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Aim
This tutorial accompanies our 2020 Movement Ecology paper “A guide for studying among-individual
behavioral variation from movement data in the wild.”. The aim of this tutorial is to illustrate how simple
univariate mixed models can be used to partition behavioral variance into its among - and within individual
sources. We will then go on to illustrate how we can fit univariate mixed models with random slopes to estimate
individual variation in behavioral plasticity. Third, we will demonstrate how to test whether individuals
differ in intra-individual variability. Finally, we introduce multivariate mixed models with multiple response
variables to estimate among-individual level correlation of behaviors. We will cover four principal concepts
from the animal personality literature: a. Variation in behavioral types and repeatability b. Variation in
behavioral plasticity c. Variation in behavioral predictability d. Behavioral syndromes. With this tutorial we
hope to offer a suite of easy pathways into analyzing individual variation in movement more explicitly to
expand the biological questions movement ecologists can seek answers to.

We further would like to refer the interested reader to a seminal paper in the field: Dingemanse & Dochtermann
(2013) “Quantifying individual variation in behavior: mixed effects modelling approaches.” Journal of Animal
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Ecology, 82, 39-54. doi: 10.1111/1365-2656.12013.

The here presented tutorial was inspired by a series of tutorials by Tom Houslay who has synthesized analyzing
animal personalities and behavioral syndromes with the R package MCMCglmm in a very user friendly
way (https://tomhouslay.com/tutorials/). Equivalent to MCMCglmm we here will introduce and use the
brms package which allows the application of double hierarchical mixed effects models, needed to estimate
individual variation in predictability:

Bürkner (2017) “brms: An R Package for Bayesian Multilevel Models Using Stan.” Journal of Statistical
Software, 80(1), 1–28. doi: 10.18637/jss.v080.i01.

Figure 1: African elephant (Loxodonta africanus)

Elephant movement data
Here we use movement data from 35 African elephants (Loxodonta africana) monitored in Etosha Nationalpark,
Namibia to estimate individual variation in patterns of movement.
The raw data had a temporal resolution of 30 minutes, from which we quantified a set of common movement
metrics for each elephant. We quantified metrics on a weekly basis and to avoid bias introduced by missing
locations, included only weeks with at least 200 successful fixes (out of 336 possible).

We quantified:

• mean daily movement distance (km)

• turn angle correlation (tac)

• mean residence time (meanRT)
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The data we use for the purpose of this tutorial was previously published in:

Tsalyuk M, Kilian W, Reineking B, Marcus W (2019) Temporal variation in resource selection of African
elephants follows long term variability in resource availability. Ecological Monographs. doi:10.1002/ecm.1348.

and

Abrahms B, Seidel DP, Dougherty E, Hazen EL, Bograd SJ, Wilson AM, McNutt JW, Costa DP, Blake
S, Brashares JS, Getz WM (2017) “Suite of simple metrics reveals common movement syndromes across
vertebrate taxa.” Movement Ecology 5:12. doi:10.1186/s40462-017-0104-2

and are publicly available under

Kilian W, Getz WM, Zidon R, Tsalyuk M (2018) Data from: Temporal variation in resource selection
of African elephants follows long term variability in resource availability. Movebank Data Repository.
doi:10.5441/001/1.3nj3qj45

and

Abrahms B (2017) Data from: Suite of simple metrics reveals common movement syndromes across vertebrate
taxa. Movebank Data Repository. doi:10.5441/001/1.hm5nk220

We first install and load a suite of R packages.
library(lme4);library(arm);library(MuMIn);library(tidyverse)
library(plyr);library(broom);library(coda);library(grid)
library(gridExtra);library(brms); library(broom.mixed); library(merTools);
library(tidybayes);library(parallel)

# extract legend function
g_legend<-function(a.gplot){

tmp <- ggplot_gtable(ggplot_build(a.gplot))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)}

data<-readRDS("mov.metrics_weekly.rds")
head(data, n = 3)

## animal_id Week_id meanDailyDisplacement meanRT tac week
## 1 elephant1 elephant.1_0_1_2009 26.77996 5.804233 0.8028475 0
## 2 elephant1 elephant.1_1_1_2009 25.96528 2.755988 0.7602063 1
## 3 elephant1 elephant.1_10_3_2009 21.68015 1.856716 0.9053003 10
## month year Sex
## 1 1 2009 M
## 2 1 2009 M
## 3 3 2009 M

Mean daily displacement reflects the average daily distance (in kilometers) an elephant moved during a given
week. Mean residence time reflects the mean time (in hours) an elephant spend within a circle of its mean
step length during that week. And finally a high turn angle correlation (tac) indicates that movements are
centered within a certain area whereas a low tac indicates more exploratory behavior during that week. Next
to the behavioral metrics this data frame contains information about the individual (animal_id), the week,
month, and year in which the behavior was measured (month, year), and the sex of the individual.
tail(table(paste(data$animal_id,data$year,sep="_"),

data$month))

##
## 1 2 3 4 5 6 7 8 9 10 11 12
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## elephant8_2010 5 4 5 5 4 5 5 2 0 0 0 0
## elephant9_2009 0 0 0 0 0 0 0 0 0 1 4 4
## elephant9_2010 5 4 5 4 4 5 5 4 5 5 4 5
## elephant9_2011 4 4 5 5 4 5 5 5 5 4 5 5
## elephant9_2012 4 5 5 4 5 5 4 5 4 5 5 3
## elephant9_2013 5 5 5 4 5 4 2 0 0 0 0 0
tail(table(data$animal_id,data$month))

##
## 1 2 3 4 5 6 7 8 9 10 11 12
## elephant4 5 1 3 3 3 4 3 4 5 5 5 7
## elephant5 10 8 8 8 8 9 10 7 5 5 8 10
## elephant6 10 8 9 10 9 9 10 7 5 5 8 10
## elephant7 8 4 4 5 5 4 5 4 5 5 8 10
## elephant8 10 8 9 10 9 9 10 6 5 5 8 10
## elephant9 18 18 20 17 18 19 16 14 14 15 18 17

We have data for 35 individual elephants monitored for a minimum period of one year (range 1 - 6 years).
Behaviors were assessed weekly, hence an individual was annually assessed for 1 - 5 weeks per month. Across
multiple monitoring years, the number of monthly repeats ranged between 1 and 24. . . .
table(data$year)

##
## 2008 2009 2010 2011 2012 2013 2014 2015
## 60 580 1086 1030 343 293 302 72

. . . and these elephants where monitored over eight years between 2008 and 2015.

Visual data exploration suggests that elephants shift their behavior over the course of the year (Fig 2).
Elephants move least between June and October, the dry season in Etosha. At the same time Turn angle
correlation (tac) is highest. Mean residence time seems largely unaffected by seasonality.

tu
rn

 a
ng

le
 c

or
re

la
tio

n

m
ea

n 
re

si
de

nc
e 

tim
e 

(h
rs

)

m
ea

n 
da

ily
 d

is
ta

nc
e 

(k
m

)

1 2 3 4 5 6 7 8 9101112 1 2 3 4 5 6 7 8 9101112 1 2 3 4 5 6 7 8 9101112

0.50

0.75

1.00

1.25

1.50

1.75

2.5

5.0

7.5

10.0

0

10

20

30

40

Month of the year

Figure 2: Data exploration: Movement metrics over month of the year

Female elephants seem to move over longer daily distances, have longer residence times and higher turn angle
correlation than males (Fig 3).
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Figure 3: Data exploration: Sex effects on movement metrics

Finally, when just visually exploring data for e.g. the month of February, we still see that there is quite a lot
of variation among individuals (Fig 4), whether these individual differences persist over the time span where
the data is collected, remains to be seen.
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Figure 4: Data exploration: Individual variation in February

Behavioral types and repeatability: Mixed modelling approaches
Frequentist approach
We use the R package lme4 to fit a mixed model on one of the behaviors. We control for behavioral shifts
over the course of the year by including month (1:12) as a fixed effect. “Month”" is a time variable which
stands respectively for seasonally changing environmental variables, which are temporally autocorrelated, like
e.g. temperature, precipitation and resulting food availability. Conditions in a given month (e.g. July) are
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more similar to the preceding and following months (e.g. June or August) than to months that are farther
away in time. Because of the cyclic nature of “month of the year” (our month coding starts in January - “1”
and ends in December - “12”) we need to include month as a non-linear term which allows predictions at the
start and end of the year to be more similar to each other. We chose a simple second order polynomial term.
We also control for behavioral differences caused by sex as fixed effect. Mixed models allow us to determine
how much of the remaining behavioral variation is due to differences among individuals. We will also add a
random effect for study year (2008 - 2015).

Although we expect the reader to be familiar with mixed models - here a short recap: In a mixed model we
estimate how fixed effects - like month or Sex - explain variation in behavior. We additionally assume that
measurement points taken from the same individual (or year) are more similar to each other than expected
by random, i.e. they are not independent. By fitting a random intercept for individual identity we allow the
mean behavioral expression (i.e. intercept) to vary among individuals.

Behavioral types and repeatability of daily movement distance

m1 <- lmer(meanDailyDisplacement ~ month + I(month^2) + Sex +
(1|animal_id) + (1|year/month), data)

par(mar=c(2, 2, 2, 2));qqnorm(residuals(m1),main=NULL)
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Figure 5: Q-Q Plot to inspect normality of residuals.

summary(m1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: meanDailyDisplacement ~ month + I(month^2) + Sex + (1 | animal_id) +
## (1 | year/month)
## Data: data
##
## REML criterion at convergence: 21878.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6969 -0.6292 -0.1656 0.4174 7.2153
##
## Random effects:
## Groups Name Variance Std.Dev.
## month:year (Intercept) 1.0634 1.0312
## animal_id (Intercept) 5.0225 2.2411
## year (Intercept) 0.2253 0.4746
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## Residual 18.4111 4.2908
## Number of obs: 3766, groups: month:year, 77; animal_id, 35; year, 8
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 16.48670 0.73676 22.377
## month -0.95351 0.17997 -5.298
## I(month^2) 0.06741 0.01349 4.997
## SexM -2.57661 0.78637 -3.277
##
## Correlation of Fixed Effects:
## (Intr) month I(m^2)
## month -0.595
## I(month^2) 0.527 -0.974
## SexM -0.475 -0.003 0.005
r.squaredGLMM(m1)

## R2m R2c
## [1,] 0.08483256 0.318461

As expected, at the population level, both the time of year and the sex of the individual affect how far
elephants move over the course of a day (Fig 6).
ggplot(data,

aes(x = month, y = meanDailyDisplacement, color = Sex)) +
geom_jitter(size=0.5) +
geom_line(aes(y = predict(m1,re.form = NA)),size=1.5) +
theme_classic()+
ylab("mean daily distance (km)")+
scale_x_continuous(breaks = seq(1,12,1))
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Figure 6: Population level shift in daily movement distance over the course of the year (January - December)
for female (red) and male (blue) African elephants.

Below we show you the prediction lines for each individual and year combination (Fig 7). As you can see -
some individuals are predicted to move consistently less and others are predicted to move consistently more.
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We did not test here whether individuals differ in how they move over the course of the year, hence the slope
over month is the same for all individuals (but see the section on reaction norms).
pr <- data.frame(animal_id = data$animal_id,

month = data$month,
year = data$year)

pr$fit <- predict(m1)
pr$EleYear <- paste0(pr$animal_id,pr$year)

ggplot() +
geom_line(data = pr,

aes(x = month,
y = pr[,"fit"],
group = pr$EleYear,
color = pr$animal_id), size=0.3)+

labs(y = "Predicted daily distance (km)",color = "ElephantID")+
theme_classic()+
theme(legend.position="none")+
guides(color = guide_legend(nrow = 4))+
scale_x_continuous(breaks = seq(1,12,1))
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Figure 7: Individual differences in daily movement distance over the course of the year (January - December)
for 35 African elephants.

It is always good practice to check whether model predictions actually match the observed data (Fig 8). Here
we plotted prediction lines for five elephants and their corresponding observed movement distances. We can
visually confirm that our predictions match the data quite well for most elephants. Elephant 17 however
increases movement in June - August which is not reflected by the population level shift of movement over
month. We will come back to this in the section on behavioral reaction norms below.

For consistency and to facilitate interpretation we will keep highlighting the same five individuals throughout
the remainder of the tutorial.
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Figure 8: Prediction lines for daily movement distance in 5 African elephants and their observed movement
distance.

We can now calculate repeatability i.e. variance standardized individual variation in focal behavior. We divide
the variance explained by animal_id by the total phenotypic variance (animal_id + month:year + year +
residual variance).
print(VarCorr(m1),comp = c("Variance","Std.Dev."))

## Groups Name Variance Std.Dev.
## month:year (Intercept) 1.06341 1.03122
## animal_id (Intercept) 5.02254 2.24110
## year (Intercept) 0.22528 0.47463
## Residual 18.41106 4.29081

5.02255 / (5.02255 + 1.06342 + 0.22525 + 18.41106)

## [1] 0.2031589

VarCorr(m1)$"animal_id"[1] /
(VarCorr(m1)$"animal_id"[1] +

VarCorr(m1)$"month:year"[1] +
VarCorr(m1)$"year"[1] +
attr(VarCorr(m1), "sc")^2)

## [1] 0.2031585

In the same fashion we can calculate whether there is among-month within a given year (consistent variation
in the month of January among the study years 2008 - 2015) and consistent among-year variation, i.e. if
all elephants move consistently more or less in some years (resp. months) as compared to others. In fact
elephants do not seem to show consistent behavioral variation between years (i.e. year identity explains ~1%
of the variation in the focal behavior) or months nested in years (~ 4% of variance). Unless we a-priori
expected that study year should have a strong effect on behavior (e.g. due to strong inter-annual variation in
food availability) we may even consider to simplify our model by removing the random intercept for year.
VarCorr(m1)$"month:year"[1] /

(VarCorr(m1)$"animal_id"[1] +
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VarCorr(m1)$"month:year"[1] +
VarCorr(m1)$"year"[1] +
attr(VarCorr(m1), "sc")^2)

## [1] 0.04301409

VarCorr(m1)$"year"[1] /
(VarCorr(m1)$"animal_id"[1] +

VarCorr(m1)$"month:year"[1] +
VarCorr(m1)$"year"[1] +
attr(VarCorr(m1), "sc")^2)

## [1] 0.009112348

The repeatability value ranges between 0 and 1 and indicates the proportion of variance explained by a given
random effect, after controlling the model for the fixed effects of month and sex in our case. The repeatability
value by itself however does not come with a measure of uncertainty. We can however simulate our model
1000 times in order to get a posterior distribution for all variance components, which we can use to calculate
credible intervals and infer significance.
set.seed(1)
simulated <- sim(m1, n.sim = 1000)

posterior_animal_id <- apply(simulated@ranef$"animal_id"[ , , 1],1,var)
posterior_yearmonth <- apply(simulated@ranef$"month:year"[ , , 1],1,var)
posterior_year <- apply(simulated@ranef$"year"[ , , 1],1,var)
posterior_residual <- simulated@sigma^2

quantile(posterior_animal_id /
(posterior_animal_id + posterior_yearmonth + posterior_year + posterior_residual),
prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
## 0.1756550 0.2186341 0.2680693
quantile(posterior_year /

(posterior_animal_id + posterior_yearmonth + posterior_year + posterior_residual),
prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
## 0.003138401 0.004970995 0.008397671
quantile(posterior_yearmonth /

(posterior_animal_id + posterior_yearmonth + posterior_year + posterior_residual),
prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
## 0.03182955 0.04256004 0.05523531

As we can see the credible interval around our repeatability estimate for individual variation is relatively
wide (0.18 - 0.27). A reason for this could be that the number of individuals tested is still relatively limited
(n = 35).

We can see that on average 22% of the remaining variance (after controlling for month and sex) in daily
movement distance can be attributed to differences between individuals. This means that some elephants
always move over shorter distances compared to other elephants and this difference is not caused by predictable
monthly variation or sex differences. In a real study we would probably fit other relevant explanatory variables,
like age of the animal, herd identity, and habitat composition in the elephants monthly range. On the other
hand there does not seem to be a year effect on movement with elephants moving more or less in a particular
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year (R.year = 0.004).

Alternatively to repeatability we can also calculate the coefficient of variation for between individual variance
(CVi). CVi is not confounded by within-individual effects and is hence a better measure to compare the
extent of between-individual differences among populations and traits. It is calculated as

CVi =
√

VID

x̄

i.e. dividing the square root of the among-individual variance by the intercept (i.e. mean trait value).
CVi <- sqrt(posterior_animal_id) / summary(m1)$coefficients[1]
quantile(CVi,prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
## 0.1238892 0.1422252 0.1621406

Now, we may be interested on which elephants are the more or the less mobile ones. Such an information
can, for example, be used when managing problem individuals or when estimating an individual’s space
requirements. In the behavioral ecology (and animal personality) literature this is called the “behavioral
type”. Statistically the behavioral type is the best linear unbiased prediction (BLUP) of the random effect,
i.e. the prediction for mean behavioral expression for each individual. We can use the merTools-package
to obtain repeated samples from the posterior distribution of our model from which we can calculate the
standard deviation for each level of the random effect.
randomSims <- REsim(m1, n.sims = 1000)
head(randomSims[randomSims$groupFctr=="animal_id",])

## groupFctr groupID term mean median sd
## 78 animal_id elephant1 (Intercept) 2.361753 2.328272 1.221967
## 79 animal_id elephant10 (Intercept) 2.558298 2.600158 1.617226
## 80 animal_id elephant11 (Intercept) -1.666162 -1.646776 1.052494
## 81 animal_id elephant13 (Intercept) 5.223139 5.276265 1.007446
## 82 animal_id elephant15 (Intercept) -2.383780 -2.392727 1.062460
## 83 animal_id elephant16 (Intercept) 1.269859 1.329482 1.211758
# add the sex of the individual
randomSims <- merge(randomSims[randomSims$groupFctr=="animal_id",],

data[!duplicated(data$animal_id),c("animal_id","Sex")],
by.x = "groupID",by.y="animal_id")

# add identifier to color individuals uniquely
randomSims$ID <- ifelse(randomSims$groupID %in% c("elephant17", "elephant4", "elephant8",

"elephant36","elephant20"),
randomSims$groupID, "Other individuals")

# add population intercept and sex specific differences for easier
# interpretation of realized average daily movement distance
randomSims[randomSims$Sex == "F",]$mean <- randomSims[randomSims$Sex == "F",]$mean +

fixef(m1)["(Intercept)"]
randomSims[randomSims$Sex == "M",]$mean <- randomSims[randomSims$Sex == "M",]$mean +

(fixef(m1)["(Intercept)"] + fixef(m1)["SexM"])

# sort data
randomSims$groupID <- factor(randomSims$groupID,

levels = randomSims$groupID[order(randomSims$mean)])

ggplot()+
geom_errorbar(data = randomSims,
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aes(x = groupID, ymin = mean-sd,
ymax = mean+sd, color = Sex))+

geom_point(data = randomSims,
aes(x = groupID, y = mean, fill = ID), shape = 21, size = 2)+

theme_classic()+
ylab("BT mean daily distance (km)")+
theme(axis.text.x = element_text(angle = 45, hjust = 1),

axis.title.x = element_blank())+
annotate("text",x = 30, y = 12, label = "R = 0.22*", size = 4)+

scale_fill_manual(values = c("#F8766D","#C77CFF","#7CAE00","#FFCC00", "#00BFC4","gray"))

R = 0.22*
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Figure 9: Behavioral type for daily movement distance.

In our example elephant4 moves over the shortest distances of all elephants (about 9.5 km, Fig 9). Elephant8
moves over the longest daily distances (about 20 km). Generally male elephants move over shorter daily
distances than females, which was already demonstrated earlier. We can repeat the analysis for residence
time (RT) and turn angle correlation (TAC).

Behavioral types and repeatability of residence time & turn angle correlation

m2 <- lmer(meanRT ~ month + I(month^2) + Sex + (1|animal_id)+ (1|year/month), data ,REML=T)

m3 <- lmer(tac ~ month + I(month^2) + Sex + (1|animal_id)+ (1|year/month), data ,REML=T)

Repeatability (R) for mean residence time is estimated as 0.17 [0.13, 0.22] and for turn angle correlation as
0.31 [0.26, 0.36]
quantile(posterior_animal_id.m2 /

(posterior_animal_id.m2 + posterior_yearmonth.m2 + posterior_year.m2 + posterior_residual.m2),
prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
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## 0.1297046 0.1676830 0.2165311
quantile(posterior_animal_id.m3 /

(posterior_animal_id.m3 + posterior_yearmonth.m3 + posterior_year.m3 + posterior_residual.m3),
prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
## 0.2612445 0.3024222 0.3526933

Coefficient of variation for between individual variance (CVi) was 0.14 for movement distance, and is 0.16
for residence time and 0.08 for turn angle correlation. This indicates that within-individual (as opposed to
among-individual) variation may be much larger in turn angle correlation than in movement distance and
residence time.
quantile(sqrt(posterior_animal_id.m2) / summary(m2)$coefficients[1],prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
## 0.1403400 0.1628662 0.1914706
quantile(sqrt(posterior_animal_id.m3) / summary(m3)$coefficients[1],prob=c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
## 0.07704583 0.08490835 0.09507379

Elephants range in their average behavioral expression for residence time from 2.3 - 3.5 hours (Fig 10) and in
their average behavioral expression for turn angle correlation from 0.6 - 0.88 (Fig 11).

R = 0.17*

2.0

2.5

3.0

3.5

4.0

ele
ph

an
t8

ele
ph

an
t6

ele
ph

an
t1

1

ele
ph

an
t7

ele
ph

an
t1

7

ele
ph

an
t1

0

ele
ph

an
t9

ele
ph

an
t1

6

ele
ph

an
t2

0

ele
ph

an
t2

2

ele
ph

an
t1

9

ele
ph

an
t5

ele
ph

an
t2

4

ele
ph

an
t2

1

ele
ph

an
t3

0

ele
ph

an
t1

3

ele
ph

an
t2

3

ele
ph

an
t3

3

ele
ph

an
t1

ele
ph

an
t1

5

ele
ph

an
t3

ele
ph

an
t3

6

ele
ph

an
t1

8

ele
ph

an
t2

9

ele
ph

an
t3

1

ele
ph

an
t2

8

ele
ph

an
t3

9

ele
ph

an
t3

4

ele
ph

an
t4

ele
ph

an
t3

8

ele
ph

an
t2

5

ele
ph

an
t2

7

ele
ph

an
t3

7

ele
ph

an
t3

2

ele
ph

an
t3

5

B
T

 m
ea

n 
re

si
de

nc
e 

tim
e 

(h
rs

)

ID

elephant17

elephant20

elephant36

elephant4

elephant8

Other individuals

Sex

F

M

13



R = 0.31*
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Bayesian Approach
Alternatively to a frequentist approach where we use lme4 to fit a mixed model we can also use a Bayesian
approach. We expect more or less similar results between the two approaches. A practical advantage of a
Bayesian modelling approach is that the model gives a posterior distribution for each estimated parameter
and hence inherently reflects uncertainty. We here use the brms package for model fitting. We use an
uninformative prior, the default in brms. As mentioned previously we will not go into detail how to select
and fit priors, but see Hadfield (2010) for more detail on prior selection.
Hadfield (2010) “MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R
package.”

The second function below adds the model selection criterion “WAIC” to the model output which we will use
later on.
my.cores <- detectCores()
m1_brm <- brm(meanDailyDisplacement ~ month + I(month^2) + Sex +

(1 | animal_id) + (1 | year/month),
data = data,
warmup = 500,
iter = 3000,
thin=2,
chains = 2,
inits = "random",
cores = my.cores,
seed = 12345)

m1_brm <- add_criterion(m1_brm, "waic")

m1_brm <- readRDS("m1_brm.rds")
summary(m1_brm)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: meanDailyDisplacement ~ month + I(month^2) + Sex + (1 | animal_id) + (1 | year/month)
## Data: data (Number of observations: 3766)
## Samples: 2 chains, each with iter = 3000; warmup = 500; thin = 2;
## total post-warmup samples = 2500
##
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## Group-Level Effects:
## ~animal_id (Number of levels: 35)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.31 0.31 1.80 2.99 1.00 851 1577
##
## ~year (Number of levels: 8)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.60 0.37 0.07 1.46 1.00 935 1058
##
## ~year:month (Number of levels: 77)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 1.06 0.14 0.81 1.35 1.00 1635 2016
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 16.48 0.78 14.97 18.03 1.00 905 1285
## month -0.96 0.18 -1.32 -0.62 1.00 1502 1781
## ImonthE2 0.07 0.01 0.04 0.09 1.00 1499 2117
## SexM -2.58 0.80 -4.17 -1.01 1.00 573 883
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 4.29 0.05 4.19 4.39 1.00 1859 1436
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

We should make it a habit to inspect a) the effective sample size and b) the Rhat parameter to make sure
that our model converged. In a nutshell, we want “Eff.Sample” close to the expected sample size for all
parameters. The expected sample size is the number of iterations minus the number of iterations which we
discard as warm-up and divided by the thinning interval and multiplied by the number of chains defined in
the model (2 chains in our case), i.e. ((3000 - 500) / 2) * 2 = 2500 Rhat on the other hand should be 1.

Similar to the frequentist approach, we can calculate repeatability by dividing the posterior distribution
for the variance explained by the random intercept animal_id by the total variance. Importantly - in brms
variance parameters are given in standard deviations and need to be squared to calculate the variance!

We can either calculate repeatability by hand:
(2.31)^2 / ((2.31)^2 + (0.6)^2 + (1.06)^2 + (4.29)^2)

## [1] 0.2115502

Or (better) take the mean and credible interval of the posterior distribution.
colnames(posterior_samples(m1_brm))[1:8]

## [1] "b_Intercept" "b_month"
## [3] "b_ImonthE2" "b_SexM"
## [5] "sd_animal_id__Intercept" "sd_year__Intercept"
## [7] "sd_year:month__Intercept" "sigma"
var.animal_id <- posterior_samples(m1_brm)$"sd_animal_id__Intercept"^2
var.year <- posterior_samples(m1_brm)$"sd_year__Intercept"^2
var.year.month <- posterior_samples(m1_brm)$"sd_year:month__Intercept"^2
var.res <- posterior_samples(m1_brm)$"sigma"^2

RDist <- var.animal_id / (var.animal_id + var.year.month + var.year + var.res)
mean(RDist);HPDinterval(as.mcmc(RDist),0.95)
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## [1] 0.2104436

## lower upper
## var1 0.1323902 0.3002388
## attr(,"Probability")
## [1] 0.95

The mean and credible interval for this posterior distribution is 0.21 [0.13, 0.3], so similar but slightly higher
than our result in the frequentist approach. It means that after controlling for the fixed effects of month
and Sex - 21% of the remaining variance can be explained by individual differences in behavioral expression
among elephants.
RYear <- var.year / (var.animal_id + var.year.month + var.year + var.res)
mean(RYear)

## [1] 0.01901271

RYearMonth <- var.year.month / (var.animal_id + var.year.month + var.year + var.res)
mean(RYearMonth)

## [1] 0.04519953

RRes <- var.res / (var.animal_id + var.year.month + var.year + var.res)
mean(RRes)

## [1] 0.7253441

Similar, and as explained in the frequentist section, we can calculate CVi as:
CVi <- sqrt(var.animal_id) / mean(data$meanDailyDisplacement)
mean(CVi);HPDinterval(as.mcmc(CVi),0.95)

## [1] 0.177232

## lower upper
## var1 0.1337719 0.2237333
## attr(,"Probability")
## [1] 0.95

In summary, 21% of the variance can be attributed to individual differences in average movement, only 2%
of the variance can be explained by differences between years in average movement, 5% due to consistent
month effects and 72% of the variance is unexplained residual variance, i.e. within-individual, within-year,
within-month variation and measurement error.

Be aware - Bayesian 95% credible intervals that do not cross zero are commonly used to indicate statistical
significance. This is, however, not true for variance components which are by definition always positive. Low
credible interval bounds close to zero therefore indicate a low confidence into a statistical significance of the
repeatability estimate which is for example the case for the year and month in year random effects. One way
to get more insight about this issue is to plot the distribution for the focal random effect and see whether the
distribution hits the “zero wall”.

Next we can go ahead and, similar to the frequentist approach, plot individual level distributions for visual
inspection of individual differences in behavioral types for movement distance.

We add the population level intercept (i.e. mean value) and coefficient for it’s sex (male or female) to each
elephant’s posterior distribution to make behavioral types more interpretable. This way, the individual level
posterior distributions represent the true trait values.
posteriorBT <- posterior_samples(m1_brm)[,9:43] %>%

gather(animal_id, value,
"r_animal_id[elephant1,Intercept]" : "r_animal_id[elephant9,Intercept]")%>%

separate(animal_id,
c(NA,NA,NA,"animal_id",NA),

16



sep = "([\\_\\[\\,])", fill = "right") %>%
left_join(select(data[!duplicated(data$animal_id),], animal_id, Sex))

posteriorBT[posteriorBT$Sex == "F",]$value <-
posteriorBT[posteriorBT$Sex == "F",]$value + fixef(m1_brm, pars = "Intercept")[1]

posteriorBT[posteriorBT$Sex == "M",]$value <-
posteriorBT[posteriorBT$Sex == "M",]$value + fixef(m1_brm, pars = "Intercept")[1] +
fixef(m1_brm, pars = "SexM")[1]

posteriorBT$col <- ifelse(posteriorBT$animal_id %in%
c("elephant17", "elephant4", "elephant8",

"elephant36","elephant20"),
posteriorBT$animal_id, "Other individuals")

posteriorBT <- posteriorBT %>%
dplyr::group_by(animal_id) %>%
dplyr::mutate(meanBT = mean(value))%>%
dplyr::ungroup()

BT <- ggplot()+
ggridges::geom_density_ridges(data = posteriorBT,

aes(x = value,
y = reorder(as.factor(animal_id), meanBT),
height = ..density..,
fill = col,scale = 3), alpha = 0.6)+

geom_point(data = posteriorBT[!duplicated(posteriorBT$animal_id),],
aes(x = meanBT,

y = as.factor(animal_id),
col = Sex),

size = 1)+
labs(y = "",

x = "BT mean daily distance (km)",
fill = "ID")+

theme_classic()+
scale_fill_manual(values = c("#F8766D","#C77CFF","#7CAE00",

"#FFCC00","#00BFC4","gray"))
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Figure 10: Behavioral type for movement distance.

Variation in behavioral plasticity: Random regression models
In general any environmental or experimental gradient along which we expect behavioral plasticity and along
which we have measured an individual multiple times can be used to analyze individual variation in plasticity.

Frequentist approach
Do elephants differ in how they shift movement between dry and wet seasons?: individual
variation in plasticity

We fit random intercepts for animal_id and individual random slopes for the environmental gradient (i.e. in-
teraction term between animal_id and environmental variable as a random effect) to test if individuals differ
in how they shift their behavior across an environmental gradient. As we saw earlier, elephants shift their
behavior in a non-linear fashion over months. We will simplify the here presented example and only test how
individuals shift their daily movement distances between the hot-wet season in Etosha (January - March) to
the cold-dry season (June - August). To facilitate model convergence we need to check that all individuals
were monitored in both seasons.
RN <- data[data$month %in% c(1,2,3,6,7,8),]
RN$season <- ifelse(RN$month %in% c(1,2,3), "wet","dry")
table(RN$season,RN$animal_id)

##
## elephant1 elephant10 elephant11 elephant13 elephant15 elephant16
## dry 13 60 56 33 33 26
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## wet 12 56 66 27 27 27
##
## elephant17 elephant18 elephant19 elephant20 elephant21 elephant22
## dry 29 26 26 27 26 28
## wet 26 27 27 27 27 27
##
## elephant23 elephant24 elephant25 elephant27 elephant28 elephant29
## dry 29 28 29 22 23 22
## wet 27 27 27 25 25 25
##
## elephant3 elephant30 elephant31 elephant32 elephant33 elephant34
## dry 20 23 23 23 20 20
## wet 27 25 24 23 24 20
##
## elephant35 elephant36 elephant37 elephant38 elephant39 elephant4
## dry 21 21 19 12 13 11
## wet 24 25 23 24 32 9
##
## elephant5 elephant6 elephant7 elephant8 elephant9
## dry 26 26 13 25 49
## wet 26 27 16 27 56

We start with comparing two models - one with a random intercept for animal_id and one with a random
intercept for animal_id AND a random slope over season for each animal (i.e. interaction between the season
and animal_id as a random effect).

ri <- lmer(meanDailyDisplacement ~ season + Sex +
(1|animal_id), RN)

ris <- lmer(meanDailyDisplacement ~ season + Sex +
(season|animal_id), RN)

AIC(ri,ris)

## df AIC
## ri 5 10945.45
## ris 7 10719.09

summary(ris)

## Linear mixed model fit by REML ['lmerMod']
## Formula: meanDailyDisplacement ~ season + Sex + (season | animal_id)
## Data: RN
##
## REML criterion at convergence: 10705.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3267 -0.5502 -0.1316 0.4237 6.6878
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## animal_id (Intercept) 7.975 2.824
## seasonwet 13.233 3.638 -0.47
## Residual 16.511 4.063
## Number of obs: 1865, groups: animal_id, 35
##
## Fixed effects:
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## Estimate Std. Error t value
## (Intercept) 12.7130 0.6386 19.909
## seasonwet 1.4736 0.6465 2.279
## SexM -1.5336 0.8698 -1.763
##
## Correlation of Fixed Effects:
## (Intr) sesnwt
## seasonwet -0.389
## SexM -0.625 0.004

The more complex model including the interaction between the season and individual identity fits better.
It seems that elephants shift their behavior differently between the two seasons. The negative correlation
of -0.47 between the random intercept and slope indicates that those individuals which had a longer daily
movement distance during the dry season increased their movement less strong during the wet season as
compared to individuals with a shorter movement distance during the dry season. To make this relationship
clearer, lets plot our model predictions and raw data:
RI<-augment(ri) %>%

dplyr::select(meanDailyDisplacement, season , animal_id, .fitted)

RIS<-augment(ris) %>%
dplyr::select(meanDailyDisplacement, season, animal_id, .fitted)

RI$.fittedRIS<-RIS$.fitted

df <- RI %>%
dplyr::group_by(animal_id, season) %>%
dplyr::summarise(RI = mean(.fitted),

RIS = mean(.fittedRIS))%>%
gather(type, Value, `RI`:`RIS`)

df$animal_id <- as.character(df$animal_id)
df$ID <- ifelse(df$animal_id %in%

c("elephant17", "elephant4", "elephant8",
"elephant36","elephant20"),

df$animal_id, "Other Individuals")

plot_ri <- ggplot(df[df$type == "RI",], aes(x = season, y = Value,
group = animal_id,color = ID)) +

geom_line() +
theme_classic() +
labs(y="", x="")+
ggtitle("Random Intercept")+
ylim(4,23)+
scale_color_manual(values = c("#F8766D","#C77CFF","#7CAE00","#FFCC00",

"#00BFC4","gray"))+
guides(color = guide_legend(nrow = 2, byrow = TRUE))

plot_ris <- ggplot(df[df$type == "RIS",], aes(x = season, y = Value,
group = animal_id,color = ID)) +

geom_line() +
theme_classic()+
labs(y="", x="")+
ggtitle("Random Intercept\n and Slope")+
ylim(4,23)+
scale_color_manual(values = c("#F8766D","#C77CFF","#7CAE00","#FFCC00",
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"#00BFC4","gray"))
mylegend<-g_legend(plot_ri)

grid.arrange(
arrangeGrob(plot_ri+ theme(legend.position="none"),

plot_ris+ theme(legend.position="none"),
ncol=2),mylegend,heights=c(10, 2))
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Figure 11: Individual shifts of movement between the dry and wet season: (left) Prediction lines assuming
elephants adjust behavior equally between the two seasons (random intercept), (right) Prediction lines
assuming elephants differ in the extent to which they shift movement distance between the two seaons
(random intercept and slope).

As we can see in the observed data, not all individuals increase their daily movement distance in the wet
season compared to their daily movement distance during the dry season in a similar way (Fig 12 left). In
fact there are few individuals that reduce movements and few that only slightly increase movements. The
random regression model accounts for these differences in behavioral plasticity of movement towards seasonal
changes(Fig 12 right).

Bayesian approach
Do elephants differ in how they shift movement over the course of the year?: individual
variation in plasticity

Now given that elephants apparently differ in how they adjust their behavior between dry and wet season, we
may want to revise our original model from section 1 and test whether a nonlinear random slope over month
improves model fit.
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m2_brm <- brm(meanDailyDisplacement ~ poly(month,2) + Sex +
(poly(month,2)| animal_id) + (1 | year/month),

data = data,
warmup = 500,
iter = 3000,
thin=2,
chains = 2,
inits = "random",
seed = 12345,
cores = my.cores)

m2_brm <- add_criterion(m2_brm, "waic")

m2_brm <- readRDS("m2_brm.rds")
comp <- loo_compare(m1_brm, m2_brm, criterion = "waic")
print(comp, simplify = FALSE, digits = 3)

## elpd_diff se_diff elpd_waic se_elpd_waic p_waic se_p_waic
## m2_brm 0.000 0.000 -10612.452 77.331 147.647 6.801
## m1_brm -262.066 25.733 -10874.518 80.454 87.451 4.395
## waic se_waic
## m2_brm 21224.904 154.662
## m1_brm 21749.036 160.908
deltaWAIC <- 21749.036 - 21224.904
deltaWAIC

## [1] 524.132

We use the Widely Applicable Information Criterion (WAIC) for model comparison. Similar to AIC, a smaller
WAIC indicates a better predictive model performance. If the difference in WAIC between the two models
(deltaWAIC) is larger than 7 we can infer that the more complicated model indeed provides a better fit. In
our case we get a deltaAIC of 524, the model comparison between the intercept and slope and the intercept
only model (section 1), therefore cleary indicates that the more complicated model produces a better model
fit. This means that elephants shift their movement behavior differently over the year.
summary(m2_brm)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: meanDailyDisplacement ~ poly(month, 2) + Sex + (poly(month, 2) | animal_id) + (1 | year/month)
## Data: data (Number of observations: 3766)
## Samples: 2 chains, each with iter = 3000; warmup = 500; thin = 2;
## total post-warmup samples = 2500
##
## Group-Level Effects:
## ~animal_id (Number of levels: 35)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.39 0.32 1.86 3.09 1.01 686 1238
## sd(polymonth21) 67.08 9.48 51.48 87.10 1.00 1141 503
## sd(polymonth22) 79.62 11.21 61.62 105.03 1.00 745 358
## cor(Intercept,polymonth21) -0.02 0.18 -0.37 0.33 1.00 700 1186
## cor(Intercept,polymonth22) 0.27 0.17 -0.07 0.59 1.00 679 387
## cor(polymonth21,polymonth22) -0.06 0.17 -0.39 0.27 1.00 850 1569
##
## ~year (Number of levels: 8)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.69 0.50 0.13 1.62 1.00 707 542
##
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## ~year:month (Number of levels: 77)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 1.01 0.14 0.77 1.29 1.00 1076 1385
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 13.78 0.63 12.56 14.94 1.01 336 406
## polymonth21 -25.01 13.95 -51.13 2.02 1.01 880 1532
## polymonth22 35.56 16.40 3.76 68.34 1.00 823 1206
## SexM -2.12 0.88 -3.78 -0.33 1.01 297 600
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 3.97 0.05 3.88 4.06 1.00 2374 1941
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

As we can see in the summary output - both polynomial terms of the random slope are “significant” and the
95% credible intervals do not include 0 (poly1 = 66.73 [50.83;87.86], poly2 = 79.26 [61.70;102.76]). However,
different than in the frequentist example, the correlation between random intercept and slope is not supported.
In the previous example, elephants that moved less during the dry season increased their movement more
strongly during the wet season as compared to elephants that already moved more during the dry season
(Fig 11). In the current example we find that elephants differ in how they shift their movement distance over
the course of the year (Fig 12) but the rate of shifting is unrelated to their behavioral type.
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Figure 12: Individual shifts of daily movement distance over month of the year: (left) In a random intercept
only model, elephants are not expected to differ in how they adjust movement over study month. (right)
When controlling for individual variation in shifts of movement distance over the course of the year with
a random regression model, we find that elephants indeed differ in how they shift movement distance over
study months.

Variation in behavioral predictability: Double hierarchical mixed
effects models
In addition to temporal plasticity, i.e. the extent to which elephants change their behavior over study
months, we may also suspect that elephants additionally differ in their predictability of behavior. Perhaps
some individuals are behaviorally more flexible while others are behaviorally more rigid. We can measure
individual variation in predictability by estimating variation in residual intra-individual variation (rIIV),
i.e. the spread of residuals around an individuals reaction norm. There have been several statistical measures
proposed to quantify this type of variation (see Cleasby et al. 2015). We would like to highlight that
double-hierarchical GLM’s (DHGLM) are the statistically soundest approach to estimate among-individual
variation in intra-individual variance:

Cleasby I., Nagakawa S., Schielzeth H. (2015) Quantifying the predictability of behavior: statistical approaches
for the study of between-individual variation in the within-individual variance. Methods in Ecology and
Evolution. doi: 10.1111/2041-210X.12281

We here present a relatively simple way to fit DHLGM’s to our elephant data using the brms-package.
Additionally to the variance structure on the “mean” part of the response variable, brms allows us to also
impose a variance structure onto the residual part of the variance (i.e. “sigma”). For example - we can use
DHGLM’s to partition the residual variance per individual. Individuals with a high residual variance are
accordingly more unpredictable than individuals with a low residual variance.
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double_model = bf(meanDailyDisplacement ~
poly(month,2) + Sex + (poly(month,2)|animal_id),

sigma ~ (1|animal_id))

m3_brm <- brm(double_model,
data = data,
warmup = 500,iter = 3000, thin=2,
chains = 2, inits = "random",
seed = 12345,
cores = my.cores)

m3_brm <- readRDS("m3_brm.rds")
summary(m3_brm)

## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: meanDailyDisplacement ~ poly(month, 2) + Sex + (poly(month, 2) | animal_id)
## sigma ~ (1 | animal_id)
## Data: data (Number of observations: 3766)
## Samples: 2 chains, each with iter = 3000; warmup = 500; thin = 2;
## total post-warmup samples = 2500
##
## Group-Level Effects:
## ~animal_id (Number of levels: 35)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.44 0.32 1.93 3.14 1.00 741 1219
## sd(polymonth21) 66.82 9.68 49.85 88.83 1.00 1376 1535
## sd(polymonth22) 71.65 10.11 54.06 93.76 1.00 1275 1946
## sd(sigma_Intercept) 0.27 0.04 0.21 0.35 1.00 835 1336
## cor(Intercept,polymonth21) -0.02 0.18 -0.37 0.32 1.00 775 1176
## cor(Intercept,polymonth22) 0.28 0.17 -0.08 0.58 1.00 893 1407
## cor(polymonth21,polymonth22) 0.01 0.18 -0.34 0.36 1.00 878 1532
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 13.76 0.57 12.61 14.87 1.01 332 457
## sigma_Intercept 1.34 0.05 1.24 1.43 1.00 484 834
## polymonth21 -17.31 11.67 -40.97 5.11 1.01 773 1447
## polymonth22 38.72 13.46 11.45 64.68 1.00 720 1421
## SexM -1.99 0.85 -3.68 -0.30 1.01 386 660
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

The model output looks very similar to the output in the previous section on random regression models,
except that we find an additional term under “Population-Level Effects”: “sigma_Intercept” and another
additional two terms under “Group-Level Effects”: “sd(sigma_Intercept)”. Similar to a population intercept,
“sigma_Intercept” is the population level estimate of the residual variance. “sd(sigma_Intercept)” on the
other hand is the estimate for individual differences in residual variance.

“sd(sigma_Intercept)” indicates whether there is support for individual variation in residual variance. In this
case, we find among-individual variation in predictability ωID = 0.27 [0.22 - 0.35].

Since sigma components are given in standard deviations on the log-scale we need to first exponentiate the
estimate and then square it to calculate the variance.
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head(get_variables(m3_brm),10)

## [1] "b_Intercept"
## [2] "b_sigma_Intercept"
## [3] "b_polymonth21"
## [4] "b_polymonth22"
## [5] "b_SexM"
## [6] "sd_animal_id__Intercept"
## [7] "sd_animal_id__polymonth21"
## [8] "sd_animal_id__polymonth22"
## [9] "sd_animal_id__sigma_Intercept"
## [10] "cor_animal_id__Intercept__polymonth21"
var.res <- exp(posterior_samples(m3_brm)$"sd_animal_id__sigma_Intercept")^2
mean(var.res);HPDinterval(as.mcmc(var.res),0.95)

## [1] 1.710455

## lower upper
## var1 1.499812 1.975022
## attr(,"Probability")
## [1] 0.95

We can also compute the “coefficient of variation in predictability” (CVP ) a standardized population-level
measure of the degree of variation in predictability among all our study individuals. CVP can be used to
compare the degree of among-individual variation in predictability across studies and traits and we therefore
recommend authors always to report it.

CVP =
√

exp(ω2
ID) − 1

CVP = 0.27 [0.2, 0.35]
log.norm.res <- exp(posterior_samples(m3_brm)$"sd_animal_id__sigma_Intercept"^2)
CVP <- sqrt(log.norm.res - 1)
mean(CVP);HPDinterval(as.mcmc(CVP),0.95)

## [1] 0.272176

## lower upper
## var1 0.2047689 0.3503828
## attr(,"Probability")
## [1] 0.95

Finally, similar to BLUPs in the first section we can plot the posterior distribution of each individual’s
predicted standard deviation (i.e. rIIV). Individuals with higher rIIV are less predictable than individuals
with lower rIIV (Fig ).
posteriorIIV <- posterior_samples(m3_brm)[,118:152] %>%

gather(animal_id, value,
"r_animal_id__sigma[elephant1,Intercept]" : "r_animal_id__sigma[elephant9,Intercept]")%>%

separate(animal_id, c(NA,NA,NA,NA,NA,"animal_id",NA),
sep = "([\\__\\[\\,])", fill = "right") %>%

dplyr::left_join(dplyr::select(data, animal_id, Sex))

# add population level mean residual variance
posteriorIIV$value <-

posteriorIIV$value +
fixef(m3_brm, pars = "sigma_Intercept")[1]
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posteriorIIV <- posteriorIIV %>%
dplyr::group_by(animal_id) %>%
dplyr::mutate(meanIIV = mean(value))%>%
dplyr::ungroup()

posteriorIIV$ID <- ifelse(posteriorIIV$animal_id
%in% c("elephant17", "elephant4", "elephant8",

"elephant36","elephant20"),
posteriorIIV$animal_id, "Other Individuals")

IIV <- ggplot()+
ggridges::geom_density_ridges(data = posteriorIIV,

aes(x = value,
y = reorder(as.factor(animal_id), meanIIV),
height = ..density..,
fill = ID,scale = 3), alpha = 0.6)+

geom_point(data = posteriorIIV[!duplicated(posteriorIIV$animal_id),],
aes(x = meanIIV,

y = as.factor(animal_id),
col = Sex),

size = 1)+
labs(y = "",

x = "Intraindividual variance (rIIV)",
fill = "ID")+

scale_fill_manual(values = c("#F8766D","#C77CFF","#7CAE00","#FFCC00","#00BFC4","gray"))+
theme_classic()
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Figure 13: Individual variation in rIIV (on the log scale). Individuals with higher rIIV are less predictable
than individuals with lower rIIV

Importantly, in order to assess whether individuals differ in variance the residual part of the model is
calculated on the log scale! In order to interpret rIIV in biological terms we backtransform rIIV by taking
it’s original scale by taking its exponent.
posteriorIIV$value.exp <-

exp(posteriorIIV$value)

posteriorIIV <- posteriorIIV %>%
dplyr::group_by(animal_id) %>%
dplyr::mutate(meanIIV.exp = mean(value.exp))%>%
dplyr::ungroup()

expIIV <- ggplot()+
ggridges::geom_density_ridges(data = posteriorIIV,

aes(x = value.exp,
y = reorder(as.factor(animal_id), meanIIV.exp),
height = ..density..,
fill = ID,scale = 3), alpha = 0.6)+

geom_point(data = posteriorIIV[!duplicated(posteriorIIV$animal_id),],
aes(x = meanIIV.exp,

y = as.factor(animal_id),
col = Sex),

size = 1)+
labs(y = "",
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x = "Intraindividual variance (km)",
fill = "ID")+

scale_fill_manual(values = c("#F8766D","#C77CFF","#7CAE00","#FFCC00","#00BFC4","gray"))+
theme_classic()
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Figure 14: Backtransformed rIIV: The most predictable individual (elephant 36) has an average residual
variance of 2.25km around its behavioral mean, whereas the least predictable individual (elephant 17) has an
average residual variance of 6.7km

As we saw from the model estimate - individual elephants indeed differ in how predictable they are in
their daily movement distance from ones that are highly predictable and consistent, characterized by a low
intra-individual variance, to ones with high intra-individual variance and hence lower predictability.

It seems that males may be less predictable in their behavior compared to females. One reason for this could
be because adult males are mostly solitary or in small bull groups and only join the female herd in search of
a mate. Females on the other hand stay in larger herds of related females.

Specifically, elephant17 has the highest rIIV and is hence least predictable by our model, whereas elephant36
is most predictable, which becomes apparent when plotting the observed movement distance and the model
predicted movement distance for the two individuals.
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Figure 15: Observed data and model predictions for the most and least predictable elephant.

Correlation between intra-individual variability and behavioral types
As a simple extention of the above introduced DHGLM we can also estimate the correlation between residual
intra-individual variance (i.e. an individual’s variance around its trait mean) and behavioral types (i.e. an
individual’s trait mean). Such a correlation can give insights whether certain behavioral types are particularly
predictable or un-predictable in their behavior. We can fit such a correlation by adding a term between
the specified random slope and intercept terms in both the mean part oft the model, and the variance part.
Below we chose to add the character “|a”, the character can be randomly chosen.
double_model_cor = bf(meanDailyDisplacement ~

poly(month,2) + Sex + (poly(month,2)|a|animal_id),
sigma ~ (1|a|animal_id))

m3_brm_cor <- brm(double_model_cor,
data = data,
warmup = 500,
iter = 3000,
thin=2,
chains = 2,
inits = "random",
seed = 12345,
cores = my.cores)

m3_brm_cor <- readRDS("m3_brm_cor.rds")
summary(m3_brm_cor)

## Family: gaussian
## Links: mu = identity; sigma = log
## Formula: meanDailyDisplacement ~ poly(month, 2) + Sex + (poly(month, 2) | a | animal_id)
## sigma ~ (1 | a | animal_id)
## Data: data (Number of observations: 3766)
## Samples: 2 chains, each with iter = 3000; warmup = 500; thin = 2;
## total post-warmup samples = 2500
##
## Group-Level Effects:
## ~animal_id (Number of levels: 35)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
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## sd(Intercept) 2.42 0.32 1.89 3.15 1.01 819 1247
## sd(polymonth21) 66.89 9.77 50.70 88.53 1.00 1147 1689
## sd(polymonth22) 74.04 10.62 56.05 97.17 1.01 1324 1758
## sd(sigma_Intercept) 0.27 0.04 0.21 0.35 1.01 1317 1547
## cor(Intercept,polymonth21) -0.06 0.16 -0.37 0.26 1.00 1289 1513
## cor(Intercept,polymonth22) 0.24 0.16 -0.09 0.53 1.00 1071 1782
## cor(polymonth21,polymonth22) 0.01 0.17 -0.31 0.34 1.00 1090 1551
## cor(Intercept,sigma_Intercept) 0.48 0.15 0.17 0.73 1.00 920 1331
## cor(polymonth21,sigma_Intercept) -0.16 0.17 -0.47 0.18 1.00 1240 1584
## cor(polymonth22,sigma_Intercept) -0.26 0.16 -0.54 0.07 1.00 1132 1928
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 14.21 0.54 13.19 15.32 1.00 540 1129
## sigma_Intercept 1.34 0.05 1.24 1.43 1.00 781 1165
## polymonth21 -16.52 12.02 -40.05 7.09 1.00 967 1480
## polymonth22 37.37 13.16 12.16 62.89 1.00 996 1433
## SexM -2.95 0.75 -4.50 -1.49 1.01 582 851
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

We now find an additional term “cor(Intercept,sigma_Intercept)” under “Group-Level Effects”.
“cor(Intercept,sigma_Intercept)” is the term that estimates whether average behavior (behavioral
type) and residual variance (predictability) are correlated. As we can see in the model output, there is
a positive correlation between “Intercept” and “sigma_Intercept” which is estimated at 0.5 [0.18, 0.74].
Elephants with longer daily travel distances are therefore also less predictable than elephants with shorter
movement distances.

Behavioral syndromes: Multivariate mixed effects models
Behavioral syndromes are among-individual correlations of two or more behaviors, i.e. the correlation between
each individuals estimated average trait values. Behavioral syndromes were formerly analyzed using classical
multivariate modelling techniques, like PCA or NMDS, on BLUPs extracted from univariate models (see
section 1) of the respective two or more behaviors. More recently these approaches have come under criticism
(see e.g. T.M. Houslay, A.J. Wilson (2017). Avoiding the misuse of BLUP in behavioral ecology. Behavioral
Ecology, 28(4), 948-952. doi: 10.1093/beheco/arx023 for an extended discussion). The state of the art
approach for analyzing behavioral syndromes are multivariate mixed models which can cope with multiple
response variables at the same time and estimate their correlation on the random effect (e.g. individual)
level. Mixed effects models are also very robust for differences in sample sizes (i.e. number of measurements)
between each individual. The R packages MCMCglmm and brms are regularly used to fit such models.

We here will use the brms package for model fitting. You can find more information on prior and model
specification in MCMCglmm in under https://tomhouslay.com/tutorials/ and in Hadfield (2010) “MCMC
methods for multi-response generalized linear mixed models: the MCMCglmm R package.”

For the simplicity of this tutorial we will drop the random effects of “year” and “month”. The three behaviors
are on very different scales. Travel distance in km, residence time in hours and turn angle correlation are on
very different scales. For better model fitting we will scale behaviors, meaning that we center each behavior
at its mean value and standardize it to units of 1 phenotypic standard deviation. As all three behaviors are
now on the same scale, it is easier to interpret the model estimates.
m4_brm <- brm(mvbind(scale(meanDailyDisplacement),scale(tac),scale(meanRT)) ~

Sex + poly(month,2) + (1|p|animal_id),
data = data, family = "gaussian",
warmup = 500,iter = 3000, thin=2,
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chains = 2, inits = "random",
seed = 12345,
cores = my.cores)

We can access posterior means and credible intervals using the summary() call.
m4_brm <- readRDS("m4_brm.rds")
summary(m4_brm)

## Family: MV(gaussian, gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: scale(meanDailyDisplacement) ~ Sex + poly(month, 2) + (1 | p | animal_id)
## scale(tac) ~ Sex + poly(month, 2) + (1 | p | animal_id)
## scale(meanRT) ~ Sex + poly(month, 2) + (1 | p | animal_id)
## Data: data (Number of observations: 3759)
## Samples: 2 chains, each with iter = 3000; warmup = 500; thin = 2;
## total post-warmup samples = 2500
##
## Group-Level Effects:
## ~animal_id (Number of levels: 35)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(scalemeanDailyDisplacement_Intercept) 0.48 0.06 0.37 0.61 1.00 1221 1806
## sd(scaletac_Intercept) 0.51 0.07 0.39 0.66 1.00 1070 1714
## sd(scalemeanRT_Intercept) 0.41 0.06 0.31 0.53 1.00 1465 1931
## cor(scalemeanDailyDisplacement_Intercept,scaletac_Intercept) -0.03 0.18 -0.37 0.30 1.00 1053 1449
## cor(scalemeanDailyDisplacement_Intercept,scalemeanRT_Intercept) -0.42 0.15 -0.68 -0.08 1.00 1418 1843
## cor(scaletac_Intercept,scalemeanRT_Intercept) 0.22 0.17 -0.11 0.53 1.00 1393 1458
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## scalemeanDailyDisplacement_Intercept 0.18 0.11 -0.04 0.40 1.00 1022 1286
## scaletac_Intercept 0.37 0.12 0.15 0.60 1.00 1086 1383
## scalemeanRT_Intercept 0.13 0.09 -0.06 0.33 1.00 1474 1573
## scalemeanDailyDisplacement_SexM -0.46 0.16 -0.79 -0.14 1.00 1158 1320
## scalemeanDailyDisplacement_polymonth21 -1.99 0.87 -3.66 -0.31 1.00 2523 2419
## scalemeanDailyDisplacement_polymonth22 8.11 0.88 6.38 9.81 1.00 2475 2313
## scaletac_SexM -0.78 0.18 -1.14 -0.43 1.00 941 1280
## scaletac_polymonth21 10.02 0.73 8.63 11.45 1.00 2332 2148
## scaletac_polymonth22 -16.67 0.76 -18.18 -15.20 1.00 2326 2209
## scalemeanRT_SexM -0.15 0.14 -0.43 0.12 1.00 1239 1702
## scalemeanRT_polymonth21 3.99 0.92 2.18 5.91 1.00 2380 2284
## scalemeanRT_polymonth22 3.96 0.92 2.18 5.70 1.00 2391 2175
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_scalemeanDailyDisplacement 0.86 0.01 0.84 0.88 1.00 2332 2108
## sigma_scaletac 0.75 0.01 0.74 0.77 1.00 2383 2236
## sigma_scalemeanRT 0.92 0.01 0.90 0.94 1.00 2198 1740
##
## Residual Correlations:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## rescor(scalemeanDailyDisplacement,scaletac) 0.26 0.02 0.23 0.29 1.00 2381 2392
## rescor(scalemeanDailyDisplacement,scalemeanRT) 0.03 0.02 -0.00 0.06 1.00 2097 1882
## rescor(scaletac,scalemeanRT) -0.12 0.02 -0.15 -0.09 1.00 2293 1989
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

The model output contains information how each behavior is affected by the fixed effects, independently from
the other two behaviors (“Population-level Effects”). The output also contains information on the variance
explained by the random effect of individual in each behavior (“Group-Level Effects, terms with”sd" in the
beginning) and about the correlation between behaviors (terms with “cor” in the beginning). Finally the
section “Family Specific Parameters” contains the residual variance for every behavior.

Lets try to make sense how we can calculate the repeatability of of each behavior (similar to a univariate
model).Lets recalculate repeatability for movement distance. Mind, we are using indexing here because column
names are becoming very long. For example, when selecting the column containing the posterior distribution
of the variance of animal_id: "sd_animal_id__scalemeanDailyDisplacement_Intercept" we simply use the
index of the column [,13]. Mind again, different from MCMCglmm, in brms variance parameters are in
standard deviations and need to be squared!
colnames(posterior_samples(m4_brm))[1:18]

## [1] "b_scalemeanDailyDisplacement_Intercept"
## [2] "b_scaletac_Intercept"
## [3] "b_scalemeanRT_Intercept"
## [4] "b_scalemeanDailyDisplacement_SexM"
## [5] "b_scalemeanDailyDisplacement_polymonth21"
## [6] "b_scalemeanDailyDisplacement_polymonth22"
## [7] "b_scaletac_SexM"
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## [8] "b_scaletac_polymonth21"
## [9] "b_scaletac_polymonth22"
## [10] "b_scalemeanRT_SexM"
## [11] "b_scalemeanRT_polymonth21"
## [12] "b_scalemeanRT_polymonth22"
## [13] "sd_animal_id__scalemeanDailyDisplacement_Intercept"
## [14] "sd_animal_id__scaletac_Intercept"
## [15] "sd_animal_id__scalemeanRT_Intercept"
## [16] "cor_animal_id__scalemeanDailyDisplacement_Intercept__scaletac_Intercept"
## [17] "cor_animal_id__scalemeanDailyDisplacement_Intercept__scalemeanRT_Intercept"
## [18] "cor_animal_id__scaletac_Intercept__scalemeanRT_Intercept"
var.animal.dist <- posterior_samples(m4_brm)[,13]^2
var.res.dist <- posterior_samples(m4_brm)[,19]^2

var.tot.dist <- var.animal.dist + var.res.dist

RDist <- var.animal.dist / var.tot.dist
mean(RDist);HPDinterval(as.mcmc(RDist),0.95)

## [1] 0.2346999

## lower upper
## var1 0.1456801 0.3241302
## attr(,"Probability")
## [1] 0.95

As expected, the repeatability of behavior (here daily movement distance) is equal to the repeatability
calculated from a univariate model (section 1).

The brms package already calculates the mean and credible interval of the among-individual correlation
between behaviors for us and prints it in the model summary. We can access and plot the posterior distribution
of this correlation. If the credible interval (dashed lines in Fig 15) does not include 0 (indicated in red) we
can assume a significant correlation.
Dist_RT <- posterior_samples(m4_brm)[,17]

par(mar=c(2, 2, 3, 2))
plot(density(Dist_RT),

main="Correlation Distance - RT",
xlab="",ylab="",cex.main=0.8)

abline(v=0,col="red",lwd=2)
abline(v=mean(Dist_RT),col="black",lwd=2)
abline(v=HPDinterval(as.mcmc(Dist_RT))[1],col="black",lty=2)
abline(v=HPDinterval(as.mcmc(Dist_RT))[2],col="black",lty=2)
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Figure 16: Correlation between mean behavioral expression of movement distance and residence time. Dashed
lines indicate the 95% credible interval of the posterior distribution.

Daily movement distance and residence time are negatively correlated (cor = -0.4) on the individual level
meaning that individuals that travel farther also have shorter average residence times at a location. Examining
the posterior distribution, the credible intervals are really wide, most likely because multivariate mixed
models are very data hungry.
In the summary output we already see that the correlation between daily movement distance and turn angle
correlation (mean = -0.02, credible interval = [-0.36, 0.32]), and between residence time and turn angle (mean
= 0.22, credible interval = [-0.13, 0.52]) both overlap with 0, indicating that there is no functional correlation
between the respective two movement traits on the individual level. For demonstrative purposes we can
anyways go ahead and plot the among individual correlation of behaviors. For this we need to extract the
posterior mean behavioral types (BLUP) and calculate the slope between behaviors.
BLUP <- data_frame(Trait = names(posterior_samples(m4_brm)[,25:129]),

Value = colMeans(posterior_samples(m4_brm)[,25:129])) %>%
separate(Trait, c(NA,NA,NA,NA,"Trait","animal_id",NA),

sep = "([\\__\\[\\,])", fill = "right") %>%
spread(Trait, Value)

head(BLUP)

## # A tibble: 6 x 4
## animal_id scalemeanDailyDisplacement scalemeanRT scaletac
## <chr> <dbl> <dbl> <dbl>
## 1 elephant1 0.526 0.000440 0.290
## 2 elephant10 0.489 -0.501 0.0543
## 3 elephant11 -0.317 -0.548 -0.632
## 4 elephant13 1.02 -0.0978 -0.0697
## 5 elephant15 -0.470 0.0960 0.160
## 6 elephant16 0.222 -0.231 0.0798

For the slope we divide the covariance between the two focal behaviors by the variance of the one to be
plotted on the x - axis, where the covariance is calculated as

COV(X,Y ) = (CORX,Y ∗ sqrt(V arX) ∗ sqrt(V arY )

For example, the slope between movement distance and residence time would be calculated as follows:
cov.DIST_RT <-

posterior_samples(m4_brm)[,17] *
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sqrt(posterior_samples(m4_brm)[,15]^2) *
sqrt(posterior_samples(m4_brm)[,13]^2)

var.Dist <- posterior_samples(m4_brm)[,13]^2

DIST_RT_slope <- cov.DIST_RT / var.Dist
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Figure 17: Behavioral syndrome between Daily movement distance, residence time (RT), and turn angle
correlation (TAC)

In Fig 16 we clearly see the negative correlation between daily movement distance and residence time and a
lack of such correlation between the other two combinations of behavior. Mind, because we scaled behaviors
in the beginning it is however not as straight forward as in section 1 to add estimates of population level
effects (Intercept and Sex, resp.) to BLUP’s to calculate the actual behavior (e.g. movement distance in km).

Concluding remarks
Using tracking data of 35 African elephants from Etosha Nationalpark in Namibia we could show that,
after controlling for two basic fixed effects - month of the year and sex of the elephant - individuals differed
consistently in three simple movement traits quantified on a weekly basis: weekly means of daily movement
distance, mean residence time at any given location within a week, and turn angle correlation over all
successive steps within a week. We did not control for a range of other parameters that are likely to affect
behavior, e.g. habitat composition, presence of other elephants and herd size (which is variable over time),
age of the elephant etc. In a systematic study other fixed effects that are known or expected to affect behavior
need to be controlled for. The intention of this example is to be a “how to” guide for ecologists. For a
research example that attempts to draw actual conclusions on individual variation in elephant behavior one
would need to include more covariates.
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We further found that elephants differed in how they adjusted behavior over seasonal changes. Elephants that
moved over shorter daily distances during the dry season than their conspecifics had the tendency to either
further decrease their movement during the wet season or to increase it less strongly than their more mobile
conspecifics which increased movement during the wet as compared to the dry season. We further found
evidence that indeed, elephants differed how they changed their behavior over the entire year, making a strong
case for random regression over month of the year. After controlling for individual differences in intercept and
plasticity over the course of the year, elephants still differed in how predictable they were in their behavior,
calculated as individual specific residual variance. While some elephants had a high residual variance and
were unpredictable in their behavior over the time evaluated, others were much more predictable. Out of
the three movement traits evaluated, two were negatively correlated on the individual level - elephants with
shorter daily movement distance also had longer residence times. Turn angle correlation was uncorrelated to
movement distance or residence time.

We hope that this tutorial may stimulate wildlife ecologists to explore their data for consistency in individual
variation of movement traits to answer novel and biologically more detailed questions.
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