from vacuum splittings
modeled by the event generator PYTHIA that are subsequently evolved within a static and
thermal brick of quark-gluon plasma. The in-medium modification of parton showers was
then quantified by either the reconstructed jet energy or the modification of shower shapes
⇢̂(r) measuring the distribution of energy around the reconstructed jet axis. In contrast
to the case of an individual high energy projectile, the medium modification of parton
showers is a multi-particle effect based on different mechanisms:

• The individual shower partons lose energy via elastic 2 ! 2 scatterings and medium-
induced gluon radiation. Depending on their transverse momenta, these radiated
gluons are either emitted out of the reconstructed jets and thereby contribute to the
jet energy loss (✓-LPM and stochastic LPM) or stay close to the jet axis leaving the
reconstructed jet energy unmodified (AMY).

• Both the initial vacuum and the medium-induced gluon radiation are transported to
larger angles via further elastic scatterings and thereby increase the energy loss of
the reconstructed jets.

• On the other hand, the recoiled medium partons from elastic 2 ! 2 scatterings of
shower partons may stay close to the reconstructed jet axis and therefore weaken the
final jet energy loss.

We find that already the pure medium-induced gluon radiation from the different LPM
approaches leads to different evolutions of the reconstructed jet energy. Due to the
finite transverse momentum of gluon emissions both effective LPM approaches show a
degradation of jet energy with increasing time. Again, the ✓-LPM loses energy more
rapidly than the stochastic LPM approach with finite formation time. In contrast, the AMY
formalism shows almost no jet energy loss for the specific choice of resolution parameter
R = 0.3. Reason for this reduced jet energy loss is the collinearity of medium-induced
gluon radiation in the AMY formalism. Only after allowing the emitted gluons to scatter
elastically, also the 1 $ 2 processes from AMY lead to a transport of energy out of the jet
cones. In all three LPM descriptions, shower partons and medium-induced gluon radiation
are transported via elastic scatterings to large angles out of the jet cone. The similarity
of reconstructed jet energy loss between the different LPM approaches is even further
enhanced when additionally considering recoiling medium partons. Consequently, both the
jet energy and the underlying shower shape distributions of the different LPM approaches
are rather similar in the case of a parton shower traversing a static and thermal medium.

Jet quenching in expanding heavy-ion media

As mentioned previously, due to the finite lifetime of a heavy-ion collision, experiments
rely on theoretical simulations for determining the properties of the produced hot and
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scaled 2 ! 2 ✓-LPM stochastic LPM AMY

parameter K = 3.5 Xexp
LPM = 0.3 ⇠exp

LPM = 0.05 -
QCD coupling running ↵s running ↵s running ↵s ↵s = 0.3

RAA in central collisions 3 3 3 7
RAA for different hadron species 3 3 3 3
Centrality dependence of RAA 3 (3) 3 7
v2 at high p? 7 7 7 7

Jet RAA with R = 0.2
· · · without recoil 7 7 7 7
· · · with recoil+subtraction 3 7 3 7

Jet Rjet
AA with R = 0.4

· · · without recoil 7 7 7 7
· · · with recoil+subtraction 3 7 3 7

Momentum asymmetry Aj

· · · without recoil 3 3 3 7
· · · with recoil + subtraction 3 3 3 7

Jet shapes ⇢(r)
· · · without recoil 7 7 7 7
· · · with recoil + subtraction 7 7 7 7

Table 8.1: Comparison of our results for jet quenching observables in heavy-ion collisions from either
scaled elastic processes or the different LPM approaches.

dense matter. Therefore we calculated macroscopic quantities of the expanding heavy-
ion medium, as e.g. densities or temperatures, based on microscopic distributions that
are initialized by a superposition of multiple nucleon-nucleon interactions from PYTHIA
and subsequently evolved within BAMPS by both 2 ! 2 and 2 $ 3 (from the ✓-LPM
approach) processes. We find that the initially high number (n ⇠ O

�
102 fm−3�) and

energy densities (✏ ⇠ O
�
102 GeV fm−3�) within the bulk medium rapidly decrease due

to the strong expansion of the medium. Since temperatures are only valid in equilibrated
situations and especially the early stage of the heavy-ion collision is expected to be far
from equilibrium, we apply different definitions for calculating effective temperatures,
which are later crucial for simulating jet quenching via the AMY formalism, and find
values of T ⇠ O(1 GeV) in the center of the collision. Furthermore, the microscopic
interactions within the medium lead to strong flows in the partonic phase of the heavy-ion
collision, which transfer the spatial eccentricity of peripheral collisions to a momentum
anisotropy of the partons and finally hadrons. We find that both scaled 2 ! 2 interactions,
and elastic 2 ! 2 and inelastic 2 $ 3 interactions obeying the ✓-LPM approach with
XLPM = 0.3 lead to a significant partonic flow within BAMPS, which is comparable to the
measurements for the hadronic elliptic flow v2 at LHC.

After investigating the non-Abelian LPM effect in the rather academic scenario of
projectiles traversing a static brick of quark-gluon plasma, we continued our study of
the different LPM methods in the expanding bulk medium of ultra-relativistic heavy-ion
collisions. By comparing our simulation results for various jet quenching observables
to experimental data measured in central and peripheral Pb + Pb collisions with p

sNN =
2.76 TeV at LHC, we aimed to further differentiate between the LPM methods under
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realistic circumstance. Our simulation results from the different LPM approaches for
various jet quenching observables in heavy-ion collisions are summarized in Table 8.1.

In contrast to soft observables as the elliptic flow v2, hadronic spectra at high transverse
momentum p? can be obtained by a folding of the partonic spectra with fragmentation
functions measured in more elementary particle collisions. This allows us to calculate
the nuclear modification factor RAA of charged hadrons in central and peripheral Pb + Pb
collisions based on both scaled elastic interactions (K = 3.5) and the three different
LPM approaches. Interestingly, we find that the scaled elastic interactions show a realistic
suppression of hadron spectra both in central and peripheral collisions, whereas the
radiative interactions from the different LPM approaches, calibrated to the AMY energy
loss in the static medium case, lead to a too strong energy loss and thereby an unrealistic
suppression of the hadronic spectra. This finding of a too strong radiative energy loss
from AMY is supported by other models calculating the RAA from AMY emission rates in
hydrodynamical simulations. Only after increasing the values of the screening parameters
(XLPM = 0.3 and ⇠LPM = 0.05) together with the consideration of a running QCD coupling,
both effective LPM approaches, ✓-LPM and stochastic LPM, are able to explain the
measured hadronic suppression at LHC. Furthermore, the finite formation time and
thereby the different path-length dependence of radiative energy loss in the stochastic
LPM approach leads to a slightly better agreement for the RAA in peripheral collisions in
contrast to the path-length independent approaches ✓-LPM and AMY. However, neither of
the different employed methods for jet energy loss can reproduce the elliptic flow at high
transverse momentum.

Furthermore, we compared the different LPM approaches by simulating the medium
modification of reconstructed jets in p

sNN = 2.76 TeV Pb + Pb collisions at LHC. To this
end, parton showers generated by the PYTHIA are evolved within the expanding BAMPS
medium while employing the same screening parameters as in the previous single hadron
RAA study. We could demonstrate that an inclusion of recoiling partons is essential for
describing the suppression reconstructed jets in each of the different approaches. Instead of
an instantaneous thermalization of the scattered medium particles, the deposited energy of
the parton shower remains close to the jet axis and thereby counteracts the jet energy loss.
This is in agreement with other studies considering medium recoil for the reconstructed
jets [EZ16a]. Furthermore, although both effective LPM approaches, ✓-LPM and stochastic
LPM, were capable for explaining the suppression of single hadron spectra, the stochastic
LPM slightly better describes the suppression of reconstructed jets at the employed cone
radii R = 0.2 and R = 0.4. Interestingly, also the scaled elastic interactions explain
the measured jet suppression. This indicates that rather the scattering rate instead of the
kinematic processes determines the jet energy loss. Again, due to the strong radiative
energy loss the AMY result overestimates the suppression of reconstructed jets.

As we found in previous studies, the momentum imbalance between the leading recon-
structed jets is rather insensitive to the underlying jet energy loss mechanism but is mainly
determined by the asymmetry given in the initial state of the collision.

By calculating the jet shapes ⇢(r), which measure the momentum distribution around
the jet axis, we find that the modification of jets mainly concerns the outer region of the
jets. At these large angle, a strong enhancement of momentum can be found in the various
choices of microscopic interactions, whereas the inner core of the jets is almost unmodified.
While this unmodified inner core is in agreement with experimental data, our calculations
overestimate the enhancement at large angles.
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Finally, we conclude this summary by Fig. 8.1, where we show a sketch of the words
most frequently used within this work.

Figure 8.1: Sketch of the words most frequently used in this work. The size of the each word depicts the
number of occurrences. The illustration was created by “Wordle” (http://www.wordle.
net).

8.2 Outlook

In this section we would like to give suggestions for further studies regarding the partonic
transport approach BAMPS with an emphasize on jet quenching observables. Some of this
projects are already planned or undergoing and we expect their results in the near future.

In the course of this work, we found that many of the investigated observables can be
explained by scaled 2 ! 2 interactions. Furthermore, when comparing the elastic 2 ! 2
interactions of gluons during their formation time in the stochastic LPM approach, we
found that the scatterings from Debye-screened leading-order pQCD are different to the
corresponding interactions calculated by thermal field theory in the hard-thermal-loop
approximation. These different elastic interactions then lead to a different LPM suppression
(and emission rates) between the stochastic LPM and the AMY formalism. A similar
discrepancy was obtained in other studies within BAMPS [Uph+11; Uph13; Uph+14]
comparing the elastic scatterings of heavy quarks from leading-order pQCD with full HTL
calculations. In these studies the energy loss of heavy quarks from Debye-screened pQCD
was then calibrated to the HTL results by introducing a fudge factor  ⇡ 0.2 in front of the
Debye masses. In principle, such a study would be also conceivable for the light parton
flavor sector. An other way for improving the elastic 2 ! 2 interactions within BAMPS
could be an approach similar to Ref. [KXB18b], where the elastic scatterings are separated
based on their underlying momentum transfer t̂. While hard momentum transfers (t̂ ' m

2

D)
are treated via leading-order pQCD matrix elements without Debye-screening, the soft part
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of the distribution is considered by diffusion processes in a Langevin approach. In order
to estimate the potential consequences of such a study for the BAMPS framework, a first
step could be a replacement of the microscopic scatterings within BAMPS by the thermal
scattering rate given in Eq. (5.67) on page 85. This would be similar to the replacement of
the microscopic 2 $ 3 processes by the 1 $ 2 processes from AMY. However, as in the
AMY case, such an implementation is in principle only valid in thermal systems and its
application in non-equilibrium situations is at least questionable.

When discussing the current modeling of parton showers within BAMPS, we mentioned
that vacuum 1 ! 2 processes and in-medium Bremsstrahlung processes should, in princi-
ple, occur simultaneously in nature. However, at the moment a simulation of vacuum 1 ! 2
processes is not possible within BAMPS since we assume that the partons are massless.
Therefore one would need to introduce the concept of virtuality into BAMPS and simulate
a Monte-Carlo evolution of this virtuality via 1 ! 2 splittings as in PYTHIA. Based on
Sudakov factors one could calculate the probability when and where the next vacuum
splitting of the shower partons should occur. Furthermore, also coherence effects between
the vacuum and medium-induced gluon radiation need further considerations. Such a treat-
ment could benefit from other approaches studying the interplay between vacuum splitting,
elastic scatterings and medium-induced gluon radiation [Zap08; Zap14]. However, it is
questionable whether the application of on-shell transport for partons with virtuality is still
valid or one needs to consider off-shell transport given by the Kadanoff-Baym equation,
for which solutions are still hard to find.

One major drawback of the Boltzmann description of parton interactions within BAMPS,
is the lack of a microscopic description for the QCD phase transition between partons and
hadrons:

• At high parton energies, fragmentation functions provide a reliable description of
hadronization processes, at least for parton spectra. However, when applying frag-
mentation functions, any microscopic information from which parton the respective
hadron emerges is lost. This circumstance prohibits the application of fragmentation
functions to studies of reconstructed jets, which are reconstructed on an event-by-
event basis. A possible improvement for this situation could be a Monte-Carlo
formulation of the fragmentation processes. Based on the probability D

h
i

�
z,Q

2
�
,

partons then microscopically split into hadrons with energies and momenta given
by z. One key question in such a study would be how to microscopically conserve
energy and momentum at each splitting. For achieving this, a comparison between
hadron spectra obtained either via fragmentation functions or via a microscopic
fragmentation could be useful.

• A similar description like fragmentation functions does not exist for soft partons as
found in the bulk medium of a heavy-ion collision. Recently, there are first efforts in
our group for formulating a description for microscopically hadronizing soft partons.
By clustering partons based on their distance in configuration and momentum space,
first preliminary results were obtained while satisfying common conservation laws
as, e.g., entropy maximization. It remains to be seen how such a hadronization
prescription affects our results regarding bulk medium observables as the elliptic
flow v2.

Especially flow observables as v2, v3, . . . are supposed to be highly sensitive to fluctua-
tions in the initial state of a heavy-ion collision. At the moment, these fluctuations are not
considered within the BAMPS framework but one assumes smooth initial distributions. One
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8 Conclusion

recent way to consider fluctuations in the initial state is the combination of an initial state
based on Yang-Mills dynamics (IP-Glasma) with a subsequent evolution within BAMPS
for the simulation of high energy p + A collisions [Gre+17a]. Such a study could also be
done for the case of heavy-ion collisions, which would provide quantitative answers to the
role of fluctuations for flow observables in the BAMPS framework.

Finally, the run II of the LHC program was recently finished, in which the center-of-
momentum energy is nearly doubled to p

sNN = 5.02 TeV. Although we expect from a
theoretical perspective only minor, quantitative changes in terms of bulk medium properties
as, e.g., temperature or density, the higher collision energy allows an increased production
probability of jet events with larger transverse momenta p?. This increased production
probability then allows the experiments to study more differential jet quenching observables
at higher accuracies. Among such observables are both inter- and intra-jet observables
as, e.g., the modification of fragmentation functions of reconstructed jets or the “golden
channel” of jet quenching, namely �+jet or Z-boson+jet correlations. Furthermore, we
expect also for the future further jet quenching studies in heavy-ion experiments at various
collision energies. Therefore we suggest to confront the calculations presented in this work
with these future studies and further constrain their underlying assumptions.
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A Partonic processes at leading-order
QCD

As we have seen in Chapters 2 and 3, Feynman diagrams are a comprehensible notation
for the perturbative expansion of the QCD Lagrangian in Eq. (2.1). For completeness, we
give in this chapter an overview about the Feynman diagrams of the different binary 2 ! 2
processes employed in this thesis and their underlying matrix elements at leading-order
QCD, either from vacuum QCD or after Debye-screening the internal propagators. From
these matrix elements one can calculate both the differential cross section d�/dt̂ via

d�

dt̂
=

1

16⇡ŝ2
��M

��2
A,B!1,2

, (A.1)

as given in Eq. (3.4) on page 26, and the total cross section via

� =

0Z

�ŝ

dt̂
d�

dt̂
. (A.2)

In the following we cite the matrix elements from Refs. [PS95; CKR77] and the appendices
of Ref. [Foc11; Uph13], where such comparisons were already done before.

Processes gg ! X

Process gg ! gg (Fig. A.1)

Vacuum matrix element:

��M
��2
gg!gg

= 72⇡2
↵
2

s


3�

t̂û

ŝ
2
�

ŝû

t̂
2
�

ŝt̂

û
2

�
(A.3a)

Debye-screened matrix element:

��M
��2
gg!gg

= 72⇡2
↵
2

s

"
3�

t̂û
�
ŝ+m

2

D

�2 �
ŝû

�
t̂�m

2

D

�2 �
ŝt̂

�
û�m

2

D

�2

#
(A.3b)

Process gg ! qq (Fig. A.2)

Vacuum matrix element:

��M
��2
gg!qq

= 6⇡2
↵
2

s


4

9

✓
t̂û

t̂
2
+

t̂û

û
2

◆
+ 2

t̂û

ŝ
2
+

t̂û

ŝt̂
+

t̂û

ŝû

�
(A.4a)
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A Partonic processes at leading-order QCD

g, pA

g, pB

g, p1

g, p2

ŝ = (pA + pB)
2

(a) ŝ-channel

g, pA

g, pB

g, p1

g, p2

t̂ = (pA � p1)
2

(b) t̂-channel
g, pA

g, pB

g, p1

g, p2

û = (pA � p2)
2

(c) û-channel

g, pA

g, pB

g, p1

g, p2

(d) four gluon-channel

Figure A.1: Scattering channels of the process gg ! gg

g, pA

g, pB

q , p1

q , p2

t̂ = (pA � p1)
2

(a) ŝ-channel

g, pA

g, pB

q , p1

q , p2

ŝ = (pA + pB)
2

(b) t̂-channel

Figure A.2: Scattering channels of the process gg ! qq

Debye-screened matrix element:

��M
��2
gg!qq

= 6⇡2
↵
2

s

"
4

9

 
t̂û

�
t̂�m

2

q
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(ŝ+m
2

D)(t̂�m
2

q)
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(ŝ+m
2

D)(û�m
2

q)

#
(A.4b)

Process gq ! gq (Fig. A.3)

Vacuum matrix element:

��M
��2
gq!gq

= 16⇡2
↵
2

s


�
4

9

✓
ŝû

ŝ
2
+

ŝû

û
2

◆
� 2

ŝû

t̂
2
�

ŝû

t̂ŝ
�

ŝû
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�
(A.5a)
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g, pA

q , pB

g, p1

q , p2

ŝ = (pA + pB)
2

(a) ŝ-channel

g, pA

q , pB

g, p1

q , p2

t̂ = (pA � p1)
2

(b) t̂-channel
g, pA

q , pB

g, p1

q , p2

û = (pA � p2)
2

(c) û-channel

Figure A.3: Scattering channels of the process gq ! gq

Debye-screened matrix element:

��M
��2
gq!gq

= 16⇡2
↵
2
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�
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Process qq ! qq (Fig. A.4)

q , pA

q , pB

q , p1

q , p2

t̂ = (pA � p1)
2

(a) t̂-channel

q , pA

q , pB

q , p1

q , p2

û = (pA � p2)
2

(b) û-channel

Figure A.4: Scattering channels of the process qq ! qq

Vacuum matrix element:

��M
��2
qq!qq

=
64⇡2

↵
2

s

9


ŝ
2 + û

2

t̂
2

+
ŝ
2 + t̂
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Debye-screened matrix element:

��M
��2
qq!qq

=
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↵
2
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ŝ
2

�
t̂�m

2

D

��
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Process qq 0 ! qq 0 or qq 0 ! qq 0 (Fig. A.5)

q , pA

q’, pB

q , p1

q’, p2

t̂ = (pA � p1)
2

(a) t̂-channel

Figure A.5: Scattering channel of the process qq 0 ! qq 0

Vacuum matrix element:

��M
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0!qq
0 = 16⇡2

↵
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Debye-screened matrix element:
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Processes qq ! X

Process qq ! qq (Fig. A.6)

Vacuum matrix element:

��M
��2
qq!qq
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↵
2
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q , pA

q , pB

q , p1

q , p2

t̂ = (pA � p1)
2

(a) t̂-channel

q , pA

q , pB

q , p1

q , p2

ŝ = (pA + pB)
2

(b) ŝ-channel

Figure A.6: Scattering channels of the process qq ! qq

Debye-screened matrix element:
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Process qq ! gg (Fig. A.7)

q , pA

q , pB
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g, p2

t̂ = (pA � p1)
2

(a) t̂-channel

q , pA

q , pB

g, p1

g, p2

ŝ = (pA + pB)
2

(b) ŝ-channel

Figure A.7: Scattering channels of the process qq ! gg

Vacuum matrix element:
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��2
qq!gg
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ŝû
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ŝû

t̂û
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Debye-screened matrix element:
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ŝû�

t̂�m
2

D

��
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Process qq ! q 0q 0 (Fig. A.8)

q , pA

q , pB

q’, p1

q ’, p2

ŝ = (pA + pB)
2

(a) ŝ-channel

Figure A.8: Scattering channels of the process qq ! q 0q 0

Vacuum matrix element:

��M
��2
qq!q

0
q
0 = 16⇡2

↵
2

s


�
4

9

✓
ŝû
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�
(A.10a)

Debye-screened matrix element:
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ŝû�
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B Details about parton evolution in the
sLPM approach

In this section we discuss possible consequences for the stochastic LPM method when we
allow also a non-eikonal evolution in the parton energies. Different to the ✓-LPM approach
the emitted gluons from the stochastic LPM method scatter themselves elastically during
their formation and thereby modify their coherence time. We showed that this procedure
not only introduces a non-linear path-length dependence of the radiative energy loss but
also coherently suppresses the gluon emission rate (cf. Section 5.3). However, as we have
seen in Section 6.1 the elastic interactions of a parton may also lead to an elastic energy
loss. Consequently, loosening the eikonal approximation of the stochastic LPM not only
affects the projectile energy as in the ✓-LPM approach but also may modify the resulting
gluon emission spectrum.

Non-eikonal gluon energy during formation time

In Section 5.3 we assumed that for the gluon energy ! � k?, q? holds. Hence the elastic
scatterings can be approximated by transverse kicks that keep the gluon energy unchanged
and only deflect the gluons during their formation time, which can be characterized by
the momentum broadening parameter q̂. The energy of the gluon emission ! is then
determined already in the initial 2 ! 3 process. If we loose this approximation, ! is not
longer constant but may be modified by elastic gluon interactions during the formation
time. As an example, let us assume a constant transverse momentum transfer q2? per elastic
mean free path. From geometrical reasons one can infer that the energy of a gluon after
the i+ 1-th elastic scattering is then

!i+1 =

s

1 +
q
2

?

!
2

i

!i , (B.1)

where !i is the energy of the gluon before the scattering. Since q
2

? > 0 this leads to an
energy gain of the gluons by each elastic scattering. Hence an elastic scattering increases
both the transverse momentum and the energy of a gluon during the formation time. Both
together then determines the formation time of the gluon emission.

We compare in Fig. B.1 the differential emission rate d�/d! of an eikonal quark
projectile with energy E = 25 T or E = 250 T for the case of a constant gluon energy
(dashed lines) with the corresponding case of a variable gluon energy (solid lines). Gluon
emissions with higher ! are almost unaffected from the choice of !-treatment since the
energy gain by an elastic interactions occurs in the softer thermal energy region. In contrast,
the softer emission rate differs between the two assumptions: While at the previous constant
! case the emission rate reaches up to very soft ! < 1 · 10−3 E, the softer gluons of the
variable ! case thermalize and thereby built a maximum at ! ⇠ O(T ). Furthermore,
the thermalization of softer gluons lead also, on average, to a longer formation time via
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B Details about parton evolution in the sLPM approach

10-4

10-3
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sLPM, quark
�s = 0.3
�LPM = �AMY

LPM
d�

/d
�

� / E

E / T = 25
E / T = 250
variable �
constant �

Figure B.1: Differential emission rate d�/d! of a quark projectile with energy E within the stochastic
LPM approach for either eikonal gluons with constant energy ! (solid lines) or non-eikonal
gluons with varying energy resulting from energy loss of the radiated gluon during the
formation time (dashed lines).

⌧f = !/k
2

? due to the energy gain. The actual shape for the emission rate above ! > O(T )
is however unaffected by the specific choice of gluon energy treatment and is determined
by the presented stochastic LPM suppression. Therefore neglecting the evolution of harder
gluon emissions seems to be justified for the differential emission rate.

Since the difference between both choices, constant or variable !, can only be found at
very soft gluon energies, the resulting radiative energy loss is not affected by this choice.
This can be seen in Fig. B.2 where we show the E-dependence (left) and L-dependence
(right) of the differential energy loss dE/dx for a quark projectile traversing a medium
with temperature T and length L either with constant ! (point symbols) or variable !
during the formation time (line symbols). Whether the gluon energy is changed after an
elastic scattering or not is not recognizable in the resulting differential energy loss since
the radiative energy loss is dominated at all medium lengths and projectile energies by the
hard region of gluon emissions.
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Figure B.2: Differential radiative energy loss dE/dx of a quark projectile with energy E within the
stochastic LPM approach for either eikonal gluons with constant energy ! (triangles) or
non-eikonal gluons with varying energy resulting from energy loss of the radiated gluon
during the formation time (lines). The left panel shows the dependence on the projectile
energy E, whereas the right panel depicts the length L dependence of the energy loss.

Subtraction of gluon energy/momentum in the non-eikonal
sLPM approach

Different to the ✓-LPM approach, where a gluon emission occurs instantaneously, the
gluon emissions in the stochastic LPM approach are extended over a finite formation time.
During this formation time the projectile and the proposed gluon are formally speaking
indistinguishable. However, when allowing evolving projectile energies one has to decide
when to subtract the radiated gluon energy and/or momentum from the parent parton.
In principle, there are two different possibilities: (i) one subtracts the gluon momentum
from the initial 2 ! 3 process after the gluon successfully finishes its formation time
or (ii) one subtracts the gluon momentum directly at the initial 2 ! 3 Bremsstrahlung
process. If the gluon is stochastically suppressed by 1/Ncoh the gluon emission is either
discarded in method (i) or the gluon momentum is added back to the parent parton in
method (ii). While method (i) violates in principle energy and momentum conservation
during the formation time, method (ii) has the drawback that if the gluon emission is finally
discarded the projectile has traveled with an underestimated energy during the formation
time. Furthermore, method (ii) violates locality since gluons are directly distinguished
from the parent parton although they should be indistinguishable.

Furthermore, in the stochastic LPM approach with evolving projectile energy one has the
choice how to subtract the gluon from its parent parton. One choice would be to subtract
the 3-momentum of the emitted gluon from the parent parton as it was sampled at the initial
2 ! 3 process and calculate the energy of the parent parton as usual for a massless parton
on the mass shell (E2 = ~p2). Another choice would be to only subtract the gluon energy
from the parent parton as given at the initial 2 ! 3 process and rescale the outgoing parton
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Figure B.3: Different time evolutions of the projectile energy E of a gluon projectile depending on the
specific choice of non-eikonal treatment in the stochastic LPM approach.

momenta. While the former prefers the conservation of momentum, the latter ensures the
conservation of energy.

In order to quantify the differences between the discussed possibilities for subtracting the
gluon energy/momentum from the parent parton, Fig. B.3 shows the time evolution of the
mean projectile energy E(t) based on the different discussed subtraction/addition methods
for a gluon projectile with initial energies E0 = 25 T or E0 = 250 T. While the solid
line depicts the evolution in which the gluon momenta are subtracted after successfully
forming (method (i) above), the dashed line corresponds to the case where the gluon
energy is subtracted after the formation time. At early times both methods show a similar
evolution. With increasing evolution time, the “energy loss” method shows a stronger
energy loss than the momentum loss method. Furthermore, we depict by the dash-dotted
curve the algorithm where the gluon momentum is subtracted directly in the beginning
of the radiative process (method (ii) above). This leads to a much stronger energy loss
in the beginning since the gluon momenta are subtracted directly from the parent parton
without waiting for the finite formation time. For the results within this work, we choose
the method of momentum loss after successfully formation of the gluon as the default
stochastic LPM implementation within BAMPS.
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C Numerical calculation of AMY emission
kernel

In this section we present a solution of the integral equation Eq. (5.94) on page 116
underlying the AMY formalism for gluon emissions introduced in Chapter 5. For this
solution we follow the considerations of Refs. [Aur+02; AGZ02; Abr+14] and adapt them
to our notation where it is necessary.

We have seen in Section 5.4 that the emission rate d�/dk consists of prefactors counting
the degeneracies of quarks and gluons, respectively, the 1 ! 2 splitting functions from the
DGLAP formalism, and a kernel

K(p, k) :=

Z
d2~h

(2⇡)2
2~h · Re ~F(~h, p� k, k) , (C.1)

resumming ladder diagrams of the interactions of gluons and quarks with the thermal bath
during their formation time.

The integral equation Eq. (5.94) on page 116 defining the function ~F(~h, p� k, k) then
reads

2~h = i�E(~h, p� k, k)~F(~h) + g
2

s

Z
d2
q?

(2⇡)2
C(~q?)

n
(Cs � CA/2)[~F(~h)� ~F(~h�k ~q?)]

+(CA/2)[~F(~h)� ~F(~h+p~q?)]

+(CA/2)[~F(~h)� ~F(~h�(p� k)~q?)]
o
,

(C.2)

where �E(~h, p� k, k) is the inverse formation time of the emitted parton. After rescaling
the quantities ~h = p~q0

? and ~F
�
p~q0

?
�
= p~f(~q0

?) one obtains

2~q0
? = i�E(p~q0

?)~f(~q
0
?) + g

2

s
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(2⇡)2
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+(CA/2)[~f(~q
0
?)�~f(~q

0
? + ~q?)]

+(CA/2)[~f(~q
0
?)�~f(~q

0
? � (1� x)~q?)]

o
,

(C.3)

where we omitted the p� k and k dependence of the inverse formation time

�E(p~q0
?) =

pq
02
?

2k(p� k)
+

m
2

k

2k
+

m
2

p�k

2(p� k)
�

m
2

p

2p
(C.4)

and defined x = k/p.
Equation (C.3) can be solved by a Fourier transformation into impact parameter
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space [Aur+02],
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For this transformation it will be useful to derive the following relations
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and
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= �q
02
?
~f
�
~q0
?
�
.

With Eq. (C.7) the Fourier transformation of the inverse formation time then reads
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Furthermore, for the first term in the q?-integration of Eq. (C.3) one can derive
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where we defined the function D(�mD b) and C(~q?) =
m

2
D

~q
2
?(~q2

?+m
2
D)

is the Debye-screened

collision kernel given in Eq. (5.96) on page 117. Correspondingly, the other two terms in
the q?-integration can be written as
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and
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In Refs. [Abr+14; Aur+02] it was shown that the D function evaluates to

D(b) = lim
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(�E + log(b/2) +K0(b)) , (C.15)

where �E = limn!1(� log n +
Pn

k=1

1

k ) ⇡ 0.577 is the Euler-Mascheroni constant and
K0 is the modified Bessel function of the second kind[Abr+14; Aur+02]. Putting above
considerations together one obtains the Fourier transformed integral equation
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One can further exploit the rotational symmetry of the problem in the transverse
plane [Aur+02] and define ~f(~b) = h(~b)~b so that follows
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and the final one-dimensional differential equation then reads
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The general solution of above ODE can be written as h(b) = c+e
�b + c�e

��b and obtained
numerically1. In order to arrive at our final result for the emission kernel K(p, k) one can

1In the BAMPS framework the numerical solution for the ODE is obtained via routines from the GSL computing
library [Gal+].
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C Numerical calculation of AMY emission kernel

show with the help of Ref. [AGZ02] that

K(p, k) =

Z
d2~h

(2⇡)2
2~h · Re~f(~h) = 4 lim

b!0
+
Imh(b) (C.19)

holds with the boundary condition
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2
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For more details about the further evaluation of the correct solution of h(b) we refer to
section 4 of Ref. [Aur+02]. In order to increase the computing efficiency, the numerically
obtained values for the kernel are tabulated offline and read in via interpolation routines
during runtime.
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D Glauber model for nucleus-nucleus
collisions

The standard tool for describing the single nucleon-nucleon scatterings in the initial state
of a heavy-ion collision is the Glauber model [Gla06; Mil+07]. While the Glauber model
has its origin in quantum optics, in which it describes coherent radiation, its application in
the heavy-ion context is justified by the assumption that the wave length of the nucleons is
much shorter than their sizes. Assuming the optical limit [Mil+07] the scattering nucleons
are only loosely bound within the nuclei and get not deflected by a scattering with a
nucleon from the other nucleus but fly on eikonal lines.

Projectile B Target A

b zs

s-b

b
s

s-b

a) Side View b) Beam-line View

B

A

Figure D.1: Sketch of a heavy-ion collision as described in the Glauber model. The colliding nuclei are
approximated by circular discs. While the left figure shows the collision in the longitudinal
plane, the right figure shows the same collision in the transverse plane [Mil+07].

Figure D.1 shows a sketch of a heavy-ion collision, in which a relativistic nucleus
scatters with another nucleus under an impact parameter~b. The probability for finding a
nucleon in the shaded region of nucleus A with distance ~s from the center of nucleus A
reads

TA(~s) =

Z
⇢A(~s, zA)dzA , (D.1)

where ⇢A is the density distribution of a nucleus normalized to its mass number A. We
employ for the density distribution within a nucleus the Woods-Saxon density profile

⇢A(~s, zA) =
�n0

1 + exp

✓✓q
s
2 + (�z2A)�RA

◆
/d

◆ . (D.2)

� = 1p
1�v

2
is the Lorentz boost of the nucleus, d = 0.54 fm the skin thickness of the

nucleus, and RA = 1.12A1/3
� 0.86A�1/3 the effective nuclear radius.

As for nucleus A, one can define a probability TB(~s�~b) for finding a nucleon at position
~s�~b in nucleus B. After integrating the combined probability TA(~s)TB(~s�~b) d2

s one
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D Glauber model for nucleus-nucleus collisions

obtains the thickness function

TAB(~b) =

Z
TA(~s)TB(~s�~b) d2

s , (D.3)

which corresponds to the effective overlap area of both nuclei [Mil+07].
When neglecting elastic and diffractive processes, which are rare at large collision

energies, the probability for a single nucleon-nucleon interaction is then given by TAB �
NN
inel ,

where �NN
inel is the inelastic cross section for a single nucleon-nucleon interaction. The

inelastic nucleon-nucleon cross section can be obtained experimentally and is �NN
inel =

(64 ± 5) mb in
p
s = 2.76 TeV collisions at LHC [CMS11a]. Based on this probability

one can calculate the probability for n nucleon-nucleon interactions within the collision of
a nucleus with mass number A and a nucleus with mass number B at an impact parameter
~b [Mil+07]:
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The total number of binary nucleon-nucleon interactions is then given by [Mil+07]

Ncoll (b) =
ABX

n=1

nP (n, b) = AB TAB (b) �NN
inel , (D.5)

whereas the number of participating nucleons can be obtained via [Mil+07]
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The previous expressions were derived for unpolarized nuclei, for which the impact
parameter is defined by the absolute value b =

���~b
���.

Among the advantages of the presented optical Glauber method is its simplicity for
estimating the number of binary collisions and participating nucleons. However, in this
approach the position of nucleons is approximated by density profiles. More spatial accu-
racy can be achieved by simulating individual nucleon-nucleon interactions via numerical
methods. The most simple version for such a Monte-Carlo Glauber method would be a
sampling of the position of the nucleons of both nuclei in position space based on the
previous density profiles and a subsequent propagation. If two nucleons come closer

than d 

q
�
NN
inel/⇡ to each other, a scattering of both nucleons occur. The assumptions

underlying both Glauber methods may lead to different estimates of Ncoll and Npart.
Both the impact parameter ~b and the quantities Ncoll and Npart of individual heavy-

ion collisions cannot be measured directly. Consequently, for classifying the strength
of a heavy-ion collision, experiments divide the events in different centrality classes

based on the energy that is measured in forward calorimeters and therefore did not par-
ticipate in the actual heavy-ion collisions. The smaller the centrality, the more central
the collision. By comparing the centrality classes with theoretical predictions from the
presented Glauber methods, one obtains theoretical impact parameters, Ncoll and Npart
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values [Mil+07]. Tables D.1 and D.2 show different centrality classes used by the ALICE
and CMS collaborations at LHC together with calculated values for Ncoll and Npart.

Centrality NALICE
part NALICE

coll
mean RMS mean RMS

0–5 % 382.0 17 1684.0 140
5–10 % 329.7 18 1316.0 110
10–20 % 260.5 27 922.7 140
20–40 % 157.8 35 440.0 150
40–60 % 69.1 22 128.4 59
60–80 % 22.6 12 26.8 18

Table D.1: Experimental values for Npart and Ncoll depending on the centrality class from the ALICE
collaboration [ALI13].

Centrality NCMS
part NCMS

coll
mean RMS mean RMS

0–10 % 355 ± 3 33 1484 ± 120 241
10–20 % 261 ± 4 30 927 ± 82 183
20–30 % 187 ± 5 23 562 ± 53 124
30–50 % 108 ± 5 27 251 ± 28 101
50–100 % 22 ± 2 19 30 ± 5 35

Table D.2: Experimental values for Npart and Ncoll depending on the centrality class from the CMS
collaboration [CMS11b].

Furthermore, Table D.3 shows results for the impact parameter dependence of Ncoll and
Npart calculated via an optical Glauber calculation as used in the BAMPS framework. In
addition, we show the employed number of test particles Ntest in order to obtain a sufficient
statistics.
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D Glauber model for nucleus-nucleus collisions

bBAMPS [fm] NBAMPS
part NBAMPS

coll Ntest

0.0 431.76 2195.86 7
2.0 410.46 1994.04 8
3.6 363.68 1661.61 15
5.0 308.51 1302.91 18
6.0 264.99 1044.71 16
7.7 188.35 642.52 26
8.3 162.16 520.76 33

10.3 85.59 202.74 85
13.2 15.94 18.64 918

Table D.3: The number of participating nucleons Npart and the number of binary nucleon-nucleon in-
teractions Ncoll depending on the mean impact parameter b calculated in an optical Glauber
model and used in the BAMPS framework.
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