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Small RNA dynamics in cholinergic systems

Abstract

Natural science is only just beginning to understand the complex processes surrounding tran-

scription. Epitranscriptional regulation is in large parts conveyed by transcription factors (TFs) and

two recently discovered small RNA (smRNA) species: microRNAs (miRNAs) and transfer RNA

fragments (tRFs). As opposed to the fairly well-characterised function of TFs in shaping the pheno-

type of the cell, the effects and mechanism of action of smRNA species is less well understood. In

particular, the multi-levelled combinatorial interaction (many-to-many) of smRNAs presents new

challenges to molecular biology. This dissertation contributes to the study of smRNA dynamics in

mammalian cells in several ways, which are presented in three main chapters.

I) The exhaustive analysis of the many-to-many network of smRNA regulation is reliant on bioin-

formatic support. Here, I describe the development of an integrative database capable of fast and

efficient computation of complex multi-levelled transcriptional interactions, named miRNeo. This

infrastructure is then applied to two use cases. II) To elucidate smRNA dynamics of cholinergic sys-

tems and their relevance to psychiatric disease, an integrative transcriptomics analysis is performed

on patient brain sample data, single-cell sequencing data, and two closely related in vitro human

cholinergic cellular models reflecting male and female phenotypes. III) The dynamics between small

and large RNA transcripts in the blood of stroke victims are analysed via a combination of sequenc-

ing, analysis of sorted blood cell populations, and bioinformatic methods based on the miRNeo

infrastructure. Particularly, importance and practicality of smRNA:TF:gene feedforward loops are

assessed.

In both analytic scenarios, I identify the most pertinent regulators of disease-relevant processes

and biological pathways implicated in either pathogenesis or responses to the disease. While the

examples described in chapters three and four of this dissertation are disease-specific applications of

miRNeo, the database and methods described have been developed to be applicable to the whole

genome and all known smRNAs.
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Preamble

This dissertation comprises three main chapters, which are written in a combined methods-results-

discussion style. In the first main part, chapter two, I address the creation, maintenance, and usage

of the database designed for assessing transcriptional interactions in the experimental parts. Since

the creation process in itself is methodical, distinction between method and result can often not

be implemented in a clear, »journal-style« manner. In chapters three and four however, that are

concerned with experimental application of transcriptional interactions in cholinergic differentia-

tion and disease, the manuscript will be consistently structured to visually distinguish the methods

from results and discussion. Method-related paragraphs will be set in sans-serif font style, while non-

method parts will be set in serif font. Because of the dimensions of this dissertation and the diverging

topics, the non-method parts of each chapter will be in the style of combined results and discussion,

to keep the immediate discussion close to the related results. Finally, there will be dedicated chapters

for more broad and generalised discussion and conclusions.

At the date of submission, the majority of the contents of chapter three, the main experimen-

tal work of this dissertation, as well as most of the ideas developed in chapter two, have been pub-

lished in a peer-reviewed journal. 1 Chapter four serves to illustrate my contributions to another

manuscript that is currently in submission, awaiting response. 2 That manuscript diverges from the

contents described in chapter four mainly by the additional experiments concerned with validation

of detected tRNA fragments, and it does not study feedforward loops. The development and us-

age of the database described in chapter two is invited for closer explanation by STAR Protocols and

pending submission.3

This dissertation features content boxes for general information pertaining to a specific aspect

(e.g., cholinergic genes). For very large or very small numbers, the scientific exponential notation

(»E notation«) is used; e.g., 4.7E-05 reads as 4.7 x 10−5, or 0.000047.
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Data Availability

The biological data from sequencing of in vitro experimental samples as well as stroke patient blood

samples are deposited on NCBI GEO, and the individual accession numbers are available in the re-

spective publications.1,2 Code repositories are published on GitHub, and the web links are likewise

available in the respective manuscripts. Additionally, for both main manuscripts, a webpage was

designed to facilitate the access to networks and subnetworks in an interactive manner; the pages are

publicly available via GitHub, and the links are likewise available from the respective manuscripts.

The git repository can be reached at https://github.com/slobentanzer/. Required documents, in-

cluding declarations and a summary in German language, can be found in Appendix D.
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1
Introduction

1.1. Cholinergic Systems

Nary a process in the mammalian body can commence without participation of cholinergic sys-

tems. Acetylcholine (ACh) was chemically and pharmacologically described by Henry Dale more

than 100 years ago.4 A short time later, Otto Loewi published the first proof of signal transmission

by small molecules: he transferred physiological solutions from electrically stimulated frog hearts

to naive hearts and observed their reactions; the solution that provoked a parasympathetic response

he proposed to contain a »vagus substance«.5 Finally, in 1929, Henry Dale closed the circle by

isolating acetylcholine from mammalian tissue and identifying it as the molecule responsible for

the parasympathetic response. 6 Dale and Loewi’s joint effort in »Discoveries Relating to Chemical

Transmission of Nerve Impulses« was rewarded with the »Nobel Prize in Physiology or Medicine«

in 1936.

Although we have learned much about cholinergic systems in these past 100 years, our under-

standing of the mammalian nervous system still is fairly limited. Even when disregarding peripheral

nervous systems, the complexity of cholinergic transmission is immense, and a myriad functions

have been attributed to cholinergic circuits in the central nervous system (CNS). Central nervous

projections of cholinergic fibres were extensively mapped by Marek-Marsel Mesulam and others in

the 1980s, 7,8 with a majority of long projection neurons originating in one of the eight cholinergic

nuclei, Ch1-Ch8. While many of these anatomical structures have been filled with meaning by asso-

ciations with both rudimentary as well as higher brain functions, there are still as many cholinergic

pathways whose function is entirely unclear (Figure 1.1, from Lobentanzer et al.1). This holds par-

ticularly true for the only recently discovered cortical cholinergic interneurons, which, in compari-
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Figure 1.1: Cholinergic Projections in the CNS. Cholinergic systems are implicated in many diverse functional categories. A) The

bulk of cholinergic projection neurons stems from one of the eight cholinergic nuclei, Ch1-Ch8 (right side of ideogram). They inner-

vate wide areas of the mammalian CNS, and in turn receive incoming connections from all around the brain (left side of ideogram).

Efferent connections are indicated by a small gap between ideogram and connector, in the first clockwise half of each ideogram com-

ponent, afferent connection by a large gap, in the second half. A number of projections has been associated with specific functions,

as implicated by the colours of the connectors. Twopopulations of cholinergic interneurons have been identified, in the striatumand

the neocortex (outside of ideogram). B)Brain region and trait colour legend for A).

son to their projecting counterparts, are very small and numerically vastly inferior to other neuron

types in the cortex. Thus, their detection and analysis with current methods is challenging.

The histological definition of what constitutes a cholinergic neuron is not without debate. The

staining procedures established in the 1970s utilised monoclonal antibodies against acetylcholines-

terase (AChE),9 whose association with cholinergic neurons is not definitive, as it can be expressed

post-synaptically as well (for an overview of genes of the cholinergic systems, see Box 1). Later on,

developments in horseradish peroxidase systems allowed immunohistochemistry on choline acetyl-

transferase (ChAT), which is a more immediate marker of cholinergic neurons, 7 albeit much more

lowly expressed than AChE. However, AChE-based staining still was consistently used in addition

to ChAT staining, 8 sometimes without much differentiation. Recently, single-cell RNA sequenc-

ing (RNA-seq) allows a more detailed appreciation of the transcriptional diversity of neurons, and

enables a clearer distinction between cholinergic and non-cholinergic neurons expressing AChE (see

Section 3.2).
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1.2. Cholinergic Aspects of Physiology and Disease

Cholinergic systems are integral for a myriad physiological functions, and as such they are critically

involved in aetiologies and phenotypes of a number of central and peripheral diseases. Of interest to

this dissertation are the cholinergic aspects of degenerative and non-degenerative central nervous dis-

eases (such as Alzheimer’s Disease, Bipolar Disorder, Schizophrenia), ischemic conditions in stroke,

and peripheral modulation of immune responses, particularly in the context of the aforementioned

diseases.

1.2.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) was characterised by Alois Alzheimer in 1906 and later named after him

by his colleague and mentor, Emil Kraepelin.10 AD is a progressive neurodegenerative disease, its

main risk factor is age, and it is estimated to make up 60-70% of all dementia cases. The disease

incidence and progression distinctly differ between the sexes;11 generally, women are affected more

often. Unlike the very rare familial form (that can affect patients in their fifties), spontaneous AD

usually only begins to manifest symptomatically in the 6th to 7th life decade. As a result of the

demographic change in most western countries, patient numbers, and thus, medical efforts, are ex-

pected to more than double in size until the year 2050. The cognitive decline associated with AD is

progressive and ultimately leads to exhaustive care dependency; there is no cure.

The pathological hallmarks of AD are two types of atypical protein aggregates, inter-cellular amy-

loid β »plaques«, and intra-cellular »neurofibrillary tangles« composed of hyper-phosphorylated

Box 1: The Cholinergic Genes

Acetylcholine is synthesised from acetyl-CoA - supplied by ATP citrate lyase (ACLY ) - and choline via
enzymatic catalysis by choline acetyltransferase (ChAT from the CHAT gene). It is then packed into
vesicles by the vesicular acetylcholine transporter (vAChT from the SLC18A3 gene). After release into
the synaptic cleft, it binds to a variety of nicotinic andmuscarinic receptors (CHRNx, 16 subunits, and
CHRMx, 5 subtypes). Of those, the nicotinic receptors form heteropentameric or, seldom, homopenta-
meric ion channels, while the muscarinic receptors are monomeric G protein-coupled transmembrane
receptors. The human possesses a duplicate of the nicotinicα7 receptor, dupα7 (CHRFAM7A), which
cannot bind ACh and supposedly acts as a dominant negative regulator of the α7 homomeric receptor.
Termination of the signal is mainly achieved by acetylcholinesterase (AChE from theACHE gene), one
of the fastest enzymes known, with a theoretical rate of 25 000 molecules per second. AChE tetramers
are usually tethered to cell membranes in the synaptic vicinity by the proline-rich membrane anchor
(PRIMA1) or collagen Q (COLQ) peptides. Complementary to the mostly residual AChE is the cir-
culatory butyryl cholinesterase (BChE from the BCHE gene), which can also nonspecifically degrade
ACh. After degradation, residual choline is reimported into cells via the high affinity choline uptake
(HACU) by choline transporter 1 (CHT1, from the SLC5A7 gene).
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tau-protein. Often, pathological aggregation of these proteins begins decades before the onset of

symptoms. However, there have also been numerous cases of cognitively healthy subjects showing

high amounts of protein aggregates. These inconsistencies and the unclear causality of pathology

and symptoms have led to a redirection of scientific efforts to processes unrelated to amyloid and

tau, such as neuroinflammation (Section 1.2.4).

Cholinergic systems have long been associated with AD, as evidenced by the cholinergic hypoth-

esis that was posed in the 1980s. To cite from Bartus et al., 1982: 12

»We have been guided by three deductive requirements that must be satisfied if the
cholinergic hypothesis is to deserve continued attention: (i) specific dysfunctions in
cholinergic markers should be found in the brains of subjects suffering from age-related
memory loss, (ii) artificial disruption of central cholinergic function in young subjects
should induce behavioural impairments that mimic the cognitive loss found naturally
in aged subjects, and (iii) appropriately enhancing central cholinergic activity in aged
subjects should significantly reduce age-related cognitive deficits.«

Although many reports substantiate all three deductive prerequisites, the cholinergic hypothesis

has in the last decades been overshadowed by alternative hypotheses, particularly, amyloid-related

theories. However, the therapeutic approaches developed along the lines of preventing amyloid

β aggregation or otherwise clearing the plaques or soluble aggregates have not been successful in

alleviating the cognitive decline in patients.13 Thus, pro-cholinergic intervention by means of AChE

inhibition still makes up the majority of approved drugs. The monotherapeutic approach of AChE

inhibition is based on a premise that seems simple in light of the enormous complexity surrounding

the interplay of the billions of neurons in the process of memory formation and recall, and in fact,

pro-cholinergic therapy has only been shown to alleviate symptoms or delay their onset; a reversal

of cognitive losses has so far not been achieved by any drug regime. As such, even in regard only to

the cholinergic systems, novel approaches are sorely needed.

On the other hand, the cholinergic deficit in AD is not purely symptomatic. There is consider-

able debate whether the pathology originates from the entorhinal cortex or the basal forebrain. As

Heiko and Eva Braak have shown,14 AD pathology follows a characteristic brain region distribu-

tion process that can be stratified into stages and starts in the entorhinal region. The early stages

of pathology by far precede the onset of symptoms. Taylor Schmitz and colleagues substantiate the

cholinergic origin of neurodegeneration in their longitudinal in vivo imaging studies: 15,16 In cogni-

tively normal and impaired human subjects, basal forebrain volume predicted longitudinal entorhi-

nal degeneration, but not vice versa. As such, the cholinergic basal forebrain dysfunction precedes as

well as predicts pathology in other affected areas and cognitive deficits. 15 Additionally, the spread of
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Alzheimer’s pathology in the longitudinal progression of the disease reflects the spatial topography

of basal forebrain cholinergic projections.16

1.2.2 Schizophrenia and Bipolar Disorder

Cognitive deficits can also occur without neuron death. The earliest description of what we today

call Schizophrenia (SCZ) was coined by Emil Kraepelin: »dementia praecox«, premature demen-

tia.17 Cognitive deficits are an integral but often overlooked part of the clinical picture of SCZ,

which is often dominated by the more impressive positive symptoms such as hallucinations and

paranoia. Likewise, Bipolar Disorder (BD) can present with cognitive impairments. The cognitive

impairments affecting both SCZ and BD patients involve diminished problem solving capabilities

and reduced intelligence, and are more pronounced in SCZ than in BD.18 They have been con-

nected to cholinergic dysfunction 19,20 and the sum of anticholinergic medications.21,22 A human

polymorphism in the α5 nicotinic receptor subunit predicts a higher propensity for smoking and

SCZ, showing parallel manifestations in engineered mice23 and rats. 24 Correspondingly, cholinergic

stimulation can improve cognition25–27 and mood, 28 but can on the other hand provoke schizotypic

behaviour in AD patients.29

SCZ and BD clinically present with clear sexual dimorphisms. Compared to women, men have a

higher SCZ prevalence with an odds ratio (OR) of 1.4, are affected earlier (at 15-25 as compared

to 25-35 years of age), and face a worse prognosis. 30 Cholinergic participation also appears sex-

dependent: Male SCZ patients more often self-medicate by smoking (7.2 versus 3.3 weighted av-

erage OR with 90% lifetime prevalence).31 BD, on the other hand, affects men and women almost

equally, with an OR of ∼1. However, women make up 80-90% of so-called »rapid cyclers«, a sub-

group of patients showing short intervals between manic and depressive phases which is associated

with a worse prognosis. 32 Additionally, major depressive disorder, which is a prerequisite for BD

diagnosis, more often affects women (OR = 2).33

Psychiatric genomics has recently identified a high amount of shared heritability between SCZ

and BD.34 Likewise, transcriptomic analyses have shown a high correlation (71%) between the tran-

scriptional perturbations in the two diseases. 35 Clinical as well as molecular pathology intensifies

from BD to SCZ, suggesting the two lie on different points of a shared spectrum. However, their

genetic origins are tremendously complex. Multiple disease-relevant markers have been identified by

genome-wide association studies, even able to distinguish between several sub-phenotypes of each

disease. 36 These markers are found in neurotransmitter receptors (e.g., dopaminergic, glutamater-

gic, cholinergic), scaffolding proteins (DISC: »disrupted in schizophrenia«), multiple transcription

factors (TFs), microRNAs (miRNAs), and non-coding regions without known function.37–39
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Considering this complex disease aetiology, it is not surprising that there are no »designer« drugs

available against SCZ and BD. All available therapeutic options have been empirically identified,

starting with the first antipsychotic, chlorpromazine, synthesised in 1950 by the French pharmaceu-

tical company Rhône-Poulenc. Originally developed in a series dedicated to the search for antihis-

tamines, it was soon recognised for its antipsychotic potential, and widely prescribed only few years

later. Many other neuroleptic compounds have been derived from chlorpromazine, and through

binding affinity assays, their receptor profiles were established. Most compounds with antipsychotic

properties have a wide spectrum of different receptor activities, but most early drugs were strong

antagonists of the D2 dopamine receptor. Thus, the »dopaminergic hypothesis« of SCZ was for-

mulated. However, aetiology as well as therapeutic principles are unclear to this day, and most an-

tipsychotic substances still are very »dirty drugs«. In fact, newer developments leading to the dis-

covery of the second generation (»atypical«) neuroleptic substances, starting with clozapine, have

created molecules with an even wider spectrum of interactions und thus less specificity towards a

single therapeutic mechanism of action. Similarly, the archetypal »mood stabiliser« lithium, that

has been found to ameliorate depressive as well as manic phases of BD, likely influences a wide va-

riety of neuronal functions via mechanisms yet unclear. 40 These circumstances are contrary to the

principles of medicinal chemistry, where most developments aim for a higher target specificity. It

is thus very likely that pharmacological therapy of SCZ and BD requires an approach consisting of

multiple pharmacodynamic angles, to account for the multigenic disruption.

1.2.3 Immunity

Aside from its vast neuronal functions, ACh also is highly relevant in immune cells, recently re-

viewed by Fujii and colleagues.41 The first to isolate ACh from an animal organ, Dale and Dud-

ley,6 used the spleens of oxen and horses. The spleen receives sympathetic, but only very sparse

parasympathetic innervation, and as such, the large amounts of ACh found by Dale and Dudley

had to have come from immune cells. Indeed, nearly all mammalian immune cells express cholin-

ergic components, most importantly, B- and T-cells, monocytes/macrophages, and dendritic cells.

While ACh is rather stable physico-chemically, it is extremely susceptible to enzymatic degradation,

and cholinesterases are ubiquitarily distributed and cleave ACh with stunning efficiency, reducing

its diffusion range to few millimetres. As a result, ACh has to be supplied synaptically or, at most, in

paracrine fashion. ChAT activity has been confirmed in B- and T-cells, which both contain signifi-

cant amounts of ACh, although T-cells generally possess higher amounts. Additionally, in periph-

eral cells ACh can be synthesised by the mitochondrial carnitine acetyltransferase. In addition to B-

and T-cells, CHAT mRNA has been found in macrophages and dendritic cells. ChAT expression
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and ACh synthesis can be induced by various immune mediators, such as lipopolysaccharide (LPS)

and other toll-like receptor (TLR) agonists.
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Figure 1.2: Vagus nerve-mediated reflex circuitry in immunity

and inflammation. In the inflammatory reflex, the activity of af-

ferent vagus nerve fibres residing in the nodose ganglion is stim-

ulated by cytokines and PAMPs. [..] The signal is propagated

to the celiac ganglia and the superior mesenteric ganglion in the

celiac plexus, where the splenic nerve originates. Norepinephrine

(NE) released fromthe splenic nerve interactswithα2-adrenergic

receptors and causes the release of acetylcholine (ACh) from

T cells containing functional choline acetyltransferase (T-ChAT

cells). ACh interacts with α7 nAChRs on macrophages and sup-

presses pro-inflammatory cytokine release and inflammation. [..]

Vagus nerve and splenic nerve signalling mediated through α7

nAChR on splenocytes controls inflammation in acute kidney in-

jury and alleviates the condition. Figure and caption (modified)

from Pavlov & Tracey. 42

In addition to ACh synthesis, all of the

aforementioned cell types can receive cholin-

ergic signals. They express all muscarinic re-

ceptors as well as a selection of nicotinic re-

ceptor subunits, and the signal-terminating es-

terases. Although it is not completely clear

how the parasympathetic signal reaches the im-

mune cells, cholinergic activation as a result

of inflammation can dampen the immune re-

sponse in what is described as the »cholinergic

anti-inflammatory reflex« (Figure 1.2). 43 This

reflex loop is designed to protect the body from

pathogens and inflammation, but also from the

harmful effects of immune stimulation. Upon

afferent signalling through the afferent vagus

nerve and humoral components, the brain re-

leases humoral (via the hypothalamic-pituitary-

adrenal axis) and neuronal (via the sympathetic

and parasympathetic autonomous fibres) anti-

inflammatory signals. The spleen has been iden-

tified as a pivotal organ in this response. Since

none of the immune organs receives parasym-

pathetic innervation, it has been proposed that

the cholinergic activation is generated locally,

with the help of sympathetic signalling to the

organ. 44

A special role among cellular ACh receptors

is occupied by the α7 nicotinic receptor sub-

unit. Previously thought to exclusively form homopentameric ion-channel receptors, its functional

characteristics have recently been extended. It has been found to form heteropentamers with β2

subunits, akin to the prominent α4β2 receptors in the brain, and an expression in immune cells

also is likely. A hybrid duplication of the CHRNA7 gene with FAM7, CHRFAM7A, is translated

to a functional protein (dupα7). However, it seems to lack ACh binding ability, and thus is thought
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to act as a dominant negative regulator of α7 receptor function. In addition to its ionotropic func-

tion, mainly by means of Ca2+ transduction, the α7 receptor has been found to possess G-protein

coupled metabotropic effects that can extend the duration of cholinergic activation. The α7 re-

ceptor can also, independently of Ca2+, activate the JAK2/STAT3 pathway (see Section 1.2.7) in

macrophages, leading to suppression of NF-κB signalling.

On the other hand, cholinergic activation via M1 and/or M5 muscarinic receptors can lead to a

positive immune response. The difference between muscarinic and nicotinic immune-signalling is

elucidated by transgenic receptor knockout (KO) animals: Splenar cells from selective M1/M5-KO

mice secreted significantly lower amounts of the neuromodulators tumour necrosis factor (TNF)-

α, interferon (IFN)-γ, and interleukin (IL)-6 than those from wild type (WT) mice. Conversely,

antigen-stimulated splenar cells from α7-KO mice produced significantly greater amounts of TNF-

α, IFN-γ, and IL-6 than WT. In summary, the effects of cholinergic stimulation of the immune

system is bidirectional and strongly context-dependent, and specific pharmacological intervention

can shift homeostasis in both pro- as well as anti-inflammatory directions.

1.2.4 Neuroinflammation

Neurodegenerative as well as non-degenerative neurologic diseases are increasingly being associated

with immunologic phenomena, prompting the need for integrative and translational approaches.45

Transient and chronic inflammatory events can influence neuronal function and even survival in a

dramatic fashion. Further, failure to resolve the acute inflammatory states may lead to maladaptive

states, cases of »frustrated resolution«,46 in which the goal of adaptive immunity is not met. As

was recently shown,47 resolution of inflammation is not just the »phasing-out« of inflammatory

events, but rather bridges the gap between innate and adaptive immunity. While many acute-phase

TH1-type cytokines may have evolved to drive inflammation, their protracted influence may derail

these post-inflammatory events and thus lead to maladaptive responses and chronic inflammation.

TH1-type cytokines include TNFs, IFNs, IL-1β and IL-6, and downstream mediators discussed

in this context are manifold: phosphoinositide 3-kinase (PI3K); cyclic adenosine monophosphate

(cAMP); myeloid leukaemia cell differentiation protein 1 (MCL1); the complex of B cell lymphoma

2 (BCL-2), Serine/Threonine Kinase 1 (AKT), and BCL-2-associated agonist of cell death (BAD);

all variants of mitogen-activated protein kinase (MAPK), i.e., extracellular-signal-regulated kinase

(ERK) 1 and 2, JUN N-terminal kinase (JNK), and p38 MAPK; and the NF-κB pathway. This list

is not comprehensive, for a more detailed overview, see Fullerton & Gilroy.46

While none of the cardinal symptoms of inflammation are easily assessed in a CNS context, Vir-

chow’s fifth cardinal sign, functio laesa, is particularly difficult to tie to chronic neuroinflammation.
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Complex behavioural syndromes such as the functional deficits accompanying neurologic diseases

may be influenced by protracted, maladaptive immunity, but the affected areas, brain structures, and

timelines cannot be measured with current methods in neuroimaging. Only recently, it has become

known that the brain is not immunologically pristine, but rather possesses a very specialised immune

system, showing grave distinctions from, but also overlap with, peripheral immune systems.48,49 The

mechanisms of immune privilege of the brain are constantly being refined; there is crosstalk between

brain and periphery with blood-to-brain and brain-to-blood messaging, 44 and even migration of

immune cells into the CNS, mainly as a response to sustained inflammation.

The first line of defence in CNS tissues are microglia, which in their physiological state are resident

ramified monocytes, and upon antigen sensing can produce an immediate native immune reaction.

Further, the nascent immune system of the CNS comprises similar cells as the peripheral systems

(T-cells, B-cells, NK-cells, dendritic cells), albeit with significant differences: antigen presenting cells

express significantly fewer major histocompatibility complex (MHC) I and II molecules (which can

however be induced by cytokine release upon inflammation); and the endocrine conditions (secre-

tion of immune mediators from neurons) entail a more rapid response (seconds instead of days)

with shorter duration of inflammation than in the periphery.49

Under the surveillance of resident microglia, there is constitutive and inducible migration of im-

mune cells between CNS tissues and periphery, in a loop of infiltration and drainage. Starting at

antigen presentation inside the CNS, activated immune cells leave the CNS through one of two

routes, both ending at the deep cervical lymph nodes: either through the cribiform plate into the

nasal mucosa, or into the meningeal lymphatic vessels accompanying the sagittal and transversal si-

nuses in the dura mater. Following an immunological stimulus, activated immune cells in the deep

cervical lymph nodes facilitate a secondary immune response and protect nervous tissue through

secretion of cytokines50 and re-migration of secondary immune cells to the CNS. Regulatory cy-

tokines include IL-1 and IL-6, CCLs and CXCLs, leukaemia inhibitory factor (LIF), and epidermal

and fibroblast growth factors. Re-migrating T cells can utilise various adhesion molecules expressed

by endothelia along the blood-brain-barrier to cross into the CNS in a controlled fashion.49

1.2.5 Stroke

Stroke is a medical emergency in which reduced blood flow leads to massive neuron death in the

brain. There are two types of stroke: haemorrhagic stroke, which is caused by bleeding due to a rup-

ture of brain vessels, and ischemic stroke, misperfusion of a brain region caused by a clot in a cranial

artery. Ischemic stroke makes up the vast majority of all strokes, up to 90%. 51 Stroke is currently the

second most frequent cause of death in developed countries, only second to coronary artery disease
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(excluding »cancer«).52 Those who survive the stroke are in many cases permanently and severely

disabled. The prognosis of stroke patients is mainly dependent on clinical complications during

initial care.

Infections are a leading cause of death in stroke patients. The CNS injury itself is an indepen-

dent risk factor for the development of life-threatening infection. The most frequent complications

accompanying stroke are fever and pneumonia, the fever in turn being most often caused by the

infection. Affecting more than 20% of stroke patients, pneumonia is the most common serious

post-stroke complication, featuring a mortality rate of more than 30%. 53 Stroke patients demon-

strate a significant immunosuppression, resulting in lower count and functionality of immune cells.

The ability of monocytes to synthesise cytokines is drastically reduced, a finding that has been repro-

duced in animal models of cerebral ischemia.

T cell activation and proliferation in the deep cervical lymph nodes is elevated following CNS

injury, implicating that the drainage of immune cells from the site of injury plays an important role

in immune system stimulation. 50 Depletion of those T cell leads to neuron death, suggesting that

this naive response is favourable in stroke and similar conditions. However, the specifics of activation

and migration, and the mediators (cytokines, antibodies) influencing the post-injurious response are

still largely unclear.48

The immunological situation after stroke is dominated by two opposing factors, the pro-inflam-

matory bodily response to injury and, often, infection, and the counter-regulatory immunodepres-

sive response including the cholinergic anti-inflammatory reflex (see Section 1.2.3). The inflamma-

tory response can become pathologic in the case of excess stimulation, which can result in »systemic

inflammatory response syndrome« (SIRS), which in extreme cases can lead to shock and organ fail-

ure. As a counterbalancing measure, the body responds with a »compensatory anti-inflammatory

response syndrome« (CARS), designed to allow fighting the infection while also protecting the

body from excessive immune stimulation. However, in CNS injury, the anti-inflammatory com-

ponent may overwhelm inflammatory processes, leading to a pathological »CNS injury-induced

immunodepression syndrome«, CIDS.

In addition to the humoral and neurohumoral immunomodulatory pathways described above,

the brain can directly steer immune processes by the release of cytokines. This may be particularly

impactful in CNS injury, where blood-brain-barrier and homeostasis are disrupted. Contrary to the

selective uptake of substances into the CNS, export from the CNS is mostly instantaneous and not

tightly controlled. Among the cytokines found in circulation after stroke are transforming growth

factor (TGF)-β, IL-1β, IL-6, and TNF-α. So far, it is unclear which of the immunomodulatory

axes (humoral, neurohumoral, or direct release of cytokines from the brain) contributes to CIDS,
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and how they relate to each other. As a consequence, it is also unclear if directed intervention against

CIDS would be beneficial, or even feasible.53

The pro-inflammatory acute and sub-acute, and the anti-inflammatory chronic phases of stroke

development are mediated by cellular components of the immune system. Particularly important

for the homeostasis of debris removal and vascular stability are circulatory and stationary monocytes

(in the brain called microglia).54 Monocytes differentiate into macrophages upon inflammatory

stimuli; the two diametrically opposite macrophage phenotypes are the pro-inflammatory M1 type

and the anti-inflammatory M2 type (unfortunately harbouring confusion potential with muscarinic

receptors). Human monocytes show similar distinctions by expression of several clusters of differen-

tiation (CDs), mainly CD14 and CD16. The main pro-inflammatory phenotype expresses CD14

and no CD16 (CD14++CD16−), while the anti-inflammatory phenotype expresses less CD14 and

high amounts of CD16 (CD14+CD16++). There is an immediate phenotype (CD14++CD16+),

which is closer in function to the pro-inflammatory phenotype. Rodents also possess pro- and anti-

inflammatory phenotypes, but no intermediate phenotype.54

After stroke, monocytes undergo complex regulation that parallels acute and chronic phases. In

acute and sub-acute phases, pro-inflammatory monocytes are elevated in blood and brain, whereas

anti-inflammatory monocytes are decreased. This partly reverses in the chronic phase; in the brain,

anti-inflammatory monocytes »take over«, while the numbers of pro-inflammatory monocytes de-

crease. Whether this is conveyed through cross differentiation from one phenotype to the other, or

by migration, is yet unclear. 54 In blood, both phenotypes are decreased in the chronic phase, while

the bone marrow increases monocyte production. In regard to the cholinergic inflammatory reflex,

it seems important to note that the spleen, which acts as a reservoir for monocytes in the periphery,55

has significant effects on stroke recovery. Stroke leads to contraction of the spleen, and a subsequent

reduction in the number of monocytes in the spleen, and an increase in the brain. 56 Splenectomy,

two weeks before permanent middle cerebral artery occlusion in rats, ameliorated acute pathology

and reduced the number of brain macrophages after the infarction.57 Influences on medium- to

long-term recovery, however, were not tested.

1.2.6 Circadian Aspects of Cholinergic Systems

Cholinergic systems and psychiatric diseases share another common theme: regulation of circadian

time and sleep patterns. Cholinergic nuclei have been associated with the resetting of the circadian

clock in the suprachiasmatic nuclei (SCN). Retrograde tracing from the SCN 58 has identified basal

forebrain nuclei (Ch1 & Ch4), as well as the pedunculo-pontine nucleus (PPN, Ch5), laterodor-

sal tegmentum (LDT, Ch6), and the parabigeminal nucleus (parabigeminal nucleus (PBG), Ch8)
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as regulatory input to the SCN (compare also Figure 1.1). Basal forebrain cholinergic neurons are

active in wakefulness and in the rapid eye movement (REM) phase of sleep,59 and optogenetic activa-

tion of PPN and LDT cholinergic neurons (channelrhodopsin 2 under the ChAT promoter) during

non-REM sleep was sufficient to induce REM sleep in mice.60 Basal forebrain projections to other

brain regions seem to functionally diverge from the projections to the SNC. In a study analysing pre-

frontal and hippocampal cholinergic activities, the increase in tonic ACh release during REM sleep

was contingent on subsequent wakefulness,61 and thus may convey a stronger »wake-up« signal

than projections to the SCN alone.

Muscarinic receptors M1 and M3 are essential for REM sleep: REM-sleep is completely abol-

ished in combined M1/M3 receptor KO mice.62 Arousal-induced phase shifts induced by activa-

tion of Ch4 cholinergic neurons projecting to the SCN were blocked in animals pretreated with

(anti-muscarinergic) atropine injections to the SCN, demonstrating that cholinergic activity at mus-

carinic receptors in the SCN is necessary for arousal-induced phase shifting. 63 However, in their

atropine perfusion experiment (locally via injection), the authors did not preclude cholinergic influ-

ences from the other nuclei.

In parallel, psychiatric patients often show symptoms of disturbed circadian rhythm. In the cho-

linergic-catecholaminergic imbalance hypothesis of BD,19 the imbalance follows transcriptionally

regulated rhythms, and affected individuals exhibit decreased REM latency (the duration from onset

of sleep to the first REM phase), which can be modulated by muscarinic agonists or antagonists. 64

Conversely, sleep deprivation exerts short-term antidepressant effects65 and entails reduced cortical

ACh levels66 and vast transcriptional changes in basal forebrain cholinergic neurons.67

While the SCN regulates circadian timing of the organism, individual cellular timings are con-

trolled by a group of transcriptional activators and de-activators, called clock genes. The autoregula-

tory feedback loop thus created oscillates between day and night timing, under the influence of exter-

nal factors. How exactly the individual cellular clocks are synchronised by the SCN is still unclear. 68

The first molecular circadian controller, circadian locomotor output cycles kaput (CLOCK), was

identified by Joseph Takahashi and colleagues via mutagenesis screening in mice in 1997.69 The tran-

scription factors CLOCK and brain and muscle ARNT-like protein 1 (BMAL1) form heterodimers

and bind to E-box elements in the promoters of period (PER) 1 and 2, and cryptochrome (CRY) 1

and 2, which lead to negative feedback regulation; or to E-box elements in the promoters of NR1D1

(giving rise to the Rev-Erbα protein) and NR1F1 (giving rise to RORα), which compete for the

ROR element in the BMAL1 promoter. RORα induces BMAL1 expression, while Rev-Erbα re-

presses it, thus leading to an oscillating expression pattern. In neurons, CLOCK can be substituted

by its paralogue NPAS2.
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Figure 1.3: The Neurokine Pathway. The neurokines, such as CNTF, LIF, and IL-6, signal through a combination of soluble and

membrane-bound receptors. Activation of a transmembrane neurokine receptor is usually followed by JAK recruitment and phos-

phorylation, and successively by STAT activation and translocation to the nucleus. Other aspects of the figure refer to the probable

distinction between the cholinergic neuron (left side) and the »cholinoceptive neuron« (right side), the latter ofwhich possessesACh

receptors and AChE for degradation of the transmitter, andwhichmay also produce soluble neurokine receptors. The phenotype of

cholinergic cells is controlled by cholinergic-specific transcriptional regulators such as LHX6 and LHX8, circadian regulators such as

CLOCK and ARNTL, and by inducible and broad transcriptional regulation via the JAK/STAT pathway.

1.2.7 Neurokines

In comparison to the widely studied cholinergic projection neurons originating in the basal fore-

brain (Ch1-Ch4) that are known to depend on a retrograde survival signal by means of nerve growth

factor (NGF), trophic influences on other cholinergic populations such as the cortical interneurons

are unclear. NGF was described by Rita Levi-Montalcini in the 1950s as the first known instance

of trophic peptides required for the survival of sympathetic ganglia. 70 The group of neurotrophic

substances since discovered (most prominently, the brain-derived neurotrophic factor BDNF) are

commonly referred to as »neurotrophins«. They convey their trophic effects through a family of

transmembrane receptors; NGF binds to neurotrophic receptor tyrosine kinase 1 (NTRK1) with

high affinity, BDNF binds to neurotrophic receptor tyrosine kinase 2 (NTRK2) with high affin-

ity. However, both also bind to a third receptor, nerve growth factor receptor (NGFR), which is

also known as p75, although with low affinity. NGFR function is complex, depending on the con-

text it seems to be able to suppress as well as enhance the primary neurotrophic signal mediated by

NTRK1/2.71 The dependence of basal forebrain cholinergic neurons on retrograde NGF signalling

was discovered in the 1980s. 72

A second group of trophic peptides with cholinergic implications are the »neurokines«; the name

results from the fact that this subgroup of cytokines has been associated with neuronal function in

the central and peripheral nervous systems. Most prominently, they include the ciliary neurotrophic
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factor (CNTF), LIF, and IL-6, all of which coincidentally have been known by the acronym CDF.

In the late 1980s, two groups of scientists (McManaman73 and Rao 74) independently identified pro-

teins in extracts of muscle fibre that induced a differentiation of neurons towards a cholinergic type,

and thus termed these proteins »choline acetyltransferase development factor« or »cholinergic dif-

ferentiation factor« (both abbreviated CDF). Only later, through sequencing of the peptides, it

became known that they had in fact discovered two distinct neurokines, LIF (Rao) and CNTF (Mc-

Manaman, personal communication). IL-6, on the other hand, is abbreviated CDF for an entirely

different reason: in this case it is short for »CTL (cytolytic T lymphocyte) differentiation factor«.

CNTF, LIF, and IL-6 convey their impact on neuronal activity through a partly redundant neu-

rokine receptor pathway.32 There are two basic types of neurokine receptors: soluble and transmem-

brane. The primary receptors for CNTF (CNTFR) and IL-6 (IL6R) are soluble proteins that are

secreted into the extracellular space and, upon binding of a neurokine, bind to transmembrane re-

ceptor dimers on the cell surface. These transmembrane receptors are the LIF receptor (LIFR) and

the »interleukin 6 signal transducer« (IL6ST), which is also known as gp130. Due to the latter’s pre-

dominance, neurokines are also referred to as gp130 receptor family cytokines75. Every neurokine

has its preferred constellation of soluble and transmembrane receptors: CNTF binds to the solu-

ble CNTF receptor and a dimer consisting of one gp130 and one LIFR protein; IL-6 binds to the

soluble IL6R and a dimer of two units of gp130; LIF does not usually bind a soluble receptor but

rather binds immediately to a dimer comprising one of each gp130 and LIFR; however, there are

significant redundancy, pleiotropy, and crosstalk between those systems.75–77 Notably, a membrane

bound IL-6 receptor is also expressed on several select cell types: macrophages, neutrophils, some

types of T-cells, and hepatocytes.78

All receptor constellations result in a main effect of activation of the JAK/STAT cascade (Figure

1.3). More specifically, neurokines can activate janus kinases (JAKs) 1 and 2 or the homologous ty-

rosine kinase (TYK) 2, and, successively, STAT (»signal transducer and activator of transcription«)

isoforms 1, 3, 5A, and 5B, which then convey a multitude of cellular effects (e.g. in immunity or

differentiation) through transcriptional activation. The STAT cascade is inherently self-limiting in

that it usually leads to expression of transcription factors that serve as repressors of the STAT genes

by SOCS (suppressors of cytokine signalling), PIAS (protein inhibitors of activated STATs), and

PTPs (protein tyrosine phosphatases).76

Neurokines, particularly IL-6, may serve as a link between the immunological and cholinergic as-

pects of physiologic or disease processes. Since IL-6 is implicated in neurodegenerative, psychiatric,

and injurious CNS diseases (Section 1.2), which all also possess a cholinergic facet, it makes sense to

not only see it in the light of an immunomodulator, but also as a potential influence on neuronal

function in cholinergic systems. A third of basal IL-6 levels are generated in adipose tissue in healthy
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humans,79 and central (fatty) obesity increases risk for AD about 3-fold.80,81 SCZ and BD also are

associated with obesity, although causality still is unclear. While obesity itself is more predominant

in SCZ than in BD, obesity in BD patients is associated with decreased global cognitive ability as

well as with poorer performance on individual tests of processing speed, reasoning/problem solv-

ing, and sustained attention. 82 Low-grade chronic inflammation is recognised in obesity83 as well as

in neurodegenerative84 and non-degenerative psychiatric diseases. 85,86 Sleep disturbance in animal

models of mood disorders is accompanied by elevation in blood levels of IL-1, IL-6, and TNF-α. 87

Additionally, it has been shown that LIF can lead to a catecholaminergic-to-cholinergic neurotrans-

mitter switch in peripheral neurons in a mouse model of protracted inflammation accompanying

collagen-induced arthritis. 88 Though being a marginal phenomenon, it is not unthinkable that sim-

ilar processes in central nervous cell may contribute to a disruption of homeostasis of cholinergic

systems, and thus, to disease.

1.3. Transcriptional Connectomics

The term »connectomics« is not strictly limited to one scientific discipline; it is frequently used

when the studied matter is defined by complex relationships between interaction partners. The

most frequent use outside of transcriptional matters is neuronal connectomics, i.e., the relation-

ships and projections between brain regions. In this dissertation, connectomics generally refers to

epi-transcriptional interaction, the processes surrounding protein-coding gene expression. For the

sake of simplicity, in this dissertation all observations relating to genomics, transcriptomics, genes,

and their small RNA regulators should be seen in the context of Homo sapiens, unless explicitly

stated otherwise.

No matter their location, cholinergic neurons are defined by their ability to synthesise ACh

and release it to neighbouring cells to a certain effect. To fulfil this task, two proteins are essential:

the choline acetyltransferase (ChAT) to synthesise ACh from choline and acetyl-Coenzyme A, and

the vesicular acetylcholine transporter (vAChT, official gene symbol SLC18A3), which concentrates

ACh in vesicles for later release. A notable genetic feature connects these two proteins beyond their

functional association: the small SLC18A3 gene - only 2420 nucleotides (nt) in size - sits inside the

first intron of the CHAT gene and thus is already included in its primary transcript, and is subject to

the CHAT promoter. However, oftentimes the (mature) transcript levels of CHAT and SLC18A3

mRNA seem to be independently regulated; from the perspective of the organism, the possibility of

differential regulation between these two genes makes sense. Since SLC18A3 apparently does not

possess its own promoter, this differential regulation has to be conveyed epigenetically.
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This dissertation deals in large parts with approaches aiming to decipher these interactions; and

while its primary topic revolves around cholinergic systems, the methods described in the following

are designed to be applicable to the entirety of the genome/epigenome. Four particular types of cellu-

lar actors are subjects of these methods and therefore will be briefly introduced: genes in the classical

sense as the conveyors of cellular function by encoding for proteins; transcription factors (TFs), a

subclass of protein coding genes that are able to regulate the expression of other genes; miRNAs, a

class of small non-coding RNA (smRNA) that has been known for approximately two decades and

is reasonably well described functionally and mechanistically; and transfer RNA fragments (tRFs),

a second class of regulatory smRNA that has only recently been rediscovered and is significantly less

well described regarding its functionality.

Naturally, there are multiple additional epigenetic regulatory mechanisms that are not subject to

the herein described methods, some of which closely interact with small RNA function. For in-

stance, long non-coding RNAs are a large, novel class of RNA that is poorly characterised as of yet,

but has been shown in several instances to interfere with gene expression via RNA-binding protein

interactions, or with miRNA function via sponging of miRNA molecules. Other epigenetic pro-

cesses such as DNA methylation or histone modifications are also known to significantly influence

gene expression; however, their target-specific effects are in most cases not catalogued in a compre-

hensive fashion and thus are not amenable to whole-genome bioinformatics analyses.

1.3.1 Transcription Factors

Transcription factors (TFs) were among the first intracellular regulatory mechanisms to be discov-

ered (the earliest article referencing the term »transcription factor« in its title on PubMed was pub-

lished in 1972). TFs commonly translocate from the cytosol into the nucleus upon activation (often

by phosphorylation), where they bind specific DNA sequences that usually range in size from 6 to

12 nt. The regions containing these binding sites (about 100 - 1000 nt in size) determine the effect

upon binding, which can be one of two main modes: either a promoter, leading to an increased

activity of transcription in the downstream vicinity of the binding site, or a repressor, having the

opposite effect.

There exists a vast body of knowledge on TF-interactions with genes, mostly due to the long

period of time since their discovery and the multitude of scientific publications, most often studying

single TFs and their interactions with few genes, but cumulatively curated by several organisations.

One of the currently largest curations of TF data, TRANSFAC, saw its original release in 1988.

While these curation efforts can be extensive, they may present with serious bias towards particular

TFs that may hold more scientific interest and thus are published far more frequently than others.
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Figure 1.4: Structure of the Ago2-guide complex. A) Schematic of the Ago2 primary sequence. Front and top views of human Ago2

bound to a defined guideRNA (red). Ago2 contains a large central cleft between two lobes (N-PAZandMID-PIWI) connected by two

linker domains (L1 and L2). B)Guide RNA omit map contoured at 2σ (bluemesh). C)Nucleotides g2–g5 are exposed, whereas Ago2

occludes nucleotides g6 and g7. D)The 3’ half of the guide is threaded through theN-PAZ channel. E)Viewdown theN-PAZ channel.

Figure and caption from Schirle et al. 89

Recently, comprehensive efforts have extended the available data significantly. Driven by the advent

of RNA-seq, computational approaches have become able to not only comprehensively predict TF-

gene interactions, but to do so in a highly tissue-specific manner (see Section 2.2.3). The human

body is estimated to express up to 2600 distinct DNA-binding proteins, most of them presumed

TFs, 90 although other studies give lower estimates.

1.3.2 microRNAs

The first endogenous »small RNA with antisense complementarity« was described in 1993, 91 but

microRNAs (miRNAs) were only recognised as a distinct regulatory class of molecules in the early

2000s. They are typically between 18 and 22 nt-long, single stranded RNA fragments, and their

function is now largely undisputed: miRNAs serve as targeting molecules for a protein complex

whose primary purpose is to repress translation of mRNA, and, in some cases, lead to mRNA degra-

dation. The complex, therefore, is called RNA-induced silencing complex (RISC); central to its

function is the family of argonaute (Ago) proteins, which can bind the mature miRNA and orient

it for interaction with its targets (Figure 1.4). 92 Guidance of RISC to the target mRNA is generally

mediated via sequence complementarity between miRNA and the targeted mRNA. Specifically, a
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Figure 1.5: miRNA BindingModes. miRNAs can bind to their target transcripts via a range of binding modes. N: any nucleotide; M:

matchingnucleotide. A)Simple seedmatchingof complementarybases (indicatedbygrey lines) is calledcanonical binding. Canonical

sites can have different lengths and starting points. B) Seed pairing can be supplemented by complementarity in the 3’ region of the

miRNA, often after a »bridge« of non-complementary bases. This is particularly relevant in case of amismatch in the seed (indicated

by red »X«). Possible but less frequent are also C) offset 6-mer sites, D) seed-mismatched or G:U wobble sites, and E)G-bulge sites.

Figuremodified from van Peer et al. 94

»seed« region, usually bases 2-8 on the miRNA, is mainly responsible for the interaction; in case of

perfect complementarity of this seed to the mRNA sequence, the interaction is considered »canon-

ical«.89

In early miRNA research, the 3’ untranslated region (UTR) of the mRNA was believed to con-

tain most miRNA binding sites due to its greater accessibility (i.e., the lack of active ribosomes);

however, cumulative recent reports suggest that binding inside the coding region of the mRNA is a

regular occurrence.93 The rules governing miRNA binding to target sequences show considerable

flexibility; a recent study shows about 30% of analysed relationships to be of »non-canonical« na-

ture. 94 In those cases, seed pairing with the mRNA is often imperfect. To ameliorate this loss of

stability, compensation occurs typically by a secondary complementary structure after a small gap

of non-complementary bases, leading to a »bridge«-type constellation (Figure 1.5). This flexibility

has implications in applications involving targeting algorithms; those that consider only the seed re-

gion are more prone to false negatives than models that consider, for instance, the free energy of the

whole molecule (see Section 2.2.4). A recent study reveals a highly unusual non-canonical binding

of miR-126-3p directly to caspase 3, inhibiting apoptosis independent of RISC association.95
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Biogenesis

miRNAs, similar to coding genes, are transcribed from loci on the genome, many inside introns

or even exons of coding genes. 96 The primary transcript (primary miRNA or pri-miRNA) typi-

cally contains a hairpin-like structure that usually results in a double-stranded molecule because of

internal complementarity, and can contain up to six mature miRNAs. This hairpin structure is

recognised by the DGCR8 protein (DiGeorge Syndrome Critical Region 8, in invertebrates called

»Pasha«); the complex then associates with the RNA-cleaving protein »Drosha«, which removes

bases on the opposite side of the hairpin, creating a miRNA precursor (or pre-miRNA), which is

subsequently exported from the nucleus by the shuttle protein Exportin-5. In a final step in the

cytosol, the ribonuclease »Dicer« removes the loop joining the 3’ and 5’ arms of the pre-miRNA,

resulting in a duplex of mature miRNA, about 20 nt long. Initially, it was thought to contain only

one active miRNA, resulting in a designation of »miRNA*« for the complementary strand (com-

monly, the strand with lower expression). However, this notion has been disproven, and to reflect

the possibility of both strands performing miRNA functions, nomenclature has changed to specify

the arm of the pre-miRNA from which the mature form originates (suffix »-3p« for the 3’ arm, and

»-5p« for the 5’ arm).

miRNA genes, in the same way as protein coding genes, can be subject to promoters and repres-

sors, adding another layer of expression control by TFs. However, these TF-miRNA relationships

are far less well described than common coding gene interactions, because miRNAs due to their

shortness are not amenable to many standard gene expression assay forms. Estimation of the num-

ber of distinct gene targets of any one miRNA varies widely; however, it is generally accepted to not

be less than several dozen targets per miRNA, and up to thousands of genes per miRNA (although

that estimate may be overenthusiastic).97,98

Organisation and Curation

miRNAs are organised and curated by means of a periodically updated web-based platform, miR-

Base. 99 ForHomo sapiens, miRBase v21 contains 2588 mature miRNAs from 1881 precursors. Evo-

lutionarily, the miRNA repertoire has grown from rodents to primates, resulting in a number of

primate-specific miRNAs that may convey additional function. miRNA nomenclature is organ-

ised100 in a way that assigns evolutionarily conserved miRNAs the same designation (number) in

all species in which they are expressed. In their full names, a prefix stating the organism of origin is

added; for example, hsa-miR-125b-5p (for Homo sapiens) and mmu-miR-125b-5p (for Musmuscu-

lus) share the same sequence and most of their functionalities.
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miRNAs are subcategorised in families (designated »mir« with lowercase »r«) by their genomic

origin and phylogenetic homology aspects. As the annotation itself, family affiliations are in flux

and change with each miRBase version. miRBase v21 lists 151 distinct miRNA families with 721

individual members in total. The remaining 1867 miRNAs do not (yet) belong to a larger family;

the majority (80%) of those is newly discovered, as indicated by a 4-digit designation number.

Disease Association

miRNAs have been associated with a number of CNS diseases, including AD, Parkinson’s Dis-

ease (PD), BD, and SCZ. However, the largest contribution since their discovery by far has been

made by cancer research; of the approximately 90 000 publications found on PubMed with the

term miRNA, about 42 000 involve cancer (search term »miRNA AND cancer«). In compari-

son, »miRNA AND Alzheimer’s Disease« results in about 600 hits, while a search for »miRNA

AND Schizophrenia« yields just 363 publications (as of October 2019).

In AD, several groups of miRNAs have been found to show characteristic perturbations before

the onset of symptoms, which makes them interesting biomarker candidates.101 Some miRNAs

have been extensively studied in a variety of contexts, most prominently hsa-miR-132-3p. Among

its targets are several key neuronal regulators (e.g. FOXP2, FOXO3, P300, MeCP2), and it is in

turn controlled by many pivotal neuronal elements (e.g. REST, ERK1/2, CREB); this presents an

explanation for the many physiological and pathological situations that miR-132-3p has been found

to play a role in. Its functions include the control of neuronal survival/apoptosis, migration and

neurite extension, neuronal differentiation, and synaptic plasticity.

miRNAs fulfil their regulatory purpose in a context- and cell-type-dependent manner, 102 such

that the perturbation of one single miRNA may provide different functional outcomes in different

tissues (e.g., glial cells and neurons), or different stages of disease. However, this »jack-of-all-trades«

behaviour also poses significant problems in establishing miRNAs as pharmacological targets: In

the case of antagonising or mimicking an existing miRNA, the amount of off-target effects would

not only be enormous, the entire definition of an off-target effect would continuously change be-

tween tissues and during the course of the disease. For this reason, the design of custom oligonu-

cleotides with limited capabilities may be preferable in the development of therapeutics based on

RNA interference (See also Section 5.3).

1.3.3 Transfer RNA Fragments

Transfer RNA (tRNA) breakdown products have been known for decades, with first descriptions

in the 1970s; back then, they were associated with a higher turnover of tRNA in cancer cells,103
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and proposed as urine-based biomarkers for certain malignancies. 104 However, their genesis was at-

tributed to random processes, and due to lacking molecular biology characterisation techniques,

interest in those fragments quickly faded. It was not until recently that studies have shown tRNA

to be a major source of stable expression of small noncoding RNA 105,106 in most mammalian tissues.

Indeed, replicating the reports from the 1970s, but now in the form of comprehensive small RNA

analysis of human biofluids, 107 tRNA breakdown products are the dominant form of small RNA

in secreted fluids, such as urine and bile, and make up large parts of the RNA profile of other bodily

fluids as well. They exist in two major forms: transfer RNA halves (tiRNAs) and the smaller transfer

RNA fragments (tRFs). tiRNAs derive from either end of the tRNA, and are created by angiogenin

cleavage at the anticodon loop.108,109 Smaller fragments are derived from the 3’ and 5’ ends of the

tRNA (3’-tRF/5’-tRF) or internal tRNA parts (i-tRF), respectively, and may incorporate into Ago

protein complexes and act like miRNAs to suppress their targets.110,111

However, there is considerable controversy about the generalisation of tRF functions, as distinct

publications discover very different and sometimes opposing mechanisms of action for their respec-

tive fragments. An obvious assumption is the miRNA-like functionality, at least for those tRFs

that are in the length range of miRNAs. There have been several instances of tRFs proven to act as

miRNA-like suppressors of translation in a RISC-associated manner, 111 and of Dicer playing a large

part in their biogenesis. 105 There are even instances of small RNA molecules previously mislabeled

miRNAs that have been discovered to actually be tRNA-derived, such as miR-1280.112

On the other hand, multiple groups have identified tRFs to function not in an antisense-comple-

mentary manner, but by homology aspects. A valine-derived tRF was found to regulate translation

by competing with mRNA directly at the binding site at the initiation complex and thereby dis-

placing the original mRNA, leading to its translational repression. 113 Others have found multiple

classes of tRFs derived from glutamine, aspartate, glycine, and tyrosine tRNAs, that displace mul-

tiple oncogenic transcripts from an RNA-binding protein (YBX1), conveying tumour-suppressive

activity.114 Most counterintuitive is the recent finding of a tRF proven to bind to several riboso-

mal protein mRNAs and enhancing their translation, and, when specifically inhibited, leading to

apoptosis in rapidly dividing cells.115

There is no consistent nomenclature yet to describe and organise tRFs, which are by nature more

heterogeneous than miRNAs; while only 61 mature tRNAs are required in a cell to achieve a one-to-

one »codon→amino acid« translation, one tRNA molecule can be the origin of several hundred dis-

tinct tRF molecules. Additionally, the amount of human tRNA genes is estimated at 500-600, 116

and there are many more pseudo-tRNA genes. To communicate the identity of individual tRFs,

multiple approaches are common in current literature; most prominently, tRFs are tied to the parent

tRNA and the amino acid carried by this tRNA. To illustrate: The 22-nt LeuCAG3′ tRF (meaning:
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a fragment of 22 bases starting at the 3’ end of the leucine-carrying tRNA with anticodon »CAG«)

was shown to play an important role in regulating ribosome biogenesis. 115 Since there is no repos-

itory of the likes of miRBase yet, this approach can be cumbersome for replication purposes, and

explicit statement of the exact sequence of each fragment is a must in publication. In fact, since the

aforementioned paper does not mention the sequence explicitly, there exist six distinct possibilities

of fragments fitting this description. While manageable on this small scale, this system prohibits

efficient analysis of larger sets of tRFs that cannot be individually controlled. For this reason, the

approach of Loher and colleagues117 may be preferable: they propose the generation of a »license

plate« based on the sequence of the fragment directly, composed of the prefix »tRF«, the length

of the fragment, and a custom oligonucleotide string encoding (e.g., »B3« codes for »AAAGT«).

This way, tRF names are unique and unmistakably linked to the sequence, nomenclature is species-

independent, and tRNA origin can be quickly determined by sequence lookup.

1.4. Nested Multimodal Transcriptional Interactions

- The Need for Connectomics

The ultimate aim of transcriptional connectomics is the combination of all interacting cellular com-

ponents in a model that satisfactorily explains our real-life observations and is able to predict the

functional outcome of a modification of one of these players. Even in the simplified case of only

studying the interactions between coding genes, TFs, miRNAs, and tRFs, the complexity of the

required model exceeds our current capabilities by far. The more we know about the functioning

of these intertwined systems, the more we understand how much there is still to learn.

For instance, only recently has it become clear how complex transcriptional regulation by means

of TFs really is, and, incidentally, the two systems studied foremost in this dissertation (nerve and im-

mune cells) are the two most transcriptionally complex systems in any mammal.118 Through study

of comprehensive genomic information of 394 tissue types in approximately 1000 human primary

cell, tissue, and culture samples (from the FANTOM5 consortium) it was estimated that the mean

number of active TFs towards any given gene is highest in immune (12 TFs per gene) and nervous

cells (10 TFs per gene), and that any one TF in nervous and immune cells controls expression of a

mean of 175 and 160 genes, respectively (see also Section 2.2.3). 118

Similarly, it has been found that miRNAs, particularly in the nervous system, possess a much

higher tissue specificity than coding genes, resulting in an expression landscape that varies widely

between individual neuron types that are in close proximity in the brain. With the exception of

single cell RNA-seq, no modern analysis method is capable of a resolution appropriate for accurate

characterisation of these expression patterns, resulting in extinction of the signal of miRNAs that are
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not expressed consistently across cell types (similar to »housekeeping« genes) because of statistical

interference. Very recent studies show that miRNA:gene co-expression networks are tightly linked

to cell types in the nervous system, and that groups of miRNAs as functional modules associate

with particular phenotypes in developmental and mature states.119 This functional association with

cell phenotype was found in quality comparable to the expression patterns of TFs, yet in quantity

conveys smaller impact and thus is thought to be a fine-tuning mechanism, subtle and precise in

purpose.

Another aspect of the tissue specificity of CNS-associated miRNAs is the high likelihood of

under-representation or even non-discovery of those very specifically expressed miRNAs. Adding

to the problem is the experimental bias towards rodent models when it comes to thorough studies

of the CNS, where human or other primate samples are a rarity compared to rats or mice. Assess-

ments of the numbers of yet unknown novel primate- and tissue specific miRNAs estimate their

magnitude in the thousands,120 resulting in an effective doubling of currently known miRNAs.

These high numbers of potentially interacting players present computational challenges: Approx-

imating the number of expressed genes in a human cell at 20 000, the number of TFs at a low 500,

and an actual number of interactions per TF at 10, the total possible interactions C are given by

C =
500!

10!(500 − 10)!
· 20 000

which practically equals infinity. This is without accounting for different tissue types or cell states

(e.g., differentiation or disease). Similarly, the amount of mature miRNAs (2588 in miRBase v21)

and their ability to target even more distinct transcripts than TFs with one single molecule present

immense computational requirements for even listing all possible or actual relationships. An inter-

action table describing targeting of genes by miRNAs in one type of tissue has 2588 · 20 000 ≈ 50

million individual fields.

Combining the different modes of transcriptional interaction presents additional challenges. A

simple model system to visualise (in only one type of cell) the interaction of TFs targeting genes, and

of miRNAs targeting genes as well as TFs, contains about 20 000 genes (a subset of which of the size

of about 2000 are TFs), 2588 mature miRNAs, and a total of 2588 · 20 000 + 2000 · 20 000 ≈
90 000 000 potential interactions. In standard application scenarios, such as the generation of an

interaction network around a group of genes (e.g., the cholinergic genes), the processing require-

ments grow linearly with each added interaction partner, and exponentially with every regulatory

layer that is added.

Practically, this information has to be provided, gathered, and integrated, which further multi-

plies the amount of storage and processing power required. miRWalk 2.0, a collection of miRNA
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interaction data, has collected 12 of the most popular miRNA-targeting prediction datasets, each

of which has their strengths and weaknesses (see 2.2.4). Experimentally validated interactions (e.g.

as collected in DIANA TarBase or miRTarBase) are gold standard, but far from comprehensive and

strictly speaking only relevant for the cellular context in which the experiment was originally per-

formed; there are also different evidence qualities to be accounted for, depending on the type of

experiment performed. Ideally, all of these data are still accessible when performing the analysis, so

a database created for this purpose should be able to incorporate all this information without any

data loss while still remaining feasible in terms of computation time as well as space and working

memory requirements.

This dissertation will first describe the creation of such a database and what has been learned

during its various stages, and then go on to apply the database to different biological problems from

real world experiments, such as the cholinergic differentiation of human male and female cultured

neuronal cells, and the blood of stroke victims.
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»Wir sehen in der Natur nie etwas als Einzelheit, sondern

wir sehen alles in Verbindung mit etwas anderem, das vor

ihm, neben ihm, hinter ihm, unter ihm und über ihm sich

befindet.«

Johann Wolfgang von Goethe 2
miRNeo: Creation of a

Comprehensive Connectomics Database

Natural philosophy, as represented by the thought of Johann Wolfgang von Goethe, wants to holis-

tically describe nature and explain and interpret its particular mechanisms. Although natural philos-

ophy is the predecessor of modern, empirical science, its concepts and approaches are still valuable

in today’s data driven world. As the data we collect grows to dimensions that can only be inter-

preted with the aid of computers, functional reductionism becomes a valuable paradigm: By study-

ing the facets of nature, we strive to understand it as a whole. Similarly, we regularly encounter

Goethe’s paraphrase of »all things are connected« in neuro-immunology and in transcriptional con-

nectomics.

Bioinformatic support in connectomics is indispensable, which can be seen by the sheer

multitude of possible interactions between the participating factors. However, when I began work-

ing on this project (October 2015), there was no integrative database available for this purpose. Ear-

lier that year, miRWalk 2.0 had been published, for the first time providing a relatively comprehen-

sive source of predicted as well as experimentally validated miRNA targeting data 121 (see 1.3.2). One

year later, Marbach’s »regulatory circuits« were published,118 enabling analysis of comprehensive

TF→gene relationships in 394 human tissues (see Section 1.3.1). These collections (as well as the

data they were derived from) are the basis of the database further called miRNeo, the development

of which will be described in the following chapter.

Since a large part of the scientific progress of this dissertation deals with practical problems of

multimodal connectomics, I will begin by describing the infrastructure that makes effective compu-

tation of these problems possible. After this technical description of database structure and creation,
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I will explain the types and organisation of its content. The remainder of the chapter will then deal

with the application of this infrastructure to real-world problems in transcriptional connectomics,

and the statistical approaches suited to this special case.

2.1. miRNeo - Implementation

For any biological question to be asked in a bioinformatics setting, the effectiveness of the computa-

tional query determines the practicality of the approach. Because resources (i.e., processing power,

storage, and working memory) are limited, the database that is queried should be organised in a way

that facilitates retrieval of the desired information without excess processing of useless information,

for instance, reporting the absence of a connection. In the simplified case of only miRNAs inter-

acting with genes in one direction (miRNA→gene), this means retrieval of only those interactions

relevant for the queried genes or miRNAs.

Traditional table-based approaches (also known as relational databases) such as SQL (»Structured

Query Language«) cannot provide such an implementation, since individual entries for genes and

miRNAs (rows and columns) have to be accessed in their entirety, whether there is a connection

between gene and miRNA (1) or not (0). Additionally, adding layers to these interactions (e.g.,

distinct prediction algorithms, tissues, or the interaction between TFs and genes) require the addi-

tion of entire tables the same size as the database, which is detrimental to effective use of space; and

more complex queries also necessitate the transfer of information between those distinct tables (in

SQL typically via a JOIN command), which claims additional working memory and processing time.

Overall, the so-called »many-to-many« organisation of data does not lend itself to representation in

a relational database.

The actual performance is determined by the processing power of the machine it is running on

and several structural properties, such as organisation, indexing, monotony, and of course the size

of the database; therefore, an estimation of processing time for queries is bound to be inaccurate.

However, processing times typically do not vary on the scale of orders of magnitude, and thus gen-

eral estimations can be made. Well optimised SQL databases with a size of 5 to 10 GB on disk usually

require tens of minutes if not hours to complete one single complex query;122 miRNeo in its cur-

rent form takes up approximately 15 GB of storage. Since one analysis typically consists of several

hundreds (and, in the case of permutation analyses, several hundreds of thousands) of these queries,

processing times in SQL implementation are too long to be practically useful. (It seems important

to note that, as of 2018, SQL also offers a graph-based organisation in addition to the traditional,

relational layout. These two are separate systems, and not to be confused. The advantages of Neo4j
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Figure 2.1: Organisation of a GraphDatabase. A graph consists of two basic building blocks: Nodes, representing entities, and edges,

representing connections between entities. Each database entry (node or edge) is an instance of a particular type and can possess an

arbitrary amount of properties detailing its specifics.

as explained in the following should be seen from the perspective of 2015, when the database was

established, and when there was no graph-based SQL implementation.)

2.1.1 Neo4j: A Graph-Based Infrastructure

To query and display biological data that are organised in a network-like structure (many-to-many), a

database that lends itself to the efficient processing and storage of network data is optimal. »Neo4j«

utilises a database structure that is built on the save and recall of data points innodes and edges, which

represent entities (nodes) and relationships between those entities (edges); both nodes and edges can

have any number of attributes and a unique property called »type«, usually describing the class of

the entry (such as gene ormiRNA). This database organisation replicates the network-like structure

of the biological data studied (Fig. 2.1). Neo4j combines this network-like data structure with an

efficient indexing system for quickly finding the entries queried for, and then »walks« along the

edges of the nodes that have been found, thus only searching and returning the data that is relevant

to the current query. Theoretically, this makes the database more likely to be efficient in the setting

of transcriptional interactions, an estimation that turned out to be true.

Depending on the input, these queries can also be rather large; however, the main pitfall of tabular

databases such as SQL is circumvented: there is no need to process entire rows or columns of the

table to make sure that the query is satisfied in its entirety. This is particularly useful in a setting

of sparse information. To illustrate: only 30 of the 2588 miRNAs target a specific gene, which is

common; a relational database, after finding the index of the queried gene, would have to search

2588 fields for 1/0. The graph database, on the other hand, has to execute only 30 searches (or,

more accurately, 30 »walks« along the edges connected to the indexed node). In practice, even in
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the very first prototype implementations, this accelerated standard-case computations immensely,

and was even able to accommodate advanced approaches in situations that had been inaccessible in

the tabular implementation.

2.1.2 High-throughput Database Generation

Neo4j provides several API (»application programming interface«) possibilities in implementation.

For the purpose of entering large amounts of data into the database at once, the Java implementation

is superior to the other forms in that it provides a batch processing mode via its BatchInserter

class. I thus wrote a custom Java program for the purpose of creating an initial state of the database

from the largest set of data, the complete miRWalk 2.0 content with 12 algorithms and validated

interactions. The downloaded data was organised in a plain text based file format, with one text file

for each miRNA, totalling in size about 6 GB (forH. sapiens). The database was set up in a way that

allows only one node for each individual miRNA and gene entered to avoid duplications, using the

commands

• createDeferredConstraint()

• assertPropertyIsUnique()

• createDeferredSchemaIndex()

of the Neo4j Java package. This approach made sure to create only one node for each miRNA

(type: MIR) and gene (type: GENE) in the data, which is essential for proper functioning of the

database. Each of these nodes received several properties to store individual data, such as the various

gene/miRNA identifiers, miRNA sequence, and species.

Between those basic nodes, the batch insertion process created edges for each relationship that was

found in the original data, assigning a type identifier to each edge detailing the origin of this inter-

action (type: name of the prediction algorithm or »VALIDATED« for experimental data). Thus,

while the nodes for genes and miRNAs themselves are unique, an arbitrary number of relationships

can exist between any two nodes, depending on how many interactions they share.

2.1.3 Maintenance and Quality Control

All additional datasets, such as the TF regulatory circuits or tRF targeting predictions, were entered

into miRNeo using the regular operation mode. Testing was also performed in regular operation,

with manual as well as automated tests to assert the correct transfer of information from raw data

to the graph database, and to avoid unpredictable behaviour. At times, conflicts had to be resolved

manually, for instance when miRNA names conflicted between old »miRNA*« and new »3p/5p«
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notation; all manual edits are documented in the code, which was published alongside Lobentanzer

et al. 1

Except for the rapid import of large amounts of data in creation of a database, the Java imple-

mentation of Neo4j does not offer many advantages over the native R implementation, »RNeo4j«.

Thus, after creation and a short period of experimentation with graphical user interfaces, I aban-

doned the Java program in favour of the more flexible R programming. While Java is an object-

based programming language, whose benefits lie in extreme flexibility in regards to platform and

purpose, high modularity, and speedy processing, R as a procedural language is the work horse of

modern bioinformatics. Its procedural design (the division of data and functions that operate on

that data) facilitates the transfer of approaches between distinct datasets, and the enormous vibrant

community of data scientists using R provides a wealth of third party packages to tackle almost any

bioinformatic task. In the remainder of this dissertation, all analyses are performed in R, unless

specifically stated otherwise.

2.2. miRNeo - Materials

All materials used in the creation of miRNeo have been acquired from resources that are non-com-

mercial, web-available, and open-source (in the case of code). All properties and relationships de-

rived from this data were entered into miRNeo as either nodes, properties of nodes, edges, or prop-

erties of edges.

2.2.1 Gene Annotation

Even though »regular« protein coding genes have been known for a long time, there is no consensus

yet about their nomenclature and organisation. Complicated by newly discovered functions and

properties of phylogenetic nature, the scientific representation of the human genome is in constant

flux. Several large organisations strive to provide a robust annotation of the human gene catalog,

but also in many cases contradict one another. There are three nomenclature systems that are of

high importance in modern genomics:

• The traditional naming system of acronyms (e.g. CHAT) and fantasy-names (such as »Sonic

Hedgehog«), also occasionally called »gene symbol«, is still widely popular because of its acces-

sibility to humans, but is also not particularly robust because of a high amount of synonyms

with high confusion potential (see e.g. Section 1.2.7 on CDF) and instances of genes without

names having to carry unwieldy systematic names. Gene symbols are largely, but not exclusively,

curated by the HUGO Genome Nomenclature Consortium (HGNC), under the roof of the
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Human Genome Organisation (HUGO). As such, there also exists an »official« HGNC sym-

bol for many genes, but these are not consistently used throughout the literature.
• The American National Center for Biotechnology Information (NCBI), a branch of the Na-

tional Institute of Health (NIH), curates and hosts a multitude of biological and medical data,

and for the organisation of gene information uses its own systematic nomenclature termed »En-

trez« ID. Entrez is a molecular biology database that integrates many aspects of biology and

medicine in a gene-centred manner, and therefore Entrez IDs are useful to quickly connect a

gene to its function, nucleotide sequence, or associated diseases. Entrez IDs are regular integers

without additional characters.
• Akin to the NCBI effort, ENSEMBL is a project of the European Bioinformatics Institute (EBI)

as part of the European Molecular Biology Laboratory (EMBL). Compared to the Entrez database,

it is more focused on study and maintenance of the genome itself, and therefore has a more in-

tricate nomenclature that allows for differentiation of, for example, genes and their various tran-

script isoforms (ENSEMBL IDs carry character prefixes for class identification, e.g., ENSG for

genes, ENST for transcripts).

All of these are being used on a regular basis in many publications, and, often, they are used exclu-

sively. As a result, the end user of the published data has to have access to all possible annotation

forms, or, at least, a means to translate one into the other; often, this also introduces conflicts. For

this reason, all ID types were entered into miRNeo upon creation or during maintenance, for con-

venience and to minimise analysis prolongations due to conflict resolution.

2.2.2 microRNA Annotation

miRBase provides a consistent annotation for miRNAs. Due to their relatively recent discovery,

there still are major changes from version to version; the syntax, however, is stable. In addition

to the miRNA »names« that are composed of species, the string »miR«, pre-miRNA designa-

tion number, and strand origin (e.g. »hsa-miR-125b-5p«), miRBase provides IDs for pre-miRNA

molecules (also called ancestors) termed »MIID« and IDs for mature miRNA molecules termed

»MIMAT«. However, in practice, these are rarely used. Similarly, miRNA families are annotated

using the »MIPF« ID.

2.2.3 Transcription Factor Targeting

The FANTOM5 project has applied 5’ cap analysis of gene expression (CAGE) to a large number of

human samples from diverse tissues to determine the accurate 5’ ends of each transcript.123 Knowl-

edge of this fact enables accurate prediction of transcription factor binding sites likely to control a
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transcript’s expression. Marbach and colleagues used this information in combination with detailed

human gene expression data to derive a complex interaction network of TFs and genes (»regulatory

circuits«), and in doing so aggregated samples with similar expression patterns and origins into 394

fictional tissues. 118 For every tissue, each TF was assigned transcriptional activities towards all genes

that it supposedly targets (with the sum of all activities in any given tissue being 1). Marbach and

colleagues have shown that the cumulative transcriptional activities towards any given gene correlate

well with the actual gene expression in corresponding samples from an independent repository.

Even in its fifth iteration, FANTOM data is not entirely comprehensive, which came to my at-

tention due to a cholinergic anomaly: The 5’ CAGE peaks of the CHAT and CHRNA7 (the nico-

tinic α7 receptor subunit) genes in raw FANTOM5 brain tissue data do not pass the expression

threshold, and therefore are not included in, e.g., Marbach’s »regulatory circuits«. Both are criti-

cally important not only for neuronal cholinergic systems, but also for the non-neuronal aspect of

immune processes. For instance, macrophages have been shown to produce ACh via ChAT, and

the α7 homomeric ACh receptor conveys direct immune suppression by its expression on mono-

cytes.41 Paradoxically, the CAGE peak of SLC18A3, which lies in the first intron of CHAT, crosses

the threshold and therefore is included in the data. Unfortunately, I was not able to remedy these

circumstances even upon personal communication with Daniel Marbach (author of »regulatory

circuits«) and Hideya Kawaji of the FANTOM5 consortium, although the latter acknowledged the

possibility of a gene annotation deficit leading to misattribution of the CHAT signal to SLC18A3

due to the closeness of their 5’ ends. Thus, it seems viable to substitute SLC18A3 targeting data for

the absent CHAT data in certain situations.

The entire collection of transcriptional activities in all tissues was downloaded from the project’s

web page,118 and neuronal and immune tissues were manually curated and entered into miRNeo.

The collected data comprises 33 neuronal tissues and 26 immune cell tissues (Appendix A), and

1 130 196 TF→gene relationships in total (not all 394 tissues were entered due to the time require-

ments).

2.2.4 microRNA Interactions

The content of miRWalk 2.0 is freely available online; 124 however, there is no option of downloading

the complete set. The targeting data thus was downloaded per miRNA using a custom crawler, with

standard options for all 12 prediction algorithms (miRWalk, miRDB, PITA, MicroT4, miRMap,

RNA22, miRanda, miRNAMap, RNAhybrid, miRBridge, PICTAR2, and TargetScan) in plain

text format. For experimentally validated interactions, the main sources were DIANA TarBase125

and miRTarBase,126 both of which offer complete download options. As of 2019, the 3.0 version of

31



miRNeo - Materials

miRWalk allows complete species downloads; however, the developers have abandoned their third

party algorithm plurality reducing the number of available alternatives from 12 to 4, which can be

considered a significant disadvantage, as is described in the next paragraph.

While sequence complementarity, particularly of the »seed«-region, is the primary paradigm of

miRNA-mRNA interaction, prediction algorithms vary widely in their implementation, general

purpose, and approach to interaction prediction (for a comprehensive review of approaches and

rules, see Yue et al.127). A large group of available options utilise sequence conservation aspects to

increase candidate viability (such as miRanda, PicTar, TargetScan, and microT4). Others, such as

RNA22 and PITA, utilise biophysical aspects such as free energy of binding or the accessibility of

target sites due to secondary RNA structures as prediction arguments. All of these approaches have

their up- and downsides, e.g. considering their general precision and sensitivity, or their adequate

prediction of particular cases, such as multiple site targeting. Thus, it has been proposed to use a

combination of complementary approaches instead of only one algorithm per analysis. 128 For this

reason, I may have preferred the 2.0 version of miRWalk, even if 3.0 had been available at the time.

One advantage of the collection of all data in a quickly accessible database is the opportunity

to compare the different approaches to target prediction. A statistical evaluation of the collected

interaction data from miRWalk 2.0 showed vast differences in general prediction quantity (Table

2.1) as well as prediction accuracy and sensitivity when compared to the validated subset of data

(Table 2.2). Since the ground truth is not known, this is an additional argument for the combination

of multiple algorithms instead of the use of a single set. Apart from RNAhybrid and miRBridge,

all algorithms presented reasonable base hit frequencies and increases in the validated test set. While

miRBridge already has the lowest positive frequency of all the algorithms, it is the only one to achieve

a negative score in the validated test set. On the other hand, RNAhybrid has a vastly higher base hit

frequency than the second highest scoring algorithm (by more than 300%), making it very likely to

produce false positive results, and less valuable in the aggregation scoring system. The remaining

ten algorithms were included in miRNeo targeting data. For ease of use, an additional relationship

type was created from the aggregated single algorithm hits of any miRNA→gene relationship, with

the sum of algorithms predicting the interaction as a score variable. This yields a theoretical score

range from 3 to 10 (miRNA→gene relationships with only one or two hits were ignored for the sake

of space). To account for experimentally validated interactions, each miRNA→gene relationship

that was supported by strong evidence of interaction was modified by addition of 10.5 score points

(a half point for quick identification of a validated relationship), extending the maximum score to

20.5 points. The resulting optimised graph contains 11 687 931 human miRNA→gene targeting

relationships with a distinct score distribution (Fig. 2.2). In comparison, only 6146 miRNA→gene

relationships are experimentally validated with »strong« evidence.
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Figure 2.2: Histogram of miRNA→Gene Score Distribution. Aggregation of individual algorithms yields a score range of 3 to 10

per individual miRNA→gene interaction. In case of additional existence of experimental validation (evidence level high) for any

predicted interaction, score is increased by 10.5. The distribution shows a sharp decrease in predicted interactions towards higher

scores, and amaximum of validated interactions at prediction scores 6 and 7.

algorithm hit frequency

RNAHYBRID 71.62%

MIRMAP 19.90%

MIRWALK 19.74%

TARGETSCAN 16.33%

RNA22 12.34%

MICROT4 11.81%

MIRANDA 10.65%

PITA 4.90%

MIRDB 1.17%

MIRNAMAP 0.75%

PICTAR2 0.62%

MIRBRIDGE 0.15%

Table 2.1: Prediction algorithms ordered by

the fraction of all possible interactions they

predict as being real (positive rate). Differ-

ent algorithms display a wide variation of hit

rates in the entirety of predicted interactions

between any miRNA and gene. Red: excluded

from analysis.

algorithm validated hit frequency hit rate increase

PICTAR2 6.98% 1129.40%

MIRDB 9.80% 838.43%

MIRANDA 51.73% 485.94%

TARGETSCAN 70.63% 432.51%

MIRNAMAP 3.10% 410.95%

PITA 15.57% 317.20%

MICROT4 32.60% 276.10%

MIRMAP 53.86% 270.65%

MIRWALK 50.95% 258.15%

RNA22 22.51% 182.38%

RNAHYBRID 90.47% 126.32%

MIRBRIDGE 0.01% 0.00%

Table 2.2: Prediction algorithms ordered by their increase in true positive rate

when considering only validated interactions. The hit rate increase when com-

paring experimentally validated interactionswith the entire predicted data (Ta-

ble 2.1) is also subject to strong variation. Hit rate increase is the increase of

hit rate if only considering validated data as opposed to all predicted interac-

tions. None of the studied algorithms unite a good precision (hit rate increase)

and coverage (validated hit frequency).
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2.2.5 Filtering of Aggregated Prediction Scores

For the estimation of the »true« miRNA→gene interactions in the predicted-only data inmiRNeo,

two premises are relevant: First, the enormous amount of hits with a score of 3 in all likelihood is

an over-estimation, and second, the amount of currently validated interactions can be but a small

fraction of »true« interactions. Assuming the truth lies on the axis between these two extremes (i.e.,

at some score value inside the miRNeo interactions), the true amount of human miRNA→gene

interactions must approximately fall within the range of 210 to 220. Looking at the score distribution

of all miRNeo interactions (Fig. 2.2), the maximum amount of validated interactions is predicted

by a combination of six or seven algorithms (i.e., a score of 16.5 or 17.5). Thus, to approximate the

true state, I chose to apply a low-cut filter to miRNeo queries at a minimum score of 6. This is the

standard case referred to as »miRNeo query« in the remainder of this dissertation. In some cases,

such as the graphical analysis of whole-genome miRNA targeting (see e.g. Section 3.6), the score

threshold was raised to 7 to circumvent computational limitations.

2.2.6 De-novo Prediction of tRF Targeting

Due to the recency of their (re-)discovery, no comprehensive interaction sources exist for transfer

RNA fragments (tRFs). There have been documented cases of miRNA-like behaviours of distinct

RNA fragments, 105,111 justifying an attempt to predict interactions in a comprehensive manner. Of

the available options for nucleotide interaction prediction algorithms, TargetScan129 seems particu-

larly suited for this task because it provides the option of evaluating the evolutionary conservation

of target sites in the putatively targeted genes, thereby providing an additional layer of security: The

sequence of 3’ UTRs is evolutionarily less stable than the coding part of genes; thus, high conser-

vation of the binding site may indicate evolutionary pressure to keep up the interaction with the

fragment, making an actual function of the interaction more likely. TargetScan also presents with

reasonable sensitivity and specificity as confirmed by an independent group,130 and through an ad-

ditional algorithm allows the attribution of a score based on the branch length (on the species tree)

of conserved targeting.131

miRNA-like behaviour implies the existence of a region on the tRF similar to a miRNA »seed«,

and TargetScan also expects a seed as input to its targeting algorithm. Since there has been no defini-

tive answer to the question as to where the seed region in tRFs may be, it is safest to assume nothing

and explore all possibilities, i.e., simulate every possible seed position for interaction discovery. For

this purpose, all discovered sequences of tRFs (exceeding a base mean expression of 10 counts) were

chopped into 7-nt pieces (7mers), which is the length of miRNA seeds, and statistically improbable

enough to appear in the genome at random; the average length of a human 3’ UTR is 800 nt, so the
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probability of finding any 7mer randomly in any one 3’ UTR is p = 800
47 = 0.049, which agrees

with the 5% false discovery ratio (FDR) convention.

2.2.7 microRNA Primate Specificity

During the course of evolution, higher organisms typically attained more complexity in a variety of

functional categories. The CNS as the system of highest complexity underwent several drastic de-

velopments from invertebrates to lower mammals to higher mammals still. miRNAs are no excep-

tion. While many miRNAs are functionally as well as literally conserved in all mammals, primates

in particular have gained a substantial amount of novel miRNAs whose function is in large parts elu-

sive. Due to the restrictions on experimentation on higher mammals, particularly primates, many

of those miRNAs can only be studied observationally, or by transgenic experiments in rodents. A

cholinergic example of a gain-of-function in higher mammalian miRNA regulation is the vesicular

acetylcholine transporter, SLC18A3. As described in Section 2.2.3, the SLC18A3 gene is situated

in the first intron of CHAT, and thus is always primarily co-expressed with the latter. However, a

primate-specific miRNA, miR-298, targets the 3’ UTR of SLC18A3. 132 Thus, the primate neuron

has gained a mechanism of independent SLC18A3/CHAT regulation that the mouse, for example,

does not possess. It is easily imagined that such a gain of neuronal flexibility, in many instances, can

aid the development of a more effective brain. However, the primate specificity of miRNAs is not

yet consensus, and thus not found in annotation databases such as miRBase, even though they list all

miRNAs discovered in any species. To get an impression of the amount of possible gain of function,

I performed a review of miRNAs expressed in a representative variety of annotated species. From

hereon out, largely method-related paragraphs will be set in sans-serif font face.

Species Selection

The tested species were selected frommiRBase v21. Some of the available species are severely limited in the

extentofmiRNAannotation, likelybecauseofa researchbias. Therefore, only themostwell-annotatedspecies

were selected. These are (number of annotated primary andmaturemiRNAs in brackets):

• Homo sapiens (human; 1881, 2588)

• Gorilla gorilla (gorilla; 352, 357)

• Pan troglodytes (chimp; 655, 587)

• Pongo pygmaeus (orangutan; 642, 660)

• Macaca mulatta (rhesusmacaque; 619, 914)

• Bos taurus (cow; 808, 793)

• Canis familiaris (dog; 502, 435)

• Musmusculus (mouse; 1193, 1915)

• Rattus norvegicus (rat; 495, 765)
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The first four species belong to the hominid group; the first five are primates. It is likely that these collections

are not complete, with the degree of completeness depending on the amount of research performed on the

species (as demonstrated, e.g., by the difference betweenmouse and the other non-primates). This places con-

siderable difficulty on asserting primate specificity of miRNA, and in turn on assertion of the effects of evolu-

tion on themiRNA regulatory system.

Single miRNA Inter-Species Homology Computation

To determine the homology of miRNAs between the studied species, reference genomes were downloaded

from the respective sources and analysed phylogenetically, using the genomic coordinates provided by miR-

Base. Homology of sequences was determined via dynamic programming using the Smith-Waterman algo-

rithm.133 Briefly, this algorithm can be used to determine the similarity of two genomic sequences, based on

a scoring system rewarding matches and penalising mismatches. Smith andWaterman extended the original

approach byNeedleman andWunsch,134 which is used to compare two complete sequences. Both algorithms

rate an alignment by dynamic scoring inside a 2D-matrix, with the sequences to be compared as the x- and y-

axes (one letter per cell). By a change in the scoring system, the Smith-Waterman algorithmfinds the best local

alignments, instead of comparing the two sequences in their entirety. In the case of miRNAs, this behaviour

is useful because, between species, there are frequent additions or deletions of single nt on both ends of the

homologousmiRNA. Genomes were procured from the following sources:

• Homo sapiens: GRCh38 (NCBI)

• Gorilla gorilla: gorGor3 (UCSC)

• Pan troglodytes: panTro4 (UCSC)

• Pongo pygmaeus: PPYG2 (Ensembl)

• Macaca mulatta: rheMac3 (UCSC)

• Bos taurus: bosTau6 (UCSC)

• Canis familiaris: canFam3 (UCSC)

• Musmusculus: mm10 (UCSC)

• Rattus norvegicus: rn5 (UCSC)

Using the genome coordinates provided by miRBase, the genomic sequences of miRNAs and pre-miRNAs

of each species were determined. Using the Smith-Waterman algorithm, all identified homologs of human

miRNAswere subjected to homology scoring, and score results were visualised as a heatmap.

Inter-Species Distribution of miRNAs

The inter-species relationships of annotated miRNAs do not follow a simple evolutionary distribu-

tion from less complex to more complex organisms, but rather seem to partially result from parallel

development (Fig. 2.3). Taking into account the high probability of missing annotations in several

species (particularly hominids), it seems prudent to define primate specificity of miRNAs not by

presence in primates, but rather by absence of the miRNAs in non-primate species (also excluding
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Figure2.3: HomologuesofHumanmicroRNAs inPrimate- andNon-Primate-Species. Homology tohumanmiRNAswasdetermined

by Smith-Waterman local alignment for each homologousmiRNAof 8 species. Homology scoreswere visualised on a heatmap, each

column represents the homology to human of the miRNAs of the respective species. The heatmap is ordered from bottom to top

by the amount of miRNA homologues in primates. The miRNAs at the very bottom are shared by human as well as all four primate

species, followed by the miRNAs shared by three primate species, and so on. Ggo: Gorilla gorilla, Ppy: Pongo pygmaeus (Orangutan),

Ptr: Pan troglodytes (Chimp), Mmt: Macaca mulatta (Rhesus macaque), Bta: Bos taurus (Cow), Cfa: Canis familiaris (Dog), Mmu: Mus

musculus (Mouse), Rno: Rattus norvegicus (Rat).
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miRNAs only annotated in human). Thus, primate specificity of a human miRNA is assumed if

the miRNA is expressed in at least one primate species, and absent from all non-primate species in

this roster. This definition yields a list of 377 primary and 350 mature putative “primate specific”

miRNAs in miRBase v21 (Appendix B). Judging from recent analyses, 120 there probably exist many

more. The primate-specificity attribute was entered into miRNeo as miRNA node property.

2.3. miRNeo - Usage

Neo4j uses a language (called »Cypher«) akin to SQL, which utilises keyphrases to issue commands,

but combines it with a semi-graphical syntax to account for the graph-based layout of the data. In

the following, I will describe its basic usage and the advantages it provides in the matter of transcrip-

tional connectomics (code examples are simplified for explanatory purposes). The basic »finder«

function (similar to SELECT in SQL) is called MATCH in Cypher, and, when combined with the

semi-graphical syntax, can be used to identify nodes or more complex patterns in the database. The

graphical syntax consists of two main building blocks that represent the basic types of data inside

the database: nodes as regular brackets »( )« and edges between nodes as a construct of hyphens

and square brackets, that can also have a direction indicated by the greater sign »( )-[ ]->( )«.

To specify the elements to be found, attributes of nodes and/or edges can be filtered by using curly

brackets in the node definition, or the WHERE clause. To be returned, elements need to be assigned

arbitrary variable names:

Listing 2.1:MATCH

1 MATCH (gene:GENE {species: 'HSA'})

2 WHERE gene.name = 'CHAT'

3 RETURN gene

Query 2.1 identifies a node (arbitrarily designated »gene«) with type GENE (indicated by the

colon), with attributes »species« (HSA, i.e. H. sapiens) and »name« (CHAT), and returns the node

with all its attributes. Since the nodes of type GENE are restrained, there can only be one gene of

speciesH. sapienswith this name in the database, and thus, only one data point will be returned. The

graphical syntax further allows for pattern matching of, for instance, miRNA→gene relationships:

Listing 2.2: Patterns

1 MATCH (mir:MIR)-[rel:TARGETS]->(gene:GENE {species: 'HSA'})

2 WHERE gene.name = 'CHAT'

3 RETURN mir, rel, gene
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Query 2.2, similar to query 2.1, starts by identifying the node of species HSA with the name

CHAT, and proceeds to look for miRNA→gene relationship edges arriving at this node; the rela-

tionships have to be of the type TARGETS (the pre-aggregated score-based accumulation of target-

ing). As soon as no further edges are found, the process terminates and returns all found miRNAs

(»mir«), relationships (»rel«), and genes (»gene«) in discrete form, including all their attributes,

such as the ENSG and Entrez IDs, the MIMAT IDs for all found miRNAs, or the score value of

their targeting relationship. In this query, since there is a constraint on genes, the only gene returned

is CHAT. However, Cypher is not limited to filtering on unique attributes; it allows for query and

return of as many data points as are needed. For example, if one is interested in all miRNA→gene

interactions in the cholinergic system, the query may look as follows:

Listing 2.3: Filtering

1 MATCH (mir:MIR)-[rel:TARGETS]->(gene:GENE {species: 'HSA'})

2 WHERE gene.name IN {cholinergic_genes}

3 RETURN mir, rel, gene

The effectiveness of graph-based databases becomes clear in this approach: Query 2.3 is processed

starting at a user-defined filter, the list of cholinergic genes as an input (containingCHAT,SLC18A3,

cholinergic receptor genes, acetylcholinesterase, etc). In a first step, all nodes are found that fulfil the

criteria: type GENE, from speciesH. sapiens, that are in the list of names given. Since the gene nodes

are indexed, this only requires milliseconds. Then, through the connection of edges to these nodes, it

finds all miRNA nodes that have a miRNA→gene relationship towards any of the cholinergic genes.

By using the gene nodes as starting point, the query can end as soon as no other edges fulfilling these

criteria are found on any of the nodes. In comparison, to satisfy this query in a relational database,

the rows representing these cholinergic genes would have to be assessed in their entirety, not only in

those columns that represent an extant relationship, thus prolonging execution.

The database then returns all miRNA→gene relationships in this set, representing the network

of cholinergic miRNA regulators, including all of their attributes. The advantages of graph-based

data do not end there; say one wants to return only »master« regulators of cholinergic systems,

defined as miRNAs that target at least 4 of the genes in the cholinergic set. In a relational database,

this would have to be done post-hoc, by aggregation of relationships and removal of any results that

do not exceed this threshold. This requires storage of the entire result in memory, and additional

computational steps that can be very taxing depending on the size of the result table. In Cypher,

this can be done during the query (code comments indicated by »//« explain single steps):
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Listing 2.4: Two-stage Filtering

1 MATCH (gene:GENE {species: 'HSA'})

2 WHERE gene.name IN {cholinergic_genes}

3 WITH gene //the found genes are used as input for the second query

4 MATCH (mir:MIR)-[rel:TARGETS]->(gene)

5 WHERE count(rel) >= 4

6 RETURN mir, rel, gene

Query 2.4 essentially proceeds in the same way as query 2.3 in that it identifies the gene nodes

filtered for and looks for the miRNAs connected to those nodes by TARGETS-type relationships;

however, in the second step (which is performed per gene node as returned by the WITH clause), it

returns only those patterns that have at least 4 incoming miRNA→gene relationships. Query 2.4

only requires little additional processing compared to query 2.3, and thus does not require nearly

as much time as the post-hoc filtering required in a relational database query. This filtering can be

applied in many stages, and in many forms, such as sums, averages, maximum and minimum, or

other combinations of arithmetic and logical classifiers. Additionally, the patterns can be extended

to represent complex relationships inside the graph. For instance, the following query 2.5 was used

to find miRNAs that regulate any given gene in the database, and, simultaneously, affect TFs that

are involved in regulation of this same gene (this type of interaction is called feedforward loop, see

also Section 4.5).

Listing 2.5: Feedforward Loop Identification

1 MATCH (gene:GENE) //find gene

2 WHERE gene.id = ID //by identifier (Entrez)

3 WITH gene //use as input for next step

4 MATCH (tf:GENE {species: 'HSA', tf:TRUE})-[rel]->(gene)

5 //find TFs targeting that gene

6 WHERE type(rel) IN {tissue_types} //TFs only from specific tissues

7 //for instance, CNS cell types (Appendix A)

8 WITH gene, rel, tf //use as input for next step

9 MATCH (tf)-[rel]->(gene)<-[rel_m1:TARGETS]-(mir:MIR {species:

'HSA'})-[rel_m2:TARGETS]->(tf)

10 //find miRNAs that target gene and gene-targeting TF at the same time

11 WHERE rel_m1.score > 5 AND rel_m2.score > 5

12 //low-cut filter at a minimum cumulative score of 6

13 RETURN gene, tf, rel, type(rel) AS tissue, mir, rel_m1, rel_m2
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This analysis can be performed in real time, on the whole genome and miRnome, and merely takes

seconds for one iteration, a performance unimaginable in a relational database approach; advanced

statistical approaches such as permutation only become viable at this timescale.

2.4. Statistical Approach to Transcriptional Connectomics

The enormous amounts of data generated by modern molecular biology methods, such as RNA-

seq and bioinformatics, present new challenges to statistical methodology. A major objective in the

analysis of large datasets is a robust statistical representation of the distribution of this data. Tradi-

tionally used approaches such as Student’s t-test are not automatically applicable to the intermediary

results of these modern methods, because the premise of a normal distribution often does not hold,

or has to be proven first. This section will describe the statistical problems encountered in the anal-

ysis of intermediary data produced by miRNeo; the statistical properties of large count data directly

generated by RNA-seq will be discussed in Sections 3.4.3 and 5.1.2.

2.4.1 Permutation

Theevaluationof comprehensivepredictiondatasets regardingmiRNA→gene interactionsonagenomescale

is statistically challenging. Molecular interaction studies have exploredonly aminority of all possible targeting

relationships, and as such, the ground truth ofmiRNA→gene interaction is unknown (see Section 2.2.4). Since

there is no negative interaction data, validated interactions can only be defined in the positive space. Addition-

ally, the various prediction algorithms also heavily diverge in their predictions, which leads to the question of

how to approach the estimation of false discovery ratio (FDR) while simultaneously avoiding high false nega-

tive rates.

One possible approach that can aid in identification of themost pertinent effects in this case is randomper-

mutation. In this approach, the result of an analysis (e.g., a numeric targeting score of amiRNA→gene interac-

tion, or a Spearman correlation between two gene sets) is compared to a null distribution that was generated

from an iterative analysis similar to the initial one, but with randomised input (e.g., a group of miRNAs of the

same size as the original set, randomly selected from all miRNAs, or the gene sets from the original analysis

with randomly scrambledgroupaffiliations). This permutationof the analysis is performedmany times (usually

between 10000 and 1000000 iterations, depending on the context), and results in a distribution of possible

outcomes that can be arranged from lowest to highest, often resulting in a normal (or »normal-like«) distribu-

tion, thus facilitating the estimation of confidence intervals, and, similarly, p-values for the »real« result.

A positive side-effect of performing a permutation analysis on a base collection of data, such as miRNeo,

is the automatic correction of inherent biases. For instance, should a particular gene by its genetic structure

invite a large amount of false positive predictions as to the miRNA→gene interactions towards it, these will

be present in the test as well as in the permutation comparison, and thus cancel out and yield a high p-value

for this interaction, effectively transforming the false positive into a true negative. For further discussion, see

Section 5.1.3.
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2.4.2 Gene Set Enrichment Analysis

The objective of gene set enrichment is the identification of statistically over-represented entities in a dataset.

The standard use case in biomedicine is the Gene Set Enrichment Analysis (GSEA), that is used to identify the

most important classes of genes in large datasets, such as the ones produced by RNA-seq. Briefly, the analy-

sis follows these steps: the studied genes are scored by a certain method, such as p-values from differential

expression analysis, which enables the identification of a relevant subgroup, the test set (e.g., the 100 genes

with lowest p-values). This test set is then compared to a background of genes (usually, all detected genes, or

a large amount of genes from the entire dataset) by a statistical method fit to determine their enrichment in

pre-defined categories. Often, ontological categories are used, such as the »biological process« type of Gene

Ontology (GO), or KEGG pathways.

For each of these categories, the method tests for a representation of genes in the test set exceeding the

frequency statistically expected by random sampling from the background of genes; thus enabling an estima-

tion of the functionality these test set genes may inhabit in the process that is studied. Statistical approaches

often employed in gene set enrichment are Kolmogorov-Smirnov statistics, permutations, or, more generally,

hypergeometric tests such as Fisher’s exact test. There are a wide variety of software solutions available for

the implementation of gene set enrichment testing.

GeneOntology curates an enormous catalogue of coding gene products and their functions. At the current

time, GOhosts 7 330378 annotations (2 836377 for »biological process«, 2 289165 for »molecular function«,

and 2204836 for »cellular component«), subdividing 1405197 individual gene products from 4493 species

(205 with more than 1000 annotations) into 44733 ontological terms (29457 »biological process«, 11 093

»molecular function«, and 4183 »cellular component« terms). The individual GO categories are organised in a

hierarchical manner, more specifically, a directed acyclic graph (DAG). Each branch of the DAG tree contains

related terms, progressing from themost general terms (top) to themost specific ones (at the bottom).

Whenever a GO analysis is described in chapters three and four, it means a gene set enrichment analysis

performed on a particular subset of genes (that may e.g. be the targets of a group of miRNAs) towards the

elucidation of their biological function, i.e., the »biological process« category of GO annotation. For further

discussion, see Section 5.1.6.
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One of the difficulties in understanding the brain is

that it is like nothing so much as a lump of porridge.

Richard L. Gregory

3
microRNA Dynamics in Cholinergic

Differentiation of Human Neuronal Cells

This chapter will discuss the current state of knowledge on brain transcriptomics, generally and in

the specific case of cholinergic neurons in the CNS, and then go on to explain the steps we under-

took to elucidate small RNA processes in central cholinergic systems. First, our aim was to clarify

co-expression patterns of central cholinergic neurons, which required analysis of transcriptome data

in single-cell resolution. Based on this information, we selected two human models of cholinergic

neuronal differentiation and established a differentiation protocol amenable to RNA extraction

and successive molecular biology assays, most importantly, RNA-seq. The expression patterns so

obtained were then used to perform bioinformatics analyses using the database introduced in Chap-

ter 2, miRNeo.

3.1. Neuronal Transcriptomes - Background

The mammalian brain requires a constant supply of oxygen and nutrients, because it does not pro-

vide storage for either. Though it only makes up approximately 2% of the entire human body mass,

its energy expenditure is around 20% of the whole.135 For this reason, each square millimetre of

brain tissue (except for the ventricles) is infiltrated by hundreds of capillaries.136 Since the blood-

brain-barrier is essentially provided by supporting glia cells surrounding all capillaries from the »in-

side« (see Fig. 3.1, modified from Lobentanzer & Klein 137), neurons numerically constitute only a

minority of brain tissues (but burn two thirds of its energy).

Until very recently, studies aiming to clarify the transcriptional profiles of neurons applied either

microarray technology or RNA-seq (also known as deep sequencing or next generation sequenc-
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Figure 3.1: Schematic Display of the Blood-Brain-Barrier. The blood-brain-barrier surrounds virtually every capillary in the CNS. A:

Astrocyte, B: BasalMembrane, E: Endothelial Cell, T: Tight Junction. Modified from Lobentanzer & Klein, 2019. 137

ing). For these methods, several cubic millimetres of brain tissue are required at the least; often,

cubic centimetres are used. In contrast, the diameter of neuronal somata is usually in the microme-

tre range. Thus, the resolution of the method and the actual cellular resolution differ by a factor of

approximately 1000. Additionally, even among the neuronal population, there is considerable het-

erogeneity and transcriptomic plurality; single brain regions rarely consist of less than 30 different

neuron types, tightly packed next to each other, each with their own transcriptional identity.138–141

Newest studies, deciphering the murine nervous system by sequencing of 500 000 individual cells,

show that neuron diversity is very similar regardless of brain region. 142 These circumstances hold

true for any mammal, and most of our knowledge stems from the analysis of our favourite research

animal, the mouse. In humans, the diversity is only exacerbated; in fact, the elevation in CNS com-

plexity, which is only made possible by enhanced transcriptional control, may be the reason for our

superior cognitive abilities. 143–145

Cholinergic neurons always constitute a minority in any neuronal population, sometimes to ex-

tremes. Most tissues are dominated by few neuron types, such as pyramidal cells in the cortex. The

most common neurotransmitter types are GABAergic (inhibitory) and glutamatergic (excitatory),

each with several subtypes. It is estimated that more than 80% of cortical neurons are excitatory,

and more than 90% of synapses release glutamate.135 There are two major cholinergic regions in the

mammalian brain: the striatum is fairly well-populated with rather large cholinergic interneurons,

and the basal forebrain holds a large amount of (smaller) cholinergic projection neurons (compare

Fig. 1.1). However, in transcriptomic analyses, these tissues are seldom used, maybe due to lack of

scientific interest, or because they are notoriously hard to access (the basal forebrain is small and
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deeply imbedded in the midbrain). The cortex, particularly the neocortex, is most often the tissue

of choice in these studies, due to its scientific interest and accessibility. Though it contains only a

minuscule amount of cholinergic interneurons whose transcriptional identity is still a matter of de-

bate, several of the recent single-cell RNA-seq approaches have independently identified cholinergic

interneurons in cortical regions (see Fig. 3.2).

3.2. Cortical Single-Cell RNA Sequencing

The impact of transcriptional dynamics on any disease depends on co-expression of the relevant

genes in the affected cell. Selection of a model therefore has to take co-expression into account. In

particular, if neurokines are to possess any relevance for cholinergic properties of central nervous

cells, the cells in question would have to express molecular machinery required to receive neurokine

signals. The advent of single-cell RNA-seq for the first time enables the resolution of gene expres-

sion on a cellular basis, and thus the disentangling of spatially close individual neuron types (and

other, non-neuronal CNS cells); most of this information is lost in RNA-seq performed on brain

homogenate, even of a small biopsy. Differences in genes are reduced to the universally expressed

»housekeeping« genes, save the most extreme perturbations. In miRNAs, this circumstance is only

exacerbated, in parallel to their even more tissue-specific expression.

3.2.1 Single-cell Dataset Processing

Toprovideadetailedtallyof transcriptional subtypes in theCNS,publiclyavailablesingle-cellRNA-seqdatasets

of suitable tissues were analysed towards their cholinergic properties. All studies that were available at the

time focused on some subsection of the cortex (visual or somatosensory) or the hippocampus. The data pro-

vided by those studies were in some cases pre-aggregated to represent classes of single neurons with similar

transcriptomes (Fig. 3.2A&B139,140); in other cases, every single neuronwas represented (Fig. 3.2C&D138,141).

An important quality-related parameter of a single-cell RNA-seq experiment is the achieved sequencing

depthper single sequencedcell. Someof thescreeneddatasetsdonotprovidesufficientdepth toresolvegenes

with medium expression, which includes our primary cholinergic markers CHAT and SLC18A3. The datasets

which did provide adequate sequencing depth were filtered for their expression of these markers, and addi-

tionally characterised by their expression of common markers for cell types to be expected in the CNS. Raw

data were downloaded from their respective sources and imported into the R environment, where they were

converted into similar format. Numeric expression values of each dataset were normalised to transcripts per

million (TPM) to allow comparison (with countsn and transcript length ℓ of geneA and all genes i per sample):

TPMA =

nA
ℓA∑
i
ni
ℓi

× 106
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For graphical display, TPM were further normalised to a range of 0-1. The transcripts of interest were fil-

tered from each dataset and plotted as heatmaps. Plotted were only samples that expressed CHAT, SLC18A3

(also known as vAChT), and/or SLC5A7 (also known as CHT1, responsible for HACU).

3.2.2 microRNA and Transcription Factor Targeting Predictions

Making use of the information aggregated in miRNeo, the genes identified as being expressed in cholinergic

neurons were subjected to permutation targeting analyses of miRNAs and TFs. Genes were assumed to be

expressed in cholinergic neurons if they were expressed in more than one individual sample in all single-cell

RNA-seq datasets (Fig. 3.2A-D). The TFs identified as active towards cholinergic genes in cholinergic neurons

were additionally subjected to another round of miRNA targeting permutation analysis. Targeting of genes

with random selections of miRNAs and TFs were permuted 100000 times to estimate FDR. Statistical signifi-

cance of themiRNA→gene or TF→gene interactions was assumed at FDR < 0.05.

3.2.3 Single-cell Expression of Cholinergic and Neurokine Transcripts

The identified samples provide an overview of potentially cholinergic cells in the sampled brain re-

gions, and allow an assessment of the functional type and gene co-expression patterns in central

cholinergic cells (Fig. 3.2). Most cells identified as cholinergic by this definition expressed the gen-

eral neuronal markerRBFOX3, also known by its trivial name NeuN, but not the microglial marker

AIF1. Few cells (or clusters of cells) expressed non-neuronal markers such as GFAP (astrocytes)

or OLIG1 (oligodendrocytes), hinting at sparse non-neuronal cholinergic functions. In agreement

with our findings, cells or clusters identified as cholinergic by the authors of the respective stud-

ies139,140 (also by personal communication with Peter Lönnerberg) were classified as interneurons

and co-expressed a number of known phenotypic neuronal markers, such as somatostatin (SST) and

vasoactive intestinal peptide (VIP).

The identified cholinergic cells also revealed a constant co-expression with neurokine-related genes,

particularly the transmembrane neurokine receptors LIFR and IL6ST, demonstrating a capacity to

receive and process neurokine signals. In contrast, the high affinity receptor for NGF, NTRK1, is

not co-expressed in mature (NeuN-positive) cholinergic neurons in the analysed regions, fundamen-

tally distinguishing these cells from the basal forebrain cholinergic projection neurons.

3.2.4 Nested Regulatory Networks of miRNAs and Transcription Factors in

Single Cholinergic Cells

Permutation targeting analyses revealed a nested regulatory interaction between 72 primate-specific

miRNAs, 216 conserved miRNAs, and 18 TFs towards cholinergic genes expressed in cholinergic

neurons (Fig. 3.2 E). TFs targeting cholinergic genes were in turn targeted by 49 conserved and 20

primate-specific miRNAs that also targeted cholinergic genes directly.
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Figure 3.2: Single-Cell Sequencing of CNS Tissues. Expression patterns of cholinergic and cholinergic-related genes were analysed

usingweb-available single-cell sequencing datasets. Expressionwas normalised to a range between 0 and 1. A)Clustered single-cell

sequences from transgenic mouse somatosensory cortex and hippocampus. 139 B) Clustered single-cell sequences from transgenic

mouse visual cortex. 140 C) Single-nucleus sequencing of adultmouse hippocampus. 141 D) Single-cell sequencing of the humandevel-

oping neocortex. 138 E)Nested regulatory circuits comprisedof evolutionarily conserved andprimate-specificmiRNAsand transcrip-

tion factors active towards genes expressed in cholinergic neurons were identified by permutation targeting analysis viamiRNeo. *:

p < 0.05, **: p < 0.001.

3.2.5 Transcript Clustering BasedOn Expression

Hierarchic clustering was applied to expression data to identify functional grouping of transcripts and cells

based on co-expression. Initially, samples (i.e., single cells, pre-aggregated clusters of cells, or brain regions)

are compared using a similarity- or distance-matrix (where similarity = 1 - distance). The similarity measure

is based on a computation according to the method used. For instance, Euclidean distance between two gene

expression vectors (i.e., samples) of length n is the distance between points p and q in n-dimensional space,
defined by:

dE(p, q) =

√√√√ n∑
i=1

(pi − qi)2

Applying this measure to all pairwise combinations of samples results in a dissimilarity matrix that can be

converted to a hierarchy using one of several clustering algorithms. Generally, samples are grouped by their

similarity. Initially, each sample is assigned to its own cluster, and then, cluster number is iteratively reduced

by joining the closest clusters. This results in a hierarchic tree of samples, that can be »cut« at any height to

yield an arbitrary number of clusters. In biological analyses, the method afterWard (in R, »Ward.D2«) is often

used.146
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Due to the structure of the data (small number of entities compared to whole genome analysis, repetition

of zeroes in individual samples), the Bray-Curtis dissimilarity147 is superior to Euclidean distance. Bray-Curtis

dissimilarity is defined as:

dBC(p, q) =
2Cp,q

Sp + Sq
WhereC is the sum of the lesser expression values common to both vectors p and q, and S is the total number
of transcripts expressed in each sample (i.e., values greater than zero in each vector). Based on this measure,

the sampleswere clustered according to their cholinergic gene expression levels usingWard’smethod to yield

five separate clusters. Intermediary clustering results (not shown) revealed a uniform distribution of ATP cit-

rate lyase (ACLY), yielding no additional information; thus, it was removed. Also removed for the purpose of

clustering were the non-neuronal nicotinic receptor subunitsα1,β1,γ, δ, andϵ.

3.2.6 Co-Expression of Functional Groups of Cholinergic Transcripts

Hierarchic clustering of cholinergic transcripts in each of the datasets revealed a grouping of cholin-

ergic transcripts according to their biological function. Table 3.1 shows considerable uniformity

in two single-cell mouse datasets, which diverge substantially from the brain-region- and TF-based

human set. Generally, clustering shows separation of at least 3 groups of cells, one of which is the

classic cholinergic neuron with genes for synthesis and transport of acetylcholine. Due to the fre-

quent co-expression of CHAT and SLC18A3 in neurons, it is safe to assume the SLC18A3 as a

viable substitute for CHAT expression and clustering in the FANTOM5 data of Marbach et al.118

(for more details, see Section 2.2.3). In the single-cell datasets, theCHAT gene is expressed in parallel

with the two cholinergic transporters, without exemption. The other groups could be described as

receptive neuron (not cholinergic as the aforementioned, but different types of cholinergic receptors

and esterase) and other, rather specialised groups, probably comprising various glial cells. These last,

specialised groups are not very visible in the human dataset, which lacks the single cell resolution of

the mouse datasets and therefore includes glial cells in every sample of any region. Therefore, differ-

ences in cholinergic gene expression patterns derived from Marbach et al. are likely the result of the

numbers and dominant types of cholinergic neurons in the respective regions.

Functional stratification of cholinergic genes is also visible in a dendrogram of gene clusters from

all four analysed single-cell sequencing datasets (Fig. 3.3). While there is variability in the composi-

tion of receptor subunits (which is to be expected considering the different sampled brain regions),

the core cholinergic genes (such asCHAT, SLC18A3, SLC5A7, andACHE) associate similarly in all

datasets. Notably, the distinction between a cholinergic and a cholinoceptive neuron is always visible

by a grouping of, on one hand the synthesis, vesicular packaging, and reuptake of ACh, and on the

other hand, cholinergic receptors and signal termination by AChE.
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cluster Zeisel et al Tasic et al Marbach et al

I

Ache, Chrm1,

Chrm2, Chrm3,

Chrm4, Chrna4,

Chrna5, Chrna7,

Chrnb2

Ache, Chrm1,

Chrm2, Chrm3,

Chrm4, Chrna2,

Chrna4, Chrna5,

Chrna7, Chrnb2,

Chrnb4

CHRM1, CHRM2,

CHRM5, CHRNA2,

CHRNA4, CHRNA6,

CHRNB2, CHRNB3

Ib

ACHE, BCHE,

CHRNA3, CHRNB4,

PRIMA1

Ic CHRM3

Id CHRNA5, CHRNA9

II
Chat, Chrnb4,

Slc18a3, Slc5a7

Chat, Chrm5,

Chrna3, Slc18a3,

Slc5a7

SLC18A3, SLC5A7

III
Chrm5, Chrna10,

Chrna3
Chrna10

IV Bche, Prima1 Bche, Prima1

V
Chrna2, Chrna6,

Chrnb3
Chrna6, Chrnb3

Table 3.1: Cholinergic Transcript Clusters According to Cell Type vs. Brain Region. The two transgenic mouse datasets from Zeisel

et al. 139 and Tasic et al. 140 show high similarity in transcript distribution. With high likeliness, cluster I is a group of postsynapti-

cally cholinergic, »receptive« cells. Cluster II represents the classic cholinergic neuron, with synthesis, vesicular packaging and ACh-

reuptake genes. The transcription factor-based dataset ofMarbach et al. 118 depends onwhole brain regions instead of single cells to

determine similarity, and thus yields distinctly different classification. However, it also distinguishes between cholinergic synthesis

(with SLC18A3 as a substitute for CHAT expression) and cholinoceptive functions.
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Figure 3.3: Clusters of Cholinergic Genes in Single-Cell Sequencing. Cholinergic genes were clustered using Bray-Curtis dissimilar-

ity in four public data sets of single-cell sequencing. The displayed dendrograms visualise the distance between the genes across

all samples. Gene clusters were coloured by grouping in Darmanis et al. 138 (A). Notably, genes clustered according to their bio-

logical function, for instance, CHAT, vAChT and HACU always are closely associated (blue), as are the genes comprising the puta-

tive »cholinoceptive« neuron (yellow). A) Single-cell sequencing of the human developing neocortex. 138 B) Clustered single-cell se-

quences from transgenic mouse visual cortex. 140 C) Clustered single-cell sequences from transgenic mouse somatosensory cortex

and hippocampus. 139 D) Single-nucleus sequencing of adult mouse hippocampus. 141 Marker genes are: NeuN - neurons; OLIG1 -

oligodendrocytes; AIF1 - microglia; GFAP - astrocytes.
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3.3. The Cellular Model

Following our considerations of cholinergic systems in single-cell datasets, we set out to establish

an experimental model for the analysis of small RNA dynamics in cholinergic neurons, leading to

the selection of two mono-cultures of human neuronal cells for subsequent experiments: LA-N-2

and LA-N-5. During the selection process, multiple options were considered. Multicellular models

would, in principle, allow disentanglement of the functions of distinct cell types, for instance glia

and neurons. This could be achieved by in vivo or ex vivo approaches in rodents. However, our

diseases of interest (Section 1.2) display a noticeable lack of transferability from lower mammals to

human. 148–150 Alternatively, co-cultures of human cells in mono-layer or as 3D-culture have been

proposed, but these still lack experimental stability.151

3.3.1 The SH-SY5Y Neuroblastoma Cell Line

A prominent example of human neuronal cell culture used in the identification and elucidation of

cholinergic processes is the immortalised neuroblastoma cell line SH-SY5Y.152 Derived from its par-

ent line SK-N-SH, an adrenergic neuroblastoma,153 it expresses ample amounts ofACHE, and thus

had become a work horse in many cholinergic fields, such as Alzheimer’s Disease (which is treated

with AChE inhibitors), pesticide development, and warfare. However, in spite of its usefulness for

processes involvingACHE, it turned out a less than optimal choice for the study of molecular events

surrounding CHAT and SLC18A3, as it barely expresses both genes, and cannot be coerced to ele-

vate CHAT expression by the usual differentiation techniques.154 Thus, for the questions asked in

this chapter of the dissertation, SH-SY5Y does not qualify as adequate representation of a »cholin-

ergic neuron«.

3.3.2 The LA-N Neuroblastoma Cell Lines

Following the elimination of SH-SY5Y as a suitable subject, a literature search for candidates repre-

senting a cholinergic neuronal transcriptome revealed, among others, representatives of the LA-N

neuroblastoma cell lines developed by R.C. Seeger around 1980. 155,156 Neuroblastoma is a form

of neuronal cancer often affecting small children, and, consequently, the two cell lines used in my

experiments are immortalised biopsies of a 3 year old girl (LA-N-2 155) and of a 4 month old boy

(LA-N-5156). The decision to use LA-N-2 as initial cellular model was influenced by three factors:

it is well described in literature, although most studies had been published in the 1980s and 90s; it

expresses substantial amounts of CHAT and SLC18A3 and it responds to neurokine-mediated dif-

ferentiation by assuming a neuronal morphology accompanied by further elevation of CHAT and

SLC18A3 expression.157 LA-N-5 was not nearly as well described as LA-N-2, but later added to the
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experimental roster because of the complementary sex and hints towards cholinergic differentiation

under retinoic acid.158

3.3.3 Culture

LA-N-2 and LA-N-5 are very similar in their culture requirements. They have comparatively high duplication

times, which can be lowered by using certain conditions that affect medium composition, nutrition, and CO2

content. The cells were acquired at DSMZ (Braunschweig, Germany), which recommends keeping them in a

50:50 mixture of Dulbecco’s modified eagle medium (DMEM) and Roswell Park Memorial Institute medium

(RPMI1640), with 20% fetal calf serum (FCS) added. Sometimes, recommendations also suggest Leibovitz’s

L-15medium, which is specifically designed for lowCO2 conditions, and others have suggested increased CO2

levels inside the incubator. A combination of the DSMZ-recommended medium with 8% CO2 atmosphere in-

side a 37°C incubator accelerated growth to a degree that the cells could be split 1:3 to 1:4 in a weekly cycle.

This protocol was used for all further experiments, which were performed between splits 2 to 8 after thawing

of a batch from -80°C. All handling during maintenance and experimentation was performed under a laminar

flow hood.

3.3.4 Differentiation

Neuronal differentiation of neuroblastoma cell lines has been performed inmany instances, utilising awide va-

rietyofdifferentiationagents suchas theverygeneral retinoicacidor5-bromo-uracil, or very specific reagents,

such as the neurokines IL-6 and CNTF.157 LA-N cells have also been described to react to a selection of these

substances; however, due to our elevated interest in neurokine mechanisms, we opted for a neurokine-based

differentiation protocol. In personal communication, James McManaman revealed that the »CHAT develop-

ment factor« that he had discovered73was, in fact, CNTF,which had never been published. Additionally, of the

neurokines used for differentiation purposes, CNTF is best described in literature and easily acquired in dried

form from Merck (formerly SigmaAldrich, Darmstadt, Germany). CNTF was resuspended in pure water to a

concentration of 25 µgml−1 and stored for experimentation in aliquots at -20°C.

LA-N cells are very sensitive to repeated temperature changes (or other handling-related disturbances),

which resulted in increased amounts of apoptotic cells following repeated removal from the incubator after

seeding or medium changes during the experiment (Lobentanzer, not published). For this reason, the differ-

entiation reagent was only added once, 24h after initial seeding of the cells, and further disturbances avoided

until the time of lysis. For themaximumduration of the experiments, 120h from seeding until lysis, the initially

suppliedmediumwas sufficient for survival.

Differentiation was performed in regular growth medium without changes in FCS content, and CNTF was

added to the medium after an initial growth period of 24h. Cells were seeded into 12-well plates at approxi-

mately200000cells/well,with1mlof growthmedium. Todetermine theoptimal amountofCNTF fordifferen-

tiation, time-dose experiments were performed for both cell lines in a range from 1ngml−1 to 100ngml−1 for

several timepointsduring fourdays. Here,wediscoveredthefirstpharmacologicaldifferencebetweenLA-N-2

andLA-N-5: themaximumof their cholinergic response toneurokine stimulation (i.e., anelevation inCHAT and

SLC18A3 transcription) occurs at different concentrations of CNTF.While LA-N-2 cells respondmost strongly
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Figure 3.4: Time-dose curve of CNTF-mediated differentiation of LA-N-2 and LA-N-5. A)Cells were stimulated with varying doses

of CNTF, and lysed at various time points to determine CHATmRNA levels via qPCR. Expression (ΔΔCt) was normalised to house-

keeping genes (ACTB, GAPDH, RPLP0) and to control sample without CNTF to determine fold-changes. LA-N-5 reacts strongest to

a concentration of 10 ngml−1, while LA-N-2 reacts strongest to 100ngml−1. *: p < 0.05, **: p < 0.001B)Cells were seeded at∼2E05

cells/well in a 12-well-plate. After 24h, CNTF was added to the existing medium as quickly as possible to avoid disturbance. Cells

were lysed in situ at time points 30minutes, 60minutes, 48 hours, and 96 hours using TRIzol for downstreamRNA processing.

to100ngml−1, LA-N-5cells showan»invertedu«-typedoseresponsewithamaximumaround10ngml−1CNTF

(Fig. 3.4A). James McManaman, who studied LA-N differentiation thoroughly in the 1990s,159 believes both

lines to respond in an »inverted u«-type manner (personal communication); thus, in all likelihood the LA-N-2

response would also diminish at CNTF concentrations significantly higher than 100ngml−1. Also, CNTF con-

centrations could likely be significantly loweredby removal of the high amount of FCS in themedium, however,

that would require the use of a special serum-free medium, which would have to be established up front, and

may have other, unforeseen consequences. Regardless, CNTF concentrations around 100ngml−1 (i.e., pico- to

nano-molar) still are well within the physiological range of concentrations that themammalian brain is able to

reach by paracrine secretion via, e.g., astrocytes.160

To study the small RNA dynamics following CNTF exposure of LA-N-2 and LA-N-5, the experiment was

stopped at 4 time points and the cells were quickly lysed in situ to preserve total RNA in that state: for the

quick, immediate-early-like phase, at 30 and 60 minutes after the addition of CNTF, and, for the long-term

effects of differentiation, at 48 and 96 hours after the addition of CNTF (Fig. 3.4 B, from Lobentanzer et al.1).

Each time point was controlled by a pseudo-treated (using pure water) culture from the same batch that had

been seeded at the same time as the experimental group. In the final series used for the parallel sequencing of

LA-N-2 and LA-N-5, all experiments were carried out in quadruplicates.
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3.3.5 RNA Isolation

Total RNA was isolated using TRIzol (ThermoFisher Scientific), essentially as suggested by the manufacturer,

with slight changes to the protocol to enrich small RNA species. The cells, growing in a monolayer in 12-well-

plates, were cleared of medium, washed two times with 500µl of cell culture grade phosphate buffered saline

(PBS) (Gibco), and immediately suspended in 1ml of TRIzol, pipetting up anddownuntil visibly dissolved. After

incubation for 5minutes at room temperature, the sampleswere stored in -20°C for short periods of timeuntil

RNA isolation.

TRIzol-suspended lysates (1ml)were added toRNA-separation centrifuge tubes (PhaseMaker Tubes, Ther-

moFisher Scientific), adding 200µl of pure chloroform and mixing vigorously for 15 seconds. After two min-

utes, themixture was centrifuged at 12000 g and 4°C for 15minutes, and the upper, watery phase containing

the RNAwas extracted. This was mixed with approximately 2 parts of pure ethanol and incubated for 10min-

utes at room temperature to precipitate the RNA. The precipitate was spun at 12000 g and 4°C for another

10 minutes, and the supernatant discarded. The pellet was washed with 85% ethanol (vortexed briefly) and

centrifuged again for 5minutes at 7500 g and 4°C.

After thefinal centrifugation step, the sampleswere transferred to the laminarflowhood, andairdriedafter

removal of most of the supernatant via micropipettors. The pellet was allowed to dry almost until completion

and resuspended in 30 µl to 50 µl pure RNase-free water. RNA concentration was measured at a Nanodrop

2000 instrument (ThermoFisher Scientific) and sampleswerediluted toauniformconcentrationof100ng µl−1.

Finally, RNA samples were aliquoted according to later purpose and stored at -80°C.

RNA quality was determined by analysis on a 2100 Bioanalyzer instrument (Agilent) using a nano chip and

1µl of sample; RNA integrity number (RIN) was near optimal for all samples (>9).
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3.4. Small RNA Sequencing and
Differential Expression Analysis

For the detection and analysis of small RNA species, RNA-seq is the current gold standard method. It allows

themappingof a comprehensive transcriptomeand thus is vastly superior to small scale and consecutivemeth-

ods suchas real-timequantitativepolymerase chain reaction (RT-qPCR), andeven the larger scalemicroarrays.

Microarrays, while also potentially allowing a »snapshot« of entire transcriptomes, are limited by the predeter-

mined sequences on the chip. RNA-seq, on the other hand, is not biased towards any structural property of the

sample; this is particularly important in the analysis of small RNA species, since their sequences are very vari-

able (tRFs) and still not completely catalogued (miRNAs). Assuming an adequate sequencing depth (at least

about one million reads/sample), RNA-seq allows a comparison of all expressed small RNA species at once,

which is immensely helpful when dealing with processes on the combinatorial scale of miRNA regulation.

3.4.1 Sequencing

For small RNA sequencing, the aliquoted samples were shipped on dry ice to the cooperating institute at the

HebrewUniversityof Jerusalem, theSilberman InstituteofMolecularBiology, the laboratoryofProf. Hermona

Soreq. 600ng of total RNA per sample were prepared for sequencing using the NEBNext Small RNA Library

Prep Set for Illumina (NewEngland BioLabs). The libraries weremultiplexedwith coloured barcodes, allowing

for sequencingof all 48 samplesononechip. Briefly, this includes ligationof sequencingadapters toboth3’ and

5’ ends of all (single-stranded) RNA fragments in the sample, followed by 12-15 cycles of reverse transcription

to form theRNA library. Ligated and amplified librarieswere then size selected via gel electrophoresis on a 6%

polyacrylamide gel. The band representing small RNA species on the gel was excised and prepared for loading

onto the sequencing chip. After loading, the chipwas sequenced in aNextSeq 550 series instrument (Illumina)

with a read length of 80 nucleotides (nt), single-end.

The quantity of reads per sample was determined by analysis of the raw fastq files. The read count across

all samples before filtering was 7.8E06±SD 2.5E06, read count after quality filter and adapter removal was

6.8E06±SD 2.2E06 (n=48); ameanof87%of reads remainedafterfiltering, exceeding the recommendedmin-

imumamount (∼1million) by4- to 12-fold (Fig. 3.5A).Overall,∼326million reads remained to bepasseddown

tosubsequentanalyses. Sequencingqualitywasdeterminedbyanalysis of the rawreadsusing theFastQCsoft-

ware.161 Even before adapter removal and quality filtering, FastQC detected no »reads of poor quality« in any

sample. Fig. 3.5 B gives a representative example of read quality per base (Sample 1).

Raw reads were adapter-trimmed and quality filtered using the flexbar software162 with parameters

-a adapters.fa -q TAIL -qf sanger -qw 4
-min-read-length 16 -n 1 --zip-output GZ

The sequence used in the adapters.fa file, as recommended by themanufacturer, was

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
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Figure 3.5: Small RNA Sequencing - Read Count, Quality, and Length. All samples provided near optimal quality. A) Per sample read

count had a mean of 7.8E06±SD 2.5E06 in raw samples (top) and 6.8E06±SD 2.2E06 after quality filtering and adapter removal

(bottom). 87% of reads were retained after filtering, with samples spanning read count values between 4 and 12 million. B) Repre-

sentative example of quality score per base position in the sequencing (FastQC output of sample 1). Quality scores are always near

the optimum, with a characteristic slight dip around nt 65. This occurs in all samples and is likely a technical result of the sequencing

process. Possibly, it reflects the most common adapter ligation position after size selection of the RNA pool. C) Read length was

determined for every one of the∼326 million reads. Nearly 80 million reads have a length of 22 nt, and the peak from 21 to 24 nt

comprises ∼205 million reads. This represents the bulk of miRNAs, and probably a significant amount of tRFs. The second peak,

from 31 to 33 nt, still comprises∼21 million reads; these in all likelihood represent the longer tiRNAs. The reads above a length of

33 nt only sum up to an amount of∼6million, andmay contain RNA of viral origin, or evenmature tRNAs.

Paired-end sequencing still is superfluous in small RNA-seq, because none of the alignment pipelines com-

monly employed canmake use of the second (reverse) read, andmanual paired alignment does not yield nearly

as much benefit as the depth increase in single-end sequencing (the read count per sample effectively dou-

bles). 80 nt is the maximum read length possible in our small RNA workflow, and is excessive for the analysis

of miRNAs. For transfer RNA fragments, however, a longer read can yield a more complete picture of expres-

sion, since the longer tiRNAs can easily reach40nt in length. Indeed, the read length distribution after adapter

removal shows a significant amount of small RNAspecies exceeding the length possible formiRNAs (Fig. 3.5C).

3.4.2 Sequence Alignment

For the alignment of miRNA sequences, parts of the miRExpress 2.0163 pipeline were used according to the

documentation. First, a lookup table for the current miRBase version 21 was created as per the instructions

of the authors. The alignment was then performed using the commands Raw_data_parse, statistics_reads, align-
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mentSIMD, and analysis; Trim_adaptorwas skipped because the adapters had already been trimmed in the qual-

ity filtering step. Additionally, since miRExpress is not accepting of sequences of any length, the raw data was

length filtered to include only reads up to a length of 25 nt before input intomiRExpress. Thus, raw readswere

aligned to themiRnomeprovidedbymiRBase v21, yielding count tables ofmaturemiRNAs andmiRNAprecur-

sors for each sample. In total, 1913maturemiRNAs frommiRBase v21were discovered in the data.

3.4.3 Differential Expression Analysis - R/DESeq2

Todetermine theeffect anddynamics ofCNTF-mediateddifferentiationof LA-N-2andLA-N-5, the expression

state of eachmeasured timepointwas compared to the respective control using the establishedRpackageDE-

Seq2.164DESeq2determinesdifferential expression (for gene iand sample j) in count-baseddatabyapplication
of a linear regression model to a negative binomial distribution based on a fitted mean μij and a gene-specific
dispersion value αi. The mean is derived using a sample-specific »size factor«, sj, and a parameter qij propor-
tional to the expected true concentration of RNA fragments in the sample. TheDESeq2 differential expression

pipeline is composed of the following commands:

• estimateSizeFactors() to estimate sj
• estimateDispersion() to estimate αi
• nbinomWaldTest() application of a generalised linear model to determine log-fold changes and statis-
tics via theWald test, using μij = sjqij and log2(qij) = xjβi.

TheWald test, named afterAbrahamWald,165 is an approach to hypothesis testing thatmeasures the distance

between the testedunrestricted estimate and thenull hypothesis, using theprecision as aweighing factor. The

larger the distance between tested values and the null, the more likely the measured values are »true«. RNA-

seq data can be modelled using binomial distributions,166 such as the Poisson distribution, and the difference

between two Poissonmeans (e.g., »treated« vs »control«) can be tested by generalised linear models based on

the distributions directly (Poisson regression), Fisher’s exact test, or the likelihood ratio test. However, com-

parative analysis has shown that theWald test on log-transformed data provides statistical power superior to

these other methods,167 particularly in lowly expressed fragments. The design formula for the linear regres-

sion was applied to LA-N-2 and LA-N-5 separately as a simple factor combination of condition and time point:

y ∼ condition_time

The heteroskedastic nature of RNA-seq count data (variance is much higher in low-count features) brings

statistical problems. To reduce the noise introduced by the high variance in low-count genes while preserving

large, »real« differences, the authors propose the »shrinkage« of log-fold changes to avoid arbitrary low-cut

filtering at a predefined expression (count) value. Multiple variants are available; formiRNAdata, the adaptive

algorithm »apeglm«168 (adaptive t prior shrinkage estimator) yielded sensible results (see Fig. 3.6).
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Figure 3.6: MD Plot Shrinkage Comparison. A mean-difference plot (MD Plot) is a plot of log-intensity ratios (differences, »M-

values«) versus log-intensity averages (means, »A-values«); it is synonymous with »MA Plot«. The DESeq2 function plotMD shows

the log fold changes attributable to a given variable over themean of normalised counts for all the samples in the data set. Points are

coloured red if the adjusted p value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either

upor down. The left plot is generated from the standard linearmodel, the plot on the right is corrected by the »apeglm« algorithm 168

to reduce noise in the low-count fragments (data from LA-N-2 CNTF vs control on day 4).

3.4.4 microRNA Dynamics in CNTF-mediated Cholinergic

Differentiation of LA-N-2 and LA-N-5

Differential expression analysis performed in this manner yielded 490 differentially expressed (DE)

miRNAs across all groups, with characteristic distributions between cell lines and time points. The

raw data and processed counts were deposited to NCBI Gene Expression Omnibus (GEO), acces-

sion GSE132951. An earlier sequencing experiment (deposited as GSE120520), which was similar

in principle, but only comprised three biological replicates and only LA-N-2, reproduced 80% of DE

miRNAs in the newer LA-N-2 samples. Considering the general reproducibility of RNA-seq and

the lower replicate number, 80% is an excellent substantiation of the result. About 25% of miRNAs

predicted in single-cell permutation targeting analysis (see Fig. 3.2 E) were found DE in LA-N-2 and

LA-N-5 (Fig. 3.7 A) in all three groups, i.e., conserved, primate-specific, and TF-targeting miRNAs.

Differential Expression in Both Cell Lines

114 mature miRNAs were detected as DE in both cell lines, with some changes similar in both, while

others were inverted (Fig. 3.7 B). In both cases, however, count-change values (see Box 2) correlated

highly between the two cell lines (similar: 76 miRNAs, Spearman’s ρ = 0.9066, p < 2.2E-16;

inverted: 38 miRNAs, ρ = 0.9294, p < 2.2E-16).
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Figure 3.7: Differentially Expressed microRNAs in LA-N-2 and LA-N-5. A)Differential expression in sequencing of LA-N-2 and LA-

N-5 identified approximately 25% ofmiRNAs predicted by permutation analysis of single cells expressing cholinergic markers (com-

pare Figure 3.2 E) in all miRNA subgroups (evolutionarily conserved, primate-specific, and TF-targeting). B)Differentially expressed

miRNAs in LA-N-2 and LA-N-5 can be stratified into four groups by their expression changes: miRNAs only differentially expressed

in LA-N-2 (pink) or LA-N-5 (blue), miRNAs changed in similar direction in both cell lines (green) and miRNAs changed inversely be-

tween cell lines (yellow). Notably, the changes in expression as measured by count-change in similarly as well as inversely changed

miRNAs both correlate well.

Differential Expression Along The Timeline

For consistency, from hereon out, time points 30 minutes and 60 minutes will be termed »early«,

while 2 days and 4 days will be referred to as »late«. Differential expression was detected in all

groups, lending credibility to the rapid changes in expression needed for a miRNA response of

the »immediate-early« type. However, the response to long-term CNTF stimulation was larger in

miRNA numbers as well as effect sizes (Fig. 3.8 A&B). Of all early perturbed miRNAs, only 3 and

13 miRNAs were exclusively perturbed immediate-early-like in LA-N-2 and LA-N-5, respectively;

Box 2: The count-changemetric

The frequently used log-fold change metric is not ideally suited for assessing the potential effect of ex-
pression changes for individual miRNAs because it does not reflect mean expression levels. To determine
the absolute change in expression, the count-change metric was introduced, a combination of base mean
expression and log-fold change, to weigh DE miRNAs against one another. The count-change is defined
as follows:

CC = (BM · 2LFC)− BM

CC: count-change, BM: base mean expression, LFC: log-2-fold-change.
Importantly, by using the base mean expression, count-change correlates directly with sequencing depth.
Generalisation, e.g. comparison between two individual experiments, is therefore not straightforward.
A normalisation to raw reads would enhance comparability, however, other effects such as fragment dis-
tribution and quality aspects may also play a significant role.
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all others were still DE after 2 and/or 4 days. In LA-N-2, the late time points at 2 and, particularly,

4 days showed the greatest perturbation; in LA-N-5, the picture was more complex (Fig. 3.8 C&D).

However, generally, there were large similarities as well as exclusivities between the time points 2

and 4 days in both cell lines. When comparing early and late time points between LA-N-2 and

LA-N-5 directly, similarly complex patterns emerged (Fig. 3.8 E&F). Particularly at late time points

(Fig. 3.8 F), every possible combination of overlap exists. 24 miRNAs were DE in all late conditions;

107 miRNAs were DE only in LA-N-2, and 269 miRNAs were DE only in LA-N-5.

Differential Expression Between LA-N-2 and LA-N-5

While there was considerable intersection in DE miRNAs between the cell lines, a substantial amount

of miRNAs was only DE in one of the two lines. Generally, response to CNTF was higher in

the male-originated LA-N-5 cells; however, there were also miRNAs found DE only in the female

LA-N-2 (compare Fig. 3.8). Thus, not all of the differences in miRNA expression can be attributed

to a higher sensitivity in LA-N-5. Similarly, LA-N-5 shows a »non-significant trend« toward higher

count-change values (mean of absolute count-change across all DE time points, 20 907 versus 3066,

Welch two-sample t test, p = 0.08).

The influence of genotype on the differentiating effect of CNTF was determined via a statistical

interaction design in the DESeq2 Wald test. Briefly, by including an interaction term in the linear

regression formula, the effect of the condition (CNTF or control at each time point) between the

two genotypes can be isolated:

y ∼ condition+ genotype+ condition : genotype

Using the interaction term condition : genotype, miRNAs that reacted significantly different to

CNTF stimulation in LA-N-5 compared to LA-N-2 were determined. Of note, the sexual dimor-

phism becomes more pronounced over the course of differentiation. While there is no significant

difference between LA-N-2 and LA-N-5 at 30 minutes and only one miRNA DE at 60 minutes,

numbers increase at 2 days and reach a maximum at 4 days, with significant overlap (Fig. 3.9 A).

Although not all miRNAs found in this manner belong to the group of miRNAs with inverted ex-

pression between LA-N-2 and LA-N-5, several show significant differential regulation between the

male and female cellular models (e.g., hsa-miR-615-3p, Fig. 3.9 B). To further examine the effect of

genotype on the small RNA response to CNTF, the regular differential expression results (Section

3.4.4) were intersected with the interaction term for the late time points. This resulted in a complex

pattern of intersecting miRNAs, in both cell lines (Fig. 3.9 C&D). Again, all possible overlaps be-
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Figure 3.8: LA-N-2 / LA-N-5 Timeline and Differential Expression. A) Experimental timeline of CNTF differentiation. B) Bar plot of

differentially expressed (DE) miRNAs per time point, divided by cell line where differential expression was measured (LA-N-2 only,

LA-N-5 only, or both). C)Venn diagram of DEmiRNAs in LA-N-2, divided by time point. Few early DEmiRNAs, and continually more

the longer differentiation lasts. D) Venn diagram of DE miRNAs in LA-N-5, divided by time point. Similar in pattern to C, but more

pronounced in numbers. E) Intersectionof early timepoints in LA-N-2 andLA-N-5. Despite the lowdifferential expression in LA-N-2,

there is overlap. F) Intersection of late time points in LA-N-2 and LA-N-5. Overlap is pronounced and complex, however, there are

also cell line-exclusivemiRNAs.
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Figure 3.9: miRNAsDifferentially ExpressedBetween LA-N-2 and LA-N-5. Application of a designmodel formulawhich includes an

interaction term enables display of the influence of themale or female genotype on differential miRNA expression. A)Venn diagram

of miRNAs differentially expressed between LA-N-2 and LA-N-5 at all four time points. B)Counts plot of normalised raw expression

values of hsa-miR-615-3p. Exemplary of a high influence of genotype on the differential expression caused by CNTF differentiation,

hsa-miR-615-3p is more highly expressed in the female LA-N-2 and elevated after four days of CNTF-induced differentiation, while

in the male LA-N-5, it is expressed slightly lower and suppressed upon differentiation. C) Venn diagram comparing late differential

expression in LA-N-2 with late time points of differential expression between LA-N-2 and LA-N-5. All possible combinations exist,

however, there are miRNAs affected by genotype that are not differentially expressed in the simple model. D) Venn diagram com-

paring late differential expression in LA-N-5with late time points of differential expression between LA-N-2 and LA-N-5. Essentially

similar toC, but with partly higher quantities of DEmiRNAs.

tween any two groups exist; 37 and 36 miRNAs are found in all four groups of LA-N-2 and LA-N-5,

respectively. Among those, 16 mature miRNAs belong to all sets.

While this descriptive analysis shows significant differences in small RNA expression in response

to neurokine-mediated cholinergic differentiation of these two cell lines, the functional implications

are much less clear. In the following, approaches to discerning cellular function, rather than just level

changes, will be explored, via unbiased analysis as well as in a system-targeted manner.
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3.5. microRNA Family Gene Ontology Enrichment

A significant drawback of the recency of the discovery of regulatory small RNAs is the lack of com-

prehensive functional annotation. While protein coding genes are well annotated and neatly or-

ganised into an enormous amount of ontological categories (see Section 2.4.2), miRNAs have only

been anecdotally associated with specific functions in the cell. Additionally, the functional roles

of protein coding genes are much more limited than those of miRNAs; the number of potential

functions of any miRNA correlates with the number of mRNA targets this miRNA has, and is also

highly context-dependent (e.g. regarding cell type, cell state, disease). Thus, to systematically screen

a large amount of miRNAs and families, we had to turn to an indirect approach: the GO analysis

of targeted genes.

3.5.1 microRNA Family Enrichment

To categorise and systematise the sexual dimorphism of CNTF differentiation of LA-N cells, statistically over-

representedmiRNA families in the differential expression datasets were determined. Of the 151miRNA fam-

ilies listed in miRBase v21, members of 71 families are DE in LA-N-2 and LA-N-5. Enrichment of male, female,

and ubiquitously DEmiRNAs in these families was determined by hypergeometric enrichment via Fisher’s ex-

act test for each of the families. The targets of all individual miRNAs in the enriched families were determined

viamiRNeo query.

3.5.2 Creation of miRNA Family Gene Target Sets

GO analysis of the targets of a single miRNA is challenging, because the analysis requires a weighted scoring

systemof input genes. For singlemiRNAs, the options for scoring are limited to the aggregated targeting score

or permutation p-values. Using families enables the introduction of a further scoringmethod: the aggregation

of individual family members targeting the same gene. The reasoning behind this approach is to determine a

general functional »area« of biological process that the miRNA family in question operates in. To account for

the possibility of multiple areas being affected by a family, the test set of genes in any GO enrichment analysis

should not be too small (i.e., rather the top 100 genes than the top 10).

Following this reasoning, the targets of all miRNAs in each family were determined viamiRNeo query. For

each family, genes were ranked by their cumulative targeting score ρ from all family members. For gene i and
number of miRNAs in family x, gene score ρ is calculated from individual miRNA→gene scores s:

ρi =
x∑

n=1

sni

3.5.3 GOAnalysis of Target Sets

The gene target sets of individual miRNA families were ordered decreasingly by their cumulative score ρ and
subjected to GO analysis via the R package topGO.169 Briefly, topGO analysis extends the basic hypergeomet-
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ric approach of GO enrichment analysis by de-correlating the DAG structure of GO annotation (see Section

2.4.2), allowing a weighted correction for the interdependency of neighbouring GO nodes. If a gene is found

in both the parent node (more general) and the child node (more specific), the less specific parent node gene is

weighted less; in this way, the most specific node of each hierarchical branch can be found without confound-

ing the result with less specific terms. While GO analysis always is subject to interpretation by the researcher,

this weighted algorithm has been shown to reduce false positives while retaining a high true positive ratio.

topGO analysis was performed using the classic (i.e., Fisher’s exact test) as well as weighted methods for

comparison, however, to determine significance, the p-values calculated by the enhanced weighted algorithm

were used. FDRwas controlled at 5%. As recommended by the authors,169 the ordered list of gene targets up

to the 3000th position was used as a background for the analysis; the test set in each case was the top 10% of

targeted genes.

Gene Targeting of Enriched Families

Five families were found to be enriched in both male and female cells, and 12 families in only one

of the two cell lines (Fig. 3.10 A, left side). The size range of enriched families was substantial, from

small families with only 4 mature members to extensive families with dozens of mature miRNAs.

Of note, the amount of family members in any miRNA family did not correlate with the absolute

amount of targets predicted (Fig. 3.10 A). Rather, the influence of individual miRNAs was the main

factor determining the size of the gene target network. However, those families that were enriched

in only one cell line presented with significantly smaller target sets than those that were found DE

in both (mean targeted genes per miRNA 217 versus 378, Welch two-sample t test, p = 0.001). Rel-

ative to family size, 4 of the enriched families targeted less genes than all others: mir-10 (p = 0.016),

mir-192 (p = 0.042), mir-379 (p = 0.011), and mir-515 (p < 0.001). Hypothetically, the spectrum

of target amounts may correlate with the degree of functional specification of distinct miRNA fam-

ilies: on one end, broadly acting families such as let-7 with sex-independent function, on the other,

families with a narrow target profile, such as mir-10, whose restricted function can associate with

sex-specific effects.

3.5.4 Large Scale GO Term Curation

The GO analysis performed in this manner for all 17 enriched families resulted in a list of 737 dis-

tinct GO terms related to any of the families. To generate an overview of functional implications

of the individual families, the GO terms were filtered and aggregated manually. Terms not relating

to CNS- or immune-function were removed, and the remaining terms were sorted into one of 21

categories (Fig. 3.10 B). Generally, the 17 miRNA-families associate with neurodevelopment and

neural plasticity, diverse immune functions, cell cycle control, and sex. Most families present with
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Figure 3.10: miRNA Families Enriched in Differential Expression and their Ontological Associations. 17 miRNA families were en-

riched significantly in the DEmiRNAs following CNTF-mediated differentiation of LA-N-2 and LA-N-5 (Fisher’s exact test, p < 0.05).

A, left side)Bar plot of p-values of enriched families, ordered by family size; family size encoded by colour. A, right side) Stacked bar

plot of the number of gene targets per family. Bars are divided by the DE pattern between LA-N-2 and LA-N-5 of each individual

family member. DE context (encoded by colour) varies from detection in all categories (such as let-7 or mir-10) to detection only

in one cell line (such as mir-515 or mir-154). Four families show significantly less target genes than all other families in relation to

their size (denoted by asterisks). B)GeneOntology enrichment analysis of gene targets of all enriched families via 737distinct terms

curated into CNS- or immunity-related categories. The miRNA families mir-10 and mir-199 show association with neurokines and

circadian rhythm.

association to general ontological categories such as neurodevelopment or sex, while more specific

categories show a sparser distribution.

Only two families associate significantly with neurokine-related function, mir-10 and mir-199.

Both are, as many others, involved in neurodevelopment- and sex-related function, but both also

show the very specific association with circadian rhythm. Family mir-10 additionally is implicated

in control of neurotrophin-related mechanisms, and in several blood-borne immune cells, such as

T-, B-, and NK-cells.

3.6. Whole Genome miRNA→Gene Network Generation

A common approach to complex network relationships is physical modelling. A complex graph

(with directed and weighted edges) can be coerced to self-organise by application of a force-directed

layout. In this process (also known as spatialisation), the network, defined only by its nodes and

edges, is transformed into a map, usually in two dimensions. An important prerequisite is the scale-

free topology of the network, a structure that transcriptional connectomes usually present with. 170

A force-directed layout transforms a network by simulating a gravitational system, or a system of

magnetic nodes connected by springs, in which the nodes repel each other, but edges between two
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nodes pull them towards each other. By manipulation of multiple physical attributes of the model, a

mapped representation of the network’s organisation can be produced. As a result, nodes (i.e., genes,

TFs, and miRNAs) with close interaction are mapped in close proximity, while nodes with low

interaction are far apart. Similarly, nodes with pivotal function in the network (»hubs«) gravitate

towards the centre of the map, while »less important« nodes are shifted towards the fringes.

The network comprising all DE members of the 17 enriched miRNA families and 12495 targeted genes as

determined viamiRNeo query was subjected to force-directed mapping using the Java-based software Gephi

0.9 and its primary force-directed algorithm, ForceAtlas2.171 Gephi and ForceAtlas2 are designed to gener-

ally handle graphs with up to 10000 unique relationships; however, the standard miRNeo query resulted in

a network with ∼160000 edges. To reach a computationally manageable number of relationships, the score

thresholdwas raised to aminimumof 7,which resulted in a network of 46937unique edges. The resulting net-

workwasexportedasavector graphandmanually edited inAdobe Illustrator to furtherenhance its readability

(Fig. 3.11).

The resulting transcriptional connectome map illustrates the functional compartmentalisation

of miRNA→gene interactions. miRNAs of distinct families are frequently found in close proxim-

ity to one another, most often forming one or two clusters. In the case of two clusters forming, the

clusters are usually representative of the two complementary strands of the pre-miRNA(s), since 3’

and 5’ variants of any pre-miRNA usually possess fundamentally different seed sequences, and thus,

targets. The let-7 family is distinguished by its removal from the bulk of other interactions, possibly

representing a particularly specialised set of functions, at least for the 5’ variants of the bottom clus-

ter. Families with predominant differential expression in one of the two cell lines (sexes) inhabit dif-

ferent sides of the main graph and show little intermingling, pointing towards sexually dimorphic

gene target distribution. The two neurokine-associated families, mir-10 and mir-199, are located

near the centre of the graph, in two strand-specific clusters (»[08a]&[12a]« and »[08b]&[12b]«).

To gather more detailed information than grouping of miRNAs with similar function, such as

direct miRNA→gene interaction, the size of the studied networks must be reduced. For each family

affected by CNTF-differentiation, a single graph was created, laid out by application of ForceAtlas2,

and analysed for critical nodes. The distinct families and their gene targets yield immensely diverse

graph layouts, that here cannot be described in their entirety. The complete collection of graphs in

interactive visual form is accessible at https://slobentanzer.github.io/cholinergic-neurokine. Due

to an elevated interest, the cholinergic/neurokine miRNA interface and the families mir-10 and mir-

199 will be described in more detail and in conjunction with sex-specific perturbations in neurologic

diseases.
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Figure 3.11: Full Connectome of LA-N-2 and LA-N-5 Differentially Expressed miRNA Families. The network of miRNA families

and their 12495 targeted genes self-organises into a connectome map with 46937 unique edges. miRNA node size scaled by ab-

solute count-change, nodes coloured by DE context. Numbers in brackets denote miRNA families, gene nodes have minimal size.

By application of a force-directed layout, the miRNA families visibly self-segregate into clusters. The let-7 family, male-biased and

female-biased clusters takeupmajorparts of thenetwork. Familiesmir-10andmir-199,withneurokineassociation, formtwomixed,

sexually dimorphic clusters near the centre of themap (lighter shade).
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3.7. Application to Schizophrenia and Bipolar Disorder

A comprehensive structural analysis of perturbations on a genome scale is hardly possible with-

out heavy truncation of results or dimensionality reduction methods. Truncation is commonly

performed by ranking perturbations by their p-values in ascending order and only regarding the

highest ranked entries, which often amounts to less than ten individual transcripts. On the other

hand, commonly used dimensionality reduction techniques include principal component analy-

sis (PCA), t-distributed stochastic neighbour embedding (t-SNE), and clustering/stratification ap-

proaches. While truncation enables human-readable presentation of results, in principle it does not

lend itself to complex polygenic events such as neurologic disease. Common dimensionality reduc-

tion techniques are useful in providing structural overview of a high-dimensional dataset, but give

little insight into causal relationships of single entities. We thus aimed to find an alternative ap-

proach to dimensionality reduction which conserves the internal relationships inherent to the data,

and which profits from the network organisation of our input data.

For the application of miRNeo data to real-world problems, suitable psychiatric and neurologic

disease datasets were sought in the common repositories ArrayExpress, NCBI GEO, and Synapse.

Among the datasets with agreeable quality, SCZ and BD were the only diseases with sample amounts

that allowed a statistically valid analysis of sexual dimorphisms. While many neurologic disease stud-

ies are simply limited in their number of subjects, autism presented a different issue: the majority of

donors were males (more than 90%). Direct analysis of miRNA expression patterns was not possi-

ble, because very few studies study miRNAs directly, yet. Thus, studies on mRNA were substituted

to infer on miRNA dynamics.

3.7.1 Analysed Datasets

Twelve datasets including 1361 subjects were downloaded from their repositories (Table 3.2). Data of DLPFC

RNA-seq of 579 SCZ patients and controls was obtained from the Common Mind Consortium (http://www.

synapse.org/CMC). To address the diverse origins and technological aspects of data, care was taken to appro-

priately unify and normalise the data. The data preparation and meta analyses were performed essentially as

describedbyGandal and colleagues.35 Samples of brain regions not consistentwith the research question (e.g.,

cerebellum), or from patients with diseases other than SCZ or BD, were removed from datasets on a case-by-

case basis. RNA-seq datasets were used to individually confirm the perturbations found in the meta-analysis

of microarray studies.
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source accession publication technology subjects/samples disease

NCBI GEO GSE35978 Chen et al.172 microarray 150/312 SCZ&BD

NCBI GEO GSE12649 Iwamoto et al.173 microarray 102/102 SCZ&BD

NCBI GEO GSE53987 Lanz et al.174 microarray 76/205 SCZ&BD

NCBI GEO GSE17612 Maycox et al.175 microarray 51/51 SCZ

NCBI GEO GSE21138 Narayan et al.176 microarray 30/59 SCZ

NCBI GEO GSE5392 Ryan et al.177 microarray 82/82 BD

NCBI GEO GSE80655 Ramaker et al.178 RNA-seq 96/281 SCZ&BD

NCBI GEO GSE106589 Hoffman et al.179 RNA-seq 94/94 SCZ

NCBI GEO GSE68559 Webb et al.180 RNA-seq 10/98 NA

NCBI GEO GSE96659 Fontenot et al.181 RNA-seq 5/209 NA

NCBI GEO GSE45642 Li et al.182 RNA-seq 86/670 NA

Synapse CMC Gulyás-Kovács et al.183 RNA-seq 579/579 SCZ&BD

Table 3.2: Data Sources forMicroarray and RNA-seq Analyses.

3.7.2 MicroarrayQuality Control and Data Preparation

Read-In andNormalisation

Illumina datasets were read, log2-transformed, and quantile-normalised using R/lumi.
184 Affymetrix datasets

werereadandRMA-normalised (log2-transformed,backgroundcorrected, quantile-normalised)usingR/affy.
185

Affymetrix data were additionally corrected for 3’/5’ bias using the AffyRNAdeg() function (not available for

other chip manufacturers). All available biological (e.g., sex, age) and technical (e.g., batch, RIN, post-mortem

interval) covariates were collected and used for the analysis. Individual correlations of case-control status S
with any covariateCwere assessedusing a linearmodel (R/lm)with formulaC ∼ S; statistical significancewas
determined via ANOVA (R/anova). If necessary, case-control samples were balanced to eliminate significant

covariate correlations with case-control status (all p > 0.05).

Outliers

Outlier removal was performed using the method proposed by Oldham, Langfelder & Horvath.186 Briefly, the

(dis-)similarity matrix of samples is transformed into a signed, weighted correlation network. Network adja-

cency (a) of samples (nodes) Si and Sj is defined as:

aij =
(
cor(Si, Sj) + 1

2

)2

As such, the connectivity between samples can be measured by the standardised connectivity (Z.K), which

describes the strength of correlation between any given node and all other nodes in the network. As proposed

byOldham et al.186, outliers were removed if their Z-score was below the threshold of Z.K = -2.

Annotation

To enable comparison between datasets of diverse technical origin, probes were annotated using ENSEMBL

gene identifiers using R/biomaRt.187 To maintain comparability with the analysis by Gandal et al.,35 the same
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version of ENSEMBL DB (v75, Feb 2014) was used. Probes were collapsed onto single genes using the col-

lapseRows() function of R/WGCNA,188 using the maximum mean signal across all probes per gene. Of note,

information loss occurred by multiple collapsing of probes and integration of datasets, which can only be per-

formed using the genes common to all datasets (i.e., represented bymicroarray probes). The final gene set en-

compassed12391 individualgenes,withseveralnotablecholinergic/neurokineexceptions (CHRNA7,CHRM1,

LHX8, CHKB, PRIMA1, CNTF). Missing genes result from annotation deficits between different probe sets,

cannot be comprehensively manually controlled on a genome scale, and cannot be re-introduced at this stage.

3.7.3 Differential ExpressionMeta-Analysis

The individualexperimentaldatasetswereeachcorrected forcovariate influencesbymultiple regressionbased

on all available biological and technical covariates. Briefly, the linear regressionmodelwas solved usingmatrix

algebra operations. In matrix form, a linear regression model of observations Y (i.e., gene expression levels),

independent variablesX (i.e., covariates), coefficients β, and error terms ε can be described as:

Y = Xβ + ε

As a consequence, the residual sums of squares can be expressed as the cross product:

RSS = (Y− Xβ)T(Y− Xβ)

Then, the coefficients β̂ can be estimated by solving the derivative:

β̂ = (XTX)−1XTY

Coefficientswereestimated for all relevant technical andbiological covariates (e.g. post-mortem interval, RIN,

sex, age) and used to regress covariate influence on gene expression levels:

Ynew = Y− (Xβ̂)T

After covariate regression, differential expressionwas calculated across all datasets for each disease group

using a linear mixed model with a fixed effect for each study and case-control status (»group«), and a random

effect for each individual subject. Computation was performed in R, using R/nlme,189 with parameters

fixed =∼ group+ study and random =∼ 1|subject

This yielded an array of log-fold changes between cases and controls for each gene and disease. To deter-

mine statistical significance, 10 000permutations of themixed-model regressionwereperformed for eachuse

case, randomly assigning case-control status. The resulting null distributions were used to determine FDR,

with threshold for significance at 0.05.
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Sex-SpecificMeta-Analysis

Samples of all datasets were split between males and females (cases as well as controls), and individually sub-

jected to the same procedure as the sex-independent data: covariate regression, differential expression via a

linear mixedmodel, and estimation of statistical significance via permutation testing.

Transcriptome Correlation

Correlation of disease transcriptomeswas performed by using Spearman’s rank correlation coefficient. Spear-

man’s ρwas determined between SCZ and BD sex-independently as well as separately in males and females.

Most Diverging Genes

Geneswere rankedby theirdivergencebetweenany twocompareddatasets, sex-independentdataofSCZand

BD, and anymeaningful combination of sex-dependent data in SCZ, BD, males, and females. The divergence δ

of any geneG between datasets i and jwas defined as:

δ = LFC(G)i − LFC(G)j

Where positive values of δ indicate a positive bias ofG towards dataset i; LFC: log2 fold change.

3.7.4 Sexual Dimorphism in Schizophrenia and Bipolar Disorder

Sex-independent correlation replicated the finding of Gandal et al, 35 with Spearman’s ρ = 0.7100

(p < 0.001). However, diverging from the established annotation of ENSEMBL v75 to later ver-

sions of the database significantly altered the correlation coefficient, leading to lower correlation in

all tested cases. Comparing the sex-independent data with only male or female subjects (all with

ENSEMBL v75 annotation), those also show lower general correlation between SCZ and BD: in

females, correlation was ρ = 0.6150 (p < 0.001), in males, ρ = 0.5783 (p < 0.001). While it is

possible that these variations are caused by structural properties of the data unrelated to sexual di-

morphism, such as the loss of power due to the reduction in size, the consistently lower correlation in

sex-specific subsets also may indicate an averaging effect between male and female patients, leading

to a higher correlation in spite of significant sexual dimorphism.

To address the potential differences between male and female brain transcriptomes, which may re-

flect the observed clinical dimorphism, we subjected the 100 most-diverging genes between any two

datasets to GO enrichment analysis (Fig. 3.12, from Lobentanzer et al.1) in hopes of identifying

the most discriminating molecular pathways between SCZ and BD, and afflicted males and females.

Sex-independently, the most-diverging pathways between SCZ and BD principally involved mech-

anisms of inflammation and immunity (e.g., ‘‘acute inflammatory response,’’ p = 0.003; ‘‘cellular

response to cytokine stimulus,’’ p = 0.01).
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Differences in Sexual Dimorphism Between SCZ and BD

Computation of diverging pathways between males and females in each disease indicated a larger

divergence between sexes in SCZ than in BD. SCZ-biased genes of males and females showed no

overlapping GO terms (Fig. 3.12 A), but BD-biased genes of males and females showed large GO

term overlap, particularly in inflammatory components (Fig. 3.12 B). Notably, specific components

of neurokine signalling were elevated in both males (IL-6, p = 0.007) and females (JAK/STAT, p =

0.01) with BD.

Overlap of Male-Biased Genes Between SCZ and BD

Shared transcriptional properties of SCZ and BD were identifiable only in male-biased genes. While

female-biased SCZ genes showed no implications in CNS processes, male-biased SCZ and BD genes

overlapped in functions concerning inflammation and immunity (Fig. 3.12 C). Female-biased BD

genes were associated with CNS function and development (Fig. 3.12 D).
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Figure 3.12: GO Enrichment of Diverging Genes. Results of differential gene expression were dually compared: SCZ versus BD

andmale versus female (indicated by colours). GO enrichment of the top 100 distinguishing genes in one dimension was compared

with the other for each pair of combinations. A) SCZ-biased genes diverge between males and females. B) BD-biased genes share

immunological ontology in both males and females. C)Male-biased genes share immunological ontology in BD and SCZ.D) Female-

biased genes diverge between SCZ and BD.
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Specificity of Ontological Terms

When comparing different areas of biological function, such as neurotransmission, immunity, and

inflammation, the different areas notably diverged in the specificity of identified terms. Consid-

ering the functionality of the applied method (topGO, see Section 3.5.3) to find the most specific

node in any branch of the DAG tree while disregarding its (less specific) parent nodes, this may

indicate a difference in the magnitude of perturbation in the different systems. For instance, the

GO terms indicating neurotransmission as affected system were much less specific than those in-

dicating immunity-related processes. While significant neurotransmission-related terms failed to

implicate specific neuron types or neurotransmitters (e.g., GO:0021953, »CNS neuron differenti-

ation«; GO:0046928, »Regulation of neurotransmitter secretion«), immunity-related terms were

very specific towards regulatory subsystems, and regularly implicated neurokine mechanisms (e.g.,

GO:0032675, »Regulation of interleukin-6 production«; GO:0046427, »Positive regulation of

JAK/STAT cascade«).

3.7.5 Combination of Disease Data and Cell Culture

To implement the proposed complexity reduction technique, we applied a reductionist approach

to the comprehensive network generated from perturbed miRNA families and their targeted genes

(Fig. 3.11), based on the unbiased analysis of sexual dimorphism in SCZ and BD, which implicated

processes of neuronal, immunological, and circadian origin (Figure 3.12). To merge these results

with the implications of cholinergic cell culture, we added genes implicated in neurokine signalling

and circadian rhythm to the list of cholinergic genes (see Box 1). Returning to the collection of

web-available patient data, we subjected this limited set of 76 genes and their 18 neuronal TFs to

differential expression analysis.

The comprehensive network was then filtered in multiple consecutive steps. (I) Permutation anal-

ysis of comprehensive miRNA targeting data specific for genes expressed in cholinergic neurons

(Fig. 3.2) yielded a list of miRNA candidates that shows overlap with (II) miRNAs DE in our two

models of neurokine-induced cholinergic differentiation (Fig. 3.7 A). (III) We included only fami-

lies of miRNAs we found to be enriched in differential expression (Fig. 3.10). Sixty-nine miRNAs

from 12 families passed this filtering process and were consecutively assembled in a force-directed

network with the 94 genes of the previously compiled list. As a »spike-in«, we added miR-132-3p

(DE in LA-N-5 cells), a miRNA which controls cholinergic processes190,191 and is known for its

function in neurons 192 and immunity 193 and its perturbation in disease. 194 The resulting network

(Fig. 3.13 A, from Lobentanzer et al.1) shows high structural homology to the comprehensive net-
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Figure 3.13: The Cholinergic/Neurokine Interface. A) The miRNA families mir-10 and mir-199 pose a sexually dimorphic interface

of cholinergic, neurokine, and circadian regulation by targeting nicotinic/ muscarinic (e.g., a4b2 and M1) and neurokine receptors,

transcriptional regulators of cholinergic differentiation (LHXand STAT) and circadian rhythm (CLOCKandRORA), theAChE and the

AChE linker proteins PRIMA1/COLQ, and high-affinity choline uptake (HACU). Members of mir-10/199 families, spike-in miR-132-

3p, and their targeted genes are shown in colour, and other miRNA families that passed the multiple filtering are indicated as areas.

miRNAnode size corresponds to count-change and gene node size to connectivity; colour and thicker edges indicate theDE context

and experimentally validated connections. B–D Validation experiments of AChE targeting by miR-125b-5p, with miR-132-3p as a

positive control. B) Lentiviral expression of miR-132 and miR-125b suppresses luciferase fused to the 3’ UTR of AChE in HEK293T

cells. Error bars indicate SE.C) Lentiviral expression ofmiR-132 andmiR-125b suppresses the endogenous AChE hydrolytic activity

ofU937 cells with similar efficacy. Error bars indicate SE.D) Life/death assay of stably transfectedHEK293T cells carrying theAChE

3’ UTR fused to a cytotoxic sensor (under CMV promoter) and co-transfected with miR-125b-5p, miR-132-3p, or control plasmids.

Cells survive in case of binding of miR-132-3p andmiR-125-5p to the 3’ UTR.

work shown in Figure 3.11. The miRNA families in this reduced network show spatial organisation

similar to the comprehensive network.

In agreement with their localisation in the comprehensive network, miRNA families mir-10 and

mir-199 inhabit a central role in the resulting interactome. Most-targeted genes in this network (as

indicated by their size) are the circadian regulators CLOCK and RORA. While CLOCK is located

centrally, next to mir-10/199 miRNAs, RORA shows closeness to the mir-30/515 families. Gener-

ally, genes with larger cellular influence, such as transcription factors (STAT3, CLOCK) or TGF-β

ligands (BMP family genes) are frequently targeted by miRNAs, while more specific transcripts,

such as the cholinergic receptor genes or neurokines, are targeted more selectively.

More so than the spiked-in miR-132-3p, mir-10/199 miRNAs target cholinergic genes, for in-

stance, the neuronal nicotinic α4β2 and muscarinic M1 receptors (mir-125) and HACU (miR-

199). In addition, they target neurokine genes, such as the transmembrane neurokine receptor LIFR

73



Application to Schizophrenia and Bipolar Disorder

or STAT3, and circadian regulators (e.g., CLOCK and RORA). The two families react highly sex-

ually dimorphic to CNTF-mediated differentiation; some are detected as DE only in one cell line,

others exhibit inverted changes between cell lines. The 3p-variant of miR-125a distinguishes itself

from the bulk of mir-10/199 miRNAs by exclusively targeting M1, α5 and β1 receptors, and IL-6,

and thus is slightly removed from the centre of the network.

The miRNA with most targets in this reduced interactome is miR-125b-5p, also displaying most

experimentally validated interactions with neurokine genes (miRTarBase accessions: IL-6, MIRT-

022105; IL-6R, MIRT006844; JAK2, MIRT734987; LIF, MIRT001037; LIFR, MIRT732494;

STAT3, MIRT005006). miR-125b-5p also is the most perturbed miRNA (in this interactome)

upon CNTF-mediated differentiation (highest absolute count-change), and the only member of

mir-10/mir-199 changed in similar direction in both cell lines (up-regulated). miR-125b-5p also

targets multiple other inflammation-related genes (e.g., TNF, MIRT733472; IRF4, MIRT004534)

and 5-lipoxygenase, which can influence inflammatory processes via production of eicosanoids.195

miR-125b-5b has been directly associated with cytokine-mediated inflammation, as its over-expres-

sion increased the expression of TNF-α, IL-1β, and IL-6, and markedly decreased IκB-α. 196

A notable intersection of spike-in miR-132-3p and miR-125b-5p is the ACHE, an interaction

which had not been validated for miR-125b-5p, but is known for miR-132-3p.190,193 Using miR-

132-3p as a positive control, we performed ACHE-mRNA binding assays in validation of the pre-

dicted targeting by miR-125b-5p.

3.7.6 miR-125b-5p Acetylcholinesterase Targeting Assays

We performed three independent cell culture assays to confirm ACHEmRNA targeting by hsa-miR-125b-5p:

luciferase suppression, AChE protein activity, and a cell death assay with a cytotoxic sensor. The 3’ UTR of

human ACHEmRNA197 was cloned into the microRNA Target Selection System plasmid (System Biosciences,

CA, USA) multiple cloning site, using EcoRI and NotI restriction enzymes (New England Biolabs). All plasmids

were verified by DNA sequencing. For luciferase assays, HEK293T cells were transfected with miRNA Target

Selection-AChE-3’ UTR, and selected in the presence of Puromycin for 3 weeks. Stably transfected HEK293T

(293T-AChE 3’ UTR) cells were grown on 12-well plates and infected with lentiviruses expressing miR-125b-

5p, miR-132-3p or a negative control sequence. After 48 hours of incubation, cells were analysed using the

Dual Luciferase Assay kit (Promega,WI USA) and Luciferase activity wasmeasured using an Envision lumines-

cent plate reader (Perkin-Elmer,Waltham,MA), essentially as previously described byHanin et al.198 For each

reporter construct, renilla luciferase activity was normalised according to that of the firefly. Normalised activ-

ity after infection withmiR-132-3p ormiR-125b-5pwas expressed as relative to that obtained after infection

with the same plasmidwithmiRNA negative control. To show effects of changes in this miRNA’s levels on real-

life protein activities, we performed anAChE hydrolytic activity assay following infection of humanmonocyte-

like U937 cells with hsa-miR-125b-5p, miR-132-3p or a negative control lentiviral vector. AChE hydrolytic ac-

tivity levels were assessed by kinetic measurements of the hydrolysis rates of 1mM acetylthiocholine (ATCh,
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Sigma)at roomtemperature, following20min incubationwithandwithout50 µMtetraisopropylpyrophospho-

ramide (iso-OMPA, Sigma), a specific inhibitor of butyrylcholinesterase, to selectively assay for AChE-specific

or total cholinesterase activity. For the life/death assay, stably transfected HEK293T cells were infected with

lentiviruses expressing miR-125b-5p, miR-132-3p or a negative control sequence. 72 hours post-infection, a

cytotoxic reporter fused to AChE 3’ -UTRwas added to themedia and cells were kept for an additional 5 days

to assess their viability. For all cell culture assays, statistical significance was determined using ANOVA with

correction formultiple testing. Each samplewas assayed in at least 3 biological replicates, and in all cases, hsa-

miR-132-3p served as a positive control.

3.7.7 hsa-miR-125b-5p Targets Acetylcholinesterase

In all tested conditions, miR-125b-5p suppressed ACHE mRNA with equal potency as the posi-

tive control miR-132-3p (Fig. 3.13 B-D). Towards mRNA expression (luciferase) and functionality

(cytotoxic sensor) as well as on protein level (AChE activity), miR-125b-5p demonstrated its inter-

action with ACHE mRNA 3’ UTR. Luciferase units after miR-125b-5p transfection were approx-

imately halved, indicating significant transcript degradation of the ACHE 3’UTR.

3.7.8 Cholinergic/Neurokine Mechanisms in Web-Available

RNA Sequencing Experiments

To include recent developments in methodology, we analysed several recent RNA-seq studies ad-

dressing related questions. In a study of post-mortem brain transcriptome profiling of psychiatric

disorders,178 we found a down-regulation of IL-6, LIF, and several cholinergic receptors (M2, M4,

α4, β2, α7), with sex-specific differences (males had significantly higher levels of neurokines than

females). These changes were visible only in SCZ patients, not in BD or major depressive disorder.

In a study of induced pluripotent stem cells (iPSCs) of SCZ patients and controls that were induced

to show a neuronal phenotype,179 we found an up-regulation of CHAT in SCZ-derived iPSCs, and

a down-regulation of IL6R and the nicotinic α6 subunit. In this study, SCZ males showed a higher

expression of the SLC18A3 and lower expression of nicotinic subunits α 2, 7, and 9, and β3. In a

study of differentiated human neuronal progenitor cells,181 a knockdown of the circadian transcrip-

tional controller CLOCK resulted in up-regulation of LIF and simultaneous down-regulation of

neurokine transmembrane receptors LIFR and IL6ST, accompanied by slight bi-directional changes

in several cholinergic receptors.
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4
Dynamics Between Small and Large RNA in

the Blood of Stroke Victims

Stroke is a dramatic incision into bodily homeostasis and affects a multitude of organ functions,

first and foremost the brain. The immediate actions upon stroke are focused on preserving as much

functional tissue as possible, so as to alleviate the cognitive damages resulting from neuron death.

After this initial period of few hours, longer-lasting processes determine the health and recovery of

the patient. Many of these later events are related to immunity. The greatest danger to the patient

after survival of the initial period are infections, such as pneumonia, usually between one and two

weeks after the infarction. Pneumonia is often facilitated by aspiration of liquids or solids when the

swallowing mechanism is impaired as a consequence of the cerebral damage. However, as introduced

in Section 1.2.5, stroke-related immunodepression can play a role in post-stroke survival, and has

been shown to have an impact on the transcriptome of blood-borne immune cells, at least for protein

coding genes. The role of short RNA transcripts, and particularly of transfer RNA fragments, is

much less clear. We thus opted to analyse the blood of stroke victims taken upon hospitalisation

and screen it for changes in small and large RNA expression.
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4.1. RNA Sequencing, Differential Expression,

and Descriptive Methods

4.1.1 The PREDICT Cohort

Thepatient collective for thepresent studywas recruited fromaprospective, international,multi-center study

with 11 study sites in Germany and Spain, led and approved by the neurologic department of Charité Berlin

(www.clinicaltrials.gov, NCT01079728).199 The study, called PREDICT, screened 484 stroke patients for clin-

ical attributes and conventional biomarkers, with daily measurements in the first five days after stroke, and a

three months follow-up. From these patients, a representative cohort of 49 patients were selected for blood

small RNA sequencing.

4.1.2 Clinical Parameters Collected in the PREDICT Study

Stroke patients were assessed daily for the duration of hospitalisation, at least until four days after admis-

sion. Blood-based biomarkers that were measured at least once during this period include: monocyte human

leukocyte antigen isotype DR (HLA-DR); interleukins IL-6, IL-8 and IL-10; IL-10 levels after 24h in vitro stim-

ulation with lipopolysaccharide; lipopolysaccharide binding protein (LBP); mannan-binding lectin (MBL); and

TNF-α. Also recorded were the time between admission and the collection of the blood sample, and themod-

ified Rankin Scale (mRS). This scale is a rough categorisation of the severity of stroke, with 0 referring to no

symptoms, and 6 signifying death. Scores 1-2 describe slight neurological deficits, 3 requires frequent help be-

cause of medium level deficits, 4 requires constant assistance with daily tasks, and 5 requires stationary care.

4.1.3 Sample Collection, RNA Isolation, and Sequencing

Bloodwas collected into RNA stabilising tubes (Tempus Blood RNA tubes, Applied Biosystems) on each day of

hospitalisation, andwesubjectedbloodsamplescollectedontheseconddaytosmall and largeRNA-sequencing.

For sequencing, we only considered samples from patients with modified Rankin Scale (mRS) values of 3 and

belowat discharge from the hospital, to exclude very severe cases of stroke, leaving n=240 relevant cases. The

time from stroke occurrence to blood withdrawal varied between 0.94 to 2.63 days, with an average of 1.98

days. Blood samples from age- and ethnicity-matched healthy controls were obtained at matched circadian

time from donors with ethical approvals from institutional review boards (ZenBio, North Carolina, USA).

RNAwas extracted from3ml ofwhole blood of all 484 PREDICT patients using the Tempus Spin RNA isola-

tion kit (Invitrogen, Thermo Fisher Scientific,WalthamMA, USA). RNA quality was determined by RNA gel for

all samples and by Bioanalyzer 6000 (Agilent, Santa Clara CA, USA) for samples selected for RNA-sequencing,

which showed high RNA quality with a median RIN of 8.8 (lowest RIN 7.9, highest RIN 9.9). We used 600ng

total RNAof 49 samples for small RNA library construction (NEBNextMultiplex Small RNA library prep set for

Illumina, NewEnglandBiolabs, IpswichMA,USA) and selected24out of the 49 short RNA-sequenced samples

forPolyA-selectedmRNAsequencing. These librarieswereprepared from1000ng totalRNAusing theTruSeq

RNA library preparation kit (Illumina, San Diego CA, USA) and were sequenced on the Illumina NextSeq 500

platform at the HebrewUniversity’s Center for Genomic Technologies.
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4.1.4 RNA Sequencing Alignment

Small RNA species were aligned after quality filtering using flexbar and miRExpress 2.0, as described in Sec-

tion 3.4.2. Additionally, to assess tRF expression, small RNA reads were aligned to the exclusive tRNA space

using the MINTmap pipeline.117 Briefly, this pipeline compares short RNA sequencing reads with a collection

of sequencesdetermined toonlybecontained insidemature tRNAs,without confounding fromthemany tRNA

lookalikes in the human genome, for example in pseudogenes. The two RNA species were united into one ex-

pressionmatrix containing bothmiRNA and tRF expression.

LargeRNA specieswere aligned to the human transcriptomeusing the ENSEMBL transcriptomeHomo sapi-

ensGRCh38 release79, andusing the fast dual-phase parallel inference algorithm Salmon.200 Salmon combines

an »online« fragment mapping utilising continuous updating of a Bayesian prior with an »offline« phase that

determines fragment quantities by application of the Bayesianmodel determined before via a standard expec-

tation maximisation (EM) algorithm or a variable Bayesian EM. Additionally, the pipeline corrects for multiple

typical biases in sequencing, such as position-specific biases, sequence-specific 3’ and 5’ end biases, fragment

GC content bias, and fragment length distribution. The resulting quantified fragments were imported into R

using the rsubreads package.201

4.1.5 Quality Control and Filtering

Rawandprocessed readswere quality-controlled using FastQC, as described in Section 3.4.1, with no samples

falling below acceptable thresholds. Small and large RNA alignments were batch-corrected followed by anal-

ysis of inter-sample relationships via the method proposed by Oldham et al.186 (as described in Section 3.7.2).

We excluded no large RNA samples and one small RNA sample (»11_40044_S12«).

4.1.6 RNA Sequencing Differential Expression Analysis

Quantified reads were subjected to differential expression analysis using DESeq2, essentially as described in

Section3.4.3. SmallRNAspecieswereanalysed togetherbycombiningcount tables formiRNAsandtRFs, large

RNAswere analysed separately. Bothdatasetswere corrected for covariates subject age and batch. Correction

for patient sexwas not necessary because all patients in the final analysesweremale. LFC valueswere shrunk

using apeglm as described in Section 3.4.3, at an alpha level of 0.1.

4.1.7 GeneOntology Analyses

We performed GO analyses on the set of DE transcripts, using different ranking methods. GO analyses were

performed using R/topGO as described in Section 3.5.3 using the weightedmethod.

Ranking by P-Value

Transcriptswere ranked by p-value, and different test setswere tested against the background of the topmost

two thousand transcripts. We tested the set of all DE transcripts (adjusted p-value < 0.05) and the separate

sets of positively and negatively regulated transcripts. Additionally, for each test group, the criterion of LFC >

1.4 was applied and re-tested.
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Ranking By Count-Change

Alternatively to ranking via p-value, transcriptswere rankedby count-change, and the top100 significantlyDE

transcripts were tested against the background of the first two thousand transcripts. Similarly to the p-value

ranking, test sets comprised all transcripts as well as only negatively or positively regulated transcripts.

Visualisation of Results

WhileGOenrichmentanalysis canbe informative, interpretationandvisualisationof its results is not standard-

ised and often limited to presentation of top X terms by p-value. R/gsoap202 is an analysis tool proposed to aid

in interpretation of GO enrichment results via t-distributed stochastic neighbour embedding (t-SNE) display

of similarity of terms based on the amount of shared significant genes. GOenrichment resultswere processed

to fulfil gsoap input criteria and visualised using ggplot2.203

4.1.8 Homology Computation Among tRNA Fragments

Transfer RNA fragment origin can be ambiguous, even in fragments derived from tRNA-exclusive space. To as-

sess sequence-based relationshipsbetween tRFs, all detected fragmentswere subjected topairwisehomology

analysis using local Smith-Waterman alignment (pairwiseAlignment function of the R/Biostrings package), and

scores were transformed into a distance matrix to enable clustering and visualisation of relationships. t-SNE

was employed to visualise tRF homologies in a 2D space.

4.1.9 t-Distributed Stochastic Neighbour Embedding

SNE (Stochastic Neighbour Embedding) replaces Euclidian distances between data points with conditional

probabilities that represent similarities. The Gaussian distribution used in SNE to represent the probability

density for any given data point in the low-dimensional space is replaced by a Student’s t-Distribution in the

updated t-SNE algorithm. In combination with the use of a symmetrised function with simpler gradients, this

alleviates problems with optimisation of the cost function that is used to create forces between points on the

low-dimensional map.204 The superiority of t-SNE with random initialisation remains subject of debate, and

some advocate the use of the newer UMAP algorithm205, although most of the discussion is centred around

analysis of single-cell RNA-seq and preservation of global structure in the lower-dimensional visualisation.206

t-SNE was used in a variety of applications to reduce the dimensionality of high-dimensional data, for in-

stance, the amino acid origin of tRFs, or the association of tRFs with distinct cell types in the blood. t-SNE

analyses were performed in R, using the Rtsne package.207 t-SNE requires, apart from the input data, a param-

eter called perplexity, which determines the weighting of local as opposed to global effects in the data. So far,

there are no strict rules governing the selection of a perplexity value, other than that the perplexity cannot

exceed the number of individual data points. Since different perplexities can givewidely varying results, which

can sometimes be misleading, the resulting maps have to be screened with a range of perplexities to assess

their robustness.
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Figure 4.1: Cholinergic-associated Small RNA ECDF Curves. Cholinergic association was tested using miRNeo targeting data of

miRNAs and tRFs. To assess the best-suited threshold for defining cholinergic association, empirical cumulative density functions

were calculated for the number of cholinergic-associated (CA) genes targeted by each unique smRNA. A) Cumulative frequency of

number of CA genes targeted by tRFs. Threshold of 80% (red line) is passed at five CA genes targeted. B) Cumulative frequency of

number of CA genes targeted bymiRNAs. Threshold of 80% (red line) is passed at four CA genes targeted.

4.1.10 Cholinergic Association of Small RNA Species

To determine association of distinct smRNAs with cholinergic transcripts, we analysed the multiple-targeting

relationships of each distinct smRNA towards our curated list of cholinergic-associated (CA) transcripts. We

first created complete targeting data of all DE smRNAs towards all CA transcripts, whichwe then successively

filtered for multiple targeting behaviours. To assess the base level of multiple targeting of cholinergic tran-

scripts, we utilised empirical cumulative density functions of the number of individual cholinergic targets of

each miRNA and tRF (Figure 4.1). We assumed 80% to be a robust threshold of cholinergic targeting, and for

diverging numbers between miRNAs and tRFs chose to use the higher (more stringent) threshold. smRNAs

above this threshold (i.e., smRNAs targeting at least as many cholinergic transcripts as the threshold value)

were considered CA.
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4.2. Descriptive Analysis of RNA Dynamics

in Blood After Stroke

4.2.1 Differential Expression of Large RNA

At an alpha level of 0.05, we detected 694 differentially expressed (DE) long transcripts, 204 of them

up- and 490 down-regulated (Figure 4.3 A). 18 of the up-regulated and 109 of the down-regulated

transcripts exceeded the common log2 fold change (LFC) threshold of 1.4. To determine the most-

impacted pathways, we performed GO analyses.

4.2.2 Gene Ontology Analyses of Differentially Expressed Genes

Ranking of all transcripts (regardless of direction of regulation) by their differential expression p-

value resulted in GO terms mainly related to circulatory system processes (p = 0.018) and immu-

nity (Figure 4.2 A). Most notable immune-related terms included cytokine-mediated pathways (p

= 2.4E−04), response to IFNs α (p = 0.013) and β (p = 1.2E−03), regulation of JAK/STAT cas-

cade (p = 0.013), response to LPS (p = 0.025), and macrophage activation (p = 0.026). Limiting

the test set to transcripts with LFC above 1.4 increased sensitivity towards immune processes, yield-

ing lower p-values for the enrichment of of positive (1.7E−04) and negative regulation of cytokine

production (5.7E−04), type I interferon production (3.9E−04), response to bacterium (5.9E−04),

innate immune response (2.0E−03), response to organophosphorus (2.3E−03), cytoplasmatic pat-

tern recognition receptor signalling pathway (2.8E−03), and response to LPS (9.1E−03).

Up-regulated transcripts pertained to circulatory system processes, such as platelet degranulation

(1.2E−03) and aggregation (0.02), and sprouting angiogenesis (4.8E−03), but also antigen process-

ing and presentation (4.5E−03). Test set limitation to LFC above 1.4 did not increase sensitivity

towards those terms, but presented essentially similar results. Up-regulated genes as such may be

indicative of the bodily response to blood flow disruption and ischaemia caused by the stroke.

Down-regulated transcripts were enriched in terms involving response to IFN α (1.3E−03) and

β (3.1E−04), response to LPS (1.5E−03), rhythmic process (2.5E−03), positive regulation of T cell

proliferation (4.3E−03), positive regulation of JAK-STAT cascade (0.015), and cellular response

to IL-1 (0.019). Test set limitation to LFC above 1.4 again increased sensitivity towards immune-

related terms, but without changing the general pattern. Thus, down-regulated genes in all likeli-

hood represent the post-stroke immunodepression, which can exacerbate into CIDS (see Section

1.2.5). The terms involving INF, IL-1, LPS, and JAK-STAT also indicate an important role for

cytokine signalling in these processes.
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Figure 4.2: Large RNADifferential Expression Gene Ontology Enrichment. GO terms from enrichment analysis were projected on

a 2Dmap via t-distributed stochastic neighbour embedding (t-SNE) analysis of their shared significant genes. Size of circle indicates

number of significant genes in term, depth of colour indicates p-value (all p < 0.05). A) t-SNE visualisation of GO terms of DE genes

with LFC > 1.4 shows 36 terms in eight clusters. Immunological terms (left-hand side) and circulatory terms (right-hand side) are

predominant. B) t-SNEvisualisationof24GOtermsof top100genesmeasuredbycount-changecorroborate immunological changes

in stroke patient blood differential gene expression.

As a cross-check, DE transcripts were ranked by count-change, and re-analysed (Figure 4.2 B).

The top 100 changed transcripts, without regard to direction (absolute count-change) yielded terms

implying response to IFNα (3.8E−04),β (1.1E−04), andγ (1.4E−04), mitochondrial organisation

(5.6E−03) and ATP synthesis (6.9E−03), response to IL-4 (6.9E−03), positive regulation of JAK-

STAT cascade (8.8E−03), response to antibiotic (0.044), and platelet degranulation (0.045). The

top 100 up-regulated transcripts yielded terms involving platelet degranulation (3.8E−03), mito-

chondrial ATP synthesis (4.2E−03), response to xenobiotic stimulus (0.017), platelet aggregation

(0.013), and response to antibiotic (0.016), while the top 100 down-regulated transcripts were as-

sociated with inflammatory response (1.3E−04), regulation of apoptosis (1.8E−04), cytokine secre-

tion (6.8E−04), antigen processing and presentation (1.2E−03), regulation of lymphocyte apopto-

sis (2.3E−03) and proliferation (2.7E−03), response to antibiotic (5.2E−03), leukocyte homeostasis

(7.6E−03), response to IL-1 (7.6E−03), and many more immune-specific processes. This corrobo-

rates the previous findings that up-regulated transcripts represent the response to circulatory system

damage, and down-regulated transcripts indicate a cytokine-mediated immunodepression. For a full

list of all terms from these analyses, see Appendix C.

4.2.3 Differential Expression of small RNA

In the simultaneous co-analysis of miRNAs and tRFs, we detected 420 DE miRNAs and 143 DE

tRFs (adjusted p-value < 0.05, Figure 4.3 B&C). 63% of miRNAs (265) were down-regulated, while

87% of tRFs (124) were up-regulated. tRFs were mainly derived from the 3’ end (3’-tRFs, 87) or
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Figure 4.3: Small and Large RNA Differential Expression and tRF Properties. A) Differential expression analysis reveals multiple

large RNA transcripts changed in patient blood after stroke. The majority of differentially expressed (DE) transcripts above a LFC

threshold of 1.4 (red) are down-regulated. B) Blood-borne tRNA fragments (tRFs) also change after stroke. Unlike large RNA and

miRNAs, the majority of DE tRFs are up-regulated. Cholinergic-associated (CA) tRFs in red. C) Blood-borne miRNAs are heavily

influencedby theevents following stroke. Like largeRNAtranscripts,miRNAsarealsooverwhelminglydown-regulated. CAmiRNAs

in red. D)Thedistributionof aminoacid origin among theDE tRFs is non-randomandbiased towards the aminoacids alanine, glycine,

leucine, proline, and methionine. Each square represents one DE tRF, colour denotes amino acid origin. E) t-distributed stochastic

neighbour embedding (t-SNE) of pairwise fragment homology by local Smith-Waterman alignment shows clustering of the dominant

amino acid groups of tRFs. Clear clusters can be observed for tRFs derived from tRNA carrying alanine, glycine, leucine, proline, and

methionine.

from internal tRNA regions (i-tRFs, 48), while the tRFs from 5’ ends (5’-tRFs) were in the minority

(6). The amino acid distribution was shifted in favour of alanine- (35), glycine- (28), and proline-

carrying (12) tRNAs (Figure 4.3 D). 30 of the 35 alanine-associated tRFs were 3’-tRFs, and all of

those were up-regulated, indicating non-random generation of these fragments.

4.2.4 Homology Among tRNA Fragments

Using pairwise homology among all DE tRFs, visualised via t-SNE (see Section 4.1.9), we identified

clusters of highly similar fragments, that correlate with their amino-acid origin, i.e., the amino acid

which is carried by the respective parent tRNA (Figure 4.3 E). This relationship persisted across dis-

84



Descriptive Analysis of RNA Dynamics in Blood After Stroke

tinct individual tRNAs coding for the same amino acid, and was particularly pronounced in tRNAs

associated with alanine, glycine, leucine, proline, and methionine. This further indication of non-

random generation of tRNA fragments shorter than tiRNAs leaves an open question about their

biogenesis, particularly, which nucleases are responsible for the generation of the mature transcripts,

and if 3’-tRF generation is dependent or independent from tiRNA generation by angiogenin.

4.2.5 Cholinergic Association of Small RNA Species

Determination of the association of smRNA species with distinct systems or pathways is not trivial

because of the multiple-targeting nature of these RNAs. For the purpose of the following analyses,

we defined a small RNA as being associated with cholinergic processes by the positive association of

the smRNA with a number of cholinergic-associated (CA) large transcripts. We did not assess the

question whether this small RNA also targeted other systems equally, or if it targeted cholinergic

transcripts with greater likelihood than a random selection of genes. For this reason, we selected

a fairly high threshold for the definition of a CA smRNA, which is the targeting of at least 5 CA

transcripts (above 80% on the empirical cumulative density function of cholinergic targeting, see

Section 4.1.10).

Following this definition, we detected 52 CA miRNAs (90% down-regulated, 5 up and 47 down),

and 18 CA tRFs (83% up-regulated, 15 up and 3 down). Above an LFC threshold of 1.4, we found

33 CA miRNAs (97% down-regulated, 1 up and 32 down), and 9 CA tRFs (78% up-regulated, 7

up and 2 down). CA smRNAs are marked in red in Figure 4.3 B&C.
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4.3. Blood Compartments of Cholinergic Systems

and Small RNA Species

To address the shortcomings of whole-blood RNA sequencing, which is more representative of the

clinical setting, but less specific regarding cellular compartments, we consulted third party datasets

to assess RNA species distribution in different cellular and non-cellular compartments of the blood.

For small RNA species, we re-analysed a published dataset of small RNA-seq of 450 human sam-

ples from various blood tissues; 208 for large RNA transcripts, we utilised the tissue specificity of

Marbach’s regulatory circuits. 118 The large RNA information was used to identify blood cell types

with cholinergic transcriptional activity, which was then used to zoom in into small RNA expres-

sion subsets related to cholinergic processes.

4.3.1 Large RNARegulatory Circuits in Tissues of the Blood

To evaluate the cell type distribution of cholinergic genes in blood tissue types, we utilised the expression pat-

terns derived from cumulative transcription factor activity of Marbach’s regulatory circuits.118 As shown by

the authors, the cumulative activity of all transcription factors towards one gene describe well the actual ex-

pression of that gene in the respective tissue type. Tomaximise comparability to the parallel analyses of small

RNA species (Section 4.3.2), blood cell types (i.e., »regulatory circuits«) were selected to reflect the cell type

selection of Juzenas et al.208 based on similarmarkers of the »cluster of differentiation« family of genes. These

were: CD4+ T-helper cells, CD8+ cytotoxic T-cells, CD14+ monocytes, CD15+ neutrophils, CD19+ B-cells,

CD56+ natural killer cells, and, for comparison, whole blood. For the sake of simplicity, geneswere considered

»present« in each blood tissue type if at least one TF showed significant activity towards the gene.

TF activities were collected for all of the tissues and aggregated across all TFs per gene by summing. The

resulting table of 15032 genes in the seven tissues was used as input for the Rtsne function.207 t-SNE was

computed using a range of perplexities and visualised as 2Dmapwith a perplexity of 49 using R/ggplot2.203

4.3.2 An Atlas of Small RNA Expression in Cell Types of the Blood

Toevaluate thecell typedistributionofoursmallRNAmolecules,weanalysedadatasetdepositedbyJuzenaset

al.,208whoseparatedandsequenced450samples comprising seven typesof individual bloodcell types (charac-

terised by »cluster of differentiation«-type cell surfacemolecules), serum, exosomes, andwhole blood (Figure

4.4A). The individual blood cell types comprised CD4+ T-helper cells, CD8+ cytotoxic T-cells, CD14+ mono-

cytes, CD15+ neutrophils, CD19+ B-cells, CD56+ natural killer cells, and CD235a+ erythrocytes (the only

distinct cell type not available in Marbach’s regulatory circuits, since mature erythrocytes do not transcribe).

Starting from the raw data deposited on NCBI GEO, we controlled the quality, applied quality-based filtering,

and aligned the 450 samples to miRNA and tRF sequences, as described in Section 4.1.4. The original publi-

cation did not offer statistical analyses because of a failure in the spike-in procedure, and defined presence

of a small RNA by a measure of at least five counts in 85% of samples. However, since this definition relies

heavily on sequencing depth, and depth can vary widely even in methodically robust sequencing experiments
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Figure 4.4: Small RNA Sequencing of Sorted Cell Types of the Blood and Definition of Presence/Absence. A) Data deposited by

Juzenas et al. 208 include smRNA-information on CD4+ T-helper cells, CD8+ cytotoxic T-cells, CD14+ monocytes, CD15+ neu-

trophils, CD19+ B-cells, CD56+ natural killer cells, CD235a+ erythrocytes, serum, exosomes, and whole blood. Raw data were

re-analysed to yield miRNA- and tRF-expression levels. B) Definition of presence or absence of small RNA molecules from RNA-

sequencing data is based on log-normality of count data, irrespective of expression levels. Log-normal distributionswere calculated

using themean and standard deviation of expression levels (green lines) and compared to the actual distribution via theKolmogorov-

Smirnov test. Presence (upper example) was assumed at a relatively stringent level of p > 0.1. The red line indicates a power-law

distribution in comparison (absence, lower example).

depending on a large number of variables (see Figure 3.5C), we defined our own test for descriptive analysis

of presence or absence of lowly expressed small RNAs in each of the sample types (Section 4.3.3).

4.3.3 Definition of Presence and Absence of Lowly Expressed smRNAMolecules

This definition comprises estimation of a log-normal distribution from a small RNA expression profile, and a

statistical test to refute the null hypothesis that the distribution is in fact log-normal. The danger of evaluating

true expression of lowly expressed smRNAmolecules by a count-based threshold is the possibility of random

reads resulting from degradation products of highly expressed RNA with similar sequence, and the amplifica-

tion of noise. Both problems are exacerbated by an increase in sequencing depth. In today’s RNA-seq technol-

ogy, most chips can accommodate only a limited amount of samples compared to the amount of reads that can

be generated. While this is not as problematic in cases of longer inserts and paired design, which is usually em-

ployed in large RNA-seq, in small RNA-seq this can lead to enormous overheads of reads. It is not uncommon

to receive tens of millions of reads for each sample, which exceeds the recommended amount (of at least one

million) by largemargins.

Thus, there is the need to distinguish between degradation products of highly expressed RNA molecules

or amplified noise and legitimate lowly expressed smRNA molecules (even more so since one of the smRNA

species is a product of non-random tRNA degradation). The central assumption for our proposed method

is: The expression pattern of legitimate smRNA molecules follows, as is common in biology, a normal distri-

bution of some kind, or, for the discrete case, a normal poisson distribution. On the other hand, degrada-

tion products or noise would rather follow other, »non-biological« distributions, such as a uniform distribu-

tion or a monotonously decreasing power-law distribution such as the Pareto distribution. Thus, we chose
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to statistically test each smRNA in each tissue type for the adherence to this criterion, by comparing the mea-

suredcountswithadistribution functionestimatedbasedon themeanandstandarddeviationof themeasured

counts. During testing, we found the log-normal distribution to give the best classification results.

The distribution mean and standard deviation of the expression values per cell type and smRNAwere esti-

matedusing thefitdist functionof theR/fitdistrplus package.209 The count distributionwas then tested against

a log-normal distributionwith the estimatedmean and standard deviation via theR implementation of theKol-

mogorov-Smirnov test, with a cutoff of 0.1. The small RNAwas defined as present if the test failed to reject the

null hypothesis (Figure 4.4B).

Analysis of Expression Patterns and Establishment of Virtual Tissues

The distribution of smRNA expression across the different cell types was used to assign eight functional com-

partments (i.e., »virtual tissues«) to the entirety of detected fragments such that each smRNAwas sorted into

oneof the tissue classes. Ideally, these classeswouldbeunambiguous, i.e., therewouldbenooverlapof smRNA

molecules between the classes. Eight classes were created via hierarchical clustering of miRNA and tRF ex-

pression separately (Figure 4.5), and then used in combinationwith t-SNE applied to the entire expressionma-

trix, to visualise the compartmentalisation of smRNAs in these virtual tissues. The samples taken from stroke

patients in the PREDICT study were sequenced from whole blood, which precludes direct information about

tissue distribution. Thus, the two-dimensional maps from t-SNE visualisation were used to, first, explore the

tissue association of smRNAs differentially expressed in whole blood samples of stroke patients, and second,

examine the potential impact of cholinergic-associated smRNAs in these tissues.

4.3.4 Large RNA Expression Patterns Identify Cholinergic Systems

in CD14+ Monocytes

The expression patterns of 15 032 large RNA molecules in blood-borne immune cells were visu-

alised in a t-SNE-derived 2D map (Figure 4.6 A). More than half of all transcripts show highest

expression in whole blood (7533, not shown), so subsequent analyses were performed on the set of

six tissues, without the whole blood compartment. In this set (14 280 genes), most transcripts show

highest expression in CD14+ monocytes (9125 transcripts), followed by CD19+ B-cells (1176) and

CD15+ neutrophils (1166). Remaining are CD4+ T-helper cells (1092), CD56+ NK-cells (948),

and CD8+ cytotoxic T-cells (773). When filtered for cholinergic genes, there is visible enrichment

of core cholinergic transcripts in a spatial sub-compartment of CD14+ monocytes (Figure 4.6 B).

Considering the different monocyte phenotypes (pro- and anti-inflammatory, see Section 1.2.5),

and their implied transcriptomic differences, which most likely are brought on by divergent TF ac-

tivity, this compartmentalisation of cholinergic transcripts inside one spatial sub-compartment may

indicate a cholinergic »preference« in favour of one particular monocyte phenotype.
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Figure 4.5: Functional Characterisation of Hierarchical Clusters in Blood Cell Small RNA Expression. Information on presence/ab-

sence of miRNAs and tRFs in the tissue types analysed in Juzenas et al. 208 were hierarchically clustered into 8 clusters using the

Ward method, 210 and plotted on a heatmap (single smRNAs on the y-axis, tissue types on the x-axis). To assign meaning to these

clusters, manual inspection was followed by annotation of enrichment in tissue types. Complex combinations were approximated

by their most prominent features. A) Clusters of miRNA presence/absence in blood cell compartments. Clearest cluster associa-

tion was shown by miRNAs expressed only in monocytes (»mono«), in all blood-borne immune cells except neutrophils (»immune«),

ubiquitously without exception (»ubi«), and in whole blood but not any of the single compartments (»whole-blood«). B) Clusters of

tRF presence/absence in blood cell compartments. Clearest cluster association was shown by tRFs expressed only in monocytes

(»mono«), and in all blood-borne immune cells except neutrophils (»immune«). The other tissue-related clusters were not as clear as

in themiRNA expression data, indicating a looser association to cell type of tRNA-derived smRNAs.

4.3.5 Identification of Functional Enrichment of

smRNA Expression in Blood-Borne Cells

To date, there is no comprehensive expression catalogue of smRNA species expression in the tissue

types of the human body that is comparable to what has been achieved in the description of large

RNA. To classify the detected smRNAs in a manner specific to tissues in human blood, we utilised a

dataset published by Juzenas et al., 208 who describe miRNA expression in a variety of blood tissues.

We re-analysed the publicly deposited data for miRNA and tRF expression, and developed our own

method of defining »presence« of the smRNA in each tissue type based on the evaluation of a log-

normal distribution model (instead of using a simple count threshold, see Section 4.3.2 for details).

Using these presence/absence data, we first utilised hierarchical clustering to establish »virtual tis-

sues« that could be assigned to each smRNA (Figure 4.5) for later evaluation in the stroke patient

sequencing. Both miRNAs as well as tRFs showed a number of smRNAs clearly associated with sev-

eral compartments, whereas other compartments and smRNAs were distributed in a more complex
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Figure4.6: LargeRNAExpressionPatterns inBlood-BorneCells. Expressionderived fromtranscriptional activity inblood-bornecell

types in theMarbach dataset 118 was visualised via t-SNE. The inputmatrix comprised all 14 280 detected genes in 6 types of blood-

borne immune cells. Genes were plotted on the first two t-SNE dimensions and coloured by the cell type of their highest expression,

i.e., the highest cumulative transcriptional activity of all active TFs. A) Complete t-SNE shows a gradient of expression across the

different cell types, with much expression in CD14+ monocytes and T-cells. B) Highlighting of cholinergic core genes reveals an

enrichment in close compartments of CD14+ monocytes. The vesicular ACh-transporter SLC18A3 can serve as substitute for the

main cholinergic marker, CHAT, as discussed in Section 2.2.3.

manner. The ten tissue types of the Juzenas et al.208 study were equally parted into two five-tissue su-

perclusters by the expression patterns of both smRNA species (Figures 4.5 A&B, x-axis). These two

clusters distinguish immune from non-immune compartments in the blood, but for one notable ex-

ception: while the »immune supercluster« comprises monocytes, T-cells, B-cells, and NK-cells, the

»non-immune supercluster« contains neutrophils in addition to erythrocytes and the non-cellular

tissues serum, exosomes, and whole blood. Notably, the neutrophil samples cluster closest to the

whole blood compartment in both smRNA species.

Two distinct virtual tissues showed high consistency in both smRNA species: a virtual tissue con-

taining only CD14+ monocytes and another tissue comprising all studied cellular immune com-

ponents except neutrophils (i.e., monocytes, B-cells, both types of T-cells, and NK-cells). miRNAs

(Figure 4.5 A), in addition, yield clear clusters for miRNAs expressed in whole blood, and for miRNAs

expressed ubiquitously without exception. In tRFs (Figure 4.5 B), the general picture is more com-

plex, as the clusters are often mixed.

4.3.6 Expression Patterns of Differentially Expressed and

Cholinergic-Associated smRNAs

Similarly to the visualisation of large RNA molecules, the expression patterns of 600 miRNAs and

1671 tRFs in ten tissues of the blood were visualised in t-SNE-derived 2D maps (Figure 4.7 A&B).
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In the initial visualisation, the forming of multiple clusters according to some virtual tissues can

be observed, while other virtual tissues are visibly more dispersed. Clearest clusters are formed in

both cases by ubiquitously expressed smRNAs (»ubi«), smRNAs expressed only in monocytes

(»mono«), and smRNAs equally expressed in all immune-related blood-borne cells except for neu-

trophils (»immune«). Examination of DE smRNAs on this 2D map shows a further parallel be-

tween miRNAs and tRFs (Figure 4.7 C&D): differential expression after stroke takes place in all

compartments of the blood, and highest changes in transcript amount (as measured by count-change)

are observed in ubiquitously expressed smRNAs. Similarly, cholinergic-associated (CA) miRNAs

and tRFs (Figure 4.7 E&F) are observed in all compartments, but the most highly differentially reg-

ulated CA smRNAs are expressed in all blood compartments alike. Notably, whole blood does not

play a role in DE miRNAs, which may indicate lower relative importance of non-cellular blood com-

partments in terms of classification. In other words, most smRNAs that are found in non-cellular

compartments are found in the cellular compartments as well, making them irrelevant for classifi-

cation (however, their biological function in these non-cellular compartments remains a matter of

interest).

On the other hand, smRNAs that are ubiquitously expressed are also detected in differential ex-

pression with high frequency and perturbation (see Figure 4.7 C&D). In addition to a putatively

significant biological function of these smRNAs, this may also indicate a covariation of broadness

of expression with detection in whole blood differential expression. Presenting an important limi-

tation, this possibility cannot be assessed in the present data, because it requires a stratification of

blood tissues prior to sequencing, for instance via fluorescence-assisted or magnetic-activated cell

sorting (FACS/MACS). This issue is further discussed in Section 5.1.5.

4.4. Regulatory Circuits of Small RNA and

Transcription Factors in CD14+ Monocytes

The clear separation of CD14+-biased smRNAs (Figure 4.5) and the cholinergic importance of

CD14+ monocytes as shown by large RNA t-SNE (Figure 4.6) merit a detailed analysis of these cells

in terms of their transcriptomic interactions. We thus created the whole-transcriptome network of

transcription factors, miRNAs, tRFs, and target genes in CD14+ monocytes using miRNeo, and

analysed it in different ways.

4.4.1 Comprehensive Circuit Network Creation

Thecomprehensive transcriptomicnetwork inCD14+monocyteswascreated ina two-stepprocessofmiRNeo

targeting. First, the complete TF→gene network was created from the targeting data derived fromMarbach
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Figure 4.7: Small RNA Expression Patterns in Blood-Borne Cells. Two-dimensional expression maps were created using t-SNE on

the full numeric expression data derived from re-analysis of the Juzenas et al. 208 data set for miRNAs and tRFs separately. Single

smRNAs (points) were coloured by the virtual tissues derived from the cluster heatmap analysis (Figure 4.5). Node size reflects

absolute count change in C,D, E, and F. Shown are full data, differentially expressed (DE) smRNAs, and cholinergic-associated (CA)

smRNAs for each species. A) Full t-SNE visualisation ofmiRNA expression. The largest 2D-associative clusters are comprised of the

clearestpresence/absencevirtual tissues,monocytes (yellow)andubiquitouslyexpressed (orange). Smaller clusters canbe identified

for the tissue of all immune cells except neutrophils (green) and the complex cluster of immune cells including neutrophils andwhole

blood (turquoise). B) Full t-SNE visualisation of tRF expression. The largest 2D-associative clusters are, as in miRNAs, comprised of

the clearest presence/absence virtual tissues, monocytes (brown) and immune cells except neutrophils (pink). A smaller cluster can

be identified for ubiquitously expressed tRFs (orange). C)miRNAs DE after stroke are ubiquitously expressed in all virtual tissues.

Highest differential expression is seen in the »ubi« cluster. D) Likewise, tRFs DE after stroke are ubiquitously expressed in all virtual

tissues, and highest differential expression is seen in the »ubi« cluster. E)CAmiRNAs are enriched in the lower quadrants of the 2D

map, particularly in the clusters associatedwith ubiquitous expression (»ubi«, »ubi-checker«). F)CA tRFs show a similar distribution,

skewed towards virtual tissueswith ubiquitous expression. Thismay indicate covariation of detectionwith broadness of expression

(see text and Section 5.1.5).
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et al.118, yielding a CD14-specific network comprising 616 TFs with activity towards 13447 transcripts, in

318731 unique interactions. Second, this network was then subjected to successive miRNeo targeting of all

transcripts in the network bymiRNAs and tRFs.

For each node fulfilling an active role in this network (i.e., miRNAs, tRFs, and TFs), an activity parameter

was computed. The activity of each node is hereby defined as the sum of all scores of each of its targeting

relationships. In the case of miRNAs, the score is the summary score introduced in Section 2.2.4; for tRFs, it is

the score calculated with the BL-PCT method (see Section 2.2.6); and for TFs, it is the transcriptional activity

given by Marbach and colleagues.118 Activities were normalised, for each biotype separately, by scaling the

calculated values v onto a range between 0 and 1, using

vi,norm =
vi

max(v)

withmax(v) being the maximum of all scores in this biotype category, and all v > 0. The activity of each rela-
tionship determined the weight of the edge between the two connected nodes.

The network was visualised in gephi,171 omitting all non-TF genes, and using ForceAtlas2 to generate a

force-directed 2D map of smRNA→TF interactions in CD14+ monocytes. Network modularity was calcu-

lated using the function included in gephi,211 with a resolution of 2.0, to yield two distinct modularity classes

of predominant regulationbyeithermiRNAsor tRFs. TheassociationsofTFs to the tRF- andmiRNA-regulated

modules were used to perform subsequent analyses of the distinct modules.

4.4.2 GeneOntology Analyses of TF→GeneNetworks of CD14+Monocytes

TheTF→gene networks of each of the twomodules derived from smRNAspecies association (miRNAs versus

tRFs) were analysed using topGO169 essentially as described in Section 3.5.3. Genes were ordered according

to the cumulative activity of TF targeting of each gene in CD14+ monocytes. To display a range of top genes,

transcript background was iterated in five equal steps from 1000 transcripts to the maximum size of target

transcripts in each network (12927 for miRNA-targeted TFs, 12 904 for tRF-targeted TFs). The test set was

thetop10%of transcripts foreachbackgroundsize. GOtermswerecollectedandscreenedformultipleentries

among the sets. Themost prevalent termswere used to infer the functional roles ofmiRNA- and tRF-targeted

transcription factors. We determined the overlap of GO terms between both smRNA species as well as the

terms exclusive to either.

4.4.3 Dichotomy of Small RNA Targeting of

Transcription Factors in CD14+ Monocytes

Organisation of the smRNA→TF network via a force-directed algorithm resulted in visible cluster-

ing of two distinct subnetworks, that are governed by miRNAs and tRFs, respectively (Figure 4.8).

Inside this network, 10 TFs were found DE in patient blood after stroke (Figure 4.8 A). Calcula-

tion of modularity clearly divided the network into TFs primarily influenced by miRNAs and TFs

primarily influenced by tRFs (Figure 4.8 B). Based on these two sets of TFs, two distinct TF→gene
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networks were created: 289 miRNA-biased TFs with 152 649 unique TF→gene targeting relation-

ships, and 280 tRF-biased TFs with 163 641 unique TF→gene targeting relationships.

4.4.4 Gradual Shift in Control Over Transcription Factors

by miRNAs and tRFs

356 TFs were detected in the stroke patient blood sequencing experiment. It is notable that, al-

though the complete graph shows clear segregation between miRNA-targeted and tRF-targeted

transcripts, merely 106 of those TFs are targeted by only one of the two smRNA species (48 only by

miRNAs and 58 only by tRFs), and 55 are supposedly not at all targeted by any smRNA present in

CD14+ cells. The remaining 195 TFs are putative targets of both smRNA species (Figure 4.8 C).

At an alpha level of 0.1 for the differential expression between stroke patients and controls, 26 of

these TFs remain, also showing a gradual pattern of targeting by miRNAs and tRFs (Figure 4.8 D).

Six of these transcription factors are implicated in the control of cholinergic core or receptor genes

(marked with a »C«). It is notable that a number of TFs show no indication of being a target of

either smRNA species present in CD14+ cells under the premises of our targeting approach (Figure

4.8 E). Considering the multiple-targeting behaviour of smRNAs, and the general experience that

non-targeted genes are uncommon, this finding is interesting in itself, particularly since it involves

well-described regulators of immunological processes, such as STAT2 and ELF1.

The STAT family of transcription factors is an interesting example in this analysis. The cholin-

ergic/neurokine interface is facilitated by JAK/STAT signalling, in which neurokine receptors can

activate the pathway through STAT1, STAT3, and STAT5A/B phosphorylation.1 There are three

differentially expressed STATs in our data set: STAT1 is down-regulated (highest absolute count-

change of all TFs), targeted preferentially by tRFs (tRF fraction = 82.1%), and directly associated

with cholinergic genes in CD14+ monocytes (»C«); STAT5B is up-regulated (second highest count-

change of all TFs), preferentially targeted by miRNAs (tRF fraction = 37.5%), and not directly as-

sociated with cholinergic genes in CD14+ cells; and STAT2 is also down-regulated (third highest

absolute count-change of all TFs), does not directly associate with cholinergic genes, and addition-

ally is not predicted to be targeted by any smRNA present in CD14+ monocytes, although it is

expressed and induced by interferons in these cells.212

4.4.5 Dichotomous Transcriptomic Footprints of

Transcription Factors in CD14+ Monocytes

To determine the putative effect of TF regulation by each smRNA species, we evaluated the poten-

tial impact of the TFs most targeted by either miRNAs or tRFs (i.e., the two modules from Figure
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Figure4.8: SmallRNATargetingofTranscriptionFactors inCD14+Monocytes. The two-dimensionalmapof all TFsactive inCD14+

monocytes and their smRNA controllers was created viamiRNeo targeting and visualisation via force-directed algorithm. Node size

is determined by activity (see Section 4.4.1). A)Nodes coloured by biotype: miRNAs - green, tRFs - purple, TFs - yellow, differentially

expressed (DE) TFs - red. TFs targeted mainly by tRFs segregate visually from TFs targeted mainly by miRNAs. Both sets contain

DETFs, indicating complementary function. B)The networkwas divided into twomodules by network connectivitymeasures. Node

colour denotesmodularity class association. Networkmodularity largely reflects TF targetingof tRFs (orange) versusmiRNAs (blue).

C) Bar graph displays the fraction of smRNAs of each species targeting each of the TFs (on the y-axis, 301 TFs). A tRF fraction of 1

means all smRNAs targeting the TF are tRFs, 0 means all are miRNAs. Displayed on x axis is »tRF fraction - 0.5« to centre on 50:50

targeting by both species. 48 TFs are solely targeted bymiRNAs (leftmost) and 58 solely by tRFs (rightmost). D) Similarly, TFs differ-

entially expressed in the blood of stroke victims show a distribution on the miRNA-tRF gradient. Point size denotes count-change,

point colour denotes direction of change; a »C« denotes the TF as targeting cholinergic core and receptor genes. E)Notably, there is

also a set of TFs that are supposedly not targeted by any smRNA present in CD14+ cells.
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4.8 B). The top 10% of TF targets in CD14+ monocytes (derived from Marbach et al.118) were sub-

jected to iterative GO analysis (see Section 4.4.2). Assuming a general effect of repression in tRF-

targeted TFs (because the majority of DE tRFs are up-regulated), and a general de-repression in the

set of miRNA-targeted TFs (because most DE miRNAs are down-regulated), the putative func-

tional effects of changes in smRNA levels can be described by GO enrichment analysis of these two

test sets. Although this is a very rough categorisation, it may help in classifying the areas of influence

shared between the two smRNA species, or exclusive to either.

GO Term Overlap Between miRNA- and tRF-targeted

Transcription Factors

If we assume the functions associated with TF→gene interaction (the »footprint«) in each sub-

network under miRNA or tRF control as an indication of the sphere of (most) influence of this

smRNA species, the GO terms associated with both can give an indication of their overlapping func-

tions. Further assuming the simplified scenario of dominating de-repression in miRNA-controlled

transcripts, and dominating repression in tRF-controlled transcripts, this set of overlapping func-

tion is the set where a homeostasis is met by the cooperation of miRNAs and tRFs, or where, upon

perturbations such as stroke, a shift in the balance between the two smRNA species can alter the

physiological response to the stimulus.

We found 39 significant GO terms to overlap between multiple sets of miRNA- and tRF-targeted

transcription factors, almost exclusively comprised of immunity-related terms. Seven terms were

found with adjusted p-value < 0.001, namely: neutrophil chemotaxis (p = 1.3E-04), regulation

of myeloid leukocyte differentiation (2.6E-04), positive regulation of cold-induced thermogenesis

(2.8E-04), negative regulation of ERK1 and ERK2 cascade (3.0E-04), regulation of type 2 immune

response (4.9E-04), regulation of antigen receptor-mediated signalling pathway (5.0E-04), and nega-

tive regulation of IFN-γproduction (5.9E-04). Further terms included positive regulation of CD4+,

alpha-beta T cell activation (p = 0.0013), monocyte chemotaxis (0.0018), negative regulation of im-

mune response (0.0021), response to hypoxia (0.0041), positive regulation of cytokine secretion

(0.0049), and parasympathetic nervous system development (0.0051).

Functions Distinguishing Between miRNA- and tRF-targeted

Transcription Factors

After removal of the overlapping GO terms between miRNA- and tRF-targeted transcription fac-

tors, the remaining miRNA- and tRF-associated sets were examined to assess their differences. In

the following, only terms which had been found in at least two steps of the five-step iterative process
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are considered. Terms found in both sets that were not identical but very similar were also removed

from the analysis.

Transcription factors from the module targeted preferentially by miRNAs (Figure 4.8 B, blue)

are active towards genes that implicate the following biological processes; several terms showed ad-

justed p-values below 0.001: response to TNF (p = 1.2E-04), erythrocyte differentiation (2.6E-04),

cellular response to cytokine stimulus (3.5E-04), positive regulation of cytokine production (3.8E-

04), positive regulation of myeloid cell differentiation (3.9E-04), regulation of IL-12 production

(4.9E-04), positive regulation of leukocyte chemotaxis (6.5E-04), regulation of cellular response

to insulin (6.6E-04), negative regulation of T cell mediated immunity (8.1E-04). Other terms in-

clude: regulation of macrophage activation (0.0021), response to LPS (0.0045), negative regulation

of haematopoiesis (0.006), regulation of production of interleukins 1, 6, 12, 13, and 17 (all p <

0.005). These processes may, simply, be seen as amplified, since the general down-regulation of

miRNAs would lead to a de-repression of their targets. However, in many cases of »regulation«,

no direction is implied.

The processes regulated exclusively by miRNA-regulated TFs in this scenario thus are mainly

related to pro-inflammatory events, more specifically, innate immune response, mediated by inter-

ferons and pro-inflammatory interleukins. An amplification of pro-inflammatory innate responses

is contrasted by a reduction in haematopoiesis and T cell-mediated reactions.

Transcription factors from the module targeted preferentially by tRFs (Figure 4.8 B, orange) are

active towards genes that implicate the following processes; several terms showed adjusted p-values

below 0.001: negative regulation of apoptotic process (1.3E-04), negative regulation of coagula-

tion (1.9E-04), positive regulation of haematopoiesis (1.9E-04), regulation of IFN-γ production

(2.5E-04), positive regulation of angiogenesis (2.7E-04), IL-4 production (4.1E-04), nuclear pore

organisation (4.5E-04), monocyte differentiation (5.0E-04), leukocyte migration (5.2E-04), and T

cell cytokine production (6.4E-04). Other terms include: negative regulation of NIK/NF-κB sig-

nalling (0.0016), macrophage differentiation (0.0030), lymphocyte activation involved in immune

response (0.0032), negative regulation of leukocyte mediated immunity (0.0043), negative regula-

tion of neuron death (0.0052), monocyte differentiation (0.0062), negative regulation of insulin re-

ceptor signalling pathway (0.013), natural killer cell activation (0.017), positive regulation of STAT

cascade (0.019), sensory perception of pain (0.026), CD8+, alpha-beta T cell activation (0.043), pro-

duction of interleukins 2, 4, 6 (all p < 0.005). These processes, as opposed to the miRNA-associated

processes, may be seen as attenuated, since a strong trend towards up-regulation is seen in tRFs; this

again holds true only for terms where a direction is implicit or explicitly described.

The processes regulated exclusively by tRF-targeted TFs refer to apoptosis, coagulation, angio-

genesis, myeloid leukocyte regulation, and interleukin/STAT signalling. Processes amplified via the
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putative de-repression include apoptosis, coagulation, NIK/NF-κB signalling, leukocyte activity

and differentiation, and insulin-mediated signalling. Negatively impacted processes include haema-

topoiesis, angiogenesis, STAT signalling, and IL-2 production.

Immediately comparing miRNA- and tRF-associated processes, there are multiple functional

overlaps even in the set curated to show only exclusive terms for either smRNA species. Specifically,

the perturbations in both species seem to up-regulate innate immune response, particularly via INFs,

TNF, interleukins, and myeloid leukocytes. Additionally, the perturbations in both species seem to

have an additive suppressive effect on haematopoiesis and T cell activation.

4.5. Feedforward Loops of Small and Large RNA

To delve deeper into the transcriptional cooperation between small RNAs, transcription factors,

and the genes they target, feedforward loops including all three actors can be of analytical use. Briefly,

a feedforward loop (FFL) describes a constellation of three entities (X,Y, andZ), in which one entity

(X ) has control over an intermediate (Y ), and both control the outcome of the ultimate (Z).213

Since data on TF control over smRNAs is scarce, only cases of X = smRNA, Y = TF, Z = gene can

be realistically evaluated. FFLs can be further distinguished: a coherent FFL describes the case of

regulation byX andY towardsZ in a similar direction (i.e., amplification, Figure 4.9 A), while in an

incoherent FFL, X and Y influence Z in opposite directions (attenuation, Figure 4.9 B). While the

latter is unintuitive at first sight, it can serve a multitude of meaningful functions in a cellular context,

such as noise reduction, reduction of cross-contamination, or increase of temporal resolution.214
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Figure 4.9: Small RNA Feedforward Loop Theory. The figure represents the two cases of smRNA FFLs most accessible to current

analysis methods, i.e., the cases of smRNA (X) targeting of TF (Y) and ultimate gene (Z). A) Basic coherent smRNA FFL. The smRNA

(X) inhibits both the TF as well as the ultimate gene target. Since the TF (Y) is an activator of target gene (Z) expression, smRNA

regulation has the same direct and indirect effect on ultimate gene expression. B)Basic incoherent smRNAFFL. The smRNA (X) has

a direct suppressive effect on the target gene (Z), but the simultaneous suppression of the TF (Y), which in turn represses the target

gene (Z), leads to elevation of target gene expression, ameliorating or even inverting the direct effect.

In the following, the principle of feedforward loops will be applied to transcriptomic and on-

tological analyses of gene expression in blood-borne cells after stroke. Pathways of co-regulated
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transcripts and their TFs will be identified by modularisation of a comprehensive FFL network in

CD14+ monocytes. The additional information leveraged from FFL-implied pathways will be or-

dered and interpreted based on previous studies on the identified pivotal actors.

4.5.1 Feedforward Loop Creation

Starting from the set of differentially expressed TFs (p < 0.05) active in CD14+ monocytes (as seen in Figure

4.8), single feedforward loops (FFLs) of smRNAs (miRNA or tRF), TFs, and genes were detected usingmiRNeo

(as described inQuery 2.5, Section 2.3). FFLswere createdCD14+monocyte-specific by using only TF activity

from these cells and by removal of any smRNAs not detected in CD14+ cells in the Juzenas et al.208 data set.

Additionally, because of the high amount of TF→gene relationships in CD14+ cells, TF relationships were

filtered for the 10%with highest activity.

4.5.2 Visualisation andModularisation

The network of all smRNAs, TFs, and genes included in these FFLs was visualised in gephi171 as a two-dimen-

sional force-directedmap, using theForceAtlas2algorithm. At initial networkcreation, tRFswere represented

by the seeds included in their sequences, which were later associated with the mature tRFs. Using a commu-

nity detection algorithm,211 the networkwas sub-classified into fivemodule classes (using edgeweights and a

resolution of 1.5, Modularity coefficient = 0.482).

4.5.3 Module-specific Functions via GOAnalysis

The module classification was reimported into R, and using R/topGO,169 the functions of individual submod-

ules were assessed by testing the significantly differentially expressed genes (adjusted p < 0.05) from each

module against a background of 2000 randomly selected genes. Significant terms were manually screened,

and differentially expressed genes were extracted from the test data for relevant terms.

4.5.4 Feedforward Loop Network of CD14+ Monocytes

The complete FFL network of TFs DE in stroke patient blood (p < 0.05) was created usingmiRNeo

and visualised in gephi. In total, 195 043 unique FFLs were discovered, 193 803 containing miRNAs,

and only 1240 containing tRFs. After filtering of the top 10% of TF→gene relationships by activity,

19 309 miRNA- and 169 tRF-FFLs remained. These FFLs constitute a network of 2628 nodes and

22 456 edges (Figure 4.10). Community detection211 resulted in a sub-classification of nodes into

five distinct modules, which were subsequently analysed for their functions using GO.

The reasoning behind this approach is to explain in more detail the findings of GO enrichment

analysis of the differentially expressed large transcripts (compare Section 4.2.2), and to more closely

define the pathways implicated in the context of smRNA regulatory modules. In applying feedfor-

ward loops, there may be an increase in identification of biologically relevant pathways, as opposed
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to network creation by TF→gene and smRNA→gene relationships alone. Notably, there was no

cross-talk of modules across significant GO terms; if a term was found significant in GO enrich-

ment analysis of a module, all genes associated with the term were located in the same module. The

following paragraphs will attempt to interpret the terms associated with each module to shed some

light on the distribution of their functions and possible inter-module cooperations.
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Figure 4.10: Complete Feedforward Loop Network of Differentially Expressed Transcription Factors in CD14+ Monocytes. Feed-

forward loops (FFLs) were created bymiRNeo query of transcriptional interaction of transcription factors (TFs), miRNAs, and tRFs

towards all genes, but limited to FFLs ofwhich the regulatory elements (TFs and smRNAs)were present and active in CD14+mono-

cytes, and additionally filtered for the top 10% TF→gene relationships by activity. The resulting network was assembled in a force-

directed 2D-projection and analysed to yield modularity information. The algorithm identified 5 distinct modules of small and large

RNA FFLs, indicated by colours and numbers in circles. TFs differentially expressed in stroke patient blood are marked with a name

tag (node size denotes differential expression count-change of TFs).

Particular attention was paid to GO terms indicating a direction (e.g., »positive regulation«),

which in combination with the direction of differential expression of the implicated genes may give

an indication of the tangible effect of module gene regulation after stroke. When writing of »mod-
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ule genes«, differential expression (adjusted p-value < 0.05) of these genes in stroke patient blood is

always implied.

Module One

GO enrichment analysis of significantly DE genes from module one resulted in 16 GO terms from

35 DE genes. The most significant biological process governed by module one is »negative regula-

tion of transcription« with eight significant genes (SGs) and an adjusted p-value of 1.6E-04. The

second- and third-most significant terms indicate an influence on apoptotic processes (p = 0.0021

and 0.0049) with three SGs, which are a subset of genes from the first term, SP100, SKIL, and

ATF3. Further, module one genes are implicated in positive regulation of GTPase activity (5 SGs, p

= 0.0069), epithelial cell differentiation (5 SGs, p = 0.0088), cellular response to IFN-γ (2 SGs, p =

0.024), platelet degranulation (2 SGs, p = 0.033), and cellular response to IL-1 (2 SGs, p = 0.049).

Apart from SP100 (major constituent of PML-SP100 bodies, see module three), SKIL (part of

SMAD pathway, regulating cell growth and differentiation), and ATF3 (member of the broadly act-

ing CREB family of transcription factors), frequently implicated genes include CCL2 (chemokine

ligand for CCR2, exhibits chemotactic activity for monocytes215) and CAMK1 (broadly acting cal-

modulin-dependent protein kinase, involved e.g. in the ERK cascade). All above SGs are down-

regulated in stroke patient blood (own results).

SP100 is induced by IFNs, presents with potent antiviral and tumour suppressor effects, and

has been shown to induce apoptosis via the extrinsic pathway together with FLASH or caspase-

2 and p53 in PML nuclear bodies (see module three).216 A reduction of SP100 expression would

thus likely lead to inhibition of apoptotic events. Histone deacetylase (HDAC) inhibition (compare

module five) suppresses the IFN-mediated SP100 up-regulation. 217 Recently, SP100, STAT1 (com-

pare module three), andKLF4 (compare module two) were found to be co-elevated in the peripheral

monocytes of tobacco-smoking (but not in non-smoking) HIV-positive patients and associated with

an increased depressive index.218

SKIL, also known as SnoN, is known as a pro-apoptotic mediator that can bind and activate p53,

and is targeted by mir-30 family members, which can ameliorate its apoptotic effect.219 Conversely,

Smad3, a pro-apoptotic protein, is repressed in synergy by STAT3 and the SKIL paralog c-Ski. 220 A

recent study has identified SKIL at the heart of a feedforward loop including EGR1 and hsa-miR-

124-3p in the blood of schizophrenia patients, which showed a down-regulation ofEGR1 and SKIL,

and concomitant up-regulation of miR-124-3p.221 However, in post-stroke whole blood,EGR1 and

miR-124-3p are unchanged (own results).
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ATF3 also shows a pro-apoptotic effect, it can be activated by stress mediator p38 MAPK; 222

reduction of ATF3 in a cell model via siRNA interference reduced apoptosis. 223 ATF3 is a key reg-

ulator of macrophage IFN responses, it represses pro-inflammatory pathways (e.g. IL-6, TLR), and

is also induced by IFNs. Correspondingly, ATF3-deficient mice are more susceptible to endotoxin-

mediated shock by cytokine overproduction. ATF3 and CXCL10 (compare module two) are co-

induced by IFNs. 224 ATF3 sustains STAT3 phosphorylation through inhibition of phosphatases,

and thus amplifies IL6-gp130-STAT3 signalling. 225 ATF3 down-regulates ACHE expression dur-

ing stress by binding to the consensus recognition site of cyclic-AMP responsive element binding

(CREB) proteins, »TGACGTCA«. In this case, a non-enzymatic, pro-apoptotic function ofACHE

is stipulated.226 Similarly, ATF3 attenuates hypoxia-induced apoptosis by down-regulating the ex-

pression of the pro-apoptotic factor carboxyl-terminal modulator protein (CTMP), via binding to

the ATF/CREB site in the CTMP-promoter.227

Module one genes, which decrease translational activity, are in the majority down-regulated, which

may indicate a positive influence on transcriptional mechanisms, in line with the facilitation of a

response to the insult. Given the uncertainty of whether the transcription factors of module one

act as activators or repressors (FANTOM5 data only supplies binding probability, not mode of ac-

tion), the real picture likely is more complicated, with mixed outcomes in expression regulation.

A major component of module one processes is apoptotic signalling, which the top three (down-

regulated) genes, SP100, SKIL, and ATF3, are all involved in. All three genes are oncogenes, and as

such involved in cell cycle control. While module one genes present a complex regulatory picture,

the function of the three most-involved genes may be summarised as pro-apoptotic; their consistent

down-regulation in patient blood after stroke thus implies an inhibition of apoptotic processes in-

side module one. Additionally, SP100 and ATF3 present with clear ties to cholinergic processes,

in their involvement with neurokines and STATs, association with nicotine consumption, and the

attenuation of ACHE expression.

Module Two

Module two, being the largest module, predictably also offers most process-related terms (50 GO

terms, 34 SGs), of which most are related to immunity or basic processes of cell physiology. For the

sake of clarity, immunity-related terms will be explored first. Module two genes most significantly

participate in regulation of response to cytokine stimulus (4 SGs, p = 2.9E-04), response to LPS (5

SGs, p = 5.6E-04), inflammatory response (6 SGs, p = 0.0015), and T- and B-cell differentiation (2

SGs each, p = 0.036 and 0.041). The highest DE genes from module two involved in these processes

are SORL1 (a known regulator of neurokine signalling), STAT5B, the IL-10 receptor α, PLXNB2
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(involved in cell migration), JAK2, the transcription factor KLF4 (with many broad functions, but

implicated in MAPK/ERK cascades and IL-4 mediated macrophage differentiation228), PTPN2

(phosphatase involved in dephosphorylating JAKs and STATs), and CXCL10 (pro-inflammatory

chemokine ligand implicated in response to brain injury by activating microglia).

Non-immune physiological terms refer to regulation of cell migration (8 SGs, p = 1.4E-04), neg-

ative regulation of MAPK cascade (4 SGs, p = 4.7E-04), cellular response to peptide (5 SGs, p =

9.5E-04), nucleus organisation (3 SGs, p = 0.0010), erythrocyte differentiation (3 SGs, p = 0.0010),

negative regulation of cell adhesion (4 SGs, p = 0.0015), regulation of ERK cascade (3 SGs, p =

0.0085), regulation of angiogenesis (3 SGs, p = 0.013), regulation of cold-induced thermogenesis

(2 SGs, p = 0.031) and several more basic processes. Many of these processes appear to be vital to

the immune functions described above, as they share many of the most highly DE genes, such as

SORL1, STAT5B, PLXNB4, KLF4, and PTPN2.

Module two includes several genes directly involved in the JAK/STAT immune response, such

as IL10RA, JAK2, STAT5B, and PTPN2; module two genes are mostly down-regulated except for

SORL1 (which shows dramatic increase in terms of count-change) and STAT5B (own results).

SORL1 gives rise to the protein SorLA, synonymous with LR11, a transmembrane receptor that

can interact with a wide variety of ligands intra- as well as extra-cellularly.229 SorLA is primarily

known as the neuronal ApoE4 receptor, and thus widely associated with AD risk. Among other

functions, it regulates APP trafficking and processing, and is significantly decreased in the AD-

vulnerable regions of late-onset AD patients.229 However, in addition to its well-studied neuronal

roles, it is highly expressed on the surface of monocytes and macrophages, and additionally up-

regulated in acute myeloid leukaemia. 230 SORL1 binds many immune-related ligands such as the

neurokine IL-6 and soluble neurokine receptors IL6R and CNTFR, mediating their cellular uptake.

It associates with the transmembrane IL-6 receptor and reduces downstream effects via a reduction

in STAT3 phosphorylation.231 Conversely, while decreasing cis signalling as just described, SORL1

may increase trans signalling, i.e., IL6 availability in the blood stream which then binds to the sol-

uble IL6 receptor and can affect any cell possessing the ubiquitously distributed gp130.232 It has

been shown that overexpression of a soluble gp130 form can effectively suppress inflammation me-

diated by the soluble IL6 receptor without interfering with the function of the transmembrane IL6

receptor.232

PLXNB2 can promote inflammation via activation of the NF-κB pathway.233 In addition, it

prominently mediates a plethora of the functions of angiogenin (ANG): it is the receptor for ANG

in physiological and pathological cells; ANG acts though PLXNB2 on cell proliferation; PLXNB2

modifies ANG RNA-processing activity and cell type specificity (see Section 1.3.3); and PLXNB2

mediates neuroprotective effects of ANG. 234 Moreover, PLXNB2-deficient macrophages showed
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greater mobility and would healing capabilities than WT cells.235 A recent study shows its close asso-

ciation to inflammation-related circulatory events: upon inflammatory stimulation (using TNF-α,

IL-1β, IL-4, and IL-6) of murine and human cells, endothelium-derived extracellular vesicles carry-

ing miRNAs were released and taken up by monocytes causing decreased monocytic PLXNB2 lev-

els and increased splenic monocyte mobilisation. 236 Twelve miRNAs were enriched in these vesicles,

most of which show high differential expression in stroke patient blood (own results in brackets);

these are: miR-632 (not detected in stroke), miR-126-3p (LFC = -1.12, p = 3.0E-11), miR-151a-3p

(LFC = -2.37, p = 5.6E-22), miR-26b-5p (LFC = -1.17, p = 5.0E-05), miR-126-5p (LFC = -2.23, p

= 5.2E-07), let-7a-5p (LFC = -0.54, p = 0.03), miR-1972 (not detected), miR-15b-5p (LFC = -0.85,

p = 5.2E-07), miR-23a-3p (LFC = -1.68, p = 9.9E-16), miR-374b-5p (LFC = -1.85, p = 1.3E-05),

miR-23b-3p (LFC = -1.73, p = 1.2E-17), and let-7b-5p (LFC = 0.73, p = 4.1E-06).

KLF4has gained much attention since it was discovered to be one of the four factors for induction

of pluripotent stem cells (iPSCs, induced by OCT3/4, SOX2, MYC, and KLF4). 237 In macrophages

(often using the model RAW264.7), KLF4 controls activation in response to LPS stimulation by

regulating, among others, NF-κB, TGF-β, IL-1β, and HMGB1, at least partly through Smad3

inhibition (compare module one). 238–240 In monocytes, KLF4 regulates differentiation towards a

pro-inflammatory type of resident monocytes, such that KLF4 KO mice completely lacked inflam-

matory monocytes in blood and spleen.241–243

The protein tyrosine phosphatase PTPN2 is implied in IL-1β-mediated inflammation. Mice de-

ficient of PTPN2 die few weeks after birth because of anaemia, colitis, and severe systemic inflam-

mation. Macrophages depleted of PTPN2 show excessive inflammasome activation. PTPN2 re-

duction leads to more general inflammation, but also less tumour susceptibility, likely because of a

more efficient eradication of oncogenic cells.244 Increased inflammatory cascades following PTPN2

reduction are likely caused by the decrease in STAT1 and STAT3 dephosphorylation, and the con-

comitant increase in STAT signalling (compare module five, HDAC7 ). 245

In summary, module two genes seem to be responsible for facilitating an adequate immune re-

sponse by regulating basic processes in order to enable immune cells to fulfil their functions (e.g., re-

sponse to cytokines and cellular mobility). SORL1 up-regulation suppresses STAT3 activation, but

putatively increases IL-6 availability in the blood stream, thereby pushing a whole-body immune

activation. PLXNB2 reproducibly is reduced in response to inflammatory signalling, which leads

to higher-functioning monocytic cells. PTPN2 reduction likewise is associated with a higher-func-

tioning immune system and increased inflammatory cascades via an inhibition of STAT inactivation.

KLF4 reduction may indicate a pro-differentiation signal, generating mature immune cells to inter-

fere with the infarction. In addition, PLXNB2 interferes with angiogenin (ANG) function, and

thus may directly impact tRF generation.
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Module Three

Module three, with 14 GO terms and 13 SGs, appears similar in principle to module two, although

much fewer basic physiological terms are involved. This is explained by the smaller size of the test

set; the ontologies for basic terms include substantially more genes, and the likelihood of significant

enrichment in the test set is reciprocal to test set size. The most significant biological processes of

module two genes involve cellular response to IFN-γ (3 SGs, p = 1.6E-04) and positive regulation

of transcription (5 SGs, p = 9.1E-04), as opposed to negative regulation of transcription found in

module one. Further, module three genes are involved in the cytokine-mediated signalling path-

way (4 SGs, p = 0.0018), regulation of IFN production (2 SGs, p = 0.0034), JAK-STAT cascade

(2 SGs, p = 0.0048), negative regulation of angiogenesis (2 SGs, p = 0.0056), regulation of innate

immune response (2 SGs, p = 0.035), and positive regulation of cytokine production (2 SGs, p =

0.048). Most frequently occurring genes are STAT1, PLSCR1 (implicated in amplification of IFN

response), PML (also associated with IFN- and TNF-responses), and IRF5 (implicated in TLR7/8-

induced induction of IFNs and other pro-inflammatory cytokines). All SGs of module three are

down-regulated in stroke patient blood (own results).

Phospholipid scramblase 1 (PLSCR1) is an oncogene implicated in cell cycle control, apoptosis,

and mediation of antiviral response. While its mechanism of action is yet unexplained, the mature

protein localises to the nucleus and has been shown to bind DNA. 246 While it does not induce

apoptosis on its own, its overexpression has inhibitory effects on several cell cycle controllers and

anti-apoptotic proteins such as Bcl-2. 247 PLSCR1 participates in the antiviral response by potentiat-

ing IFN activity, which increases expression of a subset of IFN-stimulated genes (ISGs), including

STAT1.248 It is expressed in human macrophages and monocytes, in which it is increased in systemic

inflammatory conditions, and seems to also contribute to pro-thrombotic conditions.249,250

Promyelocytic leukaemia protein (PML) is, together with SP100 (see module one), the major

constituent of PML nuclear bodies, that are also known as nuclear domain 10 (ND10). These

small nuclear organelles are known for their peculiar and enigmatic function in antiviral response,

which they seem to convey by a wide variety of molecular functions, from chromatin modification

to physical trapping of virus particles.251 Recently, however, they have also been connected to a di-

rect regulation of innate immune responses. IFN therapy increases the expression of both PML

and SP100, and enhances their antiviral activity.252 Correspondingly, PML depletion reduces the

capacity of IFNs to interfere with viral infection.253 PML has the capacity to modulate different

stages of the pathway from IFNs through ISGs to the activation of STATs by associating with and

stabilising transcription factor complexes, for instance by binding directly to STAT1 and interferon

regulatory factors (IRFs) (see below).254 The production of IL-1β and IL-6 is significantly reduced
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in PML-deficient cells;255 and correspondingly, PML-deficient mice are resistant to LPS-mediated

lethality.256 This directly links to an epigenetic switch that leads to cellular transformation: inflam-

mation, through NF-κB, activates Lin28 and rapidly reduces let-7 miRNA levels. This leads to

de-repression of the IL-6 mRNA, and the increased IL-6 peptide conveys cellular transformation

through STAT3 activation, as well as positive feedback by inducing NF-κB synthesis.257

IRF5, a well-studied member of the Interferon Regulatory Factor transcription factor family, is

an important element of most blood-borne immune cell types, particularly of macrophages and

pro-inflammatory monocytes.258 It has been demonstrated that IRF5 is involved in transcriptional

induction of IL-6, IL-12, and TNF-α mediated by the toll-like receptor (TLR)/myeloid differen-

tiation primary response 88 (MyD88) complex. IRF5-deficient mice also show resistance to LPS-

mediated lethality (compare PML/SP100). 259 While KO-mice showed severely impaired produc-

tion of the aforementioned cytokines, IFN-αproduction was not impaired; the responsible interferon-

stimulated response elements have yet to be determined.259 IRF5 is highly expressed in monocytes

and macrophages as well as B cells and dendritic cells, and its expression is induced by a pro-inflamma-

tory environment.260 On the spectrum of macrophage states after differentiation, IRF5 (together

with IRF1 and IRF8) is involved in the commitment to a pro-inflammatory (M1) phenotype (as

opposed to the »wound healing« M2 type). 261 The M1 phenotype is brought about by increased

activity of NF-κB and STAT1, whereas the M2 counterpart is induced by IL-4-, IL-10-, and IL-13-

mediated STAT3 and STAT6 signalling. 262 Molecular competition for MyD88 binding between

IRF5 and IRF4 is crucial for the determination of pro- (IRF5) or anti-inflammatory (IRF4) differ-

entiation.263 Thus, a down-regulation of IRF5 together with unchanged levels of IRF4, as is the

case in stroke patient blood (own results 2), would lead to anti-inflammatory conditions in mono-

cyte and macrophage populations. M1→M2 macrophage transition supports resolution of inflam-

mation and tissue healing; reduction of IRF5 expression in monocytes and macrophages via siRNA

interference improved healing after myocardial infarctions and skin wounds in mice, in parallel with

a reduction of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α.264

Module three genes (implicated in positive regulation of transcription, but all down-regulated)

appear to act in partial opposition to module one genes (implicated in negative regulation of tran-

scription, and all down-regulated), thus possibly being part of homeostatic events surrounding gene

transcription in response to inflammatory events. Modules one and three also share GO terms in-

volved in responses to, and production of, interferons and interleukins.

In summary, module three seems to be representative of immune suppression via several mecha-

nisms; mediation of pro-inflammatory signalling via INFs is repressed, and IRF5 suppression may

induce an anti-inflammatory, pro-resolving differentiation of monocytes and macrophages; cyto-
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kines and STAT signalling are likewise down-regulated; ND10 nuclear bodies are repressed. On the

other hand, pro-apoptotic signalling may be de-repressed via PLSCR1 reduction.

Module Four

Module four, with 12 significant GO terms from 7 SGs, is a fairly small module, which is neverthe-

less highly associated with immune processes; most significantly, genes of module four convey pos-

itive regulation of innate immune response (2 SGs, p = 0.0039) and positive regulation of cytokine

production (2 SGs, p = 0.0075); more accurately, IL-1 production (1 SG, p = 0.038). Further, mod-

ule four genes show association with negative regulation of myeloid cell differentiation (1 SG, p =

0.038), positive regulation of response to cytokine (1 SG, p = 0.038), myeloid cell homeostasis (1 SG,

p = 0.042), positive regulation of inflammatory response (1 SG, p = 0.045), and negative regulation

of myeloid leukocyte differentiation (1 SG, p = 0.049). The most prevalent SGs in these terms are

GBP5 (activator of the NLRP3 inflammasome assembly), MAFB (transcription factor required for

monocyte differentiation), and ZBP1 (cytoplasmic DNA-sensor which activates downstream IFN

production in activated macrophages). All above SGs are down-regulated in stroke patient blood

(own results).

GBP5 (for Guanine Nucleotide Binding Protein) is a molecular marker for the classically ac-

tivated, pro-inflammatory M1 type macrophage,265 and a critical factor for the assembly of the

NLRP3 inflammasome.266 GBP5 is strongly induced by IFNs through NF-κB, and in turn induces

expression of IFNs and pro-inflammatory cytokines such as IL-6 and TNF-α.267 Consequently, it

plays a critical role in response to viral infection, e.g. by Influenza or HIV, as well as diverse other

pathogens.267,268 In mice, miR-21-5p inhibition led to an increase in macrophage GBP5, with a con-

comitant increase in TNF-α and a decrease in the anti-inflammatory IL-10. 269 However, in stroke

patient blood, both miR-21-5p and GBP are down-regulated (own results).

MAFB is a transcription factor with critical roles in macrophage differentiation and function,

and specific for mononuclear phagocytes in all cells of the haematopoietic system.270 Macrophages

deficient in MAFB and MAF reacquire the ability for self-renewal, but only upon concomitant

up-regulation of two pluripotent stem cell-inducing factors, KLF4 and MYC (compare module

two).271 However, in stroke patient blood (own results),KLF4 is reduced whileMAF andMYC are

unchanged. After induction of ischemic stroke, macrophage-specificMAFB-deficient mice showed

excessive sterile inflammation, likely due to a failure in clearing of damage-associated molecular pat-

terns (DAMPs).272 The authors foundMAFB to be a critical controller of the macrophage scavenger

receptor 1 (MSR1), which in turn is essential for the clearance of DAMPs after ischemic stroke, and

is also down-regulated in stroke patient blood (own results, LFC = -3.54, p = 2.9E-06). Additionally,
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retinoic acid receptor agonist Am80 increased MAFB and MSR1 expression in the delayed phase

of ischemic stroke, and had ameliorating effects on stroke pathology.272 miRNeo query of retinoic

acid receptor interactions in CD14+ cells indicates RARA, the α retinoic receptor, as most active

towards MAFB (lower activity also exhibited by RARG and RXRA). RARA also targets STATs 1,

5A, and 5B, as well as ACHE and IL6ST (also known as gp130) in these cells.

An ex vivo experiment of MAFB inhibition by siRNA in human CD14+ monocytes found an

elevation in IRF3 phosphorylation and concomitant increase in INF-α and INF-β production.273

MAFB also seems responsible for direct regulation of all genes of the C1q complement complex,

which activates the classical component pathway.274 Thereby, and by regulation of the Axl protein,

MAFB is essential for efferocytosis, the phagocytosis of apoptotic cells in vivo. 275 MAFB is regulated

by diverse pathways; immunological mediators (e.g. cytokines), lipid metabolism, and miRNAs. 270

Two miRNAs experimentally identified as regulating MAFB, miR-152 276 and miR-155 277, are sig-

nificantly down-regulated in stroke patient blood (own results; hsa-miR-152-3p: LFC = -1.97, p

= 2.0E-11; hsa-miR-155-5p: LFC = -0.69, p = 6.5E-04). miR-155 has additionally been shown to

induce pro-inflammatory macrophages, while MAFB itself promotes anti-inflammatory M2-type

macrophage differentiation.115 In CD14+ monocytes, MAFB interacts with CHRNA6, IL6, the

IL6 receptor, and STAT1 (via miRNeo, from Marbach et al.118 regulatory circuits). In summary,

MAFB reduction after stroke may contribute to a shift towards pro-inflammatory M1-type macro-

phages, prolonged activity of which may inhibit efferocytosis and the M2-mediated healing process

in the delayed phase.

Z-DNA binding protein 1 (ZBP1, also known as DAI) is an IFN-induced cytoplasmic sensor of

DAMPs that positively mediates various forms of programmed cell death, general pro-inflammatory

events (such as cytokine production), and NLRP3 inflammasome assembly; however, its triggering

ligands or molecular patterns are still unclear. 278 More recently, it was shown thatZBP1 is necessary

for type-I and type-II IFN-mediated necroptosis (a programmed form of necrosis),279 by sensing

viral as well as endogenous RNA (in addition to DNA), possibly in the unusual Z-conformation.280

Murine macrophages lacking the MyD88 TLR adapter protein were able to undergo apopto-

sis via redundant TLR pathways mediated by ZBP1. In contrast, KO of the type-I INF recep-

tor, as well as of its downstream effectors STAT1 and IRF9, abolished the macrophages’ ability to

undergo TLR-mediated MyD88-independent apoptosis.281 Moreover, de-novo transcription and

protein synthesis (compare »regulation of transcription« in modules one and three), as well as

JAK1/STAT1 transcriptional activation are required for IFN-induced necroptosis through ZBP1

signalling. 279 ZBP1-deficient mice (via CRISPR/Cas-9 KO) were significantly protected from acute

IFN-mediated systemic inflammatory response syndrome (SIRS),279 making the ZBP1 down-regula-

tion in stroke patient blood (own results, LFC = -1.70, p = 0.001) a logical bodily response to prevent
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CNS injury-induced immunodepression syndrome (CIDS), and a possible component of the counter-

regulatory compensatory anti-inflammatory response syndrome (CARS, see Section 1.2.5). Notably,

NF-κB signalling blocks type-II IFN-induced necroptosis (compare modules two and three).282

In summary, module four constitutes a small, largely anti-inflammatory module, conveying an

attenuation of inflammatory processes by limiting the sensing of inflammatory stimuli (ZBP1), ac-

tivation of inflammatory pathways, inflammasome assembly and cytokine production (GBP5), and

clearance of DAMPs in the infarct area (MAFB). However, GO terms also indicate a positive influ-

ence on differentiation of monocytes. For instance, the decrease in MAFB expression may promote

a delayed phenotypic shift towards M1-type macrophages, which may have a deleterious effect on

patient recovery.

Module Five

Module five is a medium-sized module (29 GO terms from 18 SGs) and highly involved with stroke-

relevant processes, most importantly, vascular permeability. Most terms relate to basic molecular

functions of the cell, such as regulation of cell-substrate adhesion (3 SGs, p = 0.0037), cellular com-

ponent maintenance (2 SGs, p = 0.0052), membrane depolarisation (2 SGs, p = 0.0052), regula-

tion of protein tyrosine kinase activation (2 SGs, p = 0.0063), positive regulation of small molecule

metabolism (2 SGs, p = 0.0063), fatty acid metabolic process (3 SGs, p = 0.0064), positive regula-

tion of lipid metabolic process (2 SGs, p = 0.010), regulation of cytokine production (3 SGs, p =

0.022), response to hypoxia (2 SGs, p = 0.027), and several more. The genes most highly implicated

in these processes are SRC, ABCD1, and HDAC7. Module five SG expression is mixed in stroke

patient blood; of the most prevalent genes, SRC and ABCD1 are down-regulated, and HDAC7 is

up-regulated.

Src, from the SRC gene, is a well-studied kinase from the larger family of Src kinases implicated

in diverse physiological processes. Increased vascular permeability (VP), i.e., a loss of blood-brain-

barrier function, can be induced by TNF-α, IL-1β, IL-6, and vascular endothelial growth factor

(VEGF). Of relevance, Src controls VEGF expression after ischemic stroke, thereby modulating VP.

Reduction of Src (but not Src family kinase Fyn) activity in mice via complete congenital KO or phar-

macologic inhibition (using the synthetic inhibitor PP1) resulted in a reduction of permanent mid-

dle cerebral artery occlusion (MCAO)-induced stroke volume of 50% and up to 70%, respectively.

This beneficial effect was associated with a prevention of VP.283 In these experiments, Src inhibition

seemed to restore perfusion and oxygenation in the penumbra (the region adjacent to the infarct),

protecting the surrounding tissue. Later, these VEGF-modulating effects of Src on VP and stroke

recovery were replicated in rats with transient infarction.284 In another set of experiments, it was
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shown that the neuroprotective effect of ischemic postconditioning in mice probably depends on

Src kinase activation.285 In a human cellular model, Src was up-regulated upon inflammatory TNF-

α signalling and conveyed increases in VP in a p38 MAPK-dependent manner (compare module

one, ATF3). 286 Src family kinases can physically bind to gp130, phosphorylate STAT3,287 and are

intricately involved with TLR-CD14 signalling, in an »important but not obligatory« manner.288

ABCD1 is a member of the ATP binding cassette (ABC) superfamily of active transporters, re-

sponsible for the transport of very long chain fatty acids, and implicated in inflammatory processes

by its influence on peroxisomalβ-oxidation.289 It is best known for its role in adrenoleukodystrophy

(ALD), where anABCD1deficiency leads to microvascular perfusion anomalies in the brain. 290 The

working hypothesis states that ABCD1-related up-regulation of adhesion molecules in the endothe-

lium causes higher leukocyte interaction and thus impairs blood flow in the capillaries. Notably, car-

riers of the ApoE4 allele are more significantly affected by ALD (compare module two, SORL1).291

Most molecular changes caused by the deficiency are likely a result of impaired fatty acid transport

into peroxisomes. Abcd1-deficient mice show a dramatically altered brain region-specific phospho-

lipid profile. 289

HDAC7 (histone deacetylase 7) is a protein responsible for deacetylating histones and non-histone

proteins, with regulatory implications in cell proliferation, apoptosis, differentiation, and migra-

tion.292 Hdac7−/− mice are embryonic lethal because of an angiogenetic failure leading to rup-

ture of blood vessels.293 It has been shown that the HDAC7 protein directly interacts with STAT3,

deacetylation of which interferes with its ability to dimerise, thus impairing its functionality.292,294

HDAC7 was also found to induce an apoptotic gene program and c-Myc suppression upon ectopic

expression in human SD-1 cells.295 HDAC7 additionally suppresses macrophage genes relevant for

phagocytosis, TLRs, interleukins and TNF pathway genes by acting as a transcriptional repressor of

myocyte enhancer factor MEF2C.296 In human C10 cells reprogrammed to macrophages, HDAC7

expression significantly inhibited the expression of TNF-α, IL-1β, and IL-6. 296 VEGF stimulates

HDAC7 phosphorylation, leading to its aggregation in the cytosol and subsequent suppression of

angiogenesis mediated by matrix metalloproteases (MMT) 10 and 14, which degrade proteins es-

sential for vessel integrity.297,298 HDAC7 can also directly associate with RARA (see module four,

MAFB) to form a repressor complex that inhibits, among others, miR-10a. 299 This inhibition led

to de-repression of pro-inflammatory signalling via GATA6 and VCAM1, with negative impact on

VP in vascular endothelia.

In summary, module five genes seem to be primarily associated with vascular permeability and the

integrity of the blood-brain-barrier. Reduction of SRC may be beneficial in regard to stroke volume,

whereas the effects ofABCD1decrease on vessel integrity are less clear. Secondarily, down-regulation

of SRC and ABCD1 may have a negative impact on lipid metabolism, with consequences for lipid-
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mediated signalling. HDAC7 up-regulation, on the other hand, may constitute a pro-apoptotic

signal.

4.5.5 Transcript Clustering by smRNA:TF:gene Feedforward Loops

Increases Informative Resolution of Gene Set Enrichment Analyses

In principle, the analysis of separate modules represents changes brought on by DE TFs in stroke

patient blood, focused on CD14+ cells by analysing feedforward loops comprising smRNAs and

TF-interactions specific to CD14+ cells. An advantage of the separation via FFL association is a

reduction in dimensionality, which may make the implications of each module more accessible than

a complete list of all changed genes or TFs in the experiment, and may also increase the informative

resolution of the GO enrichment analyses. Visual inspection of Figure 4.10 indicates a partition

between modules two and four on the top, and modules one and five on the bottom of the map.

The role of module three is visually less clear. Module three is the module most »intermingling«

with the other modules, particularly in the case of IRF5, which spatially is closer to module one and

five than it is to three (see Figure 4.10, bottom). More generally, there are two zones of module three

intermingling, between modules one and five, and between modules two and four.

Visual representation of the GO terms derived from non-modularised analysis versus the terms

collected from module analyses clearly shows the proposed advantage regarding informative resolu-

tion of the method (Figure 4.11). The non-modularised version shows less terms, that are also less

specific (Figure 4.11 A, reproduced from Figure 4.2), while the module-derived terms are higher in

number, and also refer to more specific processes (Figure 4.11 B). Intriguingly, this t-SNE visuali-

sation of GO terms shows a central cluster around module one, comprising terms from all other

modules. Since the similarity of terms is calculated via their shared genes, this may indicate that pro-

cesses involving cooperation of modules are grouped in the center, while module-specific processes

cluster at the edges. Correspondingly, module three terms cluster on the left side in close vicinity

of this central cluster, while module two and module five terms are located in opposite areas on the

graph.

The most prevalent themes of module function are inflammatory events, in particular those me-

diated by TLR/MyD88-associated pathways, IFN responses, and interleukin and TNF-α signalling.

Many of these innate immune pathways are important in sterile inflammation as well as in response

to viral infection. This is in concert with the fact that the most prevalent genes identified by module

GO analysis are pivotal regulators of immunity. Other themes implied by the analysis are apop-

totic/necroptotic events, transcriptional activation, lipid metabolism and signalling, and blood ves-
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Figure 4.11: FFL module Gene Ontology Enrichment Increases Informative Resolution. A comparison between GO enrichment

performed on (A) differentially expressed (DE) genes and (B) DE genes classified by FFL network modules shows similar biological

processes but increased information depth. Size denotes number of significant genes in term, depth of colour indicates p-value (all p

< 0.05). A)Differentially expressed geneswith absolute log2 fold change > 1.4 are enriched in processes of immunity and circulation.

Cluster colour derived from t-SNE similarity. Reproduction of Figure 4.2. B) t-SNE mapping of GO terms derived from analysis of

single FFL modules shows details of involvement with immune processes and basic cellular function. Colour indicates original FFL

module (see text). Themiddlecluster, comprisedofparts fromallmodulessurroundingmodule1,maysignifyan»areaofcooperation«

between themodules.

sel integrity. In most cases, the participating forces are representative of activation as well as inhibi-

tion, again underscoring the homeostatic aspect of these regulatory processes.

Inflammation as a common theme is represented in all modules, with diverging implications.

Modules one, two, and five may be described as pro-inflammatory modules, while anti-inflammatory

properties dominate in modules three and four. The module topology of the two-dimensional force-

directed map of FFLs (see Figure 4.10) replicates this pro- versus anti-inflammatory dichotomy, in-

dicating that the innate immune response may be the defining factor in FFL modularisation (Figure

4.12). Module one conveys pro-inflammatory signals via the de-repression of IFN response through

ATF3, module two via the increase in IL6 availability through SORL1, the decrease in STAT de-

phosphorylation by PTPN2, and the decrease in PLXNB2, which may be mediated by smRNA-

carrying vesicles and is associated with splenic monocyte mobilisation. In module five, HDAC7 in

association with RARA may repress miR-10a, which in turn de-represses pro-inflammatory medi-

ators. Modules three and four, on the other hand, may be described as largely anti-inflammatory.

Module three presents inhibition of IFN signalling via the suppression of PLSCR1 and STAT1,

PML/SP100 nuclear bodies, and IRF5. Down-regulation of module four genes may convey attenu-

ation of inflammation through GBP5, MAFB (and the related MSR1), and ZBP1 suppression. At-

tenuation of inflammation after stroke may be a bodily response to prevent systemic inflammatory

response syndrome (SIRS), however, exaggerated response or external intervention harbours the
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Figure 4.12: Complete Feedforward Loop Network of Differentially Expressed Transcription Factors in CD14+ Monocytes, An-

notated. A reproduction of Figure 4.10 annotated with most pertinent biological processes as identified via individual module GO

analysis. Distance to the center of the graph of each annotation resembles the distribution of the category across all modules (closer

to the center - more common functional class), and functions shared by two modules are indicated by their annotation across the

intersecting lines. Themost common functional classes refer to inflammation, apoptosis, and STAT regulation.

danger of compensatory anti-inflammatory response syndrome (CARS) and CNS injury-induced

immunodepression syndrome (CIDS).

Influences on apoptotic/necroptotic events are also distributed between several modules. Mod-

ule one conveys anti-apoptotic signals via reduction of SP100, in agreement withPML reduction in

module three. Additionally, PLSCR1 down-regulation in module three may have an indirect anti-

apoptotic effect through de-repression of anti-apoptotic proteins such as Bcl-2. ZBP1 in module

four is a DAMP sensor that can induce necroptosis independently of MyD88, however, it is sup-

pressed in stroke patient blood and requires STAT1 signalling (which is also suppressed), and de-

novo protein synthesis. Transcriptional activation is regulated by genes in modules one and three,
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but the final effect of their competition cannot be assessed with certainty. HDAC7 up-regulation

in module five, on the other hand, may induce a pro-apoptotic program.

Lipid metabolism and blood vessel integrity are implied specifically in module five. Peroxisomal

β-oxidation of very long chain fatty acids is reduced through the inhibition of ABCD1, with con-

sequences in lipid mediator signalling (e.g., regulation of MAFB) and inflammation. However, the

bottom line effect of module five gene reactions to stroke in regard to blood vessel stability, i.e., the

question if SRC,ABCD1, andHDAC7 regulation are beneficial or detrimental to vascular integrity,

is still largely unclear and a worthwhile subject for further studies.

Another common theme of module gene processes is the involvement and regulation of signal

transducers and activators of transcription, STATs. Many SGs are inducers of STATs (PLSCR1,

IRF5,RARA,MAFB), binding partners (SKIL,PML), or involved in activation or deactivation via

phosphorylation/dephosphorylation and acetylation/deacetylation (ATF3, SORL1, PTPN2, SRC,

HDAC7 ). Thus, homeostasis of STAT transcription and activation seems to play an important role

in the observed processes. Of note, STAT1 is decreased in stroke patient blood, but STAT3 is not dif-

ferentially regulated. However, effects mediated by modulators of activity, such as sustained STAT3

phosphorylation via ATF3 (module one), reduced STAT3 phosphorylation via SORL1 (module

two), increased STAT3 phosphorylation viaPTPN2 (module two) andSRC (module five), or STAT3

deacetylation via HDAC7 (module five) can have dramatic impacts on cellular function without a

change in STAT3 expression. Additionally, the studies cited on STAT control via phosphorylation

and acetylation are not comprehensive, so some of the implied proteins may interact with STATs

other than STAT3. In stroke patient blood, changes are seen in STAT1 (down-regulated), STAT2

(down-regulated), and STAT5B (up-regulated).

Among module functions is also the control of blood cell differentiation, particularly of mono-

cytes and macrophages. Both cell types can be driven towards a pro- or an anti-inflammatory phe-

notype via expression and activation of certain mediators. KLF4 (module two) drives monocytes to-

wards a pro-inflammatory phenotype, and IRF5 (module three) mediates commitment to the pro-

inflammatory M1-phenotype of macrophages in response to IFN signalling. Their concomitant

down-regulation may thus produce an anti-inflammatory, pro-resolving phenotype of monocytic

immune cells. Additionally, IRF5-mediated M1-commitment is conveyed by STAT1 signalling,

which is impaired in stroke through STAT1 down-regulation, whereas M2-commitment is medi-

ated by STAT3 and STAT6 signalling, both of which are unimpaired. On the other hand, MAFB

(module four) expression drives commitment to the anti-inflammatory M2 type, and thus, its down-

regulation may convey an opposite signal to KLF4 and IRF5 regulation.

A number of module SGs also show cholinergic association: apart from the cholinergic/neu-

rokine interface connecting IL6, gp130, and JAK/STAT to cholinergic properties of immune cells
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and neurons, 1 ATF3down-regulatesACHE which interferes with its stipulated non-enzymatic, pro-

apoptotic function; RARA induces STAT1, gp130, and ACHE, and MAFB induces CHRNA6,

IL6, IL6R, and STAT1. Other module cross-associations include module one/module three coop-

eration in regard to PML/SP100 nuclear bodies, SP100 and STAT1 co-elevation in monocytes of

tobacco-smoking HIV-positive patients, and their antagonism in regard to the activation or deac-

tivation of transcription. Module two and module four both have an impact on cell identity and

differentiation via pluripotency-associated KLF4 and MAFB signalling. Module one and module

five are associated via the induction of SGs by p38 MAPK (ATF3 and SRC), the ApoE4-association

of SORL1 and ABCD1, the support of HDAC7 in IFN-mediated SP100 up-regulation, and their

opposite effect on apoptotic signalling. All of these associations (1-3, 1-5, 2-4) can be retraced in the

FFL module visualisation (Figure 4.12).
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If the human brain were so simple that we could understand it,

we would be so simple that we couldn’t.

Emerson M. Pugh

5
Discussion

The general objective of this dissertation was to facilitate an understanding of the complex processes

surrounding transcriptional interactions in mammalian cells. The multi-levelled relationships of

only two interacting molecule species make analysis and interpretation inaccessible without the help

of software, and even the output of software analyses can be overwhelming in the multitude of genes

that are involved. Additionally, while this dissertation started with the objective of illuminating

cholinergic processes exclusively in neurons, it naturally gravitated towards immunology in all of the

different foci: the studied degenerative and non-degenerative psychiatric diseases, as well as stroke,

all have significant immunological components. Arguably, immune cells and the central nervous

system are those two mammalian tissues that offer the greatest challenges to the life sciences in terms

of complexity.

Historically, the areas of immunology and neuroscience research have little in common, and trans-

lational advances have been few. However, as Robert Dantzer illustrates in his recent review,44

the two disciplines have much to learn from each other, and bringing them closer together is all

but necessary. Not by coincidence, the description of brain-to-immune-signalling in that review

is predominated by cholinergic implications in immunity; and the best-studied immune-to-brain-

signalling molecules are the endogenous pyrogens IL-1β, IL-6, TNF-α, and IFN-α, which in this

dissertation also are frequently implicated. However, current research barely scratches the surface of

neuro-immune communication; currently, interactions are mainly studied at the level of cell-to-cell

or protein-to-protein (also including transcriptional processes induced by proteins). An enormous

amount of transcriptional interactions are still almost completely in the dark, including but not lim-

ited to small RNA regulatory processes. The main challenge in adding an additional regulatory layer

onto an already complex subject such as neuro-immune communication is the resulting exponential

increase in complexity.
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This brings us back to the initial objective of this dissertation, the facilitation of an understand-

ing of transcriptional interactions. Since the data generated by modern life-science technologies

is not comprehensible to humans in its raw form, and even after statistical analyses often remains

overwhelming, dimensionality reduction is a logical step to further the comprehension of the sci-

ence by the scientist. Indeed, most approaches described in this dissertation result in reduction of

dimensionality, and a common train of thought behind the distinct analysis steps undertaken was

governed by the idea of a »smart« dimensionality reduction, as opposed to, for instance, exclusively

looking at the miRNA→gene relationship with the lowest p-value.

To this end, I had to develop a computational basis for the assessment of transcriptional interac-

tions in a manner that is practicable in day-to-day research, i.e., that can generate results for these

complex interactions in a matter of seconds to hours. I also had the fortune to be able to apply these

methods to a range of relevant biological data, including the ones discussed in-depth in this disser-

tation: the cellular model of human male and female cholinergic neurons, and the blood of stroke

patients. All undertaken analyses are subject to a wide variety of limitations, the most important of

which will be discussed in the following.

For the sake of clarity, the discussion will be split into parts: first, the methodological and technical

aspects; second, the bio-mechanistic perspective and basic molecular biology implications; and third,

the physiologic, pathologic, and medical/therapeutic inferences.

5.1. Methods

5.1.1 Transcriptional Interactions: miRNeo

The comprehensive (however justified this term may be) analysis of transcriptional interactions

seems to be, for the moment, a rather marginal endeavour. At the beginning of my work on this

dissertation, a database such as miRNeo, even in its most basic form, was not available. Recently,

some efforts have been published,300,301 including one which has necessitated a name change of my

database, which was previously calledmiRNet.1,300 The premise of the approach is simple: for a bio-

logical network that is structured in the way of interaction partners connected by molecular interac-

tions, build a database that models interaction partners as nodes of a network, and their interactions

as its edges (see Chapter 2). The technical implementations, however, diverge.

miRNeo follows the philosophy of modelling the studied networks as closely as possible in the raw

database, to keep data recall at a minimum in terms of storage and processing power requirements.

Neo4j seemed like a fitting platform for its implementation, since it is focused around building large

networks with flexible computational requirements and possesses an infrastructure for process op-
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timisation. Additionally, it can be integrated into development environments common in bioinfor-

matics, such as Java and R. Most of the work presented in this dissertation has been performed on

Neo4j version 3.0, however, the release of Neo4j version 4.0 was just announced and promises to

bring further improvement in terms of handling and performance.302

The main drawback of graph database integration into biological applications is the difference

in infrastructure to virtually all other data, which is in tabular format. The effort of transitioning

data into a dedicated graph format is not justified for simple questions, such as the gene targets of

a single miRNA. The practical creation of miRNeo from raw data in its current extent, without

accounting for development time, would take up the majority of a month in computational time

on a standard 16-core personal computer. However, nested analyses with multiple levels, and dy-

namic analyses with multiple steps in which the analysis in the next step depends on the result of

the previous, necessitate computationally efficient implementation, and miRNeo was able to han-

dle all complex questions that presented themselves during my work. The most computationally

demanding questions were the comprehensive whole-genome feedforward loop analyses (Section

4.5), which nevertheless were completed in a matter of hours.

The most important limitation of miRNeo is the sum of limitations that apply to the raw data

miRNeo is created from. Small RNA targeting is immensely complex, and small RNA expression is

even more tissue-specific than transcription factor expression.119 Thus, all results from predictions,

be they based on complementarity, evolutionary conservation, or physical modelling, and even ex-

perimentally validated interactions can currently not be seen as certain indications of an actual in-

teraction in different contexts, making validations indispensable. However, complex multi-layer

interactions are nearly impossible to validate, making this area of research highly dependent on in-

ferral from circumstantial evidence. In 2017, Kenneth Kosik introduced an experimental model

of miRNA interactions at a conference for non-coding RNA in neurodegenerative disease. 303 The

study included the successive knockout of each one of a set of 11 miRNAs and observation of the

cellular phenotype for each of the resulting cultures in a high throughput setting; he gave the cost

of these experiments to be in the million dollar range. According to Kosik, the knockout of each one

of the 11 miRNAs led to a loss of the particular phenotype, which implied that all 11 cooperated

to govern the molecular basis of the phenotype. However, this kind of experimentation cannot be

applied to all open questions simply for economical reasons, and additionally, there still has been no

publication of the study in a peer-reviewed journal as of now (May, 2020).304

Similarly, in transcription factor interactions, the shortcomings of raw data may transfer into

the database. A very pertinent example of FANTOM5 misannotation is the controversy around the

promoters ofCHAT and SLC18A3 (see also Section 2.2.3). Since, by the statement of a FANTOM5

scientist, it is possible that the 5’-peaks of the two genes may have been confused because they lie
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in such close vicinity, it is not possible to distinguish between CHAT and SLC18A3 in this data,

or even state with certainty which of the two is implied in an analysis. However, as the immune

cell data underlying Figure 4.6 shows, it is very feasible that the SLC18A3 signal in reality refers to

CHAT expression, because blood-borne immune cells do not require a vesicular transporter, but

have been proven to express CHAT. An advantage in modelling transcription factor interactions,

however, is that in using FANTOM5 data and secondary sources such as Marbach et al.118 we are

one step further than we are in small RNA analyses: we can differentiate between interactions in the

different cell types of the human body. In extension, we can also infer on small RNA regulation in

a cell type-specific manner by applying our knowledge on transcription factor interactions in these

cell types, as we have attempted in the analysis of blood cell-specific networks in stroke (Section 4.3).

But even simpler shortcomings of the raw data in miRNeo must be acknowledged: for instance,

the annotation of biologically active molecules, be it DNA, RNA, or proteins, is always in flux,

which together with the multiple institutions handling annotation leads to foreseeable deficits in

translation between one set of data to the other. Particularly in whole-genome analyses (or likewise

whole-miRnome etc.), individual control of every nomenclature deficit that results in loss of infor-

mation (e.g., gene identifiers are different in experimental data and database) is not possible. For this

reason, I integrated several identifiers (e.g. Entrez, HGNC, ENSEMBL) with failsafe mechanisms

for the identification of as many molecules as possible. Still, there has been loss in several of the

analyses. For miRNAs, the newer version 22 of miRBase annotation has not yet been implemented,

since it may have caused compatibility issues with previous results.

Consequently, the more complex assessments suffer from a combination of single shortcomings

of the raw data. For instance, feedforward loops are only feasible in a very particular constellation (see

also Section 4.5): because we lack information on TF→smRNA interactions, smRNA species have

to be at the center of the loop (X ), and transcription factors have to assume the role of controlling

while being controlled (Y ). Associations of the kind TF→smRNA are still in the stage of anecdotal

evidence, for instance the HDAC7/RARA/miR-10a circuit (Figure 5.1).299

5.1.2 RNA Sequencing

By 2020, RNA-seq has by and large outgrown the teething troubles of its initial technological phase.

However, the method itself brings with it inherent, largely mathematical problems. A lack of repro-

ducibility was a great concern in the initial periods of RNA-seq, but the reproducibility of choliner-

gic cell culture (Section 3.4.1) as well as the validations performed on small RNA during the studies

of stroke patient blood (data not shown in this dissertation, but in the associated publication2) show

an agreeable reliability of the method in our hands.
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Figure 5.1: Schematic diagram of the roles of hormone receptors and HDACs in modulating miR-10a expression and hence

proatherogenic and antiatherogenic signaling in EC in response to different flow conditions. Boxes with black and white shading

represent proatherogenic and atheroprotectivemolecules, respectively. Image and caption from Lee et al. 299

Unrelatedly, the multiple testing problem still remains a pertinent issue of modern molecular bi-

ology. It is now more impressive to find a negative result in one of these analyses (e.g., no differential

expression in a reasonably powered sequencing experiment) than it is to find actual differences. The

question of where to place the threshold of significance, or whether to use such a threshold at all,

is still a matter of very lively debate among scientists of many disciplines; additionally, consensus

thresholds vary between fields or even between different kinds of assay. This dissertation, in general,

follows the philosophy of balance between limiting false positives (by monitoring false discovery rate

and utilising cross-experimental comparison) and identifying »real« changes (by monitoring ade-

quate powering and effect sizes). In the limited area of RNA-seq, this is still manageable, because

standard approaches in the form of multiple correction for differential expression analysis (e.g. in

DESeq2,164 which essentially uses Benjamini-Hochberg correction) and power analysis packages (I

used R/powsimR305) already exist; in the extended graph-based network analyses, the matter is more

complicated (see below in Section 5.1.3).

For sequencing, particularly of small RNA, there remain open questions about the nature of de-

tection. For instance, the alignment from raw sequencing reads of the two different smRNA species

surveyed in Chapter 4 is handled by two separate software solutions, each tailored exactly to the bi-

ological nature of the respective smRNA species. I used miRExpress, version 2, 163 to align miRNA

sequences, and MINTmap117 for the tRNA fragments (more specifically, only the fragments »ex-

clusive to the tRNA space«). Procedurally, there is no argument or consensus against analysing

these two species separately, and unifying results afterwards. The main effect of concatenation of

the two count tables for joint analysis in DESeq2 differential expression analysis is a loss in sensitivity,

because multiple testing has to be corrected in relation to the number of unique analytes. However,

since the hypotheses assumed before analysis included modes of cooperation between the two dis-

tinct species, I decided to test them together rather than apart from each other. The inspection
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of MA plots (see e.g. Figure 3.6), effect size distribution, and the comparison to separate analyses

for both species all indicated the joint approach to be feasible. The loss in specificity was mild in

miRNAs, joint analysis reproduced 98.4% of detected and 83% of differentially expressed miRNAs

(FDR < 0.05), and 98.3% of differentially expressed miRNAs with high effect size (absolute LFC >

1.4). For tRFs, the loss was greater; joint analysis reproduced 96.1% of detected, but only 20.5% of

differentially expressed tRFs. This can be explained by a high number of very lowly expressed tRFs

compared to miRNAs: tRFs with high differential expression effect size (LFC > 1.4) were repro-

duced at 52.1%; and reproduction in the top 5 percentile by count-change was 92.3%. Notably, this

95th percentile count-change cutoff value is at an absolute count-change of 28.5, meaning the loss

of differentially expressed tRFs compared to separate analysis happened in the very low expression

range, which is more desirable than it is a problem. An alternative solution would have been the

truncation of low-count analytes before differential expression analysis; however, the threshold for

such a step is always arbitrary, and thus truncation is no longer recommended.168

5.1.3 Statistical Analyses of Network Interactions

There is much less consensus when it comes to statistical interpretation of network analyses. This

may in part be a result of network analyses being relatively uncommon compared to, for instance,

sequencing experiments, and thus a lack of community consensus on how to approach certain prob-

lems. Often, a »network analysis« is a very confined, ultimate visualisation of the impact of one or

few miRNAs with several genes that seem pertinent to the publication (for an example see Figure

5.2). Thus, there is often no need to characterise the statistical relevance of the shown relationships,

as they serve as a visualisation of hypotheses, or an illustration of a proposed pathway. In contrast,

most network analyses presented in this dissertation are intermediary steps, the results of which are

supposed to aid in identification of pertinent factors in the molecular interactions studied. As a

result, there is a need to measure the relevance of each component of the network, as well as the

validity of its message as a whole. Those can be approached in different ways, as is described in the

following.

The validity of single network components is subject to various pre-existing properties. To make

this discussion more tangible, I will give an example of the most common single component in my

analyses: a miRNA→gene interaction. A first measure of its validity can be the existence of a val-

idation experiment of this interaction. This is reflected in the scoring inside the database. The

limitations as discussed in Section 5.1.1, e.g. in regard to tissue specificity, still apply. Below this

highest level of stringency are the predicted interactions. As has been discussed previously by oth-

ers, miRNA→gene relationship predictions are best seen in comparison to other models, and most
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Figure 5.2: Interaction network showingmiRNAs and their predicted and validated targets. The protein interaction network (light

gray lines) showsthe interactionbetweenproteins (ellipses)encodedbytumornecrosis factor-αpathwaygenes. Greentrianglesand

solid gray lines represent miRNAs and validated target genes, respectively; red triangles and dotted gray lines represent predicted

relationship betweenmiRNA and target genes, respectively. TNF: Tumor necrosis factor. Image and caption fromRossi et al. 306

valuable predictions are the ones that several prediction algorithms agree upon, particularly if these

algorithms are based on modelling different aspects of miRNA→gene binding. 128 For this reason, I

implemented the largest collection of algorithms I could find at the time (miRWalk 2.0 121), supple-

mented by other sources as they became available, and also statistically evaluated the performance of

all included algorithms to select a suitable subset for the summation of scores (Section 2.2.4). These

steps were undertaken to minimise the risk of bias by using as many sources as possible, while still

retaining an amount of flexibility in analysis. For instance, if the resulting gene network was too

large for sensible analysis, its size could be easily decreased by elevation of the score threshold, thus

making the analysis more stringent.

The scoring threshold as used for miRNA interactions is not available for tRFs, because there

are no prediction datasets available yet. The prediction was performed in-house on miRNA-like

seeds of each detected differentially expressed tRF, which brings two important limitations: it as-

sumes a miRNA-like functionality of tRFs, disregarding other interaction principles that have been

found (see Section 1.3.3); and it limits the prediction sources to one, TargetScan.129 TargetScan was

selected for its approach of measuring evolutionary conservation of putative target sites, a measure

that is very valuable in the case of tRFs, because we know little about any other parameters that could

be relevant for the targeting. Since tRNAs and their fragments have been part of mammalian cells

for a long time, evolutionary conservation of target sites in the genetically flexible 3’ UTRs is a sig-

nificant measure of functionality.131 Thus, for tRFs, the aggregation score of multiple algorithms

was substituted with the conservation score generated by branch length (BL) and probability of

conserved targeting (PCT). 131

However, these cautionary steps still cannot preclude any and all possible biases that may be in-

herent to prediction models, and thus, statistical analyses on the basis of this general procedure are
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desirable. The simplest, most practical, although computationally intensive solution to inherent

database biases is permutation (see Section 2.4.1). Briefly, a null distribution of the measured param-

eter (e.g., miRNA→gene interaction score) is generated by iterative analysis of randomly permuted

datasets of the same size as the »real« dataset to be tested. The location of the »real« score inside

this null distribution then gives the »extremity« of that real result, and thus the likelihood of the

result being as extreme by chance, which equals false discovery ratio (FDR). However, this approach

requires a defined set of analytes that present with a measurable attribute (e.g., multiple miRNAs

targeting one gene, or a defined set of target genes for any one miRNA). An additional measure to

ensure robustness of this approach is the iteration across a range of parameters, for instance, a sliding

score cutoff. Results staying »significant« across a range of different cutoffs may be an indication

of their robustness. However, for each level of iterations added, computation time also increases.

Since permutation approaches usually require tens to hundreds of thousands of iterations, the com-

putational requirements can be considerable.

The advantage of permutations, as opposed to the disadvantage of having to test a set of multiple

entries, is its scalability. Thus, permutations can also be used to assess the validity of the entire

network, for instance by random permutation of case-control status (applicable in patient scenarios,

as in Chapter 4), or of another attribute (such as sex, as in Chapter 3).

5.1.4 Cholinergic Cellular Models: LA-N-2 and LA-N-5

The decision to use a human cellular model of cholinergic neuronal cells was driven by two main

factors: I) In vivo experimentation, i.e., animal-based research, is not reliable as a model of complex

human neuropsychiatric diseases. 148–150 II) Particular to RNA-based mechanisms, the difference

between rodent and human genes is enormous, for instance in 3’ UTRs that are not subject to the

same evolutionary pressure as coding regions, which leads to low transferability of the application

of hypothetical therapeutic oligonucleotides.307 Furthermore, so-called »3D cell cultures« or co-

cultures of human cells of different types (e.g., neurons with astrocytes) are still not as developed

as is necessary for stable experimentation, particularly in the case of cholinergic systems;151 thus, we

opted for mono-culture of neuronal cell lines. Even in traditionally cholinergic research, the number

of human neuronal models representative of actual cholinergic neurons is very low; the popular cell

line SH-SY5Y had to be excluded after in-depth experimentation because it fails to express sensible

amounts of the main cholinergic marker CHAT and the vesicular transporter SLC18A3 even upon

differentiation.154

LA-N cells were the logical alternative in the search for an adequate cholinergic model, although

their maintenance is not as straightforward as that of many of the work-horses of human cell culture.
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Figure5.3: CorrelationbetweenCHATandSLC5A7 inNervousCells. CHAT: choline acetyltransferase, SLC5A7: high affinity choline

transporter (also known as CHT1), SLC2A1-3: passive glucose transporters. Size and depth of colour of circles denote strength of

correlation (Pearson’s product-moment correlation coefficient, PPMCC), numbers denote PPMCC (range: -1 to 1). Non-significant

correlation coefficients (p > 0.05) are crossed out. Rows and columns are ordered by hierarchical clustering, representing similarity

of PPMCC values (Euclidian distance). (A) Correlation of transcripts in all tissues (cell-type-level) of the murine nervous system. (B)

Correlation in all neurons (single-cell-level) of the murine nervous system. (C) Correlation in cholinergic neurons (single-cell-level)

as determined by expression of the vesicular ACh-transporter, SLC18A3. Modified from Yuliani et al. 308

The main argument for their selection was their natural expression of CHAT and SLC18A3 as well

as an impressive induction of these genes via stimulation by neurokines. This expression of CHAT

is a pivotal factor in the studies of cholinergic neurons, because there is much confusion about what

constitutes a cholinergic cell in the CNS, and about the properties of the different cholinergic pop-

ulations in the different brain regions. By definition, cholinergic neurons must be able to synthesise

ACh (CHAT ) and release it through vesicles (SLC18A3). Additionally, the high affinity choline

uptake mediated by the SLC5A7 transporter is highly correlated with these two central markers in

the nervous system (own results, Figure 5.3, Yuliani et al.308). Other defining properties of cholin-

ergic neurons are more optional (for instance, the defining property of basal forebrain cholinergic

projection neurons to receive the retrograde NGF signal via NTRK1). An additional benefit was

the availability of LA-N cells of both sexes, which aided in studying sex differences in Lobentanzer

et al.1

The decision for a mono-culture of immortalised human neuronal cells naturally introduced lim-

itations common to all similar models: the cells are derived from tumour cells and do not resemble

a physiological cell any more, otherwise they would not have lost senescence. All biological impli-

cations derived from these models have to be interpreted based on this central limitation. How-

ever, interpretation is based on the assumption that basic molecular processes, such as the control

of mRNA by miRNAs, are still intact. Additionally, the cell communities generated in vitro that

are the basis of bulk sequencing analyses are very homogeneous, more so than any tissue derived

from a living multi-cellular organism. While this enables bulk sequencing without »dilution« by

supporting CNS-derived cells, as would be the case in patient brain region bulk sequencing, it also

introduces a »non-natural« homogeneity in the RNA derived from the lysis of these cells and there-
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fore harbours the danger of exacerbated sensitivity in differential expression. This may lead to the

false positive identification of differentially expressed smRNAs, particularly those with a low base

expression or small changes. However, controlling of effect sizes (e.g., a cutoff for absolute log2 fold

change, or analysis of count-change) is well suited to prevent many irrelevant false positives.

5.1.5 Stroke Patient Blood Samples

The main limitations in the sequencing of post-stroke patient blood are the lack in cell type speci-

ficity of RNA generation and the composition of the patient collective, which resulted in exclusion

of females for balancing reasons and thus contains only male patients. Additionally, the controls by

principle have to be external, since stroke is an unexpected event and thus there is virtually no possi-

bility of attaining blood samples of patients pre-stroke except in very specific clinical conditions. As

a result, control samples are healthy volunteers that have to be matched in a manner that reproduces

the patient collective as closely as possible, which often cannot be more specific than matching for

sex and age. Strictly speaking, the results of analyses based on the differential expression profile can

only be applied to male patients. However, the tissue-specific analyses performed on small RNAs

as well as on transcription factor interactions are based on large data collections representative of

many male and female volunteers, and thus the CD14+-related analyses, such as the feedforward

loop analysis in Section 4.5.4, can in large parts be applied to both sexes.

Section 4.3 exclusively deals with the shortcomings of sequencing whole blood instead of iso-

lated cellular components. Whether this method of extrapolation serves the purpose of explaining

the roles of the tissues involved in smRNA stroke response remains to be clarified. However, transla-

tional approaches such as the one presented in Section 4.3 can also aid in studying the transferability

of whole blood results (which may be more common in the clinical setting) to tissue-specific analyses,

which often require complex and costly purification steps in acquiring the isolated cell populations.

5.1.6 Gene Ontology Analyses

Some of the approaches to dimensionality reduction presented here rely heavily on the analysis of

enrichment of genes in ontological categories of biological processes. The primary purpose of using

GO enrichment as a tool is to deal with the reality of not being able to know all functions of any

given gene. Strictly speaking, here also apply the same limitations as to other datasets of curated

information: the quality of results depends on the quality of annotation in the raw ontology collec-

tion. For some lesser known proteins, these annotations may well be far from complete, and thus,

the interpreting scientist is in danger of presentation bias. Similarly, by interpreting the list of on-

tological terms yielded by an analysis, terms may be selected or discarded based on their perceived
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relevance to the topic of study; inadequate knowledge about all participating processes may lead

to the dismissal of relevant terms, constituting confirmation bias. To try and avoid large amounts

of this form of confirmation bias, GO terms were presented in comprehensive form or as curated

selection of all available data as much as possible (see for instance Figure 3.10 B and Section 4.5.4).

Additionally, the visual display of GO terms as a t-SNE projection, where distance is based on the

amount of shared genes between the terms (using R/gsoap202), can aid in identifying the underly-

ing categories of processes and their relationships to one another. This is further supported by the

weighing functionality of R/topGO analysis, 169 whereby less specific parent GO terms are dismissed

in favour of the more specific child nodes in the DAG graph (see also Sections 2.4.2 and 3.5.3).

An intriguing possibility is the transfer of ontology analyses of smRNA-targeted protein-coding

transcripts to facilitate an understanding of the biological processes controlled by the smRNA inter-

ference. The approach is still underdeveloped in several regards: I) The weighing of smRNA→gene

relationships has a large influence on the outcome, making iteration and testing of robustness indis-

pensable. II) The resolution of annotation is much coarser than in direct gene annotation. Due to

the many-to-many nature of the miRNA interactome, functional implications for any one miRNA

strongly intersect with other, similar miRNAs. This is the main reason for the analysis of families in-

stead of single miRNAs in Section 3.5.3. In summary, while the derivation of function of miRNAs

from their targeted genes is tempting in the light of a complete lack of direct functional annota-

tion for miRNAs, this projection approach will have to be developed and validated before it can be

routinely applied.

5.1.7 Feedforward Loop Analyses

Feedforward loop analysis brings together most of the issues discussed above. I) It is based on the ag-

gregation of several types of molecular targeting relationships and thus is subject to their individual

limitations. II) It is applied to the results of differential expression in stroke patient blood, and thus

is also influenced by sequencing-related issues. And III) The modules yielded by FFL stratification

are then scrutinised with the help of GO analysis to find gene collectives relevant to stroke.

Regarding I); the results of concatenation of these individual relationship types are unknown and

difficult to measure. Every kind of influence on the validity of results is imaginable: the insecurities

from each individual method may be additive, or even super-additive, making the end result more

unreliable in consequence. Alternatively, the processes being firmly rooted in the biological real-

ity of the cell may also have a corrective function on the end result, effectively acting as a filter that

removes »illogical« circuits from the output, thus increasing its validity. There is no measure for an-

swering this question as of now. However, the circuits and their ontological associations gathered in
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Chapter 4 make sense from a biological perspective, and, maybe more importantly, they make more

biological sense than an observation of only differentially expressed genes, or only of smRNAs. In

short, although the evidence is circumstantial, the message gained from FFL analysis may be larger

than the sum of its parts. A more detailed discussion of the individual findings is held in the indi-

vidual module descriptions of Section 4.5.4 and Section 4.5.5. The substantiation of FFL analyses

and their biological meaning is an important topic for further research.

Regarding II); sequencing-related issues need to be primarily controlled in the process of differ-

ential expression analysis. During feedforward loop analysis, results from differential expression are

fixed, and thus cannot cause much confounding if they are used in a descriptive way, as is the case

in my analyses. Should they be used beyond that, for instance, to weigh targeting relationships by

the differential expression of their participating factors, more care has to be taken that the model

applied makes sense. Although the approach is feasible in principle, the practical application in FFL

analysis is not trivial. Generally, it makes sense to compare the expression levels of smRNAs and

their target genes, for two main reasons, as is detailed below.

One: In the cellular context, any interaction is only practically relevant if the expression levels

or changes in expression are on the same scale for both smRNA and mRNA. Of note, the count-

change measure introduced in Lobentanzer et al.1 is much more suited to this assessment than the

commonly used LFC, because the latter does not relate to expression levels at all. However, until

the sequencing of small and large RNAs can be routinely done in the same experiment (i.e., on the

same microfluidic chip), the comparison of base mean expression (or count-change) between small

and large RNA will always be very approximate, because it is dependent on sequencing depth of the

individual experiment.

Two: Considering miRNA-like behaviour, those interactions will be particularly interesting where

the smRNA is regulated inversely to the target mRNA. However, this concerns only the theoretical

interaction of two isolated partners, whereas the smRNA→gene interactions in live cells are layered

and only the strongest single relationships will have a chance of prevailing against the regulatory

»chaos« that is an actual cell. This alone precludes actual analysis of differential expression influence

on smRNA targeting (apart from complex mathematical models which remain to be established),

without even considering the third interaction partner, transcription factors. Those introduce an-

other element of uncertainty: although we know more about their tissue specific activities through

efforts such as Marbach et al.118, we do not specifically know which transcription factor acts on a

promoter or repressor towards which genes in which tissues. Mathematical structural models able

to predict these interactions in a cellular, whole-genome context are desirable, but not yet a reality.

Regarding III); the main criticism of proceeding from comprehensive FFLs through modulari-

sation to GO analysis is the arbitrary nature of network modularisation. Modularisation itself is a
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purely mathematical process of describing the interconnectedness of nodes in the network, imple-

mented by Blondel et al. (»Fast unfolding of communities in large networks«).211 The choice of

resolution that yielded five communities in my analysis thus was largely arbitrary, selected in a way

that correlated module identity with the visual clusters created by force-directed organisation of the

FFL network. However, since the main purpose of modularisation is a reduction in dimensionality

that facilitates human understanding, every possible resolution that results in a manageable num-

ber of modules may be seen as »reasonable«. A standardisation of these procedures is nevertheless

desirable and will be subject of further studies.

5.2. A Mechanistic Perspective of

Transcriptional Interactions

This dissertation is aimed at elucidating epi-transcriptional processes surrounding the expression of

cholinergic genes. To this end, a framework was developed to assess interactions between players

on the field of RNA-related processes in mammalian cells. This framework was then applied to

state-of-the-art measurements of RNA levels, i.e., RNA-sequencing. In the following paragraphs,

an assessment will be held on the outcomes of my efforts in clarifying »Small RNA Dynamics in

Cholinergic Systems«.

5.2.1 Analysis of Small RNA Dynamics via RNA-sequencing

and Bioinformatics

Small RNAs and the mechanisms by which they control the expression of coding genes have fasci-

nated researchers since their discovery around the turn of the millennium. Much of the pioneering

work has been done on miRNAs, but with tRFs, a new class of regulatory small RNA is increas-

ingly being investigated in physiological and pathological contexts. During the current, early phase

of small RNA studies, research has often assumed a limited perspective; many publications study in-

teraction between few partners, in most cases reducing focus to one miRNA and one targeted gene.

However, during the initial phase of my work on transcriptional interactions, it quickly became ap-

parent that an integrative perspective is crucial. First and foremost, this involves information on

the coding genes that are the supposed targets of small RNA intervention, but also the workings of

transcription factors, which shape the phenotype of the cell, and, relatedly, tissue specificity of all

of the aforementioned processes.

As such, a comprehensive integrative model of smRNA interactions did not exist when I started

to work on this dissertation. More recently, there have been developments of integrative databases

which model miRNA→gene interaction, one of them also including tissue specificity and transcrip-
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tion factors. The most extensive efforts in my view are mirDIP, miRWalk 3.0, and miRNet (causing

the name change of my own database). Thus, they will be briefly reviewed and compared to my own

work in the following.

mirDIP 4.1 301 and miRWalk 3.0 309 are similar in their focus on miRNA→gene interactions. To

this end, both collected and integrated third-party data into their database. Both offer public access

through a browser-based interface and database downloads. In addition, mirDIP offers integration

into development environments via Java, R, and Python APIs. The main difference between the two

is their data aggregation approach. While the mirDIP team collected all resources available (75 dif-

ferent sources301), the miRWalk developers reduced their source count between versions 2.0 and 3.0,

from 12 sources to 4. 309 Instead of combinatorial power, the authors of miRWalk 3.0 rely on a sin-

gle algorithm as core principle of miRNA→gene targeting, TarPmiR.310 Briefly, TarPmiR utilises

machine learning (random forest) to identify miRNA binding sites by characteristics learned from

photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) se-

quencing results. A comparison to other prediction algorithms indicated superior performance in

the authors’ hands. 310 However, it also shows how incomplete these approaches still are: the average

recall of TarPmiR in the initial publication was 0.543, and the precision was merely 0.181 (or 0.191,

the numbers in the manuscript conflict), indicating a high number of false positives. In light of

these numbers, reliance on any one algorithm still remains statistically inferior to the combination

of predictions based on different modelling techniques.128 In light of the reliability of prediction

algorithms, which ranges from very low to medium at best, stringent assessment of statistical proper-

ties of these data collections is necessary. However, the authors of miRWalk 3.0 have not statistically

evaluated the performance of their database in the most recent publication.309

At the other extreme, mirDIP 4.1 includes 30 publicly available sources, selected from a review of

75 sources, to yield a total amount of 150 million targeting predictions.301 Of note, due to perfor-

mance issues (space requirements and query times), the database only supports miRNA:gene inter-

actions, without additional information such as mRNA binding site, and does not work with gene

identifiers other than HUGO symbol (which may be ambiguous). For integration of all third-party

datasets, the authors normalised confidence levels of predictions inside each dataset to yield a score

between 0 and 1, and then ranked each prediction dataset based on a benchmarking procedure (us-

ing experimentally validated interactions). These ranks were then used to calculate the confidence

of miRNA→gene relationships via an integrative scoring, similar to the score in miRNeo, but with

the addition of a weight for each prediction dataset. The addition of a weight may be beneficial the

more source datasets are used, to differentiate between different qualities of source material. What

I did by excluding the two poor performance datasets (Section 2.2.4) equals a simplified weighing

procedure (with score of 1 for included datasets and 0 for dropped). A comparison of miRNeo ac-
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curacy compared to the mirDIP 4.1 data using the benchmarking data will be interesting, but has

not been performed yet. Once the mirDIP data is integrated inmiRNeo, the benefit of the weighing

procedure can be evaluated.

miRNeo is not designed to compete with these types of database; on the contrary, miRNeo relies

on a combination of publicly available datasets to enable accurate prediction128 and to be able to

derive test statistics from comparison of different source materials. Rather, miRNeo is designed to

be efficient in managing complex computations on RNA-based interactions so as to enable the study

of complex relationships and biological mechanisms such as feedforward loops.

As such, miRNet300 is closest in functionality to miRNeo, as it provides interaction data on tran-

scription factors as well. Very recently, it seems to have been updated to version 2.0, which allows

study of transcription factors and feedforward loops, but there has been no publication detailing

the results as of yet (May 2020). Its main »advantage« (see below) over miRNeo for users is that

it provides an easy-to-use web-based interface for analyses; its main downside is that it practically

includes only two main miRNA targeting sources, TarBase and miRecords. miRNA:TF data were

collected from a dedicated source, TransmiR, which includes only manually curated interactions,

and thus likely underestimates the true interactions by orders of magnitude. Additionally, the new

version of miRNet seems to diverge significantly from the original description,300 and the only way

of evaluating the database is by the very limited »About«-section on the webpage, which unfortu-

nately features several inconsistencies. For instance, the authors state that »miRNA to TF inter-

action data were collected from TransmiR 2.0«, however, TransmiR is a TF→miRNA database,

which is critically and fundamentally different in its implications. In addition, a curated database

such as TransmiR cannot currently be designated comprehensive, by their own description it in-

cludes »2,852 TF-miRNA regulations from 1,045 publications«, and very limited tissue-specific

information. However, in the miRNet web application, tissues can be selected for TF interactions,

regardless of target type. How that is possible is not explained. In summary, while the idea behind

miRNet may be similar tomiRNeo, function and performance cannot currently be assessed without

additional information on what exactly miRNet does, and what data it is based on. It may even be

dangerous to present researchers with such an easily accessible tool, a »black box«, which from the

input of only a few gene names generates complex analyses without requiring any understanding

from the researcher performing the analyses. Maybe even more questionable is the lack of trans-

parency as to how the results are generated. Taken together, it harbours the danger of generating a

large amount of false results, and consequently, a number of irreproducible research findings.

In summary, miRNeo as an integrative approach to small RNA dynamics is a valuable addition

to the repertoire of the study of transcriptional interactions. It collects several resources for tar-

geting of genes by small RNAs, which have been statistically evaluated as to their performance; it
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integrates this targeting data with tissue-specific TF→gene targeting information from 394 human

tissues, based on the FANTOM5 dataset; and it provides, through its graph-based infrastructure,

high computational performance for the assessment of complex relationships in RNA interaction.

From these vantage points, it is the most complete integrative transcriptional interaction database

to date. Its main limitation in this context is the limited availability due to the lack of a web-interface

or public R package, and the high entry-level of knowledge it requires for usage.

5.2.2 The Cholinergic/Neurokine Interface

Multiple lines of orthogonal evidence confirm the significance of neurokines for cholinergic pro-

cesses, and imply a cooperation between cholinergic and neurokine systems in health as well as in

disease. Earliest descriptions of neurokines, in the late 1980s, have tied them to cholinergic differenti-

ation, which was the reason for adopting the LA-N cell models for experimental work in this disserta-

tion.73 The bioinformatic analyses of these experiments identified two miRNA families, mir-10 and

mir-199, to inhabit a pivotal role in interfacing between cholinergic and neurokine genes, and tran-

scriptomic analyses of single cell data from murine and human CNS demonstrate a co-expression of

cholinergic markers and neurokine receptors.1 Thus, an assessment of cholinergic neuron function-

ality, be it in health or in neurological disease, has to take into account these para- and endocrine

influences, particularly from the neurokine and neurotrophic factor families.

More generally, it is very likely that most neuroscientific endeavours would benefit from integrat-

ing other aspects of life-science, in particular, endocrinology and immunology. As recent literature

shows, many classifications of diseases originally thought neurologic are currently being revised, of-

ten resulting in inclusion of immunological aspects. First and foremost, the term »neuroinflamma-

tion« has seen a rise in popularity by 806% in the last decade (PubMed search results of publications

between 1900 and 2010: 2414, between 2010 and 2020: 19465, Figure 5.4). Consequently, the sci-

entific community has much to gain from cooperation between the neurologic and immunologic

branches of research.

Importantly, the interaction between neurokine and cholinergic systems is not unidirectional;

both systems control manifold properties of the mammalian body, and thus, communication be-

tween the two systems takes place in various ways, cell types, and organs of the body. Arguably,

the most immediate form of this communication is the elicitation of cholinergic properties in neu-

ronal cells by neurokine signals. It has been shown by myself and others that isolated neuronal cells

express more choline acetyltransferase (CHAT) and vesicular acetylcholine transporter (SLC18A3)

upon neurokine stimulation, 157,311 and stimulation by leukaemia inhibitory factor (LIF) results in

catecholaminergic→cholinergic transformation of sympathetic neurons in vivo. 88 In theory, this
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Figure 5.4: Number of Publications onNeuroinflammation by Year.

Data were downloaded from https://www.ncbi.nlm.nih.gov/pubmed on the first of April 2020.

type of interaction between neurokine and cholinergic systems requires only one type of cell (if the

neuron in question were able to synthesise and release a neurokine); however, in vivo, it likely in-

volves at least two types of cells: the neuron receptive of the neurokine signal, and a regulatory cell

which releases the neurokine. While the regulatory cell types releasing IL-6, the most studied neu-

rokine by far, are already well described, the cellular sources of the other, lesser-studied neurokines

are still enigmatic, particularly in the CNS. Similarly, the differences in effect on the stimulated cells

by the different neurokines, which in all likelihood are rather subtle, have not been studied as of yet.

By the rather unique combination of soluble and membrane-bound receptors, which cooperate in a

fashion unique to each individual member of the gp130 family, neurokines present a tremendously

complex regulatory mechanism.

Conversely, cholinergic systems can influence neurokines, however, this side of the interaction

is much less clear and subject to considerable controversy. While the definition of »cholinergic« is

relatively simple in the transcriptional context, a clear definition of neurokine tissues is all but impos-

sible. A cholinergic neuron by definition is characterised by its expression of CHAT and SLC18A3,

without which it would not be able to transmit a cholinergic signal; in the case of non-neuronal

cholinergic systems, it is admittedly more complex. In neurokine systems, however, most cell types

that may be considered as candidates fulfil a wide range of functions, using multiple and diverse mes-

senger molecules; mainly, this involves tissues of the immune system. As such, the »target cell« of

cholinergic→neurokine interaction may be different depending on the context, which complicates

the analysis of clinical and experimental data. The most prominent instance of cholinergic→neuro-

kine interaction is the so-called cholinergic anti-inflammatory reflex, coined and popularised by the

work of Kevin Tracey (see also Section 1.2.3).312 While Tracey’s work is not specifically aimed at in-
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fluences on neurokine systems, the anti-inflammatory properties of vagal activation extend to neu-

rokines, as can be seen by the suppression of IL-6-mediated effects of LPS by vagal activation.313

However, while there has been proof of the anti-inflammatory effect of vagal activation, its mecha-

nism still is a matter of debate. Since ACh is rapidly degraded by circulating esterases, an endocrine

functionality is out of the question. However, the spleen, as the major organ target of the immuno-

suppression, is not parasympathetically innervated (or very sparsely, as some results suggest). 41 The

current working hypothesis involves a participation of sympathetic mediation of the vagal signal

through the splenic nerve, where it activates β2 adrenergic receptors on ChAT+ T cells, which in

turn release the ACh required for cholinergic suppression of inflammation. While the target tissue

still is unclear, ACh was proposed to act on T cells, Macrophages, or splenar sympathetic synaptic

terminals. 314 Influences on immune cells by direct cholinergic signalling via ACh are further com-

plicated by the availability of different receptor types and subtypes. For instance, the activation of

homopentameric α7 nicotinic receptors causes a suppression of inflammatory processes; inciden-

tally, this can also happen in part due to activation of JAK2/STAT3 activation.315 Conversely, an

activation of muscarinic receptors often is associated with immune stimulation.316

The identification of the two interfacing families, mir-10 and mir-199, adds another piece of

circumstantial evidence to the complex picture of cholinergic/neurokine interaction (Figure 5.5).

Given the likely assumption that there is, in fact, a small RNA interface controlling and/or fine-

tuning the interaction between cholinergic and neurokine systems, mir-10 and mir-199 family mem-

bers are prime candidates for this role.

A pivotal mediator of cholinergic/neurokine interaction, and of neurokine function in general, is

the JAK/STAT pathway, which is immediately tied to gp130 activation. Importantly, JAK/STAT

signalling is exclusive to neither cholinergic nor neurokine processes, but is critically important in

both. Neurokines can activate tyrosine kinases JAK1/2 and TYK2, as well as STATs 1, 3, 5A, and

5B.76 Which of these leads to pro-cholinergic differentiation of neurons is still unclear and an in-

teresting topic for further research. Some work has been done on the distinction of effects between

different members of the JAK and STAT families, mainly in immune cells. For instance, STAT1

activation in phagocytic monocytes leads to differentiation towards the M1 type pro-inflammatory

macrophage, while STAT3 activation favours the generation of anti-inflammatory M2 type macro-

phages.317 The broad expression and wide-reaching functionalities of the JAK/STAT pathway bring

with them an important caveat regarding all matters they were implicated in in the course of this

dissertation, particularly in regard to gene ontology analyses: due to their importance in many pro-

cesses in mammalian cells, they may be overrepresented in annotation, for instance in the ontology

catalogues, such that these harbour an implicit bias for finding associations to JAK/STAT-related

processes. Although there are measures in place in the analysis process that are supposed to sup-
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Figure 5.5: The Cholinergic/NeurokinemiRNA Interface. The neurokines, such as CNTF, LIF, and IL-6, signal through a combination

of soluble and membrane-bound receptors. Activation of a transmembrane neurokine receptor is usually followed by JAK recruit-

ment and phosphorylation, and successively by STAT activation and translocation to the nucleus. Gp130-family neurokine, choliner-

gic, and circadian signalling pathways are controlled by primate-specific and evolutionarily conservedmiRNAs. miRNA targeting of

individual genes (indicated by coloured symbols) yields complex transcriptional interactions. Several miRNAs directly targeting the

cholinergic pathway also target TFs controlling this pathway (circles and triangles).

press false identification, for instance the weighing in R/topGO, there is no way of guaranteeing

the absence of false positives in these results. However, since JAK/STAT mechanisms were implied

with high frequency and in various independent analyses, there is a high level of confidence in their

relevance to the studied phenomena.

Neurokines are implicated in a range of diseases that have previously been associated with cholin-

ergic systems and their dysfunction, particularly in the context of neuroinflammation, and particu-

larly regarding IL-6. Whether this is a result of research bias, or of IL-6 actually being more relevant

for disease processes, cannot at the moment be determined. There have been recent investigations

of neurokine participation in AD,318,319 SCZ,320,321 BD,322–324 and stroke.325–328 Thus, the estab-

lishment of LA-N-2 and LA-N-5 as human neuronal models of cholinergic/neurokine interaction

can serve as a platform for further studies of the molecular mechanistic properties of this interaction

and the evaluation of therapeutic interference in these systems (see also Section 5.3).

5.2.3 Molecular Biology of Feedforward Loops

Small RNA feedforward loops are a mechanistically feasible epigenetic controller of transcription,329

and the existence of biologically relevant FFLs has been convincingly shown.299 However, this ev-

idence is still anecdotal, and thus, quantitative estimations of the extent of this phenomenon can-

not with certainty be made. Hypothetically, feedforward loops affect a significant portion of all

miRNA→gene relationships, as can be seen in the FFL module analysis in Section 4.5. Intriguingly,
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tRF→gene feedforward loops (with a miRNA-like mechanism) are predicted in significantly smaller

numbers. The stroke-relevant genes identified in Section 4.2.1 are involved in 3.5% of miRNA FFLs

(681 FFLs) and 11% of tRF FFLs (21 FFLs). Thus, the low number of identified tRF-FFLs in stroke

is not a stroke-specific observation, but rather a consequence of a low number of tRF-FFLs over-

all. Whether this is a result of the still inaccurate prediction or a real difference between these two

smRNA species cannot be answered by my analyses. It is, however, an interesting question for fu-

ture research.

Hypothetically, if the low number of tRF-FFLs is not an artefact, but rather a representation of

real epigenetic state, the question then arises, »What may the reason for this discrepancy be?« Gener-

ally observed, tRF→gene interaction is present and not significantly less so than miRNA→gene in-

teraction, for instance in the FFL module analysis in Section 4.5. For comparison, the network that is

the basis for FFL analysis in Figure 4.10 contains 481 miRNAs and 344 tRFs, but 681 miRNA-FFLs

and only 21 tRF-FFLs. This discrepancy may carry biological significance, and two possible explana-

tions come to mind: 1) tRFs may preferentially target genes that represent the ultimate stage of gene

expression, and show less direct tRF→TF interaction; or 2) tRFs show tRF→gene and tRF→TF

interactions in similar extent as miRNAs, but the target sets do not overlap, i.e., targeted non-TF

transcripts and TF transcripts do not form meaningful FFLs in the case of tRF targeting.

To determine the most likely answer based on my data, I calculated the ratio of smRNA→TF

to smRNA→gene (excluding TFs) interactions for both smRNA species in the raw FFL network

data of Figure 4.10. The ratio was similar in both species, around 10% (miRNAs: 10.95%, 6491 /

59 269; tRFs: 9.37%, 17 542 / 187 124), indicating that assumption #1 may not hold. It follows that

miRNAs and tRFs target TFs and non-TF genes in comparable amounts, but that the targeting in

the case of miRNAs shows significantly more overlap between TFs and non-TF genes, leading to

significantly more FFLs, in agreement with hypothesis #2. This argument is only strengthened by

the fact that the absolute number of tRF→gene interactions was significantly higher as compared

to miRNA→gene (as a result of the score-based thresholding procedure in miRNA analysis).

Another aspect of FFL theory is the coherence of loops. While there are feasible roles for coher-

ent as well as incoherent smRNA:TF:gene loops, their implications may diverge depending on the

cellular context. Just looking at summary statistics of the differentially expressed smRNAs in stroke,

there is an implied difference between the two smRNA species: while miRNAs in the majority are

down-regulated, tRFs in the majority are up-regulated (see Figure 4.3). Combined with the prefer-

ential down-regulation of mRNA and the putative antagonistic role of both smRNA species, the

general role of tRFs agrees with coherent FFLs, while the general role of miRNAs seems incoherent.

Computing coherence on an individual FFL level indeed shows a high number of incoherent FFLs

among all miRNA FFLs, mainly of the type »all down-regulated« (Figure 5.6). Likewise, all 21
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Figure 5.6: Coherence ofmiRNA Feedforward Loops. Individual FFLs were classified based on the direction of regulation of each of

their components (miRNAs, TFs, and non-TF genes) in the blood of stroke patients, as determined via RNA-seq. Barplots represent

the count of each class of FFL, colour denotes coherence. Incoherent FFLs dominate quantitatively. A) Barplot of all possible types

of FFLs. B)Barplots of FFLs only with coherent TF→gene relationships (both either up- or down-regulated).

detected tRF-FFLs were of the type »incoherent«. However, due to the very low number of tRF-

FFLs, this finding in all likelihood is not representative. The few detected tRF-FFLs may also be

false positives.

Regardless of their individual biological significance, FFLs can be used as a tool to gain insight on

transcriptional processes. FFLs may identify tightly connected processes, and allow stratification of

large data, which is one of the main problems in descriptive bioinformatics. The approach shown

in Section 4.5 is an attempt at dimensionality reduction that retains as much of the original data

structure as possible, while allowing human interpretation. As is demonstrated by the comparison

between GO analyses on the whole set of data and the individual clusters as defined by FFL analysis,

the latter allows deeper insight into the biological processes affected by stroke through its increased

resolution (Figure 4.11).

In this manner, the most pathologically pertinent coding transcripts in the blood of stroke victims

were identified and classified, as well as their associations with biological processes involved in patho-

genesis of or response to the infarction. The main biological pathways identified in this context are

involved in immunity and inflammation, cell death, regulation of transcription, STAT signalling,

lipid metabolism, and blood vessel integrity. A comparison between annotated FFL modules and

t-SNE visualisation of module GO terms summarises the implications drawn from this bioinfor-

matically supported clinical study (Figure 5.7). Of note, the number of molecules comprising each

module correlates with the number of GO terms identified for the respective module, as seen by the

comparison between the largest module (two) and the smallest modules (three and four). This can

137



A Mechanistic Perspective of Transcriptional Interactions

1

3

5

9

� � � � �� � �� �� � � � � � � �� �
� �� � � � � �� �

� � � �� �� � �� � � � � � � � �
� � ��� � � � � � � � � �� � � � �

� �� � � �� � �
 � � � � � � �� � �� �

� � � � � � � � �� � � � � �� � � � � � � �

� � � �� �� � �� � � � � � � � �� � ��� � � � �� � � �� �


� � � � �� � �� � �� � �
� � � � �� �� � � � �� �

� � � � �� � �� � �� � �� � � � � � � � �
� � �� 	 � � � �� � �� � �� � �� �

� � � � � �� � �� � � � �� � �� � �
� � �� � � � �� � � � � 
 �

� � � � � � � � �� � �� �� � � � �	 � � � � � � � �
 �

� 	 � � � �� � �� � 
 �� � � 
 �� �� � � � �� � �� � � � � � 	

� � � �� � � �� � � � � �� � � �� �

�� � � � � � � � � 	 �� � � � � � � �

� � � � � �� � �� � � � �� � �� � �
� � �� � � � �� 
 � � � �� �

� � � � �� � �� � �� � �� � � �� �� � � � �� � � �� � � 	

� � � � �� � �� � �� � �
� � � 
 �� � 
 �� � � � �
� � � � � 
 �

� � � � �� � �� � �� � � �� � � � � �
�� � � � � �� � � � � � � �

� � � � �� � �� � �� � �� � � �� � � � � � ��

� � � � � �� � �� � � � �� � �� � �
� � �� �� 
 �� �

� � � � � �� � �� � � � �� � �� � �
� � �� 	 � �� �
 �� � � � �

 �� � � � � � �� � �� �

� � � � �� � �� � �� � �� � �
 �
�� 
 � � � 
 �� � � �� � � � � � � ��

� �� � � � �
 �� � � � � � �� � �� �

� � � � �� � �� � �� � �
� 	 � � � �� � �
� �� � 	 � � � � � �� �
� � � � � � �

� � � �� �� � �� � � � � � � � �� � �
�� � � � � � � � � �� � � � �

� 	 � � � �� � �� � 
 �� � � 
 �
� �� � � � �� � �� � � � � � 	

� � � � �� � �� � �� � �
� 	 � � �� � �� � � � � � � � � �
� � � 
 � � � �� �

� � � � �� � �� � �� � �
�� � � � � ��� � � � � �
� � � � � � � �

� � � � � �� � �� � � � �� � �� � �
� � �� 	 � � � �� � �� � � 
 � � � �� �

� � � � � �� � �� � � � �� � �� � �� � �
�� � � � � ��� � � � � �� � � � � � � �

� � � � � �� � �� � � � �� � �� � �� � �
� 	 � � � �� � �� � � 
 � � � �� �

�� � � � �� � � �� �
 �� � � � �
� � � 
 � � � �� �

� � � � � �� � �� � � � �� � �� � �
� � �� 	 � �� �
 �� � � � �

 �� � � � � � �� � �� �

� � � � � �� � �� � � � �� � �� � �� � �
� � � � � � � � �� � �� 	 � � � �� �

� 	 � �� �
 �� � � � �
� � � � � � � � � ��

� � � � � �� � �� � � � �� � �� � �� � �
�� � � � � � � � � 	 �� � � � � � � �

� � � � � �� � �� � � � �� � �� � �
� � � �� � � � � 	 � � �
 �� � � � � � �� � �� �

� � � � �� � �� � �� � �� � � ��� � � � � � � � � �� 
 � � � �� �

� � � � � �� � �� � � � �� � �� � �
� � �� � � �� �� � �� � � �� �
� � � � � � � �� �� � � � � � �

� � � � � � � � �� � ��� � � � �� � � �� �


� � � � � �� � �� � � � �� � �� � �
� � � � �� �
 �
� � � � � � � �� �� � � � � � �� � � ��� � � � �  � � � � �� � �

� � � � � �­ � � �� �

� � � � �� � �� � �� � �
� 	 � � � �� � �
� � � 
 � � � �� �

� � � � 	 �� � �
 �
 � � �� � � �� � �
� � � � � � � �� �� � � � � � �

� � � � � � � � �� � �� 	 � � � ��
� �� � 
 �� � � � � �� � �� �

� � � �� �� � �� � � � � 
 �

� � � � �� � �� � �� � �� �� � � � �
 �� � � � � � �� � �� �

2

1
5

3

4

�� � � � � � � �� �
� �

�� � � � � � � �� �
� �

�� � � � � � � �� � �

 � � �

� � � � � � � �� �

 � � �

� � � � � � � �� �

 � � �

� � � � � � � �� �
� �

� � � � � � � �� � �� �
� � �
 � � � �

� � � � � � � �� � �� �
� � �
 � � � �

� �� �
 �� � � � � � � � � � �� �
� �� � 
 �� � � � � � � �� � � � � � � 	

� �� � 
 �
 � � � � � � � 


� �� � � � �
�� � � � � � � 


� � � � � �� � 
 �� �� � �
� � � � � � � � 	 �� � �� �

� � 
 � � � 
 ��� � � � � � � 
 �
� �� � �� � � � � � � � 	 �� � �� �

�� � � � � � � 
 �� �� � �
� � � � � � � � 	 �� � �� �

�� � � � � � � 
 �� �� � �

 � � � � � 	 �� � �� �

� � � �� � � � �� �� � �
� � �� 	 � � �� � � � � � � � � �

� � � �� � � � �� �� � �
� � �� 	 � � �� � � � � � � � � �

� � � ��� � � � � � � � � 	 �
� 
 �� 	 � � �� � � � � � � � � �

� � � �� � 
 � � �
� � � �� � � �� � 
 �� �

� � � � � �
 � � � � � 	 �� � 
 �

 �� � � � � � �� � �� �

� � � �� � 
 � � �
� � � �� � � �� � 
 �� �
� � � �� � � � �
� � � � � �� � �� �
� � � � � �

� � � � � �� � �� �

� �

Figure 5.7: Comparison of Annotated Feedforward Loop Network and t-SNE Visualisation of Module GO Terms. A)Reproduction

of Figure 4.12, colours have been adapted to allow module comparison between A and B. Displayed is the network of all CD14+-

specific FFLs, stratified into five modules, and overlaid with module-specific GO analysis results. B) Reproduction of Figure 4.11B.

Displayed is the t-SNE-based visualisation of all module-specific GO terms from the CD14+ FFL-network (A), coloured by module.

The distance between nodes is based on amount of shared genes between terms, depth of colour represents significance level, size

of node represents number of genes in term.

be explained by the comparison of the number of DE genes in each module and the absolute num-

ber of genes making up any GO term (i.e., the successes). Hypergeometric enrichment p-values are

dependent on the size of the set of successes, and thus, the likelihood of identifying a large (i.e., less

specific) GO term with a comparatively small number of test set genes is very low, which is not the

case for smaller, highly specific GO terms. Consequently, larger modules (test sets) have available to

them a larger number of GO terms that can potentially be enriched.

Comparing the topography between Figure 5.7 A and B, the location of most modules appears

as a mirror image. This could be interpreted as a confirmation of the general feasibility of the ap-

proach: the similarity of transcripts as determined by their participation in closely related FFLs is

paralleled by the similarity of module GO terms as determined by the genes shared between the GO

terms. However, a significant difference between the two visualisations seems the central position

of module one in Figure 5.7 B, which may indicate a central relevance of module one transcripts

in the studied processes. Indeed, module one GO terms appear to function as a nucleation point

for related terms from the other modules (central cluster of Figure 5.7 B), which may be used as an

indicator of a focus point for further studies.

There are several lines of investigation that could be based on the present results: 1) As described

above, the cluster surrounding module one GO terms could be dissected as to the implications of

the genes relevant to these terms. These genes may represent a »cooperative set«, which mediates

between the distinct modules and their influences on the biological processes in question. As such,
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it may be interesting to »zoom in« into the network of only those genes defining this central cluster,

to identify pathways sitting at the epicentre of transcriptional response to stroke.

2) Feedforward loops as an abstract classification method may be helpful in the differentiation

of inductive versus repressive behaviours of single TF→gene relationships. As discussed several

times in the course of this dissertation (see e.g. Section 5.1.7), the current comprehensive data on

TF→gene interaction does not allow prediction of the direction of regulatory influence of the TF

over the gene. Even in manually collected data, such as TRANSFAC, the interaction of TF and

gene is often described in a »yes/no« fashion, with the added limitation of tissue-specific informa-

tion that is not easily transferred. This is mainly owed to the fact that most TF:gene interactions are

found via binding assays such as chromatin immunoprecipitation (ChIP) sequencing and related

variants. The combination of smRNA:TF:gene FFLs with interventional experiments (i.e., yield-

ing regulatory output) may serve as methodical support to determine the direction of regulation

in individual TF→gene interactions. The application of FFLs (from prediction or web-available

datasets) to experiments (also from web-available datasets) may aid in detecting regulatory circuits,

and a meta-analysis of these circuits across multiple different experiments may be used to calculate

likelihood data of positive or negative regulatory interaction between any TF and gene. Such an ap-

proach may be a cost-effective data-mining alternative to painstaking single-experiment molecular

biology.

3) Similarly, FFLs can aid in the classification of small RNA species and their families and sub-

families in a functional manner. The participation in FFLs from a comprehensive dataset can be

mathematically transformed into a similarity- or distance-matrix, and the information so gained on

relationships among smRNAs can be used for the stratification and analysis of relationships between

individual smRNAs. This classification can serve as an independent comparative dataset, comple-

menting the traditional strata derived from phylogenetic studies.

4) There is need for the development of statistical frameworks in the analysis of feedforward loops.

In particular, a measure for the relative importance of each FFL in a network would be helpful for the

dissemination of the network and its functions. Possible components of a mathematical description

of significance in this setting may be the differential expression of FFL components, the strength

of the interaction between FFL components, or network-specific parameters such as centrality. A

formal definition of such an »importance measure« is not a trivial task and will require extensive

comparison and validation.
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5.3. Small RNA Therapeutics and Pharmacology

5.3.1 Interactions Between Small Molecule Drugs and Small RNAs

While we know a lot about the transcriptional effects of approved small molecule drugs, and likewise

have learned much about the workings of miRNAs in regulating the transcriptome, the intersection

between small molecule drug effects and miRNAs (and other small RNAs) in vivo is still very current

and ongoing research. There have been reports of miRNA regulation conveying drug resistance in

single instances (mainly in cancer);330 for example, the deletion of the genomic locus containing the

miR-125b gene led to an increased susceptibility of breast cancer patients to anthracylines.331 There

have been attempts at comprehensively assessing the potential interaction spaces between drug- and

miRNA-effects,332,333 however, these are limited to indirect comparison of the transcript spectra of

drugs and miRNAs compared (»drug A influences expression of gene B, which is also influenced

by miRNA C, so there may be interaction«), and text mining. Both examples are relatively crude

estimations of possible interactions, feature a low resolution, and disregard tissue-specific effects

and transcription factor interactions, both of which are elementary in the effects of most approved

transcriptionally relevant drugs. 334

While a majority of drug-miRNA interactions is still in the dark, it is feasible that miRNAs

not only convey drug resistance, but may also play a part in the known effects of approved small

molecule drugs, particularly those with known transcriptional effects. There have been single re-

ports of miRNA perturbations upon treatment with antipsychotics such as haloperidol, clozap-

ine, and chlorpromazine, but those reports are seldom and remain descriptive.335 Clayton and col-

leagues have recently reviewed the role of miRNAs in glucocortocoid (GC) action. 334 They found

that miRNAs modulate the biogenesis of GCs in the adrenal glands as well as cell responses to GCs.

At least part of the effects of GCs in cell function, proliferation, and survival are conveyed via their

regulation of miRNA expression. The GC receptor is regulated by miRNAs, such that a repression

of the receptor by up-regulated miRNAs conveyed treatment resistance in leukaemias and asthma.

In leukocytes, miR-155 down-regulation is an important aspect of GC-mediated suppression of

inflammation; dexamethasone-mediated suppression of the response to lipopolysaccharide (LPS)

inhibited the up-regulation of miR-155 in primary macrophages, macrophage cell lines, spleen and

liver cells of mice, and T cells of sepsis patients.334 In our hands, dexamethasone prevented the up-

regulation of the top six stroke-perturbed transfer RNA fragments (tRFs) in murine RAW 264.7

macrophages in vitro. 2

GCs also inhibit the expression of miR-101, which leads to impaired mitogen-activated protein

kinase (MAPK) activation and subsequent suppression of inflammation. Resistance to GC-induced
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apoptosis in multiple myeloma has been associated with elevations of miR-221/222 and miR-125b.

Paradoxically, GCs themselves increase the expression of miR-125b, which may constitute a nega-

tive feedback mechanism, partly via suppression of p53. 336 Notably, members of the mir-10/199

families (see Section 3.5) are closely intertwined with regulation of GC function. In addition to

the aforementioned effects of miR-125b on GC action, miR-125a and miR-10b regulate GC syn-

thesis via interaction with CYP11B1 and CYP11B2 (11-Deoxycorticosterone→Corticosterone→
Aldosterone; 11-Deoxycortisol → Cortisol), whereas miR-199a is up-regulated by GC treatment

of osteoblasts and conveys WNT pathway suppression, and miR-199a levels were found to be re-

duced in patients with Cushing’s disease. Clayton et al.334 also identify major hurdles in the devel-

opment of therapeutic strategies paying respect to miRNA involvement, which are congruent with

my own assessment. The first refers to the complex biological role of small RNAs and the challenges

it presents to bioinformatics:

»How are functional interactions to be predicted with confidence, and how are subtle
effects of individual miRNAs to be experimentally validated without the danger of
confirmation bias? How are miRNA-mediated effects on biological processes to be
identified and understood when they involve many-to-many rather than one-to-one
interactions?«

The second refers to the challenge in translating the biological knowledge so gained into effective

treatment:

»Even where good therapeutic targets can be clearly identified, it remains to be seen
whether a mimic or antagonist of a single miRNA species will be sufficient to exert
therapeutic effects. If targeting more than one miRNA proves necessary, this will cre-
ate additional barriers to development, in part because of the problem of predicting
and mitigating off-target effects.«

These questions imply that mimicking or antagonism of an endogenous miRNA (or multiple)

may not be the most logical way of pursuing small RNA therapeutic applications, which will be

addressed in the following section (5.3.2).

5.3.2 Small RNAs as Pharmacological Agents

Application of small oligonucleotides in therapy of human diseases is in the early stages of develop-

ment. Theoretically, antisense oligonucleotides can, via their instrumentalisation of endogenous

RNA interference machinery, silence virtually any gene in the human body, including non-coding

genes. Thus, presuming an appropriate design strategy, synthetic oligonucleotides possess a broader
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Figure 5.8: siRNANanoparticle Lipid. (6Z ,9Z ,28Z ,31Z )-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate. Im-

age and caption from Jayaraman et al. 339

spectrum than traditional small molecule drugs. Because of their chemical nature, i.e., high molecu-

lar weight and poly-ionised backbone, oligonucleotides cannot cross biological membranes via pas-

sive diffusion and therefore have to be delivered using advanced pharmaceutical formulations, most

commonly, lipid nanoparticles (Figure 5.8). 337,338 Additionally, to circumvent recognition by the

host defence system, e.g. by TLRs, the bases composing the oligonucleotide are often chemically

modified. Common modifications include the 2’-O-methyl sugar modification, which prevents

TLR7-mediated response, bridging between two sugar molecule carbon atoms (creating so-called

»locked nucleic acids«), which fix the nucleotides in a specific steric position, and hybridisation to

molecules such as cholesterol or polyethylene glycol, which can convey steric hindrance and even

organ targeting properties. 338

Once they have reached the cytoplasm of the target cell, therapeutic antisense oligonucleotides

can load into the RNA-induced silencing complex (RISC) and convey translational suppression

similar to endogenous molecules such as miRNAs and tRFs. Notably, and perhaps surprisingly,

single-dose application of comparatively low doses of synthetic oligonucleotides can continuously

suppress target mRNA synthesis, and consequently protein expression, over a period of months. 340

The most advanced lipid nanoparticles are composed of ionisable amino lipids that self-assemble

into particles of the size of approximately 100 nm when mixed with polyanionic oligonucleotides

(i.e., the drug molecules).337 The dual function of these amino lipids is 1) to interact with drug

molecules via ion-ion interaction, forming the delivery particles and 2) to allow the drug molecules

to escape from endosomes after endocytosis by the target cell. Through developments in the last

two decades, these particles have reached a therapeutic index suitable for human therapy.339,340

The first FDA-approved antisense drug was afovirsen, approved in 1991 for use in human pa-

pillomavirus treatment, targeting the E2 gene implicated in virus replication. However, afovirsen

and the Bcl2-antisense oblimersen failed their clinical trials. It took several more years for the first

synthetic oligonucleotide to be approved for human treatment: fomivirsen, also a blocker of viral

RNA, for the local treatment of HIV-associated cytomegalovirus retinitis, was approved in 1998. 341

It has since been retracted, but several others are currently approved for treatment: mipomersen for

the treatment of familial hypercholesterinaemia, defibrotide for treatment of veno-occlusive liver

disease, eteplirsen and golodirsen for treatment of Duchenne muscular atrophy, pegaptanib for age-

related macular atrophy, nusinersen for treatment of spinal muscular atrophy, inotersen for the
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treatment of heritable transthyretin-mediated amyloidosis, and volanesorsen for treatment of hy-

pertriglyceridaemia, familial chylomicronaemia syndrome and familial partial lipodystrophy.342,343

A fascinating case is the personalised oligonucleotide (named milasen) for therapy of the rare neu-

rodegenerative condition »Batten’s disease«, which has been specifically designed for the patient

Mila Makovec based on a sequencing of her genome, and which modifies the splicing of the mutated

MSFD8 gene identified as causal in her affliction. 344 It can be described as a repurposed version of

nusinersen, featuring the same backbone and sugar chemistry modifications, but adapted to target

the splicing of MSFD8 instead of SMN2 mRNA.

Notably, extant antisense approaches are characterised by their high specificity for an affected

organ (liver, eye) and a bias for rare diseases, many of them previously untreatable. The organ speci-

ficity can be explained by the delivery aspect: due to their chemical nature, they are most effective

if applied to the organ directly (eye) or if they are hybridised to a targeting molecule. The discovery

of hybridisation of an oligonucleotide to N-acetylgalactosamine, which specifically binds to asialo-

glycoprotein receptors expressed by hepatocytes, has led to a surge in candidates for the treatment

of liver-associated diseases (Figure 5.9). 343 In addition, capillary endothelia in most tissues do not

easily allow the passage of particles larger than 5 nm; notable exceptions are tissues containing sinu-

soidal endothelia, particularly the bone marrow, liver, and spleen.345,346 The remainder of extant

approaches are explained largely by the orphan status of the targeted diseases, facilitating approval.

Most pipeline drugs are being developed in the fields of oncology and neurology; as of late, RNA

antisense therapeutics seem to have reached the point of profitability.343

Another notable common characteristic of antisense therapeutics on the market or in the pipeline

is the monogenetic or pseudo-monogenetic nature of the targeted diseases. For instance, in neurol-

ogy, phase III pipeline candidates include IONIS-HTTRx for treatment of Huntington’s disease,

and tofersen for treatment of SOD1-driven amyotrophic lateral sclerosis. Both diseases are charac-

terised by a clear understanding of how changes in single transcripts cause pathology, and thus are

easily accessible to the design of an antisense sequence. Inclisiran, also known as ALN-PCSsc, has

recently successfully completed phase II trial for the treatment of familial hypercholesterinaemia.340

Its target is the proprotein convertase subtilisin-kexin type 9 (PCSK9) mRNA, reduction of which

leads to a reduction in low density lipoprotein (LDL) particles. Similarly to other liver-targeted

oligonucleotides, inclisiran is hybridised to triantennary N-acetylgalactosamine carbohydrates, con-

veying liver-specific receptor-mediated endocytosis. The encapsulating lipid nanoparticles utilise

the aminolipid DLin-MC3-DMA (see Figure 5.8). 339 Inclisiran has been shown to significantly alle-

viate familial hypercholesterinaemia (LDL-levels reduced by approximately 40%) via only bi-annual

subcutaneous application.340,348–350
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Figure5.9: TheMechanismofSmall InterferingRNA(siRNA)Therapy. Syntheticdouble-strandedRNAcontaininganALAS1-specific

sequence is derivatizedwithN-acetylgalactosamine to target the asialoorosomucoid (galactose) receptor, which is expressed nearly

exclusively on hepatocytes. Within the hepatocyte, the RNA is processed into approximately 20-bp fragments by a cellular enzyme

(dicer), and then separated into single strands. The strand that is complementary toALAS1 (the guide strand) binds to cellularALAS1

messenger RNA (mRNA) and enters the RNA-induced silencing complex (RISC), where the new double-stranded RNA is cleaved by

a group of factors that include argonaute, a ribonuclease. The result is a reduction in the level of delta ALA synthase 1 protein and

decreased production of ALA. Image and caption by Dr. Gerald Diaz. 347

The use of single-target oligonucleotides parallels the leitmotif of modern medicinal chemistry:

creating drugs with as little off-target effects as possible, to be able to tightly control the biologi-

cal effects of the drug while simultaneously preventing adverse effects. Due to their extreme target

specificity caused by mRNA complementarity, antisense oligonucleotides mainly cause adverse ef-

fects via their application (e.g., local effects at the subcutaneous injection site) or the compounds

needed to facilitate their delivery (e.g., the lipid nanoparticles). Considering the very infrequent ap-

plication as compared to other subcutaneous therapeutics, the general adverse effect risk of antisense

therapy can be considered low.340

The main problem in antisense therapy in its current state is the limitation to easily accessible

compartments and the single-target nature of the drugs. All diseases featured in this dissertation

(compare Section 1.2 and Chapters 3 & 4) are known for their polygenetic or poly-factorial nature,

and thus, monogenetic therapeutic approaches are bound to fail. Additionally, psychiatric diseases

present the major delivery hurdle of the blood-brain-barrier, and possibly pose advanced delivery

problems such as single affected CNS cell types. Traditional small molecule therapeutics in psychi-

atric disease are known for their extreme range of target molecules. Most are derived from chlor-

promazine, an artefact of antihistamine discovery synthesis, and are notorious for their targeting
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of multiple classes of neurotransmitter receptors. Impressively, second generation antipsychotics,

which generally are seen as an improvement over the first generation of chlorpromazine-type an-

tipsychotics, often present a more extensive and complex receptor profile, contrary to the specificity

leitmotif of medicinal chemistry.

Translation of the knowledge of these dynamics in psychiatric diseases to antisense oligonucleotide

therapy is the biggest hurdle for the design of adequate drug molecules. As opposed to small molecule

drugs (high throughput screening of synthetic derivative molecules), serendipity is all but impos-

sible in the case of antisense drugs, which are comprised of combinations of only four principal

building blocks, as opposed to thousands of different chemical moieties, but a greater combinato-

rial multitude of possible molecules: 4n, with the common length of 22 nt, yields approximately

17.6 trillion individual molecules. The iterative screening of all possible combinations of the four

bases in common high-throughput assays would quickly exceed experimental capacities and would

lead to uneconomic development costs, particularly if seeking a multi-target oligonucleotide. Thus,

bioinformatic predictions of suitable candidate molecules to be tested are necessary for efficient and

economic screening of drug candidates for any given application, as well as for the prior identifica-

tion of suitable combinations of target molecules in any given disease.

The dissertation here presented provides an infrastructure for these analysis steps (Chapter 2) as

well as examples for high-prevalence diseases (Chapters 3 & 4). Integrative transcriptomics analyses

can serve as tools for the identification of pertinent pathways in pathogenesis as well as for the devel-

opment of oligonucleotides with multi-target behaviour that enables synergistic effects in therapy

and an imitation of multiple-target small molecule drug behaviour. Priorities in these analyses can

be set to reflect the researchers’ focus; for instance, an analytical prior could bias the search towards

pharmacologically interesting targets that are so far inaccessible to small molecule drugs, such as

IRF5 in inflammation (see Section 4.5.4). 351 Multi-target oligonucleotides can follow two principal

design strategies: the mimicking or antagonising of extant endogenous smRNA molecules, such as

miRNAs, or the de-novo creation of oligonucleotides based on complementarity to predefined tar-

get transcripts. The former method is more likely to be efficacious in a short time frame, but brings

with it the risk of generating a plethora of adverse effects, because the target profiles of miRNAs

are mostly very broad, tissue specific, and not entirely clear yet. De-novo design, on the other hand,

theoretically allows the creation of defined target populations without off-target effects. The hu-

man genome is known, and thus, sequences can be generated that are complementary only to the

target RNA molecules, without any other hits across the genome. However, since not all mechanis-

tic aspects of RNA interference are clear (canonical versus non-canonical binding, bridging, wob-

ble), not all complementary oligonucleotides are similarly effective. Thus, candidate molecules re-

quire thorough testing. This brings attention to another important limitation in de-novo design of

145



Small RNA Therapeutics and Pharmacology

oligonucleotide drugs: due to the differences in species genomes, these molecules cannot be compre-

hensively tested in animal models, particularly in rodents. Safety considerations thus should have

utmost priority in clinical evaluation of such molecules. Studies of these phenomena have led to the

new subfields of genocompatibility and toxicogenomics.337

In immunology, hybridisation of oligonucleotide drugs to immune cell-specific receptor ligands

could be used to convey a cell-type specificity akin to current liver-specific approaches. Many tran-

scription factors (TFs) show highly context-dependent activities, 270 and thus, a combination of TF

specificity conveyed by the oligonucleotide and cell type specificity conveyed by a hybridisation part-

ner may allow context-dependent intervention. For instance, ligands specific for CD4+ cells could

be used to target oligonucleotides to T helper cells, targeting relevant TFs such as NF-κB or STATs

to modify the inflammatory reflex; oligonucleotides hybridised to CD14+-targeting ligands could

be utilised to interfere with monocyte responses, e.g. after stroke. Due to the trafficking of immune

cells between brain and periphery, therapy of diseases with neuroinflammatory components could

be accessible through the much easier peripheral (e.g., subcutaneous) application. Considering the

accessibility of different tissues to standard parenteral application routes, the most promising strate-

gies are targeting of immune cells circulating in the blood, or stationary in the spleen, both of which

are relatively permissible to nanoparticles,345 and, in limited fashion, also lymph nodes, which can ac-

commodate particle sizes between 10 and 100 nm. 352 A knockdown of few select monocyte-specific

transcripts could be used to drive differentiation towards the pro-resolving M2-type macrophage

population,353 possibly breaking the vicious cycle of protracted inflammation. Co-targeting of

cholinergic and neurokine transcripts may interfere more causally in pathogenesis of diseases with

cholinergic participation than current single-target small molecule approaches.
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6
Conclusion

The study of small RNA dynamics is greatly facilitated by modern bioinformatic methods that en-

able an understanding of complex transcriptional events in unprecedented detail. While the ap-

plication and integration of the diverse sources characterising interactions and the participating

molecules still are prone to error and misinterpretation, the field advances in giant steps. In sum-

mary, the dissertation here presented contributes to the field the following findings:

• Establishment of a framework for the fast and efficient computation of complex interactions be-

tween smRNAs, transcription factors, and target genes, including high-resolution tissue specific

effects, and on the scale of the whole genome and all miRNAs and tRFs simultaneously;
• (Re-)establishment of an in vitro human cellular model for the study of cholinergic neurons with

regard to sex specific phenomena, and, particularly, the effect of neurokine differentiation on

cholinergic processes;
• In this context, elucidation of the potential impact of small RNA dynamics in psychiatric and

neurologic diseases;
• Identification of pertinent mechanisms in the response to stroke of blood-borne human cells,

and interactions between small and large transcripts in these cells;
• Identification of a neuro-immune axis connecting neurokine mechanisms and cholinergic sig-

nalling in multiple instances;
• Exploration of the feasibility and practicality of feedforward loop analyses, in general and in an

example of CD14+ monocytes in post-stroke blood samples;
• Description of a first step in utilising advanced network approaches for data science in the life

sciences, for instance by implementing a »smart« dimensionality reduction.
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In prospect of further research on the subject, this dissertation may be built upon in various ways:

miRNeo as an infrastructure of smRNA-interactions can be extended by inclusion of novel data on

several aspects, such as tissue-specific information on small RNAs (compare Section 4.3) or inter-

actions with small molecule drugs, further enhancing the possibilities of identifying feedforward or

other loops relevant to human health. Likewise, integration of data from multiple sources allows

the statistical evaluation of data reliability by means of comparison between datasets, increasing the

sensitivity and specificity of bioinformatic predictions of relevant interactions. miRNeo may also

act as an interface between different measurement methods, such as smRNA and mRNA sequenc-

ing, or even non-transcriptional parameters such as biomarkers, drug monitoring, or proteome mea-

surements, to enable integrative assessments of complex biological processes in health and disease,

and to disentangle the bi-directional relationships between drug effects and smRNA regulation. It

may also be extended (incorporating human genomic information) to be used as a de-novo predic-

tive tool for designer oligonucleotides targeting a specific group of transcripts that do not directly

mimic endogenous smRNAs, but rather are designed to suppress disease-relevant transcripts with

little off-target genomic effects (i.e., toxicogenomics and genocompatibility analyses).

Regardless of the implications of miRNeo and related technical issues in computational infra-

structure, the analytical properties of network dynamics between small and large RNAs can further

enhance our understanding of the principles behind epigenetic regulation in mammalian cells. We

are only just beginning to understand the interaction dynamics between small and large RNA in

the many-to-many context of molecular reality. More research is needed to comprehend the cell

type-specific activation and deactivation of regulatory circuits such as feedforward loops, and their

impact on the cell’s phenotype and health. Only when the basic principles of smRNA regulation are

understood can we begin to rationally build therapeutic strategies that address these mechanisms.
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A | Transcription Factor Regulatory Circuits - Tissue Types

CNS Tissues
AMYGDALA ADULT NUCLEUS ACCUMBENS ADULT
BRAIN ADULT OCCIPITAL CORTEX ADULT
CAUDATE NUCLEUS ADULT OCCIPITAL LOBE ADULT
CEREBELLUM ADULT OCCIPITAL POLE ADULT
CEREBRAL MENINGES ADULT OLFACTORY REGION ADULT
CORPUS CALLOSUM ADULT OPTIC NERVE
DIENCEPHALON ADULT PARACENTRAL GYRUS ADULT
FRONTAL LOBE ADULT PARIETAL LOBE ADULT
GLOBUS PALLIDUS ADULT PONS ADULT
HIPPOCAMPUS ADULT POSTCENTRAL GYRUS ADULT
INSULA ADULT PUTAMEN ADULT
LOCUS COERULEUS ADULT SPINAL CORD ADULT
MEDIAL FRONTAL GYRUS ADULT SPINAL CORD FETAL
MEDIAL TEMPORAL GYRUS ADULT SUBSTANTIA NIGRA ADULT
MEDIAL TEMPORAL GYRUS TEMPORAL LOBE ADULT
MEDULLA OBLONGATA ADULT THALAMUS ADULT
NEUROBLASTOMA CELL LINE

Immune Tissues
CD14-CD16+ MONOCYTES LANGERHANS CELLS MIGRATORY
CD14+CD16- MONOCYTES LYMPH NODE ADULT
CD14+CD16+ MONOCYTES MACROPHAGE - MONOCYTE DERIVED
CD14+ MONOCYTES MAST CELL
CD19+ B CELLS NATURAL KILLER CELLS
CD4+ T CELLS NEUTROPHILS
CD8+ T CELLS SPLEEN ADULT
DENDRITIC CELLS - PLASMACYTOID SPLEEN FETAL
ENDOTHELIAL PROGENITOR CELLS THYMUS ADULT
LANGERHANS CELLS IMMATURE THYMUS FETAL
CD34+ STEM CELLS - ADULT BONE MARROW DERIVED
CD4+CD25-CD45RA+ NAIVE CONVENTIONAL T CELLS
CD4+CD25+CD45RA+ NAIVE REGULATORY T CELLS
CD4+CD25-CD45RA- MEMORY CONVENTIONAL T CELLS
CD4+CD25+CD45RA- MEMORY REGULATORY T CELLS
DENDRITIC CELLS - MONOCYTE IMMATURE DERIVED
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B | List of Primate-Specific Homologues of Human microRNAs

Primate-specific microRNAs
hsa-let-7c-3p hsa-mir-3138 hsa-mir-517c-3p hsa-mir-604
hsa-mir-101-3p hsa-mir-3149 hsa-mir-518a-3p hsa-mir-606
hsa-mir-105-3p hsa-mir-3155a hsa-mir-518a-5p hsa-mir-608
hsa-mir-105-5p hsa-mir-3165 hsa-mir-518b hsa-mir-609
hsa-mir-1180-3p hsa-mir-3170 hsa-mir-518c-3p hsa-mir-610
hsa-mir-1180-5p hsa-mir-3174 hsa-mir-518c-5p hsa-mir-611
hsa-mir-1181 hsa-mir-3188 hsa-mir-518d-3p hsa-mir-612
hsa-mir-1182 hsa-mir-3193 hsa-mir-518d-5p hsa-mir-6127
hsa-mir-1183 hsa-mir-3200-3p hsa-mir-518e-3p hsa-mir-6128
hsa-mir-1184 hsa-mir-3200-5p hsa-mir-518e-5p hsa-mir-6129
hsa-mir-1185-5p hsa-mir-320c hsa-mir-518f-3p hsa-mir-613
hsa-mir-1200 hsa-mir-320d hsa-mir-518f-5p hsa-mir-6130
hsa-mir-1202 hsa-mir-320e hsa-mir-519a-3p hsa-mir-6131
hsa-mir-1203 hsa-mir-323a-3p hsa-mir-519a-5p hsa-mir-6132
hsa-mir-1204 hsa-mir-323a-5p hsa-mir-519c-3p hsa-mir-6133
hsa-mir-1205 hsa-mir-323b-3p hsa-mir-519c-5p hsa-mir-6134
hsa-mir-1206 hsa-mir-323b-5p hsa-mir-519e-3p hsa-mir-614
hsa-mir-1207-3p hsa-mir-33b-3p hsa-mir-519e-5p hsa-mir-617
hsa-mir-1207-5p hsa-mir-33b-5p hsa-mir-520a-3p hsa-mir-618
hsa-mir-1208 hsa-mir-3612 hsa-mir-520a-5p hsa-mir-621
hsa-mir-1225-5p hsa-mir-3661 hsa-mir-520b hsa-mir-622
hsa-mir-1244 hsa-mir-372-3p hsa-mir-520c-3p hsa-mir-623
hsa-mir-1253 hsa-mir-372-5p hsa-mir-520c-5p hsa-mir-626
hsa-mir-1254 hsa-mir-374a-3p hsa-mir-520d-3p hsa-mir-628-3p
hsa-mir-1255a hsa-mir-374a-5p hsa-mir-520d-5p hsa-mir-628-5p
hsa-mir-1257 hsa-mir-376a-2-5p hsa-mir-520e hsa-mir-630
hsa-mir-1258 hsa-mir-378e hsa-mir-520h hsa-mir-633
hsa-mir-1260a hsa-mir-378j hsa-mir-521 hsa-mir-634
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Primate-specific microRNAs (continued)
hsa-mir-1261 hsa-mir-3923 hsa-mir-522-3p hsa-mir-635
hsa-mir-1262 hsa-mir-3937 hsa-mir-522-5p hsa-mir-636
hsa-mir-1263 hsa-mir-3938 hsa-mir-523-3p hsa-mir-637
hsa-mir-1264 hsa-mir-3943 hsa-mir-523-5p hsa-mir-638
hsa-mir-1265 hsa-mir-422a hsa-mir-524-3p hsa-mir-639
hsa-mir-1267 hsa-mir-432-3p hsa-mir-524-5p hsa-mir-640
hsa-mir-1270 hsa-mir-432-5p hsa-mir-525-3p hsa-mir-641
hsa-mir-1271-3p hsa-mir-4427 hsa-mir-525-5p hsa-mir-643
hsa-mir-1271-5p hsa-mir-4428 hsa-mir-526a hsa-mir-645
hsa-mir-1272 hsa-mir-4429 hsa-mir-527 hsa-mir-646
hsa-mir-1273a hsa-mir-4446-3p hsa-mir-548d-3p hsa-mir-647
hsa-mir-1273c hsa-mir-4446-5p hsa-mir-548d-5p hsa-mir-648
hsa-mir-1273e hsa-mir-4451 hsa-mir-548g-3p hsa-mir-649
hsa-mir-1275 hsa-mir-4484 hsa-mir-548g-5p hsa-mir-650
hsa-mir-1276 hsa-mir-4488 hsa-mir-548h-3p hsa-mir-6505-3p
hsa-mir-1278 hsa-mir-449b-3p hsa-mir-548h-5p hsa-mir-6505-5p
hsa-mir-1283 hsa-mir-449b-5p hsa-mir-548i hsa-mir-656-3p
hsa-mir-1286 hsa-mir-4504 hsa-mir-548j-3p hsa-mir-656-5p
hsa-mir-1289 hsa-mir-4510 hsa-mir-548j-5p hsa-mir-657
hsa-mir-1290 hsa-mir-4515 hsa-mir-548k hsa-mir-660-3p
hsa-mir-1293 hsa-mir-4526 hsa-mir-548l hsa-mir-660-5p
hsa-mir-1294 hsa-mir-454-3p hsa-mir-548n hsa-mir-661
hsa-mir-1296-3p hsa-mir-454-5p hsa-mir-548p hsa-mir-662
hsa-mir-1296-5p hsa-mir-4637 hsa-mir-549a hsa-mir-663b
hsa-mir-1299 hsa-mir-4654 hsa-mir-553 hsa-mir-6790-3p
hsa-mir-1302 hsa-mir-4660 hsa-mir-554 hsa-mir-6790-5p
hsa-mir-1303 hsa-mir-4672 hsa-mir-555 hsa-mir-6794-3p
hsa-mir-1305 hsa-mir-4703-3p hsa-mir-556-3p hsa-mir-6794-5p
hsa-mir-1322 hsa-mir-4703-5p hsa-mir-556-5p hsa-mir-6827-3p
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Primate-specific microRNAs (continued)
hsa-mir-1323 hsa-mir-4766-3p hsa-mir-557 hsa-mir-6827-5p
hsa-mir-1324 hsa-mir-4766-5p hsa-mir-558 hsa-mir-760
hsa-mir-1469 hsa-mir-4788 hsa-mir-559 hsa-mir-765
hsa-mir-1471 hsa-mir-4791 hsa-mir-563 hsa-mir-767-3p
hsa-mir-147a hsa-mir-4796-3p hsa-mir-564 hsa-mir-767-5p
hsa-mir-147b hsa-mir-4796-5p hsa-mir-566 hsa-mir-769-3p
hsa-mir-151a-3p hsa-mir-4803 hsa-mir-567 hsa-mir-769-5p
hsa-mir-151a-5p hsa-mir-486-5p hsa-mir-569 hsa-mir-885-3p
hsa-mir-151b hsa-mir-492 hsa-mir-571 hsa-mir-885-5p
hsa-mir-1538 hsa-mir-498 hsa-mir-572 hsa-mir-889-3p
hsa-mir-181a-3p hsa-mir-500a-3p hsa-mir-573 hsa-mir-889-5p
hsa-mir-1825 hsa-mir-500a-5p hsa-mir-575 hsa-mir-890
hsa-mir-1827 hsa-mir-500b-3p hsa-mir-576-3p hsa-mir-891b
hsa-mir-1911-3p hsa-mir-500b-5p hsa-mir-576-5p hsa-mir-892a
hsa-mir-1911-5p hsa-mir-502-3p hsa-mir-577 hsa-mir-892b
hsa-mir-1912 hsa-mir-502-5p hsa-mir-581 hsa-mir-892c-3p
hsa-mir-1913 hsa-mir-506-3p hsa-mir-583 hsa-mir-892c-5p
hsa-mir-197-3p hsa-mir-506-5p hsa-mir-584-3p hsa-mir-920
hsa-mir-197-5p hsa-mir-507 hsa-mir-584-5p hsa-mir-921
hsa-mir-1976 hsa-mir-508-3p hsa-mir-586 hsa-mir-922
hsa-mir-198 hsa-mir-508-5p hsa-mir-587 hsa-mir-924
hsa-mir-2110 hsa-mir-510-3p hsa-mir-588 hsa-mir-933
hsa-mir-2278 hsa-mir-510-5p hsa-mir-590-3p hsa-mir-934
hsa-mir-23c hsa-mir-512-3p hsa-mir-590-5p hsa-mir-936
hsa-mir-298 hsa-mir-513a-5p hsa-mir-591 hsa-mir-938
hsa-mir-299-3p hsa-mir-514a-3p hsa-mir-595 hsa-mir-943
hsa-mir-299-5p hsa-mir-514a-5p hsa-mir-596 hsa-mir-944
hsa-mir-302e hsa-mir-515-3p hsa-mir-600 hsa-mir-95-3p
hsa-mir-302f hsa-mir-515-5p hsa-mir-601 hsa-mir-95-5p
hsa-mir-3122 hsa-mir-516a-3p hsa-mir-602
hsa-mir-3132 hsa-mir-516a-5p hsa-mir-603
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C | List of GO Terms from Analysis of Differentially Expressed Large

RNA in Stroke

Abbreviations. A: Number of Annotated Genes in Term; S: Number of Significant Genes in Term;

E: Number of Expected Significant Genes in Term; P: Adjusted P-Value; LFC: log2 fold change.

Ranking by Count-change, Absolute
GO.ID Term A S E P
GO:0035456 response to interferon-beta 16 6 0.86 1.1E-04
GO:0071346 cellular response to interferon-gamma 66 12 3.57 1.4E-04
GO:0035455 response to interferon-alpha 13 5 0.70 3.8E-04
GO:0007005 mitochondrion organization 63 9 3.40 5.6E-03
GO:0042775 mitochondrial ATP synthesis coupled elec... 15 4 0.81 6.9E-03
GO:0050691 regulation of defense response to virus ... 15 4 0.81 6.9E-03
GO:0070670 response to interleukin-4 15 4 0.81 6.9E-03
GO:0046427 positive regulation of JAK-STAT cascade 16 4 0.86 8.8E-03
GO:0032069 regulation of nuclease activity 10 3 0.54 1.4E-02
GO:0045648 positive regulation of erythrocyte diffe... 10 3 0.54 1.4E-02
GO:0010469 regulation of signaling receptor activit... 38 6 2.05 1.4E-02
GO:0097696 STAT cascade 32 7 1.73 2.2E-02
GO:0008285 negative regulation of cell proliferatio... 95 10 5.13 2.4E-02
GO:0033273 response to vitamin 12 3 0.65 2.4E-02
GO:0050806 positive regulation of synaptic transmis... 12 3 0.65 2.4E-02
GO:0001936 regulation of endothelial cell prolifera... 21 4 1.13 2.4E-02
GO:0051100 negative regulation of binding 32 5 1.73 2.6E-02
GO:0043393 regulation of protein binding 44 6 2.38 2.8E-02
GO:0042157 lipoprotein metabolic process 13 3 0.70 2.9E-02
GO:0046677 response to antibiotic 56 7 3.03 4.1E-02
GO:0048167 regulation of synaptic plasticity 15 3 0.81 4.3E-02
GO:0009617 response to bacterium 125 11 6.75 4.4E-02
GO:0002576 platelet degranulation 37 5 2.00 4.6E-02
GO:0009410 response to xenobiotic stimulus 26 4 1.41 4.8E-02
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Ranking by Count-change, Negative
GO.ID Term A S E P
GO:0006954 inflammatory response 97 15 4.99 1.3E-04
GO:0042981 regulation of apoptotic process 217 25 11.16 1.8E-04
GO:0051241 negative regulation of multicellular org... 153 19 7.87 2.9E-04
GO:0032963 collagen metabolic process 14 5 0.72 4.5E-04
GO:0046718 viral entry into host cell 21 6 1.08 4.6E-04
GO:0030198 extracellular matrix organization 29 7 1.49 4.7E-04
GO:0050663 cytokine secretion 36 9 1.85 6.8E-04
GO:0051048 negative regulation of secretion 32 7 1.65 8.9E-04
GO:0007186 G protein-coupled receptor signaling pat... 52 9 2.67 1.0E-03
GO:0032101 regulation of response to external stimu... 99 16 5.09 1.1E-03
GO:0002479 antigen processing and presentation of e... 17 5 0.87 1.2E-03
GO:1901136 carbohydrate derivative catabolic proces... 42 8 2.16 1.3E-03
GO:0070228 regulation of lymphocyte apoptotic proce... 12 4 0.62 2.4E-03
GO:0010038 response to metal ion 48 8 2.47 2.5E-03
GO:0050671 positive regulation of lymphocyte prolif... 20 5 1.03 2.7E-03
GO:0008630 intrinsic apoptotic signaling pathway in... 14 4 0.72 4.4E-03
GO:0071236 cellular response to antibiotic 23 5 1.18 5.2E-03
GO:0046635 positive regulation of alpha-beta T cell... 16 4 0.82 7.4E-03
GO:1904064 positive regulation of cation transmembr... 16 4 0.82 7.4E-03
GO:0001776 leukocyte homeostasis 25 5 1.29 7.6E-03
GO:0070555 response to interleukin-1 25 5 1.29 7.6E-03
GO:0007565 female pregnancy 26 5 1.34 9.0E-03
GO:0030218 erythrocyte differentiation 17 4 0.87 9.3E-03
GO:1901222 regulation of NIK/NF-kappaB signaling 17 4 0.87 9.3E-03
GO:0006898 receptor-mediated endocytosis 48 7 2.47 9.9E-03
GO:0043123 positive regulation of I-kappaB kinase/N... 48 7 2.47 9.9E-03
GO:0048771 tissue remodeling 27 5 1.39 1.1E-02
GO:0009617 response to bacterium 83 10 4.27 1.2E-02
GO:0032731 positive regulation of interleukin-1 bet... 10 3 0.51 1.2E-02
GO:0062013 positive regulation of small molecule me... 10 3 0.51 1.2E-02
GO:0042542 response to hydrogen peroxide 28 5 1.44 1.2E-02
GO:0044092 negative regulation of molecular functio... 149 16 7.66 1.4E-02
GO:0010595 positive regulation of endothelial cell ... 19 4 0.98 1.4E-02
GO:0051208 sequestering of calcium ion 19 4 0.98 1.4E-02
GO:0045807 positive regulation of endocytosis 29 5 1.49 1.4E-02
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Ranking by Count-change, Negative (continued)
GO.ID Term A S E P
GO:0050706 regulation of interleukin-1 beta secreti... 11 3 0.57 1.6E-02
GO:0032760 positive regulation of tumor necrosis fa... 20 4 1.03 1.7E-02
GO:0045582 positive regulation of T cell differenti... 20 4 1.03 1.7E-02
GO:0043901 negative regulation of multi-organism pr... 25 7 1.29 1.9E-02
GO:0042060 wound healing 65 9 3.34 2.0E-02
GO:0032414 positive regulation of ion transmembrane... 12 3 0.62 2.1E-02
GO:0071621 granulocyte chemotaxis 12 3 0.62 2.1E-02
GO:1901565 organonitrogen compound catabolic proces... 230 20 11.82 2.1E-02
GO:0070372 regulation of ERK1 and ERK2 cascade 32 5 1.65 2.2E-02
GO:0043069 negative regulation of programmed cell d... 138 14 7.09 2.4E-02
GO:0006955 immune response 391 49 20.10 2.4E-02
GO:0071356 cellular response to tumor necrosis fact... 33 5 1.70 2.4E-02
GO:0010811 positive regulation of cell-substrate ad... 13 3 0.67 2.6E-02
GO:0043370 regulation of CD4-positive, alpha-beta T... 13 3 0.67 2.6E-02
GO:0070231 T cell apoptotic process 13 3 0.67 2.6E-02
GO:1903034 regulation of response to wounding 23 4 1.18 2.7E-02
GO:0097237 cellular response to toxic substance 34 5 1.75 2.7E-02
GO:0001910 regulation of leukocyte mediated cytotox... 14 3 0.72 3.2E-02
GO:0021987 cerebral cortex development 14 3 0.72 3.2E-02
GO:0045637 regulation of myeloid cell differentiati... 48 6 2.47 3.4E-02
GO:0000209 protein polyubiquitination 49 6 2.52 3.7E-02
GO:0001501 skeletal system development 49 6 2.52 3.7E-02
GO:0002709 regulation of T cell mediated immunity 15 3 0.77 3.8E-02
GO:0006342 chromatin silencing 15 3 0.77 3.8E-02
GO:0032392 DNA geometric change 15 3 0.77 3.8E-02
GO:0032608 interferon-beta production 15 3 0.77 3.8E-02
GO:0051262 protein tetramerization 15 3 0.77 3.8E-02
GO:0002495 antigen processing and presentation of p... 26 4 1.34 4.1E-02
GO:0006906 vesicle fusion 26 4 1.34 4.1E-02
GO:0032088 negative regulation of NF-kappaB transcr... 16 3 0.82 4.5E-02
GO:0035265 organ growth 16 3 0.82 4.5E-02
GO:0043666 regulation of phosphoprotein phosphatase... 16 3 0.82 4.5E-02
GO:0050731 positive regulation of peptidyl-tyrosine... 16 3 0.82 4.5E-02
GO:0045185 maintenance of protein location 27 4 1.39 4.6E-02
GO:0030855 epithelial cell differentiation 54 8 2.78 4.7E-02
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Ranking by Count-change, Positive
GO.ID Term A S E P
GO:0033273 response to vitamin 12 4 0.61 2.3E-03
GO:0002576 platelet degranulation 31 6 1.57 3.8E-03
GO:0042775 mitochondrial ATP synthesis coupled elec... 14 4 0.71 4.2E-03
GO:0030324 lung development 17 4 0.86 8.9E-03
GO:0008037 cell recognition 18 4 0.91 1.1E-02
GO:0009410 response to xenobiotic stimulus 28 5 1.42 1.2E-02
GO:0042445 hormone metabolic process 19 4 0.96 1.3E-02
GO:0070527 platelet aggregation 19 4 0.96 1.3E-02
GO:0046677 response to antibiotic 53 7 2.69 1.6E-02
GO:0060348 bone development 31 5 1.57 1.8E-02
GO:0001503 ossification 43 6 2.18 1.9E-02
GO:0048705 skeletal system morphogenesis 22 4 1.12 2.2E-02
GO:0019915 lipid storage 13 3 0.66 2.5E-02
GO:0060996 dendritic spine development 13 3 0.66 2.5E-02
GO:0099173 postsynapse organization 14 3 0.71 3.1E-02
GO:0060271 cilium assembly 25 4 1.27 3.5E-02
GO:0061448 connective tissue development 25 4 1.27 3.5E-02
GO:0006325 chromatin organization 113 10 5.74 3.6E-02
GO:0051604 protein maturation 37 5 1.88 3.6E-02
GO:0010595 positive regulation of endothelial cell ... 15 3 0.76 3.7E-02
GO:0070670 response to interleukin-4 15 3 0.76 3.7E-02
GO:0007507 heart development 50 6 2.54 4.0E-02
GO:0007160 cell-matrix adhesion 38 5 1.93 4.0E-02
GO:0060359 response to ammonium ion 16 3 0.81 4.4E-02
GO:0030198 extracellular matrix organization 39 5 1.98 4.4E-02
GO:0009636 response to toxic substance 81 8 4.11 4.6E-02
GO:0045596 negative regulation of cell differentiat... 81 9 4.11 5.0E-02
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Ranking by P-value, Absolute, LFC > 1.4
GO.ID Term A S E P
GO:0001819 positive regulation of cytokine producti... 66 14 4.38 1.7E-04
GO:0032479 regulation of type I interferon producti... 29 8 1.93 3.9E-04
GO:0001818 negative regulation of cytokine producti... 51 11 3.39 5.7E-04
GO:0009617 response to bacterium 95 18 6.31 5.9E-04
GO:0045087 innate immune response 151 38 10.03 2.0E-03
GO:0098586 cellular response to virus 15 5 1.00 2.1E-03
GO:0046683 response to organophosphorus 22 6 1.46 2.3E-03
GO:0002753 cytoplasmic pattern recognition receptor... 10 4 0.66 2.8E-03
GO:0048661 positive regulation of smooth muscle cel... 16 5 1.06 2.9E-03
GO:0060760 positive regulation of response to cytok... 16 5 1.06 2.9E-03
GO:0014074 response to purine-containing compound 23 6 1.53 3.0E-03
GO:0032649 regulation of interferon-gamma productio... 17 5 1.13 3.8E-03
GO:0016525 negative regulation of angiogenesis 12 4 0.80 6.0E-03
GO:0034446 substrate adhesion-dependent cell spread... 13 4 0.86 8.3E-03
GO:0032496 response to lipopolysaccharide 46 8 3.06 9.2E-03
GO:0009063 cellular amino acid catabolic process 14 4 0.93 1.1E-02
GO:0031349 positive regulation of defense response 58 11 3.85 1.2E-02
GO:0002576 platelet degranulation 22 5 1.46 1.3E-02
GO:0010469 regulation of signaling receptor activit... 49 8 3.26 1.3E-02
GO:0070887 cellular response to chemical stimulus 404 54 26.84 1.6E-02
GO:0030168 platelet activation 32 6 2.13 1.6E-02
GO:0034109 homotypic cell-cell adhesion 16 4 1.06 1.8E-02
GO:0050731 positive regulation of peptidyl-tyrosine... 25 5 1.66 2.2E-02
GO:0048469 cell maturation 17 4 1.13 2.2E-02
GO:0097696 STAT cascade 17 4 1.13 2.4E-02
GO:0043330 response to exogenous dsRNA 10 3 0.66 2.4E-02
GO:0071695 anatomical structure maturation 18 4 1.20 2.7E-02
GO:0050680 negative regulation of epithelial cell p... 19 4 1.26 3.3E-02
GO:0007267 cell-cell signaling 146 11 9.70 3.5E-02
GO:0001936 regulation of endothelial cell prolifera... 20 4 1.33 3.9E-02
GO:0006906 vesicle fusion 20 4 1.33 3.9E-02
GO:0007160 cell-matrix adhesion 20 4 1.33 3.9E-02
GO:0030856 regulation of epithelial cell differenti... 12 3 0.80 4.0E-02
GO:0034113 heterotypic cell-cell adhesion 12 3 0.80 4.0E-02
GO:0042130 negative regulation of T cell proliferat... 12 3 0.80 4.0E-02
GO:0051668 localization within membrane 12 3 0.80 4.0E-02
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Ranking by P-value, Negative, LFC > 1.4
GO.ID Term A S E P
GO:0051607 defense response to virus 44 10 2.72 2.2E-04
GO:0019221 cytokine-mediated signaling pathway 110 16 6.80 7.8E-04
GO:0035270 endocrine system development 10 4 0.62 2.2E-03
GO:0006511 ubiquitin-dependent protein catabolic pr... 74 11 4.57 2.6E-03
GO:0042102 positive regulation of T cell proliferat... 17 5 1.05 2.8E-03
GO:0000209 protein polyubiquitination 42 8 2.60 3.3E-03
GO:0034341 response to interferon-gamma 42 8 2.60 3.3E-03
GO:0002831 regulation of response to biotic stimulu... 18 5 1.11 3.7E-03
GO:0045786 negative regulation of cell cycle 70 10 4.33 3.8E-03
GO:0050658 RNA transport 31 6 1.92 4.5E-03
GO:0006513 protein monoubiquitination 13 4 0.80 6.4E-03
GO:0045071 negative regulation of viral genome repl... 14 4 0.87 8.5E-03
GO:0071347 cellular response to interleukin-1 14 4 0.87 8.5E-03
GO:0016032 viral process 108 15 6.67 2.0E-02
GO:0043900 regulation of multi-organism process 53 11 3.28 2.5E-02
GO:1902533 positive regulation of intracellular sig... 110 14 6.80 2.6E-02
GO:0034097 response to cytokine 156 23 9.64 2.8E-02
GO:0001819 positive regulation of cytokine producti... 61 8 3.77 3.1E-02
GO:0030855 epithelial cell differentiation 57 8 3.52 3.3E-02
GO:0032663 regulation of interleukin-2 production 12 3 0.74 3.4E-02
GO:0035264 multicellular organism growth 12 3 0.74 3.4E-02
GO:0051865 protein autoubiquitination 12 3 0.74 3.4E-02
GO:0044265 cellular macromolecule catabolic process 148 20 9.15 3.6E-02
GO:0018107 peptidyl-threonine phosphorylation 13 3 0.80 4.2E-02
GO:0048469 cell maturation 13 3 0.80 4.2E-02
GO:0032103 positive regulation of response to exter... 32 5 1.98 4.3E-02
GO:0008285 negative regulation of cell proliferatio... 80 10 4.94 4.8E-02
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Ranking by P-value, Positive, LFC > 1.4
GO.ID Term A S E P
GO:0010594 regulation of endothelial cell migration 20 5 0.87 1.2E-03
GO:0006939 smooth muscle contraction 13 4 0.56 1.7E-03
GO:0090257 regulation of muscle system process 28 5 1.21 6.0E-03
GO:0002478 antigen processing and presentation of e... 20 4 0.87 9.3E-03
GO:0016358 dendrite development 20 4 0.87 9.3E-03
GO:0016525 negative regulation of angiogenesis 11 3 0.48 1.0E-02
GO:0022904 respiratory electron transport chain 11 3 0.48 1.0E-02
GO:0048041 focal adhesion assembly 11 3 0.48 1.0E-02
GO:0002040 sprouting angiogenesis 12 3 0.52 1.3E-02
GO:0030193 regulation of blood coagulation 12 3 0.52 1.3E-02
GO:0046034 ATP metabolic process 23 4 1.00 1.5E-02
GO:0006898 receptor-mediated endocytosis 35 5 1.52 1.6E-02
GO:0001936 regulation of endothelial cell prolifera... 13 3 0.56 1.6E-02
GO:1902600 proton transmembrane transport 13 3 0.56 1.6E-02
GO:0050900 leukocyte migration 60 6 2.60 2.0E-02
GO:0097305 response to alcohol 25 4 1.08 2.1E-02
GO:0043434 response to peptide hormone 43 5 1.86 2.6E-02
GO:0007611 learning or memory 27 4 1.17 2.7E-02
GO:0051048 negative regulation of secretion 29 4 1.26 2.9E-02
GO:0007584 response to nutrient 16 3 0.69 2.9E-02
GO:0034622 cellular protein-containing complex asse... 115 10 4.98 2.9E-02
GO:0051897 positive regulation of protein kinase B ... 18 3 0.78 4.0E-02
GO:0050730 regulation of peptidyl-tyrosine phosphor... 31 4 1.34 4.2E-02
GO:0016571 histone methylation 19 3 0.82 4.6E-02
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D.1. Declarations

Except where stated otherwise by reference or acknowledgment, the work presented was generated

by myself under the supervision of my advisors during my doctoral studies. The material listed

below was obtained in the context of collaborative research:

Figure 3.13: »The Cholinergic/Neurokine Interface«, Geula Hanin (formerly Hebrew University

of Jerusalem, now University of Cambridge), her contribution: cell culture experiments gener-

ating data for panels B-D (Section 3.7.6), my own contribution: data generation and analysis for

panel A, visual representation of the entire figure.

All RNA sequencing described in this dissertation was carried out in the National Center for Ge-

nomic Technologies, a Core Facility in the Alexander Silberman Institute of Life Sciences of the

Hebrew University, Jerusalem, and with the help of Dr. Estelle Bennett (Soreq lab).

Chapter 4: sequencing of patient blood samples, sample generation (RNA isolation from patient

blood): Bettina Nadorp, formerly Hebrew University of Jerusalem, now NYU Langone Health.

The work presented in chapter four was done in close collaboration with Kasia Winek and Her-

mona Soreq of the Soreq lab at the Silberman Institute of Life Sciences, Hebrew University,

Jerusalem. Starting with alignment of sequenced reads (Section 4.1.4), all analyses were per-

formed by myself.

The following parts of the thesis have been previously published:
• Chapter three has in large parts been described in Lobentanzer et al.1 This includes parts of Fig-

ures 3.2, 3.4, 3.7, 3.10, 3.11, 3.12, and 3.13.
• Figure 3.1 has been published in Lobentanzer & Klein.137

• Sections 4.1, 4.2, 4.3, and 4.4 of Chapter four have been partly described in Winek et al.2 This

includes parts of Figures 4.1, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8.
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D.2. Summary in German Language

Die vorliegende Dissertation beschäftigt sich mit der Charakterisierung und Analyse von kleinen

nicht-codierenden RNA-Molekülen im Kontext der Regulation cholinerger Prozesse in neuronalen

und nicht-neuronalen Geweben. Durch die geometrische Komplexität der Interaktion von kleinen

RNAs (smRNAs) mit codierenden Transkripten in der Zelle, die in der Art eines »viele-zu-viele«

Netzwerkes organisiert ist, kann man eine umfassende Analyse der Dynamiken der smRNA-Regu-

lation nur mit bioinformatischer Hilfe unternehmen. Diese Dissertation etabliert eine bioinformati-

sche Infrastruktur für solche Analysen (unter dem NamenmiRNeo) und diskutiert dann deren An-

wendung an zwei klinischen Beispielen: 1) die neuronale Rolle von cholinerger smRNA-Regulati-

on in den psychiatrischen Erkrankungen Schizophrenie und Bipolare Störung 1 und 2) die Relevanz

cholinerg-assoziierter smRNAs in immunologischen Reflexen im Blut von Schlaganfall-Patienten.2

Im Hinblick auf die steigende Relevanz von therapeutischen Mechanismen im smRNA-Bereich

gibt die Dissertation einen Ausblick auf die bioinformatisch gestützte Arzneistoff-Entwicklung, be-

sonders in Beachtung der smRNA-typischen Funktionsweise und multiplen Interaktionen mit co-

dierenden Genen und Transkriptionsfaktoren (TFs).

D.2.1 Einführung

Cholinerge Systeme sind unerlässlich für die physiologische Funktion des Säugetier-Organismus

(Kapitel 1.1). Sie zeichnen sich aus durch die Verwendung des Signalmoleküls Acetylcholin (ACh),

des ersten Neurotransmitters, für den eine derartige Funktion nachgewiesen wurde. Cholinerge

Systeme sind im zentralen Nervensystem hochrelevant, vor allem in einer modulatorischen Rolle.

Cholinerge Projektionen aus den acht primären cholinergen Kernen Ch1-Ch8 üben Kontrolle über

weite Bereiche des Mittelhirns und der Hirnrinde aus. Zusätzlich existieren cholinerge Interneurone

mit kurzen Projektionen in mehreren Hirngebieten, zuvorderst im Striatum, und, erst seit kurzem

bekannt, in der Hirnrinde.

Cholinerge Systeme sind, parallel zu ihrer wichtigen Rolle in physiologischen Prozessen, auch

beteiligt an verschiedensten Krankheitsprozessen (Kapitel 1.2). Ätiologisch ist eine kausale Rolle

von ACh in mehreren zentralnervösen und peripheren Erkrankungen nachgewiesen, beispielswei-

se in der Alzheimer-Demenz, Schizophrenien und Bipolaren Störungen, sowie in peripheren Im-

munreflexen, auch im Zusammenhang mit Schlaganfall. In der Alzheimer-Erkrankung stellt die

Hemmung des ACh-abbauenden Enzyms Acetylcholinesterase (AChE) das dominierende Thera-

pieprinzip dar. Allerdings ist die aktuelle Therapie begrenzt auf Symptomatik und eventuelle Ver-

langsamung des geistigen Verfalls. In psychiatrischen Erkrankungen, die oft multigenetische Ätiolo-

gien aufweisen, ist die Beteiligung von cholinergen Systemen komplex und Gegenstand der aktiven
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Forschung. Gleichermaßen ist der Einfluss cholinerger Signale im Bereich der Immunität noch weit-

gehend ungeklärt. Es gibt deutliche Hinweise auf die Beteiligung von ACh an der Regulation von

T-Zellen, Monozyten/Makrophagen und an deren Mobilisierung aus der Milz. Die genauen Mecha-

nismen sind allerdings noch kontrovers diskutiert, beispielsweise verfügt die Milz nicht über direkte

vagale Innervation, was zu der Hypothese geführt hat, dass die Ausschüttung von ACh in diesem

Fall von lokalen Immunzellen unter Stimulation durch den Sympathikus stattfindet (der die Milz

umfassend innerviert).

Cholinerge Systeme, genauer, die Zellen der cholinergen Systeme, sind charakterisiert durch ihre

Fähigkeit zur Synthese und Freisetzung von ACh und damit durch ihren transkriptionellen Phä-

notyp. Kleine RNAs (smRNAs), deren bekannteste Vertreter momentan microRNAs (miRNAs)

und tRNA-Fragmente (tRFs) sind, üben auf die zelluläre Ebene des Phänotyps, bestimmt durch

mRNA, kontrollierende Funktion aus (Kapitel 1.3.2 & 1.3.3). miRNAs sind in ihrem reifen Sta-

dium kurze (etwa 18-22 Basen), einzelsträngige RNA-Moleküle, die einen Translationsstopp oder

den Abbau von einzelnen mRNAs veranlassen können. Sie nutzen dafür einen Proteinkomplex,

der unter dem Namen RISC (RNA-induced silencing complex) bekannt ist, und dienen als »Ziel-

molekül«: durch Komplementarität mit einer kurzen Sequenz der Ziel-mRNA leiten sie den RISC

zur mRNA. tRFs wurden erst vor kurzem als Kontrollmoleküle identifiziert, obwohl ihre Existenz

schon länger bekannt ist. Ihre Rolle ist bisher weniger klar als die der miRNAs. Teils wurde für ei-

nige tRFs ein miRNA-Mechanismus nachgewiesen (RISC-vermittelter Translationsstopp), aber in

anderen Fällen interagierten die tRFs mit anderen funktionalen Bestandteilen von Zellen, beispiels-

weise RNA-bindenden Proteinen.

Die komplexe »viele-zu-viele«-Struktur der smRNA-Kontrolle cholinerger Prozesse kann ohne

die Hilfe von informatisch gestützten Systemen vom Menschen nicht direkt erfasst werden. In der

Arbeit wurde ein Ansatz, die Struktur und Dynamik von smRNAs in cholinergen Systemen sichtbar

zu machen, beschrieben; dieser Ansatz soll jedoch nicht auf cholinerge Systeme begrenzt bleiben,

sondern wurde mit dem Ziel entwickelt, jedes transkriptionelle System in jeder Zelle untersuchen

zu können.

D.2.2 miRNeo - eine Infrastruktur für smRNA-Dynamik

Die Entwicklung und Pflege der interaktiven Datenbank miRNeo macht einen großen Teil der wis-

senschaftlichen Arbeit an dieser Dissertation aus und zieht sich über die gesamte Dauer der Promoti-

on (Kapitel 2). Der Grundgedanke hintermiRNeo ist die Darstellung eines komplexen biologischen

Regulationsnetzwerkes in einer digitalen Form, die der biologischen Organisation entspricht. Digi-

tale Datensammlungen, insbesondere Datenbanken, sind geprägt durch tabellarische Organisation;
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die Daten werden in Zeilen und Spalten gesammelt, geordnet und abgerufen. In vielen Fällen ist die-

ses Vorgehen ausreichend, denn entweder ermöglichen die Ressourcen eine effektive - wenn auch

ineffiziente - Nutzung, oder die natürliche Struktur der Daten ist ohnehin tabellarisch, beispielswei-

se ein Telefonbuch. Die Interaktion von RNA-Molekülen im epitranskriptionellen Kontext ist je-

doch geprägt von einer hohen Vereinzelung (die meisten potentiellen Interaktionen existieren nicht)

und einer Organisationsstruktur, die sich durch »viele-zu-viele« beschreiben lässt: eine miRNA re-

guliert mehrere (teils hunderte) mRNA-Transkripte und ein mRNA-Transkript wird reguliert von

mehreren miRNAs.

Diese strukturelle Organisation birgt eine Problematik für althergebrachte, tabellarische digita-

le Infrastruktur: das Abfragen eines komplexen Zusammenhangs (beispielsweise die Zusammenar-

beit von TFs, smRNAs und mRNAs im cholinergen System) kann mehrere hundert oder tausend

einzelne Schritte enthalten und benötigt viel Zeit, Platz und Rechenleistung. miRNeo andererseits

fußt auf einem graph-basierten Datenbankschema: die Einträge werden repräsentiert von Knoten

(nodes) und Verbindungen zwischen diesen Knoten (edges). Diese Organisation entspricht der bio-

logischen Organisation genauer als ein tabellarisches Format es könnte. Durch die technische Imple-

mentation im Rahmen der öffentlichen Datenbanksoftware »Neo4j« können so Rechenleistung,

Platz und Zeit gespart werden.

Die miRNeo-Datenbank enthält in ihrer jetzigen Form Informationen über miRNA-Bindever-

halten auf der Basis sowohl von experimentell validierten als auch von bioinformatisch vorherge-

sagten miRNA-mRNA-Interaktionen. Durch die Integration verschiedener Quellen verfügt jede

miRNA-mRNA-Verbindung über eine Wertung, die sich im Zahlenraum zwischen 3 und 20 be-

wegt. Durch die Verwendung einer Mindest-Wertung (in den durchgeführten Analysen meist 6

oder 7) kann das untersuchte Netzwerk nach Qualität der Information gefiltert werden. miRNeo

enthält außerdem eine Sammlung von TF-Regulationskreisläufen (regulatory circuits), die für den

menschlichen Organismus gewebespezifisch die Ermittlung der Aktivität von TFs gegenüber einzel-

nen Genen erlauben. Zudem enthält die Datenbank eigene Vorhersagen über die miRNA-ähnliche

Interaktion von tRFs (mittels TargetScan) und verbindet mehrere Gen-Nomenklatursysteme, um

die Integration und Translation zwischen Datensätzen zu ermöglichen (und deren Fehleranfälligkeit

zu reduzieren).

miRNeo ist aber nicht nur ein Datenspeicher; Neo4j bietet mit der Sprache »CYPHER« die

Möglichkeit eines effizienten Datenabrufs von komplexen Zusammenhängen innerhalb des Daten-

bank-Netzwerkes. Beispielsweise können in einem Arbeitsschritt sämtliche Interaktionen von klei-

nen RNAs, die das cholinerge System betreffen, abgerufen werden, und sie können gleichzeitig mit

den TFs verbunden werden, die in einem bestimmten Gewebe (oder mehreren bestimmten Gewe-

ben) den cholinergen Phänotyp steuern. Dieser Vorgang, der in einem traditionellen tabellarischen
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System eine Kombination mehrerer Abrufe und nachfolgende Verarbeitung der großen Datenmen-

gen im Arbeitsspeicher erfordern würde, kann durch die hohe Ähnlichkeit der biologischen Daten

und der Organisation dieser Daten in miRNeo deutlich effizienter und damit zeitsparender gestal-

tet werden. Dies ist vor allem von Vorteil, wenn die durchgeführten Analysen ein hohes Maß an

Komplexität zeigen, beispielsweise die Ergründung von smRNA:TF:Gen »feedforward«-Schleifen

(Kapitel 4.5).

D.2.3 Cholinerge smRNA-Dynamik in Neuronen

Cholinerge Neurone sind definiert durch ihre Expression von cholinergen Marker-Genen. Dies sind

im engeren Sinne die Cholin-Acetyltransferase (ChAT), die zur Synthese von ACh benötigt wird,

und der vesikuläre ACh-Transporter (vAChT, Gensymbol SLC18A3), der die neuronale ACh-Frei-

setzung ermöglicht. Außerdem ist der hochaffine Cholintransporter (CHT-1, Gensymbol SLC5A7)

fast ausschließlich in cholinergen Nervenzellen zu finden. Im Gegensatz dazu ist die Acetylcholi-

nesterase (AChE) auch oft auf nicht-cholinergen Zelltypen zu finden. Neue Entwicklungen auf dem

Gebiet des Einzelzell-Sequencing ermöglichen eine hochauflösende transkriptionelle Darstellung

des zentralen Nervensystems. In Anwendung öffentlich zugänglicher Daten - gewonnen aus muri-

nem und menschlichem Gewebe - fand eine Charakterisierung der Expressionslandschaft zentraler

cholinerger Neurone statt (Kapitel 3.2). Auf der Basis dieser Daten, genauer, der Co-Expression von

cholinergen Genen und Rezeptoren für Neurokin-Signale (siehe unten), fand eine Bewertung der

Eignung der Zellkultur-Modelle LA-N-2 und LA-N-5 statt. Diese menschlichen, neuronalen Zellen

differenzieren nämlich unter dem Einfluss von Neurokinen zu Neuronen cholinergen Typs, erkenn-

bar an der ansteigenden Expression von ChAT und vAChT (Kapitel 3.3). Neurokine sind eine Fami-

lie von Zytokin-Typ-Signalmolekülen, die ihre Funktion an Rezeptoren der Familie vom gp130-Typ

(Gensymbol IL6ST) ausüben. Die bekanntesten Neurokine sind Interleukin (IL)-6, CNTF (ciliary

neurotrophic factor) und LIF (leukaemia inhibiting factor).

Um die smRNA-Dynamik in der cholinergen Entwicklung dieser Zellen unter Neurokin-Ein-

wirkung zu untersuchen, wurden sie unter Behandlung mit CNTF zu mehreren Zeitpunkten im

Differenzierungsprozess einer RNA-Analyse durch Sequenzierung aller kleinen RNAs unterzogen.

RNA wurde aus LA-N-2 und LA-N-5 jeweils zu den Zeitpunkten 30 Minuten, 60 Minuten, 2 Ta-

ge und 4 Tage isoliert und mit unbehandelten Kontrollen verglichen (Kapitel 3.4.4). Im Resultat

fanden sich 490 teils drastisch veränderte miRNAs zu verschiedenen Zeitpunkten und in einer oder

beiden Zelllinien. Diese veränderten miRNAs wurden daraufhin unter Verwendung einer Anno-

tation für miRNA-Familien systematisiert und aufgrund ihrer Ziel-Proteine in funktionale Kate-

gorien geordnet. Dabei fielen insbesondere die miRNA-Familien mir-10 und mir-199 auf, die cho-
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linerge Kontrolle mit der Regulation von Neurokin-Prozessen verbinden. Molekularbiologische Va-

lidierungsexperimente bestätigten die cholinerge Rolle von hsa-miR-125b-5p in der Regulation der

AChE. Die integrative Analyse dieser Prozesse im Kontext der transkriptionellen Veränderungen

im Rahmen der Schizophrenie und der Bipolaren Störung führten zur Veröffentlichung des ersten

Manuskripts.1

D.2.4 Cholinerge smRNA-Dynamik in Immunzellen

Das zweite Manuskript (geteilte Erstautorschaft) untersucht die Prozesse in zirkulierenden Immun-

zellen des Blutes, die nach einem Schlaganfall auftreten. 2 Schlaganfall-Patienten aus einer multi-

zentrischen Studie unter Leitung der Neurologie der Charité Berlin (PREDICT) wurden für die

Sequenzierung von langen und kurzen RNA-Spezies rekrutiert. Die Isolierung der RNA fand in

diesem Fall aus dem Vollblut statt. Im Anschluss fand eine Vielzahl analytischer Methoden Anwen-

dung, mit dem Ziel, die Dynamik zwischen langen und kurzen RNAs darzustellen und verständlich

zu machen; manche sind in der vorliegenden Dissertation beschrieben, andere in der begleitenden

Veröffentlichung, und manche sind bisher nicht veröffentlicht.

Die Ergebnisse legen eine Verschiebung der kleinen RNA-Spezies zu Ungunsten der miRNAs,

aber zugunsten der tRFs nahe (Kapitel 4.2). Da die gängige Hypothese über smRNA-Funktionen

einen antagonistischen Mechanismus unterstellt, bietet die gemeinsame Analyse von kurzen und

langen RNAs eine interessante Perspektive auf das Zusammenspiel in den Regelkreisen der Immun-

zellen. Ontologische Analysen implizieren eine tiefgreifende Modulation von immunologischen

Funktionen im Blut der Patienten, mit den wichtigsten Facetten »Entzündung«, »Cytokine« (ein-

schließlich Neurokine), »Interferone«, »Apoptose«, »Koagulation« und »Integrität von Blutge-

fäßen«. Zur Einordnung der Relevanz der Blutbestandteile für diese Analysen fand eine Re-Analyse

von externen Datensätzen über die Expressionsunterschiede von miRNAs, tRFs und langen RNAs

in verschiedenen Blutkompartimenten statt. Dabei identifizierten wir eine hohe Relevanz von CD14-

positiven Monozyten für cholinerge Prozesse im Blut und beschrieben die Verteilung der in der Ex-

pression gestörten smRNAs im Blut der Patienten (Kapitel 4.3).

Von den durchgeführten Analysen wird in dieser Dissertation die Nutzung von »feedforward loo-

ps« in der Analyse der Co-Expression von langen und kurzen RNAs (Kapitel 4.5) näher beschrieben.

Feedforward loops sind transkriptionelle Regelkreise, bestehend aus drei Teilnehmern, in diesem Fall

smRNA, TF und Gen. In diesen Regelkreisen wird die Expression eines Gens von sowohl TF als

auch smRNA reguliert, wobei die smRNA auch gleichzeitig den TF beeinflusst. Eine Netzwerk-

Analyse basierend auf den feedforward loops der schlaganfall-beeinflussten Gene identifizierte eine

modulare Topographie des entstehenden Netzwerks in CD14-positiven Monozyten. Die einzelnen
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fünf Module wurden daraufhin auf ihre Bestandteile und auf die Funktionen, die diese Bestandtei-

le im Kontext der Antwort auf den Schlaganfall erfüllen, untersucht. Die modulspezifischen und

intermodularen Eigenschaften wurden grafisch und textlich zusammengefasst und umfassen (un-

ter anderem) Regulation des Immunsystems durch Cytokine und Interferone, apoptische Prozesse

und vaskuläre Permeabilität. Dabei reproduziert diese Analyse die Erkenntnisse, die aus der ontologi-

schen Analyse der differenziellen Expression gewonnen wurden (siehe oben), doch die Applikation

der feedforward loops und anschließende Modularisierung erhöhte die »Auflösung« der ontologi-

schen Resultate signifikant (Kapitel 4.5.5).

D.2.5 Fazit

Die vorliegende Dissertation bringt Fortschritte im Bereich der integrativen Analyse von RNA-

Mechanismen, besonders im Bereich der Regulationsnetzwerke. Der umfassendste Beitrag ist die

entwickelte Infrastruktur zur effizienten Berechnung komplexer epitranskriptioneller Vorgänge zwi-

schen kleinen RNAs, Transkriptionsfaktoren und proteincodierenden Genen. Außerdem demons-

triert die Arbeit die Anwendung dieser Methodik auf aus menschlicher neuronaler Zellkultur und

dem Blut von Schlaganfall-Patienten gewonnenen RNA-Messungen. Ferner identifiziert die Arbeit

cholinerg relevante smRNA-Spezies, die in der Differenzierung cholinerger Nervenzellen sowie in

der Immunabwehr wichtige Rollen spielen. Die beschriebenen neuronalen Zellmodelle erlauben

eine weitere Untersuchung der mit der cholinergen Funktionalität von Neuronen assoziierten Pro-

zesse, auch unter Betrachtung von geschlechtsspezifischen genetischen Einflüssen, beispielsweise in

der weiteren Erforschung des Einflusses cholinerger Systeme auf psychiatrische Erkrankungen.

Die Arbeit identifiziert eine Neuro-Immun-Achse, die eine direkte Verbindung zwischen den

Neurokinen, den cholinergen Systemen und deren smRNA-Regulatoren herstellt. In diesem sowie

in größerem Kontext findet eine Charakterisierung der Analyse komplexer transkriptioneller Regel-

kreise statt, insbesondere von feedforward loops, deren biologischer Relevanz, und deren Nutzung

zur Untersuchung molekularer Zusammenhänge. Dies wird an einer Analyse der Rolle von CD14-

positiven Monozyten im Blut von Schlaganfall-Patienten praktisch verbildlicht. Die Nutzung von

komplexen Netzwerkanalysen zur Systematisierung molekularbiologischer Untersuchungen zeigt

einen Weg zum weiteren umfassenden Verständnis der epigenetischen Regelkreise auf, welches die

Grundlage für eine schlussendliche Anwendung dieser Prinzipien in der Therapie von psychiatri-

schen und immunologischen Erkrankungen darstellt.
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