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Task definition

Mobility is currently undergoing fundamental change. The rise in artificial intelligence

and increased computing power makes it possible to develop autonomous vehicles. It is

expected that fully autonomous cars will be commercially available in the near future.

At the same time, increased awareness of environmental problems such as climate change

has made environmentally friendly means of transport more attractive. In addition, the

sharing economy has made using vehicles on demand possible.

In this context, this thesis aims to develop a control system for autonomous electric bi-

cycles. By controlling the steering and brakes of the bicycle as well as the engine, the

module should be able to navigate from a starting point to a destination while avoiding

collisions with obstacles. The balancing of the bicycle is beyond the scope of this work

and will be addressed during the construction of the vehicle.

A tangible hardware implementation with different sensors will be built to achieve the

stated goal. The data obtained from the sensors and processed images are then fused

together to estimate the state of the vehicle. Adaptive Model predictive control (MPC)

should be used to predict the future state of the vehicle based on the current one, and to

determine the appropriate control signals at a given time.

The steering and control module shall be designed to be suitable for the use on a bicycle.

This means that it should have a small form factor, low power consumption, be lightweight

and consist of relatively inexpensive components. Since the system needs to respond

quickly to its environment, all software components need an optimal control and data

path. As measurements may fail or data obtained may be ambiguous (e.g. if the lane on a

camera image is not detected with sufficient certainty), the system should be robust and

have fallbacks mechanisms to ensure higher reliability.

All components of the developed system/software should first be validated individually

and the functionality of the controller needs to be evaluated by simulations. Thereafter,

the integration and performance of the entire system should then be tested.
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1 Introduction

For some years now, autonomous vehicles have been receiving extensive coverage in re-

search, the industry and the media. Currently, various car manufacturers and technology

companies are working on the development of the first commercially available fully au-

tonomous car [72, p. 105]. Autonomous vehicles are expected to increase road safety as

they are less prone to errors than human drivers. In addition, they have the potential to

increase passenger comfort, create more time for other activities, reduce congestion, and

some sources claim that they may be more environmentally friendly to drive [56].

Another recent development in society is the rise of the sharing economy. This trend can be

observed across various industries. Among other things, there has been a significant growth

in the availability and use of shared cars, bicycles and recently eScooters [29]. Instead of

buying, people are increasingly renting vehicles on demand. One of the challenges of these

sharing services is to place vehicles in suitable locations for potential users [38, p. 3].

A third trend is sustainability and environmental friendliness. People are increasingly

aware of the importance of environmental problems such as climate change. The promo-

tion and use of more environmentally friendly means of transport has positive effects on

emissions and thus a positive environmental impact [50, p. 10].

The Goethe University is currently working on combining these three topics by developing

a prototype of a bicycle sharing service where the user can order a bicycle to a specific

location. One of the fleet’s autonomous bicycles is then to be driven to the desired location,

where the customer can conveniently start using it. The solution will thus improve the

comfort of sharing bicycles and promote this environmentally friendly mode of transport.

In order to develop an autonomous bicycle, several components are required. The aim of

this thesis is to develop a control and steering module for such a vehicle. The purpose

of the developed unit is to autonomously navigate the vehicle from a starting point to a

destination. It should control the steering, throttle and brakes of the vehicle. The control

unit must meet certain criteria; it should be relatively small, consume little power and

provide fallback mechanisms in case of measurement errors in order to increase reliability.

The balancing of the vehicle is is beyond the scope of this thesis.

The steering and control module was constructed using a number of different sensors such

as ultrasonic and GPS sensors, a lidar module and a camera for the roadside recognition.

In addition, an acceleration sensor was added for future improvements of the module. The

1



1.1 Structure of the Thesis

collected sensor signals are fused together to provide a comprehensive and more reliable

measurement of vehicle’s state. Based on the measured and the target state, MPC is used

to find appropriate control signals for steering, acceleration and braking of the vehicle.

While autonomous vehicles are a very active research topic from an academic and industrial

point of view, most studies have focused exclusively on autonomous cars. Autonomous

bicycles are much less the focus of research. Some papers are available which propose

control systems to balance autonomous bicycles [77] [6]. A few publications used Model

Predictive Control for this task [35] [57]. Other articles also consider route tracking for such

vehicles [41] [40]. Kim and Yamakita proposed an MPC based bicycle robot that can track

a route [42]. In addition, the controller proposed by Yavin addresses collision avoidance

for autonomous bicycles as well [76]. The papers of Zhao et al. [78] and Stasinopoulos

et al. [70] focus on obstacle avoidance for bicycles based on distance measurements using

custom laser range and 3D lidar sensors. Lane detection is a very active research topic and

many publications can also be found on roadside detection that use various techniques for

different scenarios [30][55].

No papers were found that use computer vision based roadside detection for the navigation

of autonomous bicycles. Moreover, none of the published papers found uses MPC with

this combination of sensors as data sources to control autonomous bicycles. In addition,

some of the work mentioned above is purely simulative. This thesis thus has a different

focus than previous publications and the system design is novel.

1.1 Structure of the Thesis

The thesis first covers some fundamental subjects that are important for the implemented

system. The chapter begins by presenting the general idea and the state of the art of

autonomous driving. Then computer vision and some concepts of this domain that are

relevant for this work are described. In the next sections, sensor fusion and Dijkstra’s

shortest path algorithm are covered. Subsequently, control systems in general and Model

Predictive Control as a specific approach are discussed. The chapter then concludes with

the single-track model upon which the proposed state space models for the controllers are

based.

In the following chapter System Development the implemented system is presented. First,

an overview of the hardware and the software architecture is provided. Afterwards, the

individual sensors used and the processing of their signals is discussed. This includes

a subsection describing the implemented image processing module. Then, a section de-

scribes how the route planning was implemented. In the following section, the model for

simulating and predicting the vehicle dynamics as well as the actual implementation of

the MPC controllers are presented. Finally, it is shown how all modules are integrated

into the overall system and how the connection to the test vehicle is established.

2



1.1 Structure of the Thesis

After all components and their interaction in the overall system have been described, the

next chapter documents the validation of the system. Firstly, the individual sensors are

tested and the results evaluated. Secondly, the road detection module is validated with a

number of different scenarios. In a third section of this chapter, the route planning module

is evaluated. Subsequently, the developed controllers are tested with different simulation

scenarios. Finally, the control loop is closed using a test vehicle. This makes it possible

to fully test the system’s ability to control the vehicle, avoid collisions and track a route.

The last chapter summarizes the results of the thesis and proposes some future work.

3



2 Fundamentals

This chapter presents the fundamentals relevant for the development of the system at hand.

The topics are covered only to the extent necessary in order to gain a basic understanding

for the following chapters.

2.1 Autonomous Driving

Autonomous Vehicle (AV)s are vehicles that are able to sense their environment and

navigate in it with little or no human intervention [72, p. 105].

Autonomous vehicles have numerous advantages [24]. It is assumed that AVs are less likely

to cause accidents and thus increase road safety and can save lives. A 2017 study analyzed

Google’s autonomous testing cars and found that these vehicles indeed had fewer accidents

per million miles driven than the average humanly controlled car [73, p. 57]. This, along

with a better response time of AVs compared to classic vehicles, can also reduce traffic

jams. In addition, autonomous cars will also increase passenger comfort by providing free

time for the former driver to do something else.

Another potential application of AVs are shared vehicles. A vehicle could be ordered to

a certain place and drive there autonomously. This increases the comfort of such services

considerably [24].

AVs use a variety of sensors, such as lidar, radar, GPS and acceleration sensors to analyze

their surroundings [72, p. 105]. Based on the collected sensory information, sophisti-

cated control systems identify suitable navigation paths, recognize traffic signs and avoid

obstacles [19, p. 7].

A system for classifying the degree of automation into six different levels (from fully manual

to fully automated systems) was developed by the Society of Automotive Engineers (SAE)

[33, p. 17]. Rather than defining specific vehicle capabilities, this classification is based on

the extent to which driver intervention and attention is required. These definitions refer

primarily to cars, but can also be applied to other vehicles. The six automation levels are

shown in Figure 2.1.

A level 0 vehicle may be able to issue warnings and intervene in certain situations, but

the control is not taken over by the system. An example of a Level 0 technology would

4



2.1 Autonomous Driving

Figure 2.1: SAE Automation Levels [46]

be the anti-lock braking system (ABS). [33, p. 21]. One level higher, at level 1, the

system can take over partial control of the vehicle. It may take over steering or speed

control, but not both at the same time. Examples of Level 1 systems are cruise control or

parking assistance systems where the driver still controls the speed manually [33, p. 19].

In Level 2 systems, the automated system can take full control of the vehicle according

to the SAE definition. However, the driver must remain alert at all times and be able

to intervene and retake control. Most commercially available self driving cars currently

fall into this category [7]. Level 3 systems, in contrast, do not always require the driver’s

attention. However, the vehicle may request intervention by the driver if necessary and

the driver must then take control within a specified period of time. This restriction is

lifted for Level 4 systems. In these systems, vehicles can drive completely autonomously

within certain areas. The system must be able to safely abort the journey if necessary

under any circumstances [33, p. 19]. Finally, Level 5 systems are able to drive completely

without human intervention. Steering wheels or similar controls are optional in this type

of system [33, p. 19].

Although the definitions of the levels are somewhat ambiguous and some companies use

creative formulations for their marketing, the current state can be summarized as follows;

There are a number of Level 2 vehicles from different manufacturers on the market. Despite

some claims by the manufacturer, Tesla’s current autopilot is strictly speaking only a Level

2 system [7]. Some technology and automotive companies claim to have the Level 3 ”eyes-

off ” technology ready or almost ready. Audi’s traffic jam pilot, introduced in 2018, is

considered to have been the first real Level 3 system [5, p. 2]. Some companies, including

the Alphabet subsidiary Waymo, are currently testing fully autonomous taxis in certain

cities. These vehicles are classified as level 4. However, they are not yet available to the

broad public [5, p. 3].

The technical development and testing of fully autonomous vehicles is in full swing. Among

the remaining problems to be solved are e.g. rough weather conditions and unexpected

behavior of other road participants [1]. Besides the technical challenges, there are also

regulatory, legal and cyber security challenges that need to be mitigated until fully au-

tonomous Level 5 vehicles can be made available [72, p. 119].
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2.2 Computer Vision

2.2 Computer Vision

Computer Vision is the branch of computer science that teaches machines to see. It

is concerned with the theory, design and implementation of algorithms that can process

visual data such as images or videos in order to recognize objects and gain a comprehensive

understanding of the visual source [23]. The ultimate goal is, from an engineering point of

view, to design autonomous systems that can perform or exceed the tasks that the human

visual system can perform [31]. Computer vision deals with the acquisition, processing,

analysis and understanding of digital images and the extraction of data from the real world.

Understanding in this context means transforming visual information into numerical or

symbolic information on the basis of which other processes can take appropriate action [43].

Recently, computer vision has become increasingly popular due to its use in combination

with machine learning, especially deep learning techniques. The application of learning

algorithms, such as Convolutional Neural Network (CNN)s, on computer vision data sets

has led to remarkable advances in this area. [47, p. 3367].

Some of the typical tasks in Computer Vision (CV) are recognition, motion analysis, scene

reconstruction, and image restoration [15]. Recognition is about determining whether

an image contains an object, feature, or property. There are several recognition-based

tasks such as pose estimation, character recognition, face recognition, or searching for

image content. Motion analysis tasks are mainly concerned with estimating the motion

(speed) of points on the image, objects in the 3D scene, or the camera. The goal of scene

reconstruction is to calculate a 3D model based on visual data. Finally, image restoration

tasks aim to remove noise from images by using filters or advanced approaches that usually

include a step to analyze the local structures of the image before filtering.

Computer Vision has a wide range of applications. Examples for CV systems are the

automatic inspection of goods in manufacturing, gesture recognition for human-computer

interactions or medical image analysis. CV systems can also be used for image databases

or the navigation of autonomous vehicles [71, p. 16].

Although implementations of CV systems vary greatly depending on the application, most

image processing systems typically involve six tasks. Firstly, the image has to be captured

by one or more sensors, which can not only be cameras, but also radar, ultrasound or other

devices. Typically, the result is an image based on light intensity in one or more spectral

bands. However, this is not necessarily the case and the image can instead be composed

of other physical properties. Secondly, the captured image data undergoes some form

of pre-processing where the data is enhanced in order to be processed later. Examples

of pre-processing are noise reduction, contrast enhancement, or correction of the image

coordinate system [71, p. 87]. Thirdly, characteristics such as edges or local points of

interest are extracted from the image data. In a fourth step, the image is segmented and

areas that are relevant for further processing are selected. The resulting smaller data set is
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then processed. Objects are recognized and classified for example, or certain parameters

such as the size of an object are estimated. Based on the results of the previous step,

in a sixth step a decision can be made by the system [15]. What kind of decision this is

depends strongly on the application.

The following subchapters describe some concepts of Computer Vision that are relevant

for the developed system.

2.2.1 Color Representations

A color representation is required for the processing of digital image data. The most

widespread model is the red, green, blue (RGB) representation. It is an additive color

model in which each pixel is broken down into the three primary colors red, green and

blue.

To form a color with RGB, three light beams (one red, one green and one blue) have to be

superimposed. Each of the three beams is called a component, and can have an arbitrary

intensity[69, p. 1275]. This is how most computer screens produce their colors, which is

one reason for the prevalence of this model. When the three basic components are plotted

in a 3D space, a color cube is obtained (see 2.2).

Figure 2.2: RGB Cube [3, p. 24]

Hue, saturation, lightness (HSL) is an alternative color representation. In contrast to

RGB it is commonly represented as a cylinder. In this model, the colors of each hue (pure

spectral colors) are arranged in a circle. While the neutral colors are located on the center

axis, saturation increases as one moves away from the center. The neutral colors range

from black at the bottom of the axis to white at the top. One of the main advantages

of using HSL over RGB is that it is more intuitive and more similar to the way humans

perceive color. A discussion of the advantages and disadvantages of this representation

can be found in a paper of Chavollas [12, p. 6]. The HSL representation is often used in

CV for object recognition, edge detection and other applications. The reason for this is

that the relevant features are often easier to recognize in the HSL color space compared to
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RGB. This is because all components in the latter are correlated with the light impacting

the object and therefore also with each other [13, p. 2260]. Another reason why HSL is

widely used in CV is that the transformation from and to RGB values is efficient.

Figure 2.3: HSL Cylinder[2, p. 6]

2.2.2 Noise reduction

A fundamental challenge in computer vision, and signal processing in general, is noise.

Noise can originate from various sources, both from the sensor itself and from the envi-

ronment, and is difficult to avoid in practice [9, p. 4]. Denoising images is the attempt

to remove the noise from the image signal and to estimate the original image. However,

reducing the noise of images is associated with certain costs, including the computational

effort and possible loss of details. Restoring the original image is critical for a number of

computer vision applications, such as visual tracking, image segmentation and recognition

[9, p. 109].

Various approaches are used to eliminate noise from images. Their effectiveness varies

depending on the type of noise. Gaussian filters are one approach that can be used. They

work by applying a smoothing mask that alters the image by assimilating neighboring

pixels [15, p. 41]. There are, however, many more approaches for denoising available.

Nowadays it is also possible to use deep learning algorithms for this task [26, p. 5].

A method that is fast and achieves good results is called non-local means[10, p. 208]. The

basic idea of the algorithm is to replace the color of a pixel with the average of the colors of

similar pixels. However, pixels similar to a certain pixel do not have to be in its immediate

neighborhood. Therefore, a larger part of the image is searched for pixels similar to the

pixel to be denoised. Contrary to the name, the approach is semi-local. Mathematically

speaking, in the discrete case, this means that the resulting image u is computed at pixel

p for each channel i based on the original image v as follows [10, p. 209]:

ui(p) =
1

C(p)

∑
q∈B(p,r)

vi(q)w(p, q), C(p) =
∑

q∈B(p,r)

w(p, q) (2.1)
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Figure 2.4: Example for non-local means denoising [10, p. 210]

B(p, r) is the neighborhood of p with radius r and C(p) is a normalization factor. w(p, q)

is a Gaussian weight function that determines the weight of a particular original pixel in

the neighborhood based on how similar it is to p [10, p. 210].

2.2.3 Perspective Transformation

The transformation of the perspective of a picture (also called homography) is a geometric

image transformation. While the content of the picture is not changed by this process,

the pixel grid is deformed and then mapped to the target. Essentially, perspective trans-

formations can be imagined as rotations and translations of a camera in 3D space that is

used to view the 2D image [9, p. 163].

A perspective transformation is defined by a 3x3 matrix M that satisfies the following

condition for the source trapezoid coordinates (xi, yi) and the target coordinates (x′i, y
′
i)

[45, p. 383]:

tix′itiy
′
i

ti

 = M

xiyi
1

 , i = 0, 1, 2, 3 (2.2)

The transformation can then be calculated by assigning a pixel of the source image to

each pixel of the target image [45, p. 385]:

dst(x, y) = src(
M11x+M12y +M13

M31x+M32y +M33
,
M21x+M22y +M23

M31x+M32y +M33
) (2.3)

Perspective transformations can transform trapezoidal images into other trapezoids by

changing the geometry of the source image while interpolating missing pixels. It is there-

fore possible to select a trapezoidal Region of Interesst (ROI) within an image and trans-

form it into another trapezoid or, as a special case, into a rectangle. If the selected ROI is

considered or presumed to be a rectangle in the real world, the transformation of it into

a rectangle gives a bird’s eye view of it [45, p. 385 ]. An example is shown in Figure 2.5.
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Figure 2.5: Example of a perspective transformation [64]

2.2.4 Edge Detection

Edge detection is an essential feature of many CV applications. Edge detection incorpo-

rates a variety of methods designed to identify points or lines within an image where the

color or brightness values change abruptly [48]. The discontinuities found in this way are

called edges. The goal is usually to divide the image into different areas. It can be shown

that the such edges often correspond to discontinuities in depth, surface orientation or

material properties [48]. In non-trivial images, a number of problems can occur, such as

edges that do not correspond to any interesting property of the image, or fragmentation,

which means that the edge curves are missing some segments which were not recognized

by the algorithm.

There are many approaches to detecting edges. Most of them work by searching for

maxima in edge strength and are usually based on first-order derivative expressions or on

the zero points of second-order derivative expressions [79, p. 537]. In the following, the

Canny edge detector (with a Sobel filter) is briefly described as it is used in the software

developed.

The Canny edge detector is a multi-level algorithm to detect a wide range of edges in

images. Although it was developed in the early stages of image processing, it is still widely

used because it provides relatively good results and has a low computational complexity.

Its biggest disadvantage, however, is its sensitivity to noise. [63, p. 577].

The first step of the Canny edge detector is thus to denoise the image. This is usually

done by applying a Gaussian filter [49, p. 51].

In a second step, the intensity and direction of the gradients of the image are determined.

For this purpose, two convolution Sobel masks are applied to each pixel of the image, one

for the x direction and the other for the y direction [27, p. 1579]. The filters used are:

Gx =

−1 0 1

−2 0 2

−1 0 1

 , Gy =

−1 −2 −1

0 0 0

1 2 1

 (2.4)
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The gradient magnitude G and the direction Θ are calculated as follows:

G =
√
G2
x +G2

y, Θ = arctan
Gy
Gx
− 3π

4
(2.5)

Based on the gradient direction and magnitude, a non-maximum suppression is applied.

The aim of this technique is to find the largest gradient locally and to suppress all other

gradients by setting them to zero. Only the most intense edge candidates are preserved

[49, p. 52].

In a final step called hysteresis, two thresholds are applied [18]. If an edge candidate pixel

has a lower value than the lower threshold, it is not considered to be an edge. When

the value is above the higher threshold, it is accepted as an edge. Finally, if the value is

between the two thresholds, the pixel will also be considered to belong to an edge if it is

connected to a pixel that is above the higher threshold.

Figure 2.6: Canny edge detector example (right) original image (left) [28, p. 205]

The result of the Canny edge detector is a binary image with the same proportions as the

original image (an example is shown in Figure 2.6).

2.3 Sensor Fusion

When a system collects data from multiple sensors, the process by which this data is

meaningfully combined is called sensor fusion. Essentially, the purpose of sensor fusion is

to translate the sensory inputs into a more reliable and complete estimation of the system

state that can be used for the intended purpose [34, p. 108].

In many cases, the sensors contained in a system use different measuring principles and

have different capabilities (heterogeneous sensors). The information collected by the sen-

sors of a system can be either complementary or redundant [34, p. 108]. Redundant

signals can originate from several sensors of the same type or from different sensors. They

are used to improve the accuracy of measurements or to provide backup in the event of

a sensor failure or faulty measurement. When multiple sensor signals are combined into
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an estimated value, often statistical methods such as the central limit theorem or Kalman

filters are used [21].

Sensor fusion plays an important role in autonomous vehicles. The available sensor data

about the location, the environment and the state of the vehicle (e.g. speed, steering angle,

. . . ) have to be combined in order to make decisions about steering and speed control

signals.

2.4 Dijkstra’s Shortest Path First algorithm

Dijkstra’s shortest path first algorithm is a greedy graph algorithm developed by Edsger

W. Dijkstra. It is used to find the shortest path in a weighted graph between two nodes

[14, p. 658] (without negative weighting).

For each node (V) of a graph, all possible ways to reach it from adjacent nodes and to

reach other adjacent nodes from it are marked with corresponding edges (E). All nodes

are placed into the set of unvisited nodes and the shortest known way to reach them is

indicated. Initially, the length of the shortest path for all nodes in the set is infinite,

with the exception of the initial node, which has a path length of zero. The node with

the shortest path is then visited and the path from there to each neighboring node is

calculated. If the calculated total path length to reach a node is shorter than the current

shortest known path to reach it, then the value and path for that node are updated. The

currently visited node is thereafter removed from the set of unvisited nodes. Then the

node with the shortest path that has not yet been visited is visited and the above steps

are repeated. Once the destination node is reached, the minimum distance to reach it and

the path leading to it will are known [17, p. 270].

The worst-case performance of the algorithm is:

O(|E|+ |V |log|V |) (2.6)

This is asymptotically the fastest algorithm to determine the shortest path for generic

directed graphs [14, p. 663].

2.5 Control Systems

A dynamic system is a system whose behavior changes over time, usually in response to

external stimulation [36]. A control system, in turn, is a dynamic system that essentially

manages or regulates the behavior of another dynamic system via control loops (see Section

2.5.1). Given a target value (input, also called Setpoint (SP)), the aim of a control system
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is to adjust the actual value (output) accordingly [59, p. 2]. The difference between these

two values is called the error.

Whilst a control system can be a SISO (Single Input, Single Output) system, most sys-

tems have multiple variables and are therefore MIMO (Multiple Input, Multiple Output)

systems. Control systems come in many forms, ranging from very simple applications

such as thermostats to very complex ones such as missile control systems [36, p. 36]. The

following subchapters cover some of the concepts relevant for this work.

2.5.1 Open and Closed Loop Systems

Control systems can be broadly divided into open and closed loop systems [36, p. 2].

In open control loops, the control action is determined only on the basis of the SP (see

figure 2.7). The actual value of the controlled variable is not measured and thus has no

influence on the control signal.

Figure 2.7: Open-loop control system (based on [32, p. 5])

While open loops are easy to design and implement, disturbances and other external

influences can lead to inadequate control signals and outputs. The use of feedback, on the

other hand, can lead to instabilities in a system and may cause oscillations [36, p. 3].

Closed control loops measure the actual values and take control measures to reduce the

error between the desired and the actual values. A closed loop system typically consists

of four components: the comparator, the controller, the plant and the sensor. Figure 2.8

shows the layout of the components in a typical control loop.

Figure 2.8: Closed-loop control system (based on [32, p. 7])

Sensors are responsible for measuring the state, respectively the actual value. The mea-

sured value is then fed into the comparator together with the desired value. The error

signal results from the comparison of the reference value with the measured output. Based

on the error, the controller must then decide on the system reaction, i.e. find out how the

system must react in order to minimize the error. Although not necessarily the case, the
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controller is usually a piece of software. The control signal (also called actuating signal)

is then used to control the system [32, p. 7]. The plant is the system under control, and

does not have to be a plant in the conventional sense.

The design and implementation of a closed loop system is more complex than an open

one. By measuring the actual state, however, the controller can handle model inaccuracies

and disturbances.

2.5.2 State-Space Representation

In order to understand the behavior of a dynamic system, a mathematical description of

it is required. The state-space representation is a mathematical model for such systems

that have inputs and outputs.

The state of a system consists of state variables that describe the system and evolves

over time. For each of the n variables of the state, a first-order differential equation is

developed to predict the subsequent state based on its current value and the current action

[75]. The state vector should at any given time t0 contain all information about the state

of a system.

If the system is linear with p inputs, q outputs and n states, it can be written in the

following state-space representation [75, p. 3]:

ẋ(t) = A(t)x(t) +B(t)u(t) (2.7)

y(t) = C(t)x(t) +D(t)u(t) (2.8)

Where x(t) an Rn vector that contains the state of the system. y(t) is an Rq output vector,

which consists of the set of output variables. u(t) is the set of Rp control signals sent to

the system. A is called the state matrix, which indicates how the current state affects

the change in state. B is a n × q matrix that describes how the input variables affect

the state change. Finally, C and D are the q × n and q × p matrices, which describe the

transformations of the state and control vector to obtain the output variables. Even if the

matrices can be time variant, they are often time invariant.

For use in conjunction with MPC (see Section 2.5.3), the state-space models have to be

converted from a continuous form to their discrete counterparts. There are several ways to

discretize state-space models. The method used in this thesis was proposed by R. DeCarlo

[16, p. 216]. It allows the calculation of the discrete representation as follows, where Ad

and Bd are the discretized matrixes:

e

A B

0 0

T
=

[
Ad Bd

0 I

]
(2.9)
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State-space models do not have to be linear systems. The more general form of state-space

models that can also be used for nonlinear functions is:

ẋ(t) = f(t, x(t), u(t)) (2.10)

y(t) = h(t, x(t), u(t)) (2.11)

Equivalent to the linear case, the first equation describes the change of state, and the

second is the output equation. Since only linear state-space models are used in this thesis,

the nonlinear case is not discussed further.

2.5.3 Model Predictive Control

MPC is an advanced method for controlling a closed loop dynamic system. It is powerful

due to its ability to optimize the control signals for the current time slot by taking into

account the plant’s predicted states in a certain number of future time slots. In addition,

MPC can solve the optimization task while simultaneously satisfying a number of input,

control signal, and output constraints [58, p. 139]. It is widely used across various domains.

Figure 2.9: Schematic SISO MPC example [53]

The basic idea of MPC is to predict the future behavior of the system over a defined time

period called the prediction horizon [53]. At any time of the control horizon, which is

shorter or equal to the prediction horizon, the optimal controls and the simulated system

output are determined. This is done by minimizing a cost function that measures devia-

tions of the output and control variables from the specified setpoints under the constraints

defined. The cost function is minimized for the entire prediction horizon, while the controls

are only changed during the control horizon. After that, it is assumed that the controls

will remain constant. A graphical example of a SISO MPC system can be found in the
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Figure 2.9. The control signals computed for the first time slot are then applied to the

plant and the prediction is repeated with the resulting state in the next time interval [58].

Mathematically, the following optimization problem is solved at each time step t:

u = argmin
u
J(x(t), u) (2.12)

s.t. J(x(t), u) =

N+t∑
k=t

||x(k)||Q + ||u(k)||R x(k) ∈ X u(k) ∈ U (2.13)

In this equation, Q is the cost of the deviation of the output variables, while R represents

the cost of the deviation of the control variables. X is the set of state vectors that meet

the constraints for the model and U is the set of allowed controls [58].

In order to be able to predict the future state of the plant, a model of it must be available

for the development of the control system. While most complex processes are non-linear,

they can often be assumed to be linear over a small range. Linearized plant models can

be used for MPC, since the feedback mechanism is able to compensate for the prediction

errors of the linear plant model.

Besides the linear MPC there are other versions like the nonlinear MPC and the adaptive

MPC. The latter is discussed in the following Subsection.

2.5.4 Adaptive Model Predictive Control

In classical MPC controllers, a linear model of the plant is used to make predictions about

the future state of the system. While these predictions are almost never exact in practice,

the controller can often be tuned to achieve solid performance [4, p. 6-2]. However, if the

plant is strongly nonlinear or the parameters vary considerably over time, a single linear

model is no longer sufficient to obtain satisfactory predictions.

Adaptive MPC addresses this problem by using multiple linear plant models to improve

the predictions [4, p. 6-3]. Each of the models can be used for a subrange of the operating

range of the controller. These models, all with different parameters, are either generated

on the fly or can be pre-calculated offline. At each time step, the most suitable model is

selected based on the current state of the system. It is then used for the entire prediction

horizon of the current optimization. The underlying assumption is that the plant can be

approximated by a linear system in a narrow range. If this is not the case, adaptive MPC

will not be the appropriate solution.
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2.6 Linear Single-Track Model

2.6 Linear Single-Track Model

Single-track models allow to obtain meaningful results in the simulation of vehicle dynam-

ics while being relatively simple and having few parameters. They exist in both linear and

non-linear versions. Hereafter the original linear model developed by Riekert and Schurk

[62] is discussed.

The linear single-track model provides an approximate description of the lateral vehicle

dynamics [65, p. 243]. Certain assumptions are necessary to obtain a simple model [65, p.

243]. It is assumed that the mass of the vehicle is concentrated in the center of mass. For

four-wheeled vehicles the front and rear wheels are combined in the middle of the axis.

Potential tire chamber angles are not taken into account, nor are the lateral inclination

or rolling movements of the vehicle. Moreover, the forces of the vehicle mass on both axis

are assumed to be constant. In the models basic form the speed of the vehicle is kept

constant as well.

Figure 2.10: Linear single-track model [65, p. 243]

Figure 2.11: Mathematical description of the single-track model [65, p. 245]

Under these constraints above, the linear single-track model can be derived as follows [65,
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p. 245]. The velocity of the vehicle in any direction within a coordinate system attached to

the center of mass of the vehicle Kv = {S, xv, yv, yv, zv} is given by the following equation,

with S being the center of mass and β being the slip angle:

vv =

v cosβ

v sinβ

0

 (2.14)

Based on this, the acceleration in the mass center S can be described using the yaw rate

ψ̇:

va =

−v(ψ̇v + β̇) sinβ

v(ψ̇v + β̇) cosβ

0

 (2.15)

The lateral force Fy is now assumed to be linearly dependent on the lateral slip of the

tires α with cornering stiffness ca.

Fy = caα (2.16)

Based on these equations, the momentum in the y-direction and the angular momentum

around the vertical axis can be written based on the steering angle δ and the lateral forces

for both tires:

mv(ψ̇v + β̇) cosβ = cosδFf,y + Fr,y (2.17)

θψ̈v = Ff,y cos δlf − Fr,ylr (2.18)

Now the variables for the transverse forces have to be replaced by the corresponding

equations for the two tires (see 2.16), addditionally α is also replaced:

Ff,y = ca,f (δ − β − lf
ψ̇v
v

) (2.19)

Fr,y = ca,r(−β + lr
ψ̇v
v

) (2.20)

After the substitution of the forces, the equations obtained previously can be rewritten,

assuming that both β and θ have relatively small absolute values, to obtain the single-track

equations [65, p. 249]:
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ψ̈ = −
ca,f l

2
f + ca,rlr

θv
ψ̇ −

ca,f lf − ca,rlr
θ

β +
ca,f lf
θ

δ (2.21)

β̇ = −1−
ca,f lf − ca,rlr

mv2
ψ̇ −

ca,f + ca,r
mv

β +
ca,f
mv

δ (2.22)

The only movement capabilities considered in the model are the yaw angle ψ and the side

slip angle β. The slip angle is the difference between the moving direction of the mass

center and the longitudinal axis. This model is idealized, yet allows satisfactory results

up to a certain lateral acceleration. For cars, this value is about 4m/s2 [65, p. 244].
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3.1 Hardware Overview

Several constraints were considered when selecting the hardware components. Since the

system is to be installed on a bicycle, it must be compact and lightweight in order to be

mounted on such a vehicle without being disturbing. The energy consumption of the device

used should also be kept low in order not to unnecessarily drain the batteries. Finally,

the components should be relatively inexpensive yet powerful and capable of computing

appropriate system responses within a useful period of time.

The core of the system is a Raspberry Pi1. It is connected to all the sensors and receives

their signals. In addition, it is be responsible for all necessary calculations, including the

computer vision algorithm, sensor fusion and the MPC. Finally, it is also connected to the

vehicle in order to transmit the steering, acceleration and braking impulses. The Raspberry

Pi was chosen due to its small form factor and energy consumption, its versatility (as it

runs on standard Linux) and its computing power. Since some of the tasks, namely image

processing and the model predictive control, require relatively powerful hardware, the

latest Raspberry Pi 4 Model B with 2GB RAM and a Quad Core 1.5GHz CPU is used.

The following sensors are installed:

• Grove - Ultrasonic Ranger (Seeed Technology)

• Camera for Raspberry Pi 5MP (Anpro)

• NEO-6M GPS Module (u-blox)

• Lidar Sensor X4 (YDLIDAR)

• MPU-6050 Gyroscope and Accelerometer (PEMENOL)

These sensors and their integration into the system are described in chapter 3.3.

Two power banks are used. The first one delivers a maximum capacity of two amperes

and powers the Raspberry Pi, which in turn supplies all sensors with power. The second

battery has a maximum output of one ampere and is connected to the lidar sensor, as the

power consumption of the sensor during its start-up often exceeds what the Raspberry Pi

can provide.

1https://www.raspberrypi.org/, last accessed 12/03/2019
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Figure 3.1: Hardware mounted on a bicycle

The system is developed for an electronic bicycle. A vehicle compatible with the system at

hand is being developed by the university, but is not yet available. Therefore the system

cannot be validated with the targeted vehicle. Instead, some tests concerning the sensors

(see Chapter 4) are performed in which the system is mounted on a classical bicycle.

Moreover, the system has been mounted on a test vehicle developed by Simon Grasemann

[25] to validate the closed-loop behavior of the control system (see section 4.5). Pictures

of the developed system in both configurations are shown in Figures 3.1 and 3.2.

Figure 3.2: Hardware mounted on the test vehicle
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The GPS module, the ultrasonic sensor, the accelerometer and the control LEDs are

connected via the board level General-purpose input/output (GPIO) pins of the Raspberry

Pi. GPIOs are digital pins that can be used as either input or output and whose behavior

can be set at runtime [61, p. 9]. The lidar sensor is connected via Universal Serial Bus

(USB) and the camera via the dedicated Camera Serial Interface (CSI) of the Raspberry

Pi. The connection to the test vehicle is realized via a USB connection between the

Raspberry pi and the Arduino of the test device. The latter is connected to the engine,

steering and braking equipment.

3.2 Software Overview and Architecture

The implemented autonomous control software has several tasks to handle. It should read

the measured values of all sensors and keep track of the valid measurements and their

time stamps. Then the software has to combine these data, determine the appropriate

MPC model for the prediction and use it to simulate the change of the vehicle state and

ultimately to find and send the appropriate control signals.

When deciding on an architecture for a software system, one should choose an architecture

that is easily extensible, reliable and maintainable [60]. The software should be modular,

which means that different parts of the software should be encapsulated and abstracted

from each other. This reduces complexity and increases flexibility [60]. Following this

guideline, the system developed for this project is divided into several modules, with

each sensor, the MPC and the route planning being separate components that are not

dependent on other parts of the software. A graph summarizing the architecture can be

found in Figure 3.3.

The subordinate sensor modules never take control of the entire program. Instead, the

overarching coordination module is responsible for controlling all other components and

requests information from them when needed. Although Python does not offer interfaces

as other object-oriented languages do, the sensor modules have been developed to provide

the same methods. This can be seen as a soft form of having them implement a defined

interface. An abstract template according to which all sensors are written is shown below.
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Figure 3.3: Architecture of software components

Listing 3.1: Abstract sensor class

1 class Sensor ( object ) :

2 # Sensor wide parameters / cons tan t s

3 . . .

4
5 def i n i t ( s e l f , parameters ) :

6 # I n i t i a l i z e sensor here

7 . . .

8 s e l f . measured value = None

9 s e l f . s top = False

10 measure thread = thread ing . Thread ( t a r g e t=s e l f . measurement loop )

11 measure thread . s t a r t ( )

12
13 def measurement loop ( s e l f ) :

14 while not s e l f . s top :

15 # Do measurement and s a n i t i z e r e s u l t

16 . . .

17 s e l f . measured value = s a n i t i z e d v a l u e

18
19 def stop measur ing ( s e l f ) :

20 s e l f . s top = True

21
22 def get data ( s e l f ) :

23 return s e l f . measured value

24
25 . . .
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The software is mainly implemented in Python and C++. The choice of languages was pri-

marily based on the availability of suitable libraries. While the ultrasound sensor, the GPS

module, the route planning and the coordinator module are written in Python, the lidar

sensor module and the MPC models are implemented using C++. MATLAB, Simulink

and MathWork’s Model Predictive Control Toolbox2 were used for the development of

the MPC models due to the advanced development and optimization tools they provide

for such controllers. The interface between the Python modules and the C++ parts was

realized with ctypes3. The developed software consists of 53% Python (> 2000 lines), 37%

C++ (> 1400 lines) and 7% MATLAB (Simulink files are not included in this count). T

he remaining code consists of Bash scripts and Make files.

For the implementation it is vital that the different modules can be executed in parallel

and that a delay in one module has no effect on other parts of the software. Therefore,

each of the sensor modules runs in its own thread and stores its measurements individually.

In addition, the camera and road detection modules are extracted into a separate process

(using the Multiprocessing library) to improve parallel execution. The coordinator then

calls the getter methods of the sensor classes to read the measurements and fuses them

into the current system state.

The limited computing power of the hardware has to be taken into account during the

implementation. Since the response time of the system has to be kept short, the algorithms

used and implemented need to be fast and have adequate computational complexity. All

modules have been developed with this constraint in mind, particularly the CV module.

3.3 Sensors

3.3.1 Ultrasonic Sensor

Ultrasonic sensors are a cost-effective way to measure distances in one direction. They

essentially consist of two components, a transmitter and a receiver [39, p. 71]. The

transmitter emits high-frequency sound waves in the ultrasonic spectrum (above 18kHz).

These waves are reflected by potential nearby obstacles, and the reflected waves are then

detected by the receiving sensor.

Since the waves travel at the speed of sound, the distance can be easily computed by

measuring the time difference between emitting and receiving the sound signal. The

following formula is used where c is assumed to be 343m/s, which is approximately the

speed of sound in the air at 20◦ Celsius [8]:

2https://de.mathworks.com/products/mpc.html, last accessed 11/15/2019
3https://docs.python.org/3/library/ctypes.html, last accessed 11/15/2019
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Figure 3.4: Ultrasonic sensor working principle [39, p. 71]

d =
c ∗∆t

2
(3.1)

Ultrasonic sensors can detect some obstacles that cannot be detected by optical sensors

(e.g. shiny surfaces). However, they are sensitive with respect to the angle of the obstacle’s

surface [39, p. 73]. Compared to lidar, the measurement angle is fairly large and the range

rather short.

In this project, an ultrasonic sensor was used to supplement the distance measurement

of the lidar sensor in order to increase the probability of detecting a nearby obstacle

and avoiding collisions. The hardware used is the second generation Grove Ultrasonic

Ranger manufactured by Seeed Technology. It emits ultrasonic waves at 40kHz and has a

measurement range of about 2-400cm with a resolution of 1cm and a measurement angle

of around 15◦ [67]. The sensor is connected via the GPIO pins of the Raspberry Pi. With

the RPi.GPIO package, the measurements can be triggered and signals can be received

directly4.

3.3.2 Camera

In order to recognize the lanes or roadsides, computer vision techniques (see section 3.4) are

used. Therefore, a camera module is needed to obtain live footage that can be processed

on the fly.

For this project the “Anpro Camera for Raspberry Pi“ is used. It is an HD Camera that

can take pictures with a maximum resolution of 5 megapixels. The camera was specifically

designed for the Raspberry Pi and can therefore be connected via the CSI port[61, p. 11]

of the device.

4https://sourceforge.net/projects/raspberry-gpio-python/, last accessed 12/04/2019
5http://anpro-tek.com/anpro-kamera-fur-raspberry-pi-3-modell-b-plus-5-megapixel-kamera-mit-2-

ersatz-flexkabel/, last accessed 11/18/2019
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Figure 3.5: Anpro Camera for Raspberry Pi5

The module that was written to retrieve images from the camera uses the PiCamera

package to communicate with the it6. In order to keep image processing fast, the resolution

of the captured pictures is reduced to 600x800 pixels.

3.3.3 Satnav Sensor

An important feature for an AV is to have information about its position. For this purpose

a Global Positioning System (GPS) sensor is used.

The sensor uses satellite navigation to determine its own spatial position. A network of

satellites transmits time signals to the receivers, such as the built-in sensor, from which

the latter can calculate the current latitude, longitude and altitude. This sensor is a

passive receiver and can therefore be used independently of the availability of an internet

connection. A minimum of four satellite signals are required to determine the current

position. Satnav sensors can calculate their position within an error margin of a few

meters [54].

The GPS module NEO-6M from u-blox is used for the developed system. The manufac-

turer claims that the sensor can measure the spatial position with an accuracy of 2.5m.

The accuracy of the speed and heading direction is 0.1m/s respectively 0.5◦ for velocities

above 3.5m/s [74, p. 6]. The GPS Module is connected via the GPIO pins of Raspberry

Pi. Universal Asynchronous Receiver/Transmitter (UART) is used for asynchronous serial

communication between the two devices. In UART data is sent in a serial digital data

stream with a fixed frame; A start bit is followed by five to nine data bits, an optional

parity bit and a stop bit.

During the implementation of the system, the target vehicle for it was not yet available.

For this reason, additional data, which will be obtained by sensors on the bicycle itself

6https://picamera.readthedocs.io, last accessed 12/04/2019
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in the target solution, is retrieved from the GPS sensor instead. This additional data

consist of the yaw rate and the speed. Although the GPS module is able to provide

measurements for these variables, they are inherently inaccurate due to the limitations of

satellite navigation technology. This has to be taken into account when evaluating the

system.

3.3.4 Lidar Sensor

Light Detection and Ranging (Lidar) sensors, as well as ultrasonic sensors (see 3.3.1), can

be used to measure distances. However, instead of using ultrasonic waves, they use optical

laser light. The basic idea is the same, a transmitter emits a signal that is reflected by

the obstacle and the returning signal is measured by a receiver. The distance is then

calculated based on the time difference between the two events and/or the wavelength

differences [11, p. 3]. The Lidar technology is used for a variety of purposes ranging from

measuring the topography of landscapes and civil engineering applications to autonomous

driving.

Lidar sensors can detect a wide variety of materials and provide superior resolution com-

pared to ultrasonic sensors due to their narrow laser beam. They can be operated with

either ultraviolet, visible or infrared light. One measurement only indicates the distance

to a certain point in the space, but the sensor can be rotated or the signal can be deflected

by a mirror system. In combination with measuring in rapid succession, 2D or even 3D

distance data of the surrounding environment can be acquired [66, p. 429].

The sensor used for this project is the YDLIDAR X47 (see Figure 3.6). It was chosen

mainly due to its competitive price. The sensor of the YDLIDAR rotates about 7 times

and performs about 5000 measurements per second. This makes it possible to create a 2D

map of the surrounding obstacles as shown in the Figure 3.7. The YDLIDAR X4 covers

a range of up to 12 meters, which is sufficient for the expected speeds of up to 4m/s.

According to the manufacturer, the measurement error should typically be less than 1%

of the actual distance [68].

Even though the sensor could be operated directly via its serial ports (UART), an adapter

board is used to connect to the device via USB. Since the power consumption of the sensor

motor exceeds what the Raspberry Pi can provide during the sensor’s start-up, the sensor

is supplied with power separately. The software that controls the Lidar sensor is written

in C++ based on the YDLIDAR SDK8. The module is compiled into a shared object and

called by the python coordinator via ctypes. The developed sensor module does not send

all measurements to the coordinator, but provides a public method to obtain the distances

for any given angle.

7http://www.ydlidar.com/product/X4, last accessed 12/04/2019
8https://github.com/yangfuyuan/ydlidar sdk, last accessed 12/04/2019
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Figure 3.6: YDLIDAR X4 [68]

Figure 3.7: Lidar Result visualized by YDLIDAR Development Kit [68]

Due to its ability to detect other materials than the ultrasonic sensor, provide 360◦ in-

formation, and its longer range, the developed system uses a Lidar sensor in addition to

the ultrasonic sensor. It will measure obstacles in the direction of travel and also helps to

avoid steering into obstacles.

3.4 Lane and Roadside Detection

The lane and roadside detection module is based on CV and is used to determine the

current curve radius of the road and the lateral position of the bicycle on it. With these

two values, the MPC controller is able to follow the road. It is important to accurately

capture the roadsides to calculate these values. Two types of road recognition have been

implemented, the basic concept for both is to fit a second order polynomial to reflect the

roads shape [37]. One mode aims to detect white lines on the road and can be used on

larger roads where such markings are present. The second mode is aimed at small roads

without white lanes. Instead, it detects the edge of the asphalt. Only the second mode

is currently active in the system, as it is more suitable for the area in which the device is

intended to be tested. The procedure is similar for both modes, so although the following

description applies mainly to the second mode, it generally covers the first mode as well.

This module is implemented in Python. It uses the OpenCV9 library, which provides

over 2500 algorithms for computer vision and machine learning, is free and open source.

9https://opencv.org/, last accessed 11/17/2019
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OpenCV itself is written in C++, but includes a Python wrapper and can therefore con-

veniently be called from Python scripts. In addition, numpy10 is used for the multidimen-

sional array representation of the digital image data and some mathematical algorithms.

For improved parallel performance, the CV-related scripts run in their own dedicated

process.

The camera module (see 3.3.2) serves as input device for the image data. It is configured

to take pictures with a resolution of 800x600px. This size allows fast processing while

the resolution is still high enough to extract the desired features. In order to increase

the number of images processed per second, the class that controls the camera runs on a

different thread than the rest of the image processing. This allows to capture and cache

a new image while the analysis of the current one is still ongoing. Thus the two modules

can work independently and the waiting time is reduced.

During pre-processing, the image is first converted from the RGB color space to the HSL

color space, since the components of the latter allow better recognition of relevant features

(see 2.2.1). In addition, the image is denoised using the non-local means algorithm (see

2.2.2). Since the image resolution is relatively low and in order to reduce the computation

time, the size of the search window is set to merely 11px. While this reduces the noise

reduction quality, the results are still satisfactory. In addition, this measure almost halves

the time needed to analyze a frame.

In a third step, Canny edge detection (see 2.2.4) is applied to the light channel of the

image, since the edge of the road should be clearly visible in this color component. The

saturation component of the asphalt will typically be lower than that of the grass next to

the road. Therefore, a binary image is generated that contains only pixels above a defined

saturation threshold. The two resulting binary images are then combined additively. An

example is shown in Figure 3.8.

Figure 3.8: Roadside detection on straight street without lanes

10https://numpy.org/, last retrieved 11/17/2019
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The ROI is where the street and its edges are supposed to be. In order to calculate the

desired values from the image data, the perspective is warped so that the image is seen

from a bird’s eye view. For this purpose, the transformation matrix is first calculated based

on the region of interest, and then the image is transformed. This is achieved by using

the OpenCV getPerspectiveTransform() and warpPerspective() functions respectively.

On the warped image, a sliding window algorithm is applied in order to identify the points

relevant for the curve calculation. Starting at the bottom of the image, a search window

is centered horizontally based on all the nonzero pixels found in the relevant half of the

ROI. Within the window, all these pixels are considered when fitting the curve later on.

Then the window is moved up by its height, whereas the new center of the window is

the average horizontal position of the lane or edge pixels in the current window. This

process is repeated until the top of the image is reached. Now a second order polynomial

is fitted on all the nonzero pixels found in the search windows by using numpy’s polyfit()

function. A threshold for the minimum number of pixels found in the windows is applied

before calculating the curve; if not enough edge or lane pixels are detected, no curve is

calculated because the lane or the roadside could not be clearly identified in the previous

steps. Figure 3.9 shows the lanes found in an example frame as well as the sliding windows.

Figure 3.9: Warped image showing the sliding windows and detected lanes

Based on the fitted polynomial and knowledge about the dimensions of the ROI in the real

world, the curvature of the road and the vehicle position relative to the edge or lanes is

calculated. The dimensions of the ROI in the real world were determined experimentally

and are assumed to be constant, which requires that the camera’s height and angle remain

constant relative to the ground. This assumption will not always be correct due to the

potential inclination of the vehicle and thus the camera angle. It needs to be tested with

the target vehicle whether the calculated results are satisfactory despite this simplification

or whether adjustments are necessary. Examples for calculated lanes and roadsides can

be found in Figures 3.10 and 3.11.
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Figure 3.10: Detected lanes of a curved road

Figure 3.11: Detected edge of a straight road

3.5 Route Planning

The bicycle should be able to navigate autonomously from a starting point to a destination.

Therefore, a route planning module has been developed within the scope of this thesis.

First, the route planning module loads the data about all possible paths and creates an

abstract graph of it. Weights are assigned to all the edges based on their geographical

length. Each node is assigned a hexadecimal identifier. Now the shortest path between a

specified start and end point is calculated using the shortest path algorithm of Dijkstra

(see 2.4). It is assumed that the vehicle is at the coordinates of the starting point when

the journey begins. The start and destination point must be specified by the user with the

corresponding hexadecimal identifiers. A user friendly interface is a possible improvement

for the future.

For this project the street and trail network of the Campus Westend of the Goethe-

University Frankfurt is preloaded. The data were generated by Omer-Ibrahim Erduran as

a part of his master thesis [22]. Figure 3.12 shows the visualization of this path network

on the map of the campus.
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Figure 3.12: Preloaded path network graph [22, p. 47]

3.6 Model Predictive Control

The aim of the system is to control the steering and speed of an electric bicycle au-

tonomously. This is achieved by using model predictive control. For this purpose, an ade-

quate representation of the controlled vehicle is required. The linear single-track model, as

described in Section 2.6, serves as the basis for the development of the state space models

that are presented in the following. The vehicle parameters used are derived in Subsection

3.6.1.

The single-track equations have been extended with additional state variables to generate

models suitable for the task at hand. Most notably, the single-track model has been

extended to allow varying velocities over time. This is important because the controller is

expected to accelerate and decelerate autonomously, and therefore appropriate actuating

signals must be computed by the MPC controller. For this purpose, a new state variable

is introduced that represents the speed of the bicycle. In addition, control variables for

the throttle and brakes are added to the model. Since the engine properties of the target

device are still unknown, a simple linear relationship between the throttle respectively the

brake signals and the vehicle speed is assumed.

The velocity may change over time, and thus also the parameters of the single-track model

equations describing the lateral dynamics of the vehicle (see Section 2.6). When the actual

velocity deviates too much from the velocity parameter used in these equations, the model

yields poor results because it is no longer an accurate description of the controlled system.

One solution for this is the use of adaptive MPC. While the plant model is still linear, the

controller takes the non-linearity of the underlying system into account by using different

linearized models depending on the state of the system, as described in the Section 2.5.4.

For this project, this means that when the vehicle speed changes, the plant model for

predicting the future states is potentially updated with new parameters to better represent

the behavior of the bicycle at the current speed.
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3.6.1 Vehicle Parameters

The single-track model has some vehicle-specific parameters. Since the target hardware

does not yet exist, realistic parameters need to be estimated in order to obtain meaningful

simulation results for the upcoming target vehicle.

It is assumed that the mass and dimensions of the vehicle to be controlled will resemble

a typical electronic bicycle. For the simulation the technical data of a typical e-bike11 is

used. The mass of the vehicle without a driver is 22kg. Assuming the center of gravity is

at the saddle, the distance between it and the front wheel is 1.1m (lf ) and 0.7m (lr) for

the rear wheel respectively.

The yaw moment of inertia can be approximated with the following formula [51, p. 35]:

I = m
a2 + b2

12
(3.2)

Here, m is the mass of the vehicle and a and b are the length and width respectively. The

width of a bicycle is small and is therefore considered negligible. The length used for the

calculation is 1.8m. Thus the resulting approximate yaw moment of inertia is 5.94kg×m2.

The stiffness of the front and rear tire have to be approximated as well. Assuming the

center of the mass is at the saddle, the vertical forces on each wheel (mr and mf ) can be

calculated as follows.

mr =
m ∗ lf
lf + lr

(3.3)

mf = m−mr (3.4)

This results in vertical forces of 130N for the rear and 85N for the front tire. Based on the

typical ratio between normalized lateral forces and slip angles for bicycles [20, p. 1375] as

well as the calculated vertical forces, the stiffness of the front tire is estimated to be about

900N/rad and that of the rear tire about 1370N/rad.

In order to model the velocity change over time, the longitudinal dynamics described in

Mellodge’s book [52] can be used. If the inclination angle of the road is assumed to be

zero and the force exerted on the wheels is the rolling resistance Fr, the change in speed

is approximately:

v̇ =
−Fd − Fr

m
(3.5)

In this equation Fd can be calculated based on the drag coefficient Cd, the mass density

of the air ρ and the cross-sectional area of the vehicle front A [52]:

Fd =
1

2
CdρAv

2 (3.6)

11ETROPOLIS Neo 29er 50W 36V 12Ah

33



3.6 Model Predictive Control

Although the velocity change over time also depends nonlinearly on the current velocity,

the corresponding parameter in the state space models is currently not updated. However,

this is easy to change and should indeed be done once the relevant parameters of the target

vehicle are known.

3.6.2 State Space Models

The vehicle should be able to navigate with the information obtained about the road by

the CV module, and as a fallback with GPS data only. Since the states to be optimized

differ in these two cases, two different MPC models have been developed. Moreover, the

models are available in two versions each, one for the case where an obstacle is detected

and one for the case where no obstacle is present. The reason for this distinction is that if

there is no obstacle, the time to collision is not applicable and should not be accounted for.

If, however, an obstacle is present, it should be considered with a large weight in the cost

function of the MPC, since a collision is to be avoided whenever possible. Consequently,

four state space models are required. The control signals for all models are the steering

angle δ, the throttle a, and the brakes b. sa and sb are the factors that represent the

intensity of acceleration and breaking effects.

The first model is used in situations where no reliable data is available from the CV

module and no obstacle is nearby. In this case, the controller optimizes the direction in

which the bicycle rides. Attempts to optimize for the next GPS coordinates directly led

to poor results because their change with respect to the yaw angle is strongly nonlinear

and therefore not suitable for a linear MPC controller. Therefore, the direction between

the next target point and the current vehicle position is calculated and used as SP for the

yaw angle. The resulting state space model thus yields four variables: the yaw angle ψ,

yaw rate ψ̇, side slip β, and velocity v. Its equation is as follows:


ψ̇

ψ̈

β̇

v̇

 =


0 1 0 0

0 − crl2r+cf l
2
f

Iv
crlr−cf lf

I 0

0 −1− cf lf−crlr
mv2

− cf+cr
mv 0

0 0 0 −Fd−Fr

mv

x(t) +


0 0 0
cf lf
I 0 0
−cf
mv 0 0

0 sa sb

 y(t) (3.7)

If there is an obstacle nearby, the model has to be adjusted slightly. The distance that

should be maintained from the obstacle depends on the velocity of the vehicle. Thereby

collisions can be avoided reliably, without having to maintain unnecessarily large distances

to the obstacles. Therefore, instead of the distance d to the obstacle, the time to impact
d
v = ζ is added to the state space model. It is therefore possible to determine how

many seconds of safety distance should remain between the bicycle and the obstacle. The

resulting state space model is:
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ψ̇

ψ̈

β̇

v̇

ζ̇

 =


0 1 0 0 0

0 − crl2r+cf l
2
f

Iv
crlr−cf lf

I 0 0

0 −1− cf lf−crlr
mv2

− cf+cr
mv 0 0

0 0 0 −Fd−Fr

mv 0

0 0 0 −1
v 0

x(t) +


0 0 0
cf lf
I 0 0
−cf
mv 0 0

0 sa sb

0 0 0

 y(t) (3.8)

Since v will decrease during the braking phase that is be expected when an obstacle

appears, the model typically underestimates ζ. In practice, this means that the computed

braking impulses are stronger and the value of ζ is less likely to fall below the setpoint.

However, if data on the lanes or roadsides is available, the controller should aim to drive

along the road. For this purpose, the lateral position of the vehicle on the road and the

curvature of the street are calculated. These values are then converted into state variables,

namely the offset from the ideal lateral position on the road Oy and the desired yaw rate ψ̈.

The latter is calculated based on the road curvature and the current velocity. Additionally,

for technical reasons, the target yaw rate ψ̇t has to be included in the state as well, since

its value is used to update the lateral offset during the prediction. The remaining states

originate from the single-track model, analogous to the two models above. The model

obtained when visual information about the road is available is:



Ȯy

ψ̇

ψ̈

β̇

ψ̈t

v̇


=



1 0 −v 0 v 0

0 0 1 0 0 0

0 0 − crl2r+cf l
2
f

Iv
crlr−cf lf

I 0 0

0 0 −1− cf lf−crlr
mv2

− cf+cr
mv 0 0

0 0 0 0 −1 0

0 0 0 0 0 −Fd−Fr

mv


x(t) +



0 0 0 0

0 0 0 0
cf lf
I 0 0 0
−cf
mv 0 0 0

0 −1 0 0

0 0 sa sb


y(t)

(3.9)

When data about the road is available and an obstacle is detected, the state space model

shown in Equation 3.9 is extended in the same way as in the above case:



Ȯy

ψ̇

ψ̈

β̇

ψ̈t

v̇

ζ̇


=



1 0 −v 0 v 0 0

0 0 1 0 0 0 0

0 0 − crl2r+cf l
2
f

Iv
crlr−cf lf

I 0 0 0

0 0 −1− cf lf−crlr
mv2

− cf+cr
mv 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −Fd−Fr

mv 0

0 0 0 0 0 −1
v 0


x(t)+



0 0 0 0

0 0 0 0
cf lf
I 0 0 0
−cf
mv 0 0 0

0 −1 0 0

0 0 sa sb

0 0 0 0


y(t)

(3.10)
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3.6.3 Weights, Setpoints and Optimizations

As described in Section 2.5.3, MPC minimizes a cost function to determine the next

controls signals. Therefore costs have to be assigned to the deviations of the state and

control variables from their setpoints. For each of the four controllers, the costs assigned

were determined based on testing different scenarios. In general, the time to impact,

if available, has been assigned the highest weight in order to avoid collisions whenever

possible. If the roadside is detected by the CV module, the offset from the lateral target

position is weighted with the second highest value, followed by the yaw rate and the

velocity. The remaining state variables obtain a weight of zero. If the vehicle has to rely

solely on the GPS data, the second highest weight is assigned to the calculated heading

direction followed by the vehicle speed. The other state variables are weighted with zero.

The deviations of the manipulated variables from zero are weighted as well in all models.

In the case of the steering angle, the aim is to avoid unnecessarily large steering motions,

which in turn would necessitate future corrections. Non-zero weights for the brake and

throttle signals, on the other hand, prevent their simultaneous use and also reduce harsh

control impulses. A maximum steering angle can be set to avoid too narrow curves. In

the implementation the maximum steering angle is set to 0.35rad for the simulation, and

0.2rad for the test vehicle.

While some reference values for the controllers are constant others need to be calculated.

For GPS-based models, the target direction is calculated based on the current vehicle

position and the next target coordinates of the determined route. The weights for the yaw

rate and the side slip are zero, therefore the setpoint value is irrelevant and thus set to zero.

The target speed is calculated based on a given maximum cruise speed, the distance to the

next route coordinates, the destination coordinates and the difference between the current

and desired heading direction. This allows the controller to stop the vehicle completely

at the end of the journey and slow it down before curves. It also slows the vehicle down

before intermediate route points, as they often imply an imminent change of the heading

direction. The target time to impact is set to 2.5s when an obstacle is detected. In other

words, the safety distance to obstacles is set to 2.5 times the current vehicle speed.

For the models that use image processing data, the yaw angle and the side slip references

are set to zero, since their weights are also zero. The desired distance from the roadside

is set to a constant value, in the current implementation this value is 0.7m. The target

yaw rate is calculated based on the assumed curvature of the road and the current speed.

Finally, the target velocity and time to collision are calculated analog to the above case.

In addition to the specified weights and calculated target values, further measures are

taken to improve the system behavior. Firstly, the measured direction of travel and yaw

rate are ignored if the vehicle speed is zero or very low, as the measurements are not

reliable in this case. Once the vehicle reaches a threshold speed that is currently set
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to 0.5m/s, these values are taken into consideration again as the measurements become

more reliable with increasing velocities. Secondly, an emergency break condition has been

implemented which stops the vehicle immediately, regardless of the MPC output, if an

obstacle is coming too close or if the available data is not sufficient to effectively navigate

the vehicle. In addition, the time to impact for detected obstacles is reduced to zero if the

distance to them is less than one meter. Thirdly, the 360-degree distance measurements

of the lidar sensor are used to prevent the vehicle from being steered sideways into an

obstacle. Lastly, the system is configured to never allow negative velocities as reference

values.

3.6.4 Development and Implementation

The MPC controllers were developed using the Model Predictive Control Toolbox dis-

tributed by MathWorks12. This toolbox allows to develop controllers based on a state

space model by specifying the system constraints and weights. The QP solver used by

MATLAB to tackle the optimization problem is described in the application documen-

tation [4, p. 2-21]. With Simulink, different scenarios were tested and the controllers

optimized. This software setup was chosen because the toolbox allows rapid development

and testing and provides immediate graphical feedback. A screenshot of the MPC Toolbox

and a test scenario in Simulink are shown in the Figures 3.13 and 3.14 respectively.

Figure 3.13: Model Predictive Control Toolbox (User Interface) [4]

For the use in the overall system, the controllers have ben reimplemented based on dlib13

however. Dlib is a C++ multi-purpose library. In addition to machine learning, graph

theory and image processing algorithms, it also contains various tools for creating control

systems. The included MPC class implements the algorithm proposed by Koegel and

12https://de.mathworks.com/products/mpc.html, last accessed 11/19/2019
13http://dlib.net/, last accessed 12/07/2019
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Figure 3.14: Test scenario for controller in Simulink

Findeisen [44, p. 1362]. The optimization problem of the quadratic cost function is

solved by a fast gradient descent method, which also considers the constraints. Similar to

MATLAB’s Model Predictive Control Toolbox, dlib allows the instantiation of a controller

object based on a state space model, the constraints and the weights. Dlib was chosen

for the implementation because it is fast, open source and provides a straightforward

Application programming interface (API). This facilitated the integration with the other

software components.

However, it should be noted that dlib’s MPC class has certain limitations compared to

the MPC Toolbox. First, there is no option to set output constraints. As there are

no mandatory output restrictions within any of the proposed models, this limitation is

not an issue. Second, dlib does not natively support adaptive MPC. Nevertheless, this

functionality can be emulated by creating multiple MPC objects for different parameters

and then selecting the correct one at runtime.

3.7 System Integration

In order to obtain a useful system, the modules described above must work together and

be interconnected. The module, which is responsible for the coordination of all other

modules, is called Coordinator in this implementation. Its first task is to initialize all

sensor modules, start the road detection sub-process, create all MPC objects and initialize

the object responsible for the connection to the actual vehicle. The Coordinator is also

responsible for starting the PathManager, which returns a list of all coordinates belonging

to the planned route.

Each sensor then in turn creates its own thread in which the respective measuring loop is

38



3.7 System Integration

started. These loops perform measurements until they are stopped by the Coordinator.

Furthermore, each sensor module offers a getter method for its measured values.

The Coordinator collects the data of all sensors, the results of the road detection module,

potentially updates the next route coordinate and combines all the data into a state object.

This object contains all the raw data needed by the MPC controllers.

Since the data collected by the sensors are complementary and not redundant, apart

from the distance measurements, they can be combined straight forwardly. However, it is

necessary to check whether the measurement values are meaningful and up-to-date. This

task is performed by a class called HealthChecker. Light-emitting diode (LED)s are used

to indicate whether all required data is available and reasonably recent. The shorter of

the two measured distances is accepted if both the ultrasonic and the lidar measurements

are valid. If only one distance sensor provides a meaningful measurement, its value is

accepted. If important data is missing, the vehicle is stopped and the system waits until

the data situation becomes acceptable again.

Based on the data gathered, the appropriate MPC controller is selected by a class in the

coordinator called MPCBridge. This class is also responsible for converting the measure-

ments into the units required by the controllers. This means that latitude and longitude

information is converted to meters, with the reference point being the next target coordi-

nates, and that degrees are transformed to radians. In addition, this class performs most

of the optimizations described in Section 3.6.3. Moreover, it is responsible for format-

ting the measurement data in such data structures that they can be used by the selected

controller.

The Coordinator then requests the next control signals from the selected MPC object. The

received steering, engine and brake control signals are subsequently sent to the vehicle. A

shortened and simplified code snippet of the Coordinator class is shown below.

Listing 3.2: Shortened and simplified coordinator code

1 class Coordinator ( object ) :

2 . . .

3
4 def i n i t ( s e l f , . . . ) :

5 . . .

6 s e l f . path manager = PathManager ( . . . )

7 s e l f . mpc bridge = MPCBridge ( . . . )

8 s e l f . a c t u a t o r b r i d g e = ActuatorBridge ( . . . )

9 s e l f . a c t i v e = True

10
11 def s t a r t t r i p ( s e l f , s t a r t , d e s t i na t i on , . . . ) :

12 . . .

13 # In s t a n t i a t e SensorFuser here .

14 # I t in turn w i l l i n s t a n t i a t e / s t a r t the i n d i v i d u a l Sensors

15 s e l f . s e n s o r f u s e r = SensorFuser ( . . . )
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16 s e l f . path manager . r e t r i e v e p a t h ( s ta r t , d e s t i n a t i o n )

17 coo rd ina to r th r ead = thread ing . Thread ( t a r g e t=s e l f . main loop )

18 coo rd ina to r th r ead . s t a r t ( )

19
20 def main loop ( s e l f ) :

21 while s e l f . a c t i v e :

22 . . .

23 s t a t e = s e l f . s e n s o r f u s e r . r e t r i e v e u p d a t e s ( )

24 . . .

25 s t a t e . n e x t t a r g e t = s e l f . path manager . g e t next ( )

26 s e l f . h ea l th checke r . check ( s t a t e )

27 impulses = s e l f . mpc bridge . r e q u e s t s t e p ( s t a t e )

28 s e l f . a c t u a t o r b r i d g e . send ( impulses )

29 . . .

30 s e l f . s e n s o r f u s e r . stop ( )

31
32 . . .

33
34 i f name == ” main ” :

35 . . .

36 coo rd ina to r = Coordinator ( . . . )

37 coo rd ina to r . s t a r t t r i p ( s ta r t , d e s t i na t i on , . . . )

38 . . .

As mentioned in Section 3.1, a test vehicle is used for the validation because the target

hardware does not yet exist. The steering, the brakes and the engine are operated by an

Arduino Nano that is part of the test vehicle and to which the control unit is connected via

USB. The developed steering and control unit sends UTF-8 encoded strings containing

the actuating signals to the Arduino. These strings are always six bytes long; A start

character, followed by two bytes for the steering angle, one byte each for the throttle and

brakes, and one termination character. The neutral position for the steering angle is 50

and 0 for the throttle and brakes respectively. PySerial14 is used to transmit the signals

via the serial USB connection.

The software interface of the Arduino developed by Grasemann [25, p. 15] was modified

in order to be able to receive all three pieces of information at once. This significantly

improves the vehicle’s responsiveness to control signals.

14https://github.com/pyserial/pyserial, last accessed 11/18/19
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4.1 Sensor Testing

The first step of the validation is to check the correctness and accuracy of the measurements

of the individual sensors. The following subsections describe the results obtained.

4.1.1 Ultrasonic Sensor

The ultrasonic sensor is used for distance measurements. Based on the manufacturer’s

specifications, it is expected that distances in the range of 2cm to approximately 4m can

be measured.

First, the sensor was tested under good conditions in a quiet environment, at an angle of

90◦ to a hard obstacle with a smooth surface. The results can be found in the Table 4.1.

It can be concluded that the measurements are reliable up to about 4 − 4.5m and that

the standard deviation is less than 1cm in all cases. This is very accurate for the purposes

intended.

Distance (m) Standard Deviation (cm) Invalid Measurements

1.01 0.1 0%

2.01 0.1 0%

2.98 0.2 0%

4.03 0.3 0%

4.57 0.4 8%

∼ 5.0 n/a 100%

Table 4.1: Ultrasonic sensor accuracy

In order to test the real world capabilities, different materials were tested from different

distances. The materials examined were wood, concrete, a car (i.e. metal and glass) and

bushes. All these obstacles were measured at different distances of one to four meters.

The raw measurement data can be found on the mass storage medium attached to this

thesis.

In these realistic scenarios, the range is almost always less than four meters. Obstacles

close to that distance are only detected under ideal conditions. The ultrasonic waves were,
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as expected, much better reflected by hard surfaces than by soft ones. While the soft leaves

of shrubs were only detected reliably from a distance of 1.5m (detection rate 89%), a hard

concrete wall was still recognized at a distance of more than 4 meters in 85% of the cases.

The range for the detection of cars and wood is between 2 and 3 meters with success rates

of 95% and 3% for the car and 69% and 29% for the wooden surface. Wherever a distance

was measured, the accuracy was always good.

The sensor module currently performs about 8.5 measurements per second, which is suf-

ficient for the purposes of this project. This rate could easily be increased as there are

currently scheduled waiting times between measurements. Given the maximum speed

of the vehicle and the relatively short range of the device, it can be concluded that an

ultrasonic sensor alone is not sufficient to detect obstacles in front of the vehicle.

4.1.2 Lidar

In addition to the ultrasonic sensor, a rotating lidar is used for measuring distances.

The device should be able to detect distances of up to 12m and provide up to 5000

measurements per second. Since only the points in front of the vehicle are of interest, the

other half of the measurements is discarded, resulting in a maximum of 2500 measurements

per second.

Analogous to the ultrasonic sensor, the lidar was first tested under good conditions to

measure its accuracy. For this sensor, this means in an environment without sunlight.

The Table 4.2 shows the results of these measurements. While the deviations are relatively

small and the failure rates low, the sensor seems to overestimate the distances proportional

to the actual distance values. This could either be due to slightly inaccurate measurement

directions or due to general sensor inaccuracies. However, the sensor precision is still

sufficient for the purposes of the system. The sensor rotates at approximately 8.5Hz,

which means that 8 measurements per second can be performed in any direction. In the

tests carried out, approximately 240 measurements per rotation were made, resulting in

slightly more than 2000 measurements per second.

The capability of the sensor also depends on the material by which the laser beam is

reflected. It was possible to reliably measure the distances to a black car up to 4m, a

hedge up to 7m, a glass surface up to 4m and a brick wall up to 14m during the test.

However, the lighting conditions have the greatest influence on the sensor performance.

When the sensor is used in direct sunlight, its range decreases drastically, sometimes to

less than 2 meters. A lower sensor performance is to be expected in sunlight, as also

mentioned in the user manual [68, p. 14]. Even though all lidar sensors are sensitive

to ambient light to some extent, a more powerful signal transmitter may mitigate this

problem.
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Distance (m)

Actual Measured Standard Deviation (cm) Invalid Measurements

3.0 3.05 0.2 0%

5.0 5.08 0.4 0%

8.0 8.21 1.1 0%

10.0 10.19 4.5 0%

12.0 12.25 7.0 2.4%

14.0 14.35 8.1 16.8%

Table 4.2: Lidar sensor accuracy

When the lidar sensor is not used in direct sunlight, it can perform distance measurements

with a longer range than the ultrasonic sensor. Due to its 360-degree measurement ca-

pability, it is useful for avoiding steering into obstacles. By combining the two distance

sensors, a more reliable distance estimation can be obtained.

4.1.3 GPS sensor

In order to evaluate the accuracy of the GPS sensor, three scenarios were tested. Firstly,

stationary position measurements were performed to verify the accuracy of the calculated

position. Secondly, the sensor was moved at a constant speed along a straight line to

measure yaw angle, yaw rate, and speed deviations. Finally, the sensor was moved at con-

stant speed in a circle to evaluate the accuracy of the yaw rate. The tests were performed

outdoors as this is necessary for good GPS reception.

For the first test, the device was placed in various stationary positions. The measured

standard deviations of the coordinates were 0.5m for the latitude and 1.0m for the lon-

gitude. This is within the range of the advertised accuracy. The velocity had a mean

deviation from the true value (0m/s) of 0.15m/s, while the yaw rate yielded, as expected,

arbitrary values.

The second test was conducted while moving at constant speeds along a straight line.

It was performed at three different velocities, the results are shown in Table 4.3. The

obtained coordinates of one of these test runs are shown in Figure 4.1. The velocity,

heading direction and yaw rate are all calculated based on the position. Since there are

already inaccuracies in the latter, it is not surprising that all three derived values contain

a significant proportion of noise. This may prove to be a major issue, especially when

following a lane. In this case, accurate yaw rate measurements are vital. The accuracy of

the heading direction increases with speed, as expected, since the differences between the

coordinates increase and the signal-to-noise ratio thus improves.
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Measured Standard Deviation

Velocity (m/s) Velocity (m/s) Heading Direction Yaw Rate

1.2 0.26 6.4◦1 n/a2

2.1 0.27 6.4◦ 4.1◦

3.7 0.39 2.8◦ 4.7◦

Table 4.3: GPS measurements at constant velocities

Figure 4.1: Accuracy of obtained GPS coordinates 3

The sensor returns about three measurements per second. However, the actual number

of measurements seems to be smaller, since the same values are typically received sev-

eral times in a row. The effective temporal resolution is thus low. This is suboptimal

considering how dependent the system is on this data.

It can be stated that the unit provides measurements with an adequate accuracy given

the limitations of the underlying technology. However, especially the yaw angle and the

yaw rate have a rather low precision with regard to the system task. Therefore, an

accelerometer has been built into the system which can be used in the future to obtain

better estimates of the yaw rate. At low speeds, the heading direction and yaw angle

measurements mostly consist of noise. Consequently, these values are ignored by the

controller at low velocities. The speed measurement could be significantly improved by

calculating this value from the wheel revolutions of the vehicle. This feature should be

available in the target vehicle.

4.2 Roadside Detection

In order to test the road detection module, the hardware was attached to a bicycle in order

to ensure a fixed camera angle at a constant height. Since the target vehicle is not yet

available, the module was tested with a regular bicycle. In the current setup, the module

1For the valid 46% of measurements
2Results obtained contain mostly noise
3Map data: https://www.openstreetmap.org/search?query=#map=18/50.14312/8.69939, last accessed

12/11/2019
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is capable of capturing and analyzing about three frames per second. Various test images

have been taken, which will be analyzed in the following. As only the roadside detection is

relevant for the current implementation, only this mode will be discussed below. Since each

frame is analyzed separately, the pictures are also examined individually in the following

tests. When conducting a test with a continuous stream of frames, the CPU utilization

was constantly at about 220% and the memory consumption was about 140MB (roughly

8% of the total RAM of the Pi).

The roadside detection mode should be able to identify the edge of a road and calculate

its curvature as well as the offset of the vehicle from its ideal lateral position on the road

(see section 3.4).

4.2.1 Straight Roads

At first, it is examined whether the module is able to detect edges of straight roads.

Figure 4.2 contains three example images, all of which show straight roads with curbstones,

followed by grass. The vehicle is placed at an appropriate distance to the roadside. The

ideal result would be an infinitely large curve radius (a perfectly straight edge) and a small

lateral offset.

Figure 4.2: Straight road detection

As can be seen, all three roads are recognized correctly, the calculated radii are relatively

large and the offsets are small. Deviations in the offsets are probably due to imperfect

placements of the vehicle while taking the test images, while the different radii are due

to inaccuracies in the edge detection. However, it can be stated that in all three test

images the results are satisfactory. The roadsides are detected even though the grass in
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the first picture does not reach the road and there are road damages in the second picture.

Furthermore, the first picture contains shadows and a bicycle close to the roadside. These

factors have not influenced the algorithm performance.

4.2.2 Curved Roads

In addition to straight roads, roads with curves in both directions should be recognized.

Since the algorithm used utilizes a second order polynomial to approximate the road

curvature, this should be possible.

Figure 4.3 shows four such roads. Two with a left curve and two with a right curve. In

addition, each curve is also shown on a satellite image. The cyan circle represents the

vehicle’s position, while the magenta circle represents the calculated curvature. Ideally,

the detected curve would follow the lane on the camera image exactly, and the calculated

curvature would match the actual road curvature in front of the vehicle.

It can be seen that the curves are detected in all four cases. Looking at the resulting

curves drawn on the original pictures, it can be seen that the curve directions and positions

are mostly correct, except for the third image where the curvature seems to have been

overestimated. However, when looking at the satellite images and the superimposed circles,

it can be observed that the calculated curve radius is actually too large in the third case.

For the other three examples, the curve radius obtained seems to be reasonable. The

passing car on the last picture does not affect the algorithm negatively.

In the filtered binary images (middle column) it can be seen that in the second and third

pictures the curbstones were partly recognized as part of the road and partly not. This

is not ideal, since such partial recognitions may have a considerable impact on the curve

calculation.

4.2.3 Lateral Position

In addition to the road curvature, the lateral position of the bicycle on the road is also

of interest. The software should be able to detect whether the vehicle has more or less

distance to the roadside as it should. To validate this, the vehicle was placed three times

at the same position, only once shifted to the left and once to the right. The results are

shown in Figure 4.4.

The software is, in this test case, able to determine whether the vehicle is too far to

the left (positive offset values) or too far to the right (negative offset values). The lane

was recognized as more or less straight in all three images. It should be noted that the

curbstones are again partially recognized as part of the street and that the lower left corner

4Source satellite images: https://www.google.com/maps, last accessed 12/11/2019
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Figure 4.3: Right and left curve detection4

on the first image is not recognized as part it. Since the corner in question is not taken

into account for the edge detection, the result is still acceptable, though. In general, it

can be concluded that the lateral offset of the vehicle can be determined by the current

approach. Larger offsets would, however, not be detectable due to the relatively narrow

viewing angle of the camera.
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Figure 4.4: Offset to specified lateral position

4.2.4 Camera Rotation

The above scenarios were based on the assumption that the camera has no lateral incli-

nation. This is also a constraint under which the software was developed in general. In

reality, however, a bicycle may lean sideways while driving, and therefore it is interesting

to see how the module behaves under these circumstances. For this test a picture of a

straight road was digitally rotated by 10◦ to the left (right picture) and to the right (left

picture). By using the same footage as basis for all three images, the effect of the camera

rotation can be examined isolated. The results are shown in Figure 4.5.

On the basis of the results, three observations can be made. First, the roadside is accu-

rately detected in all three cases. Second, the reported curvature of the road is largely

unaffected by the image transformation, although a slight curve is computed in the left

image. Third, the calculated lateral offset changes due to the rotation, but not to the

same extent in both directions. If the camera is tilted, this means that the whole vehicle

is inclined as well and thus the wheels also have a different lateral position. The direction

of the expected wheel position change and the direction of the offset change are the same.

Whether or not they match in a meaningful way has yet to be tested and confirmed once

the target hardware is available.

4.2.5 Rejection

It is not only necessary that the module is able to identify roadsides if they are present, but

it is also important that it does not report garbage values when no roadside is detected.

Figure 4.6 shows three scenarios where no data should be returned.
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Figure 4.5: Rotated camera footage

Figure 4.6: Roadside detection, rejection test

The first test picture is indeed rejected by the algorithm and no curve is returned. This is

because no significant edge is found in the first two search windows (as described in 3.4).

The second picture shows a junction, with curbstones running through. While the recog-

nition of curbstones as part of the road can be useful for the other use cases mentioned

above, here this should not be the case. Otherwise the vehicle is not permitted to turn

right onto the other road (since following the lane has higher priority than navigating to

a GPS signal) even if the calculated route would require this.
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Finally, the third image should not be used to determine the roadside, since the actual edge

begins outside of the ROI in the lower right corner. Therefore, the curve calculation cannot

be carried out in a meaningful way. However, since in this picture the saturation values for

some parts of the asphalt are quite large, the first two search windows are not discarded

and a curvature is calculated. Although the resulting curvature would coincidentally guide

the vehicle along a reasonable path, this result is undesirable because the computer vision

module is supposed to detect roadsides, which it did not do here.

In summary, the module is able to avoid returning some invalid roadsides, but the rejection

of false positives is not as robust as it should be.

4.2.6 Robustness and Limitations

The above sections show that the implemented road detection module is capable of iden-

tifying and processing straight and curved roadsides, calculating the lateral position of

the vehicle on the road, and is partially robust against lateral inclination of the camera.

However, there are a number of limitations to consider.

The edge detection of this module is only written and tested for asphalted roads surrounded

by grass. While it may work with materials other than grass, this has not been tested.

Furthermore, the performance of the edge detection may be affected by weather conditions

(e.g. rain), seasons (e.g. snow, fallen leaves on the road) and lighting conditions. As

shown in Subsection 4.2.5, invalid frames may be rejected under certain circumstances,

but performance is suboptimal in this respect.

The curve calculation requires a well recognized edge in order to work properly. If the edge

of the road is not clearly recognized, the resulting curve may be inaccurate. In addition,

there the an assumption behind the algorithm that the vehicle already roughly follows the

street. If this is not the case, the module is not capable of working properly.

Lastly, the camera used has a rather small viewing angle. A camera with a wider viewing

angle would be better suited for this purpose as it could cope with larger lateral offsets.

Despite these limitations, the module can detect straight and curved roads and fairly accu-

rately determine the lateral position of the vehicle. It makes sense to use this information,

when available, for navigation, rather than relying solely on GPS signals. Once the tar-

get vehicle is available, it has to be tested whether the data provided by this module is

accurate and frequent enough to navigate the vehicle properly on this basis.

4.3 Route Planning

The aim of the route planning module is first to find a route between the start and

destination and second to take the shortest path possible. The module was tested by
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randomly selecting twenty start and destination points in the graph and calculating the

route between them. The results were then evaluated to see if they satisfy the above

criteria.

When assessing the results, it was assumed that all paths and roads can be used in either

direction, as this information is not available in the source data. While most routes have

been calculated as expected, some seem to contain smaller detours. Two root causes

have been identified for these. First, some paths and connections are missing in the

graph. Second, some edges have start and end coordinates that are slightly inaccurate,

which prevents the algorithm from recognizing them as being part of the intersection they

belong to. On one hand, these problems could be solved by improving the raw data that

makes up the graph. On the other hand, it would also be possible to treat the nodes of

the graph not as single point coordinates, but as circles with a certain radius. This could

solve the second issue as well. In all test cases, however, a valid route from the start to

the destination was found. Figure 4.7 shows the waypoints of one of the twenty test cases

on a map.

Figure 4.7: Example route plotted on a map5

Since the only issues found are caused by inaccuracies in the sample data used, it can be

presumed that the route planning module works as intended.

4.4 MPC Simulations

The controllers created were tested on the basis of various scenarios. In the following, a

representative example is presented for each base scenario to show the general capabilities

5Map data: https://www.openstreetmap.org/search?query=#map=17/50.12666/8.66915, last accessed

12/11/2019
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of the controllers. The first scenario tests whether the controller is able to reach prede-

termined coordinates and stop the vehicle there. The second scenario then tests whether

the controller can correct a lateral offset and follow a defined curvature afterwards (i.e.

maintain a constant yaw rate if the speed is constant). Thirdly, it is checked whether the

control system can avoid colliding with an obstacle by braking. Finally, a more compre-

hensive test aims to show that the controller is able to track a complete route and provide

the necessary steering, throttle and brake signals.

4.4.1 Navigate to Position

The vehicle is placed at the coordinates (0, 0) with an initial speed of 2m/s and a heading

angle of 0◦. Then the destination coordinates are set to (-10, -10). It is expected that the

control system will take a sensible path to the specified destination and bring the vehicle

to a complete stop on arrival. Furthermore, the control signals should not oscillate too

much and the brakes and throttle should never be applied simultaneously.

Figure 4.8: Navigation test, reference values

The calculated setpoints are shown in Figure 4.8. Figure 4.9 contains a plot of the simu-

lated states and Figure 4.10 shows the obtained control signals.

Based on Figure 4.11, which shows the calculated vehicle position over the simulation

period, it can be concluded that the controller is able to navigate on a rather direct path

to the specified position and stop there.

The control signals are adequate with respect to the above conditions, but the change in

steering angle may be considered to be too rough. Unfortunately, the Model Predictive

Control Toolbox does not allow to limit the rate of change of the control signals in adaptive

MPC controllers. Even though the option is available in the settings, it has no influence
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Figure 4.9: Navigation test, simulated states

Figure 4.10: Navigation test, control signals

on the simulation and the functionality thus seems to be missing. Nevertheless, should the

steering become smoother, this could be achieved by increasing the weight of the steering

angle, as described in section 3.6.3.

4.4.2 Follow the Road

As described in Section 3.6.2, the models used differ substantially depending on whether

a roadside has been detected or not. While the above test considers the case in which

this information is not available, this scenario tests the MPC controller which is relying

on this information. Given a target yaw rate and a lateral offset, it is tested whether
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Figure 4.11: Navigation test, calculated vehicle position

the controller is capable of approximating the yaw rate and correcting the offset. At a

constant speed, this should result in a circular trajectory of the vehicle.

The initial speed is set to 2m/s and the initial yaw angle is set to zero. The target yaw

rate is kept constant at 0.2rad and the lateral offset is initialized with a relatively large

value of −0.7m. The target value for the offset is zero.

All SPs remain constant over the simulation period with the values described above. The

dummy variable containing the target yaw rate (see 3.6.2) has been omitted in the following

figures because its value does not contribute to the evaluation of the control performance.

The control signals are shown in Figure 4.13 and the simulated states in 4.12 respectively.

This results in the simulated vehicle positions over time, as shown in Figure 4.14.

Figure 4.12: Follow the curve, simulated states

It can be observed that the controller is able to correct the initial offset by the steering

impulses issued within the first seconds. Furthermore, it is able to assume the target yaw
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Figure 4.13: Follow the curve, control signals

Figure 4.14: Follow the curve, vehicle position

rate later on. The changes of the steering angle are smoother than in the test above.

4.4.3 Obstacle Avoidance

It is vital that the controller can avoid collisions. Since the implemented collision avoidance

strategy is to simply apply the brakes, the test case simulates an obstacle at specified

coordinates and tests whether the controller can stop before reaching these.

For this scenario, the vehicle is placed at position (0, 0) with an initial speed of 4m/s

and a heading direction of 45◦. The obstacle is 9m away from the vehicle at the time of
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detection (t = 0). Therefore, the time to collision is initially 2.25s. In both modes, with

and without information from the road detection module, obstacle avoidance is supported

and works in the same way. The former mode is used for this test. The target yaw rate is

set to zero, therefore the simulated path is supposed to be a straight line.

Ideally, the obstacle should already be detected when it is 4 seconds or farther away from

the bicycle. However, the controller also needs to be able to avoid a collision if the obstacle

is detected later, as is the case in this scenario. The test is successful if the vehicle stops

completely before the impact occurs and if the yaw rate is close to the setpoint value. The

target value for the time to impact will not be obtained. This is because if the distance

is less than 1m, this variable is set to zero in order to stop the vehicle completely at a

reasonable distance from the obstacle (see section 3.6.3).

Figure 4.15 shows the simulated states for this scenario, while Figure 4.16 shows the con-

trol signals. As can be seen, the deceleration respectively braking of the vehicle occurs

relatively smoothly as the obstacle approaches, and eventually the vehicle stops. As pre-

viously mentioned, it can be seen that at a certain point the time to impact is set to zero

because the distance to the obstacle is less than 1m. While the heading direction is kept

nearly constant in the beginning, the steering angle increases once the vehicle has almost

completely stopped. This has also a certain influence on the simulated yaw angle. While

this is undesirable behavior, the sensors would in reality detect a lateral deviation which

in turn would result in corrective steering. In addition, the steering becomes irrelevant as

soon as the vehicle comes to a standstill.

Figure 4.15: Collision avoidance, simulated states

Figure 4.17 shows the calculated positions of the vehicle. In this scenario, the obstacle

is located approximately at the position (6.3, 6.3). The vehicle thus stops about 0.9m in

front of the obstacle.
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Figure 4.16: Collision avoidance, control signals

Figure 4.17: Collision avoidance, calculated position

While the above scenario was performed with the controller that uses lane information,

similar results are achieved with the GPS only controller.

4.4.4 Route Tracking

In the previous subsections it was shown that the controllers are able to steer the vehicle

to given coordinates, to keep the vehicle at a given distance from the edge of a curved road

and to stop when an obstacle is detected. However, it is also important that a complete

path can be tracked by the controller. Furthermore, the vehicle should reduce its speed

before corners and stop completely at the end of the track. For this test the maximum
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allowed steering angle was set to π
4 . The route is determined by its waypoints and the

desired velocity is computed based on the waypoints and the current vehicle position. All

target values are plotted in Figure 4.18.

Figure 4.18: Route tracking, reference values

Figure 4.19: Ideal path (red) versus simulated path (blue)

Figures 4.19 and 4.20 show that the controller is able to follow the optimal path accurately.

The deviations arise from the steering radius of the bicycle. It can also be seen that the

speed of the vehicle is reduced before each corner or waypoint and that the vehicle stops

completely at the end of the defined route.
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Figure 4.20: Route tracking, simulated states

Figure 4.21: Route tracking, control signals

As illustrated in Figure 4.19, the deviations of the simulated path from the ideal path are

small. To achieve this, the controller has been set to be quite aggressive. The steering

angle thus changes relatively quickly (see 4.21) and the speed is reduced significantly before

each turn. It has to be tested with the target bicycle if this configuration is desirable. If

necessary, the steering impulses can be softened, for example by increasing the weight of

large steering angles. In this case, however, the path will be traced less accurately.

4.5 Closed Loop Testing

As already mentioned in section 3.1, the electric bicycle for which the developed system

is intended does not yet exist and will only be built in future projects. However, to test

the closed loop behavior of the system, it was mounted on a test vehicle.

With this setup it is possible to assess the capabilities of the system in general. However,

it is more to be seen as a proof of concept, since the test hardware is obviously not a

bicycle. Therefore, certain restrictions apply for this setup. First, the track detection
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module has to be deactivated. Due to the size of the vehicle, the camera is too close

to the ground and thus cannot capture a sufficiently large section of the road to provide

meaningful results. Second, the parameters for the models used by the controllers (see

3.6.1) are adjusted to bicycles. Hence, the control signals may not be optimal. Third, the

vehicle’s software interface is not capable of reliably receiving as many signals per second

as the control module can transmit. Therefore, the signal rate had to be reduced. Since

the vehicle has a considerably smaller turning radius than a bicycle, both the maximum

steering angle and the weights of the control signals have been altered to achieve better

results in the following tests.

Some quirks were found regarding the test vehicle. Sometimes the steering servo turned

sharply to the left, regardless of the current input signals. In addition, the steering has

a play of a few degrees, which means that the set steering angle does not necessarily

correspond exactly to the actual one. Since there are no sensors to measure the actual

steering angle, this has a negative effect on the system accuracy. Finally, there is currently

no interface to receive the current speed from the vehicle and therefore for the following

tests the velocity had to be calculated based on the GPS positions.

Validation with this test vehicle nevertheless yields useful results. It is possible to validate

the integration of the various software components. Namely it can be determined whether

the correct MPC controllers are selected, whether they return appropriate actuating signals

and whether the connection to the vehicle is working properly. Moreover, it is possible to

assess whether the system can autonomously navigate along a track and avoid collisions.

4.5.1 Integration and Capabilities

For the system to function properly, the components tested in the above sections need to

work together in a meaningful way and the system as a whole must be able to control the

vehicle. This was evaluated on the basis of tests with the test vehicle and the subsequent

analysis of the collected log files.

The coordinator module first initializes all the required objects and the MPC controllers.

Then all measurement loops are started. The log files collected from the test scenarios

show that the data can be fused together for both valid and invalid sensor measurements.

The system is therefore robust against nonvalid measurements.

The aggregated data must then be transformed before it can be used by the controllers.

It can be seen from the analyzed test cases that the conversion of coordinates into meters

as well as the calculation of the actual and target heading direction, yaw rate and target

velocity yield reasonable results. The software is also able to select the appropriate con-

troller depending on whether information about the road is acquired by the CV module

and whether an obstacle is identified nearby. Depending on the velocity, the corresponding

state space parameters are selected. No model is used if not enough data is available.
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Based on the aggregated data, the MPC controllers are able to determine control signals

that are then properly sent to the vehicle. The vehicle is able to accelerate, brake and

steer in the correct direction based on the MPC output. In addition, when approaching a

waypoint, the target speed decreases as expected and the next waypoint is loaded.

The calculation time of one iteration varies depending on which model is used and whether

Python performs garbage collection at a particular time. For the current implementation,

an average of about 5 control signals per second are observed. The developed control

module would be able to calculate about 10 such signals per second without the limitations

imposed by the test vehicle. When running the software, the CPU usage of the Raspberry

Pi varies between 25% and 300%, depending on whether the image processing module is

deactivated and whether an obstacle is detected.

The basic prerequisites for autonomous navigation of the vehicle are that the control mod-

ule is capable of collecting, aggregating and processing the required data and of controlling

the vehicle. Since these requirements are met, the entire system can now be tested. The

next subsection checks whether the collision avoidance works properly. The last subsection

discusses the vehicles capability to autonomously navigate along a real test track.

4.5.2 Collision Avoidance

The control system should prevent the vehicle from colliding with obstacles. The perfor-

mance depends of course on the detection of the obstacles, see Section 4.1. To test the

system’s capability in this respect, a route was defined that was blocked by an obstacle

(i.e. a brick wall).

Figure 4.22: Measured distances to the obstacle

The test was performed several times. In all cases, the controller was able to stop the

vehicle before the impact occurred. The data obtained during one of the test runs is

examined here exemplarily.
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Figure 4.23: Stopped vehicle in front of brick wall

Figure 4.22 shows the measured distance over time as the vehicle approaches the obstacle.

It can be seen, that in this test run the ultrasonic and lidar measurements were almost

identical, the main difference being the lower range of the ultrasonic sensor. Around the

first second, the measured distance dropped significantly, probably caused by a fairly large

bump in the road. Since the sensors are mounted relatively low above the ground, the

bump may have caused them to identify part of the road as an obstacle. It can also be

seen that the vehicle comes to a standstill at a distance of approximately 80cm from the

obstacle. When looking at all the test runs carried out, there is a certain variability in

this number.

Figure 4.24: Measured speed and time to impact

The metric used by the controller to avoid collisions is the time to impact (see 3.6.2).
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It is only calculated when an obstacle is nearby and potentially set to zero whenever

the distance to the obstacle is less than one meter (see 3.6.3). The values computed in

the examined test run are plotted in Figure 4.24. Due to the low temporal resolution and

accuracy of the velocity measurements, the calculated metric is somewhat unstable and has

a reduced accuracy. Here the limitations of the speed measurements are clearly observable;

although the vehicle has stopped around the eighth second, the speed measured by the

GPS module is not reduced to zero until two seconds later. Despite this measurement

limitation, the system is able to stop the vehicle properly before the impact happens.

Figure 4.25: Collision avoidance, control signals

Improving the responsiveness of the controller and the smoothness of the control signals

(see Figure 4.25) requires both more frequent and more accurate data on the vehicle veloc-

ity. This can be achieved by a sensor that measures the speed directly on the basis of the

wheel rotation. More frequent control signals may also improve the results. This is pos-

sible with the current implementation; the distance measurements are already performed

with a higher temporal resolution and the controller is able, as stated above, to double the

number of actuating signals computed per second. However, as the vehicle cannot process

more signals, increasing the number of iterations per second is currently useless.

4.5.3 Route Tracking

Based on specified start and destination coordinates, a route was calculated which had to

be followed by the vehicle in this final test. For the reason stated above, the road detection

module was disabled for this test. The test track was completed several times, some of

the log files can be found on the attached CD. The data presented herein are taken from

one of these runs, namely fb run7.log.

Figure 4.26 shows the waypoints in blue, and the logged GPS positions in red. It can be

seen that the vehicle is capable of tracking the route based on its waypoints. The path

driven seems to be fairly accurate, considering that the precision and temporal resolution
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of the GPS measurements are limited and that the actual steering angle is not observable.

Between waypoint two and three the steering impulse was too hard, which was corrected

by the controller later on. Figure 4.27 shows the latitudes and longitudes measured while

driving. In addition, the setpoints are displayed as dotted lines. The data shows that

the system is capable of approaching the desired values. If the distance to the current

target point falls below a certain threshold value, the system switches to the next target

coordinates.

Figure 4.26: Waypoints (blue) and actual route (red)6

Figure 4.27: Route tracking, target and measured coordinates

Figure 4.28 shows the reference values passed on to the controller. The measured position

and the next waypoint are transformed into the desired yaw angle. The target speed is

sometimes temporarily reduced in order to prepare for potential upcoming curves. If an

obstacle had been detected by either of the two distance sensors, the target time to impact

would have been set to 2.5s. However, no obstacle was detected during this particular test

run. The other reference values are set to zero.

6Created with Google MyMaps, 15/12/2019

https://drive.google.com/open?id=1DTAhvFw76j82aQrYRsO7SMaoaAF7QAW2&usp=sharing
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Figure 4.28: Route tracking, calculated target states

The measured states are shown in Figure 4.29. They seem to have a rough temporal

resolution due to the limited number of GPS measurements. In addition, the GPS sensor

smoothes the returned velocities, resulting in measured values that differ from actual ones.

In general, however, it can be seen that the controller is able to manipulate the states in

order to reach the setpoints. This can also be seen in Figure 4.30, which plots both desired

and measured values for the velocity and the heading direction.

Figure 4.29: Route tracking, measured states

The actuating signals sent to the vehicle are capable of controlling it in a meaningful way.

The test vehicle has a fast acceleration and the brakes are very effective. Even at low

braking intensities it quickly comes to a standstill. Furthermore, the vehicle has a high

rolling resistance and slows down rapidly if the throttle is not used. This, together with

the rough temporal resolution of certain variables, results in the slightly hectic control

signals for the throttle and brakes as shown in Figure 4.31. The steering signal is more

steady. Generally, the system is able to react appropriately to the measured states.

The tests carried out show that the system is able to calculate the target states and to

control the vehicle in order to reach them. Thus it is able to follow a track autonomously.

However, some limitations have been identified and the system performance varies from
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Figure 4.30: Route tracking, heading and velocity

Figure 4.31: Route tracking, controls signals sent to vehicle

run to run. The results could be significantly improved by integrating the accelerometer

into the system and by adding sensors to the vehicle to measure the actual steering angle

and velocity.
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5 Conclusion

In this thesis a control and steering module for an autonomous bicycle was developed.

Based on sensor fusion and model predictive control, the module is able to trace routes

autonomously.

The system is developed to run on a Raspberry Pi. An ultrasonic sensor and a 2D Lidar

sensor are used for distance measurements. The vehicle’s position is determined by using

GPS signals. Additionally, a camera is used to capture pictures for the roadside detection.

An accelerometer was added and connected, but not yet integrated into the system.

In order to recognize the road and the position of the vehicle on it, CV techniques are

used. The captured images are denoised using the non-local means algorithm, and Canny

edge detection is performed in the HSL color space. The ROI of the image is then selected

and a perspective transformation is applied. Thereafter a sliding window algorithm selects

the edges belonging to the roadside and a second order polynomial is fitted to the selected

data. Based on this, the road curvature and the lateral position of the vehicle on the

road are calculated. The validation shows that the implemented software is able to detect

straight and curved roads as well as the vehicle’s lateral offset. Some limitations, for

example regarding weather and low-contrast lighting conditions, have to be taken into

account when using this algorithm. Furthermore, the reliability of rejecting frames on

which no roadside could be detected should be improved.

A route planning module was implemented to navigate the vehicle from the start to the

destination coordinates. This is done by creating an abstract graph of the roads and using

Dijkstra’s algorithm to determine the shortest path.

Four MPC controllers were implemented to control the movements of the vehicle. They

are based on state space equations derived from the linear single-track vehicle model. This

relatively straightforward model makes it possible to predict the vehicle behavior and is

efficient to compute. Each controller was built with different parameters for different

vehicle speeds to account for the non-linearity of the system. The controllers simulate

the future states of the system at each timeslot and select appropriate control signals for

steering, throttle and brakes. Using multiple models and controllers makes the system

more resilient, as it is able to react properly in situations where not all data is available.

In this thesis, all the components of the steering and control module were individually

validated. It was established that the each individual component works as expected and
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certain constraints and accuracy limits were identified. Finally, the closed loop capabilities

of the system were assessed using a test vehicle. Despite some limitations imposed by this

setup, it was shown that the control module is indeed capable of autonomously navigating

a vehicle and avoiding collisions.

5.1 Future Work

While the developed system already has many features and capabilities, several improve-

ments are still to be made. The limitations resulting from the setup with the test vehicle

are presumably solved by the actual development of the targeted bicycle, but there are

also various possibilities to further improve the control module itself.

The derivation of the yaw rate from the measured positions, on which the current imple-

mentation relies, is rather inaccurate. This can be mitigated by integrating the already

connected accelerometer into the system. The precision of the measured yaw rate could

thereby be significantly improved. Although there are already two different distance sen-

sors, the obstacle detection is not yet optimal. The use of additional ultrasonic sensors,

a more powerful lidar that works better in sunlight or other sensors (e.g. radar) could

further enhance the detection of obstacles. It is also important that once the target hard-

ware is available, the actual steering angle and speed are measured directly by the bicycle.

This will allow a much better estimation of the system state.

Once the target hardware is available, the camera can be placed at a height at which its

pictures cover a useful area, and the roadside detection module can thus be activated.

After activation, its performance needs to be tested in the integrated system. It would

probably make sense to replace the camera with one that has a wider viewing angle. This

would allow to detect roadsides further to the side from the current position of the vehicle,

as well as strong right curves. In addition, the computer vision module should become

more robust, avoid false positives more reliably and take the potential sideway leaning

of the vehicle into account. Using a convolutional neural network to detect the roadside

instead of the current edge detection techniques may improve the robustness and accuracy

of the results. The instance segmentation approach for lane detection proposed by Neven

et al. [55] may be a promising candidate for this.

The single-track model used to predict the system behavior is simplistic and comes with a

number of constraints. It may be replaced by a more sophisticated model, such as a model

that takes rolling motions into account. This may allow to predict the future states of the

vehicle more accurately. However, as with all proposed extensions and improvements, the

limited computing power has to be kept in mind and it has to be ensured that the system

continues to be able to react rapidly.

It will be interesting to assess the performance of the control module on the real target
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bicycle. In this thesis, a flexible and expandable steering and control module was developed

which could lay the foundation for the development of an autonomous bicycle.
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List of Abbreviations

GPIO General-purpose input/output

MPC Model predictive control

SP Setpoint

CSI Camera Serial Interface

AV Autonomous Vehicle

SAE Society of Automotive Engineers

CV Computer Vision

GPS Global Positioning System

UART Universal Asynchronous Receiver/Transmitter

ROI Region of Interesst

Lidar Light Detection and Ranging

HSL Hue, saturation, lightness

RGB red, green, blue

LED Light-emitting diode

ABS anti-lock braking system

CNN Convolutional Neural Network

API Application programming interface

USB Universal Serial Bus
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