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Abstract: Postoperative complications after pancreatic surgery are still a significant problem in clinical
practice. The aim of this study was to characterize and compare the microbiomes of different body
compartments (bile duct, duodenal mucosa, pancreatic tumor lesion, postoperative drainage fluid,
and stool samples; preoperative and postoperative) in patients undergoing pancreatic surgery for
suspected pancreatic cancer, and their association with relevant clinical factors (stent placement,
pancreatic fistula, and gland texture). For this, solid (duodenal mucosa, pancreatic tumor tissue,
stool) and liquid (bile, drainage fluid) biopsy samples of 10 patients were analyzed using 16s rRNA
gene next-generation sequencing. Our analysis revealed: (i) a distinct microbiome in the different
compartments, (ii) markedly higher abundance of Enterococcus in patients undergoing preoperative
stent placement in the common bile duct, (iii) significant differences in the beta diversity between
patients who developed a postoperative pancreatic fistula (POPF B/C), (iv) patients with POPF
B/C were more likely to have bacteria belonging to the genus Enterococcus, and (v) differences in
microbiome composition with regard to the pancreatic gland texture. The structure of the microbiome
is distinctive in different compartments, and can be associated with the development of a postoperative
pancreatic fistula.

Keywords: microbiome; pancreatic surgery; postoperative complications; pancreatic cancer; 16S
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1. Introduction

Pancreatic cancer (PC) is currently the seventh leading cause of cancer-related mortality worldwide,
and is projected to become the second leading cause of cancer-related death by 2030 [1]. Radical surgery
still affords the only chance of a potential cure for PC. Despite the improvement in surgical techniques,
new devices and technologies, and intensive care management, postoperative complications and
morbidity remain a challenge after pancreatic surgery. Postoperative major complications affect
the prognosis and outcome of patients. Data from the prospective StuDoQ Pancreas registry of the
German Society of General and Visceral Surgery yield a rate of 15% (12–19%) for major complications
(Clavien-Dindo Classification (CDC) grades 3b and 4) in elective pancreatoduodenectomy [2].
A postoperative pancreatic fistula (POPF) is the most dangerous complication, and leads to a risk of
sepsis, prolonged hospitalization, increased morbidity and mortality, and higher hospital costs [3–6].
Recently, the microbiome of the gut has not only been linked to anastomotic leakages after colorectal
surgeries [7], but also to surgical complications in pancreatic operations [8].

During the last decade, extensive research has been done on the human microbiome and its
role in health and disease [6,9]. Technical advances in detection (e.g., next-generation sequencing
(NGS)) have changed our understanding of the structure and function of the microbiome, and the
influence of the microbiome on immunity and cancer [10]. Altered local microbiota compositions in
different cancer tissues may impact cancer therapy response [5]. In line with these concepts, compelling
research has demonstrated that the gut microbiome is associated with impaired anastomotic healing
in colorectal cancer (CRC), or higher postoperative complication rates in pancreatic surgery [8,11].
Enterococcus faecalis, for instance, impairs anastomotic healing in CRC via enhancing collagen-degrading
activity and activating intestinal tissue matrix metalloproteinase 9 (MMP9) [7,12]. Furthermore, several
studies have indicated that compartments formerly viewed as sterile, such as the bile or the pancreas,
harbor their own autochthonous site-specific microbiome [13–15]. Translocation of bacteria into
the pancreas may occur either from the duodenum via the biliary/pancreatic duct, or through the
circulatory system [16,17]. Therefore, preoperative biliary stenting, as well as drains, could influence
the composition of the pancreatic microbiome. Emerging preclinical data support that the microbiome
can influence tumor progression and therapeutic responses through several pathways, such as through
inflammation, immunity, and metabolism [13,18]. The molecular basis of this regulation is still being
elucidated, and disputes exist as to whether the microbiota act directly in the cancer-initiating or
progression cascade, or as a mediator of other stimuli such as inflammation. However, to date, there
have been only a few studies of the microbiome within the bile duct, or in pancreas lesions in suspected
cancer. The aim of this explorative study was to characterize and to compare the microbiome of
different body sites (bile duct, duodenal mucosa, pancreatic tumor lesion, postoperative drainage fluid,
and fecal samples) in patients undergoing pancreatic surgery for suspected pancreatic cancer, and to
correlate these with clinical parameters.

2. Experiment

2.1. Study Design

This prospective, observational trial was approved by the Ethics Committee of the University
of Erlangen, Germany (No 451_18B). Patients undergoing pancreatic surgery were screened for
eligibility for study participation. Patients with neoadjuvant therapy, antibiotic therapy 4 weeks
prior to surgery, patients with ulcerative colitis, Crohn’s disease, chronic pancreatitis, or another
disease significantly affecting gastro-intestinal function were excluded. We performed an exploratory
study on the first patients with pancreatic head resection in order to characterize the microbiome in
different compartments related to the pancreas, and to see if the local microbiome is associated with the
development of postoperative complications under different clinical conditions. Each patient received
a standardized single shot of a 3rd generation cephalosporine and metronidazole about 30 min before
the surgical procedure. In total, 50 samples from 10 patients were obtained. Seven patients underwent
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preoperative stent placement for biliary obstruction, six patients via ERCP and one patient received an
external PTCD two days prior to surgery. An overview of the study workflow is depicted in Figure 1.
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Figure 1. Overview of the study workflow.

2.2. Sample Processing and DNA Purification

Stool samples were collected and stabilized the day before surgery (stool pre-op) and postoperative
(stool post-op) on day 5–7 using the Omnigene Gut system (DNA Genotek, Ottawa, ON, Canada), and
were stored at −80 ◦C until DNA extraction. DNA was extracted from the stool using the PSP Stool
DNA stool kit, according to the specifications of the manufacturer (Invitek Molecular, Berlin, Germany).
Tissue specimens of tumor tissue and duodenal tissue were collected immediately after resection,
suspended in RNA later buffer, and stored at −80 ◦C. Bile fluid (500 µL) was collected intraoperatively
after transection of the common bile duct through a sterile aspiration catheter, and immediately stored
at −80 ◦C. Drainage fluid was collected postoperatively on days 3–5. DNA from tumor tissue, duodenal
tissue, bile, and the drainage fluid was extracted using the Qiamp Microbiome Kit (Qiagen, Hilden,
Germany), according to the manufacturer’s recommendations. DNA was subsequently quantified
using a Qbit device (Thermo Fisher Scientific, Waltham, MA, USA). The V3+4 region of the 16S
rRNA gene was amplified using 10 ng of bacterial template DNA with degenerate region-specific
primers (341F: 5′-ACTCCTACGGGAGGCAGCAG-3′; 806R: 5′-123 GGACTACHVGGGTWTCTAAT-3′)
containing barcodes and Illumina flow cell adaptor sequences [19] in a reaction consisting of 25 (stool)
or 35 (tissue) PCR cycles (98 ◦C 15 s, 58 ◦C 20 s, 72 ◦C 40 s) using the NEBNext Ultra II Q5 Master
Mix (New England Biolabs, Ipswich, MA, USA). Amplicons were purified with Agencourt AMPure
XP Beads (Beckmann Coulter, Brea, CA, USA), normalized, and pooled before sequencing on an
Illumina MiSeq device using a 600-cycle paired-end kit and the standard Illumina HP10 and HP11
sequencing primers. For bioinformatic processing, the terminal 15 bases of both forward and reverse
reads were removed, before merging and quality filtering using the fastq mergepairs and fastq filter
options from Usearch 10 [20]. Subsequently, merged fastq files were demultiplexed and trimmed using
Cutadapt [21], 16S the Uparse [22], and Sintax [23] algorithms within Usearch using the silva 16S rRNA
database (v123).

2.3. Statistical Analyses

The MicrobiomeAnalyst platform [24,25] was used to calculate alpha and beta diversities, and to
compare the relative abundance of taxa. Linear discriminant analysis effect size (LEfSe) [26] was used
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to discover the key microbial taxa associated with the different compartments. A p-value of <0.05 was
considered statistically significant.

3. Results

3.1. Patient Characteristics

We performed the analysis on the first patients with pancreatic head resection for suspected cancer.
The clinical characteristics of the patients are summarized in Table 1.

Table 1. Clinical characteristics of study participants.

Demographics Overall (n = 10)
POPF

Yes (n = 3) No (n = 7)

Age 44–89 66–79 44–89

Sex
Male 8 3 5

Female 2 0 2

Body mass index (BMI)
18.8–24.9 normal 1 0 1

25.0–29.9 pre obesity 6 3 3
30.0–34.9 obesity class 1 2 0 2
35.0–39.9 obesity class II 1 0 1

Nicotine
Yes 1 0 1
No 9 3 6

Proton pump inhibitors
Yes 4 3 1
No 6 0 6

Histology
Benign 3 1 2

Malignant 7 2 5

Physical ASA status (American Society of
Anästhesiologists)

1 0 0 0
2 4 0 4
3 6 3 3

Stent
Yes 7 3 4
No 3 0 3

Gland texture
Soft 4 2 2

Hard 7 1 6

Diameter of the pancreatic duct
1 mm 1 (soft) 1 (hard)
2 mm 0 2
3 mm 0 1
4 mm 1 (hard) 1 (hard)
5 mm 1 (soft) 1 (hard)
6 mm 0 0
7 mm 0 1
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3.2. Bacterial Composition at the Phylum and Genus Levels

We obtained patient-matched normal (bile fluid, duodenal tissue, stool preoperative/postoperative
and postoperative drainage fluid) and pancreatic tumor tissue samples from 10 patients. The profile of
bacterial DNA and the microbiome in the samples differed from those found in the quality controls
(mock community, water). At the phylum level, the most abundant phyla in all samples were Firmicutes
and Proteobacteria, followed by Bacteroidetes, Actinobacteria, Verrucomicrobia and Fusobacteria, to different
degrees (Figure 2).

The phyla Bacteroidetes was significantly increased in the gut before and after operation,
compared with those in the other compartments when evaluated with the univariate method
(Mann-Whitney/Kruskal-Walis Test: p < 0.05 and FDR < 0.05).
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Figure 2. Relative abundance of bacterial taxa in the sampled compartments. (a) Taxonomic assignments
are shown at the level of the phylum; (b) Taxonomic assignments are shown at the level of the genus.

At the genus level, the five most predominant genera in bile fluid were Enterococcus, Streptococcus,
Escherichia Shigella, Veilonella and Enterobacter. In the duodenal group, the distribution was Enterococcus,
Enterobacter, Fusobacterium, Akkermansia and Veilonella. In the pancreatic tumor samples Enterococcus,
Enterobacter, Fusobacterium, Barnesiella and Akkermansia dominated. The predominant genera in the gut
were Bacteroides, Escherichia_Shigella, Clostridium_XlVa, Faecalibacterium and Enterobacter. The drainage
fluid mainly harbored Enterococcus, Staphylococcus, Escherichia_Shigella, Streptococcus and Enterobacter
(Figure 2).

3.3. Identification of Key Taxa Associated with Different Samples

Linear discriminant analysis (LDA) coupled with effect size measurements (LEfSe) was applied
to determine key taxa that were differentially represented in the different analyzed compartments.
A total of 31 key genera were identified at the genus level (Figure 3). The eight key taxa in the tumor
tissues were Barnesiella (LDA score 5.58, p = 0.027), Blautia (LDA score 5.39, p = 0.002), Microbacterium
(LDA score 5.31, p = 0.00007), Norcardia (LDA score 5.04, p = 0.003), Stenotrophomonas (LDA score 5.03,
p = 0.001), Ruminococcus2 (LDA score 4.84, p = 0.001), Ochrobactrum (LDA score 4.67, p = 0.004), and
Collinsella (LDA score 4.44, p = 0.01) (Figure 3).
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Figure 3. Analysis of key genera of the microbiota in the different body site compartments using linear
discriminant analysis (LDA) coupled with effect size measurements (LefSe) analysis.

3.4. Bacterial Richness and Diversity in the Samples

To estimate the overall richness and diversity of the bacterial communities, the alpha diversity
indices were analyzed. We compared the Observed (richness), Chao1 (richness) and Shannon (evenness
and richness) indices between the different compartments at the genus level. The overall structure of
the microbiota in the microhabitats was significantly different, which was estimated by the Observed
index (p-value: 4.9602× 10−7; [ANOVA] F-value: 10.29), Chao1 index (p-value: 3.6826× 10−6; [ANOVA]
F-value: 8.716), and Shannon index (p-value: 0.0066998; [ANOVA] F-value: 3.6101).

Since it was unknown whether the microbial ecology of any of the upper alimentary sites
investigated would resemble the tumor microbiome, we examined differences of the microbiome
structure between the different compartments: gut (stool preoperative), duodenal mucosa, bile fluid
and tumor tissue. The alpha diversity indices indicated that tumor tissue has a higher alpha-diversity
compared with bile. However, there was not a clear differentiation between duodenal mucosa and
pancreatic tumor tissue at the genus level. The gut (stool) microbiome had the highest alpha-diversity
(Figure 4).
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Figure 4. Diversity comparisons of microbial communities. (a) alpha diversity index: observed (p-value:
4.9602 × 10−7; [ANOVA] F-value: 10.29); (b) beta diversity PCoA Jensen–Shannon [PERMANOVA]
F-value: 4.5694, p-value < 0.001.

Moreover, beta-diversity analysis was performed through PCoA and NMDS analysis, based on
the Bray–Curtis index and Jensen–Shannon divergence at the genus level. The analysis revealed that
the overall structure of the microbiota in the different compartments was significantly different: PCoA
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Jensen–Shannon [PERMANOVA] F-value: 4.5694; R-squared: 0.28976; p-value < 0.001 (Figure 4 and
Supplementary Materials).

3.5. Relative Abundance and Associated Microbiome Profiles with Clinical Conditions

To better understand the relationships between clinical conditions and the impact of the
microbiome, we analyzed three variables: preoperative stent placement, POPF B/C formation, and
gland texture.

3.5.1. Stent Placement in the Bile Duct

We first evaluated if stent placement in the common bile duct influences the microbiome of the
different compartments (Figure 5). At the genus level, the five most predominant genera in bile fluid
without stent placement were Veilonella (49%), Escherichia_Shigella (15%), Enterococcus (7%), Enterobacter
(5%) and Clostridium_sensu (5%). In patients with stent placement, Enterococcus (32%), Streptococcus
(23%), Escherichia_Shigella (20%), Veilonella (10%) and Enterobacter (5%) were found. In the duodenal
group without stenting, the distribution was Fusobacterium (23%), Enterococcus (15%), Clostridium_sensu
(14%), Veilonella (10%) and Akkermansia (9%), and in patients with stent placement it was Enterococcus
(27%), Enterobacter (25%), Bacteroides (8%), Akkermansia (8%) and Lactobacillis (6%). In the no stenting
tumor group we found Fusobacterium (22%), Barnesiella (17%), Akkermansia (13%), Escherichia_Shigella
(8%), Enterobacter (5%), Microbacterium (5%) and Clostridium_XIVa (5%), and in patients with stenting
we found Enterococcus (27%), Enterobacter (23%), Akkermansia (7%), Bacteroides (5%), Norcardia (4%) and
Fusobacterium (4%). Due to the small group size (no stent placement patients n = 3), there were no
statistically significant differences found, but all patients with stent placement had a higher abundance
of Enterococcus.
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Figure 5. Bar plots representing the microbiome comparison on the genus level of patients without
stent placement (no stent) vs. patients with stent placement pre-operative (stent preop).

3.5.2. Postoperative Complications (POPF B/C)

Next, we divided the patients in two groups: one with postoperative pancreatic fistulas (POPF
B/C n = 3), and the no POPF group (n = 7) (Figure 6). When comparing these two groups we observed
at phylum level a higher abundance of Firmicutes in the bile (no POPF 48% vs. POPF 86%, mainly
Enterococcus), duodenal tissue (no POPF 28% vs. POPF 72%; genus level no POPF Enterococcus 48% and
Veilonella 40% vs. POPF Enterococcus 84% and Lactobacillus 11%) and pancreatic tumor tissue (no POPF
11% vs. POPF 77%), while in the gut the percentage of Firmicutes was not different (no POPF 35% vs.
POPF 38%). Drainage fluid harbored in the no POPF group the phyla Firmicutes (52%), Proteobacteria
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(23%) and Actinobacteria (19%, most abundant genus Corynebacterium), and while in the POPF group
the level of Firmicutes was not different (52%), the percentage of Actinobacteria was increased (39%,
mainly consisting of Arthrobacter) and the percentage of Proteobacteria (3%) decreased. Looking at
Firmicutes at the genus level, we found genera such as Staphylococcus (52%), Entercoccus (18.5%) and
Streptococcus (12%) in the no POPF group, while in the POPF group the Firmicutes mainly consisted of
Enterococci (93%). Beta diversity comparisons revealed that patients cluster separately within PCoA
(PERMANOVA, Jaccard index, p-value < 0.012, F-value 1.8926, R = 0.030). Microbiology reports of the
POPF patients were additionally screened, and one of the three patients harbored a multidrug-resistant
Klebsiella oxytoca and a Vancomycin-resistant Entercoccus faecium (VRE) in the drainage fluid (microbial
culture two weeks postoperative and the patient received antibiotics). Interestingly, all POPF drainage
fluids showed co-colonizations with fungi.
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Figure 6. Bar plots representing the microbiome comparison of patients with no POPF (No) vs. patients
with clinically relevant POPF (Yes). (a) phylum level; (b) genus level; (c) beta diversity comparison
between the two groups shown by PCoA plot (PERMANOVA, Jaccard index, p-value < 0.012, F-value
1.8926, R = 0.030) in no POPF (No, red) and POPF (Yes, blue).

3.5.3. Pancreatic Tumor Tissue, Soft vs. Hard

As the development of a POPF is closely correlated with the texture of the pancreatic tissue,
we analyzed the microbial communities of the pancreatic tissue depending on the intraoperative
texture of the pancreas, comparing soft (n = 4) vs. hard (n = 6) pancreases (Figure 7a,b: bar plots
representing the relative abundance of bacterial phyla from all sample sites). Therefore, the surgeon
documented intraoperatively the pancreas texture. Overall, the soft tissue group harbored more
Firmicutes (69% vs. hard tissue 29%), while Proteobacteria were more abundant in the hard tissue
group (44% vs. 9% soft tissue). Beta diversity comparisons revealed that patients cluster separately
within PCoA (PERMANOVA, Jaccard index, p-value < 0.043, F-value 1.5847, R = 0.025) (Figure 7c).
Detailed analysis of the tumor tissue showed that soft tissue harbored more Fusobacteria (22% vs. hard
tissue 3%), Proteobacteria and Firmicutes. Hard tissue consisted mainly of Firmicutes, Proteobacteria and
Verrucomicrobia. Interestingly, when looking at Fusobacteria and POPF formation in soft pancreatic tissue,
Fusobacteria were more abundant in the no POPF group. In accordance with the recent literature [27],
Fusobacteria were more abundant in patients with a malignant histology, compared to those with
benign lesions.
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4. Discussion

A growing number of studies have linked the microbiome to carcinogenesis, tumor progression,
and therapeutic responses through several pathways, including inflammation, immunity and
metabolism, in various cancer types [4,28,29]. Colonization and the diversity of microorganisms in
the gastrointestinal tract play an important role in establishing a symbiotic system of host–microbial
interactions. Historically, the pancreas and the bile were viewed as sterile compartments, however
recent studies have demonstrated that this is not the case [13,30,31].

Little is known about whether local microbiota dysbiosis can affect outcomes in pancreatic
cancer surgery. Pancreatic surgery is a high-risk procedure, even in high-volume centers, and POPF
formation remains an unsolved problem. Research on the pancreas microbiome has mainly focused
on fecal microbiota, mostly because of the convenience of obtaining noninvasive biological samples.
Recently, Schmitt et al. correlated the structure of the gut microbiome with the development of
postoperative complications after pancreatic surgery. They were able to show that a special bacterial
community, which is almost stable during the preoperative and postoperative period, was associated
with postoperative complications. This community was characterized by an increase in Akkermansia,
which belongs to the phyla Verrucomicrobia and degrades the intestinal gut mucin. The intestinal mucin
layer has an important function as a physiological barrier.

However, prospective studies using solid and liquid biopsies of previously untreated patients
for proven or suspected pancreatic cancer are scarce. The goal of this study was to characterize the
microbiome within the bile fluid, duodenal mucosa, pancreatic tumor lesions, drainage fluid, and
stool samples from patients undergoing pancreatic surgery, and to identify associations between
the microbiome profiles and clinical conditions. Various clinically relevant factors can influence the
microbiome composition, including antibiotic therapy, proton pump inhibitors (PPIs), and biliary
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obstruction, which is often treated by endoscopic preoperative biliary stent placement. In addition to
the comprehensive evaluation of multiple adjacent pancreas-related compartments, a strength of our
study is that our patients did not receive an oral bowel preparation regimen prior to surgery, and the
use of solid and liquid biopsies, rather than swabs. We performed an initial exploratory study to test
swabs for bio sampling, but there was a large number of swabs that did not generate any data.

This study demonstrates that there is a distinct microbiome in the different compartments adjacent
to the pancreas. Three striking patterns emerged: First, the microbiome is altered in patients undergoing
preoperative stent placement; second, patients with POPF harbor a distinct microbiome; and third, to
the best of our knowledge, so far no study has shown the relationship between the pancreatic gland
texture and the microbiome.

The ESMO guidelines recommend that, for patients presenting with jaundice at diagnosis of
pancreatic carcinoma, endoscopic drainage preoperatively should only be carried out if there is
active cholangitis, or in those for whom curative resection cannot be scheduled within two weeks
of diagnosis [32]. Often, however, the indication for ERCP is made even before operability has been
determined in an interdisciplinary tumor conference. Several retrospective studies have reported
that preoperative biliary drainage is associated with a higher rate of infectious complications after
pancreatoduodenectomy [33]. We were able to show that the composition of the bile microbiome
and consequently the microbiome of the pancreas and the duodenum markedly differed between
patients with or without preoperative stent placement in the common bile duct, most probably due
to retrograde bacterial migration along the stent. Due to the small group size (no stent placement
n = 3), there was no statistically significant difference, but all patients with stent placement had a
higher abundance of Enterococcus. Furthermore, patients with POPF were more likely to carry bacteria
belonging to the genus Enterococcus. This is in line with a recent study of biliary smears for routine
microbiological diagnostics in pancreatic surgery [34].

Interestingly, we also observed in our cohort Fusobacteria, which are linked to carcinogenesis in
CRC and pancreatic cancer, in particular F. nucleatum [29]. In our cohort Fusobacteria were enriched
in malignant pancreatic lesions, which is why we next want to address the pancreatic oncobiome
(transformed, dysbiotic microbiome).

Enterococci are intrinsically resistant to cephalosporins. During hospitalization, patients receive
standard antibiotics in the preoperative period, and clinicians administer antibiotics to patients with
signs of infection or sepsis during the postoperative period. Risk factors associated with pancreatic
fistula after pancreatic surgery have been well established. A number of studies have identified and
validated that small pancreatic duct size and soft gland texture are the leading risk factors for pancreatic
leak following pancreatic surgery [32,35–38]. That the microbiota contribute to the pathogenesis of
pancreatic fistula represents a novel way of thinking about the unsolved POPF problem. We have shown
that preoperative biliary stenting influences the local microbiome, and consequently the microbiome of
the pancreas, and that dysbiosis affects patient outcome for pancreatic surgery. We therefore believe that
a better understanding of the human microbiome will provide exciting opportunities for personalized
medicine. Based on our data, a risk adapted selection of the perioperative antibiotic prophylaxis
should be seriously considered, and an intraoperative smear should always be taken.

5. Conclusions

The microbiome is altered in patients undergoing preoperative stent placement. Most patients
undergoing pancreatic surgery for suspected cancer are preoperatively treated with a biliary stent, and
this cohort of patients have relatively more Enterococci in their bile, tumors, and duodenum. Thus,
antibiotic prophylaxis in these patients should have a broad spectrum of coverage for Enterococci.
On the other hand, a routinely harvested bacterial culture from all patients during diagnostic ERCP for
suspected pancreatic cancer, or during the operation, could generate an individual antibiogram, which
would be a major support in perioperative treatment in the era of personalized medicine.
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Concerning POPF in particular, the role of the microbiome composition may represent one missing
piece to explain the unsolved problem of pancreatic fistula development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/9/2785/s1.
Compared with the bile group, the alpha diversity indices Observed (p-value: 0.0009171; [T-test] statistic: −3.9987),
Chao1 (p-value: 0.0012638; [T-test] statistic: −3.8226) and Shannon (p-value: 0.016063; [T-test] statistic: −2.669) in
the tumor group were significantly increased. Apart from the alpha indices, the beta indices showed that plots of
the PCoA Bray–Curtis dissimilarity (PERMANOVA F-value: 2.6136; R-squared: 0.13325; p-value < 0.012) and
PCoA Jensen–Shannon divergence (PERMANOVA F-value: 3.9785; R-squared: 0.18965; p-value < 0.008), as well
as NMDS Bray–Curtis (PERMANOVA] F-value: 2.6136; R-squared: 0.13325; p-value < 0.012, NMDS Stress =
0.12267) and NMDS Jensen–Shannon (PERMANOVA F-value: 3.9785; R-squared: 0.18965; p-value < 0.008, NMDS
Stress = 0.14698), were clearly differentiated between the bile and tumor. Then, we compared the tumor tissue
and the duodenal tissue. Our results showed that the alpha diversity indices Observed (p-value: 0.77995; [T-test]
statistic: −0.28365), Chao1 (p-value: 0.84237; [T-test] statistic: −0.20176) and Shannon (p-value: 0.96701; [T-test]
statistic: −0.041939) did not differ significantly from each other. Similar to the alpha diversity analysis results,
in the beta diversity analysis through PCoA and NMDS, no significant clustering was observed between the
duodenal tissue and tumor tissue (PCoA Bray–Curtis: PERMANOVA F-value: 0.16058, R-squared: 0.0088422,
p-value < 0.969; PCoA Jensen–Shannon divergence PERMANOVA F-value: 0.17944, R-squared: 0.0098706, p-value
< 0.963; NMDS Bray–Curtis: PERMANOVA F-value: 0.17944, R-squared: 0.0098706, p-value < 0.961, NMDS Stress
= 0.15361; NMDS Jensen–Shannon divergence PERMANOVA F-value: 0.16058, R-squared: 0.0088422, p-value
< 0.967, NMDS Stress = 0.15583). We next compared the composition of the gut microbiome with the tumor
microbiome at the genus level. The alpha diversity indices Observed (p-value: 6.5503 × 10−7; [T-test] statistic:
−7.7837), Chao1 (p-value: 1.8172 × 10−6; [T-test] statistic: −7.0448) and Shannon (p-value: 1.8172 × 10−6; [T-test]
statistic: −7.0448) in the gut group were significantly increased. Apart from the alpha indices, the beta indices
showed that plots of the PCoA Bray–Curtis dissimilarity (PERMANOVA F-value: 4.7146, R-squared: 0.20756,
p-value < 0.001) and PCoA Jensen–Shannon divergence (PERMANOVA F-value: 7.3332, R-squared: 0.28947,
p-value < 0.001), as well as NMDS Bray–Curtis (PERMANOVA F-value: 4.7146, R-squared: 0.20756, p-value <
0.001, NMDS Stress = 0.11408) and NMDS Jensen–Shannon (PERMANOVA F-value: 7.3332, R-squared: 0.28947,
p-value < 0.001, NMDS, Stress = 0.15228), were clearly differentiated between the gut and tumors.
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