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Abstract
This article discusses the counterpart of interactive machine learning, i.e., human learning while being in the loop in a 
human-machine collaboration. For such cases we propose the use of a Contradiction Matrix to assess the overlap and the 
contradictions of human and machine predictions. We show in a small-scaled user study with experts in the area of pneu-
mology (1) that machine-learning based systems can classify X-rays with respect to diseases with a meaningful accuracy, 
(2) humans partly use contradictions to reconsider their initial diagnosis, and (3) that this leads to a higher overlap between 
human and machine diagnoses at the end of the collaboration situation. We argue that disclosure of information on diagnosis 
uncertainty can be beneficial to make the human expert reconsider her or his initial assessment which may ultimately result 
in a deliberate agreement. In the light of the observations from our project, it becomes apparent that collaborative learning 
in such a human-in-the-loop scenario could lead to mutual benefits for both human learning and interactive machine learn-
ing. Bearing the differences in reasoning and learning processes of humans and intelligent systems in mind, we argue that 
interdisciplinary research teams have the best chances at tackling this undertaking and generating valuable insights.

Keywords Machine teaching · Machine learning · Experts · Feedback loop

1 Introduction

Machine learning (ML) and especially deep learning (DL) 
have seen a dramatic resurgence in the past decade, largely 
driven by increases in computational power and the avail-
ability of large datasets that enable a faster training and ulti-
mately more accurate models [38]. Although in many use 
cases, ML models have been reported to efficiently auto-
mate various tasks like automated object recognition [12], it 
appears that we have only yet begun to harness the benefits 
of these technological advancements. The victory of the 
AlphaGo algorithm over the world champion of the highly 

complex board game Go (estimated 210170 board positions) 
stands as a beacon example of this inferential power [28].

At the time where AlphaGo defeated the world cham-
pion, Silver et al. [28] had already submitted a paper to the 
journal “Nature” featuring an even more powerful version 
of AlphaGo, named AlphaGo Zero. By relying only on 
its reinforcement learning strategy and experiences from 
matches vs. AlphaGo only, AlphaGo Zero became by a mag-
nitude more powerful and innovative than its predecessor, 
without the need of directly relying on human knowledge 
[29]. AlphaGo Zero’s winning strategies were previously 
unknown and therefore difficult to identify, understand and 
combat for humans and also for AlphaGo. Although this 
victory of AlphaGo and the advancements of AlphaGo Zero 
were regarded as major milestones in artificial intelligence 
(AI) research itself [28], it could also constitute the advent 
of an equally important new pattern for human-machine col-
laboration. Fan Hui, former European champion of Go who 
had also lost to AlphaGo, mentioned the following in an 
interview with nature news: “[...] The problem is humans 
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sometimes make very big mistakes, because we are human. 
[...] So I lose, I study the game, and maybe I change my 
game. I think it’s a good thing for the future.”1

This statement implies, that by making mistakes, we 
may be able to learn from them with the aid of machines 
and therefore improve our own intelligence. The concept 
of learning from mistakes may be nothing new to us, yet it 
differs drastically between cultural regions [18]. In schools 
within the western hemisphere, the process of learning from 
errors appears to be mostly limited to the recognition of 
errors by the teacher, disregardment of the error and drawing 
attention to proven methods [32]. This approach may lead 
us to apply strategies that allow us to avoid errors at all and 
stick to proven methods which may hinder the emergence 
of new and innovative problem solutions. In comparison to 
this learning model, it was found that a different approach 
of dealing with errors in the learning process resulted in 
much higher scores of Japanese students in international 
math competitions.

It appeared that—because students are encouraged to rec-
ognize, analyze and confront themselves with the errors—
they tend to find the solutions to the errors themselves and 
they develop stronger capabilities in inference and problem 
solution [18, 32].

In effect, this very much resembles the ideas represented 
in the domain of ML, where an algorithm trains itself, cal-
culates its own error rate in the task it is set to perform and 
continuously tries to optimize its own capabilities. While 
new patterns of mass-training algorithms such as human-
in-the-loop or interactive machine learning [1] have evolved 
that utilize human judgment to show algorithms where their 
errors lie, we appear to increasingly accept that algorithms 
need to make errors to become better.

These insights suggest that, instead of just harnessing the 
power of ML solutions as decision support systems (DSS) 
[16] or automation mechanisms and instead of continuously 
empowering these algorithms, it is time that we accept our 
errors and make use of those algorithms as teachers that 
may see things differently than we do [18]. It may indeed be 
possible, that this approach is not only limited to domains 
like the board games Go or chess, such that we may be able 
to enhance our knowledge with the help of machines in a 
plethora of domains. However, areas of conflict arise for the 
operationalization of this stream of thought, due to the way 
humans deal with conflicting information which is delivered 
by machines.

For one, there is the danger of an automation bias, 
which may lead to uncritical acceptance of possibly erro-
neous machine behavior [20]. A conjunction of learned 

helplessness resulting from automation bias, as well as auto-
mation bias itself has led to fatal decision making in the area 
of aviation in the past, resulting in the deaths of hundreds2. 
In this regard, humans tend to trust too much in the capa-
bilities of the technology and instead of learning to improve 
their own skills, they simply rely on the technology. Sec-
ondly, humans also tend to be overconfident or anchored to 
their own opinion and may be reluctant to change their judg-
ments and beliefs, because they either strongly believe in 
the ex-ante available information that they are able to recall 
using their own knowledge [7] or they are highly confident 
of their own expertise and therefore are not willing to use 
conflicting information to adapt their own assessment [20].

Thirdly, because we have learned certain strategies or 
procedures to deal with problems, we tend to stick to these 
strategies [14]. Analogical reasoning leads us to compare 
new problems to already known problems and therefore look 
for already known solutions, which makes us inert to find 
new ways of solving a problem [17, 27]. Inertia has been 
shown to drive individuals to use known systems instead 
of alternative and better systems [24]. Aside from the indi-
vidual level, Nijssen et al. [22] even found evidence that 
knowledge inertia lead organizations to be less innovative. 
Some aspects of inertia, such as knowledge and procedural 
inertia, appear to be a hindrance to successfully learning 
novel solution methods [14].

These and related factors create a tension around the idea 
of us being taught by intelligent machines on the basis of 
our errors. Nevertheless, we believe that mankind needs to 
grasp the current opportunity of man-computer symbiosis 
[15], such that not only algorithms become more intelligent, 
but also humans may widen their horizons of reasoning and 
understanding with the help of the new technology. In this 
discussion we will start to answer the following question 
with respect to these conflicting pieces of information: How 
can we benefit from being a human-in-the-loop and how 
can we learn from our mistakes by the help of intelligent 
machines?

2  Human‑in‑the‑Loop and Contradiction 
Learning

First, it is important to note that the concept proposed by 
this paper makes only sense for situations where humans 
work with ML-based (and especially ML-based) systems 
and where there is still some level of inaccuracy on side of 
the user and on the side of the system. This applies certainly 
for recent IML systems—the focus of this Special Issue—
but can also be extended to decision support systems that use 

1 https ://www.natur e.com/news/go-playe rs-react -to-compu ter-defea 
t-1.19255 2 https ://bit.ly/2HvO6 KY.

https://www.nature.com/news/go-players-react-to-computer-defeat-1.19255
https://www.nature.com/news/go-players-react-to-computer-defeat-1.19255
https://bit.ly/2HvO6KY
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ML, but the concept cannot be extended to decision automa-
tion in general.

If ML-based systems and users agree on an outcome, the 
likelihood that the system or the human learns, is low. How-
ever, if there is a disagreement, this discrepancy may be use-
ful in two ways: the user can overrule and teach the system 
in case of IML, but this situation can also lead to a reconsid-
eration of the own judgment on the side of the user. In the 
long-run, this can lead to the detection of unknown patterns 
on the side of the individual user which would make her or 
him smarter and could also lead—ultimately—to new dis-
coveries that would advance our understanding of the world.

If we think of the AlphaGo Zero example from the 
introduction, this aspect of the human-computer symbiosis 
becomes apparent: AlphaGo Zero tried out strategies that 
had not been pursued by humans in their short history of 
2500 years of Go game playing and that thus had not been 
taught by adepts to their disciples. These strategies did not 
belong to the human “handbook of successful Go playing”. 
AlphaGo Zero played millions of games and tried out very 
new and innovative strategies and found strategies that can 
be deemed to be very successful and ultimately “pulver-
ized” even the best players and systems that had been trained 
on the base of human vs. human Go matches. Experts and 
professional Go players can now use AlphaGo Zero to learn 
these new strategies which thus is a nice instantiation of the 
general concept that this article suggests.

One may argue that games like Chess and Go are in prin-
cipal competitive and specifically AlphaGo does not explain 
which particular move in the player’s strategy was especially 
important for the outcome, yet the idea of being taught by 
machines may greatly differ to ML-based system usage in 
practice. Nevertheless, the principle concept of machines 
teaching us new knowledge based on our own errors is inde-
pendent on the contextual setting (e.g., competitive vs. coop-
erative) and may directly be related to us making decisions 
on our knowledge and the machine making decisions based 
on ML-trained knowledge which may supersede our own 
knowledge in certain problem domains (e.g., either through 
pattern recognition on large amounts of data, or through 
reinforcement learning which enables the search for effi-
cient and potentially novel strategies in an increasingly high-
dimensional problem space). Therefore, we may in princi-
ple in many situations be able to learn from machines that 
reveal our own errors and which may have led us to wrong 
or inefficient decisions. This, in effect, may even enable us 
to improve our own decision making capabilities.

Theoretically, the aforementioned concept is linked to 
what we, in our research context, refer to as “Contradiction 
Error Learning”. In psychology, an increasing number of 
research works is dedicated to the research on learning from 
errors [18]. While traditional literature on learning suggests 
that errors must be avoided by all means during learning [4, 

30], scholars like Metcalfe [18] postulate that the western 
world obstructs its own learning possibilities by the tra-
ditional paradigm of error avoidance which we are taught 
from our early lives on. The power of learning from errors 
is underlined by studies that investigate the superior per-
formance of Japanese students’ versus American students’ 
mathematical capabilities. Stevenson and Stigler [32] for 
example found that while American students are taught to 
avoid errors and to simply follow established ways, Japanese 
students are encouraged to learn from their errors, which 
enables them to find more creative and possibly novel ways 
of solving problems.

As literature on learning from errors states, feedback on 
the errors a learner makes is obligatory [13, 19] and must 
be understood and accepted by the learner; only then he or 
she is able to process the information that the contradiction 
carries and hence can improve his or her skills on this basis 
[3]. While receiving constructive and corrective feedback 
on making errors is necessary for a learning effect to occur, 
the question is if the teacher has to be necessarily human. 
Since tutoring systems have shown that we are very well able 
to learn from systems (e.g., [2, 35]), it appears plausible to 
implement intelligent machines that help us in overcoming 
erroneous decisions, such that we become more competent 
and skilled.

However, we must also acknowledge that people tend to 
be too uncritical with machine reasoning and therefore are 
prone to automation bias [21], too uncritical with their own 
knowledge and thus fall victim to an overconfidence bias 
[7] or too inert to their existing knowledge to learn from 
their errors [14]. It remains therefore an open question—and 
lastly an empirical question—whether ML systems can be 
used to make humans, i.e., their users, smarter or can even 
be used to make totally new discoveries.

3  Testing the Concept in Real Life: First 
Insights

In order to motivate our fellow researchers to explore the 
question if humans are able to learn from their errors with 
the aid of ML-based DSS, we want to provide the first steps 
towards an answer with this discussion and an explorative 
experiment. To take the first steps in giving an answer to 
the open question and to improve our understanding on the 
human-in-the-loop concept, we conduct a two-step sequen-
tial experiment with a medical expert in the area of pneu-
monology and observe his interaction with an ML-based 
DSS with the aid of a think-aloud protocol. Through our 
discussion including a small-scale, explorative experiment 
we aim to (1) provide first indicators for an error-learning 
process induced by ML-based DSS and (2) we aim to moti-
vate fellow researchers to thorougly investigate the research 
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phenomenon of error-learning with the aid of ML-based 
DSS. To provide a better understanding of our methodol-
ogy, we first present the components of our experiment in 
more detail in the following.

3.1  Development of the ML‑Based System

For the purpose of this study, we train a Convolutional 
Neural Network (CNN) with data from the Chest X-ray 
database from the National Institutes of Health3 that com-
prises 112,000 frontal view X-ray images of 30,805 unique 
patients. These cases have already been labeled with respect 
to the most common lung diseases. This dataset contains 14 
common thorax disease categories. Therefore this dataset is 
an extension of the eight common disease patterns listed in 
[37]. For our experiment, we decided to use diseases which 
a medical expert should clearly recognize on X-ray images, 
especially against the background of the clinic daily busi-
ness. A medical expert helped us to create this sub sample. 
Based on the professional expertise, we have selected nine 
diseases (see Table 1).

For data preprocessing we decided to remove X-ray 
images with insufficient quality from the training set and the 
validation set to retain an unbiased and clean data set for the 
best possible training effect. We identified X-rays with such 
insufficient quality, i.e., blur that can occur when the patient 
moves during the recording, X-rays that contain medical 
devices, which partially cover the lung, and photographed 
X-rays, which differ in pixel structure from the actual X-rays. 
Due to the fact that an automation of this filtering process is 
difficult, we have selected the appropriate X-rays manually.

Recent research has investigated advantages and disad-
vantages of this approach (for example [8]). We decided to 
train the classifier for the most common lung diseases [37]. 
The raw data contains sets of X-ray images that correspond 
to the same shot but from multiple angles, or multiple shots 
of similar conditions on the same person. We manually 
selected unique and high-quality X-ray images from the 
raw data set. We made sure that a patient is not included 
several times with different diseases. The selection of unique 
and high-quality X-rays serves two purposes: (1) we aimed 
to ascertain comparability in the performance between 
human and machine. (2) In addition, previous work showed 
clearly that insufficient quality of input data has a negative 
influence on the accuracy of the models. In addition, we 
only use X-rays with a distinctive diagnosis. This means 
that patients with multiple diseases at the same time are 
excluded. We use 90–100 images for each class and apply 

image augmentation. For this purpose, we have extended the 
individual classes accordingly, as shown for example in the 
work of Esteva et al. [8], such that the number of images cor-
responds to the distribution of the different diseases. Classes 
with rotated X-rays are determined by a random selection of 
existing images and this selected image is rotated randomly 
between −15◦ and 15◦ . Therefore, we apply an augmentation 
factor of approximately 44. Based on our data preprocessing 
we use 40,000 images for training. As the ground truth for 
the X-ray diagnosis we use the labels for each image pro-
vided in the Chest X-ray database. Against this background, 
our approach of data preparation follows the recommenda-
tions of [8].

For the training procedure, we selected the AlexNet archi-
tecture. This decision is the result of many pre-tests with 
different CNN models such as the Inception V3. AlexNet is 
based on the work of [12] and is a well-known model in the 
research area of CNN. This CNN consists of eight weighted 
layers, consisting of five convolutional layers followed by 
three fully connected layers [12]. We feed images into the 
network with a 277 × 277 pixels resolution. All layers use 
the same global learning rate of 0.001 and a decay factor of 
16 [33]. Additionally, we use the RMSProp optimizer with 
a momentum of 0.9 [8]. Batches are sampled using a fixed 
batch size of 16 images in line with [11]. In line with Irvin 
et al. [11] and Esteva et al. [8] we utilize a validation set for 
hyperparameter tuning and assess the performance of our 
model on a distinct test set. The procedure of using an addi-
tional test set is considered state of the art and is intended to 
ensure the generalizability of the trained ML model. The test 
set contains 200 unique images from 200 patients randomly 
sampled from the full preprocessed data set. In this step of 
our work, we put a lot of effort in ensuring that no patient 
X-ray image overlaps with data from our training procedure. 
Therefore, the test set contains unique X-rays that are not 
contained in the training set and validation set [8, 11].

3.2  Experimental Setup

After we have successfully trained the system, we take the 
human into the loop. Human-in-the-Loop in the context of 
machine learning is defined as a procedure that integrates 
human capabilities in the entire machine learning process 
[26]. The idea behind our experiment is that instead of just 
harnessing the power of ML solutions as decision support 
systems (DSS) or automation mechanisms and instead of 
continuously empowering these algorithms by human input, 
we may utilize those algorithms as teachers that may see 
things differently than we do [18].

We invite a medical expert to identify the diseases based 
on randomly selected X-ray images (which is definitely not 
an easy question because usually more than this visual infor-
mation—which is often provided with low resolution—is 

3 A current version containing 14 disease labels can be found under 
https ://nihcc .app.box.com/v/Chest Xray-NIHCC . We downloaded the 
data in September 2018.

https://nihcc.app.box.com/v/ChestXray-NIHCC
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available from e.g., a radiologist). The experiment is con-
ducted in two steps: In step one, we ask the the medical 
expert to make a diagnosis based on an X-ray image that 
is presented to him within a UI of an application. In each 
diagnosis decision, the medical expert is able to choose 
one of eight potential diagnoses. In addition, the medical 
expert must provide his degree of certainty with respect to 
the diagnosis. In step two, we confront the expert with the 
results of our ML-based system for each previously diag-
nosed X-ray image. The results of the ML-based system is 
presented in the adapted application UI from step one by 
providing the ML-based system’s diagnosis and the level of 
decision certainty to the medical expert. Both experimental 
steps are performed with the same 20 X-ray images which 
contain instances of all eight possible disease labels. The 
X-ray images are mainly taken from the test set, with the 
exception of the instances of fibrosis which we took from 
the validation set, because our algorithm did not perform 
well for fibrosis images from the test set. It must be noted 
that—aside from assuring that the X-ray images were of high 
quality, such that the expert would be able to assess them—
we especially selected X-ray images where our ML-based 
system achieved high accuracy. This was done such that the 
expert would not immediately disregard the information of 
the system, such that we could observe at all if the expert 
would even consider learning from the system. Furthermore, 
we opted for the number of 20 images to meet the practical 
requirements (i.e., tight time frames due to hospital work) 
and not to generate too much cognitive stress for the subjects 
which could have led to biased results.

We use a think-aloud protocol to better understand the 
cognitive process and content of a problem-solving strategy 
while the expert reflects his decisions. This is a frequently 
used technique which has been successfully applied in the 
domains of Human-Computer Interaction and Information 
Systems [36]. We log the verbalization and write it down 
accordingly [5], which primarily serves the knowledge 
extraction to make expert knowledge accessible. In the con-
text of computer science and IS research, the usage of think-
aloud protocols in interface design are effective to capture 
both, a user’s approach to a task and why problems occur 
when users interact with computer systems [34]. Figure 1 
shows the experimental setup.

4  Results

4.1  ML‑Based System Results

In this article we provide very first insights with respect to 
the proposed approach. Table 1 presents the model perfor-
mance which is in line with other works.

Table 1 shows that the performance of our trained model 
is in line with results reported in previous literature. A more 
detailed analysis of the data shows that our model is able to 
recognize the different diseases with unequal precision. It is 
remarkable that Atelectasis is recognized quite well (as with 
[37]). However, Fibrosis is obviously difficult for the model 
to recognize, which is consistent with previous research. In 
line with previous research [11, 37] we agree that it is not 
advisable to use such ML systems in the current stage in 
business practice without complementing the results with 
human expert knowledge. Building truly large-scale, fully-
automated medical diagnosis systems with high precision 
seems to remain a difficult task [37].

Fig. 1  Experimental setup

Table 1  Results of our model in comparison with previous works 
bases on the classification accuracy

Diagnosis Our [11] [37] [39] [25]

Atelectasis 0.923 0.976 0.716 0.772 0.8094
Cardiomegaly 0.452 0.647 0.807 0.904 0.9248
Effusion 0.586 N∖A 0.784 0.859 0.8638
Fibrosis 0.000 N∖A 0.769 0.767 0.8047
Infiltration 0.800 N∖A 0.609 0.695 0.7345
Mass 0.610 N∖A 0.706 0.792 0.8676
Nodule 0.701 N∖A 0.671 0.717 0.7802
Pneumothorax 0.610 N∖A 0.806 0.841 0.8887
Pleural thick 0.690 0.993 0.708 0.765 0.8062
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4.2  Quantitative Experiment Results

Nevertheless, the data we gathered from our analyses and 
observations are sufficient to take the first steps in illumi-
nating, whether humans are able to learn from ML-based 
DSS. Whenever systems and humans assessing the same 
material (e.g., in IML), we propose to present a matrix that 
we call a “Contradiction Matrix” which helps to understand 
the learning effect that might occur in the particular setting. 
Table 2 shows the structure of this matrix which is based on 
the concept of the confusion matrix [31] and is adapted for 
the application in IML.

For our particular case and in the very first step of the 
experiment (the ML system and the medical expert evalu-
ate the X-rays independently of each other and without any 
information on uncertainty) the Contradiction Matrix looks 
as depicted in Table 3.

Table 3 shows that in 10% of all cases, both, the human 
user and our system came up with the correct diagnosis at 
the same time. In 50% of all cases, our system was accurate, 
but the human user was not. In this case, we would like 
the human user to learn. But in 5% of the cases, the user 
was accurate yet our system was not. In this situation, ML 
systems should be corrected by the means of IML meas-
ures. The overall accuracy of the ML system in the first step 
(Fig. 1) is 60% while the overall accuracy of the human 
expert is only 15%.

After confronting the human expert with the system’s 
diagnosis in the second step of the experiment, we arrive 
at the following results: the human changes his decision in 
35% of all cases after being presented the results of the ML 
system. However, in 20% of the cases, the medical expert 

wants to tell the system some important features that the 
system probably did not recognize.

After correction, the accuracy of the user rises up to 25% 
(previously 15%). Table 4 provide the details.

In the first experiment, we focused on supporting the 
decision making process and in the second experiment we 
present additional information on uncertainty to the medical 
experts. In the second experiment we selected new X-ray 
images and now provide information on system uncertain-
ties in the form of the probabilities of the possible diseases 
to the human expert. Table 5 shows the results of the initial 
diagnoses.

Table 3 shows that in 5% of all cases the human user 
and the system provide an accurate diagnosis at the same 
time. In contrast to that, we observe that in 50% of all cases, 
our system is accurate, but the human user is not. In these 
cases, human users may enhance their knowledge by learn-
ing from the contradictions. Moreover, in 15% of all cases, 
the human user is accurate but the system not. In these situ-
ation, ML systems should ideally be corrected by the means 
of IML measures. In 25% of all cases, the human user and 

Table 2  Contradiction matrix

Human

Correct Incorrect

ML-based system
   Correct How often were both, the human user and the system, 

accurate?
How often was the system accurate, but the human user not? 
→Contradiction learning, human user should learn

   Incorrect How often was the human user accurate, but the system not? 
→ System should be corrected (IML)

How often were both, the human user and system, inaccurate?

Table 3  Initial Contradiction Matrix in the first experiment

Human
∑

Correct Incorrect

ML
   Correct 0.10 0.50 0.60
   Incorrect 0.05 0.35 0.40
   
∑

0.15 0.85

Table 4  Contradiction Matrix in the first experiment after confronta-
tion

Human
∑

Correct Incorrect

ML
   Correct 0.20 0.40 0.60
   Incorrect 0.05 0.35 0.40
   
∑

0.35 0.75

Table 5  Initial Contradiction Matrix in second experiment

Human
∑

Correct Incorrect

ML
   Correct 0.05 0.55 0.60
   Incorrect 0.15 0.25 0.40
   
∑

0.20 0.80



205KI - Künstliche Intelligenz (2020) 34:199–207 

1 3

the system are inaccurate. The overall accuracy of the ML 
system in the second experiment is also 60%. The overall 
accuracy of the human expert in the second experiment is 
20%.

After confronting the human expert with the system’s 
diagnoses [now including information on system (un-)cer-
tainty, i.e., diagnosis accuracy], the human expert changed 
his decision in 60% of all cases. However, in 25% of all 
cases, the medical expert wants to point the system to some 
important features that the system probably did not recog-
nize. Table 6 shows the results after the confrontation.

After the confrontation with the contradicting informa-
tion of the ML system, the human accuracy rises up to 40% 
(previously 20%). Chest X-rays are commonly used as diag-
nosis measure and therefore X-rays are critical for screen-
ing, diagnosis, and management of many life threatening 
diseases [11]. However, our results from the first experiment 
show that the evaluation of X-rays by medical experts for 
lung diseases without additional strong expertise in radiol-
ogy is not a trivial task. In this regard, the medical expert 
indicates that our ML system provides an added value for 
medical experts in terms of diagnostic quality.

The think-aloud protocol reveals for example that it was 
a big challenge for the medical expert to arrive at a distinc-
tive diagnosis based on a single X-ray image. In the first 
experiment, where solely the ML-based system decision was 
presented, the human accuracy improved from 15 to 25%. 
In the second experiment, with additional information on 
uncertainty within the system decision, the diagnostic qual-
ity improved from 20 to 40%.

4.2.1  Qualitative Experiment Results

In addition to quantitative measures, the think-aloud protocol 
provides qualitative indications. For example, the physician 
verbalizes that the system helps to reconsider his diagnosis:

Expert: “The system makes me aware of something 
here. I haven’t seen this before.”

Moreover, our analyses of the think-aloud protocol show 
that the presentation of ML uncertainty measures generates 
additional trust, which ultimately results in better diagnoses 

by the medical expert. For example, the expert says that 
the system sensitizes to a disease. This enables him to re-
evaluate the X-ray with these clues.

Expert: “With the reference to the Atelectasis I have 
already seen these indicators here, so that I would fol-
low the recommendation.”

With regard to the two experiments (with and without infor-
mation on system uncertainty), the expert recommends the 
presentation of system uncertainty information which he 
deems to be very useful.

Expert: “By presenting the probabilities, I can better 
evaluate the system decision.”

This statement confirms previous literature where medical 
experts prefer to have better explanations to help them inter-
pret the system’s confidence, to verify that the medical con-
dition fits the suggestion, to better understand the decision 
model, and to make differential diagnoses [6].

The medical expert further sees the limits of existing sys-
tems and recommends new applications as the following 
excerpt from the think-aloud protocol shows:

Expert: “But you have to consider that in practice AI 
would be used in such a way that the AI has already 
suggested a diagnosis to you.”

From these statements we conclude that the medical expert 
has—in general—a positive attitude towards such systems, 
as long as he retains the power of decision to intervene in 
critical cases in a regulated manner.

5  Concluding Thoughts

In this article we discuss the counterpart of Interactive 
Machine Learning, i.e., the learning on the human side. 
Whenever humans and ML-based systems need to work 
together, there is the possibility of a joint growth. Each side 
can stimulate learning on their counterpart. IML offers the 
possibility to interactively improve the learning process on 
the machine’s side, while contradiction learning can be help-
ful for learning on the human side.

First, our small study in the medical domain of pneu-
monology shows that humans and systems tend to make 
errors and are—at this point of time—far from being perfect. 
Second, this imperfectness suggests that a human-machine-
collaboration resulting in mutual benefit can in theory result 
in better decisions.

Our experiments show that the human expert is willing 
to adapt his diagnosis if the system presents a contradic-
tory diagnosis. The willingness to reconsider can however 
be greatly improved by providing additional information 
on the uncertainty of the system’s diagnosis. This piece of 

Table 6  Contradiction Matrix in the second experiment after con-
frontation

Human
∑

Correct Incorrect

ML
   Correct 0.25 0.35 0.60
   Incorrect 0.15 0.25 0.40
   
∑

0.40 0.60
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information would also be essential in a discussion between 
two human experts and could also be seen as a measure 
to increase the grade of anthropomorphism in the interplay 
(see [23]).

This article also suggests that in the domain of IML and 
contradiction learning the presentation of a Contradiction 
Matrix can be useful to assess the accuracy of human experts 
and the system, the overlap and the contradiction between 
these two players. Although our observations mainly stem 
from the experimental context of medicine, we conclude that 
departing from the traditional human-in-the-loop paradigm 
towards a mutual learning approach may be beneficial to 
humans in many different domains. Our observations may 
additionally only be seen as first indicators for error-learning 
with ML-based systems in specific situations. Many ques-
tions of different nature arise at this point that warrant fur-
ther research from various perspectives.

First, knowledge, problems and decisions within different 
domains may be of different nature, structure and complex-
ity [9]. Therefore, we consider it necessary that the research 
phenomenon should be examined domain-specifically, to 
be able to derive dedicated design implications for specific 
domains, as well as to unravel nuanced yet decisive factors 
for theory development.

Second, even within a domain, similar problems may vary 
drastically due to different contextual conditions [9]. For 
example in medicine, standard procedures in a diagnostic 
process may quickly change with a fast and drastic deteriora-
tion of a patient’s condition. Therefore, the examination of 
the phenomenon of learning in the same decision-making 
problem in different contexts may already give rise to dif-
ferent, yet complementary findings.

Third, previous research suggests that novices use expla-
nations and advice from intelligent systems differently than 
experts [10]. Although we have specifically examined the 
phenomenon with experts in mind, it would be highly inter-
esting to understand potential differences in error-learning 
between novices and experts and if propositions of prior 
research hold.

Four, especially critical questions for system design arise 
in regard of our own biases that lead us to uncritically accept 
or willingly reject machine made recommendations [14, 20, 
24]. Cognitive biases and related factors should thus receive 
substantial attention during investigations of error-learning 
with ML-based systems.

While the above mentioned points only constitute a frac-
tion of the potentially interesting research possibilities, we 
are confident that this discussion can serve as a motivational 
basis for a further investigation of this important phenom-
enon. Overall we propose that we need to find ways and 
technical measures to enable human decision makers to 
identify and correct erroneous system predictions while also 
enabling humans to gain alternative and novel insights with 

the aid of ML-based systems. This process of error learning 
may be structured as follows: (1) we make a decision based 
on our own knowledge. (2) We receive a machine predic-
tion that is inconsistent with our own knowledge, but leads 
to more efficient and accurate decisions. (3) We recognize 
potential errors in our own decision making. (4) With the 
help of the contradictory information (and explanations) 
from the machine, we are finally able to incorporate alter-
native insights to improve our own (cognitive) skills. Inves-
tigating the presented research phenomenon is a challenge 
that certainly needs to be addressed by truly interdisciplinary 
research teams which should consist of domain experts (e.g., 
medicine, management, law), AI experts and potentially 
additional researchers from social science (like sociology 
or psychology) and HCI. We believe that the investigation of 
the research phenomenon of error-learning with ML-based 
systems will not only lead to an extension of the theory and 
a better understanding of the phenomenon itself, but will 
also lay the foundations for a man-machine symbiosis that 
is truly human-centered [15].
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