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Zusammenfassung

Hypoxie ist ein Merkmal solider Tumore und trägt zum Fortschreiten von Krebs, zur Me-
tastasierung sowie zu einer schlechten Prognose bei. Die Anpassung an Hypoxie wird
hauptsächlich durch die Aktivierung von Hypoxie-induzierbaren Faktor (HIF)-Proteinen
angetrieben. HIF-Proteine sind eine Familie von Transkriptionsfaktoren, welche die Ex-
pression von mehr als hundert Genen bei reduzierter Sauerstoffversorgung regulieren. Diese
sogenannten HIF-regulierten Gene spielen in zahlreichen zellulären Prozessen eine Rolle,
wie zum Beispiel in Angiogenese, Proliferation und metabolischer Anpassung, welches alles
wichtige Faktoren für ein Tumorwachstum sind. Obwohl Änderungen in der Transkription,
die in hypoxischen Tumoren induziert werden, weitestgehend charakterisiert sind, ist bisher
nicht vollständig geklärt, wie die Hypoxie zu der veränderten posttranksriptionellen Regu-
lation in Tumoren führt. In dieser Studie habe ich das Transkriptom von drei menschlichen
Zelllinien aus Lungen- (A549), Brust- (MCF-7) und Gebärmutterhalskrebs (HeLa) in nor-
moxischen, sowie hypoxischen Bedingungen analysiert. Die Ergebnisse meiner Analysen
haben zu einem verbessertem Verständnis der hypoxiegetriebenen, posttranskriptionellen
Genregulation in Krebs beigetragen.

Unter Verwendung tiefer RNA-Sequenzierung von Proben mit reduziertem ribosomalem
RNA-Gehalt (rRNA-depleted RNA-Seq), konnte ich insgesamt mehr als 10000 Gene in den
drei Zelllinien identifizieren, die ihre RNA-Menge unter Hypoxie verändert haben. Hypo-
xie induzierte ähnliche Veränderungen der Transkriptionshäufigkeit in den drei Krebsty-
pen, sowie modulierte sie die Expression bekannter HIF-Zielgene, welche an krebsbeding-
ten Prozessen wie Angiogenese und Zellmigration beteiligt sind. Darüber hinaus wurde
die Glykolyse zur Energieerzeugung aktiviert, und energieverbrauchende Prozesse, wie die
DNA-Replikation und Ribosomen-Biogenese moduliert, was zu einer metabolischen An-
passung geführt hat.

Neben der Anpassung der Transkription umfasst die Regulation der Genexpression eine
Vielzahl von Mechanismen, die von Zellen verwendet werden, um die Produktion und
Funktion spezifischer Genprodukte (Proteine oder RNAs) zu regulieren. Proteinkodie-
rende Gene werden in Prä-messenger-RNAs (Prä-mRNA) transkribiert. mRNAs bestehen
aus kodierenden Regionen, die als Exons bezeichnet werden, und dazwischenliegenden,
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nicht-kodierenden Regionen, welche als Introns bezeichnet werden. Genexpression kann
in nahezu allen Stadien der RNA-Prozessierung reguliert werden. Einer der wichtigsten
Schritte für die Reifung der Prä-mRNA zu Messenger-RNA (mRNA) ist das RNA-Spleißen,
welches durch einen makromolekularen Komplex, das Spleißosom, katalysiert wird. Wäh-
rend des Spleißens werden Exons miteinander verbunden und Introns entfernt, um eine reife
mRNA zu erzeugen. Im Falle von Krebserkrankungen ist das Spleißen häufig beeinträch-
tigt und beeinflusst dadurch die Zellproliferation, das Zellüberleben, die Migration und
Metastasierung. In dieser Studie zeige ich, dass Hypoxie das Spleißmuster in Krebszellen
stark veränderte. Dabei waren vorrangig alternative Kassetten-Exons und die Beibehal-
tung von Introns (Intron Retention) betroffen. Im Gegensatz zu Veränderungen in der
RNA-Menge verursachte Hypoxie unterschiedliche Spleißreaktionen in den drei Zelllinien,
was die Zelltypspezifität alternativer Spleißprogramme unterstreicht.

Während des Spleißens ist die Aktivierung von Spleißstellen von grundlegender Bedeu-
tung, um festzulegen, welche Exons in die mRNA aufgenommen werden sollen und um
somit verschiedene Transkriptisoformen zu erzeugen. Dies wird im Allgemeinen durch eine
Kombination von Spleißfaktoren vermittelt, die jeden Schritt der Spleißosomfunktion auf
dynamische Weise modulieren. Folglich ist anzunehmen, dass Änderungen im alternativen
Spleißen auf Variationen in der Expression und Aktivität von Spleißfaktoren zurückzufüh-
ren sind. In dieser Studie zeige ich, dass das mRNA-Niveau von Spleißfaktoren, wie zum
Beispiel SR-Proteinen, in Hypoxie überwiegend reduziert waren. Eine globale Reduktion
der Spleißaktivität spiegelt sich in der signifikanten Anreicherung des Ontologie-Terminus
"RNA splicing" (GO:0008380) wider. Im Gegensatz dazu induzierte Hypoxie gezielt die
Expression des muscleblind-like protein 2 (MBNL2 ) in allen drei Zelllinien. Meine Beob-
achtung aus den RNA-Seq-Experimenten konnten durch Western Blot-Analysen unserer
Kooperationspartner bestätigt werden, die einen deutlichen Anstieg der MBNL2-Menge
nach Hypoxie belegten.

MBNL2 hat zwei paraloge Proteine im Menschen: MBNL1 und MBNL3. Es ist bekannt,
dass MBNL1 und MBNL3 ähnliche Sequenzmotive wie MBNL2 erkennen und binden, so-
wie dass sie häufig die gleichen mRNA-Ziele wie MBNL2 anvisieren. Es ist hervorzuheben,
dass in unseren Daten der Effekt von Hypoxie spezifisch für MBNL2 war, da das mRNA-
und Proteinniveau von MBNL1 unter Sauerstoffmangel stabil blieben. Es wurde zuvor
gezeigt, dass MBNL2 je nach Krebsart entweder als Onkogen oder als Tumorsuppressor-
gen fungieren kann. Auf Basis dessen habe ich in dieser Studie die Rolle von MBNL2 als
Antwort auf hypoxischen Stress in Krebszellen untersucht. Unsere MBNL2 -Knockdown-
Experimente in hypoxischen Zellen bestätigten die Beteiligung von MBNL2 in der Hy-
poxieanpassung von Krebszellen. Des Weiteren hat die Analyse der RNA-Seq-Daten von
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MBNL2 -abgereicherten Krebszellen gezeigt, dass die Hypoxieanpassung durch die Steue-
rung der Transkriptmenge und des alternativen Spleißens von Hypoxie-Antwort-Genen
erreicht wurde. Im Gegensatz zu früheren Studien, die eine Rolle von MBNL2 bei der Sta-
bilisierung von mRNAs vorhergesagt hatten, deuteten unsere Daten nicht darauf hin, dass
diese Funktion auf die Mehrheit der MBNL2-regulierten mRNAs zurückgeführt werden
kann. Zusätzlich zeigten Experimente unserer Kollaborationspartnern, dass die Abreiche-
rung von MBNL2 die Proliferation und Migration von Krebszellen verringerte, was die
Rolle von MBNL2 als wichtigen Krebstreiber unterstreichte. Zusammenfassend konnten
wir zeigen, dass Hypoxie die Genexpression auf transkriptioneller- und posttranskriptionel-
ler Ebene beeinflusst und somit Tumorentstehung vorantreibt. Die spezifische Induktion
der Expression von MBNL2 bei niedrigem Sauerstoffgehalt fördert die hypoxische Anpas-
sung von Krebszellen. Dies wird erreicht, indem MBNL2 die Transkripthäufigkeit von
HIF-Zielgenen kontrolliert und zum Hypoxie-abhängigen alternativen Spleißen beiträgt.

Eine neue Klasse von hauptsächlich nicht-kodierenden RNAs, die zirkulären RNAs
(circRNAs), hat in den letzten Jahren mehr und mehr Beachtung erlangt. CircRNAs wer-
den durch einen bestimmten Spleißmechanismus hergestellt, der als Zurückspleißen (back-
splicing) bezeichnet wird. Während des Zurückspleißen wird eine 5’-Spleißstelle mit einer
3’-Spleißstelle verbunden, welche sich an einer vorhergehenden Position im Transkript be-
findet. Dieser Prozess erzeugt ein sehr stabiles, kovalent geschlossenes Molekül. Es wurde
gezeigt, dass die Menge vieler circRNAs in Krebszellen fluktuieren kann. Dank ihrer ho-
hen Stabilität sind sie vielversprechende Kandidaten für diagnostische Biomarker in Krebs.
Darüber hinaus haben jüngste Studien circRNAs beschrieben, die in hypoxischen Endo-
thelzellen und Magenkrebszellen dereguliert sind, wie beispielsweise die circRNA, welche
aus einer kryptischens Spleißseite des ZNF292 -Gens entsteht. Trotz der bestehenden Stu-
dien über circRNAs ist das Verständnis über die Auswirkungen von Hypoxie auf circRNAs
in Krebszellen bisher limitiert.

In dieser Studie habe ich rRNA-depleted RNA-Seq-Daten analysiert, um die Expression von
circRNAs in menschlichen Krebszellen, sowie ihre Veränderungen als Reaktion auf Hypoxie
umfassend zu untersuchen. Die Identifizierung von circRNAs aus rRNA-depleted RNA-Seq-
Daten ist anspruchsvoll, da lineare, sowie zirkuläre RNAs in den Daten enthalten sind. Da
circRNAs oft mit ihrem linearen RNA-Gegenstücken überlappen, enthalten die Daten we-
nig diskriminative Sequenzinformationen, die eine Basis für einen zuverlässige Detektion
der circRNAs schaffen. Mithilfe computergestützter Berechnungen kann man circRNAs
detektieren, indem man exklusiv nach Sequenzstücken sucht, die sich über Zurückspleiß-
Junctions erstrecken. Zusätzlich ist die quantitative Analyse von circRNAs problematisch,
da sie global nur in geringen Mengen vorhanden sind. Somit ist die de novo-Vorhersage
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von circRNAs an kryptischen Spleißstellen weiterhin keine triviale Aufgabe. Seit 2013
wurden verschiedene Algorithmen zur Vorhersage und Quantifizierung von circRNAs aus
rRNA-depleted RNA-Seq-Daten entwickelt, die verschiedene Alleinstellungsmerkmale mit
sich bringen. Die unterschiedlichen Ansätze sind jedoch oft mit einer hohen Falsch-Positiv-
Rate verbunden. Folglich wurde empfohlen, die Ergebnisse mehrerer Algorithmen zu kom-
binieren, um einen zuverlässigen Katalog von circRNAs aus RNA-Seq-Daten zu erhalten.
Um dieses Problem zu adressieren habe ich in dieser Studie eine Pipeline erstellt, die zwei
verfügbare Programme für die circRNA-Identifizierung, CIRCexplorer und find_circ,
kombiniert. Zudem integriert die Pipeline maßgeschneiderte Ansätze für Quantifizierun-
gen und statistische Analysen. Die beiden kombinierten Werkzeuge ergänzen sich, da sie
auf unterschiedlichen Sequenzalignier-Algorithmen (Bowtie2 und STAR) und verschiedenen
konzeptionellen Ansätzen beruhen. Der Ansatz von find_circ neigt aufgrund ungenauer
Zuweisungen von Zurückspleißen zu Falsch-Positiven, wohingegen CIRCexplorer auf Exon-
Koordinaten aus der Referenzgenom-Annotation angewiesen ist. In unserer Pipeline wur-
den Vorhersagen mit CIRCexplorer und find_circ vereint und Artefakten, die ich zuvor
durch einen umfassenden Vergleich der beiden Programme identifizierte, wurden heraus-
gefiltert. Anschließend wurde die Quantifizierung der circRNA-Expression basierend auf
chimären Sequenzalignments aus STAR abgeglichen. Unter Verwendung öffentlich verfüg-
barer rRNA-depleted und RNase-behandelter RNA-Seq-Daten bewertete ich die Leistung
der Pipeline hingehend der Erkennung echter Zurückspleiß-Ereignisse und verglich ich mit
Ergebnissen von CIRCexplorer und find_circ. Dies zeigte, dass unsere Pipeline eine bes-
sere Leistung im Vergleich zu find_circ und eine zumindest vergleichbare Leistung im
Vergleich zu CIRCexplorer erzielte, mit dem Vorteil, dass sie die bereits wertvolle Vor-
hersage von CIRCexplorer um die von find_circ durchgeführte de novo-Vorhersage von
circRNAs erweitert. Unsere Pipeline liefert einen umfassenden Katalog von präzise quan-
tifizierten circRNAs, welcher als Ausgangspunkt für darauffolgende Analysen verwendet
werden kann.

Durch die konsolidierte bioinformatische Pipeline konnte ich 12006 circRNAs in den
drei analysierten Krebszelllinien identifizieren. Unter diesen befanden sich 2844 neu-
identifizierte circRNAs, die zuvor noch in keinen circRNA-Datenbanken annotiert wurden.
Beispiele dafür sind unter anderem circHUWE1, circSPIDR und circPICALM, welche in
den untersuchten Zelllinien in großen Mengen vorhanden waren. Die Zirkularität detek-
tierter circRNAs wurde von unseren Kollaborationspartnern experimentell über RT-PCR
validiert, was die Zuverlässigkeit der Pipeline untermauerte. Des Weiteren analysierte ich
die genomischen Merkmale unseres circRNA-Katalogs und konnte zeigen, dass die Mehrheit
der circRNAs aus kodierenden Sequenzen (engl. coding sequence, CDS) von proteinkodie-
renden Genen stammt. Durch alternatives 30- oder 0-Zurückspleißen könnten theoretisch
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mehrere circRNAs von einem einzigen Lokus erzeugt werden. In den meisten Fällen gab es
eine spezifische Isoform, die stärker als die anderen Isoformen exprimiert wurde. Unter den
insgesamt 12006 identifizierten circRNAs gab es nur eine geringe Anzahl von circRNAs, die
in allen drei Zelllinien vorkamen. Dies deutete darauf hin, dass jede analysierte Krebszelle
eine einzigartige circRNA-Signatur aufweist.

Um Einblicke in den Mechanismus der Regulation von circRNAs zu erhalten, untersuchte
ich den Zusammenhang zwischen der Expression von circRNAs und ihren jeweiligen Wirts-
genen. Generell konnten wir nur eine schwache quantitative Korrelation zwischen circRNA-
und Wirtsgen-Expression beobachten. Das deutete darauf hin, dass in vielen Fällen die
circRNA-Menge nicht nur die Expression des Wirtsgens widerspiegelte, sondern auch von
unabhängigen Parametern, wie zum Beispiel dem unterschiedlichen Grad an Zurücksplei-
ßen oder der Stabilität der circRNA, beeinflusst wurde. Weiterhin untersuchte ich die
Effizienz des Zurückspleißen, indem ich die "Prozentuale Zirkularisierung" berücksichtigte.
Durch diese Berechnung war es möglich, die relative Häufigkeit von circRNAs im Vergleich
zu allen anderen Isoformen, welche aus den gleichen Exons entstanden sind, abzuschät-
zen. Obwohl circRNAs generell seltener als ihre linearen Gegenstücke vorkamen, gab es
in unserem Katalog 210 Ausnahmen, welche die Haupt-Transkriptisoform ihres Wirtsgens
darstellten. Unter ihnen befand sich zum Beispiel die circRNA, die aus den Exons 2 und
3 des ATXN7 -Gens hergestellt wird. Unterschiedliche regulatorische Prozesse können die
Expression von circRNAs steuern, und das Zurückspleißen kann in der Effizienz zwischen
verschiedenen Wirtsgenen stark variieren. Als nächstes ging ich auf die Frage ein, ob Hy-
poxie die circRNA-Menge in den Krebszelllinien modulieren kann. Unter Verwendung von
DESeq2 fand ich insgesamt 64 circRNAs, die ihre Menge unter Hypoxie in den untersuchten
Krebszelllinien signifikant änderten. Unter ihnen befanden sich nur sechs herunterregulierte
circRNAs, was womöglich auf die intrinsiche Stabilität von circRNAs zurückzuführen ist.
Im Gegensatz zur einheitlichen transkriptionellen Antwort auf Hypoxie in den drei Zellli-
nien und in Übereinstimmung mit den divergierenden Spleißänderungen, wurden circRNAs
in zelltypspezifischer Weise reguliert. Die einzigen zwei Ausnahmen waren circPLOD2 und
circZNF292, welche sowohl in HeLa- als auch in MCF-7-Zellen signifikant reguliert wurden.
In Übereinstimmung damit wurde in einer früheren Studie gezeigt, dass circZNF292 unter
Hypoxie in Endothelzellen induziert wird. Die Regulation ausgewählter circRNAs wurde
zudem von unseren Kollaborationspartnern durch RT-qPCR validiert. Um die Frage zu
beantworten, ob Veränderungen der circRNA in Reaktion auf Hypoxie eine Regulation
des jeweiligen Wirtsgens widerspiegeln, verglich ich die Häufigkeit der Hypoxie-regulierten
circRNAs mit der Häufigkeit der linear RNAs. Ich konnte keine globale Korrelation zwi-
schen den Expressionsmengen feststellen. Viele der Hypoxie-induzierten circRNAs stamm-
ten jedoch von hochregulierten Genen, was darauf hindeutete, dass ihre Regulation mit
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einer erhöhten Transkription des Wirtsgens zusammenhängen könnte. Im Gegensatz dazu
stammten andere hochregulierte circRNAs von Genen, die stabil exprimiert blieben, wie
zum Beispiel circBARD1 und circRANBP17, oder sogar von herunterregulierten Genen,
wie zum Beispiel circHNRNPM. Ein Vergleich von Änderungen in der Menge der circRNAs
hinsichtlich ihrer Circular-to-Linear -Ratio, welche die Zurückspleiß-Junctions zu den Junc-
tion-Sequenzen der zugehörigen linear Spleißereignisse in Vergleich setzt, unterstützte wei-
ter die Hypothese eines gemeinsamen Regulationsmechanismus für circRNA und mRNA
auf der Ebene der Transkription. Im Gegensatz zu früheren Studien fand ich keine Hin-
weise auf eine readthrough Transkription des vorhergehenden Gens als Mechanismus der
Biogenese von circRNAs. Um die molekularen Mechanismen, die der Entstehung und Re-
gulation von circRNA zugrunde liegen, zu untersuchen, analysierte ich die molekularen
Eigenschaften der circRNAs. Ähnlich wie in früheren Studien gezeigt, deuteten unsere
Daten auf eine Beteiligung komplementärer RNA-Sequenzen an der circRNA-Biogenese
hin, insbesondere von Alu-Elementen. Diese Alu-Elemente befinden sich in Introns, welche
die zirkularisierten Exons flankieren. Über diese cis-wirkenden Faktoren hinaus wurde be-
schrieben, dass auch trans-wirkende Faktoren, wie MBNL-, QKI-, FUS- und SR-Proteine,
eine Rolle bei der circRNA-Biogenese spielen. Durch in silico Vorhersage der Bindestellen
von RNA-bindenden Proteinen in den Regionen vor und nach zirkularisierten Exons konnte
ich HuR, PABPC4 und HNRNPC als potenzielle Akteure in der circRNA-Biogenese iden-
tifizieren. Vor allem die Metaanalyse der Daten von HNRNPC UV-Kreuzvernetzungs- und
Immunpräzipitationsexperimenten (engl. individual-nucleotide resolution UV crosslinking
and immunoprecipitation, iCLIP) zeigte, dass HNRNPC verstärkt an die Region unmit-
telbar vorhergehend der 30-Zurückspleißstelle band. Dies war unabhängig davon, ob die
circRNAs Hypoxie-reguliert waren oder nicht. Zu betonen ist, dass die Stärke der Bindung
vorhergehend der 30-Zurückspleißstelle im Vergleich zu linear gespleißten Exons wesent-
lich höher war, was unsere Hypothese der Rolle von HNRNPC in der circRNA-Biogenese
bekräftigte. Dies wurde weiterhin durch einen nicht-zielgerichteten Ansatz bestätigt, bei
dem drei circRNAs identifiziert wurden, die auf die HNRNPC -Abreicherung in HeLa-Zellen
reagiert haben.

Alles in allem habe ich im Verlauf dieser Arbeit eine vergleichende Transkriptomcharakteri-
sierung von drei menschlichen Krebszelllinien unter hypoxischen Stressbedingungen durch-
geführt. Meine Ergebnisse haben gezeigt, dass MBNL2 ein wichtiger Akteur bei der Pro-
gression von hypoxischem Krebs ist, der sowohl die Transkriptionshäufigkeit als auch das
Spleißen beeinflusst. Zusätzlich zu linearen RNAs habe ich das circRNA-Profil in Krebs-
zellen, unter normoxischem sowie unter hypoxischem Stress charakterisiert. Dies hat neue
Einblicke in die Regulation und Biogenese von circRNAs geliefert und Hypoxie-regulierte
circRNAs identifiziert, welche als Biomarker für eine hypoxische Tumormikroumgebung
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dienen könnten.
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Abstract

Hypoxia is a condition in which cells are deprived of adequate oxygen supply and rep-
resents a main feature of solid tumours. Cells under hypoxic stress activate transcrip-
tional responses driven by hypoxia-inducible factors (HIFs), which affect multiple cellular
pathways, including angiogenesis, metabolic adaptation and cell proliferation. While the
transcriptional changes induced in hypoxic tumours are well characterised, it is still poorly
understood how hypoxia contributes to the aberrant post-transcriptional regulation ob-
served in tumours. In this PhD thesis, I studied the RNA response to hypoxia in cancer,
to provide novel insights into its regulation.

Using deep RNA-Sequencing (RNA-Seq), I investigated transcriptome changes of three hu-
man cell lines from lung, cervical and breast cancer under hypoxia, advancing our knowl-
edge of post-transcriptional gene regulation in hypoxic cancer. I show that hypoxia induced
consistent changes in transcript abundance in the three cancer types. This was coupled
to divergent splicing responses, highlighting the cell type specificity of alternative splicing
programs. While the mRNA levels of RNA-binding proteins were mainly reduced, hypoxia
upregulated muscleblind-like protein 2 (MBNL2 ) in all three cell lines. Hypoxia control
was specific for MBNL2, since it did not affect its paralogs MBNL1 and MBNL3. Via
knockdown experiments of MBNL2 in hypoxic cells, I could show that MBNL2 induction
promotes adaptation of cancer cells to low oxygen by regulating both transcript abundance
and alternative splicing of hypoxia response genes. In addition, depletion of MBNL2 re-
duced the proliferation and migration of cancer cells, corroborating a function of MBNL2
as cancer driver.

In the last few years, a novel class of RNAs has gained attention, namely circular RNAs
(circRNAs), which are produced by a particular splicing mechanism, known as back-
splicing. CircRNAs have been reported to change their abundance in cancer and their
high stability makes them promising candidates as diagnostic biomarkers. In this study, I
took advantage of deep rRNA-depleted RNA-Seq data to comprehensively investigate the
expression of circRNAs in human cancer cells and their changes in response to hypoxia.
To reliably identify circRNAs, I established a pipeline that integrates two available tools
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for circRNA detection with custom approaches for quantification and statistical analy-
sis. Using this pipeline, I identified 12006 circRNAs in the three cancer cell lines. Their
molecular features suggest an involvement of complementary RNA sequences as well as
trans-acting factors in circRNA biogenesis, including the splicing factor HNRNPC. Re-
markably, I detected 210 circRNAs that are more abundant than their linear counterparts.
Upon hypoxic stress, 64 circRNAs were differentially expressed in cancer cells, in most
cases in a cell type-specific manner. In summary, in this PhD thesis, I present a compara-
tive transcriptome profiling in human cancer cell lines. It reveals MBNL2 as an important
player in hypoxic cancer progression and provides novel insights into the biogenesis and
regulation of circRNAs under hypoxic stress.
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The content of this thesis is based on a research collaboration between the group of Dr.
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of Prof. Dr. Michaela Müller-McNicoll (Goethe University, Frankfurt am Main) and Dr.
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Fischer, S., Di Liddo, A., Taylor, K., Sobczak, K., Zarnack, K. & Weigand, J. E.
Muscleblind-like 2 controls the hypoxia response of cancer cells (in revision).
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Chapter 1

Introduction

1.1 The human transcriptome

The central dogma of molecular biology describes the expression of a gene via a two-
step process, by which the information is transferred from DNA to RNA via transcrip-
tion, and from RNA to protein via translation. The RNA molecule that serves as a
template for protein translation is named messenger RNA (mRNA), and the full set of
RNA molecules in a cell or a population of cells is defined as transcriptome. In 2012, the
ENCODE project revealed that, although more than 70% of the genome is transcribed
into RNA, only a small proportion of the transcriptome is finally translated into protein
(2%) (Djebali et al., 2012). The latest release of GENCODE annotation of the human
genome reports 19975 protein-coding genes representing only one third of the 60603 to-
tal genes (https://www.gencodegenes.org/human/stats.html, version 31). Thus, most
RNA molecules can be the final product in themselves. These RNAs are defined as non-
coding RNAs (ncRNA) and include the well-characterised transfer RNAs (tRNA) and ribo-
somal RNAs (rRNAs), involved in the translation of mRNAs, as well as small nuclear RNAs
(snRNAs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting
RNAs (piRNAs). Another class of ncRNAs is represented by long non-coding RNAs (lncR-
NAs) defined by the size of the transcript longer than 200 nucleotides (nt). In the last
few years, a novel class of ncRNAs has gained widespread attention in genomics studies,
namely circular RNAs (circRNAs).

https://www.gencodegenes.org/human/stats.html
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1.2 The complex life of mRNA

The transcription of a protein-coding gene consists of copying the genetic information
stored in a DNA segment (template DNA) into a precursor mRNA (pre-mRNA). A
schematic of the pre-mRNA transcription and processing is shown in Figure 1.1.

Figure 1.1: Overview of the mRNA life cycle. The genetic information encoded in
genes in the DNA packed in chromosomes is transferred to RNA molecules via transcription.
The resulting transcript undergoes multiple maturation steps, from capping to nuclear
export and translation.

In eukaryotes, the transcription of mRNAs is catalysed by the RNA Polymerase II (RNA
Pol II) and occurs in the nucleus of the cell. At this point, the pre-mRNA is composed of
exons and introns. Exons constitute the sequences that are preserved in the mature mRNA,
while introns are non-coding regions that are not present in the final mature mRNA. Exons
may constitute the coding region of the pre-mRNA, which is translated into the final
protein, or they may contain non-coding sequences that are not translated (untranslated
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regions, UTRs) but serve important roles in the regulation of the mRNA life. Before getting
exported to the cytosol to be translated, the pre-mRNA undergoes a series of modifications
to generate a mature transcript. The first modification is the addition of a cap structure at
the 50 end of the transcript, consisting of a modified guanine base that protects the RNA
from degradation by exonucleases. The capping is followed by the removal of introns and
the connection of exons in a process known as splicing. Finally, the pre-mRNA undergoes
cleavage at the 30 end, strictly coupled to the addition of multiple adenine residues to its
30 end, in a process named polyadenylation. The pre-mRNA is then detached from the
template DNA and released, with the subsequent termination of the transcription. When
all processing steps are carried out, the mature mRNA is ready to be transferred to the
cytosol via recruitment of the nuclear export factor 1 (NXF1), that interacts with the
nuclear pore complex (Müller-McNicoll & Neugebauer, 2013). Once in the cytoplasm, the
mRNA can get localised to specific regions, such as membrane compartments, and can
be translated into proteins in a process catalysed by the ribosome. There can be a wide
diversity of events which alter the form of the eukaryotic mRNAs, including alternative
transcription start, alternative splicing, and alternative polyadenylation. These events lead
to a wide diversity of transcript isoforms being produced from a single gene, which can
influence the nature of the produced protein. During the process of RNA biogenesis in
the nucleus, a number of factors begin to associate with the mRNA. These include RNA-
binding proteins (RBPs), which bind directly to the transcript. Many of these factors then
travel out to the cytoplasm together with the mRNA, constituting a code that drives the
localisation, translation and degradation of the mRNA (Singh et al., 2015).

1.3 The pre-mRNA splicing

The pre-mRNA splicing is a fine-tuned process in which exons are covalently joined to-
gether to generate the mature transcript (Figure 1.2A). Intron excision and exon ligation
are achieved via two consecutive transesterification reactions (Figure 1.2B). This process
constitutes the basis to generate protein diversity from a single gene. Splicing mostly
occurs co-transcriptionally in humans (Tilgner et al., 2012) and is catalysed by a large
macromolecular ribonucleoprotein complex, the spliceosome. This complex is composed of
five uridine-rich snRNAs (U1, U2, U4, U5 and U6) and about 200 proteins that catalyse
the different steps of the RNA splicing in a dynamic manner. The spliceosome assembly is
guided by the presence of specific sequences in the intron to be spliced out. These are the
50 splice site (50SS), also known as donor site, a branch point sequence (BPS), a polypyrim-
idine tract (PPT), and the 30 splice site (30SS), also known as acceptor site (Wahl et al.,
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2009; Shi, 2017; Fica & Nagai, 2017; Yan et al., 2019) (Figure 1.2A).

During the earliest stages of the spliceosome assembly, the 50SS is recognised by U1 snRNP,
while the recognition at the 30SS is initiated by the heterodimer U2 small nuclear RNA
auxiliary factor (U2AF). U2AF consists of the subunits U2AF1 and U2AF2, which bind
to the AG dinucleotide at the 30SS and the PPT immediately upstream of the 30SS, re-
spectively. The splicing factor 1 (SF1) binds to the BPS (Berglund et al., 1997; Berglund
et al., 1998; Liu et al., 2001) (Figure 1.3). This early arrangement is named E complex and
is converted to the A complex (pre-spliceosome complex) when U2 snRNP replaces SF1
at the BPS. Next, the tri-snRNP U4, U5 and U6 joins the spliceosome, thereby forming
the B complex. At this point the spliceosome undergoes a series of compositional and
conformational changes that lead to the formation of an active B complex. This is able
to carry out the first step of splicing, that consists of the disruption of the phosphodiester
bond at the 50SS and the link of the free end of the intron to the adenosine (A) at the
BPS. Further conformational changes affect the spliceosome, with the formation of a C
complex, able to carry out the second step of the splicing reaction, leading to the forma-
tion of a phosphodiester bond between the two exons and the removal of the intron as
a lariat structure (Wahl et al., 2009; Shi, 2017; Fica & Nagai, 2017; Yan et al., 2019)
(Figure 1.3). The components of this post-spliceosomal complex are then disassembled
and recycled for further splicing reactions, while the ligated exons are released. During the
transition between the multiple complexes, a large number of additional proteins that do
not directly constitute the spliceosome contribute to its assembly and activation. These
include SR proteins, heterogeneous nuclear ribonucleoproteins (HNRNPs), and others (Fu
& Ares, 2014; Jeong, 2017).
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Figure 1.2: Schematic of the pre-mRNA splicing. (A) Top: Pre-mRNA is converted
into mRNA via connection of exons (blue) and removal of the intervening introns (black).
Untranslated regions (UTRs, green) are preserved in the mRNA molecule. Bottom: En-
larged pre-mRNA region including consensus sequences in the intron, which are essential
for its excision: 50 and 30 splice sites, branch point and polypyrimidine tract (PPT).
(B) Pre-mRNA splicing consists of two sequencial transesterification reactions. The first
reaction involves the adenosine at the branch point and the 50 splice site. Next, the first
exon is joined to the downstream exon in the second transesterification reaction, thereby
excising the intron lariat previously formed.
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Figure 1.3: Spliceosome assembly step-by-step. Core splicing signals within introns
of pre-mRNAs include a 50 splice site (50SS), a branch point (BPS), a polypyrimidine tract
(PPT), and a 30 splice site (30SS) (Figure 1.2). The splicing signals are bound by early
splicing factors, including U1 snRNP, SF1 and the U2AF heterodimer, thereby forming the
E complex. Later on, U2 snRNP joins the complex, converting it into the A complex. The
recruitment of the U4-U6-U5 tri-snRNP on the pre-mRNA generates the pre-catalytic B
complex and is required to excise the intron. The spliceosome assembly is highly dynamic
and additional factors transiently interact with the pre-mRNA during the different steps of
the splicing process. E: early complex; A: pre-spliceosome complex; B: pre-catalyic spliceo-
some; Bact: activated spliceosome; B⇤: catalytically activated spliceosome; C: catalytic
step 1 spliceosome; C⇤: catalytic step 2 spliceosome; P: post-splicing complex; ILS: intron
lariat spliceosome; NTC: NineTeen Complex; NTR: NTC-related complex. Adapted from
Shi, 2017.



Chapter 1. Introduction 21

1.4 Alternative splicing

During the splicing process, a key step is the recognition of splice sites. Constitutive exons
are generally included in the mature transcript, due to the presence of a highly conserved
and strong splice signal that favours their splicing (constitutive splicing, Figure 1.4). Other
exons can be alternatively included in the mature transcripts depending on the distinct
selection of splice sites during pre-mRNA splicing. This category of exons is defined as
alternative exons. The alternative inclusion of certain exons in the mature transcript is
known as alternative splicing (AS) and constitutes the major post-transcriptional pro-
cess that ensures biological complexity by increasing the proteome diversity. Indeed, it has
been estimated that about 95% of the human genes undergo alternative splicing (Pan et al.,
2008; Kornblihtt et al., 2013). Even from an annotation point of view, the latest release of
GENCODE annotation of the human genome reports 83666 protein-coding transcripts and
19975 protein-coding genes (https://www.gencodegenes.org/human/stats.html, version
31), indicating that most pre-mRNAs produce multiple different mRNA isoforms. In gen-
eral, alternative exons have weaker splice signals compared to constitutive exons, and their
recognition and usage is influenced by the presence of cis-acting elements in the pre-mRNA,
named exonic enhancer or silencer (ESE, ESS) when located in exons, and intronic splicing
enhancers or silencer (ISE and ISS) when located in introns. These elements are bound by
trans-acting factors defined as splicing factors that, with their activity, either enhance or
inhibit the usage of alternative splice sites by influencing the recruitment of the spliceoso-
mal machinery (Roy et al., 2013; Wang et al., 2015b). In addition, also the transcription
rate plays an important role in alternative splicing regulation, with the splicing of alter-
native exons being favoured when transcriptional elongation is slowed down and the RNA
polymerase pauses (Kornblihtt, 2007).

Different types of AS events might contribute to the diversity of transcript isoforms from
a single gene (Figure 1.4). These include cassette exon (CE) events, also known as exon
skipping, in which an internal exon of the pre-mRNA can alternatively be spliced in or
skipped to generate two different transcript isoforms. More rarely, AS can affect also two
consecutive exons that are alternatively included in the mature transcript. This kind of
event is defined as mutually exclusive exons (MXE) (Pohl et al., 2013). Different transcript
isoforms can be generated also via alternative selection of 50 or 30 splice sites, that may
lead to subtle changes in the coding sequence (Wang et al., 2015b). Finally, AS can
also affect intronic regions, when an intron is either retained or removed from the mature
transcript (retained intron). Intron retention has been observed for more than half of all
human introns (Braunschweig et al., 2014; Jacob & Smith, 2017). For a long time, the
importance of AS has not been fully appreciated. The development of high-throughput

https://www.gencodegenes.org/human/stats.html
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Figure 1.4: Constitutive and alternative splicing. Different types of alternative
splicing are illustrated, together with their products, in comparison to constitutive splicing.
Modified from Wang et al., 2015b.

technologies and computational tools able to profile the AS pattern largely extended the
current knowledge of the impact of AS on different biological contexts. Alterations in the
AS process have been associated with multiple human hereditary diseases as well as with
different forms of cancer (Oltean & Bates, 2014; Cieply & Carstens, 2015; Urbanski et al.,
2018; Yang et al., 2019; Coomer et al., 2019). Studying the link between cancer biology
and splicing regulation is fundamental to understand the influence on the disease and to
develop novel anti-cancer therapeutic approaches (Coltri et al., 2019).
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1.5 Alternative splicing regulators: MBNL proteins

As mentioned in the previous sections, the splicing process is regulated by a multitude of
RBPs that localise at specific binding sites on the pre-mRNA and influence the splicing
of alternative exons, thus functioning as splicing factors. Splicing factors define the spe-
cific set of mRNA isoforms and their encoded proteins that characterise a certain tissue or
developmental stage. Splicing factors include SR proteins, containing serine/arginine-rich
motifs, and heterogeneous nuclear ribonucleoproteins (HNRNPs) (Fu & Ares, 2014). Clas-
sically, SR proteins are thought as activators of AS, while HNRNPs are seen as silencers.
However, recent studies showed a more complex scenario, in which both SR proteins and
HNRNPs can enhance or inhibit splicing. Their action depends on the context, whether
they bind to alternative exons or introns (Dvinge et al., 2016; Fu & Ares, 2014). Many
other RBPs are involved in splicing regulation, often regulating cell- and tissue-specific
splicing events, including the CCUG-BP and ETR-3-like factors (CELFs), RBFOX pro-
teins, NOVA proteins, ELAVL1 (ELAV Like RNA Binding Protein 1, also known as HuR),
T cell-restricted intracellular antigen 1 (TIA1) and TIA1-like (TIAL1) (Dvinge et al., 2016;
Fu & Ares, 2014). Also the muscleblind-like (MBNL) protein family belongs to this group
of trans-acting factors that regulate alternative splicing.

MBNL2

MBNL1

MBNL3

388 aa

373 aa

354 aa

Zinc-finger 
domain

Figure 1.5: The muscleblind-like (MBNL) protein family. Schematic repre-
sentation of MBNL proteins and their domain structure, as described in the UniProt
database (https://www.uniprot.org/; UniProt entries Q9NR56, Q5VZF2, and Q9NUK0
for MBNL1, MBNL2 and MBNL3, respectively). All three paralogs present two pairs of
zinc finger domains, which are able to bind YGCY motifs with different affinities and speci-
ficities.

In human, the MBNL protein family consists of three paralogs, MBNL1, MBNL2 and
MBNL3, which show a different expression pattern across tissues and developmental stages
(Konieczny et al., 2014). MBNL1 and MBNL2 are both ubiquitously expressed, with
MBNL1 primarily exerting its function in most tissues. Only in brain, MBNL2 is the

https://www.uniprot.org/
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predominant expressed paralog in respect to MBNL1 (Konieczny et al., 2014). In contrast,
MBNL3 expression has been shown to be limited to muscle cells during differentiation and
regeneration, and it reaches high levels in placenta (Fardaei et al., 2002; Squillace et al.,
2002; Lee et al., 2010; Poulos et al., 2013). All the three members of the family contain
four zinc finger (ZnF) domains of the type C3H1. These are organised in two pairs, which
are separated by a linker region of about 80 residues (Taylor et al., 2018). The ZnF
domains serve to recognise and bind specific sequences on mRNA molecules, consisting of
two or more clustered 50-YGCY-30 motifs (Lambert et al., 2014). The ability of MBNL
proteins to bind RNA does not depend exclusively on the primary sequence of the binding
site, but also on the flanking nucleotides (Park et al., 2017), as well as the structural
context of the RNA targets (deLorimier et al., 2017; Taylor et al., 2018). In general, AS is
controlled by a differential distribution of MBNL paralogs and the affinity of these proteins
for specific RNA-binding regions. Similar to other splicing factors, MBNLs activate or
repress mRNA alternative splicing depending on their binding location (Charizanis et al.,
2012; Wang et al., 2012). Among the three MBNL paralogs, MBNL1 is considered the
most potent splicing regulator (Sznajder et al., 2016). In addition to alternative splicing,
MBNL proteins are involved in the regulation of several other steps in the mRNA life,
including mRNA localisation (Adereth et al., 2005; Wang et al., 2012), stability (Masuda
et al., 2012), local translation, degradation, as well as alternative polyadenylation (Batra
et al., 2014). Finally, MBNLs have been reported to influence miRNA biogenesis (Rau et
al., 2011). In particular, MBNL1 has been implicated in the negative regulation of mRNA
stability (Masuda et al., 2012; Wang et al., 2015a). In contrast, it has been suggested that
MBNL2 might enhance the stability of mRNAs encoding extracellular matrix components
(Du et al., 2010), and a recent publication predicted that MBNL2 might function as mRNA-
stabilising factor (Perron et al., 2018). Finally, all three MBNL paralogs are involved in
autoregulatory feedback loops, and often can compensate each other in their function
(Konieczny et al., 2018).

MBNL proteins are strongly associated to diseases, such as myotonic dystrophy, in which
their availability is reduced due to the expansion of CUG and CCUG repeats, which causes
the sequestration of MBNL proteins (deLorimier et al., 2017; Du et al., 2010; Miller et
al., 2000). It is known that post-transcriptional regulation, mediated by RBPs, is often
globally deregulated in cancer (Oltean & Bates, 2014; Escobar-Hoyos et al., 2019; Khabar,
2017), and aberrant RBP activities have been identified as cancer drivers (Anczuków &
Krainer, 2016; Pereira et al., 2017). While the importance of MBNL proteins in myotonic
dystrophy has been largely confirmed, only recently MBNL proteins have been shown to
play a role in tumour progression, acting either as oncogene or tumour suppressor. For
instance, MBNL1 was described as tumour suppressor gene in breast cancer metastasis
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(Fish et al., 2016). In contrast, MBNL1 was also shown to contribute to carcinogenesis in
colorectal cancer by interfering with the recruitment of DICER1 to miRNAs (Tang et al.,
2015). These contrasting functions of MBNL1 in different cancers derive from different
levels of specific isoforms (Tabaglio et al., 2018). Similarly, MBNL2 has been reported
to function either as tumour suppressor in hepatocarcinogenesis (Lee et al., 2016) or as
oncogene in clear cell renal cell carcinoma (Perron et al., 2018). Finally, MBNL3 was found
to promote hepatocellular carcinoma (Yuan et al., 2017). Despite these first evidences of a
role of MBNL proteins in cancer, the molecular mechanism by which they influence cancer
progression and their impact at transcriptome level requires additional investigation.

1.6 Back-splicing generates circular RNAs

Figure 1.6: Back-splicing generates circRNAs. The majority of circRNAs originate
from pre-mRNA. In linear splicing, a 50SS is covalently joined to a downstream 30SS to
generate the messenger RNA. The mechanism by which a 50SS is joint to a 30SS located
upstream with respect to the transcription direction is named back-splicing and produces
circRNAs. Introns can be either removed or retained in the final circular transcript.

In addition to linear splicing, exons in the pre-mRNA can undergo another form of alter-
native splicing, when a 50 splice site is covalently joined to a 30 splice site that is located
upstream in the pre-mRNA. This process is known as back-splicing or head-to-tail splicing,
and leads to the formation of circular RNAs (circRNAs) (Figure 1.6). The first evidence
of circRNAs dates back to 1976, when Sanger et al. discovered them as viroids in RNA
viruses (Sanger et al., 1976). Three years later, the first circRNA in eukaryotic cells was
detected by electron microscopy (Hsu & Coca-Prados, 1979), followed by the observation
of a circRNA from the hepatitis � virus (Kos et al., 1986). In the next years, circRNAs
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were identified from the DCC gene and described as scramble exons (Nigro et al., 1991),
and from the sex-determining region Y (Sry) in mouse testis (Capel et al., 1993; Dubin
et al., 1995). Despite these first observations of circular RNA molecules, for many years
circRNAs have been considered the product of splicing errors (Cocquerelle et al., 1993).
Thanks to major progress in high-throughput technologies, for the first time in 2012 it
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Figure 1.7: Publication rates of circRNAs. Shown is the number of publications
referring to circRNAs reported in PubMed as updated to 11/07/2019. The terms "circular
RNA" OR circRNA OR circRNAs OR "circular RNAs" were queried. For the sake of
simplicity, only PubMed records from 2012 are shown.

has been possible to detect thousands of circRNAs from RNA-Sequencing experiments of
patients with acute lymphoblastic leukemia, as well as of normal and cancer cell lines (Salz-
man et al., 2012). Only one year later, two other studies used bioinformatics approaches
to detect circRNAs in eukaryotic cells (Memczak et al., 2013; Jeck et al., 2013). Among
the identified thousands of circRNAs, CDR1as/ciRs-7 emerged as miRNA sponge of miR-
7 (Hansen et al., 2013; Memczak et al., 2013). From this point, an exponential number
of circRNA-related studies have been published, accumulating to a total of 2365 papers
reported in PubMed to date (https://www.ncbi.nlm.nih.gov/pubmed/), of which 1489
(63%) were published in 2018-2019 (Figure 1.7).

CircRNAs lack 50 and 30 free ends, making them highly stable when compared to linear
RNAs, because they are resistant to the action of endogenous exonucleases. Indeed, it has
been estimated that the half-life of a circRNA ranges up to 48 hours (h) (Jeck et al., 2013),
against 4-9 h for an mRNA (Schwanhäusser et al., 2011). In addition, due to their circular
conformation, circRNAs do not undergo polyadenylation. Different types of circRNAs have
been discovered. The majority of circRNAs originate from protein-coding genes. Those
containing exclusively exonic sequences are referred to as exonic circRNAs (ecircRNAs)
and can include a single or multiple exons. CircRNAs can also contain both exons and
introns; these are known as EIciRNA, and are often retained in the nucleus (Li et al., 2015).

https://www.ncbi.nlm.nih.gov/pubmed/
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In contrast, ecircRNAs show cytoplasmic localisation (Zhang et al., 2014). Additional
types of circRNAs include intronic circRNAs or ciRNAs (Zhang et al., 2013), formed from
intron lariats, as well as circRNAs from untranslated regions (UTRs), non-coding loci and
intergenic regions (Memczak et al., 2013; Guo et al., 2014; Zheng et al., 2016). CircRNAs
from the interior regions of exons, introns, and intergenic transcripts in human and mouse
have also recently been described and referred to as interior circRNAs or i-circRNAs (Liu
et al., 2019). Thus, circRNAs constitute a large heterogeneous class of RNAs with the
common feature of being covalently closed molecules. CircRNAs have been detected in
various organisms, from Archaea to mammals (Danan et al., 2011; Salzman et al., 2012;
Wang et al., 2014), with many circRNAs being evolutionarily conserved across species
(Pamudurti et al., 2017) CircRNAs were reported to be generally lowly abundant (Jeck
et al., 2013; Guo et al., 2014; Salzman et al., 2013). However, several circRNAs have been
shown to be more expressed than their linear counterparts, especially in neuronal tissues
(Salzman et al., 2013; Jeck et al., 2013; Memczak et al., 2013). In humans, circRNAs
have been detected in most tissues and cell types, and multiple transcriptome-wide studies
reported cell-, tissue- and developmental stage-specific expression patterns for circRNAs
(Salzman et al., 2013; Memczak et al., 2013; Rybak-Wolf et al., 2015; Kristensen et al.,
2017b). The tissue and developmental stage specificity, together with the conservation
and the high expression levels of certain circRNAs, point to a functional relevance of
such circular molecules. However, how the regulation of circRNAs in different tissues,
developmental stages or cellular conditions is achieved, is not fully understood.

Biogenesis of circRNAs The back-splicing process involves the canonical spliceo-
somal machinery (Ashwal-Fluss et al., 2014; Starke et al., 2015; Wang & Wang, 2015).
The steady-state levels of circRNAs were shown to be increased upon inhibition of spliceo-
some components at the expense of linear RNAs from the same pre-mRNA (Liang et al.,
2017a). Moreover, inhibiting the RNA Pol II termination led to increased circRNA levels,
most likely due to read-through transcription that continues into the downstream genes,
resulting in transcripts that undergo back-splicing (Liang et al., 2017a). Furthermore, it
was found that the average transcription elongation rate (TER) of RNA Pol II for nascent
circRNA-producing genes is higher than for non-circRNA genes (Zhang et al., 2016b).
As for alternative splicing (Braunschweig et al., 2013), a relatively modest variation of
the TER had an appreciable effect on circRNA formation. A large fraction of nascent
circRNAs was detected only after the completion of transcription of their host pre-mRNAs
(Zhang et al., 2016b), indicating that back-splicing largely occurs post-transcriptionally
(Li et al., 2018b).
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Figure 1.8: Hypothetical mechanisms for circRNA biogenesis. Three mechanisms
have been proposed for generating circRNAs. (A) Lariat-driven: Exon skipping leads to
the formation of an mRNA as well as a lariat structure from the skipped exons. The lariat is
then circularised in a second splicing reaction. (B) Intron-pairing-driven: Complementary
regions in introns flanking the circRNAs pair and move back-splice sites in close proximity,
enhancing the circularisation. (C) RBP-mediated: RBPs bind both flanking introns and
bring the back-splice sites closer by interacting with each other, as shown for the splicing
factor Quaking (QKI) (Conn et al., 2015). Adapted from Ebbesen et al., 2016.

Currently, there are three hypothetical mechanisms suggested for the biogenesis of
circRNAs: lariat-driven, intron pairing-driven and RBP-mediated back-splicing (Figure
1.8). According to the lariat-driven model, during pre-mRNA transcription an exon skip-
ping event might generate an exon-containing lariat structure that is further processed
to remove the intron and close the circular transcript. In parallel, an mRNA lacking the
skipped and circularised exons is produced (Jeck et al., 2013) (Figure 1.8A). The best
characterised mechanism requires the presence of complementary inverted repeats, often
Alu element retrotransposons (Zhang et al., 2014), in introns flanking the circularised
exons. Pairing of these sequences moves the back-splice sites in close proximity, favour-
ing back-splicing (Jeck et al., 2013) (Figure 1.8B). Another mechanism involves RBPs
that bind both flanking introns and bring the back-splice sites closer by interacting with
each other. This is the case for the splicing factor Quaking (QKI) (Conn et al., 2015)
(Figure 1.8C). Additional RBPs have been shown to regulate the circRNA formation, in-
cluding MBL/MBNL1 (Ashwal-Fluss et al., 2014), as well as HNRNPs and SR proteins in
Drosophila melanogaster (Kramer et al., 2015), and human (Fei et al., 2017). The splicing
factor FUS has been shown to regulate circRNA formation by binding introns flanking
back-splicing junctions in mouse motor neurons (Errichelli et al., 2017). Moreover, the
intron-driven mechanism of circRNA biogenesis is subjected to inhibition by A-to-I editing
operated by the enzyme ADAR1 (Ivanov et al., 2015; Rybak-Wolf et al., 2015). Similarly,
the nuclear RNA helicase DHX9 suppresses the formation of circRNAs by disrupting RNA
pairs that flank circularised exons (Aktas et al., 2017). Finally, similarly to alternative
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splicing, the biogenesis of circRNAs is likely to be influenced by a combination of cis-
acting and trans-acting splicing factors that can either positively or negatively interfere
with the back-splicing process.

Functions of circRNAs Although thousands of circRNAs have been detected in var-
ious organisms, the molecular function of the majority of circRNAs remains unknown. A
number of circRNAs have been reported to act as miRNA sponge, presenting multiple
binding sites for miRNAs, with CDR1as/ciRs-7 being the best characterised, with more
than 60 conserved binding sites for miRNA-7 (Hansen et al., 2013; Memczak et al., 2013;
Wang et al., 2016; Zheng et al., 2016; Han et al., 2017b; Han et al., 2017a). By sequester-
ing miRNAs and reducing their activity, circRNAs indirectly upregulate the expression of
miRNA target genes. A recent study reported a regulatory network through sponge func-
tion in the mammalian brain that involves the lncRNA Cyrano, ciRS-7 and two microRNAs
miR-671 and miR-7 (Kleaveland et al., 2018). CircRNAs have been shown to sequester
not only miRNAs but also RBPs. For instance, circMbl acts as a sponge for RNA-binding
protein MBL encoded by the same gene, thereby regulating the protein expression in a
feedback loop. It also competes with the linear splicing of pre-mRNA and affects the
formation of linear RNA to regulate the expression of related genes (Ashwal-Fluss et al.,
2014). EIcircRNAs, such as EIciPAIP2 and EIciEIF3J, are retained in the nucleus and
regulate the transcription of their own host gene by interacting with RNA Pol II (Li et al.,
2015). Additionally, it has been suggested that circRNAs can act as protein scaffolds, as
for circFOXO3 that represses the cell cycle progression by forming a complex with p21
and CDK2 (Du et al., 2016). Although initially considered exclusively non-coding RNAs,
circRNAs have recently been reported to contain internal ribosome entry sites (IRES) and
to be translated into small peptides (Legnini et al., 2017; Pamudurti et al., 2017; Yang
et al., 2017).

CircRNAs have been found to be deregulated in several human tumours, including lung,
cervical and breast cancer. They were efficiently used to distinguish tumours from adjacent
normal tissue (Geng et al., 2018; Kristensen et al., 2017a). In addition, several studies
have reported that circRNAs can regulate cellular stress (Fischer & Leung, 2017). Boeckel
and colleagues identified circRNAs that are regulated in human endothelial cells upon
hypoxic stress, and showed that circZNF292 promotes angiogenesis (Boeckel et al., 2015).
circZNF292 was also reported to modulate cell proliferation and tube formation in human
glioma (Yang et al., 2016). Similarly, a circRNA from the DENND4C gene was found
to be induced in human breast cancer cells (MCF-7) in hypoxic conditions (Liang et al.,
2017b). Nevertheless, the influence of hypoxia on the circRNA repertoire in cancer cells
remains to be fully explored.
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Figure 1.9: Functions of circRNAs. CircRNAs can function as miRNA sponges,
thereby indirectly imparing the degration or promoting the translation of miRNA targets.
CircRNAs can be bound by RBPs that recognise binding sites on their sequence, thereby
regulating the availability of RBPs. EIcircRNAs have been shown to associate with RNA
Pol II and enhance the transcription of their host genes. CircRNAs can act as scaffold for
proteins, mediating their interaction. CircRNAs with IRES elements and AUG sites can
function as template for translation of peptides. Adapted from Kristensen et al., 2019.
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1.7 RNA-Sequencing: a powerful tool for transcrip-

tomics studies

To date, the most suited techniques for transcriptomics studies are microarray and RNA-
Seq. While microarray assays have been set up for genome-wide studies on circRNAs
(Zhang et al., 2018; Tang et al., 2018; Su et al., 2016; Sand et al., 2016; Zhang et al., 2017;
Liu et al., 2017), currently RNA-Seq represents the method of choice for circRNA profiling.
In contrast to microarray technology, RNA-Seq does not require prior knowledge of existing
circRNAs, allowing de novo identification of circRNAs. Moreover, the currently available
microarrays do not provide any information about the levels of the linear counterpart of
circRNAs (Kristensen et al., 2019).

Figure 1.10: Different approaches for library preparation for RNA-Seq. Setting
up poly(A)-selected RNA-Seq libraries, only mRNAs and some lncRNAs are purified. In
contrast, when depleting both rRNA and polyadenylated transcripts in poly(A)-depleted
RNA-Seq libraries, all non-coding RNAs lacking a poly(A) tail are purified, including
circRNAs. rRNA-depleted total RNA samples retain both circular transcripts and linear
RNAs, independently of the presence of a poly(A) tail. CircRNAs are the primary RNA
molecule in libraries depleted of the rRNA and treated with RNase R to remove linear
RNAs. Poly(A)+: poly(A)-selected RNA-Seq or mRNA-Seq; rRNA-/Poly(A)-: poly(A)-
depleted RNA-Seq; rRNA-: rRNA-depleted total RNA-Seq; rRNA-/RNase R+: RNase
R-treated RNA-Seq or CircleSeq. Adapted from Szabo & Salzman, 2016.
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A typical protocol for RNA-Seq library preparation uses oligo-dT beads capable of cap-
turing exclusively polyadenylated RNAs, thereby generating poly(A)-selected RNA-Seq
libraries. This approach is frequently employed for mRNA transcriptome profiling exper-
iments, therefore it is also known as mRNA-Seq. CircRNAs lack a poly(A) tail, making
them undetectable in poly(A)-selected RNA-Seq libraries (Figure 1.10). Indeed, circRNAs
can be detected only from RNA-Seq libraries preserving the non-polyadenylated pool of
RNAs. In addition, it is recommended to remove the ribosomal RNA (rRNA) molecules,
that constitute the majority of the total RNA pool. For instance, circRNAs can be detected
in poly(A)-depleted RNA-Seq libraries (Salzman et al., 2013) generated upon depletion of
rRNA molecules and removal of polyadenylated transcripts. In this way, all RNA species
lacking a poly(A) tail are preserved, not only circRNAs (Figure 1.10). With this approach,
circRNAs will still represent a minor part of the sequenced RNAs.
A specific protocol of library preparation to enrich for circRNAs has been developed, known
as CircleSeq or CircSeq (Jeck et al., 2013). It takes advantage of the property of circRNAs
to be resistant to the digestion by exonucleases. After rRNA depletion, RNA samples
are treated with ribonuclease R (RNase R), a highly processive 30 ! 50 exonuclease that
selectively digests linear RNAs which contain at least seven unstructured nucleotides at
their 30 end (Vincent & Deutscher, 2006; Szabo & Salzman, 2016) (Figure 1.10).
Finally, an alternative approach consists in removing the highly abundant rRNA prior to
RNA sequencing, generating rRNA-depleted total RNA-Seq data (from now referred to
as rRNA-depleted RNA-Seq). This approach has the advantage that it simultaneously
provides expression information for both coding and non-rRNA non-coding RNA (Figure
1.10). Currently, the rRNA-depleted RNA-Seq approach remains the most widely used
method for transcriptomics studies involving both linear and circRNAs, since it allows
the analysis of different RNA species and their comparison from the same library, thereby
overcoming the problem of variability due to different preparation protocols.
Very recently, a more complex protocol named RPAD (RNase R treatment followed by
Polyadenylation and poly(A)+ RNA Depletion) has been described. It combines poly(A)
depletion with RNase R treatment, followed by a polyadenylation step and removal
of the resulting polyadenylated transcripts, with the scope of efficiently removing non-
polyadenylated and highly-structured RNAs (Pandey et al., 2019). Ideally, all described
approaches would benefit from high sequencing depth, paired-end protocols as well as long
reads for a reliable detection of back-splice reads (Szabo & Salzman, 2016; Kristensen et
al., 2019).
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1.8 Computational identification of circRNAs from

RNA-Seq

Figure 1.11: Schematic of reads spanning back-splice junctions. The ends of reads
spanning the back-splice junction align discontinuously and in a reversed orientation to the
reference genome.

Computationally, circRNAs can be detected from RNA-Seq data based on sequencing
reads that span back-splice junctions (BSJs). These are chimeric reads, which align to
two distinct portions of the genome. For circRNAs, the ends of these reads align in re-
versed orientation to the reference genome with respect to transcription (Figure 1.11).
Depending on the type of library, some limitations have to be considered when searching
for circRNAs. For instance, the largely adopted rRNA-depleted RNA-Seq protocol can-
not provide information about the internal exon-intron organisation of a circRNA. In fact,
reads mapping to exons or other genomic features that are shared between a circRNA and
a linear RNA cannot be uniquely assigned to any of these molecules. Moreover, consider-
ing that circRNAs are in general lowly abundant, relying only on back-splice reads makes
quantitative analyses still challenging. On the other hand, having in the same library both
linear and circRNAs allows a direct comparison for instance of linear and back-splicing
or circRNA and host gene levels, avoiding variability generated by the usage of different
protocols for library preparation.

At the time of this study, several computational tools were already available for the de-
tection of circRNAs from RNA-Seq data and many other tools have been published over
the last years (reviewed in Szabo & Salzman, 2016; Zeng et al., 2017; Gao & Zhao, 2018;
Jakobi & Dieterich, 2019). In general, based on the strategy adopted, computational tools
for circRNA detection can be divided into two large categories: fragmentation-based or
pseudo reference-based (Table 1.1). The fragmentation-based strategy focuses on reads
that do not map linearly to the genome and splits them into two fragments that are
aligned separately to the reference genome. These are defined as chimeric alignments, and
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correspond to back-splicing events when they are aligned in reversed orientation to the
reference genome. This approach potentially allows de novo detection of circRNAs and
can be completely independent from an existing genome annotation. This category com-
prises most of the available circRNA tools, including find_circ and CIRCexplorer (Table
1.1). find_circ is based on custom Python scripts that analyse the data generated by
aligning sequencing reads to the reference genome with Bowtie2. Unmapped reads from
Bowtie2 (Langmead & Salzberg, 2012) are used to extract anchor sequences from both
ends of the read, that will be aligned to genome independently. When anchors map in
reverse orientation, the read fragments are extended to define the location of the break-
point. A series of filters are then applied to obtain a list of potential circRNAs (Memczak
et al., 2013). A similar approach is used by CIRCexplorer, that in its original version
relies on a combination of TopHat and TopHat-Fusion algorithms to extract back-splicing
events (Zhang et al., 2014). In later versions, it can also be used in combination to the
splice-aware aligner STAR (Dobin et al., 2012) to parse its chimeric alignments and anno-
tate back-splicing events. Different from find_circ, CIRCexplorer requires an annotated
genome to call back-splicing events, thus it is restricted to exonic circRNAs and ciRNAs
from annotated splice sites, with the advantage that it will likely get rid of some of the
noise in the data.
In contrast to the fragmentation-based strategy, the pseudo reference-based strategy
strictly requires a reference genome annotation to generate putative events on which reads
are tested for alignment. Although these tools do not allow the discovery of novel circRNAs
from unannotated junctions, they likely provide a more reliable list of back-splicing events.
Moreover, alignment to a pre-defined set of BSJs would increase the sensitivity of the
algorithm in detecting circRNAs, as these BSJs are unlikely to be missed. The pseudo
reference-based category includes NCLscan, KNIFE and PTESfinder (Table 1.1).
Finally, also machine learning-based approaches have been proposed to predict circRNAs,
and in the last year, deep learning has been applied to predict circRNAs from specific
features with DeepCIRcode and circDeep (Table 1.1).

Recent studies evaluated the performance of multiple circRNA tools on rRNA-depleted
RNA-Seq samples, by relying on RNAse R-treated RNA-Seq samples as a source to detect
real circRNAs. Interestingly, these studies agreed on the fact that the outcome of circRNA
detection tools is only partially consistent and their performance can vary considerably
(Hansen et al., 2016, Zeng et al., 2017, Hansen, 2018). Thus, the choice of a specific algo-
rithm is critical for the downstream analysis and for deriving conclusions about circRNA
biology. Benchmarking based on RNase R-treated RNA-Seq data revealed CIRCexplorer
as one of the outperforming tools (Hansen et al., 2016), although it has the limitation
that it does not allow the detection of novel circRNA species due to the strict dependence
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on the genome annotation. On the other hand, find_circ did not perform as good as
CIRCexplorer, but is capable to identify circRNAs originating from unannotated junc-
tions, thus providing a broader view of the circRNA landscape. It has been suggested
that combining the prediction of multiple tools for circRNA detection would lead to a
more reliable catalogue of circRNAs from RNA-Seq data (Hansen et al., 2016; Zeng et al.,
2017; Hansen, 2018). Considering only circRNAs detectable with multiple tools would
remove potential false positives derived from the usage of a specific algorithm (Hansen
et al., 2016; Zeng et al., 2017; Hansen, 2018). However, this approach might discard bona
fide circRNAs, which are detectable thanks to specific features of a certain algorithm. In
summary, multiple tools are available to detect circRNAs from RNA-Seq data, and it is
advisable to use different tools for circRNA identification, depending on the type of dataset
to be analysed and the experimental question to address.
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Table 1.1: Overview of available circRNA detection tools

Tool Reference Language Aligner Strategy

MapSplice2 Wang et al., 2010 Python Bowtie Fragmentation-

based

find_circ Memczak et al., 2013 Python Bowtie2 Fragmentation-

based

CIRCfinder
(only ciRNA)

Zhang et al., 2013 Python Bowtie
(TopHat)

Fragmentation-

based

Segemehl Hoffmann et al., 2014 C segemehl Fragmentation-

based

circRNA_finder Westholm et al., 2014 Perl STAR Fragmentation-

based

CIRCexplorer Zhang et al., 2014 Python Bowtie
(TopHat-Fusion),
STAR

Fragmentation-

based

CIRI Gao et al., 2015 Perl BWA Fragmentation-

based

NCLscan Chuang et al., 2016 Python BWA Pseudo

reference-based

Acfs You et al., 2015; You &

Conrad, 2016

Perl BWA-MEM Fragmentation-

based

KNIFE Szabo et al., 2015 Perl Bowtie,
Bowtie2

Pseudo

reference-based

DCC Cheng et al., 2015 Python STAR Fragmentation-

based

UROBORUS Song et al., 2016 Perl Bowtie,
Bowtie2,
TopHat

Fragmentation-

based

CIRCexplorer2 Zhang et al., 2016a Python Bowtie
(TopHat-Fusion),
STAR,
MapSplice,
BWA, segemehl

Fragmentation-

based

PTESfinder Izuogu et al., 2016 Shell,
Java

Bowtie,
Bowtie2

Pseudo

reference-based

PredcircRNA Pan & Xiong, 2015 - - Machine learn-

ing

PredicircRNATool Liu et al., 2016 - - Machine learn-

ing

DeepCIRcode Wang & Wang, 2019 - - Deep learning

circDeep Chaabane et al., 2019 - - Deep learning
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1.9 Hypoxia: a hallmark of cancer

The Nobel Prize in Physiology or Medicine 2019 has been awarded to three scientists,
William G. Kaelin Jr., Peter J. Ratcliffe, and Gregg L. Semenza, for their research
on how cells detect oxygen levels and react to hypoxia (https://www.nobelprize.org/
all-2019-nobel-prizes/). Hypoxia is defined as a condition in which tissues are deprived
of an adequate amount of oxygen, that is required for their normal metabolic functions.
From a physiological point of view, hypoxia is achieved at increased altitude (Simonson
et al., 2010; Sarkar et al., 2003), during muscle exercises, in mammalian embryogenesis (Se-
menza, 2012), and in case of wound healing (Hong et al., 2014). In addition, hypoxia has
been associated to multiple pathological conditions, including cardiovascular diseases and
cancer (Abe et al., 2017; Schito & Semenza, 2016). In particular, hypoxia is considered a
common hallmark of solid tumours, in which the high metabolic activity and the rapid pro-
liferation of cancer cells increase the oxygen demand (Hanahan & Weinberg, 2011). In fact,
because of the tumour development and progression, blood vessels have restricted access
to internal cancer cells. This limits the supply of nutrients and oxygen to cells, resulting
in the formation of hypoxic regions (Semenza, 2014; Schito & Semenza, 2016). Tumour
hypoxia is often translated into a more aggressive phenotype derived from increased growth
and metastasis. Cells in the hypoxic regions have the capability to survive radio-, chemo-
and immunotherapy, invade, form metastases, and evade the immune system, highlighting
the importance of developing efficient hypoxia-targeted therapies (Graham & Unger, 2018;
Schito & Semenza, 2016).

The hypoxia-inducible factor pathway Oxygen sensing and adaptation to hy-
poxia are primarily driven by hypoxia-inducible factors (HIFs), which constitute a family
of transcription factors that activate the expression of hundreds of genes to sustain pro-
liferation, produce energy, undertake biosynthesis and evade apoptosis. The HIF protein
family includes HIF1, HIF2 and HIF3, with the first two being the best studied. The
activity of HIFs is finely regulated by the available levels of oxygen. In normal oxygen
(normoxic) conditions, their alpha subunits, HIF1a, HIF2a (also known as Endothelial
PAS Domain Protein 1, EPAS1) and HIF3a, are translated and hydroxylated by prolyl
hydroxylases (PHDs, also known as EGLNs) at specific proline residues (Ivan et al., 2001;
Jaakkola et al., 2001). PHDs use molecular oxygen O2 as a co-substrate (Dengler et al.,
2013; Yang et al., 2014). The hydroxylated proline residues of HIFa are recognised by the
von Hippel-Lindau (VHL) protein, an E3 ubiquitin ligase, which targets them to degrada-
tion by the proteasomal machinery (Gossage et al., 2015). At low oxygen levels, PHDs are
no longer able to hydroxylate HIFa due to the scarcity of their co-substrate. This stabilises

https://www.nobelprize.org/all-2019-nobel-prizes/
https://www.nobelprize.org/all-2019-nobel-prizes/
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Figure 1.12: Hypoxic niches in solid tumours. In solid tumours, cells in close prox-
imity to blood vessels receive the adequate amount of oxygen for their aerobic metabolism.
Cell become increasingly hypoxic with increased distance from blood vessels. Hypoxic
cells express high levels of HIFs, which activate target genes that impact on every critical
aspect of cancer progression. HIF: hypoxia-inducible factor; ECM: extracellular matrix;
EMT: epithelial–to-mesenchymal transition. Adapted from Schito & Semenza, 2016 and
Al Tameemi et al., 2019.

the alpha subunits, which can form heterodimers with the constitutively present HIF1�
(also known as Aryl Hydrocarbon Receptor Nuclear Translocator - ARNT) (Choudhry &
Harris, 2018). Once dimerised, the complex is able to recognise specific sequences, known
as hypoxia-responsive elements (HREs), located in the promoter of the target gene (Sal-
ceda & Caro, 1997; Kaelin & Ratcliffe, 2008; Masoud & Li, 2015; Choudhry & Harris,
2018). For the activation of the expression of HIF target genes, the stabilised HIF1 het-
erodimer couples to the general co-activators p300/CBP (CREB binding protein), thereby
forming an active transcription factor which initiates the hypoxic response (Wei et al.,
2018). By this mechanism, HIFs induce the transcription of hundreds of genes involved
in diverse cellular processes, including the formation of blood vessels from pre-existing
vessels (angiogenesis) to improve oxygen delivery to cells. This is achieved by increasing
the expression and secreting specific growth factors upon HIF1/2a activation, such as the
vascular endothelial growth factors (VEGFs), which stimulate the sprouting and prolifer-
ation of endothelial cells to form new blood vessels (Weis & Cheresh, 2011; Krock et al.,
2011). In particular, VEGFA expression and induction in hypoxic cells has been reported
to be pivotal for tumour and ischemic tissue survival (Shibuya, 2011). With the formation
of new blood vessels, cells tend to detach from the tumour, move into lymphatic or blood
vessels and reach other tissues. Here, cancer cells leave the vessel, converting the tumour
into a metastatic state. All steps that lead to the formation of metastases involve HIF
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Figure 1.13: Hypoxia-inducible factor (HIF) regulation in normoxia and hy-
poxia. In the presence of normal oxygen conditions, HIFa is hydroxylated (OH) on proline
residues by prolyl-4-hydroxylases (PHDs). The von Hippel–Lindau protein (pVHL) recog-
nises the hydroxylated HIF and marks it with ubiquitin (Ub). This directs HIFa towards
degradation by the proteasome system. Conversely, in hypoxic conditions, HIFa is sta-
bilised and translocated into the nucleus. Here, HIFa dimerise with HIF1� and activates
the transcription of HIF target genes. Adapted from Lee et al., 2019.

target genes (Schito & Semenza, 2016). In addition, HIF1a target genes have been shown
to regulate cell proliferation, migration and survival, by affecting the apoptosis pathway
(Mori et al., 2016; Greijer, 2004), and to be involved in the metabolic adaptation (Singh
et al., 2017). Additional processes that are modulated in hypoxia upon activation of HIFa
are the remodelling of the extracellular matrix and the endothelial-to-mesenchymal tran-
sition (EMT) (Gilkes et al., 2014; Platel et al., 2019).
Despite a major role of the HIF signalling pathway in the response to hypoxia, additional
transcription factors are activated at low oxygen concentration. These include the nuclear
factor-B (NF-B) and many others. NF-B is activated in hypoxia in a HIF-independent
manner, via proteasomal degradation of Ib, that makes NF-B available (Lee et al., 2019).
In addition, the unfolded protein response (UPR) pathway is activated in hypoxia to react
to the endoplasmic reticulum (ER) stress. In hypoxia, this is induced by the accumulation
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of mis- and unfolded proteins. By activating the UPR pathway, cells attenuate the protein
synthesis and re-establish the proper folding and processing of proteins at the ER (Chipu-
rupalli et al., 2019). In summary, the hypoxic cell adaptation is primarily achieved by the
activation of HIF proteins, which activate the expression of numerous genes to promote
angiogenesis, metabolic remodelling, cell proliferation and metastasis. In this way, the
hypoxia pathway participates or even initiates tumour progression.

Alternative splicing and back-splicing in hypoxia Beyond the transcriptional
response to hypoxia, it is becoming evident that alternative splicing plays a pivotal role
in the adaptation to hypoxic stress. Recent studies explored splicing changes in hypoxic
cells from different cancers, including hepatocellular carcinoma, breast, head and neck,
and prostate cancer (Sena et al., 2014; Han et al., 2017c; Brady et al., 2017; Bowler et al.,
2018). They reported widespread alteration of the splicing pattern in response to hypoxia,
with hundreds to thousands of differential AS events (Han et al., 2017c; Brady et al., 2017;
Bowler et al., 2018). Interestingly, many of these AS events affected genes of which the
overall transcription did not change in hypoxia, highlighting that AS adds an additional
layer of gene regulation in the response to hypoxia (Sena et al., 2014). Despite this large
number of AS events changed in hypoxia, so far only few specific cases have been further
investigated to understand their underlying mechanism of regulation. For instance, the
HIF target VEGFA is regulated not only at transcriptional level, but it also undergoes AS,
which leads to the production of multiple transcript isoforms. Interestingly, the encoded
proteins can play contrasting roles in hypoxia, acting either as pro- or anti-angiogenesis
factors (Kikuchi et al., 2014; Guyot & Pagès, 2015). In addition, Brady and colleagues
reported an increased intron retention event that affected the gene EIF2B5 in hypoxic
head and neck cancer cells (Brady et al., 2017). EIF2B5 is a key regulator of mRNA
translation. The retention of this intron caused the production of a truncated protein that
could not exert its function, leading to global inhibition of translation and increased cell
survival (Brady et al., 2017). A recent study reported that hypoxia primarily affects intron
retention events in human breast cancer cells (Han et al., 2017c). Despite the evidences
that hypoxia alters alternative splicing, still little is known about the underlying mechanism
of regulation by splicing factors. Only recently, it has been reported that the expression of
multiple splice factors and splice factor kinases increases in hypoxic cancer, including the
Cdc-like splice factor kinases CLK1 and CLK3 (Bowler et al., 2018). As mentioned before,
in addition to perturbation of the AS pattern, also circRNAs were found to be regulated
upon hypoxic stress, including circZNF292 and circDENND4C (Boeckel et al., 2015; Liang
et al., 2017b).
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Further studies are required to expand the current knowledge of the impact of transcrip-
tional and post-transcriptional processes in the hypoxia adaptation. Given the influence
of hypoxia on tumour progression and resistance to current therapies, this would facilitate
the discovery of potential biomarkers and therapeutic approaches for cancer.
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1.10 Aim of this thesis

Different studies have demonstrated the importance of transcriptional changes in the adap-
tation of solid tumours to hypoxia. On the other hand, the impact of post-transcriptional
processes in response to hypoxic stress has only recently gained attention and further
research is required to understand how oxygen availability influences RNA regulation in
cancer.

This project intended to extensively characterise the reaction of solid tumours to hypoxia
at RNA level and its regulation, exploiting bioinformatics approaches. For this purpose,
the first aim of this thesis was using high-throughput RNA-Sequencing to investigate al-
terations in gene expression and splicing in cancer cells under hypoxic stress. Secondly,
I aimed to identify splicing factors of which the expression is altered in hypoxic cancer,
which might play a role in cancer progression. Lastly, since the influence of hypoxia on
the circRNA repertoire in cancer cells remains still poorly explored, the third objective of
the thesis was the profiling of circular RNAs in cancer cells and the investigation of their
regulation under hypoxic conditions from RNA-Seq data.
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Chapter 2

Methods

This chapter includes methods used for the bioinformatics analyses as well as a brief de-
scription of programs and databases used for this study. A description of the experimental
methods adopted by Camila de Oliveira Freitas Machado and Sandra Fischer is provided
in Supplementary Material, as reported in Di Liddo et al., 2019, and Fischer et al., in
revision.
Here, Section 2.1 reports methods for the transcriptome-wide analysis of RNA-Seq data.
Section 2.2 describes methods adopted to establish and evaluate the performance of the
pipeline for circRNA identification. Section 2.3 provides a description of methods adopted
for the identification and characterisation of circRNAs in cancer cells, in normoxic or hy-
poxic conditions. Finally, Sections 2.4 and 2.5 describe computational tools and databases
used in the study, respectively.
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2.1 Transcriptome analysis from RNA-Sequencing

data

In this study, four different RNA-Seq datasets were generated and analysed: three rRNA-
depleted RNA-Seq datasets from hypoxic treatment of HeLa, A549 and MCF-7 cells and
one poly(A)-selected RNA-Seq dataset from MBNL2 knockdown experiments in hypoxic
MCF-7 cells. Here, a detailed description of methods for the transcriptome-wide analysis
of these data is provided.

2.1.1 Processing and mapping of sequencing reads

First, the overall quality of sequencing reads was checked using FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) in combination to MultiQC (Ewels
et al., 2016) to aggregate reports. To improve the read mapping rates, Flexbar (Dodt et
al., 2012) was used to filter RNA-Seq reads, demanding a minimum quality of 20 (Phred
score) and applying a threshold of at least 20 nt to the read length. When necessary,
Flexbar was additionally used to remove adapter contaminations. An example Flexbar
call is reported:

flexbar -r <filename.fastq.gz>
--zip -output GZ
--adapters <adapter.fasta >
--format i1.8
--pre -trim -phred 20
--min -read -length 20

To evaluate the rRNA-depletion efficiency in total RNA-Seq data, reads were mapped to
human rRNA sequences using Bowtie2:

bowtie2 -x <human_rRNA_index_prefix >
--phred33
--sensitive
--seedlen =22
-U file.fastq.gz
-S /dev/null 2> rRNA_bowtie.log

Single-end reads were aligned to the human genome (version hg38/GRCh38) using the
splice-aware alignment software STAR (Dobin et al., 2012), after generating genome index

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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files, with the parameter --sjdbOverhang set to the maximum read length reduced by
1. GENCODE release 24 was used as reference annotation. Maximum two mismatches
were allowed and only uniquely mapped reads were collected for downstream analyses. In
addition, for the subsequent detection of circRNAs and comparison to linear splicing reads,
parameters to detect chimeric alignments were also defined. For MBNL2 knockdown data,
parameters for chimeric aligments in STAR were omitted due to the nature of the data
(poly(A)-selected) that does not allow for the detection of circular transcripts.

A detailed list of parameters set for flexbar and STAR is reported here:

STAR --runMode alignReads
--readFilesIn <path to fastq file >
--readFilesCommand zcat
--genomeDir <path to genome index >
--outFilterMultimapNmax 1
--outFilterMismatchNmax 2
--outSAMtype BAM SortedByCoordinate
--alignSJDBoverhangMin 15
--alignSJoverhangMin 15
--chimSegmentMin 15
--chimScoreMin 15
--chimScoreSeparation 10
--chimJunctionOverhangMin 15

2.1.2 Gene-level quantification and differential expression

The quantification of gene expression at RNA level was performed with htseq-count
script of the HTSeq library (Anders et al., 2015), counting reads overlapping to the exonic
component of genes, using default parameters. BAM files from STAR were used as input,
together to GENCODE genome annotation in GTF format.
To estimate the relative expression of a gene, a custom R script was used to normalise
read counts per gene to "transcripts per million" (TPM), dividing by sequencing depth
and gene length, since longer genes generate a higher number of reads. One advantage of
TPM is that the sum of all TPMs in each sample is the same (106), allowing an easier
comparison of the proportion of reads mapped to a specific gene in each sample.
Differential expression analysis was performed in R with DESeq2 (Love et al., 2014), using
raw counts as input. Significantly regulated genes were defined by setting an adjusted P -
value threshold of 0.05. For MBNL2 knockdown experiments and comparison to hypoxia
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data, differentially expressed genes were additional filtered for a fold change � 1.5 and at
least 1 TPM in any sample.
Gene Ontology (GO) enrichment analysis was performed using the over-representation test
implemented in the enrichGO function of the clusterProfiler package (Yu et al., 2012)
in the R statistical software environment. Enrichment was tested against the union of
all genes that were tested in the DESeq2 analysis of any cell line. P -value and q-value
cutoffs were set to 0.05. "Biological Process" and "Molecular Function" categories were
explored, as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with
the enrichKEGG function of the same package.

2.1.3 Analysis of alternative splicing changes

For the alternative splicing profile, reads were further filtered with Flexbar to have all a
fixed length (75 bp for HeLa and MBNL2 knockdown, 71 for A549 and MCF-7 data), as re-
quired by rMATS. The resulting reads were mapped to the human genome with STAR, setting
the parameters --outFilterMultimapNmax 1 --outFilterMismatchNmax 2 as above, and
--alignEndsType EndToEnd to switch off soft-clipping at both ends of the read. Then,
BAM files containing aligned reads where used as input for rMATS, considering hypoxic
replicates as sample 1 and normoxic replicates as sample 2 to estimate the �PSI ad
PSIhypoxia � PSInormoxia, as with the following code:

python RNASeq -MATS.py \
-b1 <sample1_rep1.bam >,<sample1_rep2.bam > \
-b2 <sample2_rep1.bam >,<sample2_rep2.bam > \
-gtf gencode.v24.primary_assembly.annotation.gtf \
-bi /path/to/genome/dir -o /path/to/output/dir \
-t single -len <input read length > \
-libType fr-firststrand \
-c 0.0001 \
-novelSS <1 or 0>

For hypoxia datasets, the parameter -novelSS was set to 1 to enable the detection of
unannotated splice sites for eventual comparison to back-splicing events generated from
unannotated junctions. Alternative splicing (AS) events were identified based exclusively
on reads overlapping the splice junctions. Significantly changed AS events were defined
based on a false discovery rate (FDR) cutoff of 0.05. In addition, we required: an absolute
�PSI �10%; a minimum inclusion level of 10% in either sample 1 or sample 2; at least
an average junction count (over replicates) of 10/5 reads in inclusion/skipping junctions.
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For MBNL2 knockdown experiments and comparison to hypoxia data, also a threshold of
1 TPM in any sample was applied.

2.1.4 Prediction of MBNL2 binding sites

Putative MBNL2 binding sites were predicted by scanning 30UTR sequences for clustered
50-YGCY-30 motifs (50-YGCYGCY-30 and 50-YGCYN0�3YGCY-30). The search was re-
stricted to genes expressed in MBNL2 knockdown experiments (TPM > 1 in any sample)
and tested for differential expression with DESeq2. First, the 30UTR annotation was re-
trieved from GENCODE release 24 basic annotation, considering protein-coding transcripts
with support level < 4 from genes with support level < 3, to exclude automatic annotation.
30UTRs shorter than 10 nt were excluded. When multiple 30UTRs were annotated for a
single gene, we considered only the longest one. This led to 11575 expressed genes with
annotated 30UTRs to investigate. Those genes were further grouped into regulated when
the fold change was � 1.5 and the adjusted P -value < 0.05, and unchanged when the fold
change was � 1.3 and the adjusted P -value > 0.5.
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2.2 Establishment and evaluation of the pipeline for

circRNA detection

In order to investigate strengths and weaknesses of CIRCexplorer and find_circ for
circRNA detection, RNA-Seq data of replicate 1 from normoxia samples of HeLa and
MCF-7 cells were analysed separately.

CIRCexplorer First, the reference human annotation was filtered for gene level 1 or
2, to remove automatically annotated genes. Then, the script gtfToGenePred (http:
//hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/gtfToGenePred) was used to
obtain a reference annotation in the format required by CIRCexplorer (Gene Predictions
and RefSeq Genes with Gene Names). Cleaned reads were processed and mapped with STAR
as described above. Chimeric.out.junction files were collected and used as a input for
CIRCexplorer. The tool consists of two main python scripts: first, star_parse.py parses
chimeric junction tables searching for mates mapping on the same chromosome and strand
in reverse orientation, generating fusion junction tables; next, CIRCexplorer.py uses fusion
junction tables in combination to the reference genome sequences (file in FASTA format)
and the annotation file previously produced, to define and annotate back-splicing events.
Here, an example code is reported:

# parse STAR chimeric junction table
star\_parse.py Chimeric.out.junction Fusion.junction

# detect and annotate circRNAs
CIRCexplorer.py -j Fusion.junction

-g GRCh38.genome.fa
-r gencode.ref.txt
-o circ.txt

To get the final list of circRNAs from CIRCexplorer, back-splicing events were required
to be supported by � 2 total reads.

Find_circ In order to detect circRNAs with find_circ, the same cleaned reads were
mapped to the human reference genome with Bowtie2, as described in Memczak et al.,
2013. Next, unmapped reads from output BAM files were collected and 20 nt long anchors
were extracted from both ends of the reads. Anchors were mapped against the human
reference genome and find_circ.py script was used to detect circRNAs.

http://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/gtfToGenePred
http://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/gtfToGenePred
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# map reads to the human genome hg38 and sort alignments
bowtie2 --very -sensitive \

--phred33 \
--score -min=C,-15,0 \
-q \
-x <path/to/hum_genome/index > \
-U <file.fastq.gz> \

2> bowtie.log | samtools view -hbuS - | samtools sort - mapped

# collect unmapped reads
BAM=mapped.bam
samtools view -hf 4 $BAM | \
samtools view -Sb - > unmapped.bam

# split reads to obtain 20 nucleotides anchors
# from both ends of the read
~/ find_circ_v1 .2/ unmapped2anchors.py unmapped.bam | \
gzip > anchors.qfa.gz

# map anchors to the human genome
# and detect circRNAs with find_circ.py
ANCHORS=anchors.qfa.gz
bowtie2 --score -min=C,-15,0 \

--reorder \
-q \
-x <path/to/hum_genome/index > \
-U $ANCHORS 2> circ_bowtie.log | \

find_circ.py --genome=GRCh38.genome.fa \
--name=<sample name > \
--stats=samplename_stats.log \
# default parameters
--anchor =20 \
--min_uniq_qual =2 \
--margin =2 \
--maxdist =2 \
--bam=anchor_alignments.bam > splice_sites.bed

The splice_site.bed file includes both back-splicing and linear splicing events and was
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further filtered for circRNAs as in Memczak et al., 2013, demanding unambiguous break-
points, unique alignments, a maximum distance of 100 kb, and a GU/AG splice site signal,
which is present in more than 98% of all intron sequences that are removed by the spliceo-
some (Burset et al., 2000). Finally, to define a circRNA as detected, a filter based on
unique reads was applied (� 2).

Our pipeline Based on the usage of CIRCexplorer and find_circ in combination,
we established a pipeline for circRNA detection as shown in the schematic in Figure 3.11.
Cleaned reads from samples of a single dataset were merged and mapped to the genome
with STAR and Bowtie2. The Chimeric.out.junction table was used as a input to detect
circRNAs with CIRCexplorer and unmapped reads were extracted from Bowtie2’s BAM
files and used to detect circRNAs with find_circ. The output from CIRCexplorer and
find_circ was unified and sample-by-sample quantification of circRNA expression was
performed based on chimeric alignments from STAR, discriminating total back-splice reads
from unique back-splice reads with a custom script in R. Differently from find_circ, we
discriminated unique reads based on the mapping position rather than the read sequence,
thus increasing the stringency in detecting PCR artefacts. CircRNAs were then required to
have GU/AG or GC/AG as splice-site signal (the first and the second top used splice-site
signals, respectively; (Burset et al., 2000), a maximum distance between back-splice sites
 100 kb or to span a single annotated gene. To define a circRNA as present in a given
dataset, we demanded a minimum of two unique reads supporting the back-splice junction
in at least one sample of the dataset.

In order to evaluate the performance of our pipeline against the individual circRNA de-
tection tools, RNA-Seq data from Hs68 cells (Jeck et al., 2013) and RNA-Seq data from
HeLa cells (Gao et al., 2015; Gao et al., 2016) were downloaded from SRA with the ac-
cession number reported in Table 3.6, and used to detect circRNAs with our pipeline, or
find_circ and CIRCexplorer separately. Find_circ, was tested with two different filter-
ing approaches for expression, one based on total back-splice reads, the other based on
unique back-splice reads (� 2 in any sample of the dataset). CIRCexplorer was tested
exclusively on circRNAs supported by � 2 total back-splice reads in any sample of the
dataset, since it does not output counts of unique reads.

For each tool/pipeline and dataset, back-splicing events were first detected in RNase R-
untreated samples (RNAseR-), then compared to matched RNase R-treated (RNAseR+)
samples for validation, with the assumption that the treatment with RNase R leads the
detection of genuine circRNAs. Total back-splice reads were normalised by sequencing
depth and a ratio between RNaseR- and RNaseR+ samples was computed to estimate the
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eventual enrichment in RNase R+ samples in terms of fold change. When replicates were
available, the mean of normalised counts between replicates was used to calculate the fold
change. Based on the fold change value, circRNAs were grouped into "RNase R-resistant"
and "RNase R-sensitive", when an increase or decrease of the total read counts in RNase
R+ samples was observed, respectively. RNase R-sensitive circRNAs were further classified
into "RNase R-depleted" when the circRNA was either undetectable in the RNase R+
samples or at least 5-fold decreased, and "RNase R-reduced" when a decrease up to 5 fold
was observed. RNase R-resistant circRNAs were further divided into "RNase R-enriched"
for those circRNAs with at least a 5-fold increase and "RNase R-unaffected" when their
level remained stable or increased up to 5-fold in the RNase R+ samples (Zeng et al., 2017;
Hansen, 2018).
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2.3 Identification and annotation of circRNAs

CircRNAs were identified and quantified from hypoxia and normoxia RNA-Seq data with
the pipeline described above, demanding minimum two unique back-splice reads in any
sample for each dataset. CircRNAs were annotated through a custom script in R, by
comparing the genomic coordinates of circRNAs to those of genomic features described
in GENCODE reference annotation (release 24, basic annotation). Automatically anno-
tated genes (gene level = 3) were discarded for circRNA annotation. More specifically, to
annotate circRNAs and define their internal exon/intron boundaries, we relied as much
as possible on canonical splice variants annotated in GENCODE, as downloaded from
the UCSC Genome Browser (knownCanonical). When back-splice sites did not match
with any annotated junction of these canonical transcripts, we searched for the remainder
transcripts with coincident splice sites, thus defining a best parental transcript to rank
exons. To define the internal structure of circRNAs, we conservatively assumed that all
exons annotated within back-splice sites were spliced in. When a circRNA did not overlap
any annotated exons, we defined it as intronic/intergenic, depending on the genomic locus.
The genome annotation might include multiple genes annotated at the same genomic locus,
making it difficult to define a unique host gene. In such cases, circRNAs were labeled as
"ambiguous" annotation. Finally, back-splicing events spanning multiple non-overlapping
genes (n = 70) were excluded. For downstream analyses , the circRNA catalogue ("full
set") was further filtered, demanding at least five total reads in any two samples, thereby
defining a "high-confidence set" of circRNAs.

Overlap of identified circRNAs with public databases CircRNAs reported in
circBase (Glažar et al., 2014) were downloaded from http://www.circbase.org/cgi-bin/
downloads.cgi as updated to 29/07/2017, containing a total of 140790 circRNAs.
CircRNAs collected in circRNADb (Chen et al., 2016) were downloaded from http:
//reprod.njmu.edu.cn/circrnadb/resources.php, including 32914 circRNAs. Both
databases reported genomic coordinates from the human genome version hg19. For com-
parison to our catalogue of circRNAs, hg19 coordinates were converted to version hg38 by
using the liftOver utility from UCSC implemented in the R package rtracklayer and
the hg19ToHg38.over.chain file downloaded from UCSC.

Molecular characterisation of circRNAs and flanking regions The software
MaxEntScan (Yeo & Burge, 2004) was used to predict the strength of back-splice and
linear splice sites and compare these to 2000 randomly picked splice sites annotated in
GENCODE for protein-coding transcripts with transcript support level ranging from 1 to

http://www.circbase.org/cgi-bin/downloads.cgi
http://www.circbase.org/cgi-bin/downloads.cgi
http://reprod.njmu.edu.cn/circrnadb/resources.php
http://reprod.njmu.edu.cn/circrnadb/resources.php
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3.
The genomic coordinates from the human genome version hg19 of Alu repeats based on Re-
peatMasker annotation (www.repeatmasker.org) were downloaded from UCSC Genome
Browser. They were compared to regions up- and downstream to circRNAs in a 500 bp win-
dow. For each hypoxia-regulated circRNA (n = 64) a pairwise local alignment of sequences
in a 500-bp window up- and downstream of the back-splice sites was performed, using the
R package Biostrings and setting parameters gapOpening=10 and gapExtension=4. A
�2 test was performed to compare the presence of Alu repeats between regulated and all
circRNAs.

2.3.1 Quantification of circRNA and host gene expression

For a relative estimate of circRNA expression, total row counts per circRNA were nor-
malised to "reads per million" by dividing by the total number of counted linear reads in
the sample divided by one million. Similarly, for host genes TPM values were computed to
estimate the expression value of linear RNAs, allowing the normalisation both by length
of the gene and library size. Alternatively, TPM were also computed by excluding from
host genes those exons that were internal to circRNAs in our data, thus avoiding a bias
due to the circRNA associated to the specific host gene.
The back-splicing rate was estimated by considering the number of total back-splice reads
supporting a certain circRNA and the number of reads supporting the linear junctions from
the same splice sites involved in the circularisation (linear junction reads). Back-splice
reads were divided by the average counts between the two linear junctions to calculate a
"circular-to-linear ratio" (CLR) value. Alternatively, a "percent circularised" metric was
computed by dividing the number of back-splice reads by the sum of back-splice reads and
linear junction reads and multiplying by 100 (Figure 3.19).
For differential expression testing of circRNAs between normoxic and hypoxic conditions,
raw back-splice read counts were combined to raw read counts per gene and used as input
for DESeq2 to improve library size estimation, normalisation and statistical power along
the DESeq2 algorithm. Significantly regulated circRNAs were defined based on an adjusted
P -value threshold of 0.1.

2.3.2 Prediction of RBP binding sites

To search for putative binding sites of RBPs in regions flanking hypoxia-regulated circRNAs
(n = 64) and unchanged circRNAs from the high-confidence set (n= 2141), the tool FIMO

www.repeatmasker.org
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(Grant et al., 2011) was used with default parameters (--thresh 0.0001) to scan sequences
1,000 bp up- and downstream of back-splice sites and search for known RBP motifs from
in vitro binding assays (Ray et al., 2013) available in MEME database. FIMO prediction
was further filtered for binding sites with q-value < 0.05.
To confirm the binding of HNRNPC to regions up- and downstream to back-splice sites,
publicly available HNRNPC iCLIP data in HeLa cells were investigated (Zarnack et al.,
2013). iCLIP tracks (BAM files) were merged and PureCLIP (Krakau et al., 2017) was
used for peak calling with the parameter -ld for higher precision in estimating emission
probabilities. As by default for PureCLIP, crosslink sites were merged if located at a
distance < 9 nt. The positioning of HNRNPC binding to regions flanking circRNAs was
explored based on the average read coverage at each position. We considered a window
of 1,000 nt up-/downstream of the back-splice sites in addition to the first and last 50
nt of the circRNA. CircRNAs of the high-confidence set expressed in HeLa (n = 1133)
were investigated, dividing them into hypoxia-regulated and non-regulated circRNAs. For
comparison, HNRNPC binding was also investigated in linear exons from expressed protein-
coding genes in HeLa that do not undergo back-splicing. Linear exons were randomly
picked from transcripts composed by more than two exons, excluding first and last exons
to allow the investigation of introns on both sides of the exon.

2.3.3 Detection of putative miRNA binding sites

Potential interactions between circRNAs and miRNAs were predicted using miRanda with
the parameter -strict to demand a strict alignment in the seed region, and requir-
ing a match score � 150. The sequences and annotation of a high-confidence set of
542 miRNAs in humans (high_conf_mature.fa.gz) were downloaded from the miRBase
database (http://www.mirbase.org/). The prediction was performed on a subset of 9754
circRNAs (only high-confidence circRNAs are shown in the figures), for which we could
assign a parental transcript, thus a defined internal sequence, as described above. We
manually added to this set of circRNAs the previously published intronic isoform of cir-
cZNF292 (hsa_circ_0004383), excluding the cryptic intron located between exons 1A and
2 (see Boeckel et al., 2015 for the sequence). As a control, the sequence of the circRNA
CDR1as/ciRS-7 was included (Hansen et al., 2013; Memczak et al., 2013). The frequency
of miRNA binding sites within the circRNA sequences was compared to 10000 CDS and
30UTR sequences, which were randomly selected from the GENCODE annotation. Finally,
the number of detected target sites in a circRNA, CDS or 30UTR was normalised by the
size of the region to get an estimate of the density of miRNA binding sites on circRNA
sequences.

http://www.mirbase.org/
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2.4 Programs

Table 2.1 provides a list of software and algorithms used in this study, followed by a brief
description of the tools.

Table 2.1: List of software and algorithms used in this study

Program Version Reference
FastQC 0.11.4 http://www.

bioinformatics.babraham.
ac.uk/projects/fastqc/

MultiQC 1.2 Ewels et al., 2016
Flexbar 2.5 Dodt et al., 2012
Bowtie2 2.2.6 Langmead & Salzberg, 2012
STAR 2.4.5a Dobin et al., 2012
IGV 2.4.6 Robinson et al., 2011
HTSeq 0.6.1 Anders et al., 2015
rMATS 3.2.5 Shen et al., 2014
find_circ 1.2 Memczak et al., 2013
CIRCexplorer 1.1.7 (2016-1-28) Zhang et al., 2014
FIMO 5.0.2 Grant et al., 2011
MiRanda 3.3a Enright et al., 2003
Biostrings 2.46.0 Pagès et al., 2017
DESeq2 1.18.1 Love et al., 2014
ClusterProfiler 3.6.0 Yu et al., 2012
SAMtools 1.2 Li et al., 2009 http://

samtools.sourceforge.net
MaxEntScan - (Yeo & Burge, 2004)

http://genes.mit.
edu/burgelab/maxent/
Xmaxentscan_scoreseq.html

PureCLIP 1.1.2 (Krakau et al., 2017)

FastQC FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) is a program for the quality check of sequencing reads, submitted either
in fastq, BAM or SAM format. It provides quality scores across all reads as
well as estimates of the GC content, duplication rate and presence of adapter
contaminations, all collected in HTML reports. FastQC was used for quality check
of sequenced reads, before and after trimming.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://samtools.sourceforge.net
http://samtools.sourceforge.net
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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MultiQC MultiQC (Ewels et al., 2016) was used to aggregate results from FastQC
analyses across multiple samples.

Flexbar Flexbar is a computational tool for the pre-processing of high-
throughput sequencing reads, providing functions such as demultiplexing, adapter
and barcode removal, trimming based on quality scores or read length (Dodt et al.,
2012). Data need to be provided in FASTA or fastq format. Flexbar was used to
filter and trim sequencing reads in order to increase the read mapping rates.

Bowtie2 Bowtie2 is an alignment program designed to map high-throughput se-
quencing reads to a reference genome by exploiting a full-text minute (FM) index to
increase the speed and memory efficiency of the algorithm (Langmead & Salzberg,
2012). It supports the alignment of gapped sequencing reads as well as paired-end
alignment modes. In this study, Bowtie2 was used for the alignment of the RNA-Seq
libraries to the human reference genome, in order to subsequently extract unmapped
reads for circRNA detection with find_circ. In addition, Bowtie2 was adopted to
align the sequencing reads to the human rRNA sequences, to thereby estimate the
efficiency of the rRNA-depletion step in the RNA-Seq library preparation.

STAR The Spliced Transcripts Alignment to a Reference (STAR) was originally de-
signed to deal with spliced reads, typical of RNA-Seq data, originating from splicing
junctions (Dobin et al., 2012). It also allows the detection of chimeric alignments,
in which two distinct fragments of the same read align in a non-linear order to
the genome, including head-to-tail arrangements. Here, STAR was used for map-
ping RNA-Seq reads to the human genome and selected STAR output files were
used for downstream analyses, i.e. Chimeric.out.junction, Chimeric.out.sam,
SJ.out.tab, and Aligned.sortedByCoord.out.bam.

SAMtools SAMtools (Li et al., 2009) provides a collection of tools for the manip-
ulation of aligments files in the Sequence Alignment/Map format (SAM). SAMtools
was used in this study for SAM/BAM file sorting and indexing, as well as to extract
unmapped reads from the Bowtie2 alignment output.
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IGV In this study, the Integrative Genomics Viewer (IGV, Robinson et al., 2011)
was used to visualise the RNA-Seq alignments to the human genome as well as
binding sites from iCLIP data.

HTSeq HTSeq (Anders et al., 2015) is a Python library including multiple tools
for the processing of high-throughput sequencing data. The htseq-count script of
the package was used to count reads that overlap exons of annotated genes, thus to
estimate the expression level of each gene.

rMATS The replicate-MATS (rMATS , http://rnaseq-mats.sourceforge.net/, Shen
et al., 2014) program was used in this study to identify alternative splicing events
from hypoxia and knockdown RNA-Seq data, relying on reads aligned to splice junc-
tions by STAR and applying the multivariate analysis of transcript splicing method
(MATS).

find_circ The algorithm find_circ (Memczak et al., 2013) was one of the first
computational tools available to identify circRNAs from RNA-Seq data. It is written
in Python and uses a split-alignment-based approaches in which unmapped reads,
obtained from a first aligment with Bowtie2, are split into two segments. These are
mapped to the reference genome in order to detect back-splicing events when they
align in a reverse orientation. Here, find_circ was used to identify circRNAs after
investigating its main features, implementing its usage in our combined pipeline for
circRNA detection.

CIRCexplorer CIRCexplorer is a program written in Python for the identifica-
tion and annotation of exonic circRNAs (ecircRNAs) as well as intronic circRNAs
(ciRNA) (Zhang et al., 2014). It was initially designed to parse the information
obtained from the combination of TopHat and TopHat-Fusion algorithms about
transcripts representing fusion products, and extract from these back-splicing events.
From version 1.1.0 it additionally supports the splice-aware aligner STAR, retriev-
ing back-splice junctions from STAR chimeric alignments. CIRCexplorer strictly
relies on gene annotation to define back-splicing events. CIRCexplorer was used in
this study to first investigate its features; next it was integrated in our pipeline for
circRNA detection in combination with STAR.
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FIMO Find Individual Motif Occurrences (FIMO) is part of the MEME Suite
(http://meme-suite.org/) and was implemented for the identification of provided
motifs within query biological sequences (Grant et al., 2011). FIMO scans a set of
sequences for individual matches to each of the motifs that are provided. In this
study, the command line version of the program was used to predict binding sites
of RBPs in the regions surrounding back-splice junctions.

MiRanda MiRanda (http://www.microrna.org/microrna/home.do, Enright et
al., 2003) is an algorithm developed to predict miRNA targets in genomic sequences
provided in FASTA format (reference sequences). It performs a dynamic program-
ming local alignment between miRNA and reference sequences, searching for comple-
mentarity and assigning a score. Next, it estimates the stability of the alignments in
terms of free energy. Here, MiRanda was used to scan the putative internal circRNA
sequences in order to predict miRNA binding sites.

R scripts and packages Within this study, custom scripts were written in R ver-
sion 3.4.3 (R Core Team, 2017) to process and analyse the RNA-Seq data, including
normalisation of expression values, quantification of circRNA expression from STAR
chimeric alignments, genomic annotation of circRNAs, statistical testing, generation
of input files for external tools, as well as parsing of output files from other tools.
Custom scripts were used to summarise data and make figures with ggplot2 v3.2.0,
ggpubr v0.1.7 and ComplexHeatmap v1.17.1.
Biostrings is an Bioconductor package for the manipulation of biological se-
quences, either from proteins of DNA and RNA, used in this study to retrieve
sequences from genomic coordinates and for the alignment of circRNA flanks.
DESeq2 (Love et al., 2014) is a Bioconductor package developed for differential ex-
pression analysis starting from count-based expression data. DESeq2 analysis runs
through three steps: first raw counts are normalised by a size factor computed with
a "median ratio method"; next the dispersion of data is estimated; finally, data are
fitted to a negative binomial generalised linear model (GLM) and Wald statistics
are computed. DESeq2 was used in this study to reveal expression changes upon
hypoxia at gene level and for circRNAs. In addition, it was used for differential gene
expression analysis after MBNL2 depletion in hypoxic MCF-7 cells.

http://meme-suite.org/
http://www.microrna.org/microrna/home.do
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ClusterProfiler (Yu et al., 2012) is a Bioconductor package for the functional en-
richment analysis and visualisation (Gene Ontology, GO, and KEGG). This package
was used in this study for the functional characterisation of genes. In particular, the
functions enrichGO and compareCluster were used for overrepresentation testing,
to contrast enriched GO terms between different cell lines or direction of regulation.

MaxEntScan The Perl scripts of MaxEntScan (Yeo & Burge, 2004) were designed
to estimate the strength of a splice site from a 9 bp long sequence (3 bases in the
exon and 6 in the downstream intron) for the 50 splice site, and a 23 bp long sequence
(20 bases in the intron upstream to the exon and 3 in the exon) for the 30 splice
site. The MaxEntScan algorithm is based on the Maximum Entropy Principle and
models the input splice site sequences accounting for non-adjacent and adjacent
dependencies between positions. The lower the score obtained with MaxEntScan,
the weaker the splice site. MaxEntScan was used here to estimate the strength of 30

and 50 back-splice sites, as well as the matching linear splice sites.

PureCLIP PureCLIP is a program designed to perform peak calling from single-
nucleotide CLIP-seq data (i.e. iCLIP or eCLIP data), thus to identify protein-
RNA interactions (Krakau et al., 2017). PureCLIP is based on a Hidden Markov
Model (HMM) approach, that discriminates four different states for each position:
enriched or non-enriched, depending on whether the specific position is enriched or
not in pulled-down RNA fragments; crosslinked or non-crosslinked, if the position
constitutes a crosslink (CL) site or not, based on the truncation position of the
read. CL sites are defined when both enriched and crosslink states co-occur. When
an input control is available, PureCLIP can additionally incorporate such data to
take into account RNA transcript abundances. Finally, PureCLIP can incorporate
in the model also information about specific motifs known to be preferentially UV-
crosslinked (CL-motifs), to avoid a crosslinking sequence bias.

Adobe Illustrator Adobe Illustrator CC 2018 was used to combine and im-
prove the layout of figures, being careful in avoiding manipulation of data.
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2.5 Databases

PubMed – NCBI PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) is a
free database developed by the National Center for Biotechnology Information
(NCBI) for collecting biomedical literature. It accounts millions of records that
often link to full-text articles. PubMed was used in this thesis for literature review.
Pubmed offers a built-in tool to retrieve records for specific terms by year. This was
used for the generation of the graphic in Figure 1.7.

GENCODE GENCODE is a project aimed to the comprehensive identification
and annotation of gene features in human and mouse (Frankish et al., 2019). Data
from this project are available at https://www.gencodegenes.org/. In this study,
the FASTA sequence and the GENCODE annotation (release 24) of the human
genome (GRCh38.p5) were downloaded and used as a reference.

circBase circBase is a publicly available repository of circRNAs (http://
circbase.org/, Glažar et al., 2014), collecting circRNA annotation from mul-
tiple genome-wide studies on different species, tissues or cell lines. As of July
2017, circBase contained information about 140790 circRNAs in human, in addi-
tion to circRNAs from other organisms such as Caenorhabditis elegans, Drosophila
melanogaster, and Mus musculus. Human circRNA annotation was downloaded
from circBase and used in this study to compare our catalogue of circRNAs, after
conversion of the circBase hg19 genomic coordinates to version hg38 of the human
genome.

circRNADb circRNADb (Chen et al., 2016) is an online database for human
circRNAs including exclusively exonic circRNAs, accounting 32914 entries, and
available at http://202.195.183.4:8000/circrnadb/circRNADb.php. For each
circRNA, in addition to the genomic annotation, circRNADb reports information
about the protein-coding potential as well as the literature reference. The genomic
coordinates of the 32914 human circRNAs were downloaded, converted to version
hg38 of the human genome, and used for comparison to our catalogue of circRNAs.

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.gencodegenes.org/
http://circbase.org/
http://circbase.org/
http://202.195.183.4:8000/circrnadb/circRNADb.php
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miRBase miRBase (microRNA database) is a free database collecting pub-
lished miRNA sequences and their respective annotation, available at http://www.
mirbase.org/. In addition to the nucleotide sequences, miRBase entries report
both information about the mature miRNA and the corresponding precursor miRNA
(pre-miRNA), together with literature references. In this study, the nucleotide se-
quences of mature miRNAs defined as high-confidence were downloaded from miR-
Base (high_conf_mature.fa.gz, release 21, Kozomara & Griffiths-Jones, 2013),
and used to predict miRNA binding sites on circRNA sequences.

http://www.mirbase.org/
http://www.mirbase.org/
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Chapter 3

Results

3.1 Transcriptional and post-transcriptional

changes in response to hypoxia

The aim of this thesis was the characterisation of the transcriptional and post-
transcriptional response to hypoxia in human cancer cells. To investigate the extent
at which hypoxia alters the gene expression in human cancer cells, I analysed rRNA-
depleted RNA-Sequencing (RNA-Seq) data of three human cancer cell lines - from
lung adenocarcinoma (A549), cervical carcinoma (HeLa) and breast adenocarcinoma
(MCF-7), kept in normoxic or hypoxic conditions. To induce hypoxic stress, HeLa
cells were incubated at 0.2% O2 for 24 h, while MCF-7 and A549 cells were incubated
at 0.5% O2 for 48 h. Hypoxic cells were compared to normoxic control cultures, kept
at 21% O2 for an equal time. For each cell line, two or three biological replicates
were prepared for the hypoxic and normoxic condition. Hypoxia treatment as well
as library preparation and RNA-Seq of HeLa cells were carried out by the group of
Prof. Dr. Michaela Müller-McNicoll (Goethe University Frankfurt am Main), while
experiments in A549 and MCF-7 cells were performed by the group of Dr. Julia E.
Weigand (Technical University Darmstadt).

An overview of the RNA-Seq data and alignment statistics is provided in Table 3.1.
The total number of sequencing reads across the different libraries ranged from 60
million reads for HeLa normoxia replicate 1 (N1) up to 144 million reads for A549
normoxia replicate 2 (N2). Reads from A549, HeLa and MCF-7 cells in normoxic
and hypoxic conditions were mapped to the human reference genome, after checking
the ribosomal RNA content and pre-processing them for a better alignment to the
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Table 3.1: Summary of RNA-Seq data from hypoxia experiments in human
cancer cells. RNA-Seq was performed from A549, HeLa and MCF-7 cells. The total
number of sequenced reads is reported for each replicate and condition, as well as the
percentage of sequenced reads mapping to rRNA. The number of processed reads and their
percentage that uniquely mapped to the genome, together with the percentage of chimeric
reads is also shown.

Cell line Sample Total

reads

rRNA

reads (%)

Processed

reads

Mapped

reads (%)

Chimeric

reads (%)

A549 N1 118103929 8.07 117993957 78.91 0.21

A549 N2 143641614 8.51 143504453 77.65 0.20

A549 H1 105410274 5.34 105296954 79.46 0.21

A549 H2 121800191 4.34 121681536 81.06 0.21

HeLa N1 60631903 4.07 60595974 85.77 0.31

HeLa N2 64227967 3.72 64188177 86.69 0.30

HeLa N3 62772278 4.07 62733339 85.20 0.30

HeLa H1 64106501 4.22 64067445 84.81 0.32

HeLa H2 66800563 3.58 66759182 85.27 0.31

MCF-7 N1 113507866 2.32 113397461 81.51 0.21

MCF-7 N2 113938974 2.13 113825152 82.01 0.24

MCF-7 H1 113450829 2.66 113340824 81.27 0.25

MCF-7 H2 125385855 9.28 125263956 73.68 0.26

genome. The percentage of reads mapping to rRNA sequences was higher for A549
normoxia replicate 1 and 2 (N1 and N2) and MCF-7 hypoxia replicate 2 (H2). This
may explain the lower alignment rate observed for those samples with higher rRNA
content (Figure 3.1A).
The next step in a standard workflow for the analysis of gene expression from RNA-
Seq data is the quantification of RNA levels. To capture levels of mature transcripts,
the amount of reads mapping to the exonic component of genes was estimated. In
order to assess the overall similarity between samples, their distance was computed
and visualised (Figure 3.1B). As expected from the experimental setting, replicates
clustered together, with a clear separation of conditions (normoxia and hypoxia)
and cell lines. A higher similarity between samples from A549 and MCF-7 cells was
observed, compared to HeLa samples. This might reflect the different exposure time
to low oxygen (48 h versus 24 h), but also that HeLa samples were produced in a
different laboratory and sequenced separately.
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Figure 3.1: Overview of RNA-Seq data from human cancer cells. (A) Relationship
between rRNA content and alignment rate to the reference genome. Samples with the
highest rRNA content are indicated by red arrows. (B) Heatmap of the sample-to-sample
Euclidean distance obtained from the count data from the three cell lines. To avoid that
the distance measure is dominated by a few highly variable genes, the variance-stabilising
transformation was applied to the count data.

3.1.1 Hypoxia strongly affects linear RNA abundance

Next, raw read counts per gene were used for differential expression testing between
normoxic and hypoxic conditions with DESeq2 (Love et al., 2014). Protein-coding
genes as well as other linear RNAs annotated in GENCODE (version 24) were
considered in this analysis, consisting of three independent tests to compare nor-
moxic and hypoxic samples, one for each cell line. Widespread changes of RNA
levels were observed, with 4749, 7962, and 5504 genes changing their level upon
hypoxia in A549, HeLa and MCF-7 cells, respectively, summing up to a total of
11876 genes that were regulated in at least one cell line (adjusted P -value < 0.05).
Hypoxia affected mainly protein-coding genes (10089, 85%), followed by lincRNAs
(564, 5%) and antisense genes (561, 5%). A general trend towards downregulation
was observed across the three cell types. However, when a more stringent cutoff
was applied on the fold change (|log2(Foldchange)| � 1) to capture the largest
changes, the tendency shifted towards a general up-regulation for A549 and HeLa
cells and an equal proportion of down/up-regulation for MCF-7 cells (Figure 3.2A).
This indicates that there is a stronger induction of the gene expression, probably
due to the activation of the HIF proteins. When comparing the 11876 differentially
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expressed genes among cell types, a high percentage of them (42%) was regulated
in at least two of the analysed cells and 1372 (12%) genes in all cell lines, suggesting
a consistent response to hypoxia across cancer cells (Figure 3.2B).

Figure 3.2: Influence of hypoxia on gene expression at RNA level. (A) Differ-
entially expressed genes between normoxia and hypoxia in A549, HeLa and MCF-7 cell
lines (adjusted P -value < 0.05). The effect of a further filter on fold change is shown.
(B) Venn diagram showing the overlap of hypoxia-regulated genes between cell lines. 4976
circRNAs change their level in at least two cell lines and 1372 genes are regulated in all
three cell lines. In brackets, percentages of genes over the 11876 genes significantly regu-
lated across the three cell lines. (C) Heatmap showing the expression levels as z -scores of
11876 genes significantly regulated across the three cell lines. z -scores were computed from
log-transformed "transcript per million" values (TPM). Rows were ordered by hierarchi-
cal clustering (based on Euclidean distance), and split into five groups based on k-means
clustering. Several genes commonly regulated under hypoxia are labelled.

In order to capture the different patterns of regulation upon hypoxia, k-means clus-
tering of differentially expressed genes was performed. This allowed to discriminate
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those genes with consistent downregulation in all three cell lines in cluster 3. More-
over, cluster 4 grouped those genes which were induced in all three cell lines, includ-
ing many well-known hypoxia-responsive genes, such as CA9, ANGPTL4, NDRG1,
PDK1, BNIP3, PLOD2, and VEGFA (Figure 3.2C). The hypoxia-inducible factor-1
alpha (HIF1a) governs the initial adaptation to hypoxia and its encoding gene was
induced only in HeLa, while its levels decreased in MCF-7 and A549 cells, most
likely reflecting the different exposure times to low oxygen adopted for HeLa cells.
On the other hand, HIF2a (or Endothelial PAS domain protein 1, EPAS1 ) is known
to be expressed at a prolonged exposure to oxygen (chronic hypoxia, > 24h). In-
deed, it was upregulated in all three cell types, suggesting that HeLa cells were at
a transition point between acute and chronic hypoxia. ARNT (HIF1b) was only
slightly induced in MCF-7 cells (log2(Foldchange) = 0.59), and remained stable in
the other two cell lines.
To gain functional insights into the transcriptional response to hypoxia, Gene On-
tology (GO) enrichment analysis of differentially expressed genes in the three cell
lines was performed (Figure 3.3). As expected, hypoxia-induced genes were asso-
ciated to the response to decreased oxygen levels, as well metabolic adaptation,
angiogenesis and cell migration. In HeLa and MCF-7 cells, also GO terms related
to the apoptotic signalling pathways were among the top enriched. On the other
hand, downregulated genes were related to ribosome biogenesis, DNA replication
and aerobic metabolism, reflecting a shift towards lower energy consumption in re-
sponse to hypoxia. In addition, downregulated genes were involved in RNA splicing,
suggesting possible alterations of the splicing pattern.
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Figure 3.3: Functional characterisation of differentially expressed genes upon
hypoxia. Results from Gene Ontology (Biological Process) enrichment analysis by hy-
pergeometric testing for hypoxia-regulated protein-coding genes are shown (adjusted P -
value/q-value < 0.05). The 10 most significant GO terms per group are compared.
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3.1.2 Hypoxia alters the splicing pattern in a cell type-

specific manner

An additional layer of regulation of gene expression is alternative splicing, which
from a single gene produces multiple transcript isoforms, adding further variabil-
ity to the final proteome of a cell. In order to investigate the alternative splicing
pattern in cancer cells and how it changes upon hypoxia, we applied replicate mul-
tivariate analysis of transcript splicing (rMATS; Shen et al., 2014) to our RNA-Seq
data. The following types of alternative splicing events were explored: "cassette
exon" (CE), "retained intron" (RI), "mutually exclusive exon" (MXE), "alternative
30 splice site" (A3SS) and "alternative 50 splice site" (A5SS) usage, as illustrated
in Figure 3.4A. Accompanying the transcriptional response, we observed a global
change in splicing, detecting in total 9701 significant differential AS events upon
hypoxia from 4715 genes (absolute difference in percent spliced-in, |�PSI| � 10%;
false discovery rate, FDR < 5%). More specifically, 2441, 3473 and 4482 alterna-
tively spliced loci changing their levels were detected in A549, HeLa and MCF-7
cells, respectively. Among the detected AS events, three types were specifically en-
riched in the analysed cell lines, namely the alternative inclusion of cassette exons,
mutually exclusive exons and intron retention events (P -value < 0.00001, 2-sample
test for equality of proportions). The predominant directionality of change varied
across cell types (Figure 3.4B,C). In contrast to the convergent transcriptional re-
sponse, however, the splicing changes upon hypoxia were divergent, both in terms
of regulated events and directionality, with only 37 significantly regulated AS events
overlapping between all three cell lines (Figure 3.4D). To further assess the rela-
tionship between hypoxia-regulated genes and AS changes, we compared genes that
undergo differential AS to the differentially expressed genes upon hypoxia. 41-66%
genes subjected to splicing changes were not regulated at RNA level, suggesting that
alternative splicing is a process often regulated independently from transcription in
hypoxia. In summary, the three human cancer cell lines react to hypoxia similarly
in terms of gene expression variation but differently in terms of alternative splicing,
which adds an additional layer of regulation and confers cell type specificity to the
hypoxic adaptation.
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Figure 3.4: Alternative splicing profile upon hypoxia. (A) Scheme of the different
types of alternative splicing events detectable with rMATS. (B) Percentage of total measured
and significantly changed alternative splicing events in the three cell types (�PSI � 10%,
FDR < 5% ; P -value < 0.00001, test for equality of proportions). (C) Percentage and
number of inclusion and skipping AS events in the three cell lines. Dashed red line: 50%,
equal proportion of directionality. For A5SS and A3SS, the inclusion isoform is the longest
exon isoform. For MXE, �PSI ithe inclusion isoform is the first exon. (D) Hypoxia-
deregulated alternative splicing is highly different between A549, HeLa and MCF-7 cells.
Venn diagram comparing AS events between cell lines. (E) The regulation of alternative
splicing of many genes is independent RNA abundance. Bar plot shows the percentage
of differentially spliced genes that do not change their global RNA level (light grey) in
hypoxia, in comparison to those that additionally undergo expression changes at RNA level
(dark grey).
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3.2 The role of MBNL2 in hypoxia

Hypoxia both affected the mRNA abundance of splicing-related genes and altered
the splicing pattern in A549, HeLa and MCF-7 cells. Prompted by this, we explored
in more detail the expression changes of genes annotated to the GO term "RNA splic-
ing" (GO:0008380). 314 out of 428 genes annotated in this list were regulated in at
least one of the three cell lines, with 57 genes significantly changing in all three cell
lines (Figure 3.5A). These included core spliceosomal proteins and members of the
SR protein family. SR proteins are essential RNA-binding proteins able to influence
each step of the mRNA life. Among genes encoding SR proteins, SRSF1, SRSF2,
SRSF6, SRSF7 and SRSF8 were all consistently downregulated upon hypoxia at
mRNA level. SRSF6, was previously shown to influence the splicing of VEGFA, a
well-known HIF target in the response to hypoxia. In particular, SRSF6 promotes
the splicing of the anti-angiogenic isoform VEGFA165b (Peiris-Pagès, 2012). SRSF6
showed strongly reduced mRNA levels, being almost halved in HeLa and MCF-7 cells
(log2-transformed fold change = -0.92 and -0.93, respectively; adjusted P -value <
0.05). Only few splicing-related genes were consistently induced by low oxygen lev-
els in the three cell types, namely MBNL2, DHX32, NOL3, AHNAK, and CLK1.
MBNL2 is a well-known splicing factor, and a member of the muscleblind-like pro-
tein family, together with MBNL1 and MBNL3. MBNL2 was recently shown to be
abundant in clear cell renal cell carcinoma (Perron et al., 2018) and hepatocellular
carcinoma (Lee et al., 2016), acting as oncogene or tumour suppressor gene, respec-
tively, pointing out a possible role of MBNL2 in cancer cells’ adaptation to hypoxia.
Noteworthy, only MBNL2 was regulated upon hypoxia, while MBNL1 remained
stable and showed high abundance already in normoxic conditions. MBNL3 levels
were low both in normoxic and hypoxic conditions (Figure 3.5B). Changes in ex-
pression of MBNL2 were confirmed by reverse transcription-quantitative polymerase
chain reaction (RT-qPCR) and Western blot experiments in A549 and MCF-7 cells
(Figure 3.5C,D).
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Figure 3.5: Changes in mRNA levels of genes annotated to the GO term "RNA
splicing" (GO:0008380). (A) Heatmap representing fold changes of RNA splicing genes
co-regulated in A549, HeLa and MCF-7 cells. Members of the SR protein family are labelled
in blue. MBNL2 is among the few upregulated RBPs upon hypoxia (labelled in red). (B)
Comparison of expression levels as "transcripts per million" (TPM) of MBNL proteins.
MBNL2 is consistently upregulated in the three cell lines, while MBNL1 levels are abundant
and stable upon hypoxia and MBNL3 shows generally low levels. (C) RT-qPCR validating
MBNL2 induction upon hypoxia at mRNA level in A549 and MCF-7 cells. Values were
normalised to the RPLP0 gene (n = 4). 21% O2 = normoxia; 0.5% O2 = hypoxia. *
P -value < 0.05, ** P -value < 0.01. (D) Western blot of MBNL1 and MBNL2 in normoxic
(N) and hypoxic (H) conditions. Anti-MBNL1 and anti-MBNL2 antibodies were used to
visualise the respective protein levels. Total lane protein is shown as loading control (n =
2). RT-qPCR and Western blot experiments were performed by Sandra Fischer, Technical
University Darmstadt.
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3.2.1 MBNL2 modulates the transcript abundance of hy-

poxia response genes

In collaboration with the Weigand group (Technical University Darmstadt), MBNL2
was selected to elucidate its role in hypoxia. With this aim, hypoxic samples from
MCF-7 and A549 cells were treated with a short interfering RNA (siRNA) targeting
MBNL2 (siMBNL2) and a control siRNA (siCTRL). The efficiency of the knock-
down was confirmed by Western blot (Figure 3.6A). Interestingly, the treatment of
hypoxic cancer cells with cisplatin, a commonly used chemotherapeutic drug (Dasari
& Bernard Tchounwou, 2014), caused an increase of the cell death rate exclusively
upon MBNL2 knockdown (Figure 3.6B). Moreover, MBNL2 knockdown decreased
the migration rate of hypoxic A549 cells (unpublished data; Fischer et al., in revi-
sion). Altogether, these experiments suggest that the induction of MBNL2 observed
in hypoxia might contribute to the adaptation of cancer cells to hypoxia.

Figure 3.6: Cisplatin-induced cell death increases upon MBNL2 depletion in
hypoxic cancer cells. (A) Western blot confirming the depletion at protein level of
MBNL2 in hypoxic cells upon treatment with siMBNL2 (n = 3). Total lane protein is
shown as loading control. (B) Cell viability assay of hypoxic cancer cells upon MBNL2
knockdown and treatment with cisplatin for 24 h. The relative absorption was normalised
to normoxic control cells treated with the same cisplatin concentration (n = 3). * P -value
< 0.05, ** P -value < 0.01. Experiments performed by Sandra Fischer, Technical University
Darmstadt.

In order to elucidate the molecular mechanism by which MBNL2 influences the adap-
tation of cancer cells to hypoxia at transcriptome-wide level, I analysed RNA-Seq
data of hypoxic MCF-7 cells with siMBNL2 or siCTRL treatment. Two replicates
per condition were prepared and the extracted RNA was sequenced after poly(A)
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Table 3.2: Summary of RNA-Seq data from MBNL2 knockdown experiments in hypoxic
MCF-7 cells. RNA-Seq was performed from A549, HeLa and MCF-7 cells. The total
number of sequenced reads is reported for each replicate and condition. In addition, the
number of processed reads and the percentage of reads uniquely mapped to the genome is
shown.

Cell line Condition Treatment Total reads Processed reads Mapped reads (%)

MCF-7 Hypoxia siCTRL 82850336 82776484 91

MCF-7 Hypoxia siCTRL 83766468 83694572 91

MCF-7 Hypoxia siMBNL2 77005724 76941479 91

MCF-7 Hypoxia siMBNL2 91045087 90964015 91

selection. An overview of the RNA-Seq data and alignment statistics is provided in
Table 3.2.

Considering the dual function of MBNL2 in regulating stability and alternative splic-
ing of its RNA targets, we examined both alterations in expression at RNA level, as
well as in the splicing pattern. Next, we compared the outcome of these analyses to
our previous results from the normoxia/hypoxia RNA-Seq experiments (from now
referred to as "hypoxia experiments"). As for the hypoxia experiments, after a qual-
ity check and pre-processing of sequencing reads, they were aligned to the human
reference genome. The total number of reads across the different libraries ranged
from 77 up to 91 millions. Once trimmed, an alignment rate higher than 90% was ob-
tained for all samples considering only uniquely mapped reads, indicating a general
high quality of the data (Table 3.2). Gene levels were estimated as described above
for the hypoxia experiments’ data and differential expression testing was performed
with DESeq2. In total, 5580 genes significantly changed their level upon MBNL2
knockdown (adjusted P -value < 0.05). Here, a further filter on the list of differen-
tially expressed genes was applied, demanding TPM > 1 in any single sample and
an absolute fold change higher than 1.5, thus restricting the number of regulated
genes to 4529. This resulted in an equal proportion of up- and downregulated genes
(2137 and 2392, respectively). The efficiency of the treatment with siRNA targeting
MBNL2 was confirmed by RNA-Seq, that identified MBNL2 as the top downreg-
ulated gene (log2-transformed fold change = -3.18; adjusted P -value = 7.48E-63).
Importantly, the levels of MBNL1 and MBNL3 were not affected (log2-transformed
fold change = 0.02 and -0.07, respectively), indicating the specificity of the knock-
down treatment. Notably, functional inspection of the regulated genes revealed for
downregulated genes the enrichment of the GO term "response to hypoxia", as well
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as additional biological processes directly attributable to the hypoxia adaptation,
including glucose metabolism and translation (Figure 3.7A). No enriched GO term
could be found for upregulated genes.
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Figure 3.7: MBNL2 depletion influences transcript abudance in hypoxic cancer
cells. (A) Gene Ontology (GO) analysis of differentially expressed genes (DEGs) after
MBNL2 knockdown in hypoxic cells. Selected enriched GO terms are shown P -value <
0.05, q-value < 0.05. (B) Comparison of significantly changed genes after MBNL2 depletion
and in response to hypoxia in MCF-7 cells (adjusted P -value < 0.05; absolute fold change
> 1.5; TPM > 1 in any single sample). For MBNL2 knockdown (siMBNL2), only DEGs
expressed in the hypoxia experiments in MCF-7 cells were considered in the comparison
(TPM > 1 in any single sample; n = 4370). (C) Scatter plot of fold changes of DEGs
regulated both after MBNL2 knockdown and upon hypoxia in MCF-7 cells (n = 1528).
Number of genes is given in each quadrant. r: Pearson correlation. (D) Venn diagram of
DEGs after MBNL2 depletion and shared between MCF-7 and A549 in hypoxia (adjusted
P -value < 0.05; absolute fold change > 1.5). For MBNL2 knockdown (siMBNL2), only
DEGs expressed in the hypoxia experiments in MCF-7 and A549 cells were considered in
the comparison (TPM > 1 in any single sample; n = 3880). (E) Scatter plot of fold changes
of genes changing abundance in both MCF-7 and A549 cells in response to hypoxia and
in MBNL2 -depleted hypoxic MCF-7 cells. Visualisation as in (C). (F) RT-qPCR confirms
the modulatory role of MBNL2 on the induction of HIF target genes upon hypoxia. Values
were normalised to RPLP0 (n = 3-6). (* P -value < 0.05, ** P -value < 0.01, two-tailed
Student’s t-test). RT-qPCR performed by Sandra Fischer.
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To gain insights into the role of MBNL2 in the transcriptional adaptation to hy-
poxic stress, the expression analysis of RNA-Seq data from MBNL2 knockdown
and hypoxia experiments in MCF-7 cells were integrated. For this purpose, also
the differentially expressed genes (DEGs) from hypoxia experiments in MCF-7 cells
were similarly filtered (absolute fold change higher than 1.5, TPM > 1 in any single
sample), leading to 5153 DEGs. In addition, for comparison between expression
changes in hypoxia and upon MBNL2 knockdown, DEGs upon MBNL2 knockdown
that were not expressed in MCF-7 hypoxic experiments (TPM < 1 in all samples)
were not considered for downstream analyses. In total, 30% of the hypoxia-regulated
genes changed their RNA abundance also upon MBNL2 knockdown, with most of
them (71%) showing opposite regulation in the two experiments, consistent with
MBNL2’s upregulation in hypoxia (Figure 3.7B,C). The strong overlap together
with the anticorrelation of shared changes are good indicators of a role of MBNL2
in hypoxia. This led us to speculate that the regulation of these genes in the hy-
poxic condition might be dependent on MBNL2 function. Similarly, DEGs upon
MBNL2 knockdown were compared to genes consistently regulated in hypoxic A549
and MCF-7 cells (n= 1109), showing an overlap of 351 genes (32%, Figure 3.7D).
This suggests that the role of MBNL2 in hypoxia response might be independent of
the cell type. Again, these shared genes were mostly regulated in the opposite di-
rection compared to MBNL2 knockdown (65%, Figure 3.7E). They included known
HIF targets such as BNIP3, ANKRD37 and CA9, the genes involved in promoting
angiogenesis, namely VEGFA, ADM1 and ANGPTL4 and the genes encoding the
glycolytic enzymes ALDOA, ALDOC and GAPDH (Chi et al., 2006, Benita et al.,
2009, Lendahl et al., 2009, Sena et al., 2014, Semenza, 2012). In order to verify that
MBNL2 affects the hypoxia-dependent induction of selected HIF targets, RT-qPCR
was performed in MCF-7 and A549 cells. The experiments confirmed the modula-
tory function of MBNL2 on the RNA levels of ALDOC, ENO2, ITGA5, LOX and
VEGFA in hypoxic MCF-7 cells and ALDOC, ITGA5 and VEGFA in hypoxic A549
cells (Figure 3.7F).

Perron and coauthors predicted that MBNL2 might influence the stability of
mRNAs, mainly acting as a stabilising factor, as for VEGFA (Perron et al., 2018).
They defined a list of 130 genes that are stabilised by MBNL2 binding to their
30UTRs (Ray et al., 2013, Perron et al., 2018). We inspected these genes to verify
whether their RNA levels decreased upon MBNL2 knockdown, and tested whether
they were also induced upon hypoxia. 81 of the 130 genes were expressed in MBNL2
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Table 3.3: List of putative MBNL2 stability targets (Ray et al., 2013; Perron et al.,
2018), which are downregulated upon MBNL2 knockdown. The fold change values upon
MBNL2 knockdown (siMBNL2) and upon hypoxia treatment of MCF-7 cells (hypoxia) are
reported if significant (adjusted P -value < 0.05).

Gene name Fold change
siMBNL2
(log2)

Fold change
hypoxia
MCF-7
(log2)

SMAD7 -0.85 0.64
CSRNP1 -1.68 0.80
SERTAD2 -1.41 0.88
OSMR -0.90 1.06

LONRF2 -0.59 -
MGST3 -0.60 -
SPOPL -0.63 -
PNPLA8 -0.73 -
TBC1D20 -1.00 -
HPCAL1 -1.01 -

knockdown experiments, and only 10 genes were downregulated (Table 3.3). Among
them, SMAD7, OSMR, SERTAD2 and CSRNP1 were additionally upregulated
upon hypoxia in MCF-7 cells (Table 3.3). For these four genes, putative MBNL2
binding sites consisting of two clustered 50-YGCY-30 motifs (Lambert et al., 2014)
could be identified in their 30UTR sequences (Figures S1, S2 ,S3). Additional ex-
periments are required to establish whether MBNL2 effectively binds these motifs
and to test its effect on mRNA decay and translation.
To further explore the function of MBNL2 as mRNA stabilising factor, the predic-
tion of putative MBNL2 binding sites on 30UTRs was extended to all genes regulated
upon MBNL2 knockdown, by scanning the 30UTR sequences for clustered 50-YGCY-
30 motifs (50-YGCYGCY-30 and 50-YGCYN0�3YGCY-30). No substantial difference
was found between genes with predicted MBNL2 binding sites or not in terms of
expression changes (Figure 3.8A). Similarly, deregulated genes upon MBNL2 knock-
down did not show higher density of predicted MBNL2 binding sites (Figure 3.8B).
It has been reported that the binding of MBNL proteins depends on the number of
YGCY repeats, with a preference for multiple GC with variable spacing (Lambert
et al., 2014; Taylor et al., 2018). In order to test this preference, we used the size
of predicted binding sites as a proxy of clustered 50-YGCY-30 motifs. The size of
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predicted binding sites was not significantly higher for deregulated genes compared
to genes that do not change upon MBNL2 knockdown (Figure 3.8C). In contrast to
previous publications that hypothesised an mRNA-stabilising role of MBNL2, our
results did not reveal any evidence of this function via 30UTR binding.

Figure 3.8: In silico prediction of MBNL2 binding sites on 30UTRs sequences of
MBNL2-regulated genes. (A) Cumulative frequency distribution of expression changes
after MBNL2 knockdown in hypoxic MCF-7 cells. Genes with at least one predicted
MBNL2 binding site (cluster of multiple YGCY motifs) are compared to genes lacking
MBNL2 binding sites. (B) Density of non-overlapping MBNL2 binding sites (number of
binding sites divided by 30UTR length in kb). Adjacent MBNL2 binding sites within a 3 bp
distance were collapsed and counted as one. Up- and downregulated genes are compared
to unchanged genes after MBNL2 knockdown, defined by fold change < 1.3 and adjusted
P -value > 0.5. Labels in blue: number of observations; in red: median density. (C) Max-
imum width of MBNL2 binding sites per gene. Adjacent MBNL2 binding sites within a 3
bp distance were collapsed. The width of the resulting collapsed binding sites was used as
a proxy of the number of YGCY repeats. When multiple collapsed binding sites were still
present on the 30UTR of a single gene, the largest collapsed binding site was considered
in the graphic (maximum width). Genes with a single or no YGCY motif in their 30UTR
sequence were excluded. Labels in blue: number of observations.
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3.2.2 MBNL2 controls hypoxia-dependent alternative splic-

ing

MBNL2 is mainly known for its function as regulator of RNA splicing. We profiled
the alternative splicing pattern upon MBNL2 knockdown, finding 2074 significantly
changed AS events, including the alternative inclusion of cassette exons, mutually
exclusive exons, retained intron, and alternative 30 or 50 splice site selection events,
again with a prevalence of CE events (absolute �PSI � 10%, FDR< 5%, TPM > 1
in any sample; Table 3.4). AS events upon MBNL2 knockdown were then compared
to 4411 AS events detected in hypoxic MCF-7 cells (absolute �PSI � 10%, FDR
< 5%, TPM > 1 in any sample). In contrast to the effect of hypoxia on MCF-7
cells, which caused more inclusion of cassette exons (Figure 3.4C), cassette exons
were preferentially skipped after MBNL2 depletion (Table 3.4). In total, 393 AS
events were significantly regulated in both experiments, which represented the 9%
of the events upon hypoxia treatment and the 19% of the events due to MBNL2
knockdown (Figure 3.9A). Among these shared AS events, 307 (78%) were cassette
exons events. Similarly to changes at RNA level, the majority of AS events shared
between the two experiments (89%) were regulated in opposite direction, underlying
a potential role of MBNL2 in modulating splicing in the hypoxia adaptation (Figure
3.9B). The alternative inclusion of exon 12 from the PIGN gene (RefSeq transcript
NM_176787) was selected for validation by RT-qPCR. The lower inclusion rate of
exon 12 observed upon hypoxia was restored upon treatment with siMBNL2, indi-
cating a function as negative regulator of the alternative cassette exon for MBNL2
(Figure 3.4C). In line with the cell type-specific alteration of the splicing patterns
observed in A549, HeLa and MCF-7, only 24 of the 393 events shared between
MBNL2 knockdown and hypoxia in MCF-7 cells were also detected in A549 cells
(22 CE, 1 MXE, and 1 RI events) (Figure 3.4D). In addition, cassette exons of

Table 3.4: Alternative splicing events after MBNL2 knockdown. CE: cassette exon; MXE:
mutually exclusive exons; RI: retained intron; A5SS and A3SS: alternative 50 and 30 splice
site. For A5SS and A3SS, �PSI indicates the difference of inclusion levels for the longest
exon isoform. For MXE, �PSI indicates the difference of inclusion levels for the first exon.

CE MXE RI A5SS A3SS

Number of events 1497 201 140 120 116

�PSI � 10% 1093 99 22 40 33

�PSI  -10% 404 102 118 80 83
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EXOC7, MORF4L2, ESYT2 and NOL8 were similarly regulated in hypoxic HeLa
cells (�PSI = -24%, -12%, -19%, and 23%, respectively; FDR < 5%). It would be
interesting to verify whether MBNL2 depletion affects splicing of this genes also in
hypoxic A549 and HeLa cells.

Figure 3.9: MBNL2 mainly functions as negative regulator of alternative cas-
sette exons in hypoxia. (A) Top: Venn diagram comparing alternative splicing (AS)
events upon hypoxia and after MBNL2 knockdown (absolute �PSI � 10%, FDR < 5%,
TPM > 1 in any sample). Bottom: Shared AS events (n = 393) between hypoxia and
MBNL2 knockdown in MCF-7 cells, divided by type. (C) Scatter plot of �PSI values of
the 393 significant AS events shared between hypoxia and MBNL2 knockdown in MCF-7
cells. (D) RT-qPCR confirms the role of MBNL2 in regulating the cassette exon of PIGN
upon hypoxia (exon 12, RefSeq transcript NM_176787). (E) Scatter plot of �PSI vaues
of 22 cassette exon events shared between hypoxic A549 cells, hypoxic MCF-7 cells and
MBNL2 knockdown experiments.

In summary, our results revealed that MBNL2 is upregulated at low oxygen and
contributes to the response to hypoxia in cancer cells. It regulates the mRNA levels
of known HIF target genes involved in key processes for cancer progression, including
angiogenesis, metastasis and metabolic reprogramming. In addition, MBNL2 acts as
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a splicing factor, modulating a large fraction of alternative splicing events occurring
in hypoxia, with a tendency to promote the skipping of cassette exons at low oxygen.
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3.3 Establishing a pipeline to identify circRNAs

from rRNA-depleted RNA-Seq data

CircRNAs represent a class of ncRNAs produced by a particular splicing mecha-
nism, named back-splicing or head-to-tail splicing, by which a 50 splice site (50SS)
is covalently joined to a 30 splice site (30SS) located upstream in the transcript.
CircRNAs have been reported to be altered in cancer (Geng et al., 2018) and re-
cent studies revealed their regulation in hypoxic endothelial cells (Boeckel et al.,
2015) as well as hypoxic gastric cancer cells (Li et al., 2018a). These observations,
together with the widespread changes affecting RNA levels and alternative splicing
patterns in hypoxic cancer cells revealed by our analyses, motivated us to further
investigate the expression profile of circRNAs in cancer cells and their changes upon
hypoxia. In this study, the first step towards the characterisation of the circRNA
profile in cancer cells was the establishment of a pipeline to detect back-splicing
events from the rRNA-depleted RNA-Seq data provided by the Müller-McNicoll
Group (Goethe University Frankfurt am Main), and the Weigand Group (Technical
University Darmstadt).

With the advances in high-throughput technologies and the discovery of the perva-
sive expression of circRNAs across the tree of life, several computational algorithms
have been proposed to detect back-splicing events from RNA-Seq data (Table 1.1
and reviewed in Szabo & Salzman, 2016, Gao & Zhao, 2018, Jakobi & Dieterich,
2019). Recent studies evaluated the performance of several circRNA tools on rRNA-
depleted RNA-Seq samples, by relying on RNAse R-treated RNA-Seq samples as
a source to detect real circRNAs. They agreed on the fact that the outcome of
circRNA detection tools is only partially consistent and their performance can vary
considerably. They further suggested to combine the prediction of such tools to ob-
tain a more reliable catalogue of circRNAs from RNA-Seq data (Hansen et al., 2016,
Zeng et al., 2017, Hansen, 2018). Consequently, we decided to combine outcomes
from two different algorithms, CIRCexplorer (Zhang et al., 2014) and find_circ
(Memczak et al., 2013), to comprehensively describe the circRNA repertoire of differ-
ent cancer cell lines. When circRNA prediction tools were compared, CIRCexplorer
was described as one of the outperforming tools (Hansen et al., 2016, Zeng et al.,
2017). However, a major disadvantage of CIRCexplorer might be that it strongly
relies on the gene annotation to detect circRNAs from back-spliced exons and intron
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lariats. For instance, it cannot detect relevant circRNAs such as circZNF292, which
originates from a cryptic black-splice site located in an intronic region, known to
get induced upon hypoxia in endothelial cells (Boeckel et al., 2015). In addition,
its predictions would strongly depend on the choice of the gene annotation. Al-
though find_circ showed worse performance in previous comparisons (Hansen et
al., 2016, Zeng et al., 2017), it would be suitable to complement CIRCexplorer pre-
diction, since it allows a de novo prediction of back-splicing events independently of
prior knowledge of exon-intron annotation, thus expanding the spectrum of circRNA
types in the final catalogue. In addition, it has the advantage that it is fast and has
low RAM requirements (Hansen et al., 2016). CIRCexplorer was initially designed
to parse fusion junction information from mapping results of TopHat (Bowtie2)
and TopHat-Fusion algorithms, to identify and annotate those reads potentially
attributable to circRNAs. In later versions, it supports also the alignment software
STAR. To avoid a bias related to the usage of a single read mapper (Bowtie2) for the
initial prediction of circRNAs, we decided to test and use CIRCexplorer in combi-
nation with the alignment software STAR. STAR was originally designed to deal with
reads that map to non-contiguous regions of the reference genome (spliced reads)
and allows the detection of chimeric alignments, i.e. discontinuous arrangements
in which the two aligned fragments of the read are in a non-linear order (Dobin
et al., 2012). These chimeric alignments are parsed by CIRCexplorer to retrieve
back-splicing events.

3.3.1 Testing CIRCexplorer and find_circ on rRNA-depleted

RNA-Seq data

In order to build up a pipeline based on CIRCexplorer and find_circ, I first ex-
plored their strengths and weaknesses independently, predicting circRNAs from a
single sample of our RNA-Seq data (normoxia replicate 1, HeLa cells, Figure 3.10A).
find_circ was used as described in Memczak et al., 2013, demanding unique align-
ments, unambiguous breakpoints, a maximum genomic distance between the back-
splice sites of 100 kb, and GU/AG splice site sequences, leading to the prediction
of 3752 back-splicing events. Differently from CIRCexplorer, the find_circ al-
gorithm outputs two different measures of back-splice reads supporting circRNAs:
"n_reads" indicates the total number of reads supporting the back-splice junction,
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and "n_uniq" refers to the number of reads supporting the back-splice junction that
differ in their sequence. Here, I refer to "n_reads" as total reads and "n_uniq" as
unique reads. In the original paper (Memczak et al., 2013), candidate circRNAs
were further filtered based on unique reads, in order to consider only those circRNA
reads arising from independent reverse transcription events, thus avoiding putative
PCR duplicates. Here, the initial prediction of find_circ was further filtered re-
quiring a minimum of two unique reads. This significantly reduced the amount of
candidate circRNAs to 1118. Even applying this further filter, only 37% of the de-
tected circRNAs could also be predicted in the other normoxia replicates, suggesting
either a certain level of noise in find_circ predictions or in the experiment itself.
CIRCexplorer initially predicted a total of 3343 circRNAs; the number decreased to
2269 circRNAs when a cutoff of 2 total back-splice reads was applied, including 76
intronic circRNAs (ciRNAs). The reproducibility of CIRCexplorer was higher com-
pared to find_circ, with 68% circRNAs detectable also in the other normoxia repli-
cates with the same tool, indicating that the low reproducibility of the find_circ
outcome is rather attributable to a certain level of noise in the find_circ prediction.

Comparing the 2269 circRNAs detected by CIRCexplorer to the 1118 circRNAs
found with find_circ, 903 circRNAs were consistently detected by both tools (Fig-
ure 3.10A). This observation was in line with previous studies that showed a modest
overlap between predictions of five different circRNA tools (Hansen et al., 2016). For
the 903 circRNAs in common, the number of total reads reported by the two tools
was highly correlated, although not always identical (Pearson correlation coefficient
= 0.93) (Figure 3.10B). 285 circRNAs were detected only by find_circ and 1,366
circRNAs were detected only by CIRCexplorer (Figure 3.10A). A deeper investi-
gation of back-splicing events detected exclusively by CIRCexplorer or find_circ
revealed that those events are supported by less total reads if compared to the
903 circRNAs predicted by both tools, although several circRNAs were particularly
abundant, suggesting a potential biological relevance (Figure 3.10C).

At this point, the main features that might influence discrepancies of the outcomes
were investigated. Approximately two-thirds (67%) of the 285 circRNAs detected by
find_circ but not CIRCexplorer were detected by STAR and present in its chimeric
junction output. 133 circRNAs in this group were filtered out by CIRCexplorer be-
cause they originated from unannotated junctions. For the remaining 58 circRNAs,
the reason of the discrepancy remains unclear. Finally, 94 (33%) circRNAs were
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Figure 3.10: Investigation of convergences and discrepancies between
CIRCexplorer and find_circ tools in predicting circRNAs from a single HeLa
sample (normoxia, replicate 1). (A) Venn diagram depicting the overlap between the
predictions of the CIRCexplorer and the find_circ algorithms. (B) Scatter plot com-
paring total back-splice reads estimated by the two algorithms for the 903 circRNAs in
common. r : Pearson correlation. (C) Box plot shows the quantification of circRNAs by
CIRCexplorer and find_circ for circRNAs in common or from only a single algorithm.
CircRNAs detected only by a single tool are in general less abundant, with notable ex-
ceptions (labelled). (D) Characterisation of the 285 circRNAs predicted exclusively by
find_circ, in terms of genomic aligner (STAR vs. Bowtie2) and gene annotation. (E)
Characterisation of the 1366 circRNAs predicted exclusively by CIRCexplorer, in terms
of splice-site signal, genomic size, supporting back-splice reads, alignment adjustment by
CIRCexplorer and gene annotation. 69% circRNAs are supported by a single unique back-
splice read in find_circ measurements, highlighting the importance of filtering on unique
back-splice reads to exclude PCR artefacts. For 328 circRNAs, the reason of the discrepancy
remained unclear.
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not present in the chimeric junction output of STAR, therefore predictable only by
find_circ from Bowtie2 alignments (Figure 3.10D).
Of the 1366 circRNAs detected exclusively by CIRCexplorer, multiple features were
the cause of the inconsistency with the outcome of find_circ (Figure 3.10E). For
instance, 24 circRNAs were initially detected by the find_circ algorithm, but fil-
tered out due to a genomic distance between back-splice sites higher than 100 kb. 85
circRNAs showed a splice site signal different from GU/AG, that is not allowed by
find_circ. Just a small number of circRNAs (n=34) derived from an adjustment
of STAR read alignments intrinsically performed by CIRCexplorer. Interestingly,
four circRNAs were reported to originate from chromosome Y, although HeLa cells
were originally derived from cervical cancer of a female patient. Further investiga-
tion revealed that CIRCexplorer assigned them to pseudoautosomal regions (PAR),
homologous sequences between chromosome X and Y. The filter applied on the num-
ber of back-splice reads was the main underlying reason of the discrepancy between
CIRCexplorer and find_circ, since 946 out of 1366 circRNAs (69%) were initially
predicted by find_circ, but filtered out due to the presence of a single unique back-
splice read, thus considered as putative PCR artefacts. Indeed, the overlap between
CIRCexplorer and find_circ was larger when find_circ circRNAs were filtered
based on total reads (� 2 reads, 2513 circRNAs), with 1803 circRNA predicted by
both tools.

To avoid dependence on the specific dataset, I also investigated the circRNA pre-
diction on a sample from MCF-7 cells (normoxia, replicate 1), obtaining consistent
results (Supplementary Figure S4). Indeed, a total of 3056 and 4890 circRNAs
were identified with find_circ and CIRCexplorer, respectively, as described above.
2381 (48%) circRNAs were predicted by both tools and highly correlated in terms
of total back-splice reads (Pearson correlation coefficient = 0.98) (Figure S4A,B).
The overall amount of supporting reads was lower for circRNAs found only by a
single algorithm, with several exceptions (Figure S4C). Of the 675 circRNAs de-
tected exclusively by find_circ, 170 (25%) circRNAs were not detected by STAR
but only from unmapped reads obtained from Bowtie2. 295 circRNAs were in-
cluded in STAR chimeric alignments but not reported in the CIRCexplorer output,
because they originated from unannotated exons (Figure S4D). Again, the main rea-
son justifying the discrepancy between CIRCexplorer and find_circ was the filter
that find_circ applies on unique back-splice reads, with 1863 out of 2509 (74%)
of the CIRCexplorer-only circRNAs filtered out by find_circ because they were
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supported by less than 2 unique reads (Figure S4E).

3.3.2 A novel combined pipeline for circRNA detection

These results offered the basis to design a pipeline that combines the strengths of
CIRCexplorer and find_circ to obtain a comprehensive catalogue of circRNAs in
human cancer cells (Table 3.5). Figure 3.11 shows a scheme of the pipeline.

Table 3.5: Overview of the main features of algorithms adopted in this thesis to detect
circRNAs. BSSs: Back-splice sites.

Tool find_circ CIRCexplorer Our pipeline
Alignment algorithm Bowtie2 STAR Both
Splice site motifs GU/AG Any GU/AG or

GC/AG
Splice sites Annotated +

de novo
Annotated Annotated, de

novo
Genomic distance of BSSs  100 kb Within single

gene
 100 kb

Expression filter 2 unique reads
(sequence-
based)

2 total reads 2 unique reads
(coordinate-
based)

The workflow starts with a quality check of sequencing reads followed by filtering
and trimming of reads, when necessary. Next, samples of a single dataset are merged
together and reads are independently mapped to the reference genome using Bowtie2
(Langmead & Salzberg, 2012) and the splice-aware aligner STAR (Dobin et al., 2012)
setting parameters that allow to output chimeric alignments. Unmapped reads are
extracted from the Bowtie2 output and used as input for find_circ, followed by
standard filtering (unambiguous breakpoint, unique alignments, maximum genomic
distance between BSSs of 100 kb, GU/AG splice site signal). The chimeric junction
table from STAR is used as input for CIRCexplorer. At this point, no expression filter
is applied. Differently to what it was suggested in previous publications to increase
reliability of the prediction (Hansen et al., 2016, Hansen, 2018), we decided to
consider not only the intersection between CIRCexplorer and find_circ outcomes,
but rather to unify the predictions of both tools and filter out the detection artefacts
revealed by the comparison described above. The underlying reason is that we did
not want to leave out abundant circRNAs that are detected by a single algorithm,
such as the hypoxia-induced circZNF292 (Boeckel et al., 2015), originating from
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Figure 3.11: Pipeline to identify circRNAs and analyse gene expression and
splicing from rRNA-depleted RNA-Seq data.

the covalent bond between the 50 splice site of exon 4 and a cryptic 30 splice site
located within the first intron of ZNF292. Thus, the full lists of candidate circRNAs
detected by either CIRCexplorer or find_circ were merged and used as annotation
to quantify circRNA expression. This was done by counting the number of unique
and total reads supporting back-splice junctions from the STAR chimeric alignments.
This was performed for each single sample of the dataset with a custom script in
R that parses STAR chimeric alignments. Importantly, differently from find_circ,
unique back-splice reads were defined based on the mapping position rather than the
read sequence itself, increasing the stringency in detecting PCR artefacts. Finally,
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the pipeline filtered out: (i) candidates with a genomic distance between BSSs
higher than 100 kb or spanning non-overlapping annotated genes; (ii) circRNAs
with splice-site signal different to GU/AG (canonical signal) or GC/AG, known to
be the most represented non-canonical splice site (Burset et al., 2000); (iii) circRNAs
supported by less than 2 unique reads. The final catalogue of obtained circRNAs,
together with the circRNA quantification, was then used for downstream analyses,
including differential expression testing with DESeq2 and a "circular-to-linear ratio"
(or "percent circularised") for comparison to the expression of host genes. Due to
the usage of STAR to obtain both chimeric alignments and uniquely mapped reads,
the circRNA prediction and quantification complements with the gene expression
and alternative splicing analyses described above.

3.3.3 Evaluating the performance of the pipeline with RNase

R-treated RNA-Seq data

To evaluate the overall performance of our combined pipeline compared to the us-
age of CIRCexplorer and find_circ independently, the algorithms were tested on
publicly available RNA-Seq data. These RNA-Seq data were produced from the
sequencing of total RNA, depleted of the rRNA and with or without RNase R treat-
ment to enrich for circRNA reads. An overview of the datasets used in this analysis
is presented in Table 3.6. The RNA-Seq raw data were downloaded from the NCBI’s
Sequence Reads Archive (SRA) using the SRA accession numbers reported in Table
3.6. Three different datasets were analysed, two from cervical cancer (HeLa cells)
(Gao et al., 2015, Gao et al., 2016), and one from human fibroblasts (Hs68 cells,
Jeck et al., 2013). Datasets consisted of paired-end reads sequenced on an Illumina
platform, with a read length of 101 bp for HeLa data and 100 bp for Hs68 data.
The total number of reads was considerably different among datasets, ranging from
26.6 million for the HeLa SRR1636985 sample to 412.7 million reads for the Hs68
SRR444975 sample. After cleaning reads based on the quality, they were mapped
to the human reference genome (GRCh38/hg38) with STAR. Interestingly, the per-
centage of reads mapping to a single genomic locus was relatively low for all RNase
R-treated samples, independent of the library, corresponding to a high percentage of
multimapping reads, likely arising from rRNA, as highlighted from an independent
mapping to human rRNA sequencing performed with Bowtie2 (Table 3.6). For the
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Hs68 dataset, also the rRNA-depleted RNA-Seq samples contained a large amount
of reads from rRNAs.

Similar to previous studies that compared computational tools for the detection of
circRNAs (Hansen et al., 2016, Wang et al., 2017, Zeng et al., 2017, Hansen, 2018),
we detected back-splicing events in the rRNA-depleted RNA-Seq data and compared
the supporting read counts to the ones obtained from RNase R-treated samples.
We assumed that RNase R-treated data allow to detect real circRNAs, therefore to
estimate the amount of true positives and false positives. Although variability might
be generated by the biochemical treatment with RNase R and some real circRNAs
like the human CDR1as, circCAMSAP1, circMAN1A2, and circNCX1 are sensitive
to RNase R treatment (Szabo & Salzman, 2016), RNase R-treated datasets remain
one of the most widely used and accepted method to validate the circularity of this
class of ncRNAs in genome-wide studies.

For each library, first a list of candidate circRNAs from the rRNA-depleted RNA
samples was obtained. CircRNAs were detected applying our pipeline to the rRNA-
depleted RNA samples for each specific dataset, as described above. A minimum
of 2 unique reads in at least one of the rRNA-depleted RNA samples was required
to call the circRNA as detected by our pipeline. Our prediction was compared to
CIRCexplorer and find_circ separately. CIRCexplorer was used in combination
with the aligner STAR, filtering on total back-splice reads (� 2) since the tool does
not provide any estimate of the unique reads. find_circ performance was evaluated
either filtering on total reads, similar to CIRCexplorer, or on unique reads, similar
to our pipeline, since both estimates are reported by the tool. Our pipeline predicted
1350 circRNAs from the HeLa sample SRR3476958, 2685 circRNAs from the HeLa
samples SRR1637089 and SRR1637090, and up to 3786 circRNAs from the Hs68
samples SRR444975 and SRR444655. The higher number of circRNAs detected
in SRR444975 and SRR444655 might be explained by the deeper sequencing of
the library and the slightly lower content in rRNA (Table 3.6 and Figure 3.12A).
Compared to our pipeline, find_circ predicted more circRNAs with either settings,
while the amount of circRNAs predicted with CIRCexplorer was comparable for all
tested datasets (Figure 3.12A). Considering that for both CIRCexplorer and our
pipeline, back-splice reads are quantified from STAR chimeric alignments, it is likely
that the higher number of predicted circRNAs is due to the lower stringency applied
to back-splice counts, since it does not differentiate between unique and total reads.
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The underlying reason for the larger amount of circRNAs predicted by find_circ
compared to CIRCexplorer might partially reside in the types of circRNAs the tools
are able to detect, de novo or from annotated exon boundaries, respectively. Venn
diagrams in Figure 3.12B illustrate the overlap between the different tools under
investigation for each of the analysed libraries. Most circRNAs predicted with our
pipeline originate from CIRCexplorer, although find_circ predicted a much higher
number of back-splicing events.

Table 3.6: Overview of RNA-Seq datasets used for the performance evaluation of the
proposed pipeline

Cell

type

SRA

accession

number

Library

preparation

Total

reads

rRNA

(%)

Uniquely

mapped

reads (%)

Chimeric

reads (%)
Reference

HeLa SRR3476956 rRNA-/RNase R-treated 100,236,474 71.56 19.91 0.56 Gao et al. (2016)

HeLa SRR3476958 rRNA- 51,780,130 1.04 83.05 0.64 Gao et al. (2016)

HeLa SRR1636985 rRNA-/RNase R-treated 26,619,490 71.66 19.61 0.50 Gao et al. (2015)

HeLa SRR1636986 rRNA-/RNase R-treated 47,011,426 71.09 19.53 0.48 Gao et al. (2015)

HeLa SRR1637089 rRNA- 89,866,900 1.04 82.53 0.62 Gao et al. (2015)

HeLa SRR1637090 rRNA- 71,370,620 0.69 87.56 0.57 Gao et al. (2015)

Hs68 SRR444974 rRNA-/RNase R-treated 316,611,710 71.10 15.54 0.52 Jeck et al. (2013)

Hs68 SRR445016 rRNA-/RNase R-treated 399,844,972 56.09 26.59 1.25 Jeck et al. (2013)

Hs68 SRR444655 rRNA- 314,106,316 55.29 16.21 0.23 Jeck et al. (2013)

Hs68 SRR444975 rRNA- 412,725,466 66.72 26.64 0.49 Jeck et al. (2013)

In order to compare the performance of our pipeline to CIRCexplorer and
find_circ, read counts of circRNAs were normalised by sequencing depth (total
number of sequenced reads) and a fold change was computed as the ratio between
normalised back-splice counts in RNase R-treated RNA-Seq samples over rRNA-
depleted RNA-Seq samples (RNase R / rRNA-depleted). When replicates were
available, the mean of normalised counts between replicates was used to calculate
the fold change. Similar to Zeng et al., 2017 and Hansen, 2018, the resulting fold-
enrichment values were then used to classify the candidate circRNAs into "RNase
R-sensitive", and "RNase R-resistant", depending on whether a reduction or in-
crease of back-splice counts in RNase R-treated samples was observed, respectively,
compared to rRNA-depleted RNA samples. RNase R-sensitive circRNAs were fur-
ther divided into "RNase R-depleted" when the circRNA is either undetectable in
the RNase R-treated samples or at least 5-fold decreased, and "RNase R-reduced"
when a decrease up to 5-fold was observed. RNase R-resistant circRNAs were further
divided into "RNase R-enriched" for those circRNAs with at least a 5-fold increase
and "RNase R-unaffected" when their level remains stable or increases up to 5-fold
in the RNase R-treated samples.
When evaluating the performance of the tools through the fold-enrichment values,



Chapter 3. Results 92

find_circ reported the largest proportion of RNase R-sensitive circRNAs over all
the datasets (34-65%), with only a slight improvement when unique reads were
used for the detection (30-60%). CIRCexplorer performed much better, predict-
ing only 20-46% RNase R-sensitive circRNAs, together with a higher rate of RNase
R-enriched circRNAs (6-56%). The amount of circRNAs identified in SRR1637089
and SRR1637090 (HeLa cells) and SRR444975 and SRR444655 (Hs68 cells) with
find_circ and CIRCexplorer, as well as the percentage of RNase R-depleted
circRNAs, was comparable to previous studies in which the same cutoff on back-
splice reads was applied (� 2), although we averaged between replicates instead
of combining them into a single sample (Zeng et al., 2017). Our pipeline showed
higher "precision" when compared to find_circ and was at least comparable to
CIRCexplorer, if not better for the HeLa samples SRR1637089 and SRR1637090, de-
tecting 20-29% RNase R-sensitive circRNAs and 6-58% RNase R-enriched circRNAs.
Altogether, these results suggest that our pipeline extends the already valuable
circRNA prediction of CIRCexplorer to circRNAs originated from unannotated
junctions of the genome and detectable only with find_circ, while keeping high
precision.

In summary, strengths and weaknesses of CIRCexplorer and find_circ were inves-
tigated on two samples from independent experiments, revealing the dependence on
a gene annotation and the filter on unique/total reads as major sources of disagree-
ment between the two tools. Based on these findings, we established a pipeline that
combines the initial circRNA predictions by both tools and then filters out incon-
sistencies and detection artefacts of either algorithms. The pipeline harmonises the
quantification estimates by recounting back-splice reads for all circRNAs from the
STAR chimeric alignments. The evaluation of the performance of our pipeline using
RNase R-treated RNA-Seq samples as a source of genuine circRNAs, led us to the
conclusion that this pipeline is well suited to obtain a comprehensive and reliable
catalogue of circRNAs from rRNA-depleted RNA-Seq data.



Chapter 3. Results 93

Figure 3.12: Evaluation of circRNA prediction with our pipeline compared
to CIRCexplorer and find_circ, based on published RNase R-treated RNA-
Seq datasets. Candidate circRNAs were classified into RNase R-sensitive and RNase
R-resistant based on the fold-enrichment between normalised back-splice counts of rRNA-
depleted RNA-Seq and RNase R-treated RNA-Seq samples. (A) Summary of circRNAs
predicted with our pipeline, CIRCexplorer and find_circ from total RNA-Seq data.
(B) Venn diagrams showing the overlap of the prediction from our pipeline to CIRCexplorer
and find_circ predictions for each RNA-Seq dataset. Only rRNA-depleted RNA-Seq data
were used for this estimate. (C) Percentages of RNase R-sensitive and RNase R-resistant
circRNAs for each RNA-Seq dataset. RNase R-sensitive circRNAs are further divided into
RNase R-depleted if decreased by at least 5-fold and RNase R-reduced if reduced up to 5-
fold. Similarly, RNase R-resistant circRNAs were further divided into RNase R-unaffected
if increased up to 5-fold and RNase R-unaffected if increased by more than 5-fold.
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3.4 CircRNome profiling in cancer cells

Once I established the pipeline for the detection of circRNAs, I applied it to our
normoxia and hypoxia RNA-Seq data from A549, HeLa and MCF-7 cells, detecting
in total 12006 circRNAs across the three cell lines (Table 3.7, Figure 3.13A).

Table 3.7: Number of circRNAs identified in cancer cells.

Sample
Back-splice reads

per million mapped

Number of

circRNAs

A549 4599

N1 144 2870

N2 129 2998

H1 186 1999

H2 141 2406

HeLa 3926

N1 134 1508

N2 116 1489

N3 155 1728

H1 154 1746

H2 169 1973

MCF-7 7527

N1 242 4194

N2 282 4275

H1 325 4612

H2 382 5429

All 12006

Even though the sequencing depth of MCF-7 and A549 RNA-Seq data was very
similar (Table 3.1), the number of circRNAs detected in MCF-7 cells (n=7527) was
considerably higher compared to A549 cells (n=4599). This might indicate genuine
differences in the abundance of circRNAs as well as experimental variations, for
instance originating from the variable efficiency of the rRNA depletion during library
preparation. Indeed, the rRNA content in MCF-7 was in general lower compared
to A549 cells, except for hypoxia, replicate 2 (Table 3.1). HeLa data could not be
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considered in this comparison due the reduced sequencing depth compared to MCF-
7 and A549 data, that resulted in a lower number of detected circRNAs (n = 3926)
(Table 3.7).

I compared our catalogue to the 140790 circRNAs deposited in circBase (Glažar
et al., 2014) and the 32914 circRNAs collected in circRNADb (Chen et al., 2016),
finding that 2844 (24%) of circRNAs detected in this study had not been reported
previously (Figure 3.13B). For instance, our pipeline predicted novel circRNAs from
the genes HUWE1, SPIDR and PICALM, which were present in multiple cell lines
and supported by more than 20 back-splice reads. As expected from previous stud-
ies (Memczak et al., 2013, Salzman et al., 2013, Guo et al., 2014, Zhang et al.,
2014), the majority of circRNAs were supported by less than five back-splice reads,
suggesting that they might be by-products of the splicing process and have no rel-
evant biological function (Figure 3.13C). The low abundance might also be due to
loss of material during library preparation and/or sequencing. Despite a generally
low abundance of circRNAs, the pipeline identified many abundant circRNAs, with
1392 circRNAs being supported by a minimum of 10 back-splice reads in at least one
replicate, over the three cell lines. The top expressed circRNAs were circCYP24A1
(circBase ID hsa_circ_0060927), circASPH (hsa_circ_0084615) and circATXN7
(hsa_circ_0007761) in A549, HeLa, MCF-7 cells, respectively. These circRNAs
captured more than 150 back-splice reads in a single replicate.

Figure 3.13: Identification of circRNAs in human cancer cell lines. (A) Venn
diagram depicting the overlap of circRNA predictions in A549, HeLa and MCF-7 cells. 1012
circRNAs are expressed in all three cell types. (B) Comparison of the 12006 circRNAs in our
catalogue to circBase and circRNADb annotations. (C) Boxplot showing the distribution
of total back-splice reads from each cell line. Labelled in red, the top expressed circRNAs
for each cell line (circCYP24A1 in A549, circASPH in HeLa and circATXN7 in MCF-7
cells).
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In collaboration with Camila de Oliveira Freitas Machado (Müller-McNicoll Group),
we selected ten abundant circRNA candidates to validate the prediction by RT-PCR.
Divergent pairs of PCR primers flanking the back-splice junctions were designed, in
order to amplify a PCR product exclusively from the circular transcript but not
from the corresponding linear transcript, as outlined in Figure 3.14A. Two different
approaches were used to validate that the amplified PCR products are circRNAs.
One of the main features of circRNAs is that they lack a poly(A) tail, thus they
should be amplified only in the non-polyadenylated fraction (poly(A)-), when this
is separated from the polyadenylated fraction (poly(A)+) of the total RNA. Indeed,
we verified the presence of amplification products only in the poly(A)- fraction using
divergent primers for all selected circRNAs (Figure 3.14B,C). In addition, RNase R
exonuclease can only digest linear RNA molecules, not affecting circRNAs. The
ten candidate circRNAs were resistant to RNase R-treatment, while the control
linear RNA was digested (PLOD2, Figure 3.14B,C). In line with the test on RNase
R-treated RNA-Seq data, these experiments further confirmed that the pipeline is
suitable to detect genuine circular transcripts.

Figure 3.14: Validation of abundant circRNAs by RT-PCR. (A) Scheme depicting
how we designed divergent primers to amplify only the circRNA but not the linear counter-
part. (B) Gel showing PCR products obtained using pairs of divergent primers to amplify
circRNAs upon selection of non-polyadenylated RNAs or RNase R treatment. Primers to
amplify the linear PLOD2 were used as a control. (C) Validation of the circularity of the
circRNA generated from exons 2 to 5 of ZNF292 gene. Similarly to (B), primers to amplify
the linear PLOD2 were used as a control.
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In summary, our combined pipeline yielded a comprehensive catalogue of twelve
thousand circRNA candidates in three human cancer cell lines under normoxic or
hypoxic conditions.

3.4.1 Genomic context of circRNAs

To further characterise our candidate circRNAs, we investigated their genomic ori-
gin. The vast majority of circRNAs in our catalogue (95%) originated from protein-
coding genes (PCGs). Several circRNAs were also detected in intergenic (2%) and
other genomic regions, indicating the heterogeneity of this class of ncRNAs (Fig-
ure 3.15A). A deeper investigation of circRNA-producing genes revealed that 4252
(21%) of all PCGs annotated in GENCODE (version 24, n = 19940) hosted at least
one back-splice event across the cancer cell lines under investigation. CircRNA-
producing PCGs were significantly longer than average PCGs, with a median length
of 102 kb compared to 30 kb (P -value < 2.2e-16, Wilcoxon rank sum test, Fig-
ure 3.15B). Consistently, they contained on average 21 non-overlapping exons, more
than the average 12 exons composing annotated PCGs. Of note, in order to mimic
circRNA host genes, in this comparison we considered only annotated PCGs con-
taining at least three exons. This suggests that the longest genes, composed of a
higher number of exons, are more likely to undergo back-splicing. If not coupled with
RNase R-treated or poly(A)-selected sequencing libraries, rRNA-depleted RNA-Seq
alone is not sufficient to infer the internal structure of circRNAs in terms of exon
and intron content. Despite this limitation, from a conservative perspective, when
all exons annotated between the back-splice sites were assumed to be part of the
circRNA, circRNAs contained up to 40 annotated exons, with a median of four ex-
ons per circRNA and 4% single-exon circRNAs (Figure 3.15C).
The median distance between back-splice sites for multi-exon circRNAs hosted by
PCGs (n = 9201) was 9869 bp and the median length of exons undergoing back-
splicing was comparable to all annotated exons (125-127 bp compared to 143 bp,
Figure 3.15D,E). Single-exon circRNAs hosted by PCGs (n = 475) had a median
size of 390 bp, resulting to be generated from unusually long exons, even when
compared to the sizes of annotated single-exon genes (median length = 188 bp,
Figure 3.15D,E). As reported in Zhang et al., 2014, introns flanking the back-splice
sites were found to be unusually long (median 6091-7207 bp) when compared to the
average annotated introns (median 1684 bp, Figure 3.15F).
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Figure 3.15: CircRNAs are mainly derived from internal exons of protein-coding
genes. (A) Pie chart depicting the genomic origin of circRNAs. (B) Distribution of
the genomic size of circRNA-producing protein-coding genes (PCGs) genes compared to
GENCODE-annotated PCGs. circRNA-producing genes are significantly longer than av-
erage PCGs (P -value < 2.2e-16; Wilcoxon rank sum test). Dashed lines indicate medians.
(C) Pie chart shows the fraction of circRNAs grouped by number of internal annotated
exons (blue) within back-spice sites. Most circRNAs contain up to five exons. (D) Density
distribution of the genomic size (distance between back-splice sites) of multi- and single-
exon circRNAs. Dashed lines indicate medians. (E) Density plot comparing the length
distribution of circularised exons (i.e. first and last exons of circRNAs) to all GENCODE-
annotated internal exons, distinguishing between exons from multi-exon and single-exon
genes. Back-splicing exons are not longer than average exons. (F) Density plot comparing
the length of introns flanking back-splice sites to GENCODE-annotated introns. Dashed
lines indicate medians.



Chapter 3. Results 99

Along the same line, we investigated the genomic origin of the donor (50BSS) and
acceptor (30BSS) back-splice sites of circRNAs produced from PCGs, finding that
91% circRNAs had at least one of the back-splice sites residing in the coding se-
quences (CDS, Figure 3.16A). In the nascent pre-mRNA, back-splicing preferentially
occured at the first genuine 30 splice site, corresponding to the second exon of the
pre-mRNA, while no specific exon position was favoured for the donor splice site
(Figure 3.16B). Surprisingly, when estimating the splice site strengths of the accep-
tor and donor back-splice sites with MaxEntScan (Yeo & Burge, 2004), we observed
that the splice site strength at the donor back-splice site was significantly higher
compared to the flanking 50 splice site as well as randomly selected 50 splice sites
that do not undergo back-splicing (Figure 3.16C). This suggested that the decision
of back- versus linear splicing might depend on the spliceosome assembly at the
donor splice site. In contrast, the selection of the second exon for the acceptor splice
site was not found to be dependent on the splice site strength.

Although rRNA-depleted RNA-Seq data do not allow to discriminate alternative
splicing events occurring within back-splice sites of a circRNA, based exclusively
on back-splice junctions, our data revealed that more than half of the host genes
undergo alternative back-splicing, producing multiple circRNAs (Figure 3.17A). For
instance, the gene ZNF292 produced four different circRNA isoforms, including
hsa_circ_000383, which was previously reported in Boeckel et al., 2015 to be
generated from back-splicing of a splice site in the first intron of the gene, and
hsa_circ_0004058, which is generated from annotated splice sites. Alternative
back-splicing events could generate from 2 up to 29 distinct circRNAs from the
gene BRIP1 and 36 circRNAs from TRIM37.
Comparing the relative abundance of circRNA isoforms produced from a certain
gene, the majority of circRNA-producing genes produced few predominant circRNAs
that exceeded the expected frequency based on equal proportions, often with a strong
prevalence of one single circRNA isoform over the others (Figure 3.17B). The distinct
circRNAs derived from alternative selection of the acceptor or donor back-splice site
in equal measure (Figure 3.17C). For instance, the gene BARD1 harboured 14 dis-
tinct circRNAs, either via alternative 50 back-splicing or alternative 30 back-splicing
(Figure 3.17C). As stated above, it is likely that a deeper knowledge of alternative
splicing events that occur internally to back-splice junctions would further expand
the circRNA repertoire in cancer cells used in this study.
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Figure 3.16: Genomic features of back-splice sites. (A) Genomic origin of 30 and
50 back-splice sites of circRNAs produced from protein-coding genes. circRNAs are mainly
produced from coding sequences (CDS) of PCGs. (B) Distribution of exon ranks involved
in circRNA formation as acceptor (top) or donor splice site (bottom). The normalised
frequency was calculated dividing the frequency of a specific exon rank as acceptor/donor
splice site by the number of genes containing at least this number of exons + 1 (according
to GENCODE version 24 annotation). Only circRNAs produced from PCGs and with both
back-splice sites residing in the same annotated transcript were investigated (n = 9676). (C)
Strength of 50 back-splice sites (MaxEntScan score) is significantly higher than at flanking 50
linear splice sites and 2000 randomly selected 50 linear splice sites (GENCODE version 24).
Same circRNA selection as in (B), further excluding circRNAs involving first/last exons of
annotated transcripts (n=9664 circRNAs).
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Figure 3.17: Alternative back-splicing produces multiple circRNA isoforms
from a single host gene. (A) Bar chart illustrates the number of distinct circRNA
isoforms per host gene. The frequency of alternative back-splicing is likely to be underes-
timated, as this estimate is solely based on back-splice junctions and does not account for
possible internal alternative splicing events. (B) Most host genes produce few predominant
circRNA isoforms. Boxplot compares the relative abundance of circRNA isoforms produced
from a given gene to the expected frequency based on equal proportions. Genes were strat-
ified by the number of associated circRNA isoforms, grouping genes with � 10 circRNA
isoforms. Blue line and dots indicate the expected relative abundance, as computed from
total circRNA isoforms from a certain gene (1/number of circRNA isoforms). (C) Alterna-
tive back-splicing affects more than 20% of back-splice sites. (D) Examples of alternative
30 back-splicing and alternative 50 back-splicing from the BARD1 gene, which is located
on the minus strand. In total, 14 different circRNA isoforms are produced from BARD1
across A549, HeLa and MCF-7 cells. Genome browser view shows chimeric alignments
(back-splice reads) from RNA-Seq of MCF-7 cells under normoxic and hypoxic conditions.
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3.4.2 The circRNA profile differs between cancer cells

Figure 3.18: CircRNA profiles in human cancer cells. (A) Distribution of nor-
malised back-splice read counts (RPM, reads per million) for the 1012 circRNAs expressed
in all three cell lines (Figure 3.13A). MCF-7 cells express circRNAs supported by more reads
when compared to A549 and HeLa cells. (B) Venn diagram comparing high-confidence
circRNAs (supported by a minimum of five back-splice reads in any two samples) across
A549, HeLa and MCF-7 cells. Most circRNAs are expressed in at least two cell types (76%).
(C) Venn diagram comparing full set and high-confidence circRNAs, when a further filter
on minimum expression of the host gene is applied (TPM � 5 in any single sample of the
specific library). (D) Gene Ontology (GO) analysis of 690 host genes harbouring common
circRNAs between A549, HeLa and MCF-7 cells.

Previous transcriptome-wide studies reported that the expression of circRNAs is
variable among tissues and cell types (Salzman et al., 2013). Indeed, when we
compared the 12006 candidate circRNAs across the different cell types, 25% of the
total circRNAs were detected in at least two cell types and only 8% of them (n =
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1012) were expressed in all three cell lines (Figure 3.13A). A deeper investigation
on the number of supporting back-splice reads, normalised to reads per million
(RPM) to avoid a bias due to the different sequencing depth, revealed that those
1012 circRNAs in common were on average more abundant in MCF-7 compared to
A549 and HeLa cells (Figure 3.18A). These results suggest a physiological difference
between cell types, with MCF-7 expressing a higher number of circRNAs (Table
3.7), together with more abundant circRNAs when shared with the other cell lines.
Since a high percentage of circRNAs were supported by a small number of reads,
we further filtered the circRNA catalogue applying a cutoff of five total reads in any
two samples, removing the 82% of them and restricting the list to 2205 circRNAs.
Throughout this thesis, I will use the terms "full set" and "high-confidence set" to
refer to the entire catalogue of 12006 circRNAs and the filtered list of 2205 circRNAs,
respectively.

When I performed a similar comparison across cell types but on the high-confidence
set, I observed that the percentage of circRNAs shared by at least two cell lines in-
creased to 76%, and 856 (39%) circRNAs were commonly expressed in A549, HeLa
and MCF-7 cells (Figure 3.18B). In addition, to understand whether the cell type
specificity was attributable to differences in the expression of host genes rather than
to genuine back-splicing events, we applied an additional filter on the expression
level of host gene (transcript per million, TPM � 5). Even increasing the strin-
gency, the proportion of cell type-specific circRNAs was confirmed, both for the full
and high-confidence sets (Figure 3.18C). To gain insights into the functional role
of circRNAs shared among the three cell lines, I performed Gene Ontology (GO)
enrichment analysis of the 690 genes hosting them. This showed the overrepresen-
tation of terms ’covalent chromatin modification’, ’establishment or maintenance of
cell polarity’ and ’microtubule skeleton association’ (P -value/q-value < 0.05), that
point to housekeeping roles (Figure 3.18D). Next, we examined the relationship be-
tween circRNAs and their respective host gene (mRNA) abundance. We found only
a weak correlation (Figure 3.19A,B), both when estimating the gene expression by
including or excluding exons between back-splice sites of circRNAs. This indicates
that circRNA abundance does not always reflect the host gene expression, with
additional factors that might influence their steady-state level, such as circRNA
stability or varying efficiency of back-splicing. To verify whether there is a compe-
tition between circRNA biogenesis and linear splicing at the same genomic locus,
we relied on linear and back-splice junction reads in the RNA-Seq data to calculate
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the ’percent circularised’ metric, as shown in Figure 3.19C. This metric measures
the relative abundance of a circRNA in comparison to all isoforms containing the
same exon. In agreement with previous studies, most circRNAs were less abundant
than the linear counterpart, with notable exceptions (Figure 3.19D). In total, 210
circRNAs represented the major transcript isoform of their host genes in at least
one cell type. Among them, a back-splicing event occurred between exons 3 and 4 of
the ataxin 7 (ATXN7 ) gene, yielding a circular transcript that was more abundant
than its linear counterpart (Figure 3.19D,E).
Taken together, these results suggested that different regulatory processes might di-
rect the expression of circular and linear transcript isoforms, and that the efficiency
of the back-splicing process strongly varies between host genes.
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Figure 3.19: Relationship between circRNA and host gene expression. (A,B)
Scatter plots compare the expression of circRNAs (back-splice RPM) and their host gene
(TPM). For each cell line, the mean expression across replicates is shown, in hypoxic (blue)
and normoxic (red) conditions. Linear regression lines, Pearson correlation coefficients and
associated P -values are shown. In (B), exons annotated between back-splice sites were
excluded for the quantification of the host gene expression. (C) Schematic representation
of how the "percent circularised" metric was computed. (D) 210 circRNAs are more abun-
dant than their linear counterparts, as for circATXN7 (hsa_circ_0007761) in MCF-7 cells.
Violin plot shows distribution of "percent circularised" values for circRNAs from the three
cell lines (mean per cell line across all replicates and conditions). Orange lines indicate
20% and 50% relative abundance of circRNAs. (E) Genome browser view of ATXN7 gene
showing RNA-Seq data from MCF-7 cells under normoxic conditions. Chimeric alignments
(bottom) indicate back-splicing of exon 4 to exon 3 to generate circATXN7. The high
level of circATXN7 is reflected in a peak in the coverage of linearly mapped reads (top),
which corresponds to internal regions of the circRNA, while the other exons of the linear
transcript show less coverage.
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3.4.3 CircRNA levels change upon hypoxic stress

Recent studies showed that circRNAs change their abundance when the oxygen
levels decrease in human endothelial and mesenchymal stem cells (Boeckel et al.,
2015; Sun et al., 2017), as well as in mouse lung tissues (Wang et al., 2018). Despite
their known alteration upon hypoxia and the relevance of oxygen levels in cancer
progression, no study addressing the influence of hypoxia on circRNAs in cancer is
available. Our results so far revealed widespread changes of the alternative splicing
pattern in the hypoxic cancer cells, together with an extensive production of circular
transcripts via back-splicing in the three cell lines.

Next, we investigated whether hypoxia affects back-splicing and circRNA abun-
dance. The overall amount of circRNAs did not change significanty between nor-
moxic or hypoxic conditions (Table 3.7). To identify circRNAs that significantly
changed expression upon hypoxia, we used the statistical model implemented in
DESeq2 (Love et al., 2014). Back-splice reads represent only a minor proportion
of the sequenced reads in rRNA-depleted RNA-Seq data. Thus, for a better esti-
mate of the library size for normalisation and to increase the statistical power, we
performed a combined DESeq2 analysis of circular and linear RNAs. In total, 64
circRNAs significantly changed their levels upon hypoxia across the three cell lines,
more specifically 6 circRNAs in A549 cells, 22 circRNAs in HeLa and 38 circRNAs
in MCF-7 cells (adjusted P -value < 0.1) (Figure 3.20A and Supplementary Table
S1). We observed a prevalence of upregulated circRNAs, with only 8 circRNAs be-
ing downregulated, all in A549 cells. This is likely due to the high stability that
characterises circular transcripts and leads to their accumulation over time, making
it difficult to reveal their reduction in steady-state RNA-Seq data. Consistently
with the cell type-specific variation of the splicing pattern, the circRNA response to
hypoxia was different across cell lines, with only two circRNAs being upregulated
both in HeLa and MCF-7 cells, hosted by the PLOD2 and ZNF292 genes (Figure
3.20B,C).

In collaboration with Camila de Oliveira Freitas Machado (Müller-McNicoll Group)
and Sandra Fischer (Weigand Group) we selected 7-8 of the significantly deregulated
circRNA in HeLa and MCF-7 cells for further validation by RT-qPCR. As a control,
we also tested additional circRNAs that did not change according to the RNA-Seq
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Figure 3.20: Hypoxia induces changes in circRNA levels. (A) 64 circRNAs signif-
icantly change their level upon hypoxia. Volcano plots reports log2-transformed moderated
fold changes in expression (hypoxia over normoxia) of circRNAs in the three cancer cell lines
against associated P -values (-log10). Red: Differentially expressed circRNAs (adjusted P -
value < 0.1). Only high-confidence circRNAs with � five reads in any two samples of a
single cell line were tested for differential expression. (B,C) Genome browser views of
exons 2-3 of the PLOD2 gene (B), and exons 2-5 of the ZNF292 gene (C), which gener-
ate circRNAs that are consistently upregulated under hypoxia in MCF-7 and HeLa cells.
Chimeric alignments (back-splice reads) from RNA-Seq data for MCF-7 and HeLa cells
under normoxic and hypoxic conditions are shown. PLOD2 is located on the minus strand.

data analysis. Indeed, RT-qPCR data confirmed the regulation of circMAN1A2, cir-
cMTCL1, circRTN4, circPLOD2, circSPECC1 and the exonic circZNF292 in HeLa
cells. In addition,the circZNF292 isoform from a cryptic splice site, which was al-
ready described in Boeckel et al., 2015 to be hypoxia-regulated in endothelial cells,
was significantly changed (Figure 3.21A). The regulation of circATXN7, circPHC3,
circPLOD2, circSLTM, circSMARCA5, and the exonic circZNF292 was confirmed
by RT-qPCR in MCF-7 cells (Figure 3.21B). Although the circZNF292 isoform from
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a cryptic splice site did not reach significance here, it clearly showed a trend to up-
regulation in MCF-7 cells.

Figure 3.21: Validation of hypoxia-regulated circRNAs by RT-qPCR. (A,B)
Expression changes of hypoxia-regulated (magenta) and control (regular) circRNAs in HeLa
(A) and MCF-7 (B) cells upon hypoxic treatment for 24 h and 48 h, respectively. The
graphics show relative circRNA levels (over normoxia) based on quantitative PCR (RT-
qPCR). CircRNA levels were normalised to U6 snRNA for HeLa and P0 for MCF-7 cells.
Mean and standard deviation of the mean are shown. Red circles indicate the single replicate
measurements. In HeLa cells, all seven expected circRNAs were significantly upregulated
(n = 3, * P < 0.05, ** P < 0.01). In MCF-7 cells, six of the seven expected circRNAs were
significantly upregulated (n � 3, * textitP < 0.05, ** P < 0.01), together with circHIPK3
which was not found as significantly regulated in the RNA-Seq data. The circZNF292
isoform from a cryptic splice site, which was already described in Boeckel et al., 2015 to be
hypoxia-regulated in endothelial cells, was additionally included in the experiment, although
its regulation did not reach significance in our RNA-Seq data analysis. Upregulation of
VEGFA mRNA was used as control for hypoxia response.

To address the question whether circRNA changes upon hypoxia reflect a regula-
tion of the respective host gene, we compared their levels in RNA-Seq data, finding
no global correlation between their expression. Still, the majority of the hypoxia-
induced circRNAs originated from upregulated linear mRNA, suggesting a depen-
dence of the circRNA abundance on the general expression of the host gene (Figure
3.22A). However, we found notable exceptions such as circHNRNPM, which was sig-
nificantly upregulated under hypoxia in MCF-7 cells, while the level of the respective
mRNA decreased. Similarly, circBARD1 and circRANBP17 were both upregulated
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in MCF-7 cells, with the respective linear mRNAs remaining stable. Similar to the
"percent circularised" metric, I estimated a "circular-to-linear ratio" (CLR) value
from reads supporting back-splicing events and reads originated from linear splicing
at the same splice sites (Figure 3.19C). A comparison between replicates and condi-
tions in the single cell lines revealed that the back-splicing rate remained generally
constant between replicates, although it strongly varied between circRNAs (Figure
3.22B). Specifically for hypoxia-regulated circRNAs, their change at low oxygen lev-
els often reflected only little variation of the back-splicing rate (Figure 3.22D, orange
points), still supporting the hypothesis of a common mechanism of regulation for
circRNAs and mRNAs at transcriptional level.

Recently, Liang et al., 2017a proposed a mechanism by which circRNAs are gen-
erated by read-through transcription of the gene located upstream in the genome.
Supporting this hypothesis, we observed that back-splicing tends to occur at the first
genuine splice site in the pre-mRNA (Figure 3.16B). However, when we compared
the expression of circRNAs and their upstream genes both for the high-confidence
set and hypoxia-regulated circRNAs, we did not observe any direct correlation that
might confirm this mechanism (Figure 3.23).

In summary, from our catalogue of circRNAs in cancer cells, we identified 64
circRNAs that significantly changed in response to hypoxic stress in A549, HeLa
and MCF-7 cells, often in parallel to their host gene.
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Figure 3.22: Changes of circRNA levels upon hypoxia often reflect variations of
their host gene level. (A) Many upregulated circRNAs originate from upregulated host
genes. Scatter plot compares log12-transformed moderated fold changes in expression (hy-
poxia over normoxia, taken from DESeq2) of 64 hypoxia-regulated circRNAs and their host
genes in the three cancer cell lines. For each cell line, Pearson correlation coefficients and
associated P -values are reported. (B) Back-splicing rates are consistent between replicates.
Scatter plot compares circular-to-linear ratios (CLRs) of all high-confidence circRNAs be-
tween two replicate samples with MCF-7 cells under normoxic conditions. Pearson corre-
lation coefficient and associated P -values are given above. (C) Matrix reporting pairwise
Pearson correlation coefficients between all samples for each cell line. (D) Most circRNAs
do not change in back-splicing rate between conditions. Scatter plots compare circular-to-
linear ratios (CLR) of all high-confidence circRNAs in the three cell lines under hypoxic
versus normoxic conditions. Red lines mark 2-fold change in CLR between conditions. The
hypoxia-regulated circRNAs in each cell line are highlighted in orange.
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Figure 3.23: Circular RNA biogenesis via read-through transcription of the
upstream gene. Scatter plot comparing the expression of circRNAs (in back-splice reads
per million, RPM) to the expression of the gene encoded upstream of the circRNA host
gene in the genome (in transcripts per million, TPM). Mean expression across replicates
is shown for each cell line under hypoxic (blue) and normoxic (red) conditions. Linear
regression lines and Pearson correlation coefficients with associated P -values are shown.
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3.4.4 Insights into the mechanisms of circRNA biogenesis

Figure 3.24: CircRNA biogenesis via flanking inverted repeats. (A) Pairing of
inverted Alu elements in flanking introns can promote circRNA formation (Jeck et al.,
2013). (B) CircRNA-flanking introns are enriched in Alu elements. Barchart shows the
percentage of introns with Alu elements in a 500-bp window next to splice sites of anno-
tated internal exons (Ctrl) compared to back-splice sites of all (All) and hypoxia-regulated
(Reg) circRNAs. (C) CircRNA-flanking Alu element pairs are more frequently in inverted
orientation. Barchart shows the percentage of Alu element pairs in the same or inverted
orientation. (C) Some of the 64 the hypoxia-regulated circRNAs harbour large comple-
mentary sequences in their flanking introns. Barchart depicts length and identity of longest
local alignment (left and right scale, respectively) from pairwise alignments of flanking in-
trons (500-bp window). The upper and lower dashed lines mark 85% sequence identity and
alignment length of 40 nt, respectively. Mutation experiments demonstrated that inverted
repeats of 30-40 nt are sufficient to promote back-splicing (Liang & Wilusz, 2014).

The RNA circularisation was reported to be enhanced by the presence of inverted
repeats in regions flanking back-spliced exons that bring back-splice sites in close
proximity. These repeats often belong to the short interspersed nuclear elements
(SINEs), in particular to the Alu element family (Figure 3.24A). Indeed, circRNAs
in our high-confidence set showed an enrichment of Alu elements in the flanking
regions when compared to random annotated exons that do not undergo circular-
isation, in line with the larger size of flanking introns (Figure 3.24B). When Alu
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elements were present both up- and downstream to circRNAs, they were often in
inverted orientation. No significant difference for the hypoxia-regulated circRNAs
was observed compared to unchanged circRNAs (�2 test, P -value > 0.1, Figure
3.24C). Pairwise local alignment between flanking regions of the hypoxia-regulated
circRNAs confirmed the presence of highly complementary sequences in inverted ori-
entation for 7 out of 64 circRNAs, in all cases reflecting the presence of Alu repeats
(Figure 3.24D). Altogether, these results support the hypothesis that inverted Alu
repeats might play a role in circRNA biogenesis, although not for all back-splicing
events.

Alu elements are constitutively present in the genome and not all circRNAs harbour
Alu pairs in their flanking sequences. Thus, other factors are expected to contribute
to the regulation of circRNA biogenesis. Exon skipping during pre-mRNA matura-
tion has been proposed as a source of intron lariats, which potentially can undergo
back-splicing (Kelly et al., 2015; Khan et al., 2016). A preliminary comparison of
back-splicing events to cassette exon events predicted by rMATS in the three can-
cer cells did not confirm this mechanism. Moreover, we could not detect linear
transcripts which skipped the circularised exons for any of the hypoxia-regulated
circRNAs. This suggested that the mechanism via intron lariat formation did not
play a prominent role in this scenario, or that the skipped transcripts are not stable
and get quickly degraded.

Another possible mechanism of circRNA biogenesis involves RNA-binding proteins
(RBPs) that localise to circRNA-flanking introns, and, similar to inverted repeats,
move back-splice sites close enough to enhance circularisation. Indeed, previous
studies have reported different RBPs acting as regulators of the back-splicing pro-
cess, including known splicing factors like MBNL, QKI and FUS (Ashwal-Fluss et
al., 2014; Conn et al., 2015; Errichelli et al., 2017) and SR proteins (Kramer et al.,
2015). In order to identify potential RBPs involved in the regulation of circRNAs in
cancer cells and upon hypoxia, potential RBP binding sites in the regions up- and
downstream to circularised exons were initially predicted with FIMO (Grant et al.,
2011). The high-confidence set (n = 2205) was investigated, dividing circRNAs in
hypoxia-regulated (n = 64) and unchanged circRNAs (n = 2,141). The in silico pre-
diction revealed the potential binding of multiple RBPs, including HNRNPC, HuR
(ELAVL1) and PABPC4. This was observed indistinctly for the hypoxia-regulated
and the unchanged circRNAs, indicating a general role in the circRNA biogenesis,
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not necessarily linked to hypoxia (Figure 3.25A). Each of these RBPs had at least
one putative binding site in the region up- and/or downstream to more than 60% of
the tested circRNAs. In many cases, binding sites for a specific RBP were predicted
in both circRNA flanks (Figure 3.25B), supporting the model of the formation of
RBP pairs to enhance circularisation. HNRNPCL1, a paralog of HNRNPC, was also
predicted to have binding sites in circRNA flanks. However, a deeper investigation
revealed that the HNRNPCL1 binding motif used to scan the nucleotide sequences
was almost identical to HNRNPC binding motif (ATTTTTT) making the prediction
redundant.

HuR is a ubiquitinously expressed RBP known to influence various steps of the
post-transcriptional life of the mRNA, in particular its splicing and stability. It
binds to uridine tracts in introns and 30UTRs (Lebedeva et al., 2011; Mukherjee
et al., 2011). HuR binding sites were predicted in flanking regions of 84% of the
high-confidence circRNAs (Figure 3.25A). This is in good agreement with a recent
study in which Abdelmohsen and coauthors reported the binding of HuR to multiple
circRNAs in HeLa cells, and proposed a link between circPABPN1, PABPN1 and
HuR (Abdelmohsen et al., 2017).

The splicing factor HNRNPC was previously reported to influence the recognition of
the 30 splice site (König et al., 2010; Zarnack et al., 2013). To address the question
whether HNRNPC might play a role in regulating not only linear but also back-
splicing, a meta-analysis of previously published HNRNPC iCLIP data (Zarnack
et al., 2013) was performed. This revealed an enrichment of HNRNPC binding to
the region immediately upstream to the 30 back-splice site, usually corresponding to
the polypyrimidine tract (Figure 3.25C). For instance, HNRNPC showed substantial
binding adjacent to the back-splice sites of circSMARCA5 (Figure 3.25D). Notably,
the average coverage at the polypyrimidine tract was higher for circRNAs com-
pared to randomly selected linear exons. In agreement with the FIMO prediction, no
difference was found between the hypoxia-regulated and the unchanged circRNAs,
again suggesting a mechanism generally attributable to the circRNA class. Consis-
tently, the HNRNPC gene (mRNA) was only slightly regulated in A549 and HeLa
cells (log2-transformed = -0.5 and -0.4, respectively, FDR < 0.05), and stable in
MCF-7 cells upon hypoxia, based on RNA-Seq data. The HNRNPC influence on
back-splicing was further confirmed by knockdown experiments of HNRNPC with
two independent siRNAs, followed by RT-qPCR on a panel of 25 circRNAs chosen
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independently from the computational analyses. These experiments revealed the
deregulation of three circRNA (Figure 3.26A,B,C). Interestingly, both down- (for
circCDYL) and upregulation (for circRARS and circSMARCA5) could be observed,
in line with the dual role of several splicing factors in enhancing or suppressing
splicing.
Altogether, these results confirm the enrichment of complementary repeats in in-
trons directly flanking the circularised exons and introduce HNRNPC as a putative
regulator of circRNA biogenesis by binding in close proximity to the 30 back-splice
site.
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Figure 3.25: RNA-binding proteins as regulators of circRNA formation.
(A,B) In silico predictions indicate individual RBP binding sites (A) and flanking binding
site pairs (B) at a large fraction of the hypoxia-regulated and unchanged circRNAs (high-
confidence set) for HNRNPC, HuR and PABPC4. Barchart shows the number of circRNAs
with predicted binding sites of a given RBP. Dashed lines indicate 100%. Above each
bar, the number of circRNAs in each category is reported. Predictions for HNRNPCL1
were removed since the motif is almost identical to HNRNPC. (C) HNRNPC shows more
binding at back-splice sites compared to linearly spliced exons. Metaprofile of HNRNPC
binding from iCLIP data in a 300-nt window around back-splice sites (250 nt intron and 50
nt into the circularised exons). High-confidence circRNAs expressed in HeLa (n = 1133)
were divided into hypoxia-regulated and non-regulated circRNAs and compared to linear
exons from expressed PCGs that do not undergo circularisation (n = 4853). For each
position, dots indicate the mean coverage in each set. Lines were smoothed with locally
weighted polynomial regression (loess, span = 0.05). (D) HNRNPC binds upstream of
the 30 back-splice site of circSMARCA5. Genome browser view of the SMARCA5 gene,
including RNA-Seq data (chimeric alignments) from HeLa cells in normoxic conditions and
HNRNPC iCLIP data from HeLa cells. Binding sites predicted with PureCLIP are shown
in black.
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Figure 3.26: HNRNPC depletion affects circRNA levels. (A) RT-qPCR shows
efficient depletion of HNRNPC RNA in HeLa cells upon knockdown with two independent
siRNAs (siRNA1 and siRNA2). HNRNPC levels were normalised to U6 snRNA and related
to control levels (Ctrl) with unspecific siRNA (n = 3, ** P < 0.01). (B) HNRNPC is
modestly downregulated at the protein level, as revealed by Western blot experiment. (C)
RT-qPCR estimated expression changes of a panel of 25 circRNAs upon HNRNPC depletion
with two independent siRNAs in HeLa cells. Barchart shows the relative circRNA levels
normalised to U6 snRNA. circCDYL2, circRARS and circSMARCA5 were significantly
regulated upon HNRNPC depletion (n = 3, * P < 0.05, ** P < 0.01). Data are shown as
mean ± SD. Performed by Camila de Oliveira Freitas Machado.
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3.4.5 CircRNA as miRNA sponges

Figure 3.27: In silico prediction of miRNA binding sites on circRNA sequences.
(A) CircRNAs are not enriched for miRNA target sites. Violin plot shows distribution of
predicted miRNA target sites per region for circRNAs from the high-confidence set with
assigned parental transcript, as well as 10000 randomly selected coding sequences (CDS)
and 30UTR sequences (GENCODE version 24). P -values were computed with two-sample
Wilcoxon test. (B) Compared to CDR1as/ciRS-7, which is known to function as miRNA
sponge, none of the hypoxia-regulated circRNAs harbours an excess of miRNA target sites.
Barchart contrasts the number of predicted miRNA target sites to the predicted circRNA
length.

Despite the widespread detection on back-splicing events in mammals, the func-
tion of the majority of circRNAs remains unclear. Among the most characterised
functions of circRNAs, they have been shown to act as competing endogenous RNAs
(ceRNA) presenting multiple binding sites for the same or distinct miRNAs (Hansen
et al., 2013; Memczak et al., 2013; Wang et al., 2016; Zheng et al., 2016).
In order to verify whether circRNAs in our catalogue also exert this function, an
in silico prediction of miRNA binding sites on circRNA sequences was performed



Chapter 3. Results 119

using the miRanda algorithm (Enright et al., 2003). The density of miRNA binding
sites on circRNA sequences from the high-confidence set was compared to randomly
selected annotated 30UTRs as well as CDS regions, revealing that circRNAs are not
generally enriched for miRNA binding sites, similar to CDS regions (Figure 3.27A).
Despite this, 724 circRNAs exceeded the median density of 30UTRs (20.7 miRNA
binding sites/kb) with 34 of them harbouring more than 50 potential miRNA bind-
ing sites, including the well-studied CDR1as/ciRS-7. This number might still be
overestimated by the prediction of overlapping binding sites for distinct miRNAs.
The number of putative miRNA binding sites on hypoxia-regulated circRNAs gener-
ally reflected the spliced length of the circRNA and never reached a level comparable
to CDR1as/ciRS-7 (Figure 3.27B).
Although no evidence of miRNA sponge function among the hypoxia-regulated
circRNAs was found, miRNA binding sites on several hypoxia-regulated circRNAs
showed almost perfect complementarity and free-energy lower than -25 Kcal/mol
(Figure 3.28), similar to hsa-miR-671-5p binding site on CDR1as sequence. miR-
671-5p known to trigger the cleavage of CDR1as in an Ago2-dependent manner
(Hansen et al., 2011). For instance, circPLOD2 harboured a binding site for hsa-
miR-197-3p with more than 90% identity, suggesting that the circRNA may still be
a target of the specific miRNA rather than sequestering it. Taken together, this
analysis indicated that a function as miRNA sponge cannot be attributed to the
majority of circRNAs.
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Figure 3.28: CircRNAs as potential miRNA targets. Examples of circRNA har-
bouring miRNA binding sites with high identity and free energy < -25 kcal/mol.
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Chapter 4

Discussion

Hypoxic regions are typically generated during the growth of solid tumours and hy-
poxia is strongly associated to cancer progression, formation of metastases and poor
patient outcome. Hypoxic cells are resistant to available therapies against cancer
and a better understanding of the hypoxia response in cancer would contribute to the
development of more efficient cancer therapies and the identification of biomarkers.
Recently, some studies shed light on the contribution of post-transcriptional regula-
tion to hypoxia adaptation, in addition to the well-studied transcriptional regulation
by hypoxia-inducible factors (Sena et al., 2014; Han et al., 2017c; Brady et al., 2017;
Bowler et al., 2018). Finally, few studies suggested that back-splicing, which leads to
the formation of circular RNAs, can also be affected by hypoxia (Boeckel et al., 2015;
Liang et al., 2017b), although the impact of hypoxia on the circRNA repertoire in
cancer cells remains to be fully investigated. In this study, I comprehensively char-
acterised the RNA response to hypoxia, exploiting deep RNA-Sequencing in human
cell lines from lung, cervical and breast cancers. The hypoxic adaptation occurred
at different layers, including RNA expression, splicing and back-splicing. In par-
ticular, this study revealed: i) strong variations of gene expression and alternative
splicing patterns in cancer cells under hypoxic stress; ii) the induction of the splicing
factor MBNL2 upon hypoxia, which contributed to the hypoxia adaptation modu-
lating both splicing and transcript abundance; and iii) the expression of thousands
of circRNAs in cancer cells, including several circRNAs that changed their levels in
response to hypoxia.
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Hypoxia alters gene expression and alternative splicing Earlier studies on
hypoxia adaptation mainly focused on the profiling of transcriptional changes in-
duced by the HIF proteins, causing widespread alterations of the transcriptome at
low oxygen (Mole et al., 2009; Harris et al., 2015; Schito & Semenza, 2016). Here, I
confirm the global expression changes in hypoxia, detecting more than 10000 genes
with altered mRNA levels across three different types of human cancer cell lines.
My results point to a highly consistent response to hypoxia across different cell
types, with many of the shared upregulated genes belonging to the HIF signalling
pathway, including CA9, VEGFA, GAPDH and PLOD2. In addition, our data
show that more than half of the hypoxia-regulated genes are downregulated. Func-
tional characterisation of the differentially expressed genes confirmed the activation
of angiogenesis and cell migration, two fundamental processes for the tumour growth
(Liao & Johnson, 2007; Lv et al., 2017), as well as the metabolic response to hypoxia.
This consisted of an increased rate of glycolysis to support the high energy demand
of tumour cells, coupled to an impaired mitochondrial gene expression (Al Tameemi
et al., 2019). In parallel, ribosome biogenesis and tRNA processing, necessary for
translation (Liu et al., 2006; Uniacke et al., 2012; Chee et al., 2019), as well as DNA
replication (Young et al., 1988), were inhibited. These are all energy-consuming pro-
cesses. Our findings are in line with a recent study comparing 16 datasets of breast
cancer cell lines under hypoxic stress, which showed that hypoxia-downregulated
genes are involved in processes such as ribosome biogenesis, mitochondrial transla-
tion, as well as RNA splicing (Abu-Jamous et al., 2017).
Regulation at the level of alternative splicing is emerging as a key feature of can-
cer, leading to cell proliferation, survival, migration and metastasis (El Marabti &
Younis, 2018; Song et al., 2017). Recent studies showed that a large number of
transcripts are differentially spliced upon hypoxic stress in cancer cells (Sena et al.,
2014; Brady et al., 2017; Han et al., 2017c; Bowler et al., 2018). In this study, I
expanded the set of hypoxia-regulated alternative splicing events, finding 9701 dif-
ferential alternative splicing events across three cancer cell types in hypoxia. When
comparing AS events, I found only slight overlap between cell types. Similarly, Han
and coauthors found that splicing events validated in previous studies in different
cell lines did not occur in their experiments (Han et al., 2017c). Moreover, differen-
tial alternative splicing affected a large portion of genes that did not change their
global mRNA level. Thus, AS adds a complementary regulatory layer of complexity
to the hypoxic adaptation, generating splice isoforms which encode proteins with
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distinct functions. Altogether, these findings indicate that hypoxia-regulated alter-
native splicing is mostly restricted to a specific cell type, thus conferring specificity
to the hypoxia adaptation. Transcripts alternatively spliced in all three cancer cell
lines in the same direction are likely to play a critical role. In contrast to a previous
study (Han et al., 2017c), I identified cassette exons as the prevalent differential AS
event in hypoxia, making up 62% of all AS events, while intron retention represented
only the 5%. Despite this discrepancy, intron retention was enriched over the total
splicing events measured, together with cassette exons and mutually exclusive exons.
It has to be noted that differences in the prevalence of one type of AS events might
arise from the diverse algorithms used for the differential splicing analysis. They
might be more or less sensitive towards a specific event type, for instance depending
on whether a genome annotation is used as a reference to find splicing junctions.
On the other hand, my data are in line with Sena et al., 2014 and Brady et al.,
2017, that similarly found cassette exons as the most abundant event. In summary,
my transcriptome-wide analysis revealed a shared regulation of RNA levels across
different cell types upon hypoxia, coupled to cell type-specific changes in alternative
splicing.

MBNL2 is induced in hypoxia Alternative splicing is finely modulated by a
combination of splicing factors and their regulators, hence variations in the alterna-
tive splicing pattern in hypoxia are likely to derive from changes in the expression
and activity of these trans-acting factors. In addition to the widespread changes
in alternative splicing, my data showed that mRNA processing and RNA splicing
are biological processes downregulated in the hypoxia adaptation. Previous studies
have shown a general decrease of splicing-related proteins in cancer cells in response
to stress, including chemotherapy, radiation and hypoxia (Anufrieva et al., 2018).
Moreover, SR proteins were reported with altered activity at low oxygen in prostate
cancer cells (Bowler et al., 2018). Despite a general downregulation of splicing fac-
tors such as SR proteins, our study revealed a consistent increase of MBNL2 in
distinct cancer cell lines in response to hypoxia. Only recently, MBNL2 has been
associated to cancer progression. For instance, it has been shown that MBNL2 can
function as tumour suppressor gene in hepatocarcinogesis (Lee et al., 2016). On the
other hand, MBNL2 was also reported to act as oncogene in clear cell renal cell car-
cinoma (ccRCC) (Perron et al., 2018). Supporting the oncogenic function in ccRCC,
MBNL2 depletion in renal cancer cell lines led to decreased colony-forming ability as
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well as activation of the caspase signalling for programmed cell death. Interestingly,
the Von Hippel-Lindau (VHL) factor, which mediates HIF↵ degradation by the pro-
teasome (Gossage et al., 2015), is inactivated in ccRCCs (Meléndez-Rodríguez et al.,
2018). Consequently, the HIF pathway remains constitutively active in ccRCCs and
might cause the upregulation of MBNL2. Moreover, upregulation of MBNL2 was
observed under intermittent and chronic hypoxia in murine breast cancer cells (Chen
et al., 2018).
In addition, we observed a physiological impact of MBNL2 depletion in hypoxic
cancer cells treated with the chemotherapeutic cisplatin, in terms of increased cell
death and reduced migration (data not shown; Fischer et al., in revision), which
suggested that MBNL2 might contribute to the hypoxia adaptation of cancer cells.
Altogether, this prompted us to further investigate the role of MBNL2 in the re-
sponse to hypoxia in cancer.

In this study, I show that MBNL2 exerts its function as splicing regulator affecting
the alternative splicing pattern of hypoxic cells. In particular, my data showed
reversion of many of the hypoxia-dependent AS events upon MBNL2 knockdown,
with a preference for cassette exons, which tended to be skipped in hypoxia and more
included in MBNL2 -depleted hypoxic cells. This indicates a predominant repressive
function of MBNL2 in the splicing response to hypoxia. Our data suggest that
the activity of MBNL2 on splicing in hypoxia is cell type-specific, since only a small
fraction of MBNL2-regulated events in breast cancer were also shared in lung cancer
cells. The mechanism by which MBNL proteins exactly control alternative splicing
is still unclear. As for other splicing factors, the positioning of MBNLs with respect
to the cassette exons defines whether MBNLs activates or represses splicing (Wang
et al., 2012; Charizanis et al., 2012). Based on CLIP experiments in mouse, these
studies reported that Mbnl2 binding upstream or within cassette exons promoted
exon skipping, while the binding of Mbnl2 to the downstream intron led to exon
inclusion. It remains to be clarified whether the AS events observed in our data are
directed by the different positioning of MBNL2. CLIP experiments in human cancer
cell lines in normoxic and hypoxic conditions would contribute to assess the binding
pattern of MBNL2 at the alternatively spliced exon loci. Altogether, my findings
add MBNL2 to the factors that are responsible of the global effects of hypoxia on
splicing.

In addition to changes in alternative splicing patterns, my study revealed that
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MBNL2 reverts hypoxia-dependent changes in transcript abundance. In particular, I
found that MBNL2 contributes to the hypoxic adaptation in cancer cells by control-
ling the mRNA levels of HIF target genes. In contrast to a previous study (Perron
et al., 2018), which predicted a role for MBNL2 as mRNA-stabilising factor, my re-
sults do not confirm this function for the majority of the predicted MBNL2 targets.
Nevertheless, I identified four of the MBNL2 stability targets (SMAD7, CSRNP1,
SERTAD2, and OSMR), which were induced upon hypoxia and downregulated upon
MBNL2 depletion. Among them, SMAD7 is often deregulated in tumours, includ-
ing colorectal, �-cell lymphoma, melanoma, and breast cancer (Slattery et al., 2010;
Huse et al., 2012; Javelaud et al., 2007; Salot & Gude, 2013). SMAD7 negatively
controls the transforming growth factor-beta (TGF�)-activated signalling pathway,
which contributes to tumour growth, invasion, and formation of metastasis (Luo
et al., 2014; Syed, 2016). It has been shown that SMAD7 is induced under hypoxic
stress in a HIF and VHL-dependent manner, thereby activating invasion (Heikkinen
et al., 2010). The activation of SMAD7 might be mediated by the hypoxia-induced
MBNL2 via binding to its 30UTR. Further experiments are required to validate the
binding of MBNL2 to the SMAD7 mRNA and investigate whether this affects its
stability and translation.

To my knowledge, while the mRNA-destabilising activity of MBNL1 has been con-
firmed (Masuda et al., 2012), the stabilising function of MBNL2 has not been
experimentally proven yet. My prediction of MBNL2 binding sites in 30UTRs of
hypoxia-regulated genes does not confirm this as a general function in hypoxia. The
mechanism by which MBNL2 influences the abundance of hypoxia-regulated genes
remains still unclear. One important step to understand this would be to extend
the knowledge of the binding preferences of MBNL2. Currently, most information
is available only for the paralog MBNL1, for which CLIP data in human have been
produced (Fish et al., 2016). MBNL2 recognises a similar motif (Sznajder et al.,
2016), but its binding in vivo is still likely to be not identical. This was supported
experimentally in a minigene binding assays and pulldown experiments of MBNL1
and MBNL2 performed by our collaborators (data not shown; Fischer et al., in re-
vision).
In summary, my study revealed a consistent increase of MBNL2 in the different cell
types in response to hypoxia. MBNL2 induction promoted hypoxia adaptation of
cancer cells by controlling transcript levels of hypoxia response genes and alternative
splicing.
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CircRNA profiling in cancer and in response to hypoxia CircRNAs repre-
sent a recently re-discovered class of RNA molecules, which have gained increasing
attention for their peculiar RNA biology and their high potential as biomarkers
in cancer (Kristensen et al., 2017a). For a long time, circRNAs have been over-
looked in classical transcriptome profiling studies, which were based on the usage of
poly(A)+ RNA-Sequencing. This protocol discards circRNAs, since they typically
lack a poly(A) tail. Moreover, due to the large overlap of circRNAs with their linear
RNA counterparts, they offer little discriminative sequence information for their re-
liable detection from RNA-Seq data. Finally, a de novo prediction of back-splicing
events at cryptic splice sites remains still challenging (Szabo & Salzman, 2016).
Starting from 2013 (Memczak et al., 2013), several algorithms have been developed
and made available for the detection and quantification of circRNAs from rRNA-
depleted RNA-Seq data. Each of these algorithms offers advantages, although this
is often associated to a high level of false positives (Szabo & Salzman, 2016). In
order to increase accuracy in circRNA detection, it has been suggested to combine
outcomes from multiple tools for circRNA prediction (Hansen, 2018).

With the objective of extending our transcriptome-wide analysis in cancer cells
to circRNAs, we established a computation pipeline for a reliable detection of
circRNAs. Our pipeline is based on two widely used algorithms find_circ and
CIRCexplorer (Memczak et al., 2013; Zhang et al., 2014), which complement each
other, as they rely on different algorithms for the alignment of sequencing reads
(Bowtie2 and STAR). In addition, previous studies indicated CIRCexplorer as one
of the outperforming tools for circRNA detection (Hansen et al., 2016; Zeng et al.,
2017), although it has the disadvantage that it limits its predictions to exon coordi-
nates from reference annotation. On the other hand, despite the high rate of false
positives predicted by find_circ because of inaccurate assignment of back-splice
junctions, find_circ allows de novo prediction of back-splicing events indepen-
dently of prior knowledge of exon annotation. In order to gain most in terms of sen-
sitivity and specificity, our pipeline combines the output from both tools, followed
by a rigorous filtering to overcome the tool-specific weaknesses. Finally, with the
scope of obtaining consistent quantitative estimates, reads supporting back-splice
junctions are recounted for all predicted circRNAs, based on chimeric alignments
detected with the splice-aware alignment algorithm STAR. We tested the performance
of our pipeline in comparison to the usage of find_circ and CIRCexplorer inde-
pendently, using RNase R-treated RNA-Seq data as a source of genuine circRNAs.
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We show that our pipeline performed better than find_circ, in the sense that
it retrieved a lower fraction of false positive back-splicing events. Also compared
to CIRCexplorer, our pipeline performed at least equally, with the advantage of
additionally detecting circRNAs from cryptic splice sites. Thus, our pipeline out-
puts a comprehensive list of accurately quantified circRNAs that can be used for
downstream investigations.

Applying this pipeline to our RNA-Seq data, 12006 circRNAs were identified in
three human cell lines from cervical, lung, and breast cancer patients. Among them,
about one quarter had not been reported before, including some highly abundant
circRNAs. We found that a large fraction circRNAs were expressed exclusively in
one cell line, indicating a unique circRNA signature for the analysed cancer cells (Xia
et al., 2017). This is in agreement with a recent study on 51 breast cancer patients,
in which more than 1000 circRNAs were shown to be deregulated in tumours, but
not neighbouring tissue (Lü et al., 2017). Although the biological relevance of most
circRNAs is still debated and some of the circRNAs detected in the three cancer
cell lines may still represent splicing by-products and reflect the expression of their
host gene, their abundance could provide important signatures for cancer. Together
with their high expression in cancer cells, an increasing number of circRNAs was
reported to stimulate oncogenic mechanisms. This is the case of circGFRA1, which
was previously found to reach high expression levels in triple-negative breast cancer
patients and to be associate with poor prognosis (He et al., 2017). I found that
circGFRA1 (hsa_circ_0005239) was highly abundant in MCF-7 cells, although ab-
sent from the other two cancer cell lines. These differences were reflected in the
expression of the host gene, which was not expressed in HeLa and lowly abundant
in A549 (average TPM in normoxia = 5.3), while it was highly expressed in MCF-7
(average TPM in normoxia = 856.6). In addition, it was reported that circHIPK3
and circPIP5K1A are associated with tumour progression and malignancy (Geng
et al., 2018). These circRNAs were both expressed in at least one of the cancer cell
lines used in our study.

CircRNAs can be highly expressed and they are characterised by a high stability
given by their covalently closed structure. Due to these features, circRNAs constitute
promising targets for the diagnosis, prognosis, and therapy of cancer (Lü et al., 2017;
Kristensen et al., 2017a). In particular, circRNAs may serve as robust indicators of a
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hypoxic tumour microenvironment in case of advanced cancer progression. Further-
more, many circRNAs have been shown to be involved in oncological pathways and
correlate with poor clinical outcome (Verduci et al., 2019). Recent studies focused on
the development of strategies to express proteins from circRNA (Wesselhoeft et al.,
2018) and to exploit circRNAs for miRNA sequestration (Jost et al., 2018), with the
scope of opening new therapeutic possibilities in the future. In this study, we report
that 64 circRNAs significantly changed their level under hypoxic conditions in the
studied cancer cell lines (Table S1). This regulation was mainly cell type-specific.
However, we found a consistent and robust induction of circZNF292 isoforms. cir-
cZNF292 in its intronic variant (hsa_circ_0004383) was found to be upregulated
upon hypoxia in endothelial cells (Boeckel et al., 2015) and to correlate with cell pro-
liferation and tube formation in glioblastoma (Yang et al., 2016). The function of the
exonic circRNF292 isoform (hsa_circ_0004058) isoform remains still unknown and
requires further investigation. Similarly, circPLOD2 (hsa_circ_0122319), which is
generated from exons 2-3 of the respective gene, was reported to be abundant in
glioblastoma (Song et al., 2016). circPLOD2 was also detected in our study and was
consistently regulated in HeLa and MCF-7 cells. Moreover, my analyses revealed a
3-5-fold upregulation of two circPRELID2 isoforms in hypoxic MCF-7 cells, which
were generated via alternative selection of the 5’ back-splice site. A recent study re-
ported one of these circRNAs (hsa_circ_0006528) being highly abundant in breast
cancer cells that are resistant to chemotherapy treatment, suggesting that it might
be used as therapeutic target or prognostic indicator for therapy response (Gao et
al., 2017). My analyses revealed only six circRNAs as downregulated under hy-
poxia. This is likely due to their higher stability in respect to linear RNAs, which
leads to their accumulation and can cover changes in response to short-term stim-
uli. However, downregulation can also occur due to specific mechanisms of circRNA
degradation, as for CDR1as/ciRS-7, which is sliced by miR-671 in a complex reg-
ulatory feedback loops (Hansen et al., 2011; Kleaveland et al., 2018). Moreover,
my results revealed the downregulation of a circRNA produced from the FAM120A
gene (hsa_circ_0001875) in A549 cells. This was in contrast to a recent study re-
porting an increased expression in A549 cells upon hypoxia. On the other hand,
they also reported another isoform of circFAM120A (hsa_circ_0008193) that was
downregulated (Cheng et al., 2019). The two isoforms are produced via alternative
selection of the 5’ back-splice site. This discrepancy might result from the different
hypoxic conditions used in their study, with more oxygen (1% O2) and for a short



Chapter 4. Discussion 129

time (4 h) (Cheng et al., 2019). Thus, it is possible that acute and chronic hypoxia
preferentially influence the expression of one or the other circFAM120A isoforms.

The molecular characteristics of circRNAs investigated in this study suggested an
involvement of complementary RNA regions as well as trans-acting factors in back-
splicing regulation. Indeed, multiple RNA-binding proteins have been previously
shown to affect circRNA biogenesis, including MBNL, QKI, FUS, and SR proteins
(Ashwal-Fluss et al., 2014; Kramer et al., 2015; Conn et al., 2015; Errichelli et
al., 2017). Our data suggest HNRNPC as a novel trans-acting factor involved in
circRNA formation. With an untargeted approach, we identified three circRNAs,
which significantly changed their levels upon HNRNPC knockdown in HeLa cells.
Although we cannot define whether these changes are linked to changes in transcript
abundance, different mechanisms might explain how HNRNPC acts on back-splicing.
Previous studies reported that HNRNPC affects U2AF2 binding at genuine and
cryptic 3’ splice sites, to avoid exon inclusion and preserve splicing fidelity (Zarnack
et al., 2013). We could speculate that HNRNPC similarly interferes with back-
splicing, thereby affecting circRNA levels. In addition, HNRNPC was previously
reported to bind Alu retrotransposons in nascent transcripts (Zarnack et al., 2013),
and Alu elements pairs are frequently present in introns flanking circularised exons
and drive RNA circularisation (Chen, 2016). Thus, HNRNPC may also regulate
back-splicing via binding to Alu elements. This hypothesis is further supported by
HNRNPC depletion experiments in MCF-7 cells, in which an increased formation of
double-stranded RNA regions was observed. These regions were highly enriched in
Alu elements (Wu et al., 2018). More research is required to clarify whether, similar
to linear alternative splicing, the positioning of HNRNPC in respect to back-splice
sites may direct the regulation of the different circRNAs. Finally, HNRNPC activity
on back-splicing may be influenced by additional regulatory elements.
In summary, we identified and characterised thousands of circRNAs in three human
cancer cell lines in normoxic and hypoxic conditions, expanding the knowledge about
the expression and regulation of circRNAs in response to hypoxia.
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Chapter 5

Conclusions

To conclude, we performed a comparative transcriptome profiling of three human
cancer cell lines under hypoxic stress. Our research highlighted that the hypoxic
adaptation occurs at different layers, from RNA expression, to splicing and back-
splicing. Our results revealed MBNL2 as a novel RNA-binding protein involved in
the hypoxia adaptation, together with several circRNAs that respond to low oxy-
gen. In addition, based on our results, we propose HNRNPC as a new regulator of
back-splicing. Further studies are required to elucidate the mechanisms by which
MBNL2 influences hypoxia adaptation, and to expand the knowledge about the ex-
pression and putative functions of circRNAs in human physiology and disease.These
findings might have important implications for the development of new biomarkers
and therapeutic approaches for cancer in the future.
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Supplementary Material

In this appendix, experimental methods used by Camila de Oliveira Freitas Machado
for HeLa cells and Sandra Fischer for MCF-7 and A549 cells are described, based
on material included in Di Liddo et al., 2019, and Fischer et al., in revision.

Cell culture and treatments HeLa cells were cultured in 10 cm-wide plates
in high glucose (4.5 g/l) DMEM medium (Sigma Aldrich) supplemented with 10%
FBS, 100 U/ml penicillin and 100 mg/ml streptomycin (Pen Strep, Thermo Fisher
Scientific). Cells were plated and grown in a normal incubator until they reached
60% confluency (21% O2, 5% CO2, 37 �C), and then either kept in the normal
incubator (normoxic conditions) or transferred to a hypoxia chamber (0.2% O2, 5%
CO2, 37 �C) for 24 h. A549 (DSMZ no. ACC-107) and MCF-7 cells (DSMZ no.
ACC-115) were cultured in T75 flasks in DMEM (Sigma-Aldrich) or RPMI-1640
medium (Sigma-Aldrich), respectively, and supplemented with 10% FBS, 1 mM
sodium pyruvate and Pen Strep (all from Thermo Fisher Scientific). For hypoxia
treatment, 100,000 A549 or 200,000 MCF-7 cells were seeded in 12-well plates. 24
h after seeding, cells were exposed to hypoxia (0.5% O2, 5% CO2, 37 �C). RNA
samples were prepared 48 h later. For MBNL2 knockdown, 1x105 and 2x105 A549
and MCF-7 cells, respectively, were transfected using Lipofectamine RNAiMAX
(Thermo Fisher Scientific). For subsequent RNA isolation, cells were transfected
in a 12-well format with 200 pmol of an siRNA targeting MBNL2 (siMBNL2: 5’-
CACCGUAACCGUUUGUAUG[dT][dT]-3’) (Paul et al., 2006) or a non-silencing
control siRNA (siCTRL: 5’-UUCUCCGAACGUGUCACGU[dT][dT]-3’).

RNA preparation and sequencing For RNA-Seq, total RNA was isolated using
the miRNeasy Mini kit (Qiagen), including the optional on-column DNA digestion
with the RNase-Free DNase Set (Qiagen). After isolation, 500 ng RNA were quality
checked on a 1% agarose gel. rRNA was depleted using the RiboZero kit (Zymo).
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Libraries were prepared and sequenced on a Illumina NextSeq sequencer with High-
Output (75-nt single-end reads) obtaining ca. 100 Mio reads per sample. For HeLa
cells, two and three biological replicates were prepared for the hypoxic and normoxic
condition, respectively. For A549 and MCF-7 cells, two biological replicates were
prepared for each cell line and condition.

RNA preparation and RT-(q)PCR HeLa and MCF-7 cells were cultured and
exposed to hypoxia as described above. After hypoxia treatment, cells were har-
vested and re-suspended in Trizol for RNA extraction, followed by DNase treatment
(Turbo DNase, Invitrogen). For validation of circularity, two approaches were taken,
based on (i) polyA(+) RNA separation and (ii) RNase R treatment. All validation
experiments were performed with a representative sample of HeLa cells under nor-
moxic conditions. PolyA(+) RNA separation was performed using Oligo d(T)25
magnetic beads (New England Biolabs) following the manufacturer’s protocol with
small modifications. Briefly, 10 mg total RNA were incubated with 50 ml beads. The
supernatant was collected and saved as polyA(-) fraction. To achieve higher purity,
the polyA(-) fraction was incubated a second time with fresh beads, and the pro-
tocol repeated. For the bead-bound polyA(+) fractions, protocol and washes were
continued as recommended by the manufacturer. After washing, eluted polyA(+)
RNA and polyA(-) RNA suspension were precipitated overnight by adding 100%
ethanol and 0.3 M sodium acetate. For the RNase R treatment, 10 mg total RNA
were incubated at 37 �C for 40 min, with or without 10 units of RNase R (Epicentre),
followed by 3 min incubation at 95 �C for RNase R inactivation. The reaction was
performed in 20 ml. After treatment, 100% ethanol and 3M sodium acetate were
added for precipitation. After treatment and precipitation, RNA was recovered and
cDNAs were synthetized by RT-PCR using SuperScript III Reverse Transcriptase
(Life Technologies), dNTPs and random hexamers (dNTP Mix and Hexanucleotide
Mix, Sigma-Aldrich), following the SuperScript III protocol recommended by the
manufacturer.

The presence of the circRNAs specifically in the polyA(-) fraction and the RNase
R-treated samples was confirmed using convergent primers flanking the back-splice
junctions (primers were designed using SnapGene and ordered at Sigma-Aldrich) by
semiquantitative PCR. Primers against linear PLOD2 mRNA were used as control.
The PCR reaction was performed with Phusion Polymerase (New England Biolabs),
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10 mM dNTPs (dNTP Mix, Sigma-Aldrich), 10 nM forward and reverse primers,
and 1:1 DMSO per Phusion volume. After preparing the master mix, 1 ml cDNA
was added to the reaction, and the PCR was performed in the following conditions:
98 �C for 2 min, 34 cycles of 98 �C for 30 s, 55-60 �C (depending on the primer) for
30 s, 72 �C for 30 s, and final extension at 72 �C for 5 min. PCR products were
visualised using 2% agarose gel electrophoresis (VWR Maxi or Midi Electrophoresis
System). The 2% agarose gels were pre-stained with RedSafe (HiSS Diagnostics).

For validation of differentially expressed circRNAs under hypoxia, RNA was pre-
pared from hypoxic and normoxic HeLa and MCF-7 cells, and reverse transcription
was performed from 2 mg total RNA as described above. Differential expression
was validated by quantitative PCR (qPCR) using 1x final concentration of 2X ORA
qPCR Green ROX L Mix (highQu GmbH), 500-2000 nM forward and reverse primers
(depending on the primer) and 1 ml of 1:8 dilution of cDNA. Primers targeting U6
for HeLa and P) for MCF-7 cells were included in each experiment, and their quan-
tification cycle number (Cq value) posteriorly used for normalisation. The qPCR
was performed in a PikoReal 96 Real-Time PCR System (Thermo Fisher Scientific)
using the following program: 95 �C for 2 min, 30 cycles of [95 �C for 20 s, 60 �C for
20 s, 72 �C for 30 s] and final extension at 72 �C for 5 min, followed by a step-wise
melting curve (60-95 �C). The same primers were used for semiquantitative PCR
and qPCR.

Western blot for validation experiment For western blot analyses, A549 and
MCF-7 cells were lysed in lysis buffer (137 mM NaCl, 10% glycerol, 20 mM Tris-HCl
pH 8.0, 2 mM EDTA pH 8.0, 1% Igepal, 5 ml protease inhibitor cocktail [Sigma-
Aldrich]) for 20 min on ice. After centrifugation (15 min at 17,000g, 4 �C) the
protein content of the samples was determined in three technical replicates according
to the Bradford method. 10 mg protein were loaded onto precast gels and blotted
onto PVDF membranes (both Bio-Rad). Primary antibody targeting HNRNPC
(sc-32308) was used. Horseradish peroxidase-conjugated anti-rabbit IgG (Jackson
ImmunoResearch) was used as secondary antibody. Blots were developed with the
ECL system (Bio-Rad). Images were detected using the ChemiDoc Imaging System
(Bio-Rad).
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Cell viability assay A549 and MCF-7 cells were transfected as described above
and incubated under normoxic or hypoxic conditions (48 h, 0.5% O2). 24 h later,
cisplatin was added at final concentrations of 10 or 20 mM. After another 24 h under
normoxia/hypoxia the cells were fixed with 0.5% formaldehyde in PBS and stained
with 0.5% crystal violet in PBS. After three washing steps with PBS, the cells
were incubated with 33% acetic acid. Samples were transferred to a 96-well plate.
Absorption at 570 nm was measured in a TECAN infinite M 200 Pro plate reader.
Absorption was normalized to normoxic control cells with the respective cisplatin
concentration.

HNRNPC knockdown siRNA transfection for HNRNPC knockdown was per-
formed using previously described siRNAs (Zarnack et al., 2013): Stealth Select
RNAi siRNAs HSS179304 and HSS179305 as well as control siRNA Stealth RNAi
siRNA Negative Control. For knockdown experiments, HeLa cells were cultured un-
der normal conditions and seeded into 6 cm dishes 24 h prior to siRNA transfection.
A final concentration of 20 nM of each siRNA was transfected into HeLa cells using
jetPRIME R� DNA and siRNA transfection reagent (VWR) following the manufac-
turer’s protocol. Knockdown was performed for 48 h, and cells were subsequently
harvested for RNA extraction.
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Supplementary Tables

Table S1: List of hypoxia-regulated circRNAs grouped by cell line. Downregulated
circRNAs are coloured in blue.

Genomic coordinates

(hg38)
circBase ID Host gene

Fold change

(log2)

Adjusted

P-value

A549

chr20:32366384-32369123(+) hsa_circ_0001136 ASXL1 0.87 0.05605

chr8:26391243-26408376(+) hsa_circ_0002131 BNIP3L 0.51 0.08313

chr9:93471141-93498886(+) hsa_circ_0001875 FAM120A -1.03 0.06043

chr7:579256-607452(-) hsa_circ_0079040 PRKAR1B 1.82 0.00034

chr3:27437388-27448797(-) hsa_circ_0006215 SLC4A7 0.48 0.09883

chr1:95143891-95173889(+) hsa_circ_0005720 TMEM56 0.95 0.06134

HeLa

chr15:67231814-67236820(-) hsa_circ_0000620 AAGAB 1.10 0.09562

chr2:113939959-113942359(+) hsa_circ_0008712 ACTR3 1.19 0.01725

chr18:12999421-13030608(+) hsa_circ_0107922 CEP192 1.22 0.05285

chr12:70278132-70311017(+) hsa_circ_0007127 CNOT2 1.09 0.08488

chr16:67610824-67612121(+) hsa_circ_0002122 CTCF -0.91 0.05149

chr3:172247533-172251541(+) hsa_circ_0006156 FNDC3B 1.29 0.03804

chr14:65561337-65561766(+) hsa_circ_0003028 FUT8 -1.07 0.07800

chrX:134473359-134493590(+) hsa_circ_0004549 HPRT1 1.48 0.01873

chr15:98707562-98708107(+) hsa_circ_0005035 IGF1R 1.32 0.00939

chr18:46946057-46946923(+) hsa_circ_0108513 KATNAL2 -0.90 0.05198

chr1:117402186-117414831(+) hsa_circ_0000117 MAN1A2 1.17 0.01390

chr2:39331917-39337581(-) hsa_circ_0054211 MAP4K3 -0.92 0.04698

chr15:41668828-41669958(+) hsa_circ_0000591 MGA 0.96 0.09318

chr18:8718424-8720496(+) hsa_circ_0000825 MTCL1 1.25 0.05616

chr3:146121112-146124229(-) hsa_circ_0122319 PLOD2 1.45 0.01140

chr3:149846011-149872154(+) hsa_circ_0067716 RNF13 1.11 0.06862

chr6:7176655-7189322(+) hsa_circ_0001573 RREB1 1.14 0.08457

chr2:54982515-54987698(-) hsa_circ_0001006 RTN4 1.13 0.08674

chr10:7220411-7276989(-) hsa_circ_0017627 SFMBT2 1.25 0.01273

chr17:20204333-20205912(+) hsa_circ_0000745 SPECC1 0.60 0.07391

chr9:109050283-109050692(-) hsa_circ_0087905 TMEM245 -0.77 0.08711

chr6:87215903-87218731(+) hsa_circ_0004058 ZNF292 1.11 0.05761

MCF-7

chr3:63912588-63913225(+) hsa_circ_0007761 ATXN7 1.15 0.00019

chr2:214767482-214781509(-) hsa_circ_0001098 BARD1 1.30 0.05875

chr6:4891713-4892379(+) hsa_circ_0008285 CDYL 0.88 0.04392
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Table S1: List of hypoxia-regulated circRNAs grouped by cell line (continued)

Genomic coordinates

(hg38)
circBase ID Host gene

Fold change

(log2)

Adjusted

P value

chr7:158788004-158799072(-) hsa_circ_0001777 ESYT2 1.07 0.08355

chr2:72731007-72733118(-) hsa_circ_0001030 EXOC6B 1.19 0.09038

chr2:72718103-72733118(-) hsa_circ_0009043 EXOC6B 1.34 0.00605

chr4:53414615-53428183(+) hsa_circ_0007476 FIP1L1 1.48 0.08668

chr19:8455405-8463686(+) hsa_circ_0006382 HNRNPM 1.53 0.06392

chr4:3086939-3107423(+) hsa_circ_0001392 HTT 1.02 0.08818

chr15:90439332-90443478(+) hsa_circ_0000651 IQGAP1 1.64 0.04792

chr7:105073619-105077433(+) hsa_circ_0001736 KMT2E 1.50 0.08476

chr7:105073619-105078963(+) hsa_circ_0081819 KMT2E 1.62 0.05624

chr12:116230533-116237705(-) hsa_circ_0000443 MED13L 0.84 0.07626

chr20:47623911-47633636(+) hsa_circ_0001165 NCOA3 1.21 0.00021

chr21:43746079-43749080(+) hsa_circ_0008021 PDXK 1.87 0.02553

chr3:170136419-170149244(-) hsa_circ_0001359 PHC3 1.06 0.07819

chr3:170145423-170149244(-) hsa_circ_0001360 PHC3 1.34 0.01380

chr3:146121112-146124229(-) hsa_circ_0122319 PLOD2 1.45 0.05722

chr5:145764931-145826200(-) hsa_circ_0008132 PRELID2 1.67 0.04809

chr5:145817894-145826200(-) hsa_circ_0006528 PRELID2 2.47 0.00035

chr12:71769800-71774022(+) hsa_circ_0099178 RAB21 1.39 0.09774

chr8:60572046-60591969(+) hsa_circ_0007581 RAB2A 1.79 0.03522

chr11:73707420-73718718(-) hsa_circ_0000339 RAB6A 1.11 0.09985

chr5:171183199-171205612(+) hsa_circ_0002713 RANBP17 1.45 0.05161

chr5:171183195-171205612(+) hsa_circ_0003718 RANBP17 1.38 0.03423

chr7:22291175-22318037(-) hsa_circ_0001681 RAPGEF5 1.45 0.09440

chr18:32111754-32113860(+) hsa_circ_0005729 RNF138 1.08 0.08110

chr15:32526813-32533368(-) RP11-632K20.7 1.47 0.09038

chr10:7276892-7285954(-) hsa_circ_0000211 SFMBT2 1.54 0.00747

chr1:108148279-108161293(-) hsa_circ_0004270 SLC25A24 1.38 0.00129

chr15:58912563-58916999(-) hsa_circ_0000605 SLTM 1.60 0.01687

chr4:143543509-143543972(+) hsa_circ_0001445 SMARCA5 0.91 0.06248

chr12:82857010-82857580(+) hsa_circ_0002886 TMTC2 1.61 0.03837

chr2:61522611-61533903(-) hsa_circ_0001017 XPO1 0.88 0.09038

chr3:125313308-125331238(-) hsa_circ_0001333 ZNF148 1.14 0.06266

chr6:87210451-87218731(+) hsa_circ_0004383 ZNF292 1.50 0.07943

chr6:87215903-87218731(+) hsa_circ_0004058 ZNF292 1.40 0.03662

chr19:23358430-23362725(-) hsa_circ_0109315 ZNF91 1.18 0.09776
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Supplementary Figures

CSRNP1 
3'UTR coordinates: chr3:39141855-39143054 (-) 
 
5'-
GGACCAGGAUGUCUUUUCCCAGCCCCAAGAGACCUGUUGCUGCUUUCUUGUAAUUAUGGGGCUCCCCAGAGUCUGCGUAACA
GUCUCCCACUGGCUGGCUCACCCACAGGUGCCAUGUGCACACUCCUGGUUUUCAAACAAUUCUCUGGAUUUAUUUAUUUGUU
UUAACUUUUCUGUGCUGAAGAGAGGACUGGGGGGAGGGGGCUUCCCCUUUCAGCUGCCCGGCCCCCCACACCCACAGCUUGC
UCUUCUAUCUCCACAACGUGAGCCUGGAAGAGGAGAAAAUGUGGCUCCUCUGGAGCUUGGCAGACCACUUUUCGGUCUUUGC
GUGAUGUUCCUUAGCCCAAAGACGGUGAGACAGGGCUGAAAUCAGGUGGCUUCUGCCACCCUGAGCCCUAGACCCAUGGGUG
GCUAAAUCCACUGGACUGUGAAGACUAUAAUUUAUUUCCAUAAUUUAUUUGGAGAUUGAGGAGGCUUUGGUUGCACUUCUUU
GGCUGGUGGGUAAUGCCAGGGGUGGGGUGGGCACAGGCCCUCAAGAGCCCCUUUUGCCUUGUAGUCCUACACCUUGCCCUGC
CUGGGCUUUGGUGCAGACUAGGUGUGGAUUUGAGCUCUGUGAUCUAUGUCUGCUGCCUGGCUCCUAGAUGGCUCUGUGGGCA
GGUGCUGGCCAAGGACAUCAUCUAGGCAGGGGGAGAGCCUGGGCUGAACAGCUGUGACCAAAACUCCCUUCUGCCCCACCCU
GCCCCCUCCACUUCCUGCCCUCUGUUCCAUCUUCCCCCUUCCCAAAGGCCACAGCCUUUAUUCCAGGCCCAGGGAUGUAGGA
GGGGGAAGGAGGAAACAGGAAGCCCAGAGAGGGCAAAGGGCCUACCUCGGGGCGCGAACCAUGCCCCAGACUAUUAUCUCAG
GGCUUUCUGGGCACUGCACUUCAGCGUGGCCCACCUGCCCAUGCCCUGAGGCCAGUUGGCGAGGGGUGGCUCCUGAGGGUUU
UUAUACCCUUUGUUUGCUAAUGUUUAAUUUUGCAUCAUAAUUUCUACAUUGUCCCUGAGUGUCAGAACUAUAAUUUAUUCCA
UUUCUCUCUGUGUCUGUGCCAAGAAACGCAGGCUCUGGGCCUGCCCCUUGCCCAGGAGGCCUUGCCAGCCUGUGUGCUUGUG
GGAACACCUUGUACCUGAGCUUACAGGUACCAAUAAAGAGGCUUUAUUUUUA-3' 
 
 
 
 
 
 
OSMR 
3'UTR coordinates: chr5:38933445-38935641 (+) 
 
5'-
CCAGCAUGCCGAUUUCAUACCUUAUGCUACACAGACAUUAAGAAGAGCAGAGCUGGCACCCUGUCAUCACCAGUGGCCUUGG
UCCUUAAUCCCAGUACGAUUUGCAGGUCUGGUUUAUAUAAGACCACUACAGUCUGGCUAGGUUAAAGGCCAGAGGCUAUGGA
ACUUAACACUCCCCAUUGGAGCAAGCUUGCCCUAGAGACGGCAGGAUCAUGGGAGCAUGCUUACCUUCUGCUGUUUGUUCCA
GGCUCACCUUUAGAACAGGAGACUUGAGCUUGACCUAAGGAUAUGCAUUAACCACUCUACAGACUCCCACUCAGUACUGUAC
AGGGUGGCUGUGGUCCUAGAAGUUCAGUUUUUACUGAGGAAAUAUUUCCAUUAACAGCAAUUAUUAUAUUGAAGGCUUUAAU
AAAGGCCACAGGAGACAUUACUAUAGCAUAGAUUGUCAAAUGUAAAUUUACUGAGCGUGUUUUAUAAAAAACUCACAGGUGU
UUGAGGCCAAAACAGAUUUUAGACUUACCUUGAACGGAUAAGAAUCUAUAGUUCACUGACACAGUAAAAUUAACUCUGUGGG
UGGGGGCGGGGGGCAUAGCUCUAAUCUAAUAUAUAAAAUGUGUGAUGAAUCAACAAGAUUUCCACAAUUCUUCUGUCAAGCU
UACUACAGUGAAAGAAUGGGAUUGGCAAGUAACUUCUGACUUACUGUCAGUUGUACUUCUGCUCCAUAGACAUCAGUAUUCU
GCCAUCAUUUUUGAUGACUACCUCAGAACAUAAAAAGGAACGUAUAUCACAUAAUUCCAGUCACAGUUUUUGGUUCCUCUUU
UCUUUCAAGAACUAUAUAUAAAUGACCUGUUUUCACUUAGCAUCCUUUGGACUCUGCAGUAGGUUGUCUGGGUCAAGAUAAC
UCUCAGUCACAUUUAUAUUCAUAUUAUGCUAAAAUAGUAAAAUGAAACCUCAUUGUUGGACAUAAUUUAGAUAUAACUAAAA
AGUUCUAUGAAGUGGGAAAUUCCGUGUUGGCUCUGGAGCAGCUUUGUCUCCUCUGAACCAAUAUAUCCCAAACCAAUAUAUG
CAAAGCACCUGGUACACAACUGGUAUUUUAGUACAUGUUGGUUCUUUUGGUGCAAUCUCAGCUCACUGCAGCUUCCGCCUCC
UAGAUUCAAACAAACAGUUCUCCUGCCCCAGCCUCCAGAGCACCUAGGACUCCAGGUGCAUGCUACCACACCUGACUAGUUU
UUAUAUUUUUAGUAGAGAUUGGGUUUUACCAUAUUGGCCAGGCUGGUCUCAAACUCCUGACCGCAGGUGAUCCACCUGCCUC
AGCUUCCCCAAGGGCUGGGAUUACAGGUGUGAGCCACCAUGCCCAGCCUAUUUGUCACAUUAUUUGUCACAUUUAUUUUACU
UUUAUUUAUUUUUUGAGAUGAAAUUUCGCUCUUGUUGCCCAGGCUGGAGUGCAAUGGUGCAGCCUUGGCUCACUGCAACCUC
CGCCUCCCAGGGUCAAGCAAUUCUCCUGCCUCAGCCUCCUGAGUAGCUGGGAUUACAGGCAUGCACCACCACACCCAGGUAA
UUUUGUAUCUUUAGUAGAGAUGGGGUUUCACCAUGUUGGUCAGGCUGUUCUCGAACUCCUGACCUCAGGUGAUCUGCCUGCC
UUGGCCUCCCAAAGUGCUGGGAUUACAGGCGUGAGCCACUGCGCCUAGCCGUCACAUUUCUAAACAAGCAUGAAAGGGGUUC
AUUUUUGUCUUCUUCUUGCCUGCCGUCAGCAUGGUGGAAAUGGCUCUGCCUAUGCUCAUGCUUCUGGUGCCCAAUGCCUUGC
ACUGUGCCAUUCAACACUAUGAAGAGAAACAAGUAGCCACACCUCAAAAUAAUGUGGCUGUCAACAACUGGCCUAAAUAAAC
CUACACAAACCAGUACUUGCCUUUUGCUGGAAACAUUGAUUAUGUGCUCCUCACGUAGUAGAAAGCGGUAUCCUGAUUAGUC
UAACAGUUGUGUUAGACUUUAGGGCCAGUAUUGUCAGCAUUUAUUUAUUUAUGUACCUUUGUUAUGAUGGGAUAUUUUUCAU
UUGAAACUUGUUCAUAAAAAUGUCAAUGACAUUGAUGACUGAUUUGUACAUAUUUUUCAUAUAGUUUUGUUUAAAAAAUAAU
UCACGCAAAAUCUUGAAGUCAUUUUUGCUAUUGAAAUAAACCUUAAUUAAAAUAUUUCAUCAUCA-3' 
 
 
 
 
 
  

Supplementary Figure S1: 30UTR sequences of putative MBNL2 stability tar-
gets: CSNRP1 and OSMR . Putative binding sites are highlighted in yellow (clustered
5’-YGCY-3’ motifs; Lambert et al., 2014).
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SERTAD2 
3'UTR coordinates: chr2:64631621-64635926 (-) 
 
5'-
GACCCAGGGACCCAGCGACUAUGCCCACCCAGACCCCAGAGCGUUCCCAUAACCCUGACAGUUCUCCACACUGUGCAUGCAC
CCUUGCUUGCCUUUUUCAGAGAAAAAGAAAAUUUUACAACAGGAUCACACUAGUUUUUGCUUUGAGCAGAGUUGGAGUGCCU
UCAUCCAAGUAUGACCACUUUUAAUACACUUUUUUGAGUGGUUCCUCAGAGACCUACUACCCUGGUAUAGGAAAGAAUCCAU
UUGAAGACAAUGUUGCAAUGUUGAAUGACAAAAAUAAACAGUUCAAGUGAAGCACAAGGAUUAAGUUGGAAAAGCUGUAAAU
UGCAUGUGCAUAUUUGUCUAUUUUUUCUAUAAGUUUUAUUGCAAGAGGUAAAGAAGAAAACUAUAUAUAUAUAUCUUAUUUA
GAUAAUCUCAGUACCUUUUCUGGCAUUUUUGCCCUGUAUAGGUUGACUUGGCAAUUCGGCCUUUUUAGAGGCAUUAACUACU
CCUCGUAAGUGUUGCAUUUACAUGGCUGUUUAGAAAACUGCUGCCCAAAUUUAUUUUAUAUUUUUGUACAGAUUCUGCAGUU
UAUGAUAUUGUUUUUCUAAAAACAAAUGCUGUUUAUACAUAUGAGAUAGCUAUUUUGAUAGGAUUUGCUCACAUAGUUCCUG
CAAACUUCAGAUGUACAAGUUGCACUUGUACUUUUAUAGAGUUGUAAUGUUUUAUAUGUGUAUGGUGCAAGAGAAAAUUGGA
UCAAAUCAAUCUGCAGUUGAUGUCCCCAAAUGCAAACACAGGCACACACAUGCACACACCCAUAAACACACACACAGUGCUU
UAAGAAAGGGCCAGGUGAUAUCACACCCAAAUUUCACAAGCACUGACCCCCUGGCACCAACACCCGCCAGUACUGUGACUUC
CAAAGCCAGAGCCACAUGUGCUCAUCAAACUUGCAUUAAGCAGUUGGCGGGAGAUGGCUGUGGAGCUGGGGGUUUAAGUGAU
GGUUCUCUUUUGCUCCCUCUUUUGAGGGUAAAGCUACUGUCUUUCUUAAGAGUGUAUUUAUGCCAAGUUUGCGCUUUUAAUU
GUUUUUAUUUUGUUUUUUAAUGAAAACCCAGAUCUUUCCUUUUUGGCAUAAUUUUUAUGAUGACCUGAAAUUUUACAUCCGA
ACAAAAUUUUACAUCCGAAAAGCAACCAACUUCUUCAUGGAACUCAGCCCUGUUGCAAUGCUUAGGGCCCUUAAAGAAGAAA
AUCUCCCCAGAAGGCAUCCAUCAUGUUGCUUAAUUGUCUUCUGCAGCUUCCUUUCCCUAGAGCUUUCCCUGUGUUGCUAAGA
GCUGAAAAUGGCAUCUUCGUGAUCACCACAGUGAGCUUGGCUCGCCUCGGCCGGCCCGGGAUGCACUCUUACAACAUGUGUG
ACUCUUGAACCUGGAGUUCAUCACAUUACGUCACAGCUUCCCAUCUGGUUGCUUUCCUGAGUCAGCUACUUCACACUUGUCA
AGGCUGUUUUACCCCAAAACUCAGACAGGACUUUCUAUGCAUGUUUUCCCUCCUCCCCCCAAUUCCCCCCCCCAUCACCUUA
UCUCCCAGGACACACUUGAGAAGUAGCUUUUUAUUCCUAGUGGUGUACAUUUAAUUUUAAAAAGGUUGCAAUGUAUCAUGCU
UGUUGCCGAAACUGUUUAUGGCCUUCUUGUUUCAGUUUUUUCUUUUCUUCCAAUGGUACUUUAGCUGUUGAGUGCAGGUUAC
AACCUAUAUUGUUAUGCAGAUGGCUUCUUUAGGAAUAACUUUUAUAUUUAUUUAAAAAUUUUUAAAUUAUGGGAUGUUUUGU
UGUUGUUGUUGUCUUUGUUGUUGGUCAUUUGUCAAUAUUCAGUCACCAAUUCUGCUCACUUCUUGCCAUGGAUAAAAUUGGG
UCUUUCUGGCUAAUUAAAAAAGACAACUUUAUAAAAUGGCACUUUAAGCAAGCCAUAGUUAGUUUUAUUUUUGUAAUGCACA
UGGCAAAGCAAAGACGUUUGUGAUGAAGGAACUGCUCAUCUAAGCAAAAGAUUUGAGUAUGAUAUGAUAAAGGCUUUCUACA
UUCUAAUUUACUUUUUCCCCCCACUUGAAUGUGUUUUAAAGGCUAAUUAUCAGCUCAGUAGAGCAGUGAGAAACUGAUCAAA
UUGCACUUGUUCUCCUACAAGCAACCUCCACGCAGACACCUCGUACUGCUACAGGUGUGUCAUUUCCUUUAAUAGGACCAGG
GACCAUGUAACUGAGGUGAGGGUUGUAGUAGAUGCUUCCAGUGUCAGUAUGCCUGUUAAUUUUAAGAGCUUCCCUUUCUUGC
AGAGAACAAGUCUGCCCAGAUUCCAUGCUUUCUAUAACUGGAGGACCUGGCAAACCUGCCGCAUGCUGCACACAUCUACCUA
CGUACACAUAUACAAUAGUAUUGAUGAUUCUGAACAAUAACAGGGUAAAACAGUUGGUUUGCCAUUGUUAAAAACUGAUUUA
CAGUAACUUACAACAACUGUACUUUUGUUGGAUUAGCAAAUCAUGUGUUUAAACAAAUCCCAUAUGUUGGGCAACAGUUCAA
AUAAGCACGGAGAAGUGUUGCCCAAACUUGGUUCUCUGACUCUUAUGUAUUUGUAAGGCUGGGCUUCAAAAUCAAAACAAAA
ACCCCAAAAACAGCAGGCAAAUGCUUUUUAACUCUGACACCGUUGCCAUAAAUCCCUGAUACUCAAAGUCUAACAAGAAAGA
CAUGGAAAAUUAGCAGCCCAUUUUCAGAAAGAUCAAAAUGAUCUAGGGUUCUAAUUGCUUUUGCAUCCUAUUCUUACAAAGU
GAUGUCCCAACAGGGAACAGUAGGAGCUGGAGUGGGAUCUCCAAGUCCCAGUUUGAGUGUGGGAUGUGCUUCCAGCAGUGCC
UUCCCUUUAUGAAAGACAUCACAUGGCAUCCAGGGCCAGGCAGGCAGCUUGAGGUGCCUUUACGAGAAAACCGAGCUGGGGC
UGGGAGAGGACAGUUAUUGACACUGAUGUGCAAUGAAGUGACAAGAUGAGAGCAGAAUCGUAAGAGCUUUGAAUUUGAAGUG
AGUUUUUUUCCCCCCAUAAGUUAUUUAUUCCUUUUUUCUGUGUAAAUAUAUUUAUUUUACUGUGGAGCGCUAACAUCUGGAU
CGUAACAUGUGCAGAAUGUAUGGUAGGAAUGUAUUCUCUUGUAGGAAUGUAAAUCUGUAUUAAAAGGGGGUCCAAGCCAGGC
CCCCAGGUCUUCUCAUUGUAUGCACAGUCCGCAUUCAUUUUUACUCUUCUCUAAUAUGGGUCUAUUUGAAAUAUGCAAAAGG
UAUGAGGAAUGUUUUAAUACCUCCAAAUUUUUAAGAAAAGCAUCAAAGGGUUGAUAUUUUUUAAAGUUUUUUUAGUAGCACU
UUCUCUGGAUGACAGAAGGAGCAACCACAUGGGCACCCUUGUUCAUACCAAAGGGUGAGCAGUGGCCAGAGCCUCCUCUGCA
CCUCUCGAGUGUCUUUACCAAUUGAGCUUUUUAUCGCCAUAGCCCCUUGGAGUGCCCCAGCUGCCCUGAGGUCAAUCAAGGA
AAAUUUCUUAAUGAAAUAAGCUCCAAAGAGCCAAAGUAUCAACUUACAGAUCGUUUUUAAAGCUUAAAUUUAUGAACCACCU
UUGUGGUAAACAAUGAAUUAUGAAUACCGCAGGGCAGCCUUCUUAAAUGACAAAUGUAAAAAAAAAAAAAAAAAAGACUCUA
CUUCGUGCAGCAAUUGCUACUCUAUACGAAUUGUCUUAAUUUGAAAACCUUGCUGUUACAAAUUGGACCUUUAUACAUUUUC
UGAAAACAAUGAAAAGAGUAUAUUUAACCUUUUCUGGCUGUAAAUGGUUACCUUCCUGUAACUGCCCCGCACCUGGAGGCAU
GGAGUUGUGUGCAUCCUGCUUAUGUACAAUUGUUUUCAGUGUUUCUAAGAAUGAGUCUGAAUGGUUCUUGAAAAUUAGCCAG
GAUCAAAUGCUAUUGCAGACAAAGCCAAUAAAAAGUUGGACUUCUUUUGGGGAUAACAAGUUUUGGAAGAGAAAUGCAGGCC
AUAUGUGCGCAUGACCGAGAUUUUGAAAAAAGAUGUACAUAGUGACAUGUUUGGUGCAUGGUUUUUGAGGAGGGCUUUUGUC
AAAAAGGAGGUAUAACCUUUCCCCCACAGACCUGAGAGCUGUGCCUUUUCUAUGCAAUAUUACAGACGUUACAUCGGAACCC
AGAUGGCUGUAUUCACAUGUAGGUUUGGGCUGUAAUCUAAACAAUUGGACAGAUUAAAUGUACAUGGAAAUGAGCAGUCUUA
CUUUUGUAGUUUUAUAUUAUACAAUAAACAGUUAAAAGAUGA-3' 
 
 
  

Supplementary Figure S2: 30UTR sequences of putative MBNL2 stability tar-
gets: SERTAD2 . Putative binding sites are highlighted in yellow (clustered 5’-YGCY-3’
motifs; Lambert et al., 2014).
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SMAD7  
3'UTR coordinates: chr18:48919853-48921371 (-) 
5'-
CCGCGUGCGGAGGGGACAGAGCGUGAGCUGAGCAGGCCACACUUCAAACUACUUUGCUGCUAAUAUUUUCCUCCUGAGUGCU
UGCUUUUCAUGCAAACUCUUUGGUCGUUUUUUUUUUGUUUGUUGGUUGGUUUUCUUCUUCUCGUCCUCGUUUGUGUUCUGUU
UUGUUUCGCUCUUUGAGAAAUAGCUUAUGAAAAGAAUUGUUGGGGGUUUUUUUGGAAGAAGGGGCAGGUAUGAUCGGCAGGA
CACCCUGAUAGGAAGAGGGGAAGCAGAAAUCCAAGCACCACCAAACACAGUGUAUGAAGGGGGGCGGUCAUCAUUUCACUUG
UCAGGAGUGUGUGUGAGUGUGAGUGUGCGGCUGUGUGUGCACGCGUGUGCAGGAGCGGCAGAUGGGGAGACAACGUGCUCUU
UGUUUUGUGUCUCUUAUGGAUGUCCCCAGCAGAGAGGUUUGCAGUCCCAAGCGGUGUCUCUCCUGCCCCUUGGACACGCUCA
GUGGGGCAGAGGCAGUACCUGGGCAAGCUGGCGGCUGGGGUCCCAGCAGCUGCCAGGAGCACGGCUCUGUCCCCAGCCUGGG
AAAGCCCCUGCCCCUCCUCUCCCUCAUCAAGGACACGGGCCUGUCCACAGGCUUCUGAGCAGCGAGCCUGCUAGUGGCCGAA
CCAGAACCAAUUAUUUUCAUCCUUGUCUUAUUCCCUUCCUGCCAGCCCCUGCCAUUGUAGCGUCUUUCUUUUUUGGCCAUCU
GCUCCUGGAUCUCCCUGAGAUGGGCUUCCCAAGGGCUGCCGGGGCAGCCCCCUCACAGUAUUGCUCACCCAGUGCCCUCUCC
CCUCAGCCUCUCCCCUGCCUGCCCUGGUGACAUCAGGUUUUUCCCGGACUUAGAAAACCAGCUCAGCACUGCCUGCUCCCAU
CCUGUGUGUUAAGCUCUGCUAUUAGGCCAGCAAGCGGGGAUGUCCCUGGGAGGGACAUGCUUAGCAGUCCCCUUCCCUCCAA
GAAGGAUUUGGUCCGUCAUAACCCAAGGUACCAUCCUAGGCUGACACCUAACUCUUCUUUCAUUUCUUCUACAACUCAUACA
CUCGUAUGAUACUUCGACACUGUUCUUAGCUCAAUGAGCAUGUUUAGACUUUAACAUAAGCUAUUUUUCUAACUACAAAGGU
UUAAAUGAACAAGAGAAGCAUUCUCAUUGGAAAUUUAGCAUUGUAGUGCUUUGAGAGAGAAAGGACUCCUGAAAAAAAACCU
GAGAUUUAUUAAAGAAAAAAAUGUAUUUUAUGUUAUAUAUAAAUAUAUUAUUACUUGUAAAUAUAAAGACGUUUUAUAAGCA
UCAUUAUUUAUGUAUUGUGCAAUGUGUAUAAACAAGAAAAAUAAAGAAAAGAUGCACUUUGCUUUAAUAUAAAUGCAAAUAA
CAAAUGCCAAAUUAAAAAAGAUAAACACAAGAUUGGUGUUUUUUUCUAUGGGUGUUAUCACCUAGCUGAAUGUUUUUCUAAA
GGAGUUUAUGUUCCAUUAAACGAUUUUUAAAAUGUACACUUGA-3' 
 
 
  

Supplementary Figure S3: 30UTR sequences of putative MBNL2 stability tar-
gets: SMAD7 . Putative binding sites are highlighted in yellow (clustered 5’-YGCY-3’
motifs; Lambert et al., 2014).
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Supplementary Figure S4: Investigation of convergences and discrepancies be-
tween CIRCexplorer and find_circ tools in predicting circRNAs from a single
MCF-7 sample (normoxia, replicate 1), similar to Figure 3.10. (A) Venn diagram depict-
ing the overlap between the predictions of CIRCexplorer and find_circ algorithms. (B)
Scatter plot comparing total back-splice reads estimated by the two algorithms for the 2381
circRNAs in common. r : Pearson correlation. (C) Box plot shows the quantification of
circRNAs by CIRCexplorer and find_circ for circRNAs in common or from only a single
algorithm. circRNAs detected only by a single tool are in general less abundant, with no-
table exceptions (labelled). (D) Characterisation of the 675 circRNAs predicted exclusively
by find_circ, in terms of genomic aligner (STAR vs. Bowtie2) and gene annotation. (E)
Characterisation of the 2509 circRNAs predicted exclusively by CIRCexplorer, in terms
of splice-site signal, genomic size, supporting back-splice reads, alignment adjustment by
CIRCexplorer and gene annotation. 74% circRNAs are supported by a single unique back-
splice read in find_circ measurements, highlighting the importance of filtering on unique
back-splice reads to exclude PCR artefacts. For 528 circRNA the reason of the discrepancy
remained unclear.
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