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Abstract
In this thesis the space consumption and runtime in lazy functional languages is inves-
tigated. Both a pure and a concurrent scenario is analyzed.We go through the chapters
in detail.

Chapter 2

This chapter contains preliminaries. The calculi LRP (SSS16b, SS15, SS14, SSS15b) and
CHF∗ (SSSD18) are recalled. LRP is a polymorphically typed lazy lambda calculus
extended by recursive let-expressions, seq-expressions and case-expressions as in
Haskell. CHF∗ uses an action layer to implement monadic features, that might intro-
duce side-effects and a functional layer that can be compared to LRP. CHF∗ is a slightly
modified variant of CHF (SS11, SSS12), we show the semantic equivalence of both cal-
culi.

The abstract machines M1, IOM1 and CIOM1 are recalled (see (Sab12)). The abstract
machine M1 is compatible to LRP and CIOM1 is compatible to CHF∗.

We also sketch a frequently used proof technique using forking diagrams and give
definitions of often used functions in LRP and CHF∗.

Chapter 3

The calculus LRPgc is introduced, that is LRP extended by a classical implementable
garbage collector that is applied after each normal order reduction step. The opera-
tional semantics is called normal order. The size of expressions is defined precisely
and also the space measure spmax is given, that yields the overall space consumption
of an LRPgc-program, that is the maximal size of only garbage-free expressions that
occurred during the whole normal order reduction sequence.

We consider program transformations in form of source-to-source transformations,
hence a transformation is applied on the syntactical layer and also the result remains
on this layer.The notions of transformations to be a space improvement or space equiva-
lence are introduced. The intuition of a space improvement is, that it can be applied on
any possible subexpression, where the pattern of the transformation matches, without
increasing the space consumption in all of these cases – for at least one case it must
decrease and if this is not the case, then it is a space equivalence. These definitions
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make use of contexts. A context C is an expression with a single hole, where expressi-
ons can be put in, i.e. C[⋅]where [⋅] is the hole. The strong requirement to apply space
improvements and equivalences at any matching subexpression can be implemented
using contexts:

Let s and t be LRPgc-expressions. s is a space improvement of t, if the inequation
spmax(C[s]) ≤ spmax(C[t]) holds for all contexts C. The definition for space equiva-
lences is analogous requiring spmax(C[s]) = spmax(C[t]).

The amount of contexts that need to be considered for a proof of the space improve-
ment or space equivalence property of a certain transformation is very high.Therefore
we show so-called context lemmas that allow to conclude, that if the space improve-
ment or equivalence property holds for reduction contexts (i.e. contexts that model
the call-by-need strategy used by normal order reduction), the property also holds for
all contexts.

For each considered transformation T all overlaps between normal order reduction
and T need to be considered. This is done using sets of forking diagrams and then
induction is applied to show the corresponding space property. With the use of the
context lemmas, the amount of forking diagrams can be reduced, easing the proofs.
Following this approach we show the space improvement and space equivalence pro-
perties of several transformations.

Moreover we define a transformation to be a space leak if there is at least one case
where the space increases uncontrollably. We show for certain transformations that
they are space leaks: The copying of functions, the change of evaluation order using
strictness knowledge and the elimination of common subexpressions.

Further space analyses are performed for the case where extra knowledge is present
about the overall space usage.

We also introduce the abstract machine M1sp for space measurement, that is an adap-
tion of the abstract machine M1 and use an implementation of M1sp for several more
complex space and runtime analyses. We show the correctness of this machine w.r.t.
measurements. The approach using the abstract machine also allows to try different
configurations of the garbage collector, allowing us to analyze the impact of garbage
collection.

This chapter is based on (SSD18, SSD17).

Chapter 4

The already mentioned space analyses for LRP depend on the used garbage collector.
To keep the space improvement and space equivalences results more independent of
garbage collection, the so-called total garbage collection is introduced.

As calculus LR is used, i.e. LRP without types. Total garbage collection replaces a sub-
expression by a non-terminating constant with size zero, if this does not affect the
overall termination of the program. Such a garbage collector is not implementable,
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since the garbage collector needs to be able to decide the termination of a program,
but it can be still used for space analyses.

We transfer the size-measure from LRP to LR and define the space-measure sps for
evaluation sequences of LR as the maximal size, where only garbage-free sizes w.r.t.
total garbage collection are considered. The notions of total space improvement and
total space equivalence are introduced. As also for the space improvements and equi-
valences mentioned above, the idea is, that such a transformation can be applied to
any subexpression of an LR-expression, if the pattern of the transformation matches,
while preserving the space property:

Let s and t be LR-expressions. s is a total space improvement of t, if the inequation
sps(C[s]) ≤ sps(C[t]) holds for all contexts C. The definition for total space equiva-
lences is analogous requiring sps(C[s]) = sps(C[t]).

Also for total garbage collection the amount of contexts that need to be considered in
the proofs of total space improvement or equivalence properties of transformations is
too high. Therefore context lemmas are showed, that allow to perform the proof using
forking diagrams under reduction contexts and then conclude that the property also
holds if all contexts are considered. Following this approach we show the total space
improvement and total space equivalence properties of several transformations.

The notion of space leak is transferred from LRP to LR and used to show the space
leak property of certain transformations:The copying of functions, the change of eval-
uation order using strictness knowledge and the elimination of common subexpressi-
ons.

Total garbage collection is classified w.r.t. its optimality. Since the approach of total
garbage collection replaces subexpressions by non-terminating constants with size
zero, where the overall termination does not change, there are more kinds of garbage
that is not removed by total garbage collection. For example in let x = . . . in seq x x
(using Haskell-notations) the subexpression seq xmay be removed depending on the
overall semantics of the whole program, but total garbage collection cannot achieve
this using replacements by non-terminating constants.

A comparison between the space leaks using a practical garbage collection compared
to total garbage collection shows, that for the three space-leaks above there is no dif-
ference. The impact of the non-optimality of total garbage collection is not strong: An
analysis shows that also using an optimal garbage collector the copying of functions
is a space leak and the idea can be transferred to the other space leaks above.

This chapter is based on (SSD19b).

Chapter 5

For CHF∗ we summarize time improvement results for sequential and parallel reduc-
tion strategies, where the definition of parallel evaluation is also given. This chapter
is a summary of (SSSD18).
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Chapter 6

For CHF∗ we first define the size of expressions. The measure sps is reused for the
space measure spmin that is defined as the minimal sps-value of all successful evalua-
tions.

Scheduling of parallel processes has a great impact on the overall space consumption
spmin. Therefore we develop an algorithm that calculates the required space of multi-
ple processes w.r.t. scheduling efficiently, if the processes are in sync at start and end
points but apart from this run completely independent from each other – i.e. there are
no further forms of synchronizations.

As abstract model for each process a list of integers represents the trace of space con-
sumption of the process. We show that many of those integer values do not have an
effect on the overall result and can be removed. Thus we give an algorithm for stan-
dardization that runs in linear time.

We then give an algorithm that takes the standard form and calculates the required
space. Finally we define the algorithm SpOptN, that uses the algorithms above all
together with minor additions and overall runtime O((N + n) logN) to calculate the
required space of N processes, where n denotes the total input size.

Synchronizations are also analyzed using basic synchronization restrictions, that are
Boolean conditions on simultaneous or relative time points of two processes.The com-
plexity using such a set of Boolean constraints lead to an algorithm with complexity
of O(poly(n) ⋅ nO(b⋅N)), where poly is a polynomial, b the number of Boolean condi-
tions and n the total size of the input. However we see immediately that the runtime
is polynomial if the number of Boolean conditions and the number of processors is
fixed. The perfect partition problem is used to show that the problem is NP-complete
if general synchronization restrictions are used.

We also show the relation to producer-consumer problems and to a variant of job shop
scheduling.

The implementation of M1sp for LRP allowed complex and systematical analyses. Thus
the abstract machines CIOM1sp,int, CIOM1sp,par and CIOM1t,par are introduced for CHF∗,
that are based on the machine CIOM1.

The abstract machine CIOM1sp,int is the abstract machine CIOM1 extended by space
measurement and garbage collection, where the space equivalence between CHF∗ and
CIOM1sp,int is showed.

For the parallel case where synchronizations are not restricted, the calculation per-
formed by an abstract machine to calculate the required space is complex. First of all
the nondeterminism leads to different evaluations with different results and since the
space optimum is the target, all combinations w.r.t. nondeterminism need to be con-
sidered. Moreover it may be a good idea to delay a thread as SpOptN above showed,
therefore also in these cases many possible evaluations need to be calculated to find a
space-optimal solution.
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The delays of threads are made explicit using a so-called delay-function that decides,
depending on the current situation (i.e. the next transition rule of the inspected thread),
if it makes sense to delay a thread or not. We show that in many cases the delay of a
thread does not have an effect on the overall result and therefore for a better runtime
these delays should not be considered. Moreover threads waiting for resources are
delayed per default, not increasing the overall solution space.

Intuitively we calculate a tree of machine states. It turns out that sometimes calcu-
lating the real tree can be helpful, since then parallelization can be used heavily. In
the most cases we use an iterated depth first search where the stack contains the re-
maining nodes. Also the so far found leaf (if there already is one) with yet minimal
space consumption requires bookkeeping, because this allows further optimizations:
We show that in case a leaf is found, then all nodes on the stack can be removed that
have a greater or equal so far calculated optimal space consumption. However we
show that this has the effect, that a space-optimal leaf in the end is not guaranteed to
be the runtime-optimal under the space-optimal leafs.

As further optimization checksums of machine states help to reduce the calculation
time. Also α-equivalence testing can be used to improve the runtime in some cases.
It turns out that all of these optimizations heavily depend on the analyzed program,
sometimes the calculation of the real state tree is very fast due to the power of par-
allelization, however in the most cases the checksum-testing is the fastest method –
the α-equivalence-testing itself has a high runtime and is only useful in specific cases
where delays lead to many states that are identical but use different names.

The whole approach is implemented in the abstract machine CIOM1sp,par. As already
mentioned the space-optimal solution is not guaranteed to be the runtime-optimal
under the space-optimal solutions, therefore using the same approach the abstract
machine CIOM1t,par is implemented to find runtime-optimal solutions.The space equi-
valence between CIOM1sp,par and CHF∗ using parallel evaluation and also the runtime
equivalence between CIOM1t,par and CHF∗ using parallel evaluation is showed.

Implementations of the abstract machines CIOM1sp,par and CIOM1t,par are then used
for space and runtime analyses. Despite of the high runtime complexity of the abstract
machines, the optimizations and configuration possibilities allow analyses of various
scenarios.

We analyze the effect of parallelization of a calculation of a list that can be split up
in parallel independent calculations, folding an addition over a tree comparing a pure
and a parallelized implementation and an extension of common subexpression elimi-
nation to a thread-based variant. If the complexity of an analysis is too high, different
configurations as stopping the calculation once a leaf is found or using no delays,
can be used to calculate approximations that help to get oriented. If it is known that
all threads run independently and the results of all are needed, then using no delays
together with CIOM1t,par yields the optimal runtime.

The definition of space measurement for CHF∗ and the results concerning SpOptN and
synchronization restrictions above are based on (SSD19a). All results regarding the
abstract machines CIOM1sp,int, CIOM1sp,par and CIOM1t,par are not published earlier.





Zusammenfassung
In dieser Dissertation werden Speicherverbrauch und Laufzeit von lazy-auswertenden
funktionalen Programmiersprachen untersucht. Dabei werden Analysen sowohl unter
An- als auch Abwesenheit von Seiteneffekten in Form von Nebenläufigkeit durchge-
führt.

Wir stellen die Inhalte der einzelnen Kapitel im Folgenden genauer vor.

Kapitel 2

In diesem Kapitel werden Grundlagen behandelt. Es werden die Kalküle LRP (SSS16b,
SS15, SS14, SSS15b) und CHF∗ (SSSD18) definiert. LRP ist ein polymorph getypter lazy-
auswertender Lambda-Kalkül, der um rekursive let-Ausdrücke, seq-Ausdrücke und
case-Ausdrücke wie in Haskell erweitert wurde. CHF∗ verfügt über eine Ebene für
monadische Funktionalitäten, wobei auf dieser Ebene Seiteneffekte möglich sind und
eine funktionale Ebene, die mit LRP verglichen werden kann. CHF∗ ist eine leicht
modifizierte Variante von CHF (SS11, SSS12), wir zeigen die semantische Äquivalenz
der beiden Kalküle.

Die abstrakten Maschinen M1, IOM1 and CIOM1 werden definiert (siehe (Sab12)). Die
abstrakte Maschine M1 ist kompatibel zu LRP und CIOM1 ist kompatibel zu CHF∗.

Zudem zeigen wir eine häufig benutzte Beweistechnik mit Forking-Diagrammen und
definieren oft genutzte Funktionen für LRP und CHF∗.

Kapitel 3

Zunächst stellen wir den Kalkül LRPgc vor, welcher die sogenannte Normalordnung
als operationale Semantik verwendet. LRPgc erweitert LRP um einen klassischen im-
plementierbaren Garbage Collector, der nach jedem Schritt einer Normalordnungs-
Reduktion ausgeführt wird. Dann wird die Größe size von Ausdrücken definiert und
zudem das Platzmaß spmax, welches den Speicherverbrauch einer gesamten LRPgc-
Programmausführung angibt, das heißt die größte size von Ausdrücken einer ge-
samten Normalordnungsreduktion, bei denen der Garbage Collector nichts entfernen
kann.

Programm-Transformationenwerden als Code-zu-Code-Transformationen aufgefasst,
das heißt eine solche Transformation wird auf syntaktischer Ebene angewendet und
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das Ergebnis der Transformation befindet sich ebenfalls weiterhin auf der syntakti-
schen Ebene.

Die Begriffe Space Improvement und Space Equivalence als Eigenschaften von Trans-
formationen werden definiert. Die Intuition eines Space Improvements ist, dass die
Transformation auf alle möglichen Unterausdrücke angewendet werden kann, bei de-
nen das Pattern der Transformation übereinstimmt und in all diesen Fällen darf sich
der Speicherverbrauch nicht erhöhen – für wenigstens einen Fall muss der Speicher-
verbrauch sinken und falls dies nicht der Fall ist, handelt es sich um eine Space Equi-
valence. Diese Definitionen benötigen Kontexte. Ein Kontext C ist ein Ausdruck mit
einem einzigen Loch, in das Ausdrücke eingesetzt werden können, das heißt C[⋅] mit
[⋅] als Loch. Die starke Forderung, dass Space Improvements und Space Equivalences
an jeder passenden Stelle angewendet werden können, wird mit Kontexten präzisiert:

Seien s und t LRPgc-Ausdrücke. s ist ein Space Improvement von t, falls die Unglei-
chung spmax(C[s]) ≤ spmax(C[t]) für alle Kontexte C gilt. Die Definition für Space
Equivalences ist analog, bloß dass die Bedingung spmax(C[s]) = spmax(C[t]) ist.

Die Anzahl der zu betrachtenden Kontexte für den Nachweis der Space-Improvement-
oder Space-Equivalence-Eigenschaft einer bestimmten Transformation ist sehr hoch.
Deshalb zeigen wir sogenannte Context Lemmas: Falls die Eigenschaft eines Space
Improvements oder einer Space Equivalence für Reduktionskontexte (d.h. Kontexte
welche die Call-by-Need-Strategie der Normalordnung modellieren) gilt, so gilt diese
auch für alle Kontexte.

Für jede betrachtete Transformation T werden alle Überlappungen zwischen Normal-
ordnung und T geprüft. Dazu werden Mengen von Forking-Diagrammen verwendet
und dann Induktion angewendet um die entsprechende Eigenschaft nachzuweisen.
Mithilfe der Context Lemmas kann die Anzahl an Forking-Diagrammen stark redu-
ziert werden und somit wird der gesamte Beweis erleichtert. Auf diese Weise werden
einige Space Improvements und Space Equivalences gezeigt.

Außerdem nennen wir eine Transformation Space-Leakwenn es mindestens einen Fall
gibt, in dem der Speicherverbrauch unkontrollierbar ansteigt. Wir zeigen die Space-
Leak-Eigenschaft der folgenden Transformationen: Das Kopieren von Funktionen, die
Veränderung der Auswertungsreihenfolge unter Verwendung vonWissen über Strikt-
heit und die Beseitigung von gemeinsamen Unterausdrücken.

Wir führen weitere Platz-Analysen durch, bei denen zusätzliches Wissen über den
Speicherverbrauch vorhanden ist.

Außerdem führen wir die abstrakte Maschine M1sp für Messungen des Speicherver-
brauchs ein, welche eine Anpassung der abstrakten Maschine M1 ist. Wir benutzen
eine Implementierung der abstrakten Maschine M1sp für einige komplexere Platz- und
Laufzeit-Analysen. Außerdem zeigenwir die Korrektheit der Platz-Messungen derM1.
Eine solche Implementierung ermöglicht außerdem verschiedene Konfigurationen des
Garbage Collectors und erlaubt somit Analysen des Einflusses vonGarbage Collection.

Dieses Kapitel basiert auf (SSD18, SSD17).
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Kapitel 4

Die oben erwähnten Analysen des Speicherverbrauchs in LRP sind abhängig vom ver-
wendeten Garbage Collector. Wir führen die sogenannte Total Garbage Collection ein,
um die Ergebnisse bezüglich Space Improvements und Space Equivalences unabhän-
giger vom verwendeten Garbage Collector zu halten.

Als Kalkül verwenden wir LR, das heißt LRP ohne Typen. Total Garbage Collection
ersetzt einen Teilausdruck durch eine nicht-terminierende Konstante mit Größe Null,
falls sich dadurch die gesamte Terminierungseigenschaft des Programms nicht verän-
dert. Total Garbage Collection ist offensichtlich nicht implementierbar, da der Gar-
bage Collector das Halteproblem eines Programms lösen muss, allerdings kann diese
Art von Garbage Collection dennoch für Analysen des Speicherverbrauchs verwendet
werden.

Das Maß size von LRP wird auf LR übertragen und außerdem definieren wir das
Platzmaß sps, als die größte size von Ausdrücken, bei denen durch Total Garbage
Collection nichts entfernt werden kann, die während der gesamten Normalordnungs-
Reduktion vorkommen.

Die Begriffe Total Space Improvement und Total Space Equivalence als Eigenschaften
von Transformationen werden definiert. Analog zu Space Improvements und Space
Equivalences für LRP, kann ein Total Space Improvement auf alle möglichen Unteraus-
drücke angewendet werden, bei denen das Pattern der Transformation übereinstimmt
und in all diesen Fällen darf sich der Speicherverbrauch nicht erhöhen.

Seien s und t LR-Ausdrücke. s ist ein Total Space Improvement von t, falls die Unglei-
chung sps(C[s]) ≤ sps(C[t]) für alle Kontexte C gilt. Die Definition für Total Space
Equivalences ist analog, mit der Bedingung sps(C[s]) = sps(C[t]).

Auch unter Verwendung von Total Garbage Collection ist die Anzahl an zu betrach-
tenden Kontexten für den Nachweis der Eigenschaften eines Total Space Improve-
ments oder einer Total Space Equivalence zu hoch. Daher zeigenwir auch hier Context
Lemmas: Falls die Eigenschaft eines Total Space Improvements oder einer Total Space
Equivalence für Reduktionskontexte gilt, so gilt diese auch für alle Kontexte. Auf diese
Weise werden einige Total Space Improvements und Total Space Equivalences gezeigt.

Der Begriff Space-Leak wird von LRP auf LR übertragen und genutzt, um die Space-
Leak-Eigenschaft der folgenden Transformationen zu zeigen: Das Kopieren von Funk-
tionen, die Veränderung der Auswertungsreihenfolge unter Verwendung von Wissen
über Striktheit und die Beseitigung von gemeinsamen Unterausdrücken.

Wir ordnen Total Garbage Collection bezüglich Optimalität ein. Da Total Garbage
Collection Unterausdrücke durch nicht-terminierende Konstanten mit einer size von
Null ersetzt, wobei sich die gesamte Terminierungseigenschaft des Programms nicht
ändern darf, kann mithilfe dieses Ansatzes nicht jede Form von Garbage gelöscht wer-
den. Zum Beispiel kann im Ausdruck let x = . . . in seq x x (unter Verwendung von
Haskell-Schreibweisen) der Teilausdruck seq x gelöscht werden, wenn die Seman-
tik des gesamten Programms dies zulässt, allerdings kann Total Garbage Collection
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das mit einer Ersetzung durch eine nicht-terminierende Konstante nicht erreichen, da
diese in dem Fall ein terminierendes Programm zu einem nicht-terminierenden um-
wandeln würde.

Ein Vergleich zwischen Space-Leaks unter Verwendung eines implementierbaren Gar-
bage Collectors mit Total Garbage Collection zeigt, dass dies keinen Einfluss auf die
Space-Leak-Eigenschaften der drei oben gezeigten Space-Leak-Transformationen hat.
Eine Analyse zeigt außerdem, dass selbst ein optimaler Garbage Collector im Falle
des Kopierens von Funktionen an der Space-Leak Eigenschaft dieser Transformation
nichts ändern kann. Dieser Ansatz kann auf die anderen oben genannten Space-Leaks
übertragen werden.

Diese Kapitel basiert auf (SSD19b).

Kapitel 5

Für CHF∗ fassen wir Ergebnisse von Laufzeitoptimierungen sowohl unter Verwen-
dung von sequentieller als auch paralleler Auswertung zusammen, wobei auch die
parallele Auswertungsstrategie für CHF∗ definiert wird.

Dieses Kapitel ist eine Zusammenfassung von (SSSD18).

Kapitel 6

Für CHF∗ definieren wir die Größe size von Ausdrücken. Das Maß sps wird wie-
derverwendet für das Platzmaß spmin, das als minimaler sps-Wert aller erfolgreichen
Auswertungen definiert ist.

Das Scheduling von parallelen Prozessen hat einen starken Einfluss auf den gesamten
Speicherverbrauch spmin. Daher entwickeln wir einen Algorithmus, der den benötig-
ten Speicherplatz mehrerer Prozesse bezüglich Scheduling effizient berechnet, sofern
diese am Anfang und Ende synchron und ansonsten unabhängig voneinander sind.

Als abstraktes Modell benutzen wir für jeden Prozess eine Liste von Zahlen, welche
zeitlich geordnet den Speicherverbrauch des Prozesses angibt. Wir zeigen, dass einige
dieser Zahlen keinen Einfluss auf das Gesamtergebnis haben und entfernt werden kön-
nen. Folglich entwickeln wir einen Algorithmus, welcher in linearer Laufzeit diese
Form von Standardisierung durchführt.

Dann entwerfen wir einen Algorithmus, der eine solche Standardform erwartet und
den benötigten Speicherplatz berechnet. Schließlich definieren wir den Algorithmus
SpOptN, welcher die obigen Algorithmen mit kleinen Ergänzungen anwendet und
mit einer Gesamtlaufzeit in O((N + n) logN) den benötigten Speicherplatz von N
Prozessen berechnet, wobei n die gesamte Eingabegröße bezeichnet.

Auch Synchronisierungen zwischen Prozessenwerden analysiert. Dazuwerden grund-
legende Beschränkungen in Form von einfachen booleschen Formeln verwendet, die
absolute oder relative Aussagen bezüglich Synchronität zweier Zeitpunkte erlauben.
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Die Verwendung solcher booleschen Formeln führt zu einemAlgorithmusmit Laufzeit
O(poly(n) ⋅nO(b⋅N)), wobei poly ein Polynom, b die Anzahl an booleschen Bedingun-
gen and n die gesamte Eingabegröße ist. Jedoch sehen wir sofort, dass die Laufzeit
polynomiell ist, falls die Anzahl der booleschen Beschränkungen und die Anzahl der
Prozessoren konstant ist. Das Perfect-Partition-Problem kann verwendet werden um
die NP-Vollständigkeit für den Fall beliebiger Synchronisierungs-Beschränkungen zu
zeigen.

Zudem zeigen wir den Bezug zu Producer-Consumer-Problemen und einer Variante
von Job-Shop-Scheduling.

Die Implementierung der abstrakten Maschine M1sp für LRP ermöglicht komplexe
und systematische Analysen. Daher werden die abstrakten Maschinen CIOM1sp,int,
CIOM1sp,par und CIOM1t,par für CHF∗ eingeführt, welche auf der CIOM1 basieren.

Die abstrakte Maschine CIOM1sp,int ist die abstrakte Maschine CIOM1 erweitert um
Platzmessung und Garbage Collection. Wir zeigen die Äquivalenz bezüglich der Platz-
messungen zwischen CHF∗ und CIOM1sp,int.

Eine abstrakteMaschine ist komplex, falls im parallelen Fall jedeArt von Synchronisie-
rung möglich ist. Zunächst führt der Nicht-Determinismus zu unterschiedlichen Aus-
führungsreihenfolgen mit unterschiedlichen Ergebnissen und da der optimale Spei-
cherverbrauch das Ziel ist, müssen alle durch Nicht-Determinismus verursachte Kom-
binationen betrachtet werden. Außerdem zeigt SpOptN, dass eine Verzögerung eines
Threads den Speicherverbrauch verringern kann, daher müssen auch für diesen Fall
viele mögliche Auswertungen betrachtet werden um eine platzoptimale Lösung zu
finden.

Das Verzögern von Threads wird durch eine sogenannte Delay-Funktion umgesetzt,
die entsprechend zur aktuellen Situation (d.h. der nächste Schritt des betrachteten
Threads) entscheidet, ob es sinnvoll ist, einenThread zu verzögern oder nicht. Für viele
Fälle können wir zeigen, dass eine Verzögerung eines Threads keinen Einfluss auf das
Gesamtergebnis hat und deshalb sollten solche Verzögerungen aufgrund der besseren
Laufzeit außer Acht gelassen werden. Außerdem werden auf Ressourcen wartende
Threads automatisch verzögert, somit wird der Lösungsraum nicht vergrößert.

Intuitiv betrachtet wird ein Baum von Maschinen-Zuständen berechnet. Es hat sich
herausgestellt, dass in einigen Fällen die Berechnung des wirklichen Baums hilfreich
ist, da dann viel parallelisiert werden kann. In den meisten Fällen wird eine iterative
Tiefensuche verwendet, wobei der Stack die verbleibenden Knoten enthält. Außerdem
wird – falls vorhanden – das soweit gefundene Blatt mit bisher minimalem Speicher-
verbrauch gespeichert, da dadurch weitere Optimierungen ermöglicht werden: Wir
zeigen, dass im Falle eines gefundenen Blattes, alle Knoten des Stacks mit größerem
oder gleichem soweit berechneten optimalen Platzverbrauch gelöscht werden können.
Wir zeigen jedoch, dass deshalb ein berechnetes platzoptimales Blatt nicht zwingend
eine optimale Laufzeit unter den platzoptimalen Blättern hat.

Checksummen von Maschinen-Zuständen werden als weitere Optimierung genutzt
um die Berechnungszeit zu verbessern. Auch α-Äquivalenz kann ausgenutzt werden
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um die Laufzeit in manchen Fällen zu verbessern. Es stellt sich heraus, dass all diese
Optimierungen sehr stark vom zu analysierenden Programm abhängen, manchmal ist
die Berechnung des richtigen Baums aufgrund der Parallelisierung sinnvoll, jedoch ist
in den meisten Fällen die iterative Tiefensuche mit Checksummen-Optimierung die
schnellste Variante – das Testen der α-Äquivalenz hat selbst eine hohe Laufzeit und
ist nur sinnvoll in Fällen, in denen Verzögerungen zu vielen semantisch identischen
Zuständen führen, die sich nur durch die Benennung von Variablen unterscheiden.

Der gesamte Ansatz ist in der abstrakten Maschine CIOM1sp,par umgesetzt. Wie schon
erwähnt hat die platzoptimale Lösung nicht zwingend auch die beste Laufzeit unter
den platzoptimalen Lösungen, daher wird unter Verwendung des gleichen Ansatzes
die abstrakte Maschine CIOM1t,par eingeführt, um die optimale Laufzeit zu berech-
nen. Die Kompatibilität der Platzmessungen von CIOM1sp,par und CHF∗ unter Ver-
wendung paralleler Auswertung und ebenso die Kompatibilität der Laufzeitmessun-
gen zwischen CIOM1t,par and CHF∗ unter Verwendung paralleler Auswertung werden
gezeigt.

Implementierungen der abstraktenMaschinen CIOM1sp,par und CIOM1t,par werden ver-
wendet um Speicher- und Laufzeit-Analysen durchzuführen. Trotz der hohen Laufzeit-
Komplexität der abstrakten Maschinen, erlauben die Optimierungen und Konfigurati-
onsmöglichkeiten verschiedene Analysen.

Wir analysieren den Einfluss von Parallelisierung auf die Berechnung einer Liste, die in
mehrere parallele und unabhängige Berechnungen aufgespalten werden kann. Ebenso
wird die Anwendung einer fold-Funktion unter Verwendung eines Additionsoperators
auf einen Baum analysiert, wobei eine klassische und eine parallelisierte Variante ver-
glichenwerden. Außerdemwird eine Erweiterung der Eliminierung von gemeinsamen
Unterausdrücken auf Thread-Ebene betrachtet.

Falls die Komplexität einer Analyse zu hoch ist, können verschiedene Konfiguratio-
nen verwenden werden, wie z.B. Rückgabe des zuerst gefundenen Blattes oder das
Abschalten jeglicher künstlicher Verzögerungen durch die Delay-Funktion. Auf die-
se Weise werden Approximationen berechnet die zur Orientierung benutzt werden
können. Falls bekannt ist, dass alle Thread unabhängig sind und die Ergebnisse aller
Threads benötigt werden, dann benötigt man keine durch Delay-Funktion ausgelösten
Verzögerungen und die abstrakte Maschine CIOM1t,par liefert die optimale Laufzeit.

Die obige Definition der Speicherplatzmessung für CHF∗ und die Ergebnisse bezüglich
SpOptN und Synchronisierungsbeschränkungen basieren auf (SSD19a). Alle genann-
ten Ergebnisse zu den abstrakten Maschinen CIOM1sp,int, CIOM1sp,par und CIOM1t,par
wurden nicht zuvor veröffentlicht.
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1
Introduction

In this chapter we first motivate and introduce the topic of research, give a relation to
other work, provide an overview of the results of this work and outline the thesis.

1.1 Motivation

In modern days the importance of communication and availability of information has
a great impact on the daily life. This leads to a lot of challenges w.r.t. scalability and
concurrency. In the last decade most of the classical relational databases were replaced
by different variants of non-relational databases (e.g. see (HJ11, DCL18)).

On the other hand the usage of smartphones increased massively (RMZ12) leading to
new challenges, since the memory of smartphones is often restricted and also a high
demand on processors drains the battery. Hence for smartphones it is a benefit if an
application has a good runtime while not using too much memory to achieve such a
runtime.

Moreover the runtime strongly increases if algorithms make heavy use of random
accesses on memory and the memory is not sufficient. In such cases the algorithms
need to be adapted, so that they run efficiently using external memory such as hard
disks or SSDs (for example see (San98, BMV13, HMP+18)). The more internal memory
is available, the more can be kept in internal memory – this motivates to keep the
internal memory consumption low, so that the mentioned approaches using external
memory are not required or only for larger amounts of data.

Compilers usually make heavy use of runtime-optimizations, since this often allows to
write code that is easy to read and simple tomaintain. However runtime-optimizations
may lead to a high increase of space consumption. In such cases further analyses are
needed, to find out whether the increase of space consumption is acceptable in relation
to the improvement of runtime.

This motivates to improve and analyze the space consumption of programs, where
space consumption refers to internal memory. In this theses we focus on the area of
lazy evaluating functional languages as Haskell. Especially for calculations free of side
effects, parallelization often can be implemented easily (e.g. see (HMPJ05, CLPJ+07,
LRS+03, MNJ11, PS09, PGF96, MBCP14)), hence Haskell-programs have the potential
to be scaled using a network of processors. In the following section we give a brief
introduction into this area and show relations to existing work.

1
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1.2 Survey

Lazy evaluation allows a declarative way of programming, since the dependencies
between different data is important but the exact evaluation sequence does not need
to be specified by the programmer (see (PGF96, Hug89, LOMPnM05)).

As base for analyses of correctness, runtime and space consumption, it helps to have
a calculus that can be seen as a core language of the target programming language.
The practical target language is Haskell, therefore calculi based on lazy variants of the
lambda calculus are useful.

Syntactically a lambda calculus consists of variables, anonymous functions (often cal-
led abstractions) and applications (AFM+95, MSC99), e.g. the identity function can be
represented by the anonymous function λx.x, where x is a variable. A lazy lambda cal-
culus implements a call-by-name (Abr90) reduction strategy. However call-by-name
may duplicate work and therefore languages as Haskell use call-by-need (AFM+95)
using memoization to implement sharing and avoid duplication of work. All calculi
used in this thesis are based on a lazy lambda calculus using a call-by-need reduction
strategy. For concurrency extra additions are needed.

The lazy lambda calculus as described above does not have any kind of datatypes.
Hence for practical analyses and a higher expressiveness it is important, to extend the
lazy lambda calculus by datatypes as in Haskell. Also explicit recursion is easier than
using fixed point combinators (see (PJ87)) as in a classic lambda calculus. Furthermore
monomorphic or polymorphic typing rules are often an useful extension, since chan-
ges to a program that do not preserve typing are usually not interesting in practice.

The used calculi in this thesis are variants of LRP (SSS16b, SS15, SS14, SSS15b) and
CHF (SS11, SSS12), where LRP can be used to analyze pure Haskell-like programs and
CHF for programs that are comparable to Concurrent Haskell (PGF96):

LRP is a lazy lambda calculus extended by recursive let-expressions, seq-expressions
(to force strictness at some positions) and case-expressions as in Haskell. Moreover
the calculus provides polymorphic typing.

CHF (SS11, SSS12) follows a two-layered approach as Concurrent Haskell (PGF96): An
action layer to implement monadic features that might introduce side-effects and a
functional layer that is comparable to LRP. As termination-property may- and should-
convergence is used (SS11, SSS10), where may-convergence states that a process re-
duces to a successful process and should-convergence is the property that a process
remains may-convergent after reductions.

Moreover it is often useful to define abstract machines for a practical execution of
programs, where Sestoft’s abstract machine (Ses97) is a solid base for different calculi.
For LRP and CHF the abstract machines from (Sab12), that are extended versions of
(Ses97), can be used with adaptions for space analyses.

To analyze the correctness, runtime and space behavior of a program, we use source-
to-source comparisons. This means that a given source of a program s is modified on
some position by a transformation T resulting in s′ and then we can check if s and s′
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are semantically equivalent or if s′ has a lower or equal runtime than s and similar for
space consumption.

In the area of correctness there are many results, for example in (San95b, SSS08b, SS07,
SSS08a, SSSH09, SSS15a, SSS17, SSSD18). Also in the area of runtime improvements a
lot of results exists as in (San91, San95a, San97, MS99, SSS15a, SSS16a). For space con-
sumption the results are rare, in (GS99, GS01, Gus01) the approach of (San95a, MS99)
for runtime is adapted to space using an abstract machine semantics based on the abs-
tract machine of (Ses97). They use an untyped language and the space measurement
differs and is rather complex compared to our space measurement. (HH19) introduces
an approach that is suitable for less complex languages, however adding constructs
like recursive let-expressions and seq-expressions to the language, the complexity
seems to increase rapidly.

An important property of a compiler optimization is its correctness. Hence we require
that a runtime or space improving transformation does not change the semantics of
a program. In most of the cases we can import the correctness results before we start
analyzing the space consumption of programs. In this thesis the notion of correctness
of (SSS08b) is used, since it can be used directly for our calculi in this thesis:

A context is a program of the corresponding programming language with a single
hole at some position. We now put the compared programs s and s′ into every context
and if for all contexts the termination property is equivalent (for CHF both may- and
should-convergence are considered), then s and s′ are called contextual equivalent. For
runtime analyses in (SSS15a, SSS17) a similar approach is used where for all contexts
the runtime is not allowed to increase.

Intuitively considering contexts is the same as to plug s and s′ in arbitrary greater
programs and the correctness and improvement property w.r.t. runtime or space con-
sumption holds. In most cases a context lemma is proved, that allows to conclude
that, if for a subset of all contexts the specified property (e.g. correctness, runtime-
improvement or space-improvement) holds, the property holds for all contexts.

1.3 Results

For space measurement the LRP-variant LRPgc is defined in Definition 3.2, where an
implementable garbage collection after each reduction step is applied. Proposition 3.1
shows the semantic equivalence of LRP and LRPgc.

Matching the intuition of transformations that improve or maintain the overall space
consumption, the notions space improvement and space equivalence are defined (see
Definition 3.7).

For LRPgc we show two context lemmas, that reduce the amount of cases that need to
be considered during the proofs of space improvements and equivalences: Lemma 3.6
for space improvements and Lemma 3.7 for space equivalences.

Theorem 3.14 shows, that several transformations are space improvements or space
equivalences and for a few transformations the increase of space consumption and
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the circumstances are analyzed. Also the space behavior for special cases are analyzed
as in Proposition 3.11.

The abstract machine M1sp is defined in Definition 3.19. This machine is a variant of
Sestoft’s machine (Ses97) extended by space measurement capabilities and Theorem
3.15 shows that this abstract machine performs a correct space measurement. An im-
plementation of M1sp is used for several analyses of more complex programs.

Using LR as calculus, that is LRP without types, a total garbage collector is defined in
Definition 4.2, that replaces all unneeded subexpressions of an expression by a non-
terminating constant with size 0. This garbage collector is not correct and also not
implementable, since termination needs to be decided to find all garbage collectable
positions, but it is suitable to perform space analyses. Definition 4.5 defines the space
measurement and requires that total garbage collection is applied whenever possible.

The notions of total space improvement and total space equivalence are defined (see
Definition 4.6), with the intuition that a transformation improves or maintains the
space consumption under total garbage collection. Two context lemmas are showed:
Lemma 4.5 for total space improvements and Lemma 4.6 for total space equivalences.
Theorem 4.14 shows, that several transformations are total space improvements or
total space equivalences and also for a few transformations that they might increase
the space consumption.

Since the total garbage collector replaces subexpressions by non-terminating expres-
sions, even this non-implementable garbage collector is not able to catch every kind
of garbage. Proposition 4.7 shows that a certain transformation is even not a space
improvement if a theoretical optimal garbage collector is used.

For CHF∗, a convergence-equivalent variant of CHF, the notions of sequential and par-
allel time-improvements (see Definition 5.1 and Definition 5.3) are defined and several
time improvements are shown in Section 5.2.

The space measurement for CHF∗ is defined in Definition 6.3. For analyses of space-
optimal schedules, we introduce an abstract model only consisting of lists of numbers
in Definition 6.4, where each number corresponds to the current space consumption
of the corresponding process. Also we give an algorithm that calculates the required
space w.r.t. scheduling, if the processes are independent with the only requirement
that they are in sync at the start and end points (Algorithm 6.3). The correctness of
this algorithm and complexityO((N +n) logN), where n is the total size of the input
and N the number of processes, is proved in Theorem 6.3.

Theorem 6.4 shows, that the use of combinations of Boolean conditions on simulta-
neous or relative time points of two processes used for synchronizations lead to an
algorithm with complexity O(poly(n) ⋅ nO(b⋅N)), where poly is a polynomial, b the
number of the Boolean conditions and n the total size of the input. For a fixed number
of processes and Boolean conditions the same algorithm runs in polynomial time (see
Corollary 6.1). For general synchronization restrictions the problem is NP-complete
as shown in Theorem 6.5.
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The abstract machine CIOM1sp,int is defined in Definition 6.18 and can be used for
space analyses in CHF∗ if a sequential reduction order is used (i.e. a scheduler chooses
a single thread to proceed, but no threads proceed in parallel). Theorem 6.6 shows that
the space measurement of CIOM1sp,int coincides with the space measurement of CHF∗
using a sequential reduction order.

Moreover Definition 6.29 yields the abstract machine CIOM1sp,par, where threads can
proceed in parallel and therefore all interleavings are considered for the calculation
of the required space. This yields a tree representing all interleavings, where often
subtrees can be cut off as shown in Lemma 6.7 and also duplicated calculation-states
can be removed using checksum and α-equivalence testing as shown in Lemma 6.8.
The space equivalence between CIOM1sp,par and CHF∗ using parallel evaluation (as
defined in Definition 5.2) is shown in Theorem 6.7.

Since Proposition 6.7 shows that the result calculated by CIOM1sp,par is space-optimal,
but not guaranteed to be the runtime-optimal under the space-optimal, the abstract
machine CIOM1t,par is defined, to calculate theminimal runtime if parallel evaluation is
used. The compatibility of runtime-measurement between CIOM1t,par and CHF∗ using
parallel evaluation is shown in Theorem 6.8.

Implementations of the mentioned abstract machines and algorithm SpOptN are used
for several analyses w.r.t. space consumption and runtime.

Our space measurement using an eager implementable garbage collector and also
using the total garbage collector, turns out to be effective and allows easier analy-
ses than (GS99, GS01, Gus01). Moreover our results apply to a more powerful calculus
than used in (HH19). In the area of scheduling the runtime is usually optimized and
therefore SpOptN is a first step into the area of space-optimal schedules. The abstract
machines CIOM1sp,par and CIOM1t,par provide a tool for space and runtime analyses in
the concurrent scenario. The enhancement of space analyses to a concurrent scena-
rio extend the work of Gustavsson and Sands (GS99, GS01, Gus01) and the results of
Section 5.2 can be seen as extensions of (LM99) in a wider sense.

1.4 Outline

In the following we give an outline of this thesis.

Chapter 2 recalls the calculi LRP (as defined in (SSS16b, SS15, SS14, SSS15b)) and CHF∗
(as defined in (SSSD18)) and corresponding abstract machines.

LRP is defined in Section 2.1 and CHF∗ is defined in Section 2.2. In these sections
for each calculus syntax, typing rules and operational semantics are given as well as
the notions of contextual equivalence, that allows reasoning about the correctness of
program transformations. The equivalence of CHF and CHF∗ is also shown.

Section 2.3 gives a brief overview of the translation of simple Haskell-subprograms
to LRP and CHF∗ and also defines datatype declarations comparable to Haskell. In
Section 2.4 we recall three abstract machines (as defined in (SS15, Sab12)) that can be
used for LRP and CHF∗ and are the base of further abstract machines.
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Section 2.5 introduces a proof technique that is often used in this thesis and Section 2.6
defines several needed LRP-functions or functions useable on the functional layer of
CHF∗.

In Chapter 3 (based on (SSD18, SSD17)) space analyses for LRP are performed.

Section 3.1 defines the LRP-variant LRPgc that is compatible to LRP and applies a
practical implementable garbage collection whenever possible.

In Section 3.2 the notions space improvement, space equivalence and space leak are
defined. In Section 3.3 context lemmas for space improvement and space equivalence
are proved for LRPgc. Section 3.4 contains analyses of several transformations w.r.t.
space consumption using the context lemmas. Hence for many transformations it is
shown in this section, that they are space improvements, space equivalences or space
leaks.

Section 3.5 contains analyses of examples where the space usage is controlled, i.e.
specific knowledge can be used.

In Section 3.6 the abstractmachineM1sp is introduced and the compatibility to LRPgc is
shown. Moreover this section contains analyses of examples using an implementation
of M1sp.

In Chapter 4 (based on (SSD19b)) space analyses for LR (i.e. LRP without types) are
performed, where a non-implementable garbage collector is used. Section 4.1 defines
total garbage collection, a space measurement where total garbage collection is app-
lied before measuring and also the notions of total space improvements and total space
equivalences.

In Section 4.2 context lemmas for total space improvement and total space equivalence
are proved for LR. Section 4.3 contains analyses of several transformations w.r.t. space
consumption using the context lemmas. Hence for many transformations it is shown
in this section, that they are total space improvements, total space equivalences or
space leaks.

Section 4.4 compares total garbage collection with optimal garbage collection. Also for
a certain transformation we show that it is a space leak even if a theoretical optimal
garbage collector is used.

Chapter 5 is a summary of results and needed definitions for runtime analyses of
(SSSD18).

Section 5.1 defines parallel evaluation for CHF∗. Also the notions of sequential time
improvements and parallel time improvements and similar for equivalences are defined.

Section 5.2 presents the results of several proven time improvements for CHF∗, both
for sequential and parallel evaluation.

In Chapter 6 space analyses for CHF∗ are performed. Section 6.1 (based on (SSD19a))
defines the space measurement for CHF∗.
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In Section 6.2 (based on (SSD19a)) an abstract model for parallel processes is intro-
duced. The algorithm SpOptN is then developed to calculate the required space w.r.t.
scheduling for independent processes, where only start- and end-points are required
to be in sync. Also the addition of Boolean conditions on simultaneous or relative time
points of two processes and impact on the runtime complexity is analyzed.

In Section 6.3 we introduce the abstract machines CIOM1sp,int for space analyses using
sequential evaluation, CIOM1sp,par for space analyses using parallel evaluation and
CIOM1t,par for runtime analyses using parallel evaluation. The correctness of measu-
rement is shown for all of these abstract machines and then implementations of the
machines are used for analyses of examples.

We conclude and discuss potential future work in Chapter 7.





2
Lazy Evaluating Calculi

The two calculi Polymorphically Typed Lazy Lambda Calculus (LRP) and Concurrent
Haskell with Futures (CHF) are used for the later work in the field of improvements.
LRP is used for deterministic analyses while CHF is used in the (nondeterministic)
concurrent scenario. Also abstract machines for both calculi are defined.

2.1 Polymorphically Typed Lazy Lambda Calculus

The calculus Polymorphically Typed Lazy Lambda Calculus (LRP) (SSS16b, SS15, SS14,
SSS15b) is a lazy lambda calculus (for example see (AFM+95),(MSC99)) extended by
caseK-expressions for every constructor-typeK , seq-expressions (seq s t), recursive
letrec-expressions, polymorphic abstractions Λa.s for polymorphic functions and
type applications (s τ) for type-instantiations. The syntax of types and expressions is
given in the following definition:

LRP Syntax of Types and ExpressionsDefinition 2.1 (LRP Syntax of Types and Expressions)
Let type variables a, ai ∈ TVar and term variables x,xi ∈ Var. Every type constructor
K has an arity ar(K) ≥ 0 and a finite setDK of data constructors cK,i ∈DK with an
arity ar(cK,i) ≥ 0.
Types Typ and term variables PTyp are defined as follows:

τ ∈ Typ ∶∶= a ∣ (τ1 → τ2) ∣ (K τ1 . . . τar(K))
ρ ∈ PTyp ∶∶= τ ∣ ∀a.ρ

Expressions Expr are generated by this grammar with n ≥ 1 and k ≥ 0:

s, t, si ∈ Expr ∶∶= u ∣ x ∶∶ ρ ∣ (s τ) ∣ (s t) ∣ (seq s t) ∣ (cK,i ∶∶ (τ) s1 . . . sar(cK,i))
∣ (caseK s of {(PatK,1 → t1) . . . (PatK,∣DK ∣ → t∣DK ∣)})
∣ (letrec x1 ∶∶ ρ1 = s1, . . . , xn ∶∶ ρn = sn in t)

PatK,i ∶∶= (cK,i ∶∶ (τ) (x1 ∶∶ τ1) . . . (xar(cK,i) ∶∶ τar(cK,i)))
u ∈ PExpr ∶∶= (Λa1.Λa2. . . .Λak.λx ∶∶ τ.s)

Note that seq is used to force the evaluation of the first argument before returning
the second argument. Especially in combination with a letrec-environment this can
be used to implement strict evaluation for certain subexpressions.

The case-alternatives must have exactly one alternative ((cK,i x1 . . . xar(cK,i))→ si)
for every constructor cK,i of type K , where the variables x1, . . . , xar(cK,i) occurring

9
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in the pattern (cK,i x1 . . . xar(cK,i)) are pairwise distinct and become bound with
scope si. Often {xg(i) = sf(i)}mi=j is used as abbreviation for xg(j) = sf(j), . . . , xg(m) =
sf(m). Also E is used as abbreviation for letrec-environments, that are a multiset of
(recursive) bindings of the form x = s. alts is an abbreviation for case-alternatives.
FV(s) and BV(s) is used to denote free and bound variables of an expression s, LV(E)
to denote the binding variables of a letrec-environment and (cK,i s1 . . . sar(cK,i)) is
often abbreviated with c #»s and λx1. . . . λxn.s with λx1, . . . , xn.s. Moreover we often
write c instead of cK,i.

LRP provides polymorphic typing of letrec-binding-variables. Hence this is not the
full polymorphic typing as used in Haskell and we also do not have type classes, but
the typing of LRP is strong enough for polymorphic lists and functions working on
such data structures.

Typing is important, since programs as map id xs written in Haskell-notion, that
maps the identity functions to the list xs is only equivalent to xs under typing, but in
an untyped scenario xs is not required to be a list and in this case both expressions
are not contextual equivalent. Thus we look at well-typed programs and this eases the
proofs and theorems a lot. An LRP-program is calledwell-typed if it can be typed using
the rules given in the following definition:

LRP Typing RulesDefinition 2.2 (LRP Typing Rules)

s ∶∶ ρ
Λa.s ∶∶ ∀a.ρ

s ∶∶ τ1 ∀i ∶ Pati ∶∶ τ1 ∀i ∶ ti ∶∶ τ2
(caseK s of { (Pat1 → t1) . . . (Pat∣DK ∣ → t∣DK ∣) }) ∶∶ τ2

s ∶∶ τ2
(λx ∶∶ τ1.s) ∶∶ τ1 → τ2

s ∶∶ ∀a.ρ
(s τ) ∶∶ ρ[τ/a]

s ∶∶ τ1 → τ2 t ∶∶ τ1
(s t) ∶∶ τ2

s ∶∶ τ t ∶∶ τ ′
(seq s t) ∶∶ τ ′

s1 ∶∶ τ1, . . . , sar(c) ∶∶ τar(c) τ = τ1 → ⋅ ⋅ ⋅→ τar(c) → τar(c)+1
type(c) = ∀a1, . . . , am.τ ′′ ∃τ ′1, . . . , τ ′m ∶ τ ′′[τ ′1/a1, . . . , τ ′m/am] = τ

(c ∶∶ τ s1 . . . sar(c)) ∶∶ τar(c)+1
s1 ∶∶ ρ1 . . . sn ∶∶ ρn t ∶∶ ρ

(letrec x1 ∶∶ ρ1 = s1, . . . , xn ∶∶ ρn = sn in t) ∶∶ ρ
Most of the typing rules are quite straightforward, but the rule for constructor ap-
plications is a little bit more complicated, since this rule checks, whether the whole
constructor application is an instance of the annotated (polymorphic) type at the con-
structor name.

Note that these rules require that all names of Λ-bound type variables are disjoint
(distinct variable convention for type variables). Otherwise the typing rules would
not recognize that y has two different type variables assigned to it as in this example:

(Λa.λz ∶∶ a.letrec y ∶∶ a = y ∶∶ a in Λa.λx ∶∶ a.y ∶∶ a)

However, for better readability we often often omit the type labels.

As an operational semantics the so-called normal order reduction is used. This is a
small-step reduction relation that implements a call-by-need-strategy using a rewri-
ting approach. First we give a definition of contexts:
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Context and MulticontextDefinition 2.3 (Context and Multicontext)
1. A context C∈CCtxt is an expression with exactly one hole [⋅] at expression posi-

tion. C[e] denotes the result of replacing the hole in C by expression e.
2. A multicontextM is an expression with zero or more (different) holes at expres-

sion positions.
Nowwe give an algorithm that calculates the reduction position of an LRP-expression.

LRP Labeling AlgorithmAlgorithm 2.1 (LRP Labeling Algorithm)
Let s and t be LRP-expressions. The input expression s is labeled with top, written
as stop. Now apply the rules from below as long as possible. If a fail occurs then no
reduction position exists, otherwise return the found position. The label a ∨ b means
a or b. top means reduction of the top expression, sub of a subexpression, vis marks
already visited subexpressions and nontarg is used for visited variables which are not
target of (cp)-reductions (see Definition 2.5).
(s t)sub∨ top → (ssub t)vis
(s τ)sub∨ top → (ssub τ)vis
(letrec E in s)top → (letrec E in ssub)vis
(letrec x = s,E in C[xsub]) → (letrec x = ssub,E in C[xvis])
(letrec x = s, y = C[xsub],E in t) → (letrec x = ssub, y = C[xvis],E in t)

if C /= [⋅]
(letrec x = s, y = xsub,E in t) → (letrec x = ssub, y = xnontarg,E in t)
(seq s t)sub∨ top → (seq ssub t)vis
(caseK s of alts)sub∨ top → (caseK ssub of alts)vis
(letrec x = svis∨nontarg, y = C[xsub], → Fail

E in t)
(letrec x = C[xsub],E in t) → Fail

The labeling algorithm follows a top-down-approach, where all demanded subexpres-
sions are marked and in the end the reduction position is calculated. The label top in
rule 3 ensures that the algorithm does not look further than a single step into letrec-
expressions. The algorithm has linear runtime in the syntactical size of the given LRP-
expression. Note that practical implementations use abstract machines, that perform
the search for a reduction position without extra runtime.

For different kinds of context classes we use the following notions:

Context Classes RCtxt, SCtxt, TCtxtDefinition 2.4 (Context Classes RCtxt, SCtxt, TCtxt)
1. Reduction context R∈RCtxt: A context such that its hole is labeled with top or sub

after applying Algorithm 2.1.
2. Surface context S∈SCtxt: A context where the hole is not in an abstraction.
3. Top context T∈TCtxt: A surface contextwhere the hole is not in a case-alternative.

(SSS08b) also gives a definition of reduction contexts by context free grammars.

Reduction contexts are for example [⋅], ([⋅] e), (case [⋅] . . . ) and letrec x = [⋅], y =
x, . . . in (seq x True). Reduction contexts are surface- as well as top-contexts. A value
is an abstraction λx.s, a polymorphic abstraction u or a constructor application c #»s .
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Now we can define basic reduction rules of LRP which need the labels calculated with
Algorithm 2.1.

Basic LRP Reduction RulesDefinition 2.5 (Basic LRP Reduction Rules)
(lbeta) ((λx.s)sub r)→ (letrec x = r in s)
(Tbeta) ((Λa.u)sub τ)→ u[τ/a]
(cp-in) (letrec x1 = vsub,{xi = xi−1}mi=2,E in C[xvis

m ])
→ (letrec x1 = v,{xi = xi−1}mi=2,E in C[v])

where v is a polymorphic abstraction
(cp-e) (letrec x1 = vsub,{xi = xi−1}mi=2,E , y = C[xvis

m ] in r)
→ (letrec x1 = v,{xi = xi−1}mi=2,E , y = C[v] in r)

where v is a polymorphic abstraction
(llet-in) (letrec E1 in (letrec E2 in r)sub)→ (letrec E1,E2 in r)
(llet-e) (letrec E1, x = (letrec E2 in t)sub in r)

→ (letrec E1,E2, x = t in r)
(lapp) ((letrec E in t)sub s)→ (letrec E in (t s))
(lcase) (caseK (letrec E in t)sub of alts)

→ (letrec E in (caseK t of alts))
(lseq) (seq (letrec E in s)sub t)→ (letrec E in (seq s t))
(seq-c) (seq vsub t)→ t if v is a value
(seq-in) (letrec x1 = (c #»s )sub,{xi = xi−1}mi=2,E in C[(seq xvis

m t)])
→ (letrec x1 = (c #»s ),{xi = xi−1}mi=2,E in C[t])

(seq-e) (letrec x1 = (c #»s )sub,{xi = xi−1}mi=2,E , y = C[(seq xvis
m t)] in r)

→ (letrec x1 = (c #»s ),{xi = xi−1}mi=2,E , y = C[t] in r)
(case-c) (caseK csub of {. . . (c→ t) . . .})→ t if ar(c) = 0, otherwise:

(caseK (c #»s )sub of {. . . ((c #»x )→ t) . . .})
→ (letrec {xi = si}ar(c)i=1 in t)

(case-in) Let yi be fresh variables. If ar(c) = 0 ∶
(letrec x1 = csub,{xi = xi−1}mi=2,E in
C[(caseK xvis

m of {(c→ r) . . .})])
→ (letrec x1 = c,{xi = xi−1}mi=2,E in C[r])

otherwise:
(letrec x1 = (c

#»
t )sub,{xi = xi−1}mi=2,E in

C[(caseK xvis
m of {((c #»z )→ r) . . .})])

→ (letrec x1 = (c #»y ),{yi = ti}ar(c)i=1 ,{xi = xi−1}mi=2,E in
C[letrec {zi = yi}ar(c)i=1 in r])

(case-e) Let yi be fresh variables. If ar(c) = 0 ∶
(letrec x1 = csub,{xi = xi−1}mi=2,u = C[(caseK xvis

m of{(c→ r1) . . .})],
E in r2)

→ (letrec x1 = c,{xi = xi−1}mi=2,u = C[r1],E in r2)
otherwise:
(letrec x1 = (c

#»
t )sub,{xi = xi−1}mi=2,

u = C[(caseK xvis
m of {((c #»z )→ r) . . .})],E in s)

→ (letrec x1 = (c #»y ),{yi = ti}ar(c)i=1 ,{xi = xi−1}mi=2,
u = C[letrec {zi = yi}ar(c)i=1 in r],E in s)
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We go through the basic reduction rules of Definition 2.5:

In contrast to the classical β-reduction, that is a substitution

((λx.s) r)→ s[r/x]

(lbeta) shares the variable x by the introduction of a letrec-expression and therefore
avoids duplication of work.

(Tbeta) is needed for the type-instantiation of polymorphic types.The rules (cp-in) and
(cp-e) copy abstractions which are needed when the reduction rules have to reduce an
application (f a)where f is an abstraction defined in a letrec-environment. (llet-in)
and (llet-e) merge nested letrec-expressions, while (lapp), (lcase) and (lseq) move a
letrec-expression out of an application, case-expression and seq-expression.

(seq-in) and (seq-e) evaluate seq-expressions, where the first argument points to a
letrec-binding that contains a value. (case-c), (case-in) and (case-e) evaluate case-
expressions, where the instantiation of pattern-variables for the appropriate case-
alternative is implemented using new letrec-expressions.

Many rules are related to each other since they apply the same idea on different places.
This leads to the following definition, that defines families of closely related transfor-
mations:

Basic LRP-Reduction Rules FamiliesDefinition 2.6 (Basic LRP-Reduction Rules Families)
1. (cp) is the union of (cp-in) and (cp-e).
2. (llet) is the union of (llet-in) and (llet-e).
3. (lll) is the union of (lapp), (lcase), (lseq) and (llet).
4. (case) is the union of (case-c), (case-in) and (case-e).
5. (seq) is the union of (seq-c), (seq-in) and (seq-e).

Normal order reduction steps are defined as follows:

Reduction StepsDefinition 2.7 (Reduction Steps)

1. Reduction step s LRPÐ→ t: If Algorithm 2.1 terminates successfully on s then one
applicable rule of Definition 2.5 yields t.

2. s LRP,∗ÐÐ→ t: s reduces to t with an arbitrary nonnegative number of reduction steps.
3. s LRP,+ÐÐ→ t: s reduces to t with at least one reduction step.
4. s LRP,kÐÐ→ t: s reduces to t with exactly k reduction steps where k ≥ 0.

Now the termination of an LRP-expression can be defined:

Weak Head Normal Form, Convergence and DivergenceDefinition 2.8 (Weak Head Normal Form, Convergence and Divergence)
1. A weak head normal form (WHNF) is a value, or an expression letrec E in v,

where v is a value, or an expression letrec x1 = c
#»
t ,{xi = xi−1}mi=2,E in xm.

2. An expression s converges to an expression t (s↓t or s↓ if we do not need t) if
s

LRP,∗ÐÐ→ t where t is a WHNF.
3. An expression s diverges (s↑) if there is no s LRP,∗ÐÐ→ t where t is a WHNF.
4. The constant-symbol � represents a closed diverging expression.

E.g. letrec x = x in x.
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Now we give a formal definition for program transformations:

Program TransformationDefinition 2.9 (Program Transformation)

A program transformation P is binary relation on LRP-expressions. We write s PÐ→ t,
if (s, t) ∈ P . For a set of contexts X and a transformation P , the transformation
(X,P ) is the closure of P w.r.t. the contexts in X , i.e. C[s] X,PÐÐ→ C[t] iff C ∈ X and
s

PÐ→ t. Note that we write s i,PÐ→ t if P is not applied in normal order.

We also give a definition of α-equivalence of LRP-expressions and LRP-types, with the
intuition, that a program constructed by renaming bound variables without interfering
with free variables remains semantic equivalent.

α-EquivalenceDefinition 2.10 (α-Equivalence)
Let s and s′ be LRP-expressions and t, t′ ∈ PTyp.
1. An α-renaming step s →α,e s′ for expressions replaces a bound variable of s, i.e.
x ∈ BV (s), by a variable y ∉ BV (s) ∪ FV (s).

2. An α-renaming step t →α,t t′ for types is defined similar to →α,e, but bound
variables are type variables that are bound by a λ.

3. =α,e is the reflexive-transitive-closure of →α,e and =α,t is the reflexive-transitive-
closure of →α,t. For simplicity we only want to write =α for both in the future.
Which one is meant is clear from the context.

Note that the α-equivalence is needed for the assumption, that the distinct variable
convention is fulfilled at any time during reduction sequences. For instance (lbeta)
needs to introduce new variable names to avoid name conflicts.

As notion of correctness we use contextual equivalence:

Contextual Preorder and EquivalenceDefinition 2.11 (Contextual Preorder and Equivalence)
Let s and t be LRP-expressions.
1. Contextual preorder ≤c: s ≤c t ⇐⇒ ∀C[⋅] ∶ C[s]↓ ⇒ C[t]↓.
2. Contextual equivalence ∼c: s ∼c t ⇐⇒ s ≤c t ∧ t ≤c s.
A program transformation P is correct iff P ⊆∼c.

Since the termination-property needs to be shown for each context, for programs with
different semantics a context can be found, where the termination differs.

Contextual EquivalenceExample 2.1 (Contextual Equivalence)
Let s = True and t = False.
For C = [⋅] we have C[s]↓ and C[t]↓.
But for C = case [⋅] of {(True → True) (False → letrec x = x in x)}, we have
C[s]↓ and C[t]↑, hence s and t are not contextual equivalent.

The normal order reduction is correct:
Correctness of Normal-Order-ReductionProposition 2.1 (Correctness of Normal-Order-Reduction)

As shown in (SSS08b) the transformations (lbeta), (cp), (lll), (seq), (case) are correct.

Note that the normal-order-reduction is type-safe, i.e. each expression that is a result
of a normal-order-reduction-step can be typed using the rules in Definition 2.2.
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The following example shows the normal-order-reduction of a little program, where
the sharing implemented by (lbeta), copying of abstractions by (cp) and the use of
seq-expressions is demonstrated.

Reduction Sequence of LRP-programExample 2.2 (Reduction Sequence of LRP-program)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}), x = (neg True)
2 in seq x (neg x)

(cp-e)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = ((λb.case b of {(True→ False) (False→ True)}) True),
3 in seq x (neg x)

(lbeta)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = letrec b1 = True in (case b1 of {(True→ False) (False→ True)}),
3 in seq x (neg x)

(llet-e)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = case b1 of {(True→ False) (False→ True)},
3 b1 = True
4 in seq x (neg x)

(case-e)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = False, b1 = True
3 in seq x (neg x)

(seq-in)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = False, b1 = True
3 in (neg x)

(cp-in)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = False, b1 = True
3 in ((λb.case b of {(True→ False) (False→ True)}) x)

(lbeta)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = False, b1 = True
3 in (letrec b2 = x in case b2 of {(True→ False) (False→ True)})

(llet-in)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = False, b1 = True, b2 = x
3 in case b2 of {(True→ False) (False→ True)}

(case-in)
1 letrec neg = (λb.case b of {(True→ False) (False→ True)}),
2 x = False, b1 = True, b2 = x
3 in True

The following measure is used for runtime:

Reduction Length Measures rln, rlnall and rlnLCSCDefinition 2.12 (Reduction Length Measures rln, rlnall and rlnLCSC)
Let s be a closed LRP-expression with s↓s0 and LCSC ∶= {(lbeta), (cp),(case),(seq)}.
1. rln(s) is the sum of all (lbeta)-, (case)- and (seq)-reduction steps in s↓s0.
2. rlnall(s) is the number of all reduction steps in s↓s0.
3. rlnLCSC(s) is the number of all a-reduction steps with a ∈ LCSC in s↓s0.
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The measure is based on the number of specific normal-order-reduction-steps and fo-
cuses on certain transformations, that have a great impact on the (practical) runtime.

In summary LRP can be seen as a core language of Haskell with polymorphic types in
letrec-bindings. The use of typing is motivated, since we consider correct program
transformations in later chapters and the omission of untyped programs often reduces
the amount of cases to consider.

LR is LRP without types (SSS16b): Let ε ∶ LRP → LR be defined as ε((s τ)) ∶= ε(s),
ε(Λa.s) ∶= ε(s), ε(x ∶∶ ρ) ∶= x and ε(c ∶∶ ρ) ∶= c. LR also omits (TBeta).Then ε(s) ∼c ε(t)
⇒ s ∼c t but caused by the typed case, s ∼c t does not imply ε(s) ∼c ε(t).

2.2 Concurrent Haskell with Futures

Concurrent Haskell was proposed in (PGF96) and implemented with slightly a few
changes in the Glasgow Haskell Compiler (Pey01, Wad95, PS09). The basic idea uses
two layers: A pure functional layer, where only deterministic calculations are perfor-
med and an action layer, that implements monadic programming features (see (PW93,
Wad95, Pey01)) and allows actions that might introduce side-effects, e.g. the creation
of threads and a common storage for multiple threads.

The calculus Concurrent Haskell with Futures (CHF∗) (SSSD18) (semantic equivalent
to CHF defined in (SS11, SSS12)) follows the same two-layered approach, where the
pure functional layer is comparable to LRP (see Section 2.1).

CHF∗ Syntax of Types, Processes and ExpressionsDefinition 2.13 (CHF∗ Syntax of Types, Processes and Expressions)
Let term variables x,xi ∈ Var. Every type constructor K has an arity ar(K) ≥ 0 and
a finite set DK of data constructors cK,i ∈DK with an arity ar(cK,i) ≥ 0. Let n ≥ 1.
Types Typ are defined as follows:

τ ∈ Typ ∶∶= IO τ ∣ (K τ1 . . . τar(K)) ∣ MVar τ ∣ τ1 → τ2

Expressions Expr and monadic expressions MExpr are generated by this grammar:
s, t, si ∈ Expr ∶∶= m ∣ x ∣ (λx.s) ∣ (s t) ∣ (seq s t) ∣ (cK,i s1 . . . sar(cK,i))

∣ (caseK s of {(PatK,1 → t1) . . . (PatK,∣DK ∣ → t∣DK ∣)})
∣ (letrec x1 = s1, . . . , xn = sn in t)

PatK,i ∶∶= (cK,i x1 . . . xar(cK,i))
m ∈MExpr ∶∶= return s ∣ s >>= t ∣ future s ∣ takeMVar s ∣ newMVar s

∣ putMVar s t

Processes Proc are defined as follows:
P ∈ Proc ∶∶= (P1|P2) ∣ x⇐ s ∣ νx.P ∣ xm s ∣ xm− ∣ x = s

(IO τ) stands for a monadic action with return-type τ and (MVar τ) stands for an
MVar-reference with content type τ .

Parallel processes are implemented by parallel composition|. The scope of variables
can be restricted using the ν-binders. Moreover we write x⇐ s for a concurrent thread
that binds the result of the evaluation of s to the variable x, where x is also called the
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future x (FF99, NSSSS07, NSS06). Each process has a main-thread, i.e. x main⇐ÔÔ s. The
common storage of threads is implemented using mutable variables namedMVars. An
MVar x can be filled with an expression s, denoted as xm s, or is empty, i.e. xm−.
Moreover a global heap contains shared expressions, i.e. consisting of bindings x = s
from binding variables to expressions. An introduced variable x of a Process P is a
future, a name of an MVar or a binding variable. Introduced variables are visible to
the whole process, except their scope is restricted by a ν-binder. For instance in νx.P
the variable x is only visible for P . We call a process well-formed, if all introduced
variables are pairwise distinct and there exists at most one main-thread.

Functional expressions can be variables, abstractions (λx.s), applications (s t), seq-
expressions (seq s t), constructor applications (c s1 . . . sar(c)), caseK-expressions for
every constructor-type K and recursive letrec-expressions.

The case-alternatives must have exactly one alternative ((cK,i x1 . . . xar(cK,i))→ si)
for every constructor cK,i of type K , where the variables x1, . . . , xar(cK,i) occurring
in the pattern (cK,i x1 . . . xar(cK,i)) are pairwise distinct and become bound with
scope si. Often {xg(i) = sf(i)}mi=j is used as abbreviation for xg(j) = sf(j), . . . , xg(m) =
sf(m). Also E is used as abbreviation for letrec-environments, that are a multiset of
(recursive) bindings of the form x = s. alts is an abbreviation for case-alternatives.
FV(s) and BV(s) is used to denote free and bound variables of an expression s (FV(P )
and BV(P ) for a process P resp.), LV(E) to denote the binding variables of a letrec-
environment and (cK,i s1 . . . sar(cK,i)) is often abbreviated with c #»s and λx1. . . . λxn.s
with λx1, . . . , xn.s. Moreover we often write c instead of cK,i.

Monadic expressions are operators that create MVars using newMVar, access MVars
implemented by takeMVar and putMVar, perform a sequential composition of IO-
operations using >>= (the bind-operator), create new threads using future where the
idea is to bind the result of the thread to the specified variable, or lift an expression to
a monadic expression implemented by return.

A functional value is either an abstraction or constructor application. Amonadic value
is amonadic expression of one of the following forms: (return s),(s>>= t),(future s),
(newMVar s), (takeMVar s) or (putMVar s t). A value is either a functional or monadic
value.

We also give a definition of α-equivalence of CHF∗-expressions, with the intuition,
that a program constructed by renaming bound variables without interfering with
free variables remains semantically equivalent. Note that we do need a definition of
α-equivalence for types, since α-equivalence of CHF∗-types is the same as syntactical
equality caused by the absence of type-variables in the monomorphic type-setting.

α-EquivalenceDefinition 2.14 (α-Equivalence)
1. Let s and s′ be CHF∗-expressions. An α-renaming step s →α s′ for expressions

replaces a bound variable of s, i.e. x ∈ BV (s), by a variable y ∉ BV (s) ∪ FV (s).
2. =α is the reflexive-transitive-closure of →α.
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Structural congruence is used to equate obviously equal processes and is defined as
the least congruence satisfying the equations:

Structural Congruence ≡Definition 2.15 (Structural Congruence ≡)
1. P1|P2 ≡ P2|P1

2. (P1|P2)|P3 ≡ P1|(P2|P3)
3. (νx.P1)|P2 ≡ νx.(P1|P2) if x /∈ FV(P2)
4. νx1.νx2.P ≡ νx2.νx1.P
5. P1 ≡ P2 if P1 =α P2

A CHF∗-program is called well-typed if it can be typed using the typing rules given in
the following definition:

CHF∗ Typing RulesDefinition 2.16 (CHF∗ Typing Rules)

Γ ⊢ s ∶∶ IO τ
Γ ⊢ x⇐ s ∶∶ wt

Γ ⊢ s ∶∶ τ
Γ ⊢ x = s ∶∶ wt

Γ ⊢ P1 ∶∶ wt Γ ⊢ P2 ∶∶ wt
Γ ⊢ P1|P2 ∶∶ wt

Γ(x) = MVar τ Γ ⊢ s ∶∶ τ
Γ ⊢ xm s ∶∶ wt

Γ(x) = MVar τ
Γ ⊢ xm− ∶∶ wt

Γ ⊢ s ∶∶ τ
Γ ⊢ newMVar s ∶∶ IO (MVar τ)

Γ ⊢ s ∶∶ τ
Γ ⊢ return s ∶∶ IO τ

Γ ⊢ s ∶∶ IO τ1 Γ ⊢ t ∶∶ τ1 → IO τ2
Γ ⊢ s>>= t ∶∶ IO τ2

Γ ⊢ s ∶∶ IO τ
Γ ⊢ forkIO s ∶∶ IO τ

Γ ⊢ s ∶∶ MVar τ
Γ ⊢ takeMVar s ∶∶ IO τ

Γ ⊢ s ∶∶ MVar τ Γ ⊢ t ∶∶ τ
Γ ⊢ putMVar s t ∶∶ IO ()

Γ ⊢ P ∶∶ wt
Γ ⊢ νx.P ∶∶ wt

∀i ∶ Γ ⊢ si ∶∶ τi τ1 → . . .→ τn → τn+1 ∈ types(c)
Γ ⊢ (c s1 . . . sar(c)) ∶∶ τn+1

Γ ⊢ s ∶∶ τ1 → τ2 Γ ⊢ t ∶∶ τ1
Γ ⊢ (s t) ∶∶ τ2

Γ(x) = τ1 Γ ⊢ s ∶∶ τ2
Γ ⊢ (λx.s) ∶∶ τ1 → τ2

Γ(x) = τ
Γ ⊢ x ∶∶ τ

Γ ⊢ s ∶∶ τ1 Γ ⊢ t ∶∶ τ2
τ1 = τ3 → τ4 or τ1 = (K . . .)

Γ ⊢ (seq s t) ∶∶ τ2
Γ ⊢ s ∶∶ τ1 and τ1 = (K . . .) ∀i ∶ Γ ⊢ (ci x1,i . . . xni,i) ∶∶ τ1 ∀i ∶ Γ ⊢ si ∶∶ τ2

Γ ⊢ (caseK s of {(c1 x1,1 . . . xn1,1 → t1) . . . (cm x1,m . . . xnm,m → tm)}) ∶∶ τ2
∀i ∶ Γ(xi) = τi ∀i ∶ Γ ⊢ si ∶∶ τi Γ ⊢ t ∶∶ τ
Γ ⊢ (letrec x1 = s1, . . . , xn = sn in t) ∶∶ τ

Let Γ be the global typing function. For instance Γ(x) yields the type for x where
we assume that every variable has a built-in type. To express that a type τ can be
derived for an expression s using Γ, we write Γ ⊢ e ∶∶ τ . On the process-level we write
Γ ⊢ P ∶∶ wt if Γ is able to derive a type for process P , hence P is called well-typed.

The type system is monomorphic for simplicity, but we assume that data construc-
tors of every type have a polymorphic type as usual, whereas the constructors in the
language are monomorphic. We write types(c) for the set of monomorphic types of
constructor c and let () be the unit type. Also note that we require the distinct variable
convention, hence each bound variable is required to have disjoint names – otherwise
bound and independent variables with the same name might overlap in Γ.
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As an operational semantics the so-called standard reduction is used. This is a small-
step reduction relation that implements a call-by-need-strategy using a rewriting ap-
proach. At first we define the notion of successful processes:

Successful ProcessDefinition 2.17 (Successful Process)
A well-formed process P is successful, if P has a main-thread of the form x

main⇐ÔÔ
return s, i.e. P ≡ νx1 . . . νxn.(x

main⇐ÔÔ return s|P ′)
We only define the standard reduction for well-formed processes that are not success-
ful. The reason is that parsers can capture non well-formed processes and in Haskell
all threads terminate, if the main-thread terminates. Contexts are defined as follows:

Context and MulticontextDefinition 2.18 (Context and Multicontext)
1. A context C∈CCtxt is a process or an expression with exactly one hole [⋅].

We assume that the hole [⋅] is typed and carries a type label, which we sometimes
write as [⋅τ ].
For a context C[⋅τ ] and an expression s ∶∶ τ we write C[s] for the result of repla-
cing the hole in C with s.

2. A multicontext M is a process or an expression with zero or more (different)
holes.

For the different syntactical categories different contexts are needed:

Contexts Classes ECtxt, MCtxt, FCtxt, PCtxt, LCtxt and L̂CtxtDefinition 2.19 (Contexts Classes ECtxt,MCtxt, FCtxt, PCtxt, LCtxt and L̂Ctxt)
E∈ECtxt ∶∶= [⋅] ∣ (E e) ∣ case E of alts ∣ seq E e
M∈MCtxt ∶∶= [⋅] ∣M>>= e
F∈FCtxt ∶∶= E ∣ takeMVar E ∣ putMVar E e
D∈PCtxt ∶∶= [⋅] ∣ D|P ∣ P|D ∣ νx.D
L∈LCtxt ∶∶= x⇐M[F] ∣ (x⇐M[F[xn]]|xn=En[xn−1]|. . .|x2=E2[y]|y=E1)

s.t. Ei /= [⋅] for 2 ≤ i ≤ n
L̂∈L̂Ctxt ∶∶= x⇐M[F] ∣ (x⇐M[F[xn]]|xn=En[xn−1]|. . .|x2=E2[y]|y=E1)

s.t. Ei /= [⋅] for 1 ≤ i ≤ n

For expressions usual call-by-name expression evaluation contexts ECtxt are used. The
monadic contexts MCtxt yield the next monadic action in a sequence of monadic ac-
tions. Often takeMVar and putMVar require that the first argument is evaluated, this
is modeled by the forcing contexts FCtxt. The contexts LCtxt are used to find the redex
of an already selected thread, where the next reduction may be a monadic or func-
tional evaluation that might require to go through a chain of bindings. For copying,
we require that for variable-to-variable bindings variables are copied (not only the
end of a variable chain as in LRP), implemented by L̂Ctxt, since for takeMVar- and
putMVar-operations the real variable name is needed for the access of the MVar.

The context classes in Definition 2.19 are important for the definition of the evaluation
of CHF∗-programs, but especially for the work in the area of improvements we also
use the following two context classes:

Context Classes SCtxt and TCtxtDefinition 2.20 (Context Classes SCtxt and TCtxt)
1. Surface context S∈SCtxt: A context where the hole is not in an abstraction.
2. Top context T∈TCtxt: A surface contextwhere the hole is not in a case-alternative.
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The basic reduction rules of CHF∗ are given in the following definition, where the
outer process context is omitted.

Basic CHF Reduction RulesDefinition 2.21 (Basic CHF Reduction Rules)
(lunit) y⇐M[return s>>= t]→ y⇐M[t s]
(nmvar) y⇐M[newMVar s]→ νx.(y⇐M[return x]|xm s) where x is fresh
(tmvar) y⇐M[takeMVar x]|xm s→ y⇐M[return s]|xm−
(pmvar) y⇐M[putMVar x s]|xm−→ y⇐M[return ()]|xm s
(fork) y⇐M[future s]→ νz.(y⇐M[return z]|z⇐ s) where z is fresh
(unIO) y⇐return s→ y = s if the thread is not the main-thread
(lbeta) L[((λx.s) t)]→ νx.(L[s]|x = t)
(cp) L̂[x]|x = v → L̂[v]|x = v if v is an abstraction or a variable
(cpcxa) L̂[x]|x = (c s1 . . . sn)

→ νy1, . . . yn.(L̂[x]|x = (c y1 . . . yn)|y1 = s1|. . .|yn = sn)
if c is a constructor, return, >>= , takeMVar, putMVar, newMVar,
or future and in addition some si is not a variable.
Only the non-variables sj are abstracted.

(cpcxb) L̂[x]|x = (c y1 . . . yn)→ (L̂[(c y1 . . . yn)]|x = (c y1 . . . yn))
if c is a constructor, return, >>= , takeMVar, putMVar, newMVar,
or future

(mkbinds) L[letrec x1 = s1, . . . , xn = sn in s]
→ νx1 . . . xn.(L[s]|x1 = s1|. . .|xn = sn)

(seq) L[(seq v s)]→ L[s] if v is a functional value
(case) L[caseT (c s1 . . . sn) of {. . . ((c y1. . .yn) → s) . . .}]

→ νy1 . . . yn.(L[s]|y1 = s1|. . .|yn = sn) if n > 0
(case) L[caseT c of {. . . (c→ s) . . .}]→ L[s]

We now go through the rules for monadic computations. (lunit) implements the mo-
nadic sequencing operator >>= , that is applicable if the monadic computation of the
first argument is finished, hence of the form return s, and then the next computation
(i.e. the second argument) of the sequence is started. A new filled MVar can be crea-
ted using (nmvar), while a takeMVar-operation on a filled MVar can be performed
using (tmvar) and a putMVar-operation on an empty MVar can be performed using
(pmvar). Note that there are no rules for a takeMVar-operation on an empty MVar
and a putMVar-operation on a filled MVar, this absence of such rules forces a thread
to wait in such cases. (fork) creates a new thread where the return-value is a varia-
ble that identifies the thread. (unIO) binds the result of a monadic computation to a
functional binding, thus the value of a concurrent future becomes accessible.

The rules for functional evaluations are explained as follows: (lbeta) implements the
sharing-variant of a classical β-reduction. (cp), (cpcxa) and (cpcxb) inline a needed
binding, where sharing of the call-by-need-evaluation is implemented by the new bin-
dings. (mkbinds) moves a letrec-environment to the global bindings, where the ν-
binders are used to restrict the scope of those bindings to the current thread. (seq)
evaluates a seq-expression, where the first argument needs to be a value. The rule
(case) evaluates case-expressions where the instantiation of pattern-variables for the
appropriate case-alternative is implemented using bindings.
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Note that if P1 ≡ D[P ′1], P2 ≡ D[P ′2] and P ′1 → P ′2 then P1 → P2. Moreover we as-
sume that all reduction rules obey the distinct variable convention, hence all bound
expression variable names remain disjoint and differ from free variable names.

The redex of the reduction rules is defined as follows: For (lunit), (nmvar), (tmvar),
(pmvar), (fork) it is the monadic expression in the context M, for the rule (unIO) it is
y >>= return s, for (lbeta), (mkbinds), (seq), (case) it is the functional expression in the
context L, and for (cp), (cpcxa), (cpcxb) it is the variable x in the context L̂.

Standard ReductionDefinition 2.22 (Standard Reduction)

1. Reduction step s CHF∗ÐÐ→ t: Find the next reduction position of s using the process
contexts of Definition 2.19 and then one applicable rule of Definition 2.21 yields t.

2. s CHF∗,∗ÐÐÐ→ t: s reduces to twith an arbitrary nonnegative number of reduction steps.

3. s CHF∗,+ÐÐÐ→ t: s reduces to t with at least one reduction step.

4. s CHF∗,kÐÐÐ→ t: s reduces to t with exactly k reduction steps where k ≥ 0.

Intuitively, two processes are seen as equal if their observable behavior is indistinguis-
hable if both are plugged into any process context. We use the notions of may- and
should-convergence as defined in (SS11) to observe the behavior of processes:

May-Convergence and Should-ConvergenceDefinition 2.23 (May-Convergence and Should-Convergence)
Let P be a process.
1. P may-converges (written as P ↓), iff it is well-formed and reduces to a successful

process, i.e.
P ↓ iff P is well-formed and ∃P ′ ∶ P CHF∗,∗ÐÐÐ→ P ′ ∧ P ′ is successful

2. If P ↓ does not hold, then P must-diverges written as P⇑.
3. P should-converges (written as P⇓), iff it is well-formed and remains may-

convergent after reductions, i.e.
P⇓ iff P is well-formed and ∀P ′ ∶ P CHF∗,∗ÐÐÐ→ P ′ Ô⇒ P ′↓

4. If P is not should-convergent then we say P may-diverges written as P ↑.
We write P ↓P ′ (or P ↑P ′, resp.) if P CHF∗,∗ÐÐÐ→ P ′ and P ′ is successful (or must-divergent,
resp.).
Now we can define contextual equivalence as our notion of correctness:

Contextual Equivalence and Program TransformationDefinition 2.24 (Contextual Equivalence and Program Transformation)

1. Contextual approximation ≤c is defined as ≤c ∶= ≤↓∩ ≤⇓.
2. Contextual may-equivalence ∼↓,c is defined as ∼↓,c ∶= ≤↓ ∩ ≥↓.
3. Contextual equivalence ∼c on processes is defined as ∼c ∶= ≤c ∩ ≥c where for
ξ ∈ {↓,⇓}: P1 ≤ξ P2 iff ∀D ∈ PCtxt ∶ D[P1]ξ ⇒ D[P2]ξ.

A program transformationP on processes is a binary relation on processes. It is correct
iff P ⊆ ∼c.
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The calculus CHF as defined in (SS11) only has one rule (cpcx), while CHF∗ has the
rules (cpcxa) and (cpcxb) instead. To show that both calculi are equivalent w.r.t. may-
and should-convergence and also w.r.t. correctness of transformations, we need two
additional program transformations given in Definition 2.25.

(cpx) copies variables and can be used to shorten chains.The first rule for (gc) removes
bindings on process level, while the other two (gc)-rules remove bindings of letrec-
environments.

Program Transformations (cpx) and (gc)Definition 2.25 (Program Transformations (cpx) and (gc))
(cpx) T[x]|x = y → T[y]|x = y

where we assume that it is closed w.r.t. D-contexts and ≡.
(gc) νx1, . . . , xn.(P|Comp(x1)|. . .|Comp(xn))→ P

if for all i ∈ {1, . . . , n} ∶ Comp(xi) is a binding xi = si, an MVar xim si or an
empty MVar xim−, and xi /∈ FV(P ).

(gc) C[letrec E in s]→ C[s] if FV(s) ∩LV (E) = ∅
(gc) C[letrec E1,E2 in s]→ C[letrec E2 in s] if FV(E1, s) ∩LV (E1) = ∅

Equivalence of CHF and CHF∗Theorem 2.1 (Equivalence of CHF and CHF∗)
The calculi CHF and CHF∗ are equivalent w.r.t. may- and should-convergence and
also w.r.t. correctness of transformations.
Proof
It suffices to show that P ↓CHF ∗ ⇐⇒ P ↓CHF and P ⇓CHF ∗ ⇐⇒ P ⇓CHF (or
equivalently P ↑CHF ⇐⇒ P ↑CHF ∗) for all processes P . Thus we have to show
four implications:

1. P ↓CHF ∗ Ô⇒P ↓CHF : Let P
CHF ∗,∗ÐÐÐÐ→ Q, where Q is successful.

Then the reduction can be translated into:

P
CHFÐÐÐ→ cpx,∗←ÐÐ→ gc,∗←Ð→ P2

CHFÐÐÐ→ cpx,∗←ÐÐ→ gc,∗←Ð→ . . .Q

Since the reductions (cpx) and (gc) are correct in CHF (SS11, SSS12), it is easy
to show by induction on the number of CHFÐÐÐ→-reductions, that P ↓CHF .

2. P ↓CHF Ô⇒P ↓CHF ∗ : Let P
CHF,∗ÐÐÐ→ Q, where Q is successful.

We transform it into a mixture of reductions and transformations in CHF∗.
All standard reductions are the same, with the exception of (cpcx) which is
(cpcxa);(cpcxb) plus equivalences using cpx,∗←ÐÐ and gc,∗←ÐÐ. The reduction

P1[x]|x = c y1 . . . yn
cpcxÐÐ→ P1[c z1 . . . zn]|x = c z1 . . . zn|z1 = y1|. . .|zn = yn

is translated into
cpcxbÐÐ→ P1[c y1. . .yn]|x = c y1 . . . yn
gc,∗←ÐÐ P1[c y1. . .yn]|x = c y1 . . . yn|z1=y1|. . .|zn=yn

cpx,∗←ÐÐ P1[c z1. . .zn]|x = c z1 . . . zn|z1=y1|. . .|zn=yn
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wherewe omit ν-binders. A step-wise transformation of the reduction sequence
with the same intermediate processes is of the form

P
CHF ∗ÐÐÐ→ gc,∗←ÐÐ cpx,∗←ÐÐ P2

CHF ∗ÐÐÐ→ gc,∗←ÐÐ cpx,∗←ÐÐ . . .Q

This reasoning is also applicable to (cpcxa)-reductions that only abstract some
subexpressions. We modify the sequence into a CHF∗-reduction sequence to
a successful process, where scanning all possibilities of interference with the
standard reductions of CHF∗ leads to the following diagrams:

P
sr,a

��

cpx // P ′

sr,a
���
�

P1 T,cpx
/ /__ P ′1

P
sr,cpcxb ��

cpx // P ′

sr,cpcxb���
�

P1 cpx
//___ ⋅

T,cpx
//___ P ′1

P
sr,cp

��

cpx// P ′

�
�
�

�
�
�

P1

P
sr,a

��

gc // P ′

sr,a
���
�

P1 gc
//__ P ′1

We use these diagrams to shift (gc) and (cpx) to the right, only over CHF∗-
reductions. We start with the rightmost of (cpx),(gc). This may increase the
cpx-reductions or it may also remove a (cp)-reduction using the third diagram.
Finally it leads to a sequence P CHF ∗,∗ÐÐÐÐ→ Q′ ( gc,∗←ÐÐ ⋅ cpx,∗←ÐÐ)∗ Q. This shifting
terminates since the number of CHF∗-reductions is not increased. It is easy
to see that also Q′ must be successful, since (cpx) and (gc) do no change this
property. Hence we have shown that P ↓CHF ∗ .

3. P ↑CHF ∗Ô⇒P ↑CHF : Analogous to part 1, where Q is CHF∗-must-diverging,
which is CHF-must-diverging, since part 2 implies Q⇑CHF Ô⇒ Q⇑CHF ∗ .

4. P ↑CHFÔ⇒P ↑CHF ∗ : LetP be a process with a reduction sequenceP CHF,∗ÐÐÐ→ Q,
where Q ⇑CHF .

We use the same transformation as in part 2, which leads to a mixed reduc-
tion and transformation sequence P ( CHF ∗ÐÐÐ→ ⋅ cpx,∗←ÐÐ ⋅ gc,∗←ÐÐ)∗ Q. The dia-
grams and the shifting process is the same as in part 2 and leads to a se-
quence P CHF ∗,∗ÐÐÐÐ→ Q′ ( cpx,∗←ÐÐ ⋅ gc,∗←ÐÐ)∗ Q. Now we have to argue that also Q′
is CHF∗-must-divergent. Since Q is CHF-must-divergent and since (cpx), (gc)
are correct, we also obtain that Q′ is CHF-must-divergent and part 1 implies
Q′ ⇑CHF Ô⇒ Q′ ⇑CHF ∗ and thus Q′ is also CHF∗-must-divergent.

UsingTheorem 2.1 we can import the correctness-results for CHF∗ from (SS11, SSS12):

Correctness of Standard ReductionProposition 2.2 (Correctness of Standard Reduction)
The transformations (lunit), (nmvar), (tmvar), (pmvar), (fork), (unIO), (lbeta), (cp),
(cpcxa), (cpcxb), (mkbinds), (seq) and (case) are correct.
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Nondeterminism is introduced in CHF∗ by the ability to concurrently access MVars
from different threads. We want to give a short example:

Nondeterminism of CHF∗-processesExample 2.3 (Nondeterminism of CHF∗-processes)
Consider the following process P :

y1
main⇐ÔÔ takeMVar x|y2⇐putMVar x True|y3⇐putMVar x False|xm−

Since the MVar x is empty and the main-thread wants to perform a take-operation on
this MVar, the main-thread needs to wait. Then we have nondeterminism, since both
concurrent threads are allowed to perform their put-operation on MVar x, resulting
in either P1 or P2:

P1 ∶= y1
main⇐ÔÔ takeMVar x|y2⇐return ()|y3⇐putMVar x False|xmTrue

P2 ∶= y1
main⇐ÔÔ takeMVar x|y2⇐putMVar x True|y3⇐return ()|xmFalse

For both P1 and P2 now the main-thread can perform its take-operation, resulting in
the main-thread either returning True or False and therefore terminating the whole
reduction sequence in both cases. A context can be easily given that shows that those
two results are not contextual equivalent.

For better readability we sometimes use the do-notation as in Haskell, i.e. nested >>=
operations are summarized as shown in the following example.

do-notationExample 2.4 (do-notation)
Consider the following CHF∗-expression:

1 ((newMVar True) >>=
2 (λx.takeMVar x
3 >>=
4 (λy.future (putMVar x True)
5 >>=
6 (λy1.future (putMVar x False)
7 >>=
8 (λy2.takeMVar x
9 >>=

10 (λr.return r)
11 )
12 ))))

Using the do-notation and <- instead of ⇐, the above expression can be written as
follows:
1 do x <- newMVar True
2 takeMVar x
3 y1 <- future (putMVar x True)
4 y2 <- future (putMVar x False)
5 r <- takeMVar x
6 return r

Replacing future by forkIO yields a valid subprogram for Concurrent Haskell.

CHF∗ can be used to analyze Concurrent Haskell. Note that the future variables are
lazy-evaluated at expression-level, while monadic operations are evaluated strictly.
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In contrast to Concurrent Haskell, CHF∗ permits a lazy handling of infinite lists on
process level using futures.

2.3 Datatype Declarations and Haskell-Notations

In Definition 2.1 and Definition 2.13 type-constructors are assumed to be defined. For
completeness we give a grammar in Haskell-style that implements type-definitions for
our let-polymorphism for both LRP and CHF∗ taken from (Dal16).

Datatype DeclarationsDefinition 2.26 (Datatype Declarations)
Datatype declarations DataDefs are generated by the following grammar with n ≥ 1
for every occurrence of n. ≀ is a placeholder for | to prevent a collision with the BNF-
notation.

DataDefs ∶∶= DataDef1 . . . DataDefn
DataDef ∶∶= data K a1 . . . aar(K) = constr1 ≀ . . . ≀ constrn
constr ∶∶= K typeA1 . . . typeAar(K)
typeA ∶∶= a ∣K ∣ (K typeA1 . . . typeAn) ∣ (typeA1 → . . .→ typeAn)

For the classical Haskell-notations [] and (:) for both LRP and CHF∗ the constructors
Nil and Cons are used, but for better readability we often apply the Haskell-notation.
Also Zero and Succ can be used to implement numbers using a Peano encoding (often
written as usual numbers, e.g. 0 instead of Zero) and True and False are assumed to
be defined as Boolean-constructors.

Haskell-expressions like if-then-else-expressions or function definitions can be im-
plemented in LRP and on the functional level of CHF∗ as follows:

Haskell LRP / CHF∗
if b then s else t case b of {(True→ s) (False→ t)}
f x y = s letrec f = λx.λy.s in . . .
f True False ((f True) False)

2.4 Abstract Machines

In this chapter we consider abstract machines, that can be used to execute LRP- and
CHF∗-programs. This section is primarily based on (Sab12).

In the following subsections we present three abstract machines:

1. The abstract machineM1 evaluates deterministic pure functional programs, is used
for LRP and the deterministic part of CHF∗ and defined in Section 2.4.2.

2. IOM1 is M1 extended to handle monadic operations, is used for the deterministic
and monadic part of CHF∗ and defined in Section 2.4.3.

3. CIOM1 is IOM1 extended by concurrency, used for the complete calculus CHF∗ and
defined in Section 2.4.4.

For each abstract machine a simplified syntax is used, as defined in the next section.
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2.4.1 Machine Language

The idea of simplified expressions is to simplify expressions by new bindings. We first
give a definition for CHF∗ and then a compact definition for LRP.

Simplified CHF∗-ExpressionDefinition 2.27 (Simplified CHF∗-Expression)
Let variables x,xi ∈ Var. Every type constructorK has an arity ar(K) ≥ 0 and a finite
set DK of data constructors cK,i ∈DK with an arity ar(cK,i) ≥ 0.
Simplified CHF∗-expressions ExprS and simplified monadic expressions MExprS are
generated by the following grammar with n ≥ 1:

s, si ∈ ExprS ∶∶= me ∣ x ∣ (s x) ∣ (seq s x) ∣ (cK,i x1 . . . xar(cK,i)) ∣ (λx.s)
∣ (caseK s of {(PatK,1 → s1) . . . (PatK,∣DK ∣ → s∣DK ∣)})
∣ (letrec x1 = s1, . . . , xn = sn in s)

PatK,i ∶∶= (cK,i x1 . . . xar(cK,i))
me ∈MExprS ∶∶= return x ∣ x1 >>=x2 ∣ future x ∣ takeMVar x ∣ newMVar

∣ putMVar x1 x2
Simplified processes ProcS are defined as Proc in Definition 2.13 where all expressions
are simplified expressions and all MVars have only variables as content.

Simplified LRP-ExpressionDefinition 2.28 (Simplified LRP-Expression)
Simplified LRP-expressions are defined like ExprS in Definition 2.27 but without mo-
nadic expressions.
Note that polymorphic abstractions and type applications are only needed for typing
and are also omitted compared to the original LRP-syntax (see Definition 2.1).

Simplified expressions are also calledmachine expressions. Moreover we use ExprS for
both LRP and CHF∗ for better readability.

Now we give a transformation that translates a usual CHF∗-program to a correspon-
ding simplified program.

Transformation from CHF∗-Expressions to Machine ExpressionsDefinition 2.29 (Transformation from CHF∗-Expressions to Machine Expressions)
σ ∶ Proc→ ProcS simplifies CHF∗-processes, where y and yi are fresh variables.
– σ(x) ∶= x
– σ((λx.s)) ∶= (λx.σ(s))
– σ((s t)) ∶= letrec y = σ(t) in (σ(s) y)
– σ((seq s t)) ∶= letrec y = σ(t) in seq σ(s) y
– σ((c s1 . . . sar(c))) ∶= letrec y1 = σ(s1), . . . , yar(c) = σ(sar(c)) in (c y1 . . . yn)

if c is a constructor or a monadic operator
– σ((caseK s of {(PatK,1 → t1) . . . (PatK,∣DK ∣ → t∣DK ∣)}))

∶= (caseK σ(s) of {(PatK,1 → σ(t1)) . . . (PatK,∣DK ∣ → σ(t∣DK ∣))})
– σ((letrec x1 = s1, . . . , xn = sn in t))

∶= (letrec x1 = σ(s1), . . . , xn = σ(sn) in σ(t))
– (P1|P2) ∶= (σ(P1)|σ(P2))
– σ(x⇐ s) ∶= x⇐σ(s)
– σ(νx.P ) ∶= νx.σ(P )
– σ(xm s) ∶= xm y|y = σ(s)
– σ(xm−) ∶= xm−
– σ(x = s) ∶= x = σ(s)
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The transformation ψ for LRP is defined as follows and analogous to σ, but ψ also
removes polymorphic abstractions, type abstractions and type annotations, since the
used abstract machines does not carry type information. ψ is an adapted version of
the transformation for LR in (SSS16b).

Transformation from LRP-Expressions to Machine ExpressionsDefinition 2.30 (Transformation from LRP-Expressions to Machine Expressions)
ψ ∶ Expr→ ExprS simplifies LRP-expressions, where y and yi are fresh variables.
– ψ((Λa1.Λa2. . . .Λak.λx ∶∶ τ.s)) ∶= (λx.ψ(s))
– ψ(x ∶∶ φ) ∶= x
– ψ((s τ)) ∶= ψ(s)
– ψ((s t)) ∶= letrec y = ψ(t) in (ψ(s) y)
– ψ((seq s t)) ∶= letrec y = ψ(t) in seq ψ(s) y
– ψ((c s1 . . . sar(c))) ∶= letrec y1 = ψ(s1), . . . , yar(c) = ψ(sar(c)) in (c y1 . . . yn)
– ψ((caseK s of {(PatK,1 → t1) . . . (PatK,∣DK ∣ → t∣DK ∣)}))

∶= (caseK ψ(s) of {(PatK,1 → ψ(t1)) . . . (PatK,∣DK ∣ → ψ(t∣DK ∣))})
– ψ((letrec x1 = s1, . . . , xn = sn in t))

∶= (letrec x1 = ψ(s1), . . . , xn = ψ(sn) in ψ(t))

Both transformations are correct:
Correctness of Transformation σ for CHF∗Proposition 2.3 (Correctness of Transformation σ for CHF∗)

P ∼c σ(P ) holds for all processes P ∈ Proc.
Proof
(SS11) implies that the claim holds for CHF. SinceTheorem 2.1 shows that CHF and
CHF∗ are equivalent w.r.t. may- and should-convergence, the claim also holds for
CHF∗.

Correctness of Transformation ψ for LRPProposition 2.4 (Correctness of Transformation ψ for LRP)
e ∼c ψ(e) holds for all expressions e ∈ Expr.
Proof
Follows directly from the results of (SSS16b).

Thus the machine languages, that are used by the following abstract machines, can be
used for the analysis of LRP and CHF∗.

2.4.2 Abstract Machine M1

In this section the abstract machineM1 is introduced and based on (SS15).This abstract
machine is the abstract machine Mark 1 (Ses97) extended by the handling of seq- and
case-expressions.Moreovermonadic operators are treated as constructor applications
and therefore the machine halts if it needs to evaluate monadic actions – this fits to
the behavior of waiting threads later. Thus the abstract machine M1 is able to handle
the complete calculus LRP and the deterministic part of CHF∗ using the corresponding
machine language defined in Section 2.4.1.

We now start with the definition of M1-states:
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M1 StateDefinition 2.31 (M1 State)
A state of M1 is a triple ⟨H ∣ s ∣ S⟩ consisting of the following components:
– The heapH is a mapping of variables to machine expressions, where the mapping

can be written as {x1 ↦ e1, . . . , xn ↦ en}. An empty heap is written as ∅ and
H, x = s is the disjoint union of H and {x↦ s}.

– s is a machine expression, that is often called control expression, since it is the
currently evaluated expression.

– The stack S contains entries of the form:
• #app(x) to remember the second argument of an application,
• #seq(x) to remember the second argument of a seq-expression,
• #case(alts) to remember the case-alternatives of a case-expression,
• #upd(x) to remember a heap-binding that needs to be updated.

The list notations is used for stacks, hence [] denotes the empty stack, while t ∶ S
is a stack with top entry t and tail S .

At the beginning of an execution heap and stack are empty:

M1 Initial StateDefinition 2.32 (M1 Initial State)
Given a machine expression s, the corresponding M1 initial state is:

⟨∅ ∣ s ∣ []⟩

We also define the notion of values that is compatible to LRP and the deterministic
part of CHF∗.

M1 ValueDefinition 2.33 (M1 Value)
A machine expression is an M1 value if it is an abstraction, constructor application
or monadic expression.

A single transition from one state to the next one is defined by the following transition-
rules, where at most one of these rules is applicable for the same state. Note that
we assume that α-renaming is performed implicitly to preserve the distinct variable
convention.

M1 Transition Relation M1Ð→Definition 2.34 (M1 Transition Relation M1Ð→)
(Unwind1) ⟨H ∣ (s x) ∣ S⟩→ ⟨H ∣ s ∣ #app(x) ∶ S⟩
(Unwind2) ⟨H ∣ (seq s x) ∣ S⟩→ ⟨H ∣ s ∣ #seq(x) ∶ S⟩
(Unwind3) ⟨H ∣ caseK s of alts ∣ S⟩→ ⟨H ∣ s ∣ #case(alts) ∶ S⟩
(Lookup) ⟨H, x = s ∣ x ∣ S⟩→ ⟨H ∣ s ∣ #upd(x) ∶ S⟩
(Letrec) ⟨H ∣ letrec Env in s ∣ S⟩→ ⟨H,Env ∣ s ∣ S⟩
(Subst) ⟨H ∣ (λx.s) ∣ #app(y) ∶ S⟩→ ⟨H ∣ s[y/x] ∣ S⟩
(Branch) ⟨H ∣ (cK,i

#»x ) ∣ #case(. . . ((cK,i
#»y )→ t) . . . ) ∶ S⟩→ ⟨H ∣ t[#»x /#»y ] ∣ S⟩

(Seq) ⟨H ∣ v ∣ #seq(x) ∶ S⟩→ ⟨H ∣ x ∣ S⟩ if v is a M1 value
(Update) ⟨H ∣ v ∣ #upd(x) ∶ S⟩→ ⟨H, x = v ∣ v ∣ S⟩ if v is a M1 value
(Blackhole) ⟨H ∣ x ∣ S⟩→ ⟨H ∣ x ∣ S⟩ if no binding for x exists in H

(Unwind1), (Unwind2), (Unwind3) are used to handle the control-flow using the stack.
(Lookup) moves a demanded heap binding into the scope of evaluation, while (Update)
writes the result of a calculation back to the heap. (Subst) performs a β-reduction,
(Seq) evaluates a seq-expression and (Branch) evaluates a case-expression. If a needed
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case-alternative is missing, i.e. a (Branch) should be performed but is not possible,
then a runtime error occurs. (Blackhole) is an infinite loop and implements the waiting
of a thread, until an MVar is accessible to perform the corresponding action.

A terminating program, starting with an initial state and a sequence of transition rules,
yields a final state:

M1 Final StateDefinition 2.35 (M1 Final State)
Let v be a M1 value, then a final state is:

⟨H ∣ v ∣ []⟩

We now give an example for an evaluation sequence on the M1:

Evaluation Sequence on M1Example 2.5 (Evaluation Sequence on M1)
H
s
S

∅
letrec x = ((λk.k) y), y = True, z = (newMVar x) in seq x z
[]

(Letrec)
H
s
S

{x = ((λk.k) y), y = True, z = (newMVar x)}
seq x z
[]

(Unwind2)
H
s
S

{x = ((λk.k) y), y = True, z = (newMVar x)}
x
[#seq(z)]

(Lookup)
H
s
S

{y = True, z = (newMVar x)}
((λk.k) y)
[#upd(x),#seq(z)]

(Unwind1)
H
s
S

{y = True, z = (newMVar x)}
(λk.k)
[#app(y),#upd(x),#seq(z)]

(Subst)
H
s
S

{y = True, z = (newMVar x)}
y
[#upd(x),#seq(z)]

(Lookup)
H
s
S

{z = (newMVar x)}
True
[#upd(y),#upd(x),#seq(z)]

(Update)
H
s
S

{y = True, z = (newMVar x)}
True
[#upd(x),#seq(z)]

(Update)
H
s
S

{x = True, y = True, z = (newMVar x)}
True
[#seq(z)]

(Seq), (Lookup), (Update)
H
s
S

{x = True, y = True}
(newMVar x)
[]
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The calculation stops since monadic actions are treated like constructor applications
(see Definition 2.33).

The following measure is used to measure the runtime on the M1:

Reduction Length Measures mln and mlnallDefinition 2.36 (Reduction Length Measures mln and mlnall)
Let s be a closed machine expression with ⟨∅ ∣ s ∣ []⟩ nÐ→ Q where Q is a final state.
1. mln(s) is the sum of all (Subst)-, (Branch)- and (Seq)-steps in the sequence.
2. mlnall(s) is the number of all reductions steps in the sequence, hence n.
If no such sequence exists, then we have mln(s) = mlnall(s) =∞. mln(⋅) is also used
for reachable states Q.
As also showed in (SS15), the runtime measures rln and mln are compatible:

Compatibility of Runtime Measures rln and mlnProposition 2.5 (Compatibility of Runtime Measures rln and mln)
For any closed LRP-expression s, we have rln(s) = mln(ψ(s))
In summary the M1 can be used as abstract machine for LRP. (Update) does not allow
to write a variable-to-variable-binding to the heap (the only difference to the M1 of
(Sab12)) since LRP does not copy variables. In contrast to this, CHF∗ allows and needs
the copying of variables. But we can use the M1 for the deterministic part of CHF∗
too, if we allow to write variable-to-variable-bindings to the heap in the (Update)-rule
(compare Definition 2.34), if such a binding does not map to itself.

2.4.3 Abstract Machine IOM1

The abstract machine M1 of the last section treats monadic actions as constructor app-
lications and as demonstrated in Example 2.5 monadic actions are completely ignored
if we use the M1 for CHF∗. In this section the abstract machine IOM1 is introduced,
that is based on the M1 and additionally handles monadic actions. More concrete the
handling of >>= , return, takeMVar, newMVar and putMVar needs to be implemented.
The IOM1 adds the monadic layer but is still not able to handle concurrent threads.

First we give a definition of IOM1-states, that is an extension of Definition 2.31, where
the same notions are used (e.g. for the heap and stacks).

IOM1 StateDefinition 2.37 (IOM1 State)
A state of IOM1 is a tuple ⟨H ∣M ∣ s ∣ S ∣ I⟩ consisting of the following components:
– The heap H is a mapping of variables to machine expressions.
– The set of MVarsM is a mapping from names to machine expressions. This map-

ping can be seen as an additional heap, hence the same notions as for heaps can be
used for MVars, but we often use the MVar-notion as before, e.g. {xm−, ym z}.

– s is a machine expression, that is often called control expression.
– The stack S contains entries of the form #app(x), #seq(x), #case(alts) and

#upd(x) as introduced in Definition 2.31.
– The IO-stack I contains entries of the form:

• #take to remember a takeMVar-operation.
• #put(x) to remember the content of a putMVar-operation.
• #bind(x) to remember the second argument of a >>= -expression.
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The IO-stack is introduced to keep a clear separation between pure and monadic com-
putations.

At the beginning of an execution heap, MVars, stack and IO-stack are empty:

IOM1 Initial StateDefinition 2.38 (IOM1 Initial State)
Given a machine expression s, the corresponding IOM1 initial state is:

⟨∅ ∣ ∅ ∣ s ∣ [] ∣ []⟩

A single transition from one state to the next one is defined by the following transition-
rules, where at most one of these rules is applicable for the same state.

IOM1 Transition Relation IOM1ÐÐ→Definition 2.39 (IOM1 Transition Relation IOM1ÐÐ→)
(Unwind1) ⟨H ∣M ∣ (s x) ∣ S ∣ I⟩→ ⟨H ∣M ∣ s ∣ #app(x) ∶ S ∣ I⟩
(Unwind2) ⟨H ∣M ∣ (seq s x) ∣ S ∣ I⟩→ ⟨H ∣M ∣ s ∣ #seq(x) ∶ S ∣ I⟩
(Unwind3) ⟨H ∣M ∣ caseK s of alts ∣ S ∣ I⟩→ ⟨H ∣M ∣ s ∣ #case(alts) ∶ S ∣ I⟩
(Unwind4) ⟨H ∣M ∣ takeMVar x ∣ [] ∣ I⟩→ ⟨H ∣M ∣ x ∣ [] ∣ #take ∶ I⟩
(Unwind5) ⟨H ∣M ∣ putMVar x y ∣ [] ∣ I⟩→ ⟨H ∣M ∣ x ∣ [] ∣ #put(y) ∶ I⟩
(Unwind6) ⟨H ∣M ∣ x >>= y ∣ [] ∣ I⟩→ ⟨H ∣M ∣ x ∣ [] ∣ #bind(y) ∶ I⟩
(Lookup) ⟨H, x = s ∣M ∣ x ∣ S ∣ I⟩→ ⟨H ∣M ∣ s ∣ #upd(x) ∶ S ∣ I⟩
(Letrec) ⟨H ∣M ∣ letrec Env in s ∣ S ∣ I⟩→ ⟨H,Env ∣M ∣ s ∣ S ∣ I⟩
(Subst) ⟨H ∣M ∣ λx.s ∣ #app(y) ∶ S ∣ I⟩→ ⟨H ∣M ∣ s[y/x] ∣ S ∣ I⟩
(Branch) ⟨H ∣M ∣ cK,i

#»x ∣ #case(. . . ((cK,i
#»y )→ t) . . . ) ∶ S ∣ I⟩

→ ⟨H ∣M ∣ t[#»x /#»y ] ∣ S ∣ I⟩
(Seq) ⟨H ∣M ∣ v ∣ #seq(x) ∶ S ∣ I⟩→ ⟨H ∣M ∣ x ∣ S ∣ I⟩

if v is a M1 value
(Update) ⟨H ∣M ∣ v ∣ #upd(x) ∶ S ∣ I⟩→ ⟨H, x = v ∣M ∣ v ∣ S ∣ I⟩

if v is a M1 value or a variable with v /= x
(NewMVar) ⟨H ∣M ∣ newMVar x ∣ [] ∣ I⟩→ ⟨H ∣M, ymx ∣ return y ∣ [] ∣ I⟩

where y is a fresh variable
(TakeMVar) ⟨H ∣M, xm y ∣ x ∣ [] ∣ #take ∶ I⟩→ ⟨H ∣M, xm− ∣ return y ∣ [] ∣ I⟩
(PutMVar) ⟨H ∣M, xm− ∣ x ∣ [] ∣ #put(y) ∶ I⟩

→ ⟨H ∣M, xm y ∣ return () ∣ [] ∣ I⟩
(LUnit) ⟨H ∣M ∣ return x ∣ [] ∣ #bind(y) ∶ I⟩→ ⟨H ∣M ∣ (y x) ∣ [] ∣ I⟩
(Blackhole) ⟨H ∣M ∣ x ∣ S ∣ I⟩→ ⟨H ∣M ∣ x ∣ S ∣ I⟩

if no binding for x exists in H orM

All rules from theM1 (see Definition 2.34) are adapted to the definition of IOM1-states.
In contrast to the M1, (Update) now allows variables to be written back to the heap
since CHF∗ allows variables to be copied while LRP does not.

Compared to theM1 the three rules (Unwind4), (Unwind5) and (Unwind6) are straight-
forward extensions for the control flow, required by the monadic layer.

(NewMVar) creates a new MVar with given content and returns a reference to this
MVar in form of the variable, that is the name of the MVar. (TakeMVar) empties a
filled MVar and returns the content of the MVar, while (PutMVar) fills an empty MVar
with the given content. Note that there are no rules to apply (TakeMVar) on an empty
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MVar or (PutMVar) on a filled MVar, hence the abstract machine gets stuck and in
this way needs to wait until the preconditions are met to perform the corresponding
operation. The evaluation of the >>= -operator starts with the evaluation of the first
argument using (Unwind6) and then is completed using (LUnit).

We also assume that α-renaming is performed implicitly to preserve the distinct va-
riable convention.

A terminating program, starting with an initial state and a sequence of transition rules,
yields a final state:

IOM1 Final StateDefinition 2.40 (IOM1 Final State)
An IOM1-state is called final state if it is of the form ⟨H ∣M ∣ return x ∣ [] ∣ []⟩ or
⟨H ∣M ∣ v ∣ [] ∣ []⟩, where v is an abstraction, constructor application or the name of
an MVar.
We now give an example for an evaluation sequence on the IOM1:

Evaluation Sequence on IOM1Example 2.6 (Evaluation Sequence on IOM1)
H
M
s
S
I

∅
∅
letrec x = True, y = (newMVar x), z = (λk.takeMVar k) in y >>= z
[]
[]

(Letrec)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
∅
y >>= z
[]
[]

(Unwind6)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
∅
y
[]
[#bind(z)]

(Lookup)
H
M
s
S
I

{x = True, z = (λk.takeMVar k)}
∅
(newMVar x)
[#upd(y)]
[#bind(z)]

(Update)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
∅
(newMVar x)
[]
[#bind(z)]

(NewMVar)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
{lmx}
(return l)
[]
[#bind(z)]
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(LUnit)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
{lmx}
(z l)
[]
[]

(Unwind1)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
{lmx}
z
[#app(l)]
[]

(Lookup)
H
M
s
S
I

{x = True, y = (newMVar x)}
{lmx}
(λk.takeMVar k)
[#upd(z),#app(l)]
[]

(Update)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
{lmx}
(λk.takeMVar k)
[#app(l)]
[]

(Subst)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
{lmx}
(takeMVar l)
[]
[]

(TakeMVar)
H
M
s
S
I

{x = True, y = (newMVar x), z = (λk.takeMVar k)}
{lm−}
(return x)
[]
[]

In this section the machine M1 was included implicitly, since in this way it is easier
to take care of the difference of copying variables between LRP and CHF∗. Thus the
M1 should be used for LRP only and the IOM1 should be used for CHF∗ only. In sum-
mary the IOM1 can be used as abstract machine for CHF∗-programs that do not use
concurrent threads.

2.4.4 Abstract Machine CIOM1

In this section the abstract machine CIOM1 is introduced, that uses the IOM1 to eva-
luate a single thread, but is also able to handle the creation and termination of threads.
Thus the CIOM1 is able to execute CHF∗-programs without restrictions.

First of all we define the notion of a thread:
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CIOM1 ThreadDefinition 2.41 (CIOM1Thread)
A thread (also called future) of the CIOM1 is a tuple (x, s,S,I) consisting of the
following components:
– x is a variable that is used as name of the thread.
– s is the current control expression.
– S is a stack.
– I is an IO-stack.

Each thread has a unique name, control expression, local stack and IO-stack. But the
heap and MVars are shared between the threads. This yields the following definition
of CIOM1-states:

CIOM1 StateDefinition 2.42 (CIOM1 State)
A state of CIOM1 is a triple ⟨H ∣M ∣ T ⟩ consisting of the following components:
– The heap H is a mapping of variables to machine expressions that is shared by

all threads.
– The set of MVarsM is a mapping from names to machine expressions that is

shared by all threads.
– The set T contains all threads, where all threads have pairwise distinct names

and exactly one thread has the name main (often called main-thread).
The calculation starts with the initial expression that is evaluated by the main-thread
– further threads may be started later.

CIOM1 Initial StateDefinition 2.43 (CIOM1 Initial State)
Given a machine expression s, the corresponding CIOM1 initial state is:

⟨∅ ∣ ∅ ∣ { (main, s, [], []) }⟩
A single transition from one state to the next one is defined by the following transition-
rules:

CIOM1 Transition Relation CIOM1ÐÐÐ→Definition 2.44 (CIOM1 Transition Relation CIOM1ÐÐÐ→)
(UnIO) ⟨H ∣M ∣ T , (x,return y, [], [])⟩→ ⟨H, x = y ∣M ∣ T ⟩

if thread x is not the main-thread.
(Fork) ⟨H ∣M ∣ T , (x,future y, [],I)⟩

→ ⟨H ∣M ∣ T , (x,return z, [],I), (z, y, [], [])⟩
where z is a fresh variable.

(IOM1) ⟨H ∣M ∣ T , (x, s,S,I)⟩→ ⟨H′ ∣M′ ∣ T , (x, s′,S ′,I ′)⟩
if ⟨H ∣M ∣ s ∣ S ∣ I⟩ IOM1ÐÐ→ ⟨H′ ∣M′ ∣ s′ ∣ S ′ ∣ I ′⟩ on machine IOM1.
This rule is only used if (UnIO) or (Fork) is not applicable for thread x.

In each transition-step one of all threads is chosen nondeterministically with the re-
quirement that the thread is able to proceed. (UnIO) stores the result of a calculation
of a thread on the heap and hereby makes the result accessible for the other threads.
Threads needing such a result are forced to wait until it becomes available on the heap.
(Fork) spawns a new thread. If none of these cases apply, then the machine IOM1 is
used to continue the evaluation of the thread.

If the main-thread terminates, then all other threads also terminate:
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CIOM1 Final StateDefinition 2.45 (CIOM1 Final State)
A CIOM1-state is called final state if the thread with name main is of the form
(main,return x, [], []) or (main, v, [], []), where v is an abstraction, a constructor
application or the name of an MVar.
The used notion for convergence and divergence for the CIOM1 is analogous to the
notion of CHF∗ in Definition 2.23: For may-convergence we write s↓CIOM1 , for must-
divergence s⇑CIOM1 , for should-convergence s⇓CIOM1 and for may-divergence s↑CIOM1 .

As also showed in (Sab12) the machine CIOM1 preserves the semantics:

Semantical Compatibility of CHF∗ and CIOM1Proposition 2.6 (Semantical Compatibility of CHF∗ and CIOM1)
For every expression s ∶∶ IO τ the equivalences s↓ ⇐⇒ s↓CIOM1 and s⇓ ⇐⇒ s⇓CIOM1
hold.
In summary the abstract machine CIOM1 can be used for CHF∗. Since this machine is
based on the machine IOM1 it should not be used for the evaluation of LRP-programs.

2.5 Proof Techniques

For many kinds of proofs we use forking and commuting diagrams to analyze all cases.
The complete technique is defined in detail in (SSS08b). This sections aims to give an
intuitive presentation of the technique.

If we add an additional reduction rule T to a calculus like LRP or CHF∗, then for
example we can try to show that the new rule is correct or improves the runtime
or space behavior. This requires to consider normal order reduction sequences of the
corresponding calculus, in the following written as noÐ→, and to check all cases where
T can be applied. In contrast to all transformations applied during the normal order
reduction sequence T is not part of noÐ→. Intuitively we look for all overlaps between
the noÐ→ and T , thus we look for forkings and commutings: A forking is the pattern
no,a←ÐÐ ⋅ TÐ→, where a is an arbitrary normal order reduction rule and a commuting is the
pattern TÐ→ ⋅ no,aÐÐ→. Forkings and commutings can be represented by forking diagrams
as on the left and commuting diagrams as on the right:

⋅ T //

no,a

��

⋅
no,a

���
�
�

⋅
T

//____ ⋅

⋅ T //

no,a

���
�
� ⋅

no,a

��⋅
T

//____ ⋅

The solid arrows of a forking diagram are given transformations and the dashed arrows
are existentially quantified transformations that close the forking. The same applies to
commuting diagrams. ↝ can be used to shorten diagrams, e.g. no,a←ÐÐ ⋅ TÐ→ ↝ TÐ→ ⋅ no,aÐÐ→
for the left one.

To show a property of a program transformation, we usually use induction on the
normal order reduction sequence and consider all diagrams in the induction step. For
this approach different measures are used and depend on the calculus and considered
transformations.
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2.6 Function Definitions

In this section we give definitions of frequently used functions.

The identity function id is an abstraction and comp composes two functions:

id = λx.x
comp = λf, g.(λx.f (g x))

The classical Boolean-functions operators for negation, and, or and exclusive-or:

neg = λx.case x of {(True→ False) (False→ True)}
and = λx, y.case x of {(True→ y) (False→ False)}
or = λx, y.case x of {(True→ True) (False→ y)}
xor = λx, y.case x of {(True→ case y of {(True→ False) (False→ True)})

(False→ y)}

The fold-functions from Haskell are defined as follows, where foldl is a left-fold,
foldl' a more strict variant of foldl and foldr a right-fold:

foldl = λf, z, xs.case xs of {([]→ z) ((y ∶ ys)→ foldl f (f z y) ys)}
foldl' = λf, z, xs.case xs of {([]→ z) ((y ∶ ys)→ letrec w = (f z y) in

seq w (foldl' f w ys))}
foldr = λf, z, xs.case xs of {([]→ z) ((y ∶ ys)→ f y (foldr f z ys))}

Functions for lists, i.e. the usual null-, head-, tail-, map- and filter-functions, append
++ to concatenate two lists, concat for concatenation of lists, replicate to generate
a list of given length k as Peano number containing k-times the second argument,
take to return a specified part from the front of the list, a naive implementation of
reverse to reverse the order of the elements of a list, repeat for an infinite list of the
specified argument, last to get the last element of a list, all that returns True iff all
elements fulfill the specified predicate and allTrue as direct implementation of all
(==True):

null = λxxs.case xxs of {([]→ True) ((x ∶ xs)→ False)}
head = λxxs.case xxs of {((x ∶ xs)→ x)}
tail = λxxs.case xxs of {([]→ �) ((x ∶ xs)→ xs)}
map = λf, xxs.case xxs of {([]→ []) ((x ∶ xs)→ ((f x) ∶ (map f xs)))}
filter = λp, xxs.case xxs of {([]→ [])

((x ∶ xs)→ case (p x) of {
(True→ (x ∶ (filter p xs)))
(False→ filter p xs)})}

++ = λxxs, yys.case xxs of {([]→ yys) ((x ∶ xs)→ (x ∶ (++ xs yys)))}
concat = λxs.(foldr (λx, y.foldr (λz, zs.(z ∶ zs)) y x) [] xs)
replicate = λn,x.case n of {(Zero→ [])

((Succ m)→ (x ∶ (replicate m x)))}
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take = λc, xxs.case c of {
(Zero→ [])
((Succ x)→ case xxs of {

([]→ [])
((y ∶ ys)→ (y ∶ (take x ys)))})}

reverse = λxs.case xs of {([]→ [])
((y ∶ ys)→ reverse ys ++ [y])}

repeat = λx.(x ∶ (repeat x))
last = λxxs.case xxs of {([]→ �)

((x ∶ xs)→ case xs of {
([]→ x)
((y ∶ ys)→ (last xs))})}

all = λp, xxs.case xxs of {([]→ True)
((x ∶ xs)→ case (p x) of {

(True→ all p xs)
(False→ False)})}

allTrue = λxxs.case xxs of {([]→ True)
((x ∶ xs)→ case x of {

(True→ allTrue xs)
(False→ False)})}

Operations on Peano numbers, i.e. addition, lower and greater:

padd = λn,m.case m of {(Zero→ n)
((Succ x)→ (Succ (padd n x)))}

plower = λn,m.case n of {
(Zero→ case m of {(Zero→ False) ((Succ x)→ True)})
((Succ n′)→ case m of {

(Zero→ False)
((Succ m′)→ plower n′ m′)})}

pgreater = λn,m.case n of {
(Zero→ False)
((Succ n′)→ case m of {

(Zero→ True)
((Succ m′)→ pgreater n′ m′)})}

fBySnd takes a list of pairs and returns the pair with either the minimal (if plower is
used as function) or maximal (if pgreater is used) second component.

fBySnd = λf, xxs.case (null xxs) of {
(True→ �)
(False→ fBySnd' (tail xxs) f (head xxs))}

fBySnd' = λxxs, f, p.case xxs of {
([]→ p)
((x ∶ xs)→

case x of {
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((n, pt)→
case p of {
((cN, cPT )→

case (f pt cPT ) of {
(True→ fBySnd' xs f (n, pt))
(False→ fBySnd' xs f (cN, cPT ))})})

})}



3
Space Optimizations in LRP

In earlier work (e.g. (SSS17, SSS15a, SS15, SSS16b, SSS15b)) time improvements are
studied. A time improvement is a transformation that improves the runtime in any
case, hence it can be applied to any applicable subexpression if the semantics is not
changed. For a better intuition we give a simplified definition of time improvements
based on (SSS16b): Let s and t be LRP-expressions with the same type, then s time-
improves t (s ⪯ t) if s ∼c t and for all contexts C[⋅] s.t. C[s] and C[t] are closed,
rln(s) ≤ rln(t) holds.

The goal of this chapter is to analyze the space behavior of lazy-evaluating functional
programs using a similar approach. As calculus LRP (see Section 2.1) is used.

Compared to the notion of the time improvements the behavior of evaluation w.r.t.
space usage is often quite opaque and might lead to a much higher space usage as
needed. (GS99, GS01, BR00) observed that semantically correct modifications of the
sequence of evaluation (for example due to strictness information) may have a dra-
matic effect on space usage, where an example is (head xs) eqBool (last xs) vs.
(last xs) eqBool (head xs) where xs is bound to an expression that generates a
long list of Booleans, head returns the first element of a list, last the last element and
eqBool tests whether two Boolean-values are equal.

In the area of call-by-need evaluation there are several analyses of space consumption
by Gustavsson and Sands (GS99, GS01, Gus01). Their notion of space improvement
is comparable to the notion we introduce in this chapter, but they use an untyped
language and we will see further differences later.

This chapter is primarily based on (SSD18) and (SSD17).

3.1 LRP with Garbage Collection

In this section the calculus LRPgc is defined, that is LRP with an eager garbage collec-
tion: After each normal order reduction step garbage collection is applied. If garbage
is considered at space measurement, then this might have a great impact on the space
measurement and the analyses are not stable w.r.t. garbage collection. The goal is to
build a foundation for the analysis of space and not for the analysis of garbage.

As garbage collection only the top letrec is considered, that intuitively corresponds
to the heap of the abstract machine M1 (compare Section 2.4.2).

39
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Garbage Collection Transformation Rules for LRPgcDefinition 3.1 (Garbage Collection Transformation Rules for LRPgc)
(gc1) letrec {xi = si}ni=1,E in t→ letrec E in t if ∀i ∶ xi /∈ FV(t,E) and n > 0
(gc2) letrec {x1 = s1, . . . , xn = sn} in t→ t if ∀i ∶ xi /∈ FV(t)
(gc) is the union of (gc1) and (gc2).

LRPgc is the same as LRP but applies (gc) after each normal order reduction step:

LRPgcDefinition 3.2 (LRPgc)
Let the calculus LRPgc be LRP with a slightly changed normal order reduction:
A normal-order-gc reduction step s

LRPgc
ÐÐ→ t is defined by two cases:

1. If a (gc)-transformation is applicable to s in the empty context, i.e. s gcÐ→ t, then
s

LRPgc
ÐÐ→ t, where the maximum of bindings is removed.

2. If (1) is not applicable and s LRPÐ→ t, then s LRPgc
ÐÐ→ t.

A sequence of LRPgc-reduction steps is called a normal-order-gc reduction sequence or
LRPgc-reduction sequence. A WHNF without the possibility of a LRPgc,gcÐÐÐÐÐ→-reduction
step is called LRPgc-WHNF. If the LRPgc-reduction sequence of an expression s halts
with an LRPgc-WHNF, then s converges w.r.t. LRPgc, denoted as s↓LRPgc, or s↓ if the
calculus is clear from the context.
The calculus LRgc is defined as LRPgc without types.
The definition of context classes like R, T and S are directly transferred to LRPgc.
We now give a formal definition of the syntactical size of LRP-expressions:

LRP Syntactical SizeDefinition 3.3 (LRP Syntactical Size)
The syntactical size synsize(s) of an LRP-expression s is defined as:

synsize(x) = 1
synsize(s t) = 1 + synsize(s) + synsize(t)
synsize(λx.s) = 2 + synsize(s)
synsize(case s of {alt1 . . .altn}) = 1 + synsize(s) +∑n

i=1 synsize(alti)
synsize((c x1 . . . xn) → s) = 1 + n + synsize(s)
synsize(c s1 . . . sn) = 1 +∑synsize(si)
synsize(seq s t) = 1 + synsize(s) + synsize(t)
synsize(letrec {xi = si}ni=1 in s) = 1 + n + synsize(s) +∑synsize(si)

The following definition was originally given for LR in (SSS08b) and can be directly
transferred to LRP:

Measure µlllDefinition 3.4 (Measure µlll)
The measure µlll(s) for an LRP-expression s is defined as follows:
µlll(s) is a pair (µlll,1(s), µlll,2(s)), ordered lexicographically. The measure µlll,1(s)
is the number of letrec-subexpressions in s, and µlll,2(s) is the sum of lrdepth(C)
for all letrec-subexpressions r with s = C[r], where lrdepth is defined as follows,
where C(1) is a context of hole depth 1:

lrdepth([⋅]) = 0

lrdepth(C(1)[C′[]]) = {
1 + lrdepth(C′[]) if C(1) is not a letrec
lrdepth(C′[]) if C(1) is a letrec
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The measure is used for inductive proofs on the steps of a reduction sequence as well
as the following lemma:

Inequations for µlllLemma 3.1 (Inequations for µlll)

1. If s lllÐ→ t, then µlll(s) > µlll(t).
2. If s T,gcÐÐ→ t, then µlll(s) ≥ µlll(t).
3. If s T,seqÐÐ→ t, then µlll(s) ≥ µlll(t).
Proof
(1) is proved in (SSS08b) and it is obvious for (2) and (3).

Nowwe show that the addition of garbage collection does neither change convergence
nor correctness. We start with the forking diagrams between (T, gc)-reductions and
LRPgc-reductions.

Complete Set of Forking Diagrams for (T, gc)-reductionsLemma 3.2 (Complete Set of Forking Diagrams for (T, gc)-reductions)
The forking diagrams between (T, gc)- and LRPgc-reductions are the following:

s
LRPgc,a

��

T,gc // t
LRPgc,a
���
�

s′
T,gc,∗

//__ t′

a ∈ {gc, lll}

s
LRPgc,gc

��

T,gc // t

s′
T,gc,∗

@@�
�

�

s
LRPgc,gc �� T,gc

��

5
�
	

s′

s

LRPgc,a

��

T,gc // t
LRPgc,gc���
�

t1
LRPgc,a���
�

s′
T,gc,∗

//__ t′

a /∈ {gc, lll}

Proof
The diagrams for a /= gc can be derived from the appendix in (SSS08b).

For s LRPgc,gcÐÐÐÐÐ→ s′, the bottom reduction may consist of 0, 1 or 2 (gc)-reductions.
A typical example for the latter case is:

letrec x1 = True, x2 = True in
(letrec y1 = x2 in False)

LRPgc,gc
��

T,gc // letrec x1 = True, x2 = True in
False

LRPgc,gc

���
�
�

letrec x2 = True in
(letrec y1 = x2 in False) T,gc,∗

//____________ False

Equality of Number of LCSC-steps after (T, gc)Lemma 3.3 (Equality of Number of LCSC-steps after (T, gc))
Let s T,gcÐÐ→ t with s↓LRP . If s has an LRP-reduction with n LCSC-reductions, then this
also holds for t.
Proof
Let s LRPgc,∗ÐÐÐÐ→ s′ be an LRPgc-reduction such that s′ is a WHNF and let s T,gcÐÐ→ t. We
show that claim by induction on (i) the number of LCSC-reductions of s to aWHNF,



42 3.1. LRP WITH GARBAGE COLLECTION

(ii) on the µlll-measure and (iii) on the syntactical size. The diagrams referenced in
the following are the diagrams of Lemma 3.2.

• If s LRPgc,aÐÐÐÐ→ s′ where a is a LCSC-reduction, then we can apply the induction
hypothesis to s′, and the reduction sequence to t′ using diagram 1 and 4. We
then obtain that the number of LCSC-reductions of s′ is the same as for s.

• If s LRPgc,lllÐÐÐÐÐ→ s′, then we can apply the induction hypothesis to s′ and thus
also to t′ using diagrams 1 and 2. We then obtain that the number of LCSC-
reductions is the same for s and t.

• If s LRPgc,gcÐÐÐÐÐ→ s′, then we can apply the induction hypothesis to s′. For dia-
gram 1, the reasoning is as above. For diagram 2, we can apply the induction
hypothesis to s′ and t and obtain the claim. For diagram 3, the claim is obvious.

Finally we can show the convergence-equivalence between LRP and LRPgc:

Convergence-Equivalence between LRP and LRPgcProposition 3.1 (Convergence-Equivalence between LRP and LRPgc)
The calculus LRP is convergence-equivalent to LRPgc. I.e. for all expressions s:
s↓LRP ⇐⇒ s↓LRPgc.
Also contextual equivalence and preorder for LRP coincides with the corresponding
notions in LRPgc.
Proof
Let s↓LRPgc. Then it is sufficient to argue as for LR by induction on the number of
normal-order reductions:

If s is a WHNF, then the claim is trivial. If s LRPgc,aÐÐÐÐ→ s′, then there are two cases:

1. s LRPgc,aÐÐÐÐ→ s′ with a /= gc, then using the induction hypothesis we obtain s↓LRP .
2. s gcÐ→ s′. By induction we obtain s′↓LRP and since (gc) is correct in LR, we also

obtain s↓LRP .

For the reversed implication, let s be an expression with s↓LRP . We have to con-
struct a LRPgc-reduction to a WHNF. The induction is on the number of LCSC-
reductions of s, then on the measure µlll and then on the size of s seen as syntax
tree. The decrease of the measure µlll for (lll)- and for (gc)-reductions is shown in
Lemma 3.1.

1. s is a WHNF. Then there is a sequence s LRPgc,gc,∗ÐÐÐÐÐÐ→ s′, where s′ is a LRPgc-
WHNF.

2. s LRPÐÐ→ s′ and the reduction is also a LRPgc-reduction.Then obviously s′↓LRP . If
the reduction is a LCSC-reduction, then we can apply the induction hypothesis
to s′. If the reduction is a (lll)-reduction, then the expression s′ is smaller w.r.t.
µlll and we can apply the induction hypothesis to s′.

3. The third case is s LRPgc,gcÐÐÐÐÐ→ s′. Then either µlll(s) > µlll(s′) or µlll(s) = µlll(s′).
Moreover the syntactical size is strictly decreased and s′↓LRP by Lemma 3.1 and
3.3. Then we can apply the induction hypothesis and obtain a LRPgc-reduction
of s to a WHNF.
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3.2 Definition of Space Improvement and Equivalence

To be able to analyze the space behavior of programs, the space measurement needs
to be defined. First of all we give a definition of the size of expressions, that is a little
bit weaker than the syntactical size (compare Definition 3.3):

LRP Size of Expressions sizeDefinition 3.5 (LRP Size of Expressions size)
The size size(s) of an LRP-expression s is defined as:

size(x) = 0
size(s t) = 1 + size(s) + size(t)
size(λx.s) = 1 + size(s)
size(case s of {alt1 . . .altn}) = 1 + size(s) +∑n

i=1 size(alti)
size((c x1 . . . xn) → s) = 1 + size(s)
size(c s1 . . . sn) = 1 +∑size(si)
size(seq s t) = 1 + size(s) + size(t)
size(letrec {xi = si}ni=1 in s) = size(s) +∑size(si)

Type annotations and type expressions are ignored by the size-measure, since it cor-
responds to the number of nodes of the whole program seen as sharing graph.

Variables are not counted by themeasure, since variable-to-variable bindings like x = y
are indirections that are not created by abstract machines – the abstract machine M1
directly substitutes and never creates such an indirection (see Definition 2.34). Also an
abstract machine uses a heap that can be seen as a global letrec-expression, hence all
let-reduction-rules do not change the size and therefore the letrec-expression itself
is not counted by size.

The sizes size and synsize only differ by a constant factor:

Deviation between synsize and sizeProposition 3.2 (Deviation between synsize and size)
Let s be an LRP-expression. If s does not permit a garbage collection of any binding
and there are no x = y-bindings, then synsize(s) ≤ (maxarity + 1) ⋅ size(s) and
size(s) ≤ synsize(s), where maxarity is the maximum of 2 and the maximal arity
of constructor symbols in the language.
Proof
It is sufficient to check every subexpression using an inductive argument.

Based on the measure size for expressions, a space measure for evaluation sequences
is defined as follows:

LRP Space Measure spmaxDefinition 3.6 (LRP Space Measure spmax)
The space measure spmax(s) for the reduction sequence of a closed expression s is
the maximum of those size(si), where si

LRPgc
ÐÐ→ si+1 is not a (gc), and where the

reduction sequence is s = s0
LRPgc
ÐÐ→ s1

LRPgc
ÐÐ→ . . .

LRPgc
ÐÐ→ sn, and sn is a WHNF. If s⇑, then

spmax(s) is defined as∞.
For a (partial) reduction sequence Red = s1 → . . .→ sn we define:

spmax(Red) = max{size(si) ∣ si → si+1 is not a (gc) and also sn is not LRPgc-
reducible with a (gc)-reduction}
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Counting space only if there is no (LRPgc,gc)-reduction step possible is consistent
with the definition in (GS01). It also has the effect of avoiding certain small and short
peaks in the space usage. The advantage is a better correspondence with the abstract
machine and it leads to comprehensive results.

Now we can give a definition of space improvements and equivalences.

LRP Space Improvement and Space EquivalenceDefinition 3.7 (LRP Space Improvement and Space Equivalence)
Let s and t be two LRP-expressions with s ∼c t and s↓.
– s is a space improvement of t, s ≤spmax t, if for all contexts C:

If C[s], C[t] are closed then spmax(C[s]) ≤ spmax(C[t]).
– s is space-equivalent to t, s ∼spmax t, if for all contexts C:

If C[s], C[t] are closed then spmax(C[s]) = spmax(C[t]).
A transformation transÐÐ→ is called a space improvement (space equivalence) if t transÐÐ→ s
implies that s is a space improvement of (space-equivalent to, respectively) t. Often
we also say maximal space improvement and maximal space equivalence to express
the used measure spmax. Also we often say s space-improves t.
We write s ≤X,spmax t (s ∼X,spmax t) for a context class X , to denote that the definition
is as above but restricted to context class X . E.g. for s ≤R,spmax t, if R[s] and R[t] are
closed, we require spmax(R[s]) ≤ spmax(R[t]) for all reduction contexts R.
Note that t ≥spmax s is sometimes used instead of s ≤spmax t.

≤spmax is a precongruence, i.e. it is transitive and s ≤spmax t implies C[s] ≤spmax C[t].
∼spmax is a congruence.

For each subexpression where the pattern of a space-improving transformation app-
lies, then the transformation can be used without increasing the space consumption.
Thus such a transformation can be applied to any proper subprogram without the risk
of increasing the space consumption. The same holds for space equivalences where
the space consumption is also not allowed to be decreased.

The following lemma shows a correspondence between space improvement and size
of the associated expressions.

Space Improvement Property Implies Less or Equal sizeLemma 3.4 (Space Improvement Property Implies Less or Equal size)
If s ≤spmax t for two LRP-expressions s and t, then size(s) ≤ size(t).

Proof
The context λx.[⋅] for a fresh variable x enforces size(s) ≤ size(t).

We also consider useful program-transformations that are runtime optimizations, but
may increase the space usage during runtime and distinguish acceptable and bad be-
havior w.r.t. space usage. Transformations that applied in reduction contexts lead to a
space increase of at most a fixed (additive) constant are considered as controllable and
safe, whereas the case that after the transformation the space increase may exceed any
constant (depending on the usage of the expressions), is considered uncontrollable and
we say it is a space leak:
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Space-LeakDefinition 3.8 (Space-Leak)

Let T be a transformation and let s TÐ→ t be an instance with LRP-expressions s and t.
1. We say that s TÐ→ t is space-safe up to the constant c, if for all reduction contexts

R: spmax(R[t]) ≤ c + spmax(R[s]).
2. If for some c, (1) holds for all instances s TÐ→ t, then we say T is space-safe up to

the constant c.
3. The transformation s TÐ→ t is a space leak, if and only if for every real number b,

there is a reduction context R, such that spmax(R[t]) ≥ b + spmax(R[s]).
4. If there is one instance s TÐ→ t that is a space leak, then we also say T is a space

leak.
This definition is a first criterion for a classification of transformations. Definition 3.8
for a classification of transformations makes sense insofar as space improvements are
not space leaks and space leaks cannot be space improvements.

3.3 Context Lemmas for Space Improvement and Equivalence

The space improvement definition considers all contexts. Therefore we use a so-called
context lemma that reduces the amount of cases that need to be considered in the case
analyses of interferences between normal order reductions and transformations.

Between LRPgc and LRgc we have the same relation as between LRP and LR, hence
we only use LRgc in the following and can transfer the results to LRPgc.

First we analyze the impact of a garbage collection in the empty context on the space
consumption:

Impact of (gc) on spmax in Empty ContextLemma 3.5 (Impact of (gc) on spmax in Empty Context)

Let s be an expression with s
[⋅],gc
ÐÐ→ s′, i.e. it is a gc-reduction step in the empty

context. Then spmax(s) = spmax(s′).
Proof
There are two cases:

1. If s gcÐ→ s′ is s LRgc,gcÐÐÐÐ→ s′, then the claim holds by applying spmax.

2. In the other case the (gc)-transformation is a (gc1)-reduction and the following
diagram holds:

s
LRgc,gc1

���
�

gc // s′

LRgc,gcssg g g g g g g g g

s1

Hence spmax(s) = spmax(s1) = spmax(s′).

The context lemma for space improvements is as follows, where we use Lemma 3.5 in
the proof:
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Context Lemma for Maximal Space ImprovementsLemma 3.6 (Context Lemma for Maximal Space Improvements)
If size(s) ≤ size(t), FV(s) ⊆ FV(t) and s ≤R,spmax t, then s ≤spmax t.

Proof
Let M be a multi-context. We prove the more general claim that if M[s1, . . . , sn]
andM[t1, . . . , tn] are closed andM[s1, . . . , sn]↓ and for all i: size(si) ≤ size(ti),
FV(si) ⊆ FV(ti), si ≤R,spmax ti, then spmax(M[s1, . . . , sn]) ≤ spmax(M[t1, . . . , tn]).

By the assumption that si ∼c ti, we have M[s1, . . . , sn] ∼c M[t1, . . . , tn] and thus
M[s1, . . . , sn]↓ ⇐⇒ M[t1, . . . , tn]↓. The induction proof is first on the number of
LRPgc-reduction steps ofM[t1, . . . , tn] and as a second parameter on the number
of holes ofM . We distinguish the following cases:

1. The LRPgc-reduction step ofM[t1, . . . , tn] is a (gc).

If M is the empty context, then we can apply the assumption s1 ≤R,spmax t1,
which shows spmax(s1) ≤ spmax(t1).

Now we can assume thatM is not empty, hence it is a context starting with a
letrec and inM[t1, . . . , tn] the reduction (gc) removes a subset of the bindings
in the top letrec, resulting inM ′[t′1, . . . , t′k]. Since FV(si) ⊆ FV(ti), the same set
of bindings in the top letrec can be removed inM[s1, . . . , sn] by (gc) resulting
inM ′[s′1, . . . , s′k], where the pairs (s′i, t′i) are renamed versions of pairs (sj, tj).

If the reduction is a (gc2) or a (gc1) withM[s1, . . . , sn]
LRgc,gc1ÐÐÐÐ→M ′[s′1, . . . , s′k],

then by induction we obtain spmax(M ′[s′1, . . . , s′k]) ≤ spmax(M ′[t′1, . . . , t′k]).
Since spmax is not changed by (gc)-reduction, this shows the claim.

However, a (gc1)-step, that is not a LRPgc-reduction step, does not remove the
maximal set of removable bindings in M[s1, . . . , sn]. By induction we obtain
spmax(M ′[s′1, . . . , s′k]) ≤ spmax(M ′[t′1, . . . , t′k]). We use Lemma 3.5, which
shows spmax(M ′[s′1, . . . , s′k]) = spmax(M[s1, . . . , sn]) and also the equation
spmax(M ′[t′1, . . . , t′k]) = spmax(M[t1, . . . , tn]) holds, and thus the claim is
shown.

2. If no hole of M is in a reduction context and the reduction step is not a (gc),
then there are two cases:

– M[t1, . . . , tn] is a WHNF. Then also M[s1, . . . , sn] is a WHNF and by the
assumption, we have size(M[s1, . . . , sn]) ≤ size(M[t1, . . . , tn]).

– We have M[t1, . . . , tn]
LRgc,aÐÐÐ→ M ′[t′1, . . . , t′n′] and M[s1, . . . , sn]

LRgc,aÐÐÐ→
M ′[s′1, . . . , s′n′] with a /= gc and the pairs (s′i, t′i) are renamed versions of
pairs (sj, tj). This shows spmax(M ′[s′1, . . . , s′n′]) ≤ spmax(M ′[t′1, . . . , t′n′])
by induction.
By assumption, the inequation size(M[s1, . . . , sn]) ≤ size(M[t1, . . . , tn])
holds, hence spmax(M[s1, . . . , sn]) ≤ spmax(M[t1, . . . , tn]) is obtained by
computing the maximum.
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3. Some tj inM[t1, . . . , tn] is in a reduction position and there is no LRPgc-(gc)-
reduction ofM[t1, . . . , tn]. Then there is one hole, say i, ofM that is in a reduc-
tion position. WithM ′ =M[⋅, . . . , ⋅, ti, ⋅, . . . , ⋅], we can apply the induction hy-
pothesis, since the number of holes ofM ′ is strictly smaller than the number of
holes ofM and the number of normal-order-gc reduction steps ofM[t1, . . . , tn]
is the same as ofM ′[t1, . . . , ti−1, ti+1, . . . , tn] and obtain:

spmax(M[s1, . . . , si−1, ti, si+1, . . . , sn]) ≤ spmax(M[t1, . . . , ti−1, ti, ti+1, . . . , tn])

Also sinceM[s1, . . . , si−1, ⋅, si+1, . . . , sn] is a reduction context, the assumption
yields:

spmax(M[s1, . . . , si−1, si, si+1, . . . , sn])≤ spmax(M[s1, . . . , si−1, ti, si+1, . . . , sn])

Hence spmax(M[s1, . . . , sn]) ≤ spmax(M[t1, . . . , tn]).

The requirements of the context lemma are necessary:

First we consider the requirement FV(s) ⊆ FV(t): Let s = letrec y = x in True and
let t = letrec y = True in True. Then s ∼c t, since s and t are both contextually
equivalent to True, using garbage collection. Also size(s) ≤ size(t). But s is not a
maximal space improvement of t:

Let C be the context letrec x = s1, z = s2 in seq z (seq (c [⋅]) z), where s1 and
s2 are closed expressions such that size(s1) ≥ 2 and the evaluation of s2 produces
a WHNF s2,WHNF of size at least 1 + size(s1) + size(s2). This is easy to construct
using recursive list functions. Then the reduction sequence of C[s] reaches the size
maximum after s2 is reduced to WHNF due to the first seq, which is 1 + size(s1) +
size(s2,WHNF) + 3 + size(s). The reduction sequence of C[t] first removes s1 and
then reaches the same maximum as s, which is 1+size(s2,WHNF)+3+size(t). Thus
spmax(C[s]) − spmax([t]) = size(s1) + size(s) − size(t) = size(s1) − 1 > 0.

We have to show that spmax(R[s]) ≤ spmax(R[t]) holds for all reduction contexts R:

Reducing R[s] will first shift (perhaps in several steps) the binding y = x to the top
letrec and then remove it (perhaps with other bindings) with (gc). The same for R[t].
After this removal, the expressions are the same. Hence spmax(R[s]) ≤ spmax(R[t]).
This shows that if FV(s) ⊆ FV(t) is violated, then the context lemma does not hold in
general. Note that this example also shows, that for arbitrary expressions s and t with
s ∼c t and s↓, the relation s ≤R,spmax t does not imply FV(s) ⊆ FV(t).

The requirement size(s) ≤ size(t) is also needed: Let t be a small expression that
generates a large WHNF and let s be seq True t. Then size(s) > size(t). Lemma 3.4
shows by contradiction that s cannot be a space improvement of t. For all reduction
contexts R, the first non-(gc) reduction will join the reduction sequences of R[s] and
R[t]. Since the WHNF of s is large, we obtain spmax(R[s]) = spmax(R[t]), since the
difference in size of 1 between s and t, is too small compared with the size of the
WHNF. This implies s ≤R,spmax t, but s is not a maximal space improvement of t. Thus
the condition size(s) ≤ size(t) is necessary in Lemma 3.6.
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For cases that do not change maximal space consumption, we adapt Lemma 3.6 as
follows:

Context Lemma for Maximal Space EquivalencesLemma 3.7 (Context Lemma for Maximal Space Equivalences)
If size(s) = size(t), FV(s) = FV(t) and s ∼R,spmax t, then s ∼spmax t.

Proof
Follows by applying Lemma 3.6 in both directions.

The context lemmas also obviously hold for stronger context classes:

Applicability of Context Lemmas for Stronger Context ClassesProposition 3.3 (Applicability of Context Lemmas for Stronger Context Classes)
The context lemmas Lemma 3.6 and Lemma 3.7 also hold for all context classes that
contain reduction contexts.
Especially both lemmas also hold for top and surface contexts.

The context lemmas for maximal space improvement and maximal space equivalence
in the polymorphic variant LRPgc cannot be derived from the context lemmas in LRgc.
However, it is easy to see that the reasoning in the proofs of the context lemmas is
completely analogous and so we obtain:

Context Lemmas for LRgc also hold for LRPgcProposition 3.4 (Context Lemmas for LRgc also hold for LRPgc)
The context lemmas for maximal space improvement (Lemma 3.6) andmaximal space
equivalence (Lemma 3.7) also hold in LRPgc.

3.4 Space-Safety of Transformations

In this section the space behavior of many transformations is analyzed. Several extra
transformations are needed in the following:

Extra LRPTransformation RulesDefinition 3.9 (Extra LRPTransformation Rules)
(cpx-in) (letrec x = y,E in C[x])→ (letrec x = y,E in C[y])

where y is a variable and x /= y
(cpx-e) (letrec x = y, z = C[x],E in t)→ (letrec x = y, z = C[y],E in t)

where y is a variable and x /= y
(cpcx-in) (letrec x = c #»

t ,E in C[x])
→ (letrec x = c #»y ,{yi = ti}ar(c)i=1 ,E in C[c #»y ])

(cpcx-e) (letrec x = c #»
t , z = C[x],E in t)

→ (letrec x = c #»y ,{yi = ti}ar(c)i=1 , z = C[c #»y ],E in t)
(abs) (letrec x = c #»

t ,E in s)→ (letrec x = c #»x ,{xi = ti}ar(c)i=1 ,E in s)
where ar(c) ≥ 1

(abse) (c #»
t )→ (letrec {xi = ti}ar(c)i=1 in c #»x ) where ar(c) ≥ 1

(xch) (letrec x = t, y = x,E in r)→ (letrec y = t, x = y,E in r)
(ucp1) (letrec E , x = t in S[x])→ (letrec E in S[t])
(ucp2) (letrec E , x = t, y = S[x] in r)→ (letrec E , y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t]

where in the three (ucp)-rules, x has at most one occurrence
in S[x] and no occurrence in E , t, r
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We also define the following unions of transformations:

Extra LRPTransformation Rules FamiliesDefinition 3.10 (Extra LRPTransformation Rules Families)
1. (cpx) is the union of (cpx-in) and (cpx-e).
2. (cpcx) is the union of (cpcx-in) and (cpcx-e).
3. (ucp) is the union of (ucp1), (ucp2) and (ucp3).

(cpx) copies variables, while (cpcx) copies constructor applications, abstracting over
the arguments using variables. (abs) and (abse) both abstract subexpressions by putting
the arguments of constructor applications in letrec-environments. (ucp) is a (cp) into
a unique occurrence of the variable.

Also variations of transformation rules are needed:
Variations of LRPTransformation RulesDefinition 3.11 (Variations of LRPTransformation Rules)

(case-cx) letrec x = (cK,i x1 . . . xn),E in
C[caseK x of {((cK,i y1 . . . yn)→ s) . . .}]

→ letrec x = (cK,i x1 . . . xn),E in
C[(letrec y1 = x1, . . . , yn = xn in s)]

(case-cx) letrec x = (cK,i x1 . . . xn),E
y = C[caseK x of {((cK,i y1 . . . yn)→ s) . . .}] in r

→ letrec x = (cK,i x1 . . . xn),E ,
y = C[(letrec y1 = x1, . . . , yn = xn in s)] in r

(case-cx) in all other cases: like (case)
(case*) is defined as (case) if the scrutinized data expression is of the form

(c s1 . . . sn), where (s1, . . . , sn) is not a tuple of different variables,
and otherwise it is (case-cx).

(gc=) letrec x = y, y = s,E in r → letrec y = s,E in r
where x /∈ FV(s,E , r) and y = s cannot be garbage collected

(caseId) (caseK s of {(PatK,1 → PatK,1) . . . (PatK,∣DK ∣ → PatK,∣DK ∣)})→ s

(case-cx) and (case*) are variants of (case) with an optimization w.r.t. the let-bindings,
if the scrutinized data expression is of the form (c x1 . . . xn). (gc=) is a special variant
of (gc) where only a single variable-to-variable-binding is removed. (caseId) is a typed
transformation that eliminates trivial case-expressions.

Also the following special transformation rules are needed:

Special LRPTransformation RulesDefinition 3.12 (Special LRPTransformation Rules)
(cpS) is (cp) restricted such that only surface contexts S for the target context

C are permitted
(cpcxT) is (cpcx) restricted such that only top contexts T for the target context C

are permitted
(cse) letrec x = s, y = s,E in r → letrec x = s,E [x/y] in r[x/y]

where x /∈ FV(s)
(soec) changing the sequence of evaluation due to strictness knowledge by

inserting seq

(cpS) and (cpcxT) are the usual transformations restricted to surface and top contexts.
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(cse) means common subexpressions elimination, where common subexpressions are
shared by a letrec-binding and only the binding-variable is used to reference the
corresponding subexpression. (soec) is a correct change of the evaluation order using
strictness knowledge by inserting seq-expressions.

In the following subsections the space behavior of several transformations is analyzed.
For most of the proofs forking diagrams between transformation steps and normal-
order reduction steps and induction are used (see Section 2.5), where the computation
of diagrams is simplified by the context lemmas for space improvement and equiva-
lence (see Section 3.3). Moreover we can use LRgc for easier forking diagrams and
transfer the result to LRPgc:

Relation between LRgc and LRPgc w.r.t. Space ImprovementsProposition 3.5 (Relation between LRgc and LRPgc w.r.t. Space Improvements)
Let Q be a transformation in LRgc and let QP be the corresponding transformation
in LRPgc. We assume that QP does not change the type of expressions in LRPgc.
We also assume that for the type-erased relation it holds that ε(QP ) ⊆ Q. Then the
following holds:
1. If Q is a maximal space improvement then also QP is a maximal space improve-

ment.
2. IfQ is a maximal space equivalence then alsoQP is a maximal space equivalence.
Proof
This is obvious, since the size measure is the same and since every type erased
context from LRPgc is also an untyped context.

3.4.1 Space Improvement Property of (lbeta), (seq-c) and (case-c)

To show that (lbeta), (seq-c) and (case-c) are maximal space improvements, we first
need the following lemma about the decrease of the size:

(lbeta), (seq) and (case) Strictly Decrease the SizeLemma 3.8 ((lbeta), (seq) and (case) Strictly Decrease the Size)
The (case)-, (lbeta)- and (seq)-transformations in any context strictly decrease the
size.
Proof
For (lbeta)-, (seq)- and (case-c)-reductions the claim is trivial.

For (case-e)- and (case-in)-reductions w.r.t. constructors with an arity ≥ 1, this also
holds, where it is exploited that variables do not count in the measure.

Space Improvement Property of (lbeta), (seq-c) and (case-c)Theorem 3.1 (Space Improvement Property of (lbeta), (seq-c) and (case-c))
The transformations (lbeta), (seq-c) and (case-c) are maximal space improvements.
Proof
We apply the context lemma for maximal space improvements (Lemma 3.6):

Let s aÐ→ t where a ∈ {(lbeta), (seq-c), (case-c)} and the transformation is w.l.o.g. on
the top of the expression s. The precondition FV(t) ⊆ FV(s) is satisfied. Let R be a
reduction context. We consider the cases for R[s] aÐ→ R[t], which is normal-order



3.4. SPACE-SAFETY OF TRANSFORMATIONS 51

for LR, but since (gc) may be also applicable, it may be not an LRPgc-reduction. An
analysis of cases shows that the following diagram is valid:

R[s]
LRPgc,gc,∗���
�

a // R[t]
gc,∗wwp p p p

LRPgc,gc,∗

���
�
�
�
�

R′[s]
LRPgc,a

//___ R′[t]

LRPgc,gc,∗ ''N
NNN

R′′[t]

Lemma 3.8 shows that size(R[s]) ≥ size(R[t]) ≥ size(R′′[t]) and also all in-
termediate expressions in the diagram have a smaller size than size(R[s]).

The definition of spmax implies spmax(R[s]) ≥ spmax(R[t]) for all reduction con-
texts R. An application of Lemma 3.6 shows the claim.

3.4.2 Space Improvement Property of (gc)

In this section we prove that (gc) is a maximal space improvement.

Space Improvement Property of (gc)Theorem 3.2 (Space Improvement Property of (gc))
The transformation (gc) is a maximal space improvement.
Proof
Let s0

gcÐ→ t0 in the empty context. We show that the requirements of the context
lemma for maximal space improvement (see Lemma 3.6) are fulfilled:

Let R be a reduction context. Then we consider the reductions of R[s0] and R[t0].
Obviously size(R[s0]) ≥ size(R[t0]). The diagrams in Lemma 3.2 can be applied
to show that spmax(R[s0]) ≥ spmax(R[t0]) by induction on the number of LRPgc-
reductions.

Let s = R[s0] and t = R[t0]. Then s T,gcÐÐ→ t. The conditions size(s0) ≥ size(t0) and
FV(s0) ⊇ FV(t0) are satisfied. We show that spmax(s) ≥ spmax(t) by induction on
the following measure: (i) the number of LCSC-reductions, (ii) the measure µlll and
(iii) the measure synsize.

We make a case analysis along the diagrams in Lemma 3.2.

• If s is an LRPgc-WHNF, then t is also an LRPgc-WHNF, since s gcÐ→ t and
spmax(s) ≥ spmax(t) holds.

• If s LRPgc,gcÐÐÐÐÐ→ s′ and s gcÐ→ t are the same reductions (i.e. the situation of diagram
3), then clearly spmax(s) ≥ spmax(s′) holds.

• If s LRPgc,aÐÐÐÐ→ s′ for a ∈ LCSC, then for diagram 1 we can apply the induc-
tion hypothesis along the chain s′ T,gc,∗ÐÐÐ→ t′ using Lemma 3.3. Hence we obtain
spmax(s′) ≥ spmax(t′).
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Since size(s) ≥ size(t), we obtain spmax(s) ≥ spmax(t) in this case. For
diagram 4, we also get spmax(s′) ≥ spmax(t′) and also size(s) ≥ size(t) ≥
size(t1) and thus the claim holds.
Note that spmax(s) ≥ spmax(s′) may be wrong for (cp)-reductions.

• If s LRPgc,lllÐÐÐÐÐ→ s′, then diagrams 1 and 2 are relevant. For the first diagram, we
can apply the induction hypothesis to s′ since the measure µlll gets strictly
smaller. Since (gc)-reductions keeps the LCSC-number and do not increase the
µlll-measure, the induction hypothesis can be applied to the reduction chain
and we obtain spmax(s′) ≥ spmax(t′). Also size(s) ≥ size(t) holds and the
claim spmax(s) ≥ spmax(t) is proved. The reasoning is similar but simpler for
diagram 2.

• If s LRPgc,gcÐÐÐÐÐ→ s′, then diagrams 1, 2 and 3 are relevant. For the first diagram,
we can apply the induction hypothesis, since the LCSC-number is not changed
in the diagram, the µlll-measure decreases along the reductions in the diagram
and also the syntactical size is strictly decreased from s to s′. Hence we can
apply the induction hypothesis to s′ and obtain spmax(s′) ≥ spmax(t′). Then
it is easy to see that spmax(s) ≥ spmax(t) holds. In case of diagram 2, the
reasoning is similar but simpler and diagram 3 is obvious.

An application of Lemma 3.6 now shows the claim.

3.4.3 Space Improvement Property of (lll)

To show that (lll) is a maximal space improvement, we consider the forking diagrams
for (lll) in the calculus LR:

LR,lbeta←ÐÐÐÐ .
lllÐ→ ↝ lllÐ→ .

LR,lbeta←ÐÐÐÐ
LR,cp←ÐÐÐ .

lllÐ→ ↝ lllÐ→ .
LR,cp←ÐÐÐ

LR,lll←ÐÐÐ .
lllÐ→ ↝ lllÐ→ .

LR,lll←ÐÐÐ
LR,lll←ÐÐÐ .

lllÐ→ ↝ .
LR,lll←ÐÐÐ .

lllÐ→ ↝ lllÐ→ .
lllÐ→ .

LR,lll←ÐÐÐ
LR,case←ÐÐÐÐ .

lllÐ→ ↝ lllÐ→ .
LR,case←ÐÐÐÐ

LR,case←ÐÐÐÐ .
lllÐ→ ↝ LR,case←ÐÐÐÐ

LR,seq←ÐÐÐ .
lllÐ→ ↝ lllÐ→ .

LR,seq←ÐÐÐ
LR,seq←ÐÐÐ .

lllÐ→ ↝ LR,seq←ÐÐÐ
WHNF .

lllÐ→ ↝ WHNF

The double lllÐ→ occurs in the following case:

(letrec E1 in (letrec E2 in s)) t
llet−inÐÐÐ→ (letrec E1,E2 in s) t

lappÐÐ→ (letrec E1,E2 in (s t))
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(llet) never enables a (LRPgc,gc2):

(llet) does not enable (LRPgc,gc2)Lemma 3.9 ((llet) does not enable (LRPgc,gc2))
An (llet)-transformation may enable (LRPgc,gc1) but not (LRPgc,gc2).
Proof
The only situation where this occurs is if a letrec-environment is shifted to the
top and if the shifted letrec-environment contains garbage.

Now we show that (lll) is a maximal space improvement:

Space Improvement Property of (lll)Theorem 3.3 (Space Improvement Property of (lll))
The transformation (lll) is a maximal space improvement.
Proof
A complete set of forking diagrams for (lll) w.r.t. space improvement can be deve-
loped using the diagrams above and summarized in three diagrams:

s
T,lll //

LRPgc,a

��

s′

LRPgc,gc,0∨1���
�

a /= gc s′1
LRPgc,a,0∨1
���
�

s′2
LRPgc,gc,0∨1
���
�

s3 T,lll,∗
//________ s′′3 T∨LRPgc,gc,0∨1

//________ s′3

s
T,lll //

LRPgc,gc
��

s′

LRPgc,gc���
�

s1 T∨LRPgc,lll,0∨1
//________ s′′1 T∨LRPgc,gc,0∨1

//________ s′1

s (WHNF ) T,lll // s′

LRPgc,gc,0∨1���
�

s′1 (WHNF )

Wewill apply the context lemma for top-contexts (Lemma 3.6 and Proposition 3.3).
Therefore we will employ they forking diagrams above for (lll) in top contexts.

Let s be a closed expression with s↓LRPgc and s T,lllÐÐ→ s′. We show by induction
that for all top contexts T, we have spmax(T[s′]) ≤ spmax(T[s]). The measure
for induction is (µ1, µ2, µ3), ordered lexicographically, where µ1 is the number of
LCSC-reductions of s to a WHNF, µ2 is µlll and µ3 is the syntactical size.

Thefirst two assumptions of the context lemma are satisfied, i.e. size(s) ≥ size(s′)
and FV(s) ⊇ FV(s′), which can be easily checked.
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In the followingwe use invariances and properties:Theorem 3.2 shows that (gc) is a
space improvement, Lemma 3.3 shows that (gc) leaves µ1 invariant and in (SSS08b),
Theorem 2.14 it is proved that (lll) does not change µ1.

We now go through the cases according to the diagrams.

• If s is an LRPgc-WHNF, then either s is an LRPgc-WHNF or one (LRPgc,gc) is
sufficient to turn it into an LRPgc-WHNF. In both cases, spmax(s) ≥ spmax(s′)
or spmax(s) ≥ spmax(s′1) holds.

• If a ∈ {(lbeta), (case), (seq)}, then we can use induction and the above proper-
ties.

The induction hypothesis is applicable to s3, since

µ1(s) > µ1(s3) ≥ µ1(s′′3) = µ1(s′3)

This shows that s′3 improves s′′3 which in turn improves s3.

We have size(s) ≥ size(s3) as well as

size(s) ≥ size(s′) ≥ size(s′1) ≥ size(s′2) ≥ size(s′3)

Hence also spmax(s) ≥ spmax(s′).

• If a = (cp), then we can also use the properties. Again, the induction hypothesis
can be applied to show that s′3 improves s′′3 which in turn improves s3.

We have to take into account that (cp) increases the size. Looking at the dia-
grams and the case analyses, we see that size(s) ≥ size(s′1), since the (gc) of
s removes at least the same bindings as the (gc) of s′. Since the (cp)-reductions
copy the same expression, we have size(s3) ≥ size(s′2).

Thus we have shown that also in this case spmax(s) ≥ spmax(s′) holds.

• If a = (lll), then the measure of s3, s′′3 and s′3 is strictly smaller than s, since (lll)
does not change µ1, but strictly decreases µ2.

By induction s′′3 space-improves s3 and s′3 space-improves s′′3 . Since (lll) does
not increase the size, we obtain spmax(s) ≥ spmax(s′) also in this case.

• If the first LRPgc-reduction is a (gc), then the second diagram holds and we can
apply induction, since (gc) does not increase µ1 nor µ2, but strictly decreases
the syntactical size.

Finally, we can apply Lemma 3.6 and obtain the claim that s′ is a maximal space
improvement of s.

3.4.4 Space Improvement Property of (seq)

To show that (seq) is a space improvement we first develop a complete set of forking
diagrams:
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Forking Diagrams for (seq)Lemma 3.10 (Forking Diagrams for (seq))
The forking diagrams for (seq) w.r.t. maximal space improvement can be summarized
in the following diagrams:

s
T,seq //

LRPgc,a

��

s′

LRPgc,gc,0∨1���
�

a /= gc s′1
LRPgc,a,0∨1
���
�

s′2
LRPgc,gc,0∨1
���
�

s3 T∨LRPgc,seq,0∨1
//_________ s′′3 T∨LRPgc,gc,0∨1

//_________ s′3

s
T,seq //

LRPgc,gc2

��

s′

LRPgc,gc2
���
�
�

s1 T∨LRPgc,seq,0∨1
//________ s′1

s
T,seq //

LRPgc,gc1
��

s′

LRPgc,gc���
�

s1 T∨LRPgc,seq,0∨1
//________ s′′1 T∨LRPgc,gc,0∨1

//________ s′1

Proof
We check all possibilities of s1

LRPgc,a←ÐÐÐÐ s
T,seqÐÐ→ s′ for a closed expressions s, where

the (seq)-reduction is not an LRPgc-reduction.

• The expression s is not a letrec-expression. Then closing the reduction is
represented by a square diagram.

The reason is that s does not admit an LRPgc,gcÐÐÐÐÐ→-reduction.

s
i,seq //

LRPgc,a

��

s′

LRPgc,a
���
�
�

s1 i,seq
//____ s′1

In the following we can assume that s is a letrec-expression.

• s LRPgc,aÐÐÐÐ→ s1, i.e. the first reduction is not a garbage collection and a is an
(lbeta)-, (seq)-, (cp)- or (case)-reduction.
Then s = letrec E1,E2 in r, where E1 is garbage after the seq-reduction. If
the seq-reduction does not enable a LRPgc,gcÐÐÐÐÐ→-reduction, then the following
two diagrams are sufficient.
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s
i,seq //

LRPgc,a

��

s′

LRPgc,a
���
�
�

s1 i,seq
//____ s′1

s
i,seq //

LRPgc,a

��

s′

LRPgc,a

��	
	
	
	
	
	
	
	

s1
LRPgc,seq

��
s2

If seq enables a LRPgc,gcÐÐÐÐÐ→-reduction, then the diagram is:

s
i,seq //

LRPgc,a

��

s′

LRPgc,gc
���
�
�

s′1

LRPgc,a
���
�
�

s1 i,seq
//____ ⋅

gc
//____ s′2

An example is:

letrec x1 = 0, x2 = seq x1 0 in ((λx.x) x2)
LRPgc,lbetaÐÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0 in (letrec x = x2 in x)

i,seqÐÐ→ letrec x1 = 0, x2 = 0 in (letrec x = x2 in x)
gcÐ→ letrec x2 = 0 in (letrec x = x2 in x)

i,seqÐÐ→ letrec x1 = 0, x2 = 0 in ((λx.x) x2)
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0 in ((λx.x) x2)

LRPgc,lbetaÐÐÐÐÐÐ→ letrec x2 = 0 in (letrec x = x2 in x)

• s LRPgc,gc2ÐÐÐÐÐ→ s′. Then the diagrams for reductions are as follows:

s
i,seq //

LRPgc,gc2

��

s′

LRPgc,gc2
���
�
�

s1 i,seq
//____ s′1

s
i,seq //

LRPgc,gc2

��

s′

LRPgc,gc,∗

��	
	
	
	
	
	
	
	

s1
LRPgc,seq

��
s2
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An example is:

letrec x1 = 0 in C[seq x2 0]
LRPgc,gc2ÐÐÐÐÐ→ C[seq x2 0]

i,seqÐÐ→ C[0]

i,seqÐÐ→ letrec x1 = 0 in C[0]
LRPgc,gc2ÐÐÐÐÐ→ C[0]

In the following cases s is a letrec-expression and the first LRPgc-reduction of s
is not a (gc2).

• If a is an (lbeta)-, (seq)-, (cp)- or (case)-reduction and the first LRPgc-reduction
is a (gc), (seq) enables a (gc) and the a-reduction does not enable a (gc), then
the diagram is:

s
i,seq //

LRPgc,gc

��

s′

LRPgc,gc
���
�
�

s1

LRPgc,a

��

s′1

LRPgc,a
���
�
�

s2 i,seq
//____ ⋅

gc
//____ s′2

An example is:

letrec x0 = 0, x1 = 0, x2 = seq x1 0 in ((λx.x) x2)
LRPgc,gcÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0 in ((λx.x) x2)

LRPgc,lbetaÐÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0 in (letrec x = x2 in x)
i,seqÐÐ→ letrec x1 = 0, x2 = 0 in (letrec x = x2 in x)

gcÐ→ letrec x2 = 0 in (letrec x = x2 in x)

i,seqÐÐ→ letrec x0 = 0, x1 = 0, x2 = 0 in ((λx.x) x2)
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0 in ((λx.x) x2)

LRPgc,lbetaÐÐÐÐÐÐ→ letrec x2 = 0 in (letrec x = x2 in x)

• If a is an (lbeta)-, (seq)- or (case)-reduction and the first LRPgc-reduction is a
(gc), (seq) enables a (gc), the a-reduction enables a (gc) (only a (seq) or (case) is
possible), then the diagram is:
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s
i,seq //

LRPgc,gc

��

s′

LRPgc,gc
���
�
�

s1

LRPgc,a

��

s′1

LRPgc,a
���
�
�

s′2

LRPgc,gc
���
�
�

s3 i,seq
//____ ⋅

gc
//____ s′3

An example is:

letrec x0 = 0, x1 = 0, x2 = seq x1 0, x3 = 0 in (seq x3 x2)
LRPgc,gcÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0, x3 = 0 in (seq x3 x2)
LRPgc,seqÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0, x3 = 0 in x2

i,seqÐÐ→ letrec x1 = 0, x2 = 0, x3 = 0 in x2
gcÐ→ letrec x2 = 0 in x2

i,seqÐÐ→ letrec x0 = 0, x1 = 0, x2 = 0, x3 = 0 in (seq x3 x2)
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0, x3 = 0 in (seq x3 x2)
LRPgc,seqÐÐÐÐÐ→ letrec x2 = 0, x3 = 0 in x2
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0 in x2

• If a is a (llet)-reduction, the first LRPgc-reduction is a (llet) and (seq) may enable
a (gc). Then the diagram is:

s
i,seq //

LRPgc,llet

��

s′

LRPgc,gc
���
�
�

s′1

LRPgc,llet
���
�
�

s′2

LRPgc,gc
���
�
�

s3 i,seq
//____ ⋅

gc
//____ s′3
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An example is:

letrec x1 = 0, x2 = seq x1 0 in letrec x3 = 0, x4 = 0 in (x3 x2)
LRPgc,lletÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0, x3 = 0, x4 = 0 in (x3 x2)

i,seqÐÐ→ letrec x1 = 0, x2 = 0, x3 = 0, x4 = 0 in (x3 x2)
gcÐ→ letrec x2 = 0, x3 = 0 in (x3 x2)

i,seqÐÐ→ letrec x1 = 0, x2 = 0 in letrec x3 = 0, x4 = 0 in (x3 x2)
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0 in letrec x3 = 0, x4 = 0 in (x3 x2)

LRPgc,lletÐÐÐÐÐ→ letrec x2 = 0, x3 = 0, x4 = 0 in (x3 x2)
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0, x3 = 0 in (x3 x2)

• If a is a (llet)-reduction, the first LRPgc-reduction is a (gc) and (seq) may enable
a (gc). Then the diagram is:

s
i,seq //

LRPgc,gc

��

s′

LRPgc,gc
���
�
�

s1

LRPgc,llet

��

s′1

LRPgc,llet
���
�
�

s′2

LRPgc,gc
���
�
�

s3 i,seq
//____ ⋅

gc
//____ s′3

An example is:

letrec x0 = 0, x1 = 0, x2 = seq x1 0 in
letrec x3 = 0, x4 = 0 in (x3 x2)

LRPgc,gcÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0 in letrec x3 = 0, x4 = 0 in (x3 x2)
LRPgc,lletÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0, x3 = 0, x4 = 0 in (x3 x2)

i,seqÐÐ→ letrec x1 = 0, x2 = 0, x3 = 0, x4 = 0 in (x3 x2)
gcÐ→ letrec x2 = 0, x3 = 0 in (x3 x2)

i,seqÐÐ→ letrec x0 = 0, x1 = 0, x2 = 0 in letrec x3 = 0, x4 = 0 in (x3 x2)
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0 in letrec x3 = 0, x4 = 0 in (x3 x2)

LRPgc,lletÐÐÐÐÐ→ letrec x2 = 0, x3 = 0, x4 = 0 in (x3 x2)
LRPgc,gcÐÐÐÐÐ→ letrec x2 = 0, x3 = 0 in (x3 x2)
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• If the binding x4 = 0 is missing in the last example, then s′2
LRPgc,gcÐÐÐÐÐ→ s′3 can be

omitted. Thus the summary of the last two diagrams is:
s

i,seq //

(LRPgc,gc)0∨1

��

s′

LRPgc,gc
���
�
�

s1

LRPgc,llet

��

s′1

LRPgc,llet
���
�
�

s′2

(LRPgc,gc)0∨1
���
�
�

s3 i,seq
//____ ⋅

gc
//____ s′3

• If a is a (llet)-reduction, the first LRPgc-reduction step is (gc) and (seq) may
enable a (gc), then this also leads to the following diagrams:

s
i,seq //

LRPgc,gc

��

s′

LRPgc,gc

���
�
�
�
�
�

s1

LRPgc,llet

��
s2 i,seq

//____ ⋅
gc

//____ s′2

s
i,seq //

LRPgc,gc

��

s′

LRPgc,gc
���
�
�

s1

LRPgc,llet

��

s′1

LRPgc,gc,0∨1
���
�
�

s2 i,seq
//____ ⋅

gc
//____ s′2

s
i,seq //

LRPgc,llet

��

s′

LRPgc,gc
���
�
�

s′1

LRPgc,gc,0∨1
���
�
�

s2 i,seq
//____ ⋅

gc
//____ s′2

Examples for the diagrams:

letrec x = 0 in (letrec y = seq x 0 in
(letrec v = 0 in ((λz.z) 0)))

LRPgc,llet−inÐÐÐÐÐÐÐ→ letrec x = 0, y = seq x 0 in (letrec v = 0 in ((λz.z) 0))
i,seqÐÐ→ letrec x = 0, y = 0 in (letrec v = 0 in ((λz.z) 0))
gc2Ð→ letrec v = 0 in ((λz.z) 0)

i,seqÐÐ→ letrec x = 0 in (letrec y = 0 in
(letrec v = 0 in ((λz.z) 0)))

LRPgc,gc2ÐÐÐÐÐ→ letrec y = 0 in (letrec v = 0 in ((λz.z) 0))
LRPgc,gc2ÐÐÐÐÐ→ letrec v = 0 in ((λz.z) 0)
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letrec x0 = 0, x1 = 0 in letrec x2 = seq x1 0 in
letrec x3 = 0, x4 = 0 in (x3 x2)

LRPgc,gcÐÐÐÐÐ→ letrec x1 = 0 in letrec x2 = seq x1 0 in
letrec x3 = 0, x4 = 0 in (x3 x2)

LRPgc,lletÐÐÐÐÐ→ letrec x1 = 0, x2 = seq x1 0,in letrec x3 = 0, x4 = 0 in (x3 x2)
i,seqÐÐ→ letrec x1 = 0, x2 = 0 in letrec x3 = 0, x4 = 0 in (x3 x2)

gcÐ→ letrec x2 = 0 in letrec x3 = 0, x4 = 0 in (x3 x2)

i,seqÐÐ→ letrec x0 = 0, x1 = 0 in letrec x2 = 0 in
letrec x3 = 0, x4 = 0 in (x3 x2)

LRPgc,gc2ÐÐÐÐÐ→ letrec x2 = 0 in letrec x3 = 0, x4 = 0 in (x3 x2)

Now we show that (seq) is a maximal space improvement:

Space Improvement Property of (seq)Theorem 3.4 (Space Improvement Property of (seq))
The transformation (seq) is a maximal space improvement.
Proof
This is already proved in the case of (seq-c) in Theorem 3.1.

For the general case of a seq-reduction we will apply the context lemma for top-
contexts (see Lemma 3.6 and Proposition 3.3). Therefore we will employ forking
diagrams for (seq) in top contexts from Lemma 3.10.

Let s be a closed expression with s↓LRPgc and s T,seqÐÐ→ s′. We show by induction
on the following measure that s′ ≤spmax s by showing that for all top contexts T,
we have spmax(T[s′]) ≤ spmax(T[s]). The measure for induction is (µ1, µ2, µ3),
ordered lexicographically, where µ1 is the number of LCSC-reductions of s to a
WHNF, µ2 is µlll and µ3 is the syntactical size.

Thefirst two assumptions of the context lemma are satisfied, i.e. size(s) ≥ size(s′)
and FV(s) ⊇ FV(s′), which can be easily checked.

In the following we use the following invariances and properties:
(i) Theorem 3.2 shows that (gc) is a space improvement, (ii) Lemma 3.3 shows that
(gc) leaves µ1 invariant and (iii) µ1 is not increased by (seq) as proved in (SSS08b).

We now go through the cases for the diagrams:

• If s is an LRPgc-WHNF, then s′ is also an LRPgc-WHNF and hence we have
size(s) = spmax(s), size(s′) = spmax(s′) and spmax(s) ≥ spmax(s′).

• s T,seqÐÐ→ s′ is an LRPgc-reduction step, then we have spmax(s) = spmax(s′) by
definition.

• If a ∈ {(lbeta), (case), (seq)} and the LRPgc-reduction is different from the trans-
formation, then we can use induction and the above properties.
We are in the situation of diagram 1. The induction hypothesis is applicable to
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s3, since µ1(s) > µ1(s3) ≥ µ1(s′′3) = µ1(s′3). This shows that s′3 improves s′′3
which in turn improves s3. We have size(s) ≥ size(s3) as well as size(s) ≥
size(s′) ≥ size(s′1) ≥ size(s′2) ≥ size(s′3). Hence also spmax(s) ≥ spmax(s′).

• If a = (cp), then we can also use the properties. Again, the induction hypothesis
can be applied to show that s′3 improves s′′3 which in turn improves s3.
We have to take into account that (cp) increases the size. Looking at the dia-
grams and the case analyses, we see that size(s) ≥ size(s′1), since the (gc) of
s removes at least the same bindings as the (gc) from s′. Since the cp-reductions
copy the same expression, we have size(s3) ≥ size(s′2). Thus we have shown
that also in this case spmax(s) ≥ spmax(s′) holds.

• If a = (lll), then by induction s′′3 space-improves s3, and s′3 space-improves s′′3 .
Since (lll) does not increase the size (see Theorem 3.3), spmax(s) ≥ spmax(s′)
holds.

• If the first LRPgc-reduction step is a (gc2), then the second diagram holds, and
we can apply induction, since (gc) does neither increase µ1 (see Lemma 3.3) nor
µ2, but strictly decreases the syntactical size.

• If the first LRPgc-reduction step is a (gc1), then the third diagram holds and
we can apply induction, since (gc) does neither increase µ1 nor µ2, but strictly
decreases the syntactical size. Then the size decreases along the reductions
and we can reason as before.

Finally, we can apply Lemma 3.6 and obtain the claim that s′ is a maximal space
improvement of s.

3.4.5 Space Equivalence Property of (gc=)

The special variant of garbage collection (gc=) is a maximal space equivalence:

Space Equivalence Property of (gc=)Theorem 3.5 (Space Equivalence Property of (gc=))
The transformation (gc=) is a maximal space equivalence.
Proof
An analysis of forking overlaps between LRPgc-reductions and gc=-transformations,
shows that they (almost) commute:

s1
LRPgc,a←ÐÐÐÐ s

T,gc=ÐÐ→ s′ can be joined by s1
T,gc=,0∨1ÐÐÐÐÐ→ s′1

LRPgc,a←ÐÐÐÐ s′.

We will apply the context lemma for space equivalence (Lemma 3.7), which also
holds for top contexts (see Proposition 3.3).

Let s0
gc=ÐÐ→ t0, and let s = R[s0] and s′ = R[t0]. Then size(s) = size(s′) as well

as FV(s) = FV(s′). The equality spmax(s) = spmax(s′) can easily be shown by
induction on the number of LRPgc-reductions. Then an application of Lemma 3.7
shows the claim.
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3.4.6 Space Equivalence Property of (cpx)

(cpx) is often used in other proofs, since the transformation is able to model subparts
of other transformations and is a maximal space equivalence:

Space Equivalence Property of (cpx)Theorem 3.6 (Space Equivalence Property of (cpx))
The transformation (cpx) is a maximal space equivalence.
Proof
Due to the context lemma it is sufficient to check forking diagrams in top contexts,
however, we permit that (cpx) may copy into arbitrary contexts.

An analysis of forking overlaps between LRPgc-reductions and (cpx) transforma-
tions in top contexts shows that the following set of diagrams is complete, where
all concrete (cpx)-transformations in a diagram copy from the same binding x = y:

s
T,cpx //

LRPgc,a
��

s′

LRPgc,a���
�

s1 T,cpx,∗
//____ s′1

s
T,cpx //

LRPgc,a/=gc

��

s′

LRPgc,gc,0∨1���
�

s′1
LRPgc,a
���
�

s2 T,cpx,∗
//____ ⋅

T,gc=,0∨1
//____ s′2

s
T,cpx //

LRPgc,gc

��

s′

LRPgc,gc,0∨1���
�

s′1
LRPgc,gc
���
�

s2 T,cpx,∗
//____ ⋅

T,gc=,0∨1
//____ s′2

We also need the diagram-property that s1
LRPgc,a←ÐÐÐÐ s

T,gc=ÐÐ→ s′ can be joined by
s1

T,gc=,0∨1ÐÐÐÐÐ→ s′1
LRPgc,a←ÐÐÐÐ s′.

We will apply the context lemma for space equivalence (Lemma 3.7), which also
holds for top contexts (see Proposition 3.3).

Let s0
cpxÐÐ→ t0, and let s = T[s0] and s′ = T[t0]. Then size(s) = size(s′) as well

as FV(s) = FV(s′). We have to show spmax(s) = spmax(s′), which can be shown
by an induction on the number of LRPgc-reductions of T[s0], where we show that
the number of LRPgc-reductions of T[s0] is not greater than for T[t0]. Since (cpx)
as well as (gc=) do not change the size, we have the same maximal space usage for
s and s′. An application of Lemma 3.7 finishes the proof.

3.4.7 Space Equivalence Properties of (xch), (abs) and (abse)

In this section we show that (xch), (abs) and (abse) are maximal space equivalences.

Space Equivalence Properties of (xch), (abs) and (abse)Theorem 3.7 (Space Equivalence Properties of (xch), (abs) and (abse))
The transformations (xch), (abs) and (abse) are maximal space equivalences.
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Proof
We first show that (xch) and (abs) are maximal space equivalences.

The transformations (xch) and (abs) do not change the LRPgc-WHNF property.
A complete set of forking diagrams for (xch) and (abs) in top contexts is:

⋅T,xch//
LRPgc,a

��

⋅
LRPgc,a
� ��
�

⋅
T,xch

//__ ⋅

⋅T,xch//
LRPgc,a

��

⋅
LRPgc,a���

�
�

⋅

s
T,abs//

LRPgc,a

��

s′

LRPgc,a
���
�
�

s1 T,abs
//__ s′1

s
T,abs//

LRPgc,a

��

s′

LRPgc,a
���
�
�
�

s1

s
T,abs //

LRPgc,case

��

s′

LRPgc,case
���
�
�

s1 s′1
//

T,cpx∨gc=,∗
_ _ _ _ _ _

These diagrams can be derived from the more general diagrams in (SSS08b). These
transformations keep the number of LCSC-reductions.

The same proof technique as in Theorem 3.6 is used, i.e. the context lemma for
space equivalence (Lemma 3.7) and induction proofs with the same measure.

First the space equivalence property of (xch) is proved using the same methods
as described above and the context lemma for maximal space equivalence. The
next part is the space equivalence property of (abs), which follows from the space
equivalence property of (cpx) by Theorem 3.6 and (gc=) by Theorem 3.5.

(abse) can be showed analogous using the space equivalence properties of (abs),
(cpx) and (gc=).

3.4.8 Space Improvement Properties of (case*) and (case)

In this section show that (case) is a maximal space improvement.

To show, that (case) is a maximal space improvement, we first show that the special
variant (case*) is a maximal space improvement. The difference between (case) and
(case*) are only a few applications of (cpx) and (gc=), that are already showed to be
maximal space equivalences.
Moreover the forkings of (case*) are comparable to those of (seq), hence we can adapt
the proof for (seq) to (case*). Now we show that (case*) is a maximal space improve-
ment.

It follows from (SSS08b) that the (case*)-transformation is a correct program transfor-
mation, since the difference to a (case)-transformation consists of applications of (gc)
and (cpx). I.e. it is easy to see that, if s caseÐÐ→ s1 and s case∗ÐÐÐ→ s2, then s1

gc∨cpx,∗ÐÐÐÐ→ s2.

We now develop a complete set of forking diagrams for (case*):
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Forking Diagrams for (case*)Lemma 3.11 (Forking Diagrams for (case*))
The forking diagrams for (case*) w.r.t. maximal space improvement are summarized
in the following diagrams:

s
T,case∗ //

LRPgc,a

��

s′

LRPgc,gc,0∨1
���
�
�

a /= gc s′1
LRPgc,a,0∨1
���
�
�

s′2
LRPgc,gc,0∨1
���

�

s3 T∨LRPgc,case∗,0∨1
//_________ s′′3 T∨LRPgc,gc,0∨1

//_________ s′3

s
T,case∗ / /

LRPgc,gc2

��

s′

LRPgc,gc2
���
�
�

s1 T∨LRPgc,case∗,0∨1
//________ s′1

s
T,case∗ //

LRPgc,gc1

��

s′

LRPgc,gc
���
�
�

s1 T∨LRPgc,case∗,0∨1
//_________ s′′1 T∨LRPgc,gc,0∨1

//_________ s′1

Proof
By inspecting all cases. The diagrams for (case*) are very similar to the ones for
(seq) (see Lemma 3.10), since the effects of overlaps are comparable.

Using these diagrams, we show the space improvement property of (case*):

Space Improvement Property of (case*)Theorem 3.8 (Space Improvement Property of (case*))
The transformation (case*) is a maximal space improvement.
Proof
The forking diagrams for (case*) in Lemma 3.11 are similar to the ones in Lemma
3.10.Thus the proof is almost the same as the proof ofTheorem 3.4, where (seq) has
to replaced by (case*) andwe use that (case*) also decreases the size of expressions.

Now we can show that (case) is a maximal space improvement:

Space Improvement Property of (case)Theorem 3.9 (Space Improvement Property of (case))
The transformation (case) is a maximal space improvement.
Proof
Either (case*) is the same as (case) or (case*) is the same as (case) followed by several
(cpx)- and (gc=)-transformations. Since (case*) is a maximal space improvement by
Theorem 3.8 and moreover (cpx) and (gc=) are maximal space equivalences (see
Theorem 3.6 and Theorem 3.5), the claim holds.
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3.4.9 Space Equivalence Property of (ucp)

The transformation (ucp) is important for the translation to machine language (see
Section 2.4.1). First we develop a set forking diagrams:

Forking Diagrams for (ucp)Lemma 3.12 (Forking Diagrams for (ucp))

s
T,ucp //

LRPgc,a

��

s′

LRPgc,a
���
�
�

s1
T,ucp //___ s′1

s
T,ucp //

LRPgc,a

��

s′

LRPgc,a~~}
}
}
}

s1

s
LRPgc,cp ��

T,ucp

��

s2
LRPgc,gc ��

s1

s
T,ucp //

LRPgc,a ��

s′

LRPgc,a

���
�
�
�
�

s2
LRPgc,gc ���

�

s1

a ∈ {seq, case}

s
T,ucp //

LRPgc,case ��

s′

LRPgc,case

���
�
�
�

s1
LRPgc,gc=

��
s2

T,cpx,∗//___ s′′2
T,gc=,∗//___ s′2

where the left (LRPgc,case) triggers a (gc)

s
T,ucp //

LRPgc,lll ��

s′

LRPgc,lll∨gc,∗

���
�
�
�

s2
LRPgc,lll∨gc,∗

���
�

s1
T,ucp,0∨1 //_____ s′1

Proof
The diagrams are adapted from (SSS08b) as follows:

(i) in diagram 3 the case letrec x = λy.r,E in R[x]→ letrecE in R[λy.r]with
an application of (cp) followed by a (gc) is covered and (ii) in diagram 6 also an
intermediate (gc) may be triggered.

We now go through the cases for diagrams 4, 5 and 6 explicitly:

An example for diagram 4:

letrec x = a,E in seq (c x) b
LRPgc,seqÐÐÐÐÐ→ letrec x = a,E in b
LRPgc,gcÐÐÐÐÐ→ letrec E in b

T,ucpÐÐÐ→ letrec E in seq (c a) b
LRPgc,seqÐÐÐÐÐ→ letrec E in b
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For diagram 5 we have the following case:

letrec x = c ri,E in case x of {(c yi → a) . . .}
LRPgc,caseÐÐÐÐÐÐ→ letrec x = c ri, zi = ri,E in (letrec yi = zi in a)

LRPgc,gcÐÐÐÐÐ→ letrec zi = ri,E in (letrec yi = zi in a)
cpx∨gc,∗ÐÐÐÐ→ letrec E in (letrec yi = ri in a)

T,ucpÐÐÐ→ letrec E in case (c ri) of {(c yi → a) . . .}
LRPgc,caseÐÐÐÐÐÐ→ letrec E in (letrec yi = ri in a)

For diagram 6 a prototypical case is:

letrec x = (letrec E1 in c),E2 in (letrec E3 in x)
LRPgc,lletÐÐÐÐÐ→ letrec x = c,E1,E2 in (letrec E3 in x)
LRPgc,gcÐÐÐÐÐ→ letrec x = c,E1,E ′2 in (letrec E3 in x)

⋮
letrec E ′2,E

′
3,E

′
1 in c

T,ucpÐÐÐ→ letrec E2 in (letrec E3 in(letrec E1 in c))
LRPgc,lletÐÐÐÐÐ→ letrec E2,E3 in (letrec E1 in c)

⋮
letrec E ′2,E

′
3,E

′
1 in c

Now we can show that (ucp) is a maximal space equivalence:

Space Equivalence Property of (ucp)Theorem 3.10 (Space Equivalence Property of (ucp))
The transformation (ucp) is a maximal space equivalence.
Proof
We apply the forking diagrams of Lemma 3.12. The proof technique is to apply the
context lemma for maximal space equivalences (Lemma 3.7).

Let s0, s′0 be expressions with s = T[s0]
ucpÐÐ→ T[s′0] = s′. It is easy to see that

size(s) = size(s′) and FV(s) = FV(s′).

We show the prerequisite spmax(s) = spmax(s′) for the context lemma by induc-
tion on the following measure of s: (i) µ1, the number of LCSC-reductions, (ii) the
measure µlll(s) and (iii) the measure synsize.

If s is a LRPgc-WHNF, then the claim holds, since for s ucpÐÐ→ t: s is a WHNF if and
only if t is a WHNF and since (ucp) does not change the size.

If diagram 1 is applicable, then the induction hypothesis can be applied to s1 and
thus spmax(s1) = spmax(s′1). Since size(s) = size(s′), also spmax(s) = spmax(s′)
holds.

If diagram 2 is applicable, it is obvious, since size(s) = size(s′).
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If diagram 3 is applicable, then the induction hypothesis can be applied to s1 and
thus spmax(s) = spmax(s1), due to the definition of spmax (compare Definition
3.6).

If diagram 4 is applicable, then spmax(s) = spmax(s′), since size(s) = size(s′)
and (seq), (case) and (gc) do not increase the size.

If diagram 5 applies, then size(s) = size(s′) and spmax(s2) = spmax(s′2), since
(cpx) and (gc=) are space equivalences (see Theorem 3.6 and Theorem 3.5), hence
spmax(s) = spmax(s′).

For diagram 6, the claim is obvious if s1 = s′1. If s1
T,ucpÐÐÐ→ s′1, then the induction

hypothesis can be applied to s1 and thus spmax(s1) = spmax(s′1). Since we have
size(s) = size(s′) and size(s1), size(s′1) and size(s2) are not greater than
size(s), the claim is proved.

Now we can apply Lemma 3.7, which shows the claim.

3.4.10 Space-Property of (cpcx)

(cpcx) is neither a maximal space improvement nor a maximal space equivalence. First
we give a set forking diagrams:

Forking Diagrams for (cpcx)Lemma 3.13 (Forking Diagrams for (cpcx))
The transformation (cpcx) does not change the LRPgc-WHNF property.
A complete set of forking diagrams for (cpcx) in top contexts is:

s
T,cpcxT //

LRPgc,a

��

s′

LRPgc,a
���
�
�

s1
T,cpcxT,0∨1//_____ s′1

s
T,cpcxT //

LRPgc,a

��

abs ''O
OOOO s′

LRPgc,gc

���
�
�
�

⋅
T,ucp &&M

MMMM

⋅
T,ucp

��>
>

>
>

>
> s′2

LRPgc,a

���
�
�
�

s1
T,cpcxT//____

abs

??�
�

�
�

�
�

s′′1
gc //____ s′1

where a /= gc

s
T,cpcxT //

LRPgc,a

��

s′

LRPgc,a

���
�
�

s1
T,abs //____ s′1

a ∈ {seq, case}

s
T,cpcxT //

LRPgc,case

� �

s′

LRPgc,case

���
�
�

s1 T,cpcxT
//_____ s2 oo

T,cpx,∗
//_____ ⋅ oo

T,gc=,∗
//_____ s′1

Proof
The diagrams can be derived from the cases and examples in (SSS08b) and omitting
the diagram, where the copy target is within an abstraction.
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A (cpcxT) may trigger a new garbage collection, which have to be covered by the
diagrams. The diagrams are explicit and have more arrows for more information
on the the cases, since they are used to prove space properties.

Diagram 1 is the non-interfering case, also with (LRPgc,gc) and the case where the
x = (c #»

t )-binding is removed.

Diagram 2 covers the case where the x = (c #»
t )-binding will become garbage after

the copy.

Diagram 3 covers the case where the target position of (cpcxT) is removed by the
(LRPgc,a)-reduction.

Diagram 4 covers the case where (cpcxT) copies into the variable-chain of the
normal-order case-reduction or somewhere else.

It is easy to see that (cpcxT) is not a maximal space improvement, but we want to
analyze (cpcxT) applied in top contexts:

Space-Property of (cpcxT) in Top ContextsProposition 3.6 (Space-Property of (cpcxT) in Top Contexts)

If s T,cpcxTÐÐÐÐ→ s′, then spmax(s) ≤ spmax(s′) ≤ spmax(s) + 1.
Proof
The inequality is shown by an induction argument using the commuting variants
of the diagrams in Lemma 3.13.

We show the claim by induction on the following measure of s: (i) the number of
LCSC-reductions, (ii) the measure µlll and (iii) the measure synsize.

If s, s′ are LRPgc-WHNFs, then the claim holds, since size(s) + 1 = size(s′). If
s is an LRPgc-WHNF and s′ is not an LRPgc-WHNF, then only one binding of
size 1 may be garbage collected, hence spmax(s) + 1 = spmax(s′). Otherwise s is
LRPgc-reducible and we have to check all diagrams:

Assume the first diagram is applicable. If s1 = s′1, then there are two cases: If
spmax(s1) ≥ size(s) + 1, then spmax(s1) = spmax(s) = spmax(s′). Otherwise,
if spmax(s1) ≤ size(s), then spmax(s) = size(s) and spmax(s′) = size(s) + 1.

If s1 /= s′1, then the induction hypothesis is applicable. The computation of the
maximum yields spmax(s) ≤ spmax(s′) ≤ spmax(s) + 1.

In the case of diagram 2,Theorem 3.10 andTheorem 3.7 show spmax(s) = spmax(s′2)
and spmax(s1) = spmax(s′1). We have spmax(s) ≤ spmax(s′) ≤ spmax(s)+1, since
size(s′) = size(s) + 1.

In the case of diagram 3 we obtain spmax(s1) = spmax(s′1) by Theorem 3.7 and
since size(s′) = size(s) + 1, this shows the claim.

In the fourth diagram, the induction hypothesis can be applied. This together with
Theorem 3.6 and Theorem 3.5 shows spmax(s1) ≤ spmax(s2) ≤ spmax(s1) + 1 and
spmax(s2) = spmax(s′1). Computing the maximum shows the claim.
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3.4.11 Space Improvement Property of (caseId)

In this section we analyze (caseId) (see Definition 3.11). This transformation can be
seen as typed maximal space improvement. If (caseId) is used in LRgc, then it might
not be correct, since LRgc has no typing. However all proofs are still done using LRgc,
since we only need to require that specific (caseId)-transformations are correct and
still use the same proof method as in the sections before.

The transformation (caseId) is the heart of other transformations that are only correct
under typing. Examples for such transformations are (map λx.x)→ id, foldr (∶) []→
id and filter (λx.True)→ id (see Section 2.6 for needed definitions of functions).

(caseId) is correct in LRP as proved in (SSS16b), but not in LR, which can be seen
by trying the case s = λx.t. We only consider transformation instances s1

caseIdÐÐÐ→ s2
in LRgc, where s1 and s2 are contextual equivalent. In this case the instance of the
(caseId)-transformation is called correct in LRgc.

First we give a complete set of forking diagrams for (caseId):

Forking Diagrams for (caseId)Lemma 3.14 (Forking Diagrams for (caseId))
A complete set of forking diagrams for the correct instances of (caseId) is as follows.
Whenever the starting (caseId)-transformation is correct, then the other (caseId)-
transformations in the diagrams are also correct.

s
T,caseId//

LRPgc,lcase ��

s′

s1
T,caseId

99s
s

s

s
T,caseId //

LRPgc,case

��

s′

T,cpcxT,0∨1vvm m m m

s3

s2
T,gc=,∗

66mmmm

s1
T,cpx,∗

66mmmm

s

LRPgc,case

��
T,caseId

� �

1
�



s1

s
T,caseId //

LRPgc,a

��

s′

LRPgc,gc,0∨1���
�

s′2
LRPgc,a
���
�

s1 T,caseId,0∨1
//______ s3 gc,∗

//______ s′1

s
T,caseId //

LRPgc,gc
��

s′

LRPgc,gc

���
�
�

s1 T,caseId,0∨1
//_____ s′1 gc,∗

//______ ⋅

s
T,caseId//

LRPgc,case−c
��

s′

s1
T,ucp

==z
z

z
z

Proof
These are adaptations from (SSS16b).

Nowwe can show, that for correct instances, (caseId) is a maximal space improvement.
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Space Improvement Property of Correct Instances of (caseId)Theorem 3.11 (Space Improvement Property of Correct Instances of (caseId))
Correct instances of the (caseId)-transformation are maximal space improvements.
Proof
We apply the context lemma for maximal space improvements (Lemma 3.6) and
the diagrams in Lemma 3.14.

Let s, s′ be expressions with s T,caseIdÐÐÐÐ→ s′. We show that the prerequisites for the
context lemma for maximal space improvements are fulfilled:

The conditions FV(s) ⊇ FV(s′) and size(s) ≥ size(s′) obviously hold. We show
the third condition s′ ≤R,spmax s by induction on the following measure of s: (i) the
number of LCSC-reductions µ1, (ii) the measure µlll and (iii) the measure synsize.

If s is a LRPgc-WHNF, then s′ is also a LRPgc-WHNF and the claim holds, since
size(s) ≥ size(s′). Now s has a LRPgc-reduction and we check each applicable
diagram:

If diagram 1 is applicable, then the induction hypothesis can be applied to s1 and
we obtain spmax(s1) ≥ spmax(s′). Since size(s) > size(s′), this implies:

spmax(s) = max(size(s), spmax(s1)) ≥ spmax(s′)

If diagram 2 is applicable, then spmax(s1) = spmax(s2) ≥ spmax(s3) by Theorem
3.6 and Theorem 3.5. Proposition 3.6 shows spmax(s3) ≥ spmax(s′). Since also
spmax(s) ≥ spmax(s1), we obtain spmax(s) ≥ spmax(s′).

In the case of diagram 3, s LRPgc,aÐÐÐÐ→ s1 is the same reduction as s T,caseIdÐÐÐÐ→ s1, hence
the claim holds obviously.

In the case of diagram 4, an application of the induction hypothesis to s1 yields
spmax(s1) ≥ spmax(s3). Since (gc) is a maximal space improvement (see Theorem
3.2), spmax(s3) ≥ spmax(s′1) holds. Since along LRPgc-reduction sequences, spmax
is decreasing, spmax(s′) ≥ spmax(s′2) ≥ spmax(s′1) holds. Also size(s) ≥ size(s′)
holds, thus we obtain

spmax(s) =max(size(s), spmax(s1))
≥max(size(s′),size(s′2), spmax(s′1)) = spmax(s′)

For diagram 5, the induction hypothesis can be applied to s1 and the remaining
computation is similar, since (gc) is a maximal space improvement.

For diagram 6, spmax(s) ≥ spmax(s1) ≥ spmax(s′) holds because of Theorem 3.9
and Theorem 3.10 and the claim is proved.

Finally we apply Lemma 3.6 to show the claim.
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3.4.12 Space Properties of (cse) and (soec)

In this section we show that (cse) and (soec) both introduce space leaks and thus are
not space-safe. However it is easy to see that (soec) is a time improvement and (SSS17)
shows that (cse) is a time improvement.

(cse) is a Space LeakProposition 3.7 ((cse) is a Space Leak)
The transformation (cse) is a space leak.
Proof
We reuse an example similar to the example in (BR00).

The expression s is given in a Haskell-like notation, using integers, but can also be
defined in LRPgc:

if (last [1..n]) > 0 then [1..n] else Nil

where [1..n] is the expression that lazily generates a list [1, . . . , n] and last returns
the last element of a list, i.e. forcing tail-strictness. Thus s evaluates the list ex-
pression until the last element is found and then evaluates the same expression
again to 1 ∶ [2..n]. Due to eager garbage collection, the list elements generated by
last [1..n] are garbage collected directly after creation, only requiring constant
space and the result list also only requires constant space. In LRPgc the evaluati-
on will also generate letrec-environments, perhaps with long indirection chains.
Our space measure ignores these, but a simple change in evaluation order where
such indirections are shortened (see e.g. (DS16)) will also lead to a constant space
on an abstract machine.

If we have s cseÐ→ s′, then s′ is:

s′ = letrec x = [1..n] in (if (last x) > 0 then x else Nil)

The evaluation of s′ behaves different to s: It first evaluates the list and since it is
needed later, it is stored in full length so that the second x only uses the already
evaluated list.

The size required is a linear function in n. Seen from a complexity point of view,
there is no real bound on this maximal space increase: The example can be adapted
using any computable function f on n by modifying the list to [1..f(n)].

Obviously this example is a space leak according to our definition of space leaks
(Definition 3.8), where the reduction contexts contains the list definition.

(soec) is a Space LeakProposition 3.8 ((soec) is a Space Leak)
The transformation (soec) is a space leak.
Proof
Follows from the examples and arguments in (BR00).
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3.4.13 Space Properties of (cp) and (cpS)

(cp) and (cpS) are both not maximal space improvements. We start with a complete set
of forking diagrams for (cpS):

Forking Diagrams for (cpS)Lemma 3.15 (Forking Diagrams for (cpS))
A complete set of forking diagrams for (cpS) in surface contexts is as follows.

s
S,cpS //

LRPgc,a
��

s′

LRPgc,a
���
�

s1 S,cpS
//___ s′1

s
S,cpS //

LRPgc,a
��

s′

LRPgc,azzu
u
u
u

s1

s
S,cpS //

LRPgc,gc
��

s′

LRPgc,gc

���
�
�
�
�
�
�

s1
LRPgc,cp

��
s2

s

LRPgc,cp
��

S,cpS
��

0
�

�
s′

s
S,cpS //

LRPgc,a

��

S,ucp ((P
PPPPPP s′

LRPgc,gc
���
�

s′2
LRPgc,a
���
�

s1 S,ucp
//______ s′1

s
S,cpS //

LRPgc,gc

��

S,ucp

##H
H

H
H s′

gc

{{v
v
v
v

LRPgc,gc

���
�
�
�
�
�

s′′2

gc ##F
F

F
F

s1 S,ucp
//________ s′1

s
S,cpS //

LRPgc,a
��

S,ucp

&&M
MMMMM s′

LRPgc,gc
���
�

s1
LRPgc,gc

��

s′1

LRPgc,axxq q
q
q
q

s2

a ∈ {seq, case}

Proof
We have to take into account that (cpS) may trigger a garbage collection, but only
in the case that corresponds to an (ucp)-transformation. The case analysis is then
straightforward.

We give an analysis of the maximal space increase of (cpS) in surface contexts:

Space-Property of (cpS) in Surface ContextsProposition 3.9 (Space-Property of (cpS) in Surface Contexts)
The transformation (S, cpS) increases the maximal space at most by size(v), where
v is the copied abstraction.
Proof
Let s S,cpSÐÐ→ s′, where v is the copied abstraction.

We use the diagrams in Lemma 3.15 and prove the claim by induction on the fol-
lowing measure of s: (i) the number of LCSC-reductions µ1, (ii) the measure µlll

and (iii) the measure synsize.
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If s is a LRPgc-WHNF, then s′ is also a LRPgc-WHNF and the claim holds, since
size(s) = size(v) = size(s′).

Now s has a LRPgc-reduction and we go through each applicable diagram in turn.

If diagram 1 applies, then the induction hypothesis applies to s1 and we have
size(s) + size(v) = size(s′), hence spmax(s′) ≤ spmax(s) + size(v).

If diagram 2, 3 or 4 applies, then the computation is similar as above.

If diagram 5 applies, then spmax(s) = spmax(s′) and spmax(s1) = spmax(s′1)
by Theorem 3.10. Then we have spmax(s) = max(size(s), spmax(s1)) and also
spmax(s′) = max(size(s′),size(s′2), spmax(s1)). Hence the claim holds in this
case. The reasoning for diagram 6 is almost the same.

If diagram 7 applies, we have spmax(s) = max(size(s), spmax(s1)) and also
spmax(s′) =max(size(s′),size(s′1), spmax(s2)). Hence the claim holds.

We also give an estimation for the general (cp):

Space-Property of (cp)Theorem 3.12 (Space-Property of (cp))
If s cpÐ→ t, then spmax(t) ≤ (rln(s) + 2) ⋅ size(v) + spmax(s).
Proof
Since (cpS) is analyzed above, we assume that the target position of (cp) is within
an abstraction.

Let p be the position of the variable x that is replaced by the (cp) transformation.
This position is now labeled with L. We now analyze the trace of this label in a
normal order reduction sequence s LRPgc

ÐÐ→ s1
LRPgc
ÐÐ→ . . .

LRPgc
ÐÐ→ sn where we assume

that it may occur multiple times in the expressions and we also assume that the
label is removed if it is replaced by an abstraction.

An invariant property is, that for every si the label L occurs at most once in every
subexpression that is an abstraction. This can be verified by examining the effect
of all possible normal order reduction steps, where we only consider the rules that
make a change:

• (cp): It may copy an abstraction with a label in a reduction context of si.

• (lbeta): It may remove a lambda from the abstraction that contains a label L.

Since every (cp) applied in normal order is either the last reduction step in a suc-
cessful normal order reduction sequence or followed by an (lbeta)-reduction, the
total number of label occurrences is at most rln(s) + 2.

Now we examine the normal order reduction sequence of t. The only difference is
that the label positions are occupied by the copied abstraction. Hence the maximal
size difference is (rln(s) + 2) ⋅ size(v).
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This also allows an estimation of several applications of (S, cpS):

Estimation of Space Increase of Several (S, cpS)Proposition 3.10 (Estimation of Space Increase of Several (S, cpS))
Let s be an expression. If s is transformed into s′ by an arbitrary number of space im-
provements that do not increase the size of abstractions, including at most n transfor-
mations that increase the maximal space consumption by at most ci for i ∈ {1, . . . , n}
and also bym transformations (S, cpS), then spmax(s′) ≤ spmax(s)+ (∑ ci)+m ⋅V ,
where V is the maximum of the sizes of abstractions in s.
Proof
This follows from Proposition 3.9 and since

(S,cpS)
ÐÐÐ→ does not increase the size of

abstractions.

The maximal space increase of (cp) may be linear in the number of reduction steps and
exponentially in the number of applications of the (cp)-transformation. Examples for
this behavior can be constructed as in the proof of Proposition 3.7.

3.4.14 Summary

In this section we summarize the results of the previous sections.

The normal order reduction is a maximal space improvement except of (cp):

Space-Property of Normal Order Reduction in LRPTheorem 3.13 (Space-Property of Normal Order Reduction in LRP)
The normal order reduction of LRP is a maximal space improvement except of (cp).
Proof
This follows from Theorem 3.1, Theorem 3.3, Theorem 3.4 and Theorem 3.9.

We give an overview of all results w.r.t. space consumption of this section, where pre-
vious work (see (SSS17, SSS15a, SS15, SSS16b, SSS15b)) shows, that all of the following
transformations are time improvements.

Space-Properties of Several LRP-TransformationsTheorem 3.14 (Space-Properties of Several LRP-Transformations)
The following table shows the space properties of all transformations analyzed in
this section:
Space-Property Transformations
≤spmax (lbeta), (seq), (case), (lll), (gc), (case*), (caseId)
∼spmax (cpx), (abs), (abse), (xch), (ucp), (case-cx), (gc=)
/≤spmax (cpcx), (cpS)
space-safe up to 1 (T,cpcxT)
space-safe up to size(v) (S,cpS)

where v is the copied abstraction
space-leak (cp), (cse), (soec)

Proof
This follows from Theorem 3.2, Theorem 3.5, Theorem 3.6, Theorem 3.7, Theorem
3.8, Theorem 3.10, Theorem 3.11, Theorem 3.12, Theorem 3.13, Proposition 3.6, Pro-
position 3.7, Proposition 3.8 and Proposition 3.9.
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3.5 Optimizations with Controlled Space Usage

Especially transformations like (cse), that are space-leaks but time improvements lead
to the following proposal of space-controlled program optimizations in LRP:

1. Consider a program that is to be optimized by transformations.

2. Use only program transformations that are correct w.r.t. contextual equivalence.

3. Use only time improving transformations that are also space improvements. Several
of such transformations are given by the table of Theorem 3.14. Since only space
improvements are applied, the program itself is never enlarged.

4. Further time improving transformations can be applied that are not guaranteed to
be space improvements, but there is an upper bound on themaximal space increase
like (T,cpcxT) and (S,cpS).

5. There are transformations such as unrestricted (cp) and common subexpression
elimination (cse), that are time improvements but as the concrete transformations
may be space leaks, it comes with a higher risk of high space consumption. Hence
in such cases further information on the maximal space increase is required for
space-safe optimizations.

We now give examples for space improvements of recursive functions. See Section 2.6
for definitions of needed functions.

3.5.1 Associativity of Append

In (GS01), associativity of append was analyzed and the results use several variants of
their improvement orderings. In particular their observation of stack and heap space
made the analysis rather complex. We got an easier to obtain and to grasp result due
to our relaxed measure of space.

For a precise definition of the append-function for lists see Section 2.6.

Space-Difference between Left- and Right-Associative AppendProposition 3.11 (Space-Difference between Left- and Right-Associative Append)
Under the assumption that only the lists are evaluated, the following inequality holds,
where xs, ys and zs are variables.

spmax(R[((xs ++ ys) ++ zs)]) ≤ 4 + spmax(R[(xs ++ (ys ++ zs))])

Proof
We start with the same reduction context R. Then R[((xs ++ ys) ++ zs)] has to
be compared with R[(xs ++ (ys ++ zs))] and induction is used on the number of
recursive expansions of ++. The letrec-environments are now shifted to the top
using the space-properties of (lll) and (ucp) (see Theorem 3.3 and Theorem 3.10).

First we compute the left-hand side:

1. The body of append is copied: R[((xs ++ ys) ++body zs)]
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2. Two (lbeta) reduction steps lead to:

R[letrec xs1 = (xs ++ ys), ys1 = zs in (case xs1 . . .)]

3. The body of append is copied:

R[letrec xs1 = (xs ++body ys), ys1 = zs in (case xs1 . . .)]

4. Again two (lbeta)-steps are applied and we get:

R[letrec xs1 = (case xs2 . . .), xs2 = xs, ys2 = ys, ys1 = zs in (case xs1 . . .)]

The computation for the right-hand side is as follows:

1. The body of append is copied:

R[(xs ++body (ys ++ zs))]

2. Two (lbeta) reduction steps lead to:

R[letrec xs1 = xs, ys1 = (ys ++ zs) in (case xs1 . . .))

Now we have the following cases:

1. The local evaluation of xs does not terminate. Then the space improvement
relation holds independent of the size.

2. xs locally evaluates to the empty list. For the left-hand side the reduction result
is as follows:

R[letrec xs1 = ys2, xs2 = xs, ys2 = ys, ys1 = zs in (case xs1 . . .)]

For the right-hand side we haveR[letrec xs1 = xs, ys1 = (ys ++ zs) in ys1)],
the next step yields R[letrec xs1 = xs, ys1 = (ys ++body zs)} in ys1)] and
then R[letrec xs1 = xs, ys1 = (case ys of {(Nil→ zs) . . .}) in ys1], which
is the same as for the left-hand side. The space maximum of the left expression
is higher by 4 than the right one. The latter steps do not contribute to the space
maximum, thus the claim holds in this case.

3. xs locally evaluates to (a ∶ as). For the left-hand side we first have:

R[letrec xs1 = a ∶ (as ++ ys), ys1 = zs} in (case xs1 . . .)]

Then this reduces to R[(a ∶ ((as ++ ys) ++ zs))], where xs1 is garbage collec-
ted. For the right-hand side we have R[a ∶ (as ++ (ys ++ zs))]. Now induction
on the number of steps shows the claim.

Finally an application of Lemma 3.6 shows the claim.

Note that for the example in (GS01), where the difference in space consumption is
linear, the hole of the context is within an abstraction.
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3.5.2 Two Sum Variants

We reconsider the definitions of three variants of sum of a list and the space analy-
sis in (GS01). If the list is unevaluated, then the different sum-versions below would
change the evaluation order of parts of the expressions, which might introduce space
leaks. Hence, we avoid this complication for our analysis and use a fully evaluated list
[1, . . . , n] of integers as argument for the sum-functions.

We make further simplifications for the analysis: We assume that positive integers are
available (for example Peano integers) and assume that an integer occupies a space
unit of 1. Also it is assumed that addition (+) is a strict function in two arguments and
that n +m immediately returns the result without using extra space. These simplifi-
cations are justified, because we are only interested in analyzing the recursive variant
in comparison with the tail recursive variants and since we could also use Boolean
values or constants for numbers.

The different sum-variants are defined as follows:
sum = λxs.case xs of {(Nil→ 0) ((y ∶ ys)→ y + (sum ys))}
sum′ = λxs.asum 0 xs
asum = λa.λxs.case xs of {(Nil→ a) ((y ∶ ys)→ asum (a + y) ys)}
sum′′ = λxs.asum′ 0 xs
asum′ = λa.λxs.case xs of {

(Nil→ a)
((y ∶ ys)→ letrec a′ = a + y in seq a′ (asum′ a′ ys))}

Let us assume that the definitions of the functions are in an outer letrec-environment
and then we compare sum [1, . . . , n], sum′ [1, . . . , n] and sum′′ [1, . . . , n]. We also as-
sume that the input environment including the list is not garbage collected during the
evaluation.

First we analyze the space usage for an empty list:

• For sum the maximal space consumption, without the outer letrec and without
the input list, is: 8 + 1 = 9

sum Nil
→ sumbody Nil
→ letrec xs = Nil in case xs of {(Nil→ 0) ((y ∶ ys)→ y + sum ys)}
→ 0

• For sum′ the maximal space consumption, without the outer letrec and without
the input list, is: 9 + 1 = 10

sum′ Nil
→ sum′body Nil
→ letrec xs = Nil in asum 0 xs
→ letrec xs = Nil in asumbody 0 xs
→ letrec xs = Nil, a = 0, xs′ = xs in case xs′ of {(Nil→ a)

((y ∶ys)→ asum (y+a) ys)}

• For sum′′ the analysis is analogous, the maximal space consumption is 10+ 1 = 11.
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If the lists are not empty, then the analysis results in intermediate steps:

• For sum [i, . . . , n] the maximal space consumption, without the outer letrec and
without the input list, is: 2 ⋅ n + 2 + size(sumbody) = 2 ⋅ (n + 1) + 8
The corresponding expression:

1+ (2+ . . .+ (n+ ((λxs.case xs of {(Nil→ 0) ((y ∶ ys)→ y +sum ys)}) Nil)))

• For sum′ [i, . . . , n] the maximal space consumption, without the outer letrec and
without the input list, is: 2 ⋅ n + 2 + size(asumbody) = 2 ⋅ (n + 1) + 9
The corresponding expression:

letrec xsn = Nil in asumbody (((0 + 1) + 2) + . . . + n) xsn

• For sum′′ [i, . . . , n] the maximal space consumption, without the outer letrec and
without the input list, is the following constant: 1 + 2 + 10 = 13
The corresponding expression:

letrec ys = Nil, a′ = n in seq a′ (asum′body a′ ys)

The functions sum, sum′ and sum′′ are not related by any improvement relation due to
the change in the evaluation order of the spine and elements of the argument list, in
case the list is not completely evaluated. In the latter case transforming one into the
other may indeed be a space-leak, independent of the length of the list since it would
be an instance of (soec).

3.5.3 Weak Space Improvements

As a further comparison we check and compare our results with those for weak space
improvements in Figure 2 in (GS99):

The claim on (weak-value-beta) there appears to be practically almost useless: Copying
once indeed can only increase the space by a linear function in the size of the program,
even copying into an abstraction is permitted. However, repeating (weak-value-beta)
n-times may increase the program exponentially in n by repeated doubling.The trans-
formation rule in (GS99) permits the following, where C is a value as context.

letrec x = C[x] in C[x]
→ letrec x = C[C[x]] in C[C[x]]
→ letrec x = C[C[C[C[x]]]] in C[C[C[C[x]]]]

Hence a sequence of several weak space improvement steps is not space-safe in the
intuitive sense. According to our definition it is a space leak for this particular example.

Our foundation allows to improve the claims on the space-properties of last two let-
shuffling rules of (GS99), which are (strong) space improvements w.r.t. our measure
and definitions, since we have proved that (lll) is a space equivalence.
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3.5.4 Evaluations in Limited Space

A practical approach is to limit the allowed space usage by a function.

Evaluation SequenceDefinition 3.13 (Evaluation Sequence)
Let S be a set of closed expressions of the same datatype, s ∈ S and the full evaluation
result is eval(s).
Let an evaluation sequence of s be a list L of all positions of eval(s), such that
whenever p1 is a (proper) prefix of p2, then p1 is earlier in L than p2.
An evaluation of s controlled by L is the reduction sequence for s where the lazy
evaluation evaluates the tail-nodes top-down in s, starting with the first position in
L and whenever the evaluation stops, tries the expression at the next position in L.
Note that the expression s itself may evaluate deeper, for example:

letrec xs = [1..n] in seq (length xs) xs

Now we can define the notion of limited space:

Evaluation in Limited SpaceDefinition 3.14 (Evaluation in Limited Space)
If there is a function f from integers to integers, such that for all s ∈ S and all eva-
luation sequences Ls of s, the evaluation of s controlled by Ls requires at most space
size(eval(s))+f(size(eval(s))), then we say the expressions of S can be evaluated
in f -space. If f(x) is a constant, then it can be evaluated in constant space.

For example, the set of list expressions [1..n] can be evaluated in constant space. We
also conclude that for all list expressions that result in finite lists of integers and that
can be evaluated in constant space and are non-empty, replacing sum by sum′′ (see
Section 3.5.2) is a space improvement.

3.5.5 Examples for the Practical Approach

As conclusion of this section we give examples of the practical approach of optimizing
programs w.r.t. space consumption.

We reconsider the (caseId)-transformation. The transformations in the following all
require typing, they are not correct in an untyped setting and (caseId) is the heart of
these transformations.

Space-Comparison of map (λx.x) and id

To show that id is a maximal space improvement of map (λx.x), we first show the
contextual equivalence of the expressions.

The applicative bisimulation in the call-by-name variant of the calculus LRP can be
used here (see (SS14)) together with the equivalence of LRP and LRPgc (see Proposition
3.1). The proof is by standard methods. We have to check the cases:

1. If xs is �, then the equivalence holds.

2. If xs = Nil, then the equivalence holds by simple computation.
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3. If xs = (a ∶ as), then map (λx.x) (a ∶ as) reduces to (a ∶ map (λx.x) as) and the
right-hand side to (a ∶ as). We now can go on with the applicative bisimulation.

To show that the space improvement property holds, we use the context lemma for
maximal space improvements (Lemma 3.6). Let R be a reduction context. We compare
R[map (λx.x) xs] and R[((λx.x) xs)]. Then we have the following cases:

1. If xs is not convergent, then the space improvement property holds.

2. If the left-hand side reduces to R[mapbody (λx.x) xs], then this reduces to:

R[letrec f = (λx.x), xs′ = xs in case xs′ . . .]

If xs reduces to the empty list, then the maximal space consumption of the right-
hand side is smaller than that of the left-hand side. If xs reduces to (a ∶ as), then
we also see that the maximal space consumption of the left-hand side is greater
than that of the right-hand side and by induction, the maximal space consumption
of the left-hand side is greater then that of the right-hand side.

Space-Comparison of foldr (∶) [] and id

To show that id is a maximal space improvement of foldr (∶) [], we first show the
contextual equivalence of the expressions.

As in the example before we use applicative bisimulation in the call-by-name variant
of LRP, where we have to check the following cases:

1. If xs is �, then the equivalence holds, since the functions are strict in the argument.

2. If xs = Nil, then the equivalence holds by simple computation.

3. If xs = (a ∶ as), then foldr (∶) [] (a ∶ as) reduces to (a ∶ foldr (∶) [] as) and the
right-hand side to (a ∶ as). This is sufficient for the applicative bisimulation.

To show that the space improvement property holds, we use the context lemma for
maximal space improvements (Lemma 3.6). Let R be a reduction context. We compare
R[foldr (∶) [] xs] and R[((λx.x) xs)]. Then we have the following cases:

1. If xs is not convergent, then the space improvement property holds.

2. If the left-hand side reduces to R[foldrbody (∶) [] xs], then this reduces to:

R[letrec f = (∶), e = [], xs′ = xs in case xs′ . . .]

If xs reduces to the empty list, then the maximal space consumption of the right-
hand side is smaller than that of the left-hand side. If xs reduces to (a ∶ as), then
we also see that the maximal space consumption of the left-hand side is greater
than that of the right-hand side and by induction, the maximal space consumption
of the left-hand side is greater then that of the right-hand side.
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Space-Comparison of filter (λx.True) and id

To show that id is a maximal space improvement of filter (λx.True), we first show
the contextual equivalence of the expressions.

As in the examples before we use applicative bisimulation in the call-by-name variant
of LRP, where we have to check the following cases:

1. If xs is �, then the equivalence holds, since the functions are strict in the argument.

2. If xs = Nil, then the equivalence holds by simple computation.

3. If xs = (a ∶as), then filter (λx.True) (a ∶as) reduces to a ∶ filter (λx.True) as
and the right-hand side to (a ∶as).This is sufficient for the applicative bisimulation.

To show that the space improvement property holds, we use the context lemma for
maximal space improvements (Lemma 3.6). Let R be a reduction context. We compare
R[filter (λx.True) xs] and R[((λx.x) xs)]. Then we have the following cases:

1. If xs is not convergent, then the space improvement property holds.

2. If the left-hand side reduces to R[filterbody (λx.True) xs], then this reduces to:

R[letrec p = (λx.True), xs′ = xs in case xs′ . . .]

If xs reduces to the empty list, then the maximal space consumption of the right-
hand side is smaller than that of the left-hand side. If xs reduces to (a ∶ as), then
we also see that the maximal space consumption of the left-hand side is greater
than that of the right-hand side and by induction, the maximal space consumption
of the left-hand side is greater then that of the right-hand side.

3.6 Environment for Space Analyses

In this section we construct an environment for space analyses. This environment
helps to falsify conjectures that certain transformations are space improvement and
moreover we give the results of different analyses, including the practical impact of
garbage collection.

3.6.1 Abstract Machine M1sp
We adapt the abstract machineM1 as defined in Section 2.4.2 so that it has a space con-
sumption that is compatible to the calculus LRPgc and therefore can be used to con-
struct an environment to perform space analyses for LRPgc. The result is the abstract
machine M1sp. This section is primarily based on (DS16) and parts of the correctness
are from (SSD18).

First of all we give a definition of a garbage collector as an additional transition rule
for the abstract machineM1, that has to be applied whenever possible to be compatible
to the eager garbage collection approach of LRPgc (compare Definition 3.2):
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Additional M1-Rule (GC)Definition 3.15 (Additional M1-Rule (GC))
(GC) ⟨H,{xi = si} ∣ s ∣ S⟩→ ⟨H ∣ s ∣ S⟩

where {xi = si} is the maximal set such that for all i:
xi /∈ FV(H), xi /∈ FV(s), #app(xi) /∈ S, #seq(xi) /∈ S and if xi ∈ FV(alts) then
#case(alts) /∈ S

Since the heap can be seen as a top-letrec and (GC) only removes bindings on the
heap, this is a direct implementation of (gc) in LRPgc (compare Definition 3.2). The
requirements for the stack are needed, because the M1 stores parts of the program on
the stack during execution.

The space measure spmax (see Definition 3.6) abstracts over local peaks, since only the
maximum of such values that do not allow a garbage collection are considered during
the maximum. This was not only very useful during the last sections, but also w.r.t.
the abstract machine. For example: Let s be the following LRPgc-expression, where t
is an arbitrary LRPgc-expression:

((seq True (λx.t)) True)

Then we can evaluate s using the normal order reduction of LRPgc, where we denote
the size of each expression besides:

((seq True (λx.t)) True) 5 + size(t)
LRPgc,seq−cÐÐÐÐÐÐ→ ((λx.t) True) 3 + size(t)
LRPgc,lbetaÐÐÐÐÐÐ→ (letrec x = True in t) 1 + size(t)

. . .

The following machine expression sme corresponds to s (see Definition 2.30 for the
translation):

letrec x1 = True, x2 = λx.t in ((seq True x2) x1)

We evaluate this expression sme using the normal order reduction of LRPgc, where we
again denote the size of each expression besides:

letrec x1 = True, x2 = λx.t in ((seq True x2) x1) 5 + size(t)
LRPgc,seq−inÐÐÐÐÐÐÐ→ letrec x1 = True, x2 = λx.t in (x2 x1) 3 + size(t)
LRPgc,cp−inÐÐÐÐÐÐ→ letrec x1 = True, x2 = λx.t in ((λy.t) x1) 4 + 2 ⋅ size(t)

LRPgc,gcÐÐÐÐÐ→ letrec x1 = True in ((λy.t) x1) 3 + size(t)
LRPgc,lbetaÐÐÐÐÐÐ→ letrec x1 = True in (letrec y = x1 in t) 1 + size(t)

LRPgc,llet−inÐÐÐÐÐÐÐ→ letrec x1 = True, y = x1 in t 1 + size(t)
. . .

Since spmax only takes into account those expressions after the garbage collection,
we have spmax(s) = 5 + size(t) = spmax(sme), otherwise the duplicated abstraction
λx.t, that is directly garbage, would be counted and the spmax of sme would be strictly
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greater than the one of s. Especially those kind of local space peaks distort the results
and therefore are ignored by spmax.

However these kind of peaks can occur in other cases, where we first give definitions
of the size of abstract machine states and the overall space measure for the abstract
machine:

Size of M1-State msizeDefinition 3.16 (Size of M1-State msize)
The size of a M1 state S = ⟨H ∣ s ∣ S⟩ is defined as follows:
Let H = {x1 ↦ e1, . . . , xn ↦ en}, then the size of the heap msizeH is defined as
∑n

i=1 size(ei).
The size of stack msizeS is the sum of the sizes of the stack-entries: #app(x) and
#seq(x) are counted as 1, #upd(x) as 0 and #case(alts) as follows:
For a case-alternative (c y1 . . . yn)→ t the size is defined as 1+size(t) and the size
of #case(alts) is the sum over all of such sizes of the case-alternatives alts.
Finally msize(S) ∶= msizeH + size(s) + msizeS .
msize is compatible to size:The heap of a state can be seen as an outer-letrec, hence
it is compatible to size, that the mapping-variables of the heap are not counted, while
the bindings are counted using size. The machine expression is directly measured by
size. #app(x) and #seq(x) are measured with size 1, since the corresponding applica-
tion and seq-expression is still not evaluated, even if it is not visible anymore as part
of the control expression. #case(alts) contains the unevaluated case-alternatives and
#upd(x) is measured with size 0, since the (Lookup) that created this stack-entry only
moved the corresponding heap-binding to the control expression. However after an
(Update) the msize of a state might be increased, as we see in the following example:

Consider the LRPgc-expression t, where x occurs in the LRPgc-expression t′:

letrec x = True, y = t′ in seq x y

The LRPgc-evaluation only needs a single (seq-in)-step before the evaluation of t′
starts:

letrec x = True, y = t′ in y

Hence the maximal msize so far is 2+ size(t′). Now we let the abstract machine M1
evaluate the machine expression t to the same point:

⟨∅ ∣ letrec x = True, y = t′ in seq x y ∣ []⟩ 2 + size(t′)
LetrecÐÐÐ→ ⟨x = True, y = t′ ∣ seq x y ∣ []⟩ 2 + size(t′)

Unwind2ÐÐÐÐ→ ⟨x = True, y = t′ ∣ x ∣ [#seq(y)]⟩ 2 + size(t′)
LookupÐÐÐ→ ⟨y = t′ ∣ True ∣ [#upd(x), #seq(y)]⟩ 2 + size(t′)
UpdateÐÐÐ→ ⟨x = True, y = t′ ∣ True ∣ [#seq(y)]⟩ 3 + size(t′)

SeqÐÐ→ ⟨x = True, y = t′ ∣ y ∣ []⟩ 1 + size(t′)
. . .

The last state above can be directly translated to letrec x = True, y = t′ in y as LRPgc-
expression. The abstract machine has 3 + size(t′) as maximal msize so far, while
LRPgc above only needed a maximum of 2 + size(t′) to the same evaluation point.
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This is caused by the (Update) before (Seq) can be performed and leads to differences in
space measurement between LRPgc and M1, since the abstract machine M1 duplicates
the entry, while a (seq-in) evaluates directly. From an implementation point of view a
solution is the definition of an additional rule (UpdateSeq), that combines (Update) and
the directly following (Seq) in such cases. Such an effect occurs whenever an (Update)
is caused by a constructor applications. This leads to the following definition of the
overall space measurement of evaluation sequences of the M1:

M1 Space Measure mspmaxDefinition 3.17 (M1 Space Measuremspmax)
Let s be a terminating machine expression, i.e. ⟨∅ ∣ s ∣ []⟩ = S1 → ⋅ ⋅ ⋅ → Sn. Then the
space measure for the M1 is defined as follows:

mspmax(s) ∶=max{msize(Si) ∣ 1 ≤ i ≤ n,¬(Si−1 = ⟨H, c #»x ,S⟩ ∧ Si−1
UpdateÐÐÐ→ Si)

and (GC) is not applicable to Si}

I.e. states after (Update)-transitions are ignored for constructor applications and also
states where (GC) is applicable.

Moreover every (Lookup) triggers an (Update).There are situations where a variable as
control expression leads to another variable as control expression (e.g. variable chains
in letrec-environments). For example the following state leads to three (Update) in
sequence:

⟨H ∣ True ∣ #upd(x) ∶ #upd(y) ∶ #upd(z) ∶ S⟩

Seen as a letrec-environment, letrec x = y, y = z, z = True after a few steps yields
letrec x = True, y = True, z = True. But LRP does copy such values right to the
needed position, without copying it to each position of the corresponding chain (see
Definition 2.5).

The following example even shows that the difference in space consumption is at least
c ⋅ n, where c is the size of the value v:

letrec id = (λx.x), x1 = (id x2), . . . , xn−1 = (id xn), xn = v in seq x1 (T x1 x2 . . . xn)

The tuple (T x1 x2 . . . xn) ensures that none of the bindings can be removed by the gar-
bage collector. The execution by the M1 leads to a sequence of n (Update)-transitions,
where the value v gets copied to each binding of the chain.

To avoid this effect, the rule (SCRem) is introduced and has to be applied whenever
possible:

Additional M1-Rule (SCRem)Definition 3.18 (Additional M1-Rule (SCRem))
(SCRem) ⟨H ∣ s ∣ #upd(x) ∶ #upd(y) ∶ S⟩→ ⟨H[x/y] ∣ s[x/y] ∣ #upd(x) ∶ S[x/y]⟩

If we consider the example above, then we have:

⟨H ∣ True ∣ #upd(x) ∶ #upd(y) ∶ #upd(z) ∶ S⟩
(SCRem)ÐÐÐÐ→ ⟨H[x/y] ∣ True ∣ #upd(x) ∶ #upd(z) ∶ S[x/y]⟩
(SCRem)ÐÐÐÐ→ ⟨H[x/y, x/z] ∣ True ∣ #upd(x) ∶ S[x/y, x/z]⟩
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The rule (SCRem) is correct, since the state ⟨H ∣ v ∣ #upd(x) ∶ #upd(y)⟩ corresponds to
letrecH, x = v, y = x in y with x /= y before application and after the application it is
⟨H[x/y] ∣ v[x/y] ∣ #upd(x)⟩ corresponding to letrec H[x/y], x = v[x/y] in y[x/y]
and replacing variables by variables is shown to be correct in (SSS08b).

Indirections in general lead to such effects, thus wemoreover require that the machine
expressions are free of variable-to-variable bindings in letrec-expressions. This can
be achieved by straightforward substitutions before the evaluation starts.

Now we summarize the requirements and modifications made to the M1:

Abstract Machine M1spDefinition 3.19 (Abstract Machine M1sp)
The abstract machine M1sp is the abstract machine M1, but additionally the transition
rules (GC) and (SCRem) have to be applied whenever possible and moreover an input
machine expression is required to have no variable-to-variable bindings in letrec-
expressions.
All our modifications and requirements yield a compatible space measurement bet-
ween LRPgc and M1sp:

Space Equivalence between LRPgc and M1spTheorem 3.15 (Space Equivalence between LRPgc and M1sp)
If an LRPgc-expression s is translated to its corresponding machine expression sme,
then s and sme are space equivalent, if M1sp is used for the evaluation of sme.

Proof
The reverse of the transformation (ucp) allows a step-by-step translation from
LRPgc-expressions to machine expressions, where (ucp) is a space equivalence (see
Theorem 3.10).

Since the garbage collection is similar and as often applied as the one of LRPgc, the
only difference w.r.t. to evaluation and therefore space consumption are (Update)-
transitions for constructors and indirections.

The (Update)-transitions for constructors are handled by not counting the interme-
diate expressions caused by (Update) if the control expression is a constructor (also
a combination in form of additional rules such as (UpdateSeq) or (UpdateBranch)
would solve this issue, that simply combine (Update) and (Seq) or (Update) and
(Branch) in such cases).

Explicit variable-to-variable bindings are eliminated before the evaluation starts
by straightforward substitutions. Implicit variable-to-variable-bindings may occur
through the stack and are handled by the transition rule (SCRem), that has to be
applied as often as possible.

Thus the abstract machine M1sp can be used to perform space analyses of LRPgc. This
is useful to refute wrong space improvement conjectures and to perform analyses on
larger and more complex programs. The M1sp is implemented in the tool LRPi toge-
ther with an interface to define (space) measures, different garbage collection modes
and other features, e.g. to execute an LRP-program with different inputs (a specified
variable that is instantiated with a value). More details are in (DS16, Dal16).
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3.6.2 Analyses of Examples

In this section we perform analyses using the tool LRPi, where the compatibility of its
abstract machine M1sp was shown in Section 3.6.1.

The LRPi support conjectures of space improvements by affirmative tests or refutes
the space improvement property of a transformation by finding a counterexample.
Since LRPi only tests in the empty environment, a complete test would require to
perform the test alsowithin contexts, which cannot be done completely, since there are
infinitely many, even using context lemmas to minimize the set of necessary contexts.
Using a simulation mode, the contexts could be restricted to testing the functions on
arguments. For these tests typing makes a big difference, since certain transformations
are correct only if typing is respected and also the space improvement property may
depend on the restriction to typed arguments or type-correct insertion into contexts.

In the following subsections we perform analyses using the LRPi. Needed function
definitions can be found in Section 2.6. The LRPi can be found at:

http://www.ki.cs.uni-frankfurt.de/research/lrpi

Variants of fold

Following (SSS15a), we use the LRPi to find an example in which foldl is worse than
foldr if preconditions on arguments are not fulfilled: Choosing xor for f and False
as e, the precondition f e s ⪯ f s e holds, but (f (f s1 s2) s3) ⪯ (f s1 (f s2 s3))
is not fulfilled for s1 = True, s2 = False, s3 = False. A list starting with a single
True element followed by k − 1 False-elements generated using a take-function/list-
generator approach (using a Peano encoding to represent the numbers) is used as input
list. We use False as neutral element.

Note that the Peano encoding has an impact on the size, since it consists of the con-
structors Zero and Succ, each with size 1. We configure LRPi to collect garbage
whenever possible to be compatible to LRPgc and get the following results for the
different variants of fold:

k 25 50 75 100 125 150 175 200 225

foldl using xor
mln 302 602 902 1202 1502 1802 2102 2402 2702
mlnall 1085 2160 3235 4310 5385 6460 7535 8610 9685
spmax 211 411 611 811 1011 1211 1411 1611 1811

foldl' using xor
mln 327 652 977 1302 1627 1952 2277 2602 2927
mlnall 1235 2460 3685 4910 6135 7360 8585 9810 11035
spmax 87 112 137 162 187 212 237 262 287

foldr using xor
mln 279 554 829 1104 1379 1654 1929 2204 2479
mlnall 1016 2016 3016 4016 5016 6016 7016 8016 9016
spmax 90 115 140 165 190 215 240 265 290

http://www.ki.cs.uni-frankfurt.de/research/lrpi
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As we see, foldr indeed has a better runtime behavior than foldl and the space
consumption of foldr and foldl' are almost equal. Moreover, we see that foldl has
a much worse space behavior than foldl'. This difference is caused by the known
stack problems of foldl that can be solved in the case of xor by using foldl' instead.
The linear increase of the space consumption for foldl' and foldr is caused by the
Peano numbers of the take-function/list-generator approach.

We can identify the stack overflow problem of the left-fold in this scenario in the
following space diagram using k = 225, directly calculated by LRPi. Note that (gc)-
reductions are not counted by mlnall, but counted in the following diagram:

1421 2843 4264 5686 7107 8528

260
519
779

1038
1298
1557

1
0 i

size(si)

Let si be the i-th expression during execution. Because of lazy evaluation, the foldl-
expression is expanded step by step without calculating any intermediate results until
foldl itself is no longer required and removed by the garbage collector. This leaves a
long chain of nested (++)-function calls that lead to the big rise of the curve, since this
causes a long chain of (lbeta)- and (case)-transformations. The small decrease before
the rise of the curve is caused by the removal of the definition of foldl by the garbage
collector, because the definition of foldl is not needed anymore after the expansion
is completed.

Moreover we want to analyze the impact of the Peano encoding. I.e. we perform the
same analysis again, but the LRPi is configured to treat arbitrary Peano numbers as of
size 1. The runtime results are the same as above, thus omitted:

k 25 50 75 100 125 150 175 200 225

spmax for foldl 211 411 611 811 1011 1211 1411 1611 1811
spmax for foldl' 63 63 63 63 63 63 63 63 63
spmax for foldr 66 66 66 66 66 66 66 66 66

The space consumption of foldl' and foldr is constant since the eager garbage
collection can collect any so far processed parts of the list.

But even with the more realistic measurement of numbers, foldl has the same space
behavior as with a fully counted Peano encoding as above, since the impact of the stack
overflow problem of left-fold is greater then the space impact of the Peano numbers.
This can be seen if we compare the following diagram for left-fold with k = 225 with
the one above: The only difference is the weaker impact of the Peano numbers in the
beginning. The diagram has a few steps less, since all data points where (GC) does not
have an impact on the size are removed.
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Nowwe analyze the impact of inlining w.r.t. fold-functions. We use the same input list
and neutral element as above and motivated by the example above, the LRPi is again
configured to treat the size of numbers as 1. First of all we give the definitions of the
inlined variants of folds with xor as function (see Section 2.6 for the definitions of the
fold-functions and xor):

Inlined Versions of foldl, foldl' and foldr with xor as FunctionDefinition 3.20 (Inlined Versions of foldl, foldl' and foldr with xor as Function)
We give the definition of the inlined variant of foldl with xor in detail:

foldlxor = λz, xs.case xs of {
([]→ z)
((y ∶ ys)→ foldlxor

(case z of {
(True→ case y of {

(True→ False)
(False→ True)})

(False→ y)})
ys)}

The inlined versions foldl'xor and foldrxor can be constructed analogous to the
inlined version of foldl above.
Inlining copies the defining lambda-expression for xor to a call site and then applies
(lbeta), (ucp), (cpx), (gc) perhaps several times to obtain a non-optimized variant of
inlined definitions. To obtain the definitions as given in Definition 3.20, the passing
through of the unneeded combination function, that is now directly implemented in
the body of the fold-function, is removed by the elimination of the corresponding
argument.

k 100 200 300 400 500 600 700 800 900

foldl using xor (without inlining)
mln 1214 2414 3614 4814 6014 7214 8414 9614 10814
mlnall 4353 8653 12953 17253 21553 25853 30153 34453 38753
spmax 819 1619 2419 3219 4019 4819 5619 6419 7219

foldlxor (with inlining)
mln 910 1810 2710 3610 4510 5410 6310 7210 8110
mlnall 3543 7043 10543 14043 17543 21043 24543 28043 31543
spmax 869 1669 2469 3269 4069 4869 5669 6469 7269
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k 100 200 300 400 500 600 700 800 900

foldl' using xor (without inlining)
mln 1315 2615 3915 5215 6515 7815 9115 10415 11715
mlnall 4959 9859 14759 19659 24559 29459 34359 39259 44159
spmax 63 63 63 63 63 63 63 63 63

foldl'xor (with inlining)
mln 1011 2011 3011 4011 5011 6011 7011 8011 9011
mlnall 4149 8249 12349 16449 20549 24649 28749 32849 36949
spmax 62 62 62 62 62 62 62 62 62

foldr using xor (without inlining)
mln 1115 2215 3315 4415 5515 6615 7715 8815 9915
mlnall 4056 8056 12056 16056 20056 24056 28056 32056 36056
spmax 66 66 66 66 66 66 66 66 66

foldrxor (with inlining)
mln 811 1611 2411 3211 4011 4811 5611 6411 7211
mlnall 3044 6044 9044 12044 15044 18044 21044 24044 27044
spmax 69 69 69 69 69 69 69 69 69

Since inlining copies into an abstraction (in addition into a recursive definition), our
theoretical results do not give good guarantees on the space behavior and also do not
guarantee that the transformation is space safe. However the LRPi is used to genera-
te the table above and enables an analysis of space behavior of the inlined versions
compared to the original ones.

For foldl the runtime decreases by at most 25 percent after inlining (this can be veri-
fied by estimating functions for both data rows and then using the limit on the division
of both functions), since the number of reduction steps is decreased by a constant for
each list element. In contrast the inlining increases the space consumption by a con-
stant: Space consumption is linear in the length of the input list, which is caused by the
left-associativity of foldl since we get a linear number of nested case-expressions
caused by the xor. The constant increase of space consumption after inlining is caused
by the constant additional space that is needed by the inlined xor-function.

In the case of foldl' the accumulator is evaluated each time and therefore no nested
case-expressions are constructed. The space consumption is constant and a little bit
better than the not-inlined variant. This is caused by the directly evaluated accumula-
tor. The runtime improves by at most 23 percent.

For foldr the inlining improves the runtime by at most 28 percent. The space con-
sumption also only increases by a constant (similar to the foldl'-variant). This is
caused by the right-associativity of foldr: Since xor is strict in the first argument,
foldr runs over the whole list, but depending on the left argument, xor either eva-
luates the second argument or returns the argument. Since the list is lazily generated
and contains only False-elements (up to one occurrence), each element gets directly
generated and consumed and therefore only constant space is needed.

The example suggests that it is a good idea to invest a limited amount of space for the
runtime, since for foldl' and foldr the runtime improves by a good percentagewhile
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the space consumption only increases by an additive constant. This experiment shows
a nice behavior in the considered empty context, but does not show the behavior in
other contexts or other uses of the functions. Moreover the table above shows the dif-
ference between mln and mlnall, a lot of rules needed by the abstract machine M1 and
also by the calculus LRP are only subsidiary (e.g. shifting of letrec-environments).
Thus for further examples we omit the mlnall-values.

A similar example can be constructed using Peano numbers and addition instead of
Boolean-values and xor. As combining function we use the lazy Peano-addition padd
(see Section 2.6), as neutral element zero and as input list a list of zeroes, that again is
generated using the take-function/list-generator approach. I.e. in Haskell-notation we
compare foldl 0 padd (take k [0,0..]) with foldl' and foldr with the same
arguments, eachwith the inlined variant.The inlined variants foldlpadd, foldl'padd
and foldrpadd are constructed analogous to Definition 3.20.

k 100 200 300 400 500 600 700 800 900

foldl using padd (without inlining)
mln 1107 2207 3307 4407 5507 6607 7707 8807 9907
spmax 258 458 658 858 1058 1258 1458 1658 1858

foldlpadd (with inlining)
mln 806 1606 2406 3206 4006 4806 5606 6406 7206
spmax 561 1061 1561 2061 2561 3061 3561 4061 4561

foldl' using padd (without inlining)
mln 1207 2407 3607 4807 6007 7207 8407 9607 10807
spmax 60 60 60 60 60 60 60 60 60

foldl'padd (with inlining)
mln 906 1806 2706 3606 4506 5406 6306 7206 8106
spmax 63 63 63 63 63 63 63 63 63

foldr using padd (without inlining)
mln 1107 2207 3307 4407 5507 6607 7707 8807 9907
spmax 58 58 58 58 58 58 58 58 58

foldrpadd (with inlining)
mln 806 1606 2406 3206 4006 4806 5606 6406 7206
spmax 65 65 65 65 65 65 65 65 65

In contrast to the example using xor, we see that inlining increases the space con-
sumption for foldl by a multiplicative constant of at most 2.5, caused by the lazy
Peano-addition that leads to unevaluated additions. For foldl the runtime improves
by at most 28 percent. For foldl' the runtime improves by at most 25 percent and
for foldr inlining improves by at most 28 percent, while the space consumption for
both is only increased by an additive constant.

This example shows that the impact on the space behavior may depend on little details
that need to be considered before an increase of space consumption is tolerated for an
improvement of the runtime.
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Variants of reverse

Thenaive implementation of reverse as given in Section 2.6, that reverses the order of
the elements in a given list, is now comparedwith the variant reverse'. For reverse'
the worker-wrapper approach is used, where reversew is the worker-function and
reverse' the wrapper-function (compare (HH14) for more details on the improve-
ment property of this approach).

Variant of Reverse-Function for Lists reverse'Definition 3.21 (Variant of Reverse-Function for Lists reverse')
We give the definition of reverse', a variant of the function reverse for lists using
the worker-function reversew:

reverse' = λxs.reversew [] xs
reversew = λxs, ys.case ys of {([]→ xs)

((z ∶ zs)→ reversew (z ∶ xs) zs)}

To create the input list replicate is used and using last it is ensured that the body
of the whole list is evaluated.

k 50 100 150 200 250 300 350 400

last (reverse (replicate k True))
mln 4230 15955 35180 61905 96130 137855 187080 243805
spmax 462 862 1262 1662 2062 2462 2862 3262

last (reverse' (replicate k True))
mln 457 907 1357 1807 2257 2707 3157 3607
spmax 100 150 200 250 300 350 400 450

We see that reverse has quadratic runtime that is caused by the left-associativity of
(++) and using the worker-wrapper approach reverse' avoids this using the extra
argument of reversew and therefore has linear runtime.

Since reverse only goes through the intermediate lists, asymptotical no additional
space compared to reverse' is needed, though reverse' improves the space con-
sumption by at most 87.5 percent.

Fusion of concat and map with Different Kinds of Garbage Collection

A common practice in functional languages is the composition of functions, since the
readability and also the maintainability of programs is often improved. Especially the
explicit recursions are hidden and the program can be often read very abstract without
seeing too much unneeded details.

However the composition of functions lead to intermediate structures and therefore
the runtime and space consumptionmight be increased, if a practical garbage collector
(i.e. a non-eager garbage collection) is used.TheGlasgowHaskell Compiler (GHC) uses
the so called short cut fusion as introduced in (GLJ93). This approach eliminates such
intermediate tree and list structures to gain a better runtime and to reduce the needed
space.

As shown in (JV05), short cut fusion might be unsafe if seq is used, but in many
cases this approach works and is used by the GHC. Moreover (Sve02) shows that this
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approach might increase sharing and therefore a part of the memory is longer used.
Thus it may increase the space consumption.

For a function composition we use comp as defined in Section 2.6, where also the defi-
nition of concat is given. The straightforward fusion of concat and map leads to the
following definition of concatMap:

Fusion of concat and mapDefinition 3.22 (Fusion of concat and map)
The fusion of concat and map is defined as follows:

concatMap = λf, xs.(foldr
(λx, y.foldr (λz, zs.(z ∶ zs)) y (f x))
[] xs)

We now compare (comp concat map) tail with concatMap tail. As input a list
containing k inner lists of the form [True,True] is used, generated by a list-generator/
take-function approach, where the LRPi is configured to count each Peano-number
with size 1.

k 100 200 300 400 500 600 700 800 900

Unfused
mln 2815 5615 8415 11215 14015 16815 19615 22415 25215
spmax 97 97 97 97 97 97 97 97 97

Fused
mln 2609 5209 7809 10409 13009 15609 18209 20809 23409
spmax 82 82 82 82 82 82 82 82 82

The fusion improves the runtime only insignificant and also the space consumption
in both cases is only constant and therefore only improved by a constant. However
we want to see if the frequency of the garbage collector has an impact, where the
following diagram shows the space consumption if the garbage collector is only active
every 2000th reduction step.

concatMap, k = 200, Every 2000
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The rarer the garbage collector runs the higher is the space consumption. If we turn off
the garbage collector, then we have the following space consumption for the unfused
and fused variant:
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k 100 200 300 400 500 600 700 800 900

Unfused without Garbage Collection
spmax 727 1327 1927 2527 3127 3727 4327 4927 5527

Fused without Garbage Collection
spmax 595 1095 1595 2095 2595 3095 3595 4095 4595

Thus, fusion improves the space consumption by at most 16 percent if garbage collec-
tion is turned off. With regard to LRPgc the advantage concerning space consumpti-
on of the fused versions over the unfused versions of the above examples is only an
additive constant, but there is a higher advantage if garbage collection is turned off.
This is interesting for the practice, because a practical garbage collector has longer
cycles than the eager garbage collection of LRPgc.

Impact of Sharing on Space Consumption

To share, or not to share, that is the question. While improving the runtime, sharing
might lead to an increase of space consumption, since intermediate results might be
stored longer in memory than without sharing.

In the following example we analyze the impact of sharing on runtime and space con-
sumption. In the following allTrue is used, a direct implementation of all (==True)
(in Haskell-notation), that leads to less β-reductions and therefore too less distortion
of the results. For more details see Section 2.6.

The LRP-program s is given in Haskell-notation where k is a given Peano number.
The program generates three equal lists that each contain k True-elements and applies
allTrue to those lists, yielding True for each list and then computes the logical and
of all of these True-values, yielding True. Intuitively, the three lists a merged into one
and then and is folded over this list from the left to the right. The LRP-program t is
similar to s but (cse) was applied, thus t shares the arguments calling the function f .

s ∶= letrec f = λy.take k (repeat y)
in and (allTrue (f True)) (and (allTrue (f True))

(allTrue (f True)))
t ∶= letrec f = λy.take k (repeat y), x = (f True)

in and (allTrue x) (and (allTrue x) (allTrue x))

Without sharing each of the three lists containing k True-elements is evaluated in-
dependently one after each other. Since allTrue only traverses those lists a single
time, each list element can be directly garbage collected after creation, leading to the
following diagram. Since from list to list more and more overhead can be removed,
the number of down-steps in the curve directly corresponds to the number of lists
containing k True-elements.
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repeat without sharing (s), k = 100
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Since allTrue is applied on the lists containing k True-elements, the binding x in
the LRP-expression t contains an evaluated list containing k True-elements. Caused
by the sharing here the garbage collector cannot remove the list containing k True-
elements, hence the list is evaluated during the whole runtime and therefore increases
the space consumption. As expected the sharing decreases the runtime:

repeat with sharing (t), k = 100
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The differences in space consumption and runtime are visible if we compare different
list lengths of the lists containing k True-elements. As expected the space consump-
tion directly depends on k if sharing is used and is constant without sharing. The
runtime improves by at most 42 percent using sharing, where the reason for this con-
stant and not asymptotic improvement is, that the same number of True-elements are
traversed for both the shared and the unshared variant.

k 100 200 300 400 500 600 700 800 900

repeat without sharing (s)
mln 2424 4824 7224 9624 12024 14424 16824 19224 21624
spmax 75 75 75 75 75 75 75 75 75

repeat with sharing (t)
mln 1416 2816 4216 5616 7016 8416 9816 11216 12616
spmax 167 267 367 467 567 667 767 867 967

The above example can be generalized, i.e. l lists containing k True-elements that
are combined using l − 1 occurrences of and. Then an intuitive approach is a helper
function h that generates the described structure, taking f True or f x as parameter.
But then the β-reduction destroys the sharing and to solve this, the binding x in the
sharing of the example above needs to be referenced directly by h. However this is
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not a common way of programming and that the generalization of the example has a
better space consumption than the special case above, shows that minor details might
have a great impact on the space consumption.

While the above example used Boolean-values, in the followingwe give an example for
common subexpression elimination using append (++). Let xxs be a list. We compare

(xxs ++ xxs) ++ (xxs ++ xxs)

with its shared variant

let xxs′ = xxs in (xxs′ ++ xxs′) ++ (xxs′ ++ xxs′)

written here in Haskell-notation. To force the evaluation an outer last is used.

The first expression has four separate occurrences of the list xxs, whereas the second
expression shares xxs, where different lengths are used for xxs in the experiments.We
assume that xxs only contains Boolean-values, i.e. no Peano numbers and therefore
again configure the LRPi so that Peano numbers are not counted by the space measure.

k 100 200 300 400 500 600 700 800

Append without sharing
mln 3621 7221 10821 14421 18021 21621 25221 28821
spmax 66 66 66 66 66 66 66 66

Append with sharing
mln 2409 4809 7209 9609 12009 14409 16809 19209
spmax 253 453 653 853 1053 1253 1453 1653

As expected the space consumption is increased linearly by the sharing, since the
list xxs with length k is evaluated by the first append and remains in memory until
the computation finishes. However the sharing improves the runtime by at most 33.3
percent, because the list xxs does not need to be calculated at each time. The impact
of sharing w.r.t. runtime depends on the definition of xxs, here we used replicate
to create a list of True-values.

If Peano numbers are counted by the space measure, then the used take-function/list-
generator approach leads to a distortion: For both shared and unshared the space con-
sumption is linear caused by k implemented as Peano number. Moreover this distorti-
on leads to the effect that for k ≤ 12 the shared variant has a lower space consumption
than the unshared version.

k 1 2 12 13 14 200 400 600 800

Append without sharing
mln 57 93 453 489 525 7221 14421 21621 28821
spmax 67 68 78 79 80 266 466 666 866

Append with sharing
mln 33 57 297 321 345 4809 9609 14409 19209
spmax 56 57 77 79 81 453 853 1253 1653
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However both with Peano numbers counted by the space measure or not, the results
are consistent with the claim that common subexpression elimination (cse) is a time
improvement (proved in (SS15)) and show that (cse) and an increase of sharing in
general may increase the (maximal) space usage.

So the question, if it is a good idea to share or not to share, depends on the scenario. If
it is clear, that the space increase will be not that high, than the sharing is a good idea
to improve the runtime. However the examples showed that sharing is a space-critical
time improvement, since the space consumption may increase even asymptotically.

Combination of Optimizations

In this section we consider a program that combines the different optimizations of the
sections before.

We use a simple program that uses all those optimizations in a realistic and practi-
cal scenario. Using straightforward datatype-definitions for tuples containing 2 and 4
elements, we assume that the input of the program is a list of 4-tuples describing an
article of a small shop: (article number,price without tax, tax, in stock)

Nowwe assume that the shop has multiple lists of such 4-tuples all combined into one
list xxs, that is the input for the program. The goal is to compute a pair containing
each a pair of article number and price including taxes for the article with the lowest
and highest price including taxes, i.e. ((artno1,p1), (artno2,p2))where p1 is the lowest
price including taxes of xxs and p2 the highest.

The unoptimized program is defined as follows, where some Haskell-notations are
used for better readability and needed functions are defined in Section 2.6:

letrec min = fBySnd plower ((comp (map (λ(n, p, t, s).(n,padd p t)))
(filter (λ(n, p, t, s).s)))

(foldl (++) [] xxs)),
max = fBySnd pgreater ((comp (map (λ(n, p, t, s).(n,padd p t)))

(filter (λ(n, p, t, s).s)))
(foldl (++) [] xxs))

in seq min (seq max (min,max))

foldl is used to flatten xxs, yielding a single list containing all articles. Then filter
is applied to eliminate all articles that are not in stock and map is applied afterwards
to transform the 4-tuples to pairs, that only contain the article numbers together with
the prices including taxes. Note that filter and map are implemented using function-
composition, making it easier to apply fusion as optimization later. Finally the result
is calculated using fBySnd. For all numbers Peano numbers are used – eventually the
LRPi is configured to measure each Peano number with size 1 for a realistic space
measurement. This is also the reason for the two seq-expressions. Also note that it is
a good idea to give the program an input with articles that all have the same prices,
because then the calculation of minimal and maximal prices are forcing a strictness
and allow an easier analysis.
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At first glance we see that there is a big opportunity for improvement using common
subexpression elimination, since the most parts of the calculation ofmin andmax are
identical. Also map and filter can be fused using the following definition:

Fusion of map and filterDefinition 3.23 (Fusion of map and filter)
The fusion of map and filter is defined as follows:
mapFilter = λf, p, xxs.case xxs of {

([]→ [])
((x ∶ xs)→ case (p x) of {

(True→ ((f x) ∶ (mapFilter f p xs)))
(False→ mapFilter f p xs)})}

Moreover foldl is not a good idea in combination with (++) because of its left-
associativity, hence an optimization is the replacement of foldl by foldr.

Let k be the length of xxs, then these are the results for the different combinations of
the described optimizations calculated by the LRPi:

k 100 200 300 400 500 600 700 800

Unoptimized
mln 3439 8699 15759 24619 35279 47739 61999 78059
spmax 299 369 439 509 579 649 719 789
w/o GC 718 1758 3398 5638 8478 11918 15958 20598

Optimizations: foldr instead of foldl
mln 2809 5639 8469 11299 14129 16959 19789 22619
spmax 268 278 288 298 308 318 328 338
w/o GC 518 748 978 1208 1438 1668 1898 2128

Optimizations: Fusion
mln 3369 8569 15569 24369 34969 47369 61569 77569
spmax 281 351 421 491 561 631 701 771
w/o GC 617 1617 3217 5417 8217 11617 15617 20217

Optimizations: (cse)
mln 2491 5916 10241 15466 21591 28616 36541 45366
spmax 256 316 376 436 496 556 616 676
w/o GC 473 1018 1863 3008 4453 6198 8243 10588

Optimizations: foldr instead of foldl, Fusion
mln 2739 5509 8279 11049 13819 16589 19359 22129
spmax 250 260 270 280 290 300 310 320
w/o GC 415 605 795 985 1175 1365 1555 1745

Optimizations: foldr instead of foldl, (cse)
mln 2176 4386 6596 8806 11016 13226 15436 17646
spmax 275 315 355 395 435 475 515 555
w/o GC 381 508 648 788 928 1068 1208 1348

Optimizations: foldr instead of foldl, Fusion, (cse)
mln 2141 4321 6501 8681 10861 13041 15221 17401
spmax 264 304 344 384 424 464 504 544
w/o GC 322 433 553 673 793 913 1033 1153
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The quadratic runtime of the unoptimized variant is caused by foldl in combination
with (++) and using the limit we determine that the fold-optimization improves the
space consumption by at most 85 percent – note that the left-associativity of foldl
does not asymptotically affect the space consumption for this program, since (++)
only runs through the lists.

The results for all cases were we compare a variant with fusion with a variant wi-
thout fusion, are compatible to the results in Section 3.6.2: Using mapFilter instead
of composed map and filter improves the runtime by an additive constant. Using
eager garbage collection, the space consumption also is improved by an additive con-
stant and by at most 17 percent if the garbage collector is turned off.

Common subexpression elimination also for this program leads to a list that is stored
in memory during the whole calculation, while without common subexpression eli-
mination, the list elements can be directly garbage collected after they are created.
However the runtime and space problems introduced by foldl in combination with
(++) are so strong, that only using (cse) as optimization improves the program w.r.t.
runtime and space consumption in any case. The reason is the duplicated calculation
of the same list using foldl with (++) in the unoptimized variant, while the (cse)-
variant only calculates this list once. As expected this improvement of runtime and
space consumption is not of asymptotic relevance, still the (cse)-optimized variant
needs quadratic runtime and the space consumption is improved by at most 14 per-
cent. However the runtime improving but space worsening transformation (cse) is also
a space improvement if foldl is used here.

In the case the fold-optimization is applied, we see that (cse) improves the runtime
by at most 22 percent, while the space consumption is increased by a multiplicative
constant of at most 4.

In summary, the fold-optimization and fusion should be applied in any case, since the
runtime is improved from quadratic to linear and the space consumption is improved
by at most 85.7 percent. The addition of common subexpression elimination increases
the space consumption by a multiplicative constant of at most 4 and therefore can be
applied, if the runtime is critical and should not be applied if the available memory is
critical.





4
Total Garbage Collection in LR

In the previous chapter space optimizations in LRP using an eager garbage collector
were considered. Also the impact of garbage collection was considered using an in-
terpreter, where the garbage collector was only active every k-th reduction step for
a specified k or completely turned off. In this chapter we go in the other direction: A
garbage collector is used, that is able to remove all unneeded subexpressions in one
step in contrast to a implementable garbage collector working only on top-letrec (i.e.
heap-bindings).

Of course such a garbage collector is not implementable, but it provides a foundation
for space analyses that are completely independent of the used garbage collector. All
the proofs in the previous sections need to be reconsidered if the garbage collector
is exchanged. Moreover such a garbage collector allows to analyze a distortion-free
scenario and the showed space improvements are near at the optimal scenario and
therefore more independent. Especially with respect to the improvement of garbage
collectors these results are helpful orientations.

Such an garbage collector is not correct, since it might destroy the semantics if applied
only to subexpressions. However it is usable to provide theoretical results.

In this chapter we first define a so-called total garbage collector and an appropriate
space measure for an evaluation sequence. We prove a context lemma to reduce the
amount of contexts in the proofs of space improvements and then analyze the space
properties of several transformations. As calculus LR is used instead of LRP, since
this eases the proofs and moreover the results are more general, since we have a wi-
der scope of programs and this fits to the generalization-approach of a total garbage
collector compared to a deterministic eager garbage collector. This chapter is based on
(SSD19b).

4.1 Definition of Space Improvement and Equivalence

The idea of total garbage collection is to remove all subexpressions that do not con-
tribute to the termination of the expression. If a subexpression does contribute to the
termination of an expression is clearly undecidable.

Practical garbage collectors may have different abilities to predict the non-usage of
subexpressions. If we use a total garbage collection, that removes any unneeded sub-
expressions, then this garbage collection is independent of the various implementa-
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tions of garbage collections during evaluations and thus of independent value. Our
view is that all practical garbage collections are approximations of different strength
of the total garbage collection.

Garbage collectable positions are defined as positions, where the corresponding sub-
expression can be replaced by a non-terminating constant Bot without changing the
overall convergence. We now use garbage collectable position to recognize subexpres-
sions that are garbage w.r.t. total garbage collection. Positions in terms are defined as
usual as lists p of positive integers representing the path from the root to the tree-
positions. t[p↦ t′]means the term that is constructed from t by replacing the position
p with t′. We use Bot instead of � for formal reasons later.

Constant Bot and Garbage Collectable PositionDefinition 4.1 (Constant Bot and Garbage Collectable Position)
Let Bot be a constant that does not converge and has all types. A position p of an
expression t is called garbage-collectable iff t↓ ⇐⇒ t[p↦ Bot]↓.
The sequence of replacing garbage-collectable positions is irrelevant:

Irrelevance of Order of Replacing Garbage-Collectable PositionsLemma 4.1 (Irrelevance of Order of Replacing Garbage-Collectable Positions)
Let p1, . . . , pn be some garbage collectable positions of t. Then the following holds:

t↓ ⇐⇒ t[p1 ↦ Bot , . . . , pn ↦ Bot]↓

Proof
Let t′ ∶= t[p1 ↦ Bot , . . . , pn ↦ Bot]. We have t′ ≤c t, hence t′↓ implies t↓.

Now assume t↓ and t′↑. Then the normal-order reduction of t′ must put some
successor-position of pk in the expressions of the reduction sequence in a reduc-
tion context, independent of the other positions. Then pk cannot be a garbage-
collectable position, which is a contradiction. Hence t′↓.

Now we can define a relation for total garbage collection:

Total Garbage Collection (tgc)Definition 4.2 (Total Garbage Collection (tgc))

Let s be an LR-expression. Then s tgcÐ→ s′ is defined by total garbage collection, i.e.
s′ = s[p1 ↦ Bot , . . . , pn ↦ Bot] where the pi, i = 1, . . . , n are all minimal garbage
collectable positions of s. If s is not changed, then it is in tgc-normalform.

Note that (tgc) is in general not correct. An example is the expression (Cons True Nil),
where (Cons True Nil) tgcÐ→ (Cons Bot Bot). Consider the following context C :
case [⋅] of {(Nil → Nil) ((Cons x y) → x)}. Then we have C[(Cons True Nil)]↓
and C[(Cons Bot Bot)]↑, hence (tgc) is not a contextual equivalence.

We reuse Definition 3.5 and extend it so that Bot is not counted, since this represents
a subexpression that was removed by an application of (tgc) before:

LR Size of Expressions sizeDefinition 4.3 (LR Size of Expressions size)
The size size(s) of an LR-expression s is defined as in Definition 3.5, where it is
exploited that the syntax of LR is a subset of the syntax of LRP.
For Bot we define size(Bot) = 0.
The measure sizetgc also does not count the size of garbage collectable positions:
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LR Size of Non-Garbage-Collectable Expressions sizetgcDefinition 4.4 (LR Size of Non-Garbage-Collectable Expressions sizetgc)
Let s be an expression. Then sizetgc(s) ∶= size(s′) where s tgcÐ→ s′.
Based on the measure sizetgc for expressions, the space measurement for evaluation
sequences is defined as follows:

LR Space Measure spsDefinition 4.5 (LR Space Measure sps)
The space measure sps(s) for the normal-order reduction sequence of a closed LR-
expression s is defined as follows:

sps(s) = max{sizetgc(si) ∣ where si are the expressions in a normal-order
reduction sequence of s}

Now we can give a definition of total space improvements and equivalences.

LR Total Space Improvement and EquivalenceDefinition 4.6 (LR Total Space Improvement and Equivalence)
Let s and t be two LR-expressions with s ∼c t.
– s is a total space improvement of t, s ≤sps t, if for all contexts C we have:

sps(C[s]) ≤ sps(C[t])
– s is totally-space-equivalent to t, s ∼sps t, if for all contexts C we have:

sps(C[s]) = sps(C[t])
A transformation transÐÐ→ is called a total space improvement (total space equivalence) if
t

transÐÐ→ s implies that s is a total space improvement of (totally-space-equivalent to,
respectively) t. We often say s space-improves t.
We write s ≤X,sps t (s ∼X,sps t) for a context class X , to denote that the definition
is as above but restricted to context class X . E.g. for s ≤R,sps t, we require that the
inequality sps(R[s]) ≤ sps(R[t]) holds for all reduction contexts R.
Note that t ≥sps s is sometimes used instead of s ≤sps t.
This definition of total space improvements applies for libraries, since the functions
in a library are intended for a general purpose and stored in a precompiled form in
memory to be used by multiple independent programs. Hence this notion is especially
useful for optimizations where the specific use of a function is not known.

However a compiler can perform further optimizations, if the specific use of a function
is known.This motivates the following definition of a weaker variant that only applies
in the immediate evaluation situations, where the whole program is known.

Opportunistic Total Space ImprovementDefinition 4.7 (Opportunistic Total Space Improvement)
Let s, t be two LR-expressions with s ∼c t. If sps(s) ≤ sps(t) holds, then s opportu-
nistically totally space improves t. We also say that s is an opportunistic total space
improvement of t.
In contrast to the standard notion of space improvement as in Definition 3.7 or in
(GS01, GS99, SSD18) the total space improvement property s ≤sps t does not imply
size(s) ≤ size(t) and also it does not imply FV(s) ⊆ FV(t). This is an advantage,
since it permits a more general definition and view of space consumption and space
improvements. Also this notion of total space improvement permits more interesting
transformations. However this notion implies sizetgc(s) ≤ sizetgc(t):
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Total-Space Improvement-Property Implies Less or Equal sizetgcLemma 4.2 (Total-Space Improvement-Property Implies Less or Equal sizetgc)
If s is a total space improvement of t, i.e. s ≤sps t, then sizetgc(s) ≤ sizetgc(t).

Proof
We show that if sizetgc(s) > sizetgc(t) and s ∼c t, then in general s cannot be
a total space improvement of t.

Let us assume that s is a total space improvement of t and letm = sps(t)−sps(s) ≥ 0.
Also let s0 ∶= (seq∗ s . . . s) and t0 ∶= (seq∗ t . . . t), where seq∗ is an iterated seq
and the number of occurrences ofm + 2.

Then sps(s0) = sps(s)+(m+1)⋅(1+size(s)), since the normal-order reduction first
only modifies the leftmost s, then normal-order-reduces (seq∗ s . . . s) with one s-
occurrence removed.The same holds for t0: sps(t0) = sps(t)+(m+1) ⋅(1+size(t))

Since size(s) > size(t) we obtain:

sps(s0) − sps(t0) = −m + (m + 1) ⋅ (size(s) − size(t)) > 0

This is a contradiction to the assumption that s is a total space improvement of t.

Note that (tgc) is in general not a total space improvement, since it is not correct as
showed above. We now analyze different forms of garbage collection.

Garbage Collecting Transformation (gcg)Definition 4.8 (Garbage Collecting Transformation (gcg))
Let (gcg) be a (garbage collecting) transformation that is an approximation of (tgc),
i.e. (gcg) ∶ s→ s′ holds for LR-expressions s and s′, if and only if:
1. There is a set of positions p1, . . . , pn, where every position pi is the same or below

some garbage collectable position.
2. s′ = s[p1 ↦ Bot , . . . , pn ↦ Bot]

Using (gcg) we show that deterministic (gc) as used in Definition 3.2 and also more
general forms of garbage collection are total space improvements.

Space Improvement Property of (gcg)Theorem 4.1 (Space Improvement Property of (gcg))
In any case (gcg) is an opportunistic total space improvement. If (gcg) is correct, then
(gcg) is a total space improvement.
Proof
We have to show the total space improving property. Let s be an expression and
let C be a context and s gcgÐ→ s′.

Since the (gcg)-positions are removed by (tgc), the general reduction diagram is as
follows:

C[s]
tgc

��

gcg // C[s′]
tgcvvn n n n

s1

We see that s1 is a common expression in the reduction sequence and we have
sizetgc(C[s]) ≥ sizetgc(C[s′]). Hence sps(C[s]) ≥ sps(C[s′]).
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4.2 Context Lemma for Total Space Improvement

The total space improvement definition considers all contexts. Therefore we use the
same approach as in Chapter 3 using a context lemma, that reduces the amount of
cases that need to be considered in the case analyses of interferences between normal
order reductions and transformations. Since we want to use total garbage collection,
we use the measure sizetgc here.

First of all, we analyze the sizetgc of WHNFs:

sizetgc of WHNFsLemma 4.3 (sizetgc of WHNFs)
For every WHNF s, we have sizetgc(s) = 1.
Proof
A WHNF s is in one of the following forms:

1. (λx.t) or (c t1 . . . tn) (below called simple WHNF)

2. letrec E in t, where t is a simple WHNF

3. letrec E in x, where x is bound in E to a simple WHNF

After total garbage collection, the expressions are of the following forms:

1. (λx.Bot) or (cBot . . . Bot) (below called simple garbage collectedWHNF)

2. letrec E in t′, where t′ is a simple garbage collected WHNF

3. letrec E in x, where x is bound in E to a simple garbage collected WHNF

Hence sizetgc(s) is 1.

For the context lemma we also need the following notation:

Notations for sizetgc w.r.t. ContextsDefinition 4.9 (Notations for sizetgc w.r.t. Contexts)
Let s, t be LR-expressions. If we have sizetgc(C[s]) ≤ sizetgc(C[t]) for all con-
texts C, then we denote this as s ≤C,sizetgc t (we sometimes also write t ≥C,sizetgc s).
If for all contexts C, we have sizetgc(C[s]) = sizetgc(C[t]), then we denote this
as s ∼C,sizetgc t.

The following lemma is needed to show the correctness of the context lemma:

Portability of sizetgc to MulticontextsLemma 4.4 (Portability of sizetgc to Multicontexts)
IfM is a multicontext with n holes and si, ti are LR-expressions with si ≤C,sizetgc ti
for all i, then alsoM[s1, . . . , sn] ≤C,sizetgc M[t1, . . . , tn].

Proof
We show the claim by induction on the number n of holes.

M[s1, . . . , sn] ≤C,sizetgc M[t1, . . . , tn] follows from:

M[s1, . . . , sn−1, sn] ≤C,sizetgc M[s1, . . . , sn−1, tn] ≤C,sizetgc M[t1, . . . , tn−1, tn]

Thefirst holds by assumption on sn, tn and the second by the induction hypothesis.
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The context lemma is similar to Lemma 3.6 but caused by the total garbage collection
more general:

Context Lemma for Total Space ImprovementsLemma 4.5 (Context Lemma for Total Space Improvements)
If s ∼c t, s ≤R,sps t and s ≤C,sizetgc t, then s ≤sps t.

Proof
Let M be a multicontext. We prove the more general claim that if M[s1, . . . , sn]
and M[t1, . . . , tn] are closed, M[s1, . . . , sn]↓ and si ≤R,sps ti holds for all i, then
M[s1, . . . , sn] ≤sps M[t1, . . . , tn].

By the assumption that si ∼c ti, we have M[s1, . . . , sn] ∼c M[t1, . . . , tn] and thus
M[s1, . . . , sn]↓ ⇐⇒ M[t1, . . . , tn]↓. The induction proof is on the number of LR-
reduction steps ofM[t1, . . . , tn] and as a second parameter on the number of holes
ofM . We distinguish the following cases:

1. If no hole ofM is in a reduction context, then there are two cases:

– M[t1, . . . , tn] is a WHNF. The context M itself must be a WHNF, since
otherwise there is a hole ofM in a reduction context. ThenM[s1, . . . , sn]
is also a WHNF and by the assumption, the following inequation holds:

1 = sps(M[s1, . . . , sn]) ≤ sps(M[t1, . . . , tn])

– The reduction step is M[t1, . . . , tn]
LR,aÐÐ→ M ′[t′1, . . . , t′n′] and we also have

M[s1, . . . , sn]
LR,aÐÐ→M ′[s′1, . . . , s′n′] and the pairs (s′i, t′i) are renamed versi-

ons of pairs (sj, tj). This shows sps(M ′[s′1, . . . , s′n′]) ≤ sps(M ′[t′1, . . . , t′n′])
by induction.

The inequation sizetgc(M[s1, . . . , sn]) ≤ sizetgc(M[t1, . . . , tn]) holds
by Lemma 4.4 and the preconditions of this lemma, hence by computing
the maximum, we obtain sps(M[s1, . . . , sn]) ≤ sps(M[t1, . . . , tn]).

2. Some tj inM[t1, . . . , tn] is in a reduction position.Then there is one hole, say i,
ofM that is in a reduction positionw.r.t. onlyM . LetM ′ =M[⋅, . . . , ⋅, ti, ⋅, . . . , ⋅].
We then can apply the induction hypothesis, since the number of holes ofM ′ is
strictly smaller than the number of holes ofM and the number of normal-order
reduction steps of M[t1, . . . , tn] is the same as of M ′[t1, . . . , ti−1, ti+1, . . . , tn].
We now obtain:

sps(M[s1, . . . , si−1, ti, si+1, . . . , sn]) ≤ sps(M[t1, . . . , ti−1, ti, ti+1, . . . , tn])

Also sinceM[s1, . . . , si−1, ⋅, si+1, . . . , sn] is a reduction context, the assumption
yields:

sps(M[s1, . . . , si−1, si, si+1, . . . , sn]) ≤ sps(M[s1, . . . , si−1, ti, si+1, . . . , sn])

Hence sps(M[s1, . . . , sn]) ≤ sps(M[t1, . . . , tn]).
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For cases that do not change maximal space consumption, we adapt Lemma 4.5 as
follows:

Context Lemma for Total Space EquivalencesLemma 4.6 (Context Lemma for Total Space Equivalences)
If s ∼c t, s ∼R,sps t and s ∼C,sizetgc t, then s ∼sps t.

Proof
Follows by applying Lemma 4.5 in both directions.

The context lemmas also obviously hold for stronger context classes:

Applicability of Context Lemmas for Stronger Context ClassesProposition 4.1 (Applicability of Context Lemmas for Stronger Context Classes)
The context lemmas Lemma 4.5 and Lemma 4.6 also hold for all context classes that
contain reduction contexts.
Especially both lemmas also hold for top and surface contexts.
In the followingwe show criterions for the context lemma requirements. First we show
a property that is used below several times in variants.

Portability of Garbage Collectable PositionsLemma 4.7 (Portability of Garbage Collectable Positions)
Let M1 and M2 be multicontexts, so that M1[s1, . . . , sn] ∼c M2[s1, . . . , sn] for all
expressions s1, . . . , sn. If p = p1,1p2 is a garbage collectable position ofM1[s1, . . . , sn]
that points into si, where p1,1 is the position of the i-th hole of M1 and p2 is the
position in si, then for the position p2,1 of i-th hole of M2, also p2,1p2 is a garbage
collectable position inM2[s1, . . . , sn].
Proof
The simple argument is:

M1[s1, . . . , sn] ∼c M1[s1, . . . , si[p2 ↦ Bot], . . . , sn]
∼c M2[p1, . . . , pi[p2 ↦ Bot], . . . , sn]

HenceM2[s1, . . . , si[p2 ↦ Bot], . . . , sn] ∼c M2[s1, . . . , sn]. The same for the direc-
tion fromM2 toM1. Hence the claim holds.

Now we show a criterion for ≤C,sizetgc, the first requirement of the context lemma:

Criterion for ≤C,sizetgcLemma 4.8 (Criterion for ≤C,sizetgc)
Let s, t be LR-expressions, so that s ∼c t, s = Cs[s1, . . . , sn] and t = Ct[s1, . . . , sn] and
size(Cs) ≤ size(Ct). Moreover we assume that the translation T , Cs[r1, . . . , rk] to
Ct[r1, . . . , rk], is correct for all rj . We also assume that all positions inCs,Ct that are
not the hole positions are reduction positions in the respective contexts.
Then s ≤C,sizetgc t.

Proof
Since s ∼c t, which implies C[s] ∼c C[t], the garbage-collectable positions in C are
the same on the left and right hand side. Let p be a garbage-collectable position in
C[Cs[s1, . . . , sn]] that is in s and goes down to s1 w.l.o.g. Since the translation T
is correct, the position p can be split into p1p2,sp3 where p2,s is the position of the
first hole of Cs. Using Lemma 4.7 we see that also p1p2,tp3 is a garbage collectable
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position where p2,t is the position of the hole of Ct and vice versa. For the position
q1 of s and t itself Lemma 4.7 also shows that q1 in C[s] is garbage collectable if q1
in C[t] is garbage collectable.

Hence there is a one-to-one-correspondence between the garbage collectable po-
sitions of s in C[s] and t in C[t]. As a summary, the garbage collectable positions
in C[s] and C[t] are in one-to-one-correspondence and either point to equal ex-
pressions or the expression on the s-side is not greater in size than the one ofC[t].
Thus sizetgc(C[s]) ≤ sizetgc(C[t]).

An example for the situation in Lemma 4.8 is the beta-reduction as transformati-
on, i.e. ((λx.s) t) → letrec x = t in s and the two contexts are ((λx.[⋅]1) [⋅]2)
and (letrec x = [⋅]2 in [⋅]1), where the indices are used to denote the one-to-one-
correspondences.

4.3 Space-Safety of Transformations

In this section the space behavior of several transformations is analyzed. Definitions
of extra transformation rules are directly transferred from Definition 3.9 and 3.11 to
LR. The forking diagrams are based on the diagrams of the appendix of (SSS08b). The
measure for induction is usually (µ1, µ2, µ3), ordered lexicographically, where µ1 is
the number of LCSC-reductions of an expression s to a WHNF and µ2 is µlll and µ3 is
the syntactical size.

First, we show the first requirement of the context lemma for the normal order reduc-
tion rules except of (cp):

Requirement ≤C,sizetgc for Normal Order Reduction Rules Except of (cp)Lemma 4.9 (Requirement ≤C,sizetgc for Normal Order Reduction Rules Except of (cp))
For the transformations a ∈ {(lbeta), (case), (seq), (lll)} and expressions s aÐ→ t, we
have s ≥C,sizetgc t.

Proof
We use Lemma 4.7 implicitly in the following, which implies that garbage collec-
table positions are transported by the reductions.

For (lbeta) the preconditions of Lemma 4.4 hold, since (lbeta) is correct. Note that
the positions of the characteristic multicontexts of rule (lbeta) are switched.

For the variants of (case) the conditions hold. For (llet), (lapp), (lcase) and (lseq)
we have to formalize these rules by an infinite number of rule formats, since the
bindings must be explicit to satisfy the conditions of Lemma 4.4 – there are no
surprises.

(seq) may delete a subexpression, but since all garbage collectable positions are
eliminated this rule satisfies the preconditions.

Note that the preconditions of Lemma 4.4 are in general not satisfied for (cp), since
the resulting expression is larger in size and in general this also holds after applying
(tgc).
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We also show the second requirement of the context lemma for the normal order re-
duction rules except of (cp):

Requirement on sps for Normal Order Reduction Rules Except of (cp)Lemma 4.10 (Requirement on sps for Normal Order Reduction Rules Except of (cp))
For the rules a ∈ {(lbeta), (case), (seq), (lll)}with s aÐ→ t, executed at top, the inequation
sps(R[s]) ≥ sps(R[t]) holds.
Proof
The reduction step is the first one in the normal-order reduction and the maximum
is taken over all reduction steps, hence the inequation obviously holds.

4.3.1 Total Space Improvement Properties of (lll), (seq-c) and (case-c)

In this section we show that (lll), (seq-c) and (case-c) are total space improvements.

Total Space Improvement Property of (llet)Theorem 4.2 (Total Space Improvement Property of (llet))
The transformation (llet) is a total space improvement.
Proof
A complete set of forking diagrams in surfaces contexts is:

⋅ S,llet //

LR,a

��

⋅
LR,a

���
�
�

⋅
S,llet

//____ ⋅

⋅ S,llet //

LR,a

��

⋅

LR,a{{w
w
w
w
w

⋅

⋅ S,llet //

LR,lll,+
��

⋅

LR,lll,+{{w
w
w
w
w

⋅

⋅ S,llet //

LR,lll,+
��

⋅
LR,lll,+
���
�
�

⋅
S,llet

//____ ⋅

⋅ S,llet //

LR,a

��

⋅

LR,a

��














⋅
LR,llet

��⋅

Since (llet) only moves let-bindings, (llet) does not change the size and all garba-
ge positions can be transferred directly, thus induction using the diagrams and
applying Lemma 4.9, Lemma 4.10, Lemma 4.5 and Proposition 4.1 shows the claim.

For the following transformations only an analysis of reduction contexts is needed.

Total Space Improvement Property of (seq-c), (case-c), (lbeta), (lapp),
(lcase), (lseq)

Theorem 4.3 (Total Space Improvement Property of (seq-c), (case-c), (lbeta), (lapp),
(lcase), (lseq))

The transformations (seq-c), (case-c), (lbeta), (lapp), (lcase) and (lseq) are total space
improvements.
Proof
By considering reduction contexts we see that each of the above reductions is a
normal order reduction. Also the garbage collectable positions remain unchanged
for each transformation, hence we apply Lemma 4.9, Lemma 4.10 and Lemma 4.5
to show that these transformations are total space improvements.
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Using the last two theorems it is easy to show, that (lll) is a total space improvement.

Total Space Improvement Property of (lll)Theorem 4.4 (Total Space Improvement Property of (lll))
The transformation (lll) is a total space improvement.
Proof
Follows from Theorem 4.2 and Theorem 4.3.

4.3.2 Total Space Equivalence Property of (cpx)

(cpx) is often used by other proofs, since the transformation is able to model subparts
of other transformations and is a total space equivalence:

Total Space Equivalence Property of (cpx)Theorem 4.5 (Total Space Equivalence Property of (cpx))
The transformation (cpx) is a total space equivalence.
Proof
An analysis of forking overlaps between LR-reductions and (cpx)-transformations
in top contexts shows that the following diagram is complete, where all concrete
(cpx)-transformations in a diagram copy from the same binding x = y:

s
T,cpx //

LR,a

��

s′

LR,a

���
�
�

s1 T,cpx,∗
//____ s′1

Let s cpxÐÐ→ s′. By induction on the number of LR-reductions of T[s] the equality
sps(T[s]) = sps(T[s′]) holds.

We now show the requirements of the context lemma: s′ might have a garbage
letrec-binding from a variable to variable in contrast to s, without impact on
sizetgc since variables are not counted by the size-measure. Using the diagram
we see that s ∼T,sps s′. Since s

cpxÐÐ→ s′ does not introduce garbage that has an impact
on sizetgc also s ∼C,sizetgc s′ holds.

Since (cpx) does not affect the size and also does not have an impact on sizetgc,
we have sizetgc(s) = sizetgc(s′) and then induction using the diagram above
and application of Lemma 4.6 and Proposition 4.1 finishes the proof.

4.3.3 Total Space Equivalence Property of (xch)

In this section we show that (xch) is total space equivalence.

Total Space Equivalence Property of (xch)Theorem 4.6 (Total Space Equivalence Property of (xch))
The transformation (xch) is a total space equivalence.
Proof
An analysis of forking overlaps between LR-reductions and (xch)-transformations
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in surface contexts shows that the following set of diagrams is complete:

⋅ S,xch //

LR,a

��

⋅
LR,a

���
�
�

⋅
S,xch

//____ ⋅

⋅ S,xch //

LR,a

��

⋅

LR,a
{{v
v
v
v
v

⋅

We use induction using the diagrams to show that size and sizetgc is not chan-
ged by (xch).

Since (xch) only performs a renaming of letrec-variables, the garbage collection
positions can be transferred directly, hence the context lemma can be applied.

Thus applying Lemma 4.5 and Proposition 4.1 shows that (xch) is a total space
equivalence.

4.3.4 Total Space Equivalence Properties of (abs) and (abse)

In this section we show that (abs) and (abse) are total space equivalences.

Total Space Equivalence Properties of (abs) and (abse)Theorem 4.7 (Total Space Equivalence Properties of (abs) and (abse))
The transformations (abs) and (abse) are total space equivalences.
Proof
An analysis of forking overlaps between LR-reductions and (abs)-transformations
in surface contexts shows that the following set of diagrams is complete:

⋅ S,abs //

LR,a

��

⋅
LR,a

���
�
�

⋅
S,abs

//____ ⋅

⋅ S,abs //

LR,a

��

⋅

LR,azzt
t
t
t
t

⋅

⋅ S,abs //

LR,case

��

⋅
LR,case

���
�
�

⋅
S,abs

//____ ⋅
S,cpx,∗

//____ ⋅
S,xch,∗

//____ ⋅

We apply induction using the diagrams. Theorem 4.5 and Theorem 4.6 show that
(cpx) and (xch) are total space equivalences, needed for the last diagram. Hence the
size and sizetgc is not changed.

Since also garbage positions remain unchanged, all requirements are fulfilled to
apply the context lemma. Thus an application of Lemma 4.6 and Proposition 4.1
shows that (abs) is a total space equivalence.

The proof for (abse) is analogous using the context lemma and the same total space
equivalences.
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4.3.5 Total Space Improvement Property of (seq)

In this section we show that (seq) is a total space improvement.

Total Space Improvement Property of (seq)Theorem 4.8 (Total Space Improvement Property of (seq))
The transformation (seq) is a total space improvement.
Proof
Theorem 4.3 shows that (seq-c) is a total space improvement. In the other cases we
analyze the forking overlaps between LR-reductions and (seq)-transformations in
top contexts:

⋅ T,seq //

LR,a
��

⋅
LR,a
���
�

⋅
T,seq

//____ ⋅

⋅ T,seq //

LR,a
��

⋅

LR,a

���
�
�
�
�
�

⋅
LR,seq

��⋅

⋅ T,seq //

LR,a
��

⋅
LR,awwo o o o o

⋅

(seq) does not increase size and also not sizetgc, hence induction using the dia-
grams and applying Lemma 4.9, Lemma 4.10 and Lemma 4.5 finishes the proof.

4.3.6 Total Space Improvement Properties of (case) and (case*)

In this section show that (case) and (case*) are total space improvements. We start with
(case):

Total Space Improvement Property of (case)Theorem 4.9 (Total Space Improvement Property of (case))
The transformation (case) is a total space improvement.
Proof
Theorem 4.3 shows that (case-c) is a total space improvement. In the other cases we
analyze the forking overlaps between LR-reductions and (case)-transformations in
top contexts:

⋅ T,case //

LR,a
��

⋅
LR,a
���
�

⋅
T,case

//____ ⋅

⋅ T,case //

LR,a
��

⋅

LR,a

���
�
�
�
�
�

⋅
LR,case

��⋅

⋅ T,case //

LR,a
��

⋅
LR,awwo o o o o

⋅

⋅ T,case //

LR,case
��

⋅
LR,case
���
�

⋅
T,case

//____ ⋅
cpx,∗

//____ ⋅
xch,∗

//____ ⋅

(case) does not increase size and also not sizetgc. Hence we apply induction
using the diagrams, where Theorem 4.5 and Theorem 4.6 is needed for the last
diagram. The application of Lemma 4.9, Lemma 4.10 and Lemma 4.5 finishes the
proof.
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Using the total space improvement property of (case) we now can show that (case*) is
also a total space improvement.

Total Space Improvement Property of (case*)Theorem 4.10 (Total Space Improvement Property of (case*))
The transformation (case*) is a total space improvement.
Proof
We use the transformation (case-cx), that is defined in Definition 3.11, where also
the definition of (case*) is given.

In (SSS08b) (case-cx) is simulated using (case) and a subsequent cpx,∗ÐÐ→ gc,∗ÐÐ→ and using
Theorem 4.9, Theorem 4.5, the correctness of (gc) and Theorem 4.1 this shows that
(case-cx) is a total space equivalence. Since (case*) is either (case) or (case-cx) per
definition, (case*) is a total space improvement.

4.3.7 Total Space Equivalence Property of (ucp)

The transformation (ucp) is also a total space equivalence:

Total Space Equivalence Property of (ucp)Theorem 4.11 (Total Space Equivalence Property of (ucp))
The transformation (ucp) is a total space equivalence.
Proof
An analysis of forking overlaps between LR-reductions and (ucp)-transformations
in surface contexts shows that the following set of diagrams is complete:

⋅ S,ucp //

LR,a
��

⋅
LR,a
���
�

⋅
S,ucp

//___ ⋅

⋅ S,ucp //

LR,a
��

⋅
LR,ayyt t
t
t

⋅

⋅ S,ucp //

LR,lll,+
��

⋅
LR,lll,∗
���
�

⋅
S,ucp

//___ ⋅

⋅ S,ucp //

LR,cp
��

⋅

⋅ S,gc

99t
t

t
t

⋅ S,ucp //

LR,a
��

⋅
LR,a
���
�

⋅
S,gc

//___ ⋅

⋅ S,ucp //

LR,case
��

⋅
LR,case
���
�

⋅
S,gc

//___ ⋅
S,cpx,∗

//___ ⋅
S,gc,∗

//___ ⋅

(gc) is a total space improvement, which follows from the correctness of (gc) and
Theorem 4.1.

Induction using the diagrams, where also Theorem 4.5 is needed, shows that size
and also sizetgc remain unchanged.

Since also garbage collectable positions are unchanged Lemma 4.6 and Proposition
4.1 shows that (ucp) is a total space equivalence.

4.3.8 Space-Properties of (cp), (cpS) and (cpcx)

None of the transformations (cp), (cpS) and (cpcx) are total space improvements. This
means that also using total garbage collection, the normal order reduction is not an
overall space improvement.
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Space-Properties of (cp), (cpS) and (cpcx)Theorem 4.12 (Space-Properties of (cp), (cpS) and (cpcx))
The transformations (cp), (cpS) and (cpcx) are in general no total space improvements.
Proof
It is sufficient to present a counterexample. Consider the following expression that
uses tuples in Haskell-notation:

letrec x = (True,False) in seq x (seq x x)

A normal-order reduction sequence is as follows:

letrec x = (True,False) in seq x (seq x x)
LR,seq−inÐÐÐÐÐ→ letrec x = (True,False) in seq x x
LR,seq−inÐÐÐÐÐ→ letrec x = (True,False) in x

In contrast, copying results in

letrec x = (True,False) in seq x (seq (True,False) x)

which has an sps that is strictly greater than before. Note that we have to apply
(tgc) before measuring.

If we use (cpcx) instead, then the corresponding expression is the following, that
also has a strictly greater sps than before:

letrec x = (y1, y2), y1 = True, y2 = False in seq x (seq (y1, y2) x)

However, applied in normal-order, (cp) is an opportunistic total space improvement:

Opportunistic Total Space Improvement Property of (cp) in Normal
Order

Proposition 4.2 (Opportunistic Total Space Improvement Property of (cp) in Normal
Order)

The reduction (cp) applied in normal-order is an opportunistic total space improve-
ment.
Proof
This holds, since sps maximizes the size values along the normal-order reduction
sequence, the transformation is at the start of it and no contexts are involved.

We also give an analysis of the maximal space increase of (cpS) in surface contexts:

Space-Property of (cpS) in Surface ContextsProposition 4.3 (Space-Property of (cpS) in Surface Contexts)
The transformation (S, cpS) increases the maximal space by at most size(v), where
v is the copied abstraction.
Proof
Let s S,cpSÐÐ→ s′, where v is the copied abstraction.

A complete set of forking diagrams for (cpS) in surface contexts is as follows:
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s
S,cpS //

LR,a
��

s′

LR,a���
�

s1 S,cpS
//____ s′1

s
S,cpS //

LR,a
��

s′

LR,a

���
�
�
�
�
�
�

s1
LR,cpS

��
s2

s
S,cpS //

LR,a
��

s′

LR,awwo o o o o

s1

We show the claim using induction:

If s is a LR-WHNF, then s′ is also a LR-WHNF and size(s) = size(v) = size(s′)
holds, thus we obtain the claim.

Now s has a LRPgc-reduction and we go through the diagrams. If diagram 1 app-
lies, then the induction hypothesis applies to s1 and size(s)+size(v) = size(s′)
holds, hence sps(s′) ≤ sps(s)+size(v). If diagram 2 or 3 applies, then the compu-
tation is similar as above.

We also analyze (cpcxT) applied in top contexts:

Space-Property of (cpcxT) in Top ContextsProposition 4.4 (Space-Property of (cpcxT) in Top Contexts)

If s T,cpcxTÐÐÐÐ→ s′, then sps(s) ≤ sps(s′) ≤ sps(s) + 1.
Proof
The inequality is shown by an induction argument using the following diagrams
in top contexts:

s
T,cpcxT //

LR,a

��

s′

LR,a

���
�
�

s1
T,cpcxT,0∨1//_____ s′1

s
T,cpcxT //

LR,a

��

s′

LR,a

���
�
�

s1
T,abs //____ s′1

a ∈ {seq, case}

s
T,cpcxT //

LR,case

��

s′

LR,case

���
�
�

s1 T,cpcxT
/ /_____ s2 oo

T,cpx,∗
//_____ ⋅ oo

T,gc=,∗
//_____ s′1

The transformation (cpcx) does not change the LR-WHNF property.

We show the claim by induction using the diagrams above.

If s, s′ are LR-WHNFs, then the claim holds, since size(s) + 1 = size(s′). In all
other cases s is LR-reducible and we have to check the diagrams:

Assume the first diagram is applicable, then we have sps(s′) = sps(s)+ 1 using the
induction hypothesis.



116 4.3. SPACE-SAFETY OF TRANSFORMATIONS

In the case of diagram 2 we obtain sps(s1) = sps(s′1) by Theorem 4.7 and since
size(s′) = size(s) + 1, this implies the claim.

In the third diagram, the induction hypothesis can be applied. This together with
Theorem 4.5, the correctness of (gc=) andTheorem 4.1 shows sps(s2) = sps(s′1) and
sps(s1) ≤ sps(s2) ≤ sps(s1) + 1.

4.3.9 Space-Properties of (cse) and (soec)

In this section we analyze the space behavior of (cse) and (soec) (see Definition 3.12 for
the definition of both functions in LRP, directly portable to LR). Both transformations
might increase the space consumption by an arbitrary amount, hence they are space
leaks if we use the same term as defined in Definition 3.8 ported to LR.

(cse) is a Space LeakProposition 4.5 ((cse) is a Space Leak)
The transformation (cse) is a space leak.
Proof
This follows from the proof of Proposition 3.7, but since another garbage collection
approach is used here, we present the proof shortened:

The expression s is given in a Haskell-like notation, using integers, but can also be
defined in LR:

if (last [1..n]) > 0 then [1..n] else Nil

where [1..n] lazily generates a list [1, . . . , n] and last returns the last element of
a list, i.e. forcing tail-strictness. Thus both lists [1..n] are calculated twice, where
the calculation of the second stops after evaluating the start of the list and requires
constant space. During evaluation of the first [1..n], all lists element are directly
garbage collected after creation, hence only constant space is needed.

If we have s cseÐ→ s′, then s′ is:

s′ = letrec x = [1..n] in (if (last x) > 0 then x else Nil)

Now even total garbage collection cannot remove the binding x, since x is needed
later and the list is stored in full length in memory. The size required is a linear
function in n, where instead of n also f(n) could be used for any computable
function f , causing an unbound space increase.

The same holds for (soec):

(soec) is a Space LeakProposition 4.6 ((soec) is a Space Leak)
The transformation (soec) is a space leak.
Proof
As already in the proof of Proposition 3.8, this follows from (BR00).
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4.3.10 Summary

In this section we summarize the results of the previous sections.

The normal order reduction is a total space improvement except of (cp):

Space-Property of Normal Order Reduction in LRTheorem 4.13 (Space-Property of Normal Order Reduction in LR)
The normal order reduction of LR is a total space improvement except of (cp).
Proof
This follows from Theorem 4.3, Theorem 4.4, Theorem 4.8 and Theorem 4.9.

Finally we give an overview of all results of this section:

Space-Properties of Several LR-TransformationsTheorem 4.14 (Space-Properties of Several LR-Transformations)
The following table shows the space properties of all transformations analyzed in
this section:
Space-Property Transformations
≤spmax (lbeta), (seq), (case), (lll), (gc), (case*)
∼spmax (cpx), (abs), (abse), (xch), (ucp), (case-cx), (gc=)
/≤spmax (cpcx), (cpS), (tgc)
space-safe up to 1 (T,cpcxT)
space-safe up to size(v) (S,cpS)

where v is the copied abstraction
space-leak (cp), (cse), (soec)

Proof
This follows from the correctness of (gc) and (gc=) together with Theorem 4.1,
Theorem 4.5,Theorem 4.6,Theorem 4.7,Theorem 4.10,Theorem 4.11,Theorem 4.12,
Theorem 4.13, Proposition 4.3, Proposition 4.4, Proposition 4.5 and Proposition 4.6.

4.4 Classification of Total Garbage Collection

In general total garbage collection detects unnecessary subexpressions. However this
kind of garbage collection is based on the transformation (tgc) and is still not optimal.
Consider the following program:

letrec x = . . . in C[seq x x]

Depending on the context C an optimal garbage collector is able to remove the seq-
expression, resulting in letrec x = . . . in C[x], if the semantics of the program are
not changed. Using (tgc) this is not possible, since positions need to be replaced by
Bot and this is not possible in our example.

However an optimal garbage collector has some pitfalls: Often it might be possible to
remove some subexpressions as in the example above, but especially seq-expressions
can be used to force evaluations and to improve the runtime or space-behavior in some
situations. Hence if we want to define an optimal garbage collector, then we need to
be aware that it may not worsen the runtime or space consumption only by removing
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a subexpression. While (tgc) is based on program correctness, using the criteria of
convergence, such an optimal garbage collector is much more complex.

Especially if we compare the total garbage collection with the deterministic eager gar-
bage collection used in Chapter 3, then we see that in both cases (cp) is a space leak.
To make the counterexample easy to grasp, we used an approach that really exploits
the fact, that (tgc) needs to evaluate unneeded seq-expressions (compare the proof of
Theorem 4.12). But also using an optimal garbage collector, we can find an example
that shows, that (cp) is a space leak:

(cp) is a Space Leak using an Optimal Garbage CollectorProposition 4.7 ((cp) is a Space Leak using an Optimal Garbage Collector)
The transformation (cp) is a space leak, even if an optimal garbage collector is used.
Proof
Consider a large program containing an also large function f . This function f is
used two-times during the normal-order evaluation of the program, the first time
after t1 normal-order-steps, where p1 describes the target-position of the (cp), the
second time after t2 normal-order-steps, where p2 describes the target position.
Now we assume t1 ≪ t2 and also that t1 is a great number.

Until t2 is reached, the function f cannot be garbage collected, since the reference
of f exists for any t < t2.

Now we apply a non-normal-order (cp), copying f to p1 after t0 normal-order-
steps, where t0 is a small number, hence t0 ≪ t1 ≪ t2. Then we proceed using
normal-order. Since the whole subprogram at p1 needs this copy of f , the function-
copy cannot be removed there. But also at the original definition-site f cannot
be garbage collected, since f is still referenced by p2. Hence, until the normal-
order-evaluation reaches p1 we have an additional space consumption of size(f)
compared to the normal-order-reduction.

Since f can be scaled without changing the semantics, this example shows that
(cp) causes a space leak, even if an optimal garbage collector is used.

As already mentioned in the introduction of this section, we introduced total garbage
collection, so that we are able to show that certain transformations are space improve-
ments, space equivalences or space leaks independent of the concrete implementation
of garbage collection.

It is not clear, whether a total space improvement property of a transformation implies
that it is also a maximal space improvement (see Chapter 3) or vice versa. This is
caused by the different methods of garbage collection and confirms the motivation
of a total garbage collector. Total garbage collection is a good reference for the space-
safeness of program transformations and the results for the transformations are almost
independent of garbage collection.

The comparison of Section 4.3.10 and Section 3.4.14 shows that eager garbage collec-
tion is at least a close approximation of total garbage collection. Seen from the other
direction, the results of a calculus using an practically unimplementable total garbage
collector can be used carefully for a calculus using a practical garbage collector.
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Runtime-Optimizations in CHF

In the deterministic scenario a lot of work in the area of time improvements is already
done, e.g. (MS99, HH14, SS15, SSS15a). In (BFKT00, THLP98, MNJ11) parallelism is
introduced into deterministic programs. Improvements in a nondeterministic scenario
are studied in (LM99) using a call-by-name calculus with McCarthy’s amb-operator.

(SSSD18) considers time improvements using a concurrent programming language
with shared memory and side-effecting computations, where CHF∗ is used together
with the usual single-processor model for sequential and a multi-processor model for
parallel evaluation.

Many fundamentals needed for time analyses are also used for space analyses. There-
fore the work of (SSSD18) is summarized in this chapter.

5.1 Sequential and Parallel Time Improvements

In deterministic programming languages, a program transformation is a time impro-
vement iff it is correct and it does not increase the length of reduction sequences in any
context (e.g. see (SSS16b)). The length of reduction sequences may take into account
only essential reductions steps instead of all steps.

In contrast to deterministic languages, the concurrency leads to a nondeterministic
evaluation with potentially different results and also to a potential speed up caused by
the concurrent threads if multiple processors are available.

Two improvement relations are considered, where the first one can be seen as a single-
processor model, while the other one is adapted for a multi-processor scenario.

Sequential reductions are considered for a sequence of interleaved reductions of con-
current threads and parallel reductions where threads run in parallel. The definition of
time improvement in CHF∗ is parametrized, following the approach of (SSS17), where
only a subset of reduction rules are used for measuring the length of sequences. These
subsets are defined using sets of so-called reduction kinds:

– A is a set of all rule-names of Definition 2.21.

– Aall is the set of all reduction kinds.

– Acp ∶= {(cp), (cpcxa), (cpcxb), (mkbinds)} and Anoncp ∶= Aall/Acp

119
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For time analysesAnoncp is sufficient: Abstract machines as CIOM1 do not execute (cp)
for variables, nor (cpcxa), i.e. copying variables and abstracting functional or monadic
values, caused by the restricted structure of machine expressions. The other reduction
kinds (cp), (cpcxb) and (mkbinds) only occur as follows, where reduction steps are
viewed per thread: Several (mkbinds) are always followed by an Anoncp-reduction or
by a (cp) which copies an abstraction and then anAnoncp-reduction.The same holds for
(cpcxb). The additional effort per Anoncp-step is at most the size of the initial process.

A sequentialA-improvement improves the length of minimal and successful reduction
sequences w.r.t. the reduction kinds in A. In the case of non-terminating reduction
sequences, taking the minimum as defined for srnrA(⋅) automatically prefers finite
reduction sequence, if some exists.

CHF∗ Sequential Time Improvement and EquivalenceDefinition 5.1 (CHF∗ Sequential Time Improvement and Equivalence)
LetP be awell-formed processwithP ↓,A ⊆ Aall and Red be a successful reduction se-
quence ofP . Let srnrA(Red) be the number ofA-reductions occurring inRed. We de-
fine srnrA(P ) ∶=min{srnrA(Red) ∣ Red is a successful standard reduction of P}.
Let P1 and P2 be two well-formed processes with P1↓, P2↓ and P1 ∼c P2.
If srnrA(D[P1]) ≤ srnrA(D[P2]) holds for all D ∈ PCtxt, then P1 sequentially A-
improves P2, written P1 ⪯A P2. If P1 ⪯A P2 and P2 ⪯A P1, then we say P1, P2 are
improvement-equivalent w.r.t. A.
A program transformation PTÐÐ→ is a sequential A-improvement if P1

PTÐÐ→ P2 implies
that P2 sequentially A-improves P1 for all processes P1, P2.
We say that PTÐÐ→ is a sequential A-improvement equivalence iff PTÐÐ→ and PT−ÐÐ→ (the
inverse of PTÐÐ→) are both sequential A-improvements.

Parallel evaluation is defined as follows:
Parallel EvaluationDefinition 5.2 (Parallel Evaluation)

Let P be a well-formed process and assume w.l.o.g. that it is in ν-prenex form
νx1 . . . xm.P0. We write P0 using a multicontext M[⋅1, . . . , ⋅n]|[⋅n+1] . . .|[⋅2n] with
2n holes such that P0 = M[e1, . . . , en]|Q1 . . .|Qn where ei are expressions or
threads and Qi are processes. Let Vi be a set of variables, Q′i be processes. Then a
parallel reduction is defined as follows

νx1 . . . xm.M[e1, . . . , en]|Q1|. . .|Qn

→ νx1 . . . xm.νV1, . . . Vn.M[e′1, . . . , e′n]|Q′1|. . .|Q′n
provided the following holds:
1. For every i:

νx1 . . . xm.M[e1, . . . , en]|Q1|. . .||Qn
srÐ→

νx1 . . . xm.νVi.M[e1, . . . , ei−1, e′i, ei+1, . . . , en]|Q1|. . .|Qi−1|Q′i|Qi+1 . . .Qn

is a single reduction where ei is the redex of the reduction (note that for rule
(sr,unIO), ei is a thread and not an expression).

2. The result is a valid process and i > 0.
3. The Processes Qi and Q′i and the sets of variables Vi may be empty.
A parallel reduction sequence is successful if the last process is successful.The number
of parallel single reductions in a parallel reduction step is limited by the number of
available processors, sometimes denoted by the number N .
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A parallel improvement improves the length of minimal and also successful reduction
sequences w.r.t. the reduction kinds in A and the number of processors N :

CHF∗ Parallel Time Improvement and EquivalenceDefinition 5.3 (CHF∗ Parallel Time Improvement and Equivalence)
Let P be a well-formed process with P ↓, let A be a set of reduction kinds and let
N ∈ {1,2, . . .}∪ {∞} be the number of available processors. For a parallel reduction
sequence Red, let srnrpNA (Red) be the number of parallel reduction steps for at mostN
processors that contain an A-reduction. If N =∞, then we may omit the superscript
N . Let srnrpNA (P ), the parallel number of A-steps, be the minimum of:

{srnrpNA (Red) ∣ Red is a successful parallel reduction with at most N
processors of P}

For well-formedP1, P2 withP1↓, P2↓,P1 ∼c P2, we sayP1 parallel improves P2 w.r.t.A
and N processors, notation P1 ⪯p,N,A P2, iff srnrpNA (D[P1]) ≤ srnrpNA (D[P2]) holds
for all D ∈ PCtxt.
If P1 ⪯p,N,A P2 and P2 ⪯p,N,A P1, then we say P1, P2 are improvement-equivalent

w.r.t. A and N and parallel reduction. A program transformation PTÐÐ→ is a parallel
improvement w.r.t. A and N processors, iff P2

PTÐÐ→ P1 implies P1 ⪯p,N,A P2 for all
processes P1 and P2 and it is a parallel improvement equivalence w.r.t. A and N iff
P2

PTÐÐ→ P1 implies that P1 and P2 are improvement-equivalent w.r.t. A and N .

5.2 Proven Time Improvements

Before we give an overview of showed time improvements, several additional trans-
formation rules are needed. We start with the following rules that cannot be derived
from rules for LRP. The rules (dtmvar) and (dpmvar) are variants of (sr,tmvar) and
(sr,pmvar) where the side conditions ensure that the MVar-access is deterministic.
The rule (drfork) removes a future-operation and thus performs thread elimination
provided that the corresponding computation does not access any MVar.

Extra CHF∗-Specific Transformation RulesDefinition 5.4 (Extra CHF∗-Specific Transformation Rules)
(dtmvar) νx.D[y⇐M[takeMVar x]|xm e]→ νx.D[y⇐M[return e]|xm−]

if for all D′ ∈ PCtxt and sr,∗ÐÐ→ -sequences starting with
D′[νx.(D[y⇐M[takeMVar x]|xm e])] the first execution of any
(takeMVar x)-operation takes place in the y-thread.

(dpmvar) νx.D[y⇐M[putMVar x e]|xm−]→ νx.D[y⇐M[return ()]|xm e]
if for all D′ ∈ PCtxt and sr,∗ÐÐ→ -sequences starting with
D′[νx.(D[y⇐M[putMVar x e]|xm−])] the first execution of any
(putMVar x e′)-operation takes place in the y-thread.

(drfork) C[future e]→ C[e]
if for all D ∈ PCtxt and sr,∗ÐÐ→ -sequences starting with D[C[future e]]
the threads, started with future e, never will execute an action on an
MVar.
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The following rules are generalizations of rules from LRP (compare Definition 3.9 and
Definition 3.12).

Extra CHF∗ Transformation Rules (ucp) and (cse)Definition 5.5 (Extra CHF∗ Transformation Rules (ucp) and (cse))
(ucpt) νx.(S[x]|x = e)→ (S[e]), if x does not occur in S, e and S does not bind x
(ucpt) S1[letrec x = e,E in S2[x]]→ S1[letrec E in S2[e]]

if x does not occur elsewhere and S1 and S2 do not bind x
(ucpd) C1[λy.C2[letrec x = e,E in S[x]]]→ C1[λy.C2[letrec E in S[e]]]

if x does not occur elsewhere and C1,C2 and S do not bind x
(ucp) (ucpd) or (ucpt)
(cse) C[e]|x = e→ C[x]|x = e
(cse) C[letrec E in e]|E ′ → C[π⋅e]|E ′

if π⋅E =α E ′ for some permutation π that maps LV (E)→ LV (E ′) and
LV (E) is fresh for E ′

(cse) x1 = e1|. . .|xn = en|y1 = e′1|. . .|yn = e′n → x1 = π⋅e1|. . .|xn = π⋅en
if π⋅ei =α π⋅e′i for the permutation π with ∀i ∶ π(xi) = yi, π(yi) = xi the
variables xi are not free in ej for all j.

The permutation π in (cse) is a variable-to-variable function on the expressions.

For a the inverse of a program transformation PT we write PT −.

Now the time improvement results can be summarized in the following table:
Transformation Sequential A-improvement Parallel A-improvement for every N
(sr,a),
a/∈{tmvar,pmvar} A ⊆ Aall A ⊆ Aall

(lbeta) A ⊆ Aall A ⊆ Anoncp

(case) A ⊆ Aall A ⊆ Anoncp

(seq) A ⊆ Aall A ⊆ Anoncp

(mkbinds) A ⊆ Aall A ⊆ Anoncp

(cp) A ⊆ Aall A ⊆ Anoncp

(gc) A ⊆ Aall A ⊆ Anoncp

(gc)− A ⊆ Aall/{mkbinds} A ⊆ Anoncp

(ucp) A ⊆ Aall/{cpcxa} A ⊆ Anoncp

(ucp)− A ⊆ Anoncp A ⊆ Anoncp

(cpcxa) A ⊆ Aall/{mkbinds} A ⊆ Anoncp

(cpcxb) A ⊆ Aall/{mkbinds, cpcxa} A ⊆ Anoncp

(cse) A ⊆ Anoncp A ⊆ Anoncp

(lunit) A ⊆ Anoncp A ⊆ Anoncp

(dtmvar) A ⊆ Aall A ⊆ Anoncp

(dpmvar) A ⊆ Aall A ⊆ Anoncp

(drfork) A ⊆ Anoncp –
(drfork)− – A ⊆ (Anoncp/{fork,unIO})
The A-improvement equivalence properties for (gc) and (ucp) follow from the table.
Thus the translation σ from CHF∗-processes to simplified processes (see Definition
2.29) is an improvement equivalence w.r.t. A ⊆ Anoncp.
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Space-Optimizations in CHF

The goal of this chapter is to analyze the space behavior of concurrent lazy-evaluating
functional programs using a similar approach as used in Chapter 3.

As calculus CHF∗ (see Section 2.2) is used, where a space measurement is needed and
defined in the next section. Since CHF∗ is nondeterministic, there might be many diffe-
rent evaluation paths for the same program. But even if the result is the same, the sche-
dules have a great impact on the space consumption.Therefore we develop an efficient
algorithm that computes a space-optimal schedule, if all threads run independently.
We also give algorithms for threads with dependencies. Moreover an environment for
space analyses in CHF∗ is developed.

6.1 Space Measurement and Garbage Collection

In this section a space measurement for CHF∗ is defined. It is crucial to recognize
garbage and remove it, since we are interested in space improving transformations
and not in garbage. This section is based on (SSD19a).

First of all we define the size of expressions and processes, that is a generalization of
the size-measure for LRP (compare Definition 3.5).

CHF∗ Size of ProgramsDefinition 6.1 (CHF∗ Size of Programs)
The size of CHF∗-programs is defined as follows:
size(x) = 0
size(s t) = 1 + size(s) + size(t)
size(λx.s) = 1 + size(s)
size(case s of alt1 . . .altn) = 1 + size(s) +∑n

i=1 size(alti)
size((c x1 . . . xn) → s) = 1 + size(s)
size(f s1 . . . sn) = 1 +∑size(si) for constructors and operators

f such as future,return, . . .
size(letrec {xi = si}ni=1 in s) = size(s) +∑size(si)
size(P1|P2) = size(P1) + size(P2)
size(x op s) = size(s) for op ∈ {=,m}
size(x⇐ s) = 1 + size(s)
size(xm−) = 0
size(νx.P ) = 1 + size(P )

We restrict the garbage collection to the components on top of the whole program.

123
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Garbage Collection Transformation Rule for CHF∗Definition 6.2 (Garbage Collection Transformation Rule for CHF∗)
Garbage collection is defined by the transformation

P1
gcÐ→ P2

where P2 is generated from P1, such that a maximal setM of the following compon-
ents and bindings is removed:
• x = e
• xm e
• xm−

such that the following conditions hold (where occurence means proper occurrence
and not only in the binder νy):
1. The variables x in top-level sharing, threads and MVars are ν-bound or bound by

a binding.
2. The variables x do not occur as ν-bound or free variables in P2.
3. There is no variable y that occurs in P2 and which is also free inM .
After this operation also empty letrec-environments and νx-binding operators that
do not bind any x are removed.

Based on the measure size, a space measure for evaluation sequences is defined as
follows:

CHF∗ Space Measures sps and spminDefinition 6.3 (CHF∗ Space Measures sps and spmin)
Let sizegc be the size of an program P after (gc) was applied.
Then the spacemeasure sps(Red) of a successful standard reductionRed of a program
P is the maximum of all sizegc(Pi) during the whole standard reduction sequence,
Red = P srÐ→ P1

srÐ→ . . .
srÐ→ Pn.

The space measure of a CHF∗-program P is defined as follows:
spmin(P ) =min{sps(Red) ∣ Red is a successful standard reduction of P}

As also for LRP it is important that we only consider size-values that are free of
garbage, because otherwise the results would be distorted by bindings that can be
directly garbage collected after creation.

6.2 Space-Optimal Schedules

A first step before we can give a useful definition of space improvements for CHF∗ is
to find a space-optimal schedule for a CHF∗-program. Caused by the nondeterminism
introduced by concurrency, there might be many different schedules for a single pro-
gram. Also the relation between runtime and space behavior is not trivial and it might
occur that a program with a good space consumption has a bad runtime behavior and
vice versa.

However in practice we often do not have that many concurrent processes and some-
times those processes also have only rare interactions by a controllable form of syn-
chronization. Therefore we first develop an algorithm that computes a space-minimal
execution sequence of a set of given parallel and independent processes.
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Afterwards also processes with interactions are analyzed. Note that processes can be
implemented as threads in CHF∗, but we use the term processes, since the algorithms
in this section are more general and not restricted to CHF∗.

Even if the processes are independent from each other, they still use a common me-
mory and are stored in this commonmemory, but each process has its completely own
areas in this memory. Also the state of processes are stored in this common memory.
The algorithm for independent processes takes a list of numbers for each process that
represents the space consumption at the corresponding time point, where the time
point is equal to the index of the list-item. The abstract model can be applied if all
processes have a common start and end time.

If we consider only two processes, then we have two of such lists and even two of
such lists lead to an exponential number of possible schedules. Hence a brute force
approach is to naive and we need a better algorithm. Also note that such an algorithm
works offline, since the whole sequence of such numbers is required as prerequisite.
Because the processes run independently, such lists of numbers can be calculated in a
straightforward way.

The simplicity of this model allows applications of the space-optimization algorithm
in the following scenarios:

• Industrial processes (jobs) where the number of machines can be optimized sin-
ce it is similar to required space (resource-restricted scheduling). It can be used
in problem settings similar to job-shop-scheduling problems (Gar76), where the
number of machines has to be minimized and where the time is not relevant (see
e.g. (GJ77)).

• Concurrent threads, independent of a programming language. The applicability of
the algorithm depends on the specific programming language, in any case it can
be expected that it is useful for independent threads.

This section is based on (SSD19a).

6.2.1 Abstract Model of Processes and Space

The assumptions underlying the abstraction is that processes use a common memory
for their local data structures, but they cannot see each others areas in memory. The
processes may independently start or stop or pause at certain time points. We also
assume that synchronization and communication may occur at certain time points as
interaction between processes.

Every process is abstractly modeled by its trace of space usage, given as a list of inte-
gers. In addition we later add constraints expressing simultaneous occurrences of time
points of different processes as well as start- and end-points of processes.

In the following wewrite tail(l) for the tail of list l and [f(x) ∣ x ∈ l] for a list l denotes
the list of f(x) in the same sequence as that of l, i.e. it is a list comprehension.
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In the following we abstract a CHF∗-process by a list of nonnegative integers. This is
a reduction of the complex construct process to a trace of space values (i.e. the space
consumption of a process), however for simplicity we call this list a CHF∗-process or
process in the rest of this section. A (parallel) interleaving is constructed such that from
one state to the next one, each CHF∗-process proceeds by at most one step and at least
one CHF∗-process proceeds. We formalize this in the following definition:

CHF∗-ProcessDefinition 6.4 (CHF∗-Process)
A process is a nonempty and finite list of nonnegative integers.
For n > 0 and n CHF∗-processes P1, . . . , Pn, we write len(pi) for the length of pi and
pi,j for the elements, where j ∈ {1, . . . , len(pi)}.

An interleaving is defined as follows:

InterleavingDefinition 6.5 (Interleaving)
An interleaving of CHF∗-processes P1, . . . , Pn is a list [q1, . . . , qh] of n-tuples qj con-
structed using the following nondeterministic algorithm:
1. Let q be the empty list.
2. If all CHF∗-processes P1, . . . , Pn are empty, then return q.
3. Set q ∶= q ++ [(p1,1, . . . , pn,1)], i.e. the tuple of all first elements is added at the

end of q.
Let (b1, . . . , bn) be a nondeterministically chosen tuple of Booleans, such that
there is at least one k such that bk is True and Pk not empty.
For all i = 1, . . . , n: Set Pi = tail(Pi) if bi and pi is not empty, otherwise do not
change Pi.
Continue with step 2.

We also define certain terms and notations concerning processes and interleavings:

Space-Usage, Required Space, Peaks and ValleysDefinition 6.6 (Space-Usage, Required Space, Peaks and Valleys)
Let P1, . . . , Pn be CHF∗-processes.
1. The space usage spsI(S) of an interleaving S of P1, . . . , Pn is the maximum of the

sums of the elements in the tuples in S:

spsI(S) =max{
n

∑
i=1
ai ∣ (a1, . . . , an) ∈ S}

2. The required space spminI(P1, . . . , Pn) for n processes P1, . . . , Pn is the minimum
of the space usages of all interleavings of P1, . . . , Pn:

spminI(P1, . . . , Pn) ∶=min{spsI(S) ∣ S is an interleaving of P1, . . . , Pn}

3. A peak of Pi is a maximal element of Pi and a valley is a smallest element of Pi.
4. A local peak of Pi is a maximal element in Pi which is not smaller than its neigh-

bors. A local valley of Pi is a minimal element in Pi which is not greater than its
neighbors.

To illustrate the definitions of CHF∗-processes and interleavings, we give an example
where a runtime-optimal scheduling is not space-optimal.
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CHF∗-Processes and InterleavingExample 6.1 (CHF∗-Processes and Interleaving)
For two CHF∗-processes [1,7,3], [2,10,4] the spminI-value is 11, by first running
the second one and then running the first. I.e. such a space-optimal interleaving is
[(1,2), (1,10), (1,4), (7,4), (3,4)].
The interleaving that results from a scheduling and tries to parallelize as much as
possible, is [(1,2), (7,10), (3,4)], with sps-value 17 and hence not space-optimal.

Programs with independent processes can be implemented in CHF∗ as follows:

u
main⇐ÔÔ . . .|. . .|x1⇐ e1|x2⇐ e2|. . .|xn⇐ en

If the threads x⇐ e1 to x⇐ en are independent from each other, then we can measure
them separately and apply the notations above.

6.2.2 Standard Form of Processes

In this section we show, that a reduction by an iterated application of five patterns
to processes, do not change the spminI-value and therefore simplify the search for a
space-optimal schedule.

First we define some terms and notations:
PatternDefinition 6.7 (Pattern)

A pattern matches a process [a1, . . . , ak] at index i, if for index i the conditions of the
pattern are satisfied.
A condition of a pattern is an equation (e.g. ai = ai+1), inequality or sequence of
equations and inequalities (e.g. ai ≤ ai+1 ≤ ai+2).

The straightforward patterns are defined as follows:

PatternsM0,M1 andM2Definition 6.8 (PatternsM0,M1 andM2)
The trivial patternM0 is ai = ai+1.

There are two further nontrivial patterns:
The first patternM1 is ai ≤ ai+1 ≤ ai+2, illustrated as follows:

ai+2

ai+1

nnnn

ai
pppp

The second patternM2 is ai ≥ ai+1 ≥ ai+2, illustrated as follows:

ai
NNN

N

ai+1
PPP

P

ai+2

A single pattern application is as follows: If the patterns M0,M1 or M2 matches a
process for some index i, then ai+1 is removed.
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We now show thatM0 does not affect the space measurement:

M0 preserves spminILemma 6.1 (M0 preserves spminI )
Let P1, . . . , Pn be n processes and let P ′1, . . . , P ′n be the processes after removal of sub-
sequent equal entries, i.e. usingM0. Then spminI(P1, . . . , Pn) = spminI(P ′1, . . . , P ′n).

Proof
This is obvious by rearranging the schedules, leading to different interleavings,
which have the same spminI-value.

Also the patternsM1 andM2 do not change the spminI-value:

M1 andM2 preserve spminILemma 6.2 (M1 andM2 preserve spminI )
LetP1, . . . , Pn be n processes. LetP ′1, . . . , P ′n be the processes after several application
of the pattern-reduction process usingM1 andM2.
Then spminI(P1, . . . , Pn) = spminI(P ′1, . . . , P ′n).

Proof
It is sufficient to assume that exactly one change due to a pattern match is per-
formed. It is also sufficient to assume that the pattern is M1 and that it applies in
P1. We can also look only at a subpart of an interleaving to have easier to grasp
indices. For argumentation purposes, we choose the correspondence between the
interleaving (P1, P2, . . . , Pn) and (P ′1, P2, . . . , Pn) as follows.

Let [p1,1, p1,2, p1,3]with p1,1 ≤ p1,2 ≤ p1,3 be the subprocess of P1 that is replaced by
[p1,1, p1,3]. Consider the part

(p1,1, . . . , pn,1) ∶ [(p1,2, p2,2, . . . , pn,2) ∣ (p2,2, . . . , pn,2) ∈ B]++[(p1,3, . . . , pn,3)]

of the interleaving, whereB is a sequence of n−1-tuples. Then the modified inter-
leaving for (P ′1, P2, . . . , Pn) can be defined as:

(p1,1, . . . , pn,1) ∶ [(p1,1, p2,2, . . . , pn,2) ∣ (p2,2, . . . , pn,2) ∈ B]++[(p1,3, . . . , pn,3)]

For every interleaving of (P1, P2, . . . , Pn) exists an interleaving of (P ′1, P2, . . . , Pn)
with a spsI that is smaller or equal. Since spminI is defined as aminimum,we obtain
spminI(P1, P2, . . . , Pn) ≥ spminI(P ′1, P2, . . . , Pn).

For the other direction, consider the part [(p1,1, . . . , pn,1), (p1,3, p2,2, . . . , pn,2)] of
an interleaving of the processes P ′1, P2, . . . , Pn. Then spminI of the part

[(p1,1, . . . , pn,1), (p1,2, p2,2, . . . , pn,2), (p1,3, p2,2, . . . , pn,2)]

of the interleaving of P1, . . . , Pn is the same as before, thus the following inequality
holds: spminI(P1, . . . , Pn) ≤ spminI(P ′1, P2, . . . , Pn)

The two inequations imply spminI(P1, . . . , Pn) = spminI(P ′1, P2, . . . , Pn).

If the patterns M0, M1 and M2 are applied exhaustively, then this leads to a special
form of processes:
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Zig-Zag-ProcessDefinition 6.9 (Zig-Zag-Process)
If in a process P every strict increase is followed by a strict decrease and every strict
decrease is followed by a strict increase, then the process P is called a zig-zag process.
Now we show that there are more complex patterns that can also be used to reduce
the processes before computing spminI . The following patterns M3 and M4 are like
stepping downstairs and upstairs, respectively.

PatternsM3 andM4Definition 6.10 (PatternsM3 andM4)
The patternsM3 andM4 are defined as follows:
M3 consists of the values ai, ai+1, ai+2, ai+3 with ai > ai+1, ai+1 < ai+2, ai+2 > ai+3 and
ai ≥ ai+2, ai+1 ≥ ai+3.

ai
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ai+2
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n
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ai+1

ai+3

M4 consists of the values ai, ai+1, ai+2, ai+3 with ai < ai+1, ai+1 > ai+2, ai+2 < ai+3 and
ai ≤ ai+2, ai+1 ≤ ai+3.
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IfM3 orM4 matches for some i, then eliminate ai+1 and ai+2.
We show that the complex patterns can be used to restrict the search for an optimum
to special processes:

M3 andM4 preserve spminILemma 6.3 (M3 andM4 preserve spminI )
LetP1, . . . , Pn be n processes. LetP ′1, . . . , P ′n be the processes after several application
of the pattern-reduction process usingM3 andM4.
Then spminI(P1, . . . , Pn) = spminI(P ′1, . . . , P ′n).

Proof
It is sufficient to assume that exactly one change due to a pattern match is perfor-
med. It is sufficient to assume that the pattern is M3 and that it applies in P1. We
can also look only at a subpart of an interleaving to have easier to grasp indices. For
argumentation purposes, we choose the correspondence between the interleaving
(P1, P2, . . . , Pn) and (P ′1, P2, . . . , Pn) as follows.

Let [p1,1, p1,2, p1,3, p1,4] with p1,1 > p1,2, p1,2 < p1,3, p1,3 > p1,4, p1,1 ≥ p1,3 and p1,2 ≥
p1,4 be the subprocess of P1 that is replaced by [p1,1, p1,4]. Consider the following
part of the interleaving, where B2,B3 are sequences of n − 1-tuples:

(p1,1, . . . , pn,1) ∶ [(p1,2, p2,2, . . . , pn,2) ∣ (p2,2 . . . , pn,2) ∈ B2]
++[(p1,3, p2,3, . . . , pn,3) ∣ (p2,3 . . . , pn,3) ∈ B3]++[(p1,4, . . . , pn,4)]
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The modified interleaving for (P ′1, P2, . . . , Pn) can be defined as

[(p1,1, . . . , pn,1)]++[(p1,4, q2,4, . . . , qn,4) ∣ (q2,4, . . . , qn,4) ∈ B2++B3++[p2,4, . . . , pn,4]]

and since for every interleaving of (P1, P2, . . . , Pn) we obtain an interleaving of
(P ′1, P2, . . . , Pn) with a spsI that is smaller or equal and since spminI is defined as
a minimum, we obtain spminI(P1, P2, . . . , Pn) ≥ spminI(P ′1, P2, . . . , Pn).

For the other direction we consider the part [(p1,1, . . . , pn,1), (p1,4, . . . , pn,4)] of an
interleaving of P ′1, P2, . . . , Pn. Then spminI of the part

[(p1,1, p2,1, . . . , pn,1), (p1,2, p2,1 . . . , pn,1), (p1,3, p2,1, . . . , pn,1), (p1,4, . . . , pn,4)]

of the interleaving of P1, . . . , Pn is the same as before, thus the following inequality
holds: spminI(P1, . . . , Pn) ≤ spminI(P ′1, P2, . . . , Pn)

The two inequations imply spminI(P1, . . . , Pn) = spminI(P ′1, P2, . . . , Pn).

We define three zig-zag-variants for processes, that ease the search for the required
space.

Zig-Zag-Variants mizz, mdzz and midzzDefinition 6.11 (Zig-Zag-Variants mizz, mdzz and midzz)
1. A process [a1, b1, a2, b2, . . . , an] (or [b0, a1, b1, a2, . . . , an] or [b0, a1, b1, a2, b2, . . . ,
an, bn] or [a1, b1, a2, b2, . . . , an, bn], resp.) is amonotonic increasing zig-zag (mizz),
iff ai < bj for all i and j, a1, a2, . . . , an is strictly monotonic decreasing and
b1, b2, . . . , bn−1 (and b0, b1, b2, . . . , bn−1 and b0, b1, b2, . . . , bn−1, bn, resp.) is strictly
monotonic increasing.

2. A process [a1, b1, . . . , an] is amonotonic decreasing zig-zag (mdzz), iff ai < bj holds
for all i and j, a1, a2, . . . an is strictly monotonic increasing and b1, b2, . . . , bn−1 (or
b0, b1, b2, . . . , bn−1, resp.) is strictly monotonic decreasing.

3. A process is amidzz, if it is a mizz followed by a mdzz. More rigorously, there are
essentially two cases, wherewe omit the cases with end-peaks and/or start-peaks:
• The mizz [a1, b1, a2, b2, . . . , an] and the mdzz [a′1, b′1, . . . , a′n], where an = a′1
are combined to [a1, b1, a2, b2, . . . , an, b′1, . . . , a′n].

• The mizz [a1, b1, a2, b2, . . . , an, bn] and the mdzz [b′0, a′1, b′1, . . . , a′n], where
bn = b′0 are combined to [a1, b1, a2, b2, . . . , an, bn, a′1, b′1, . . . , a′n].

Typical graphical representations of mizz- and mdzz-sequences are:
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If the goal is to compute the required space, then there are several reduction operations
on processes that ease the computation and help us to concentrate on the hard case.
First we show that one-element processes can be excluded.

Exclusion of One-Element-ProcessesProposition 6.1 (Exclusion of One-Element-Processes)
If P1 = [a1] and P2, . . . , Pn are processes then the following holds:

spminI(P1, . . . , Pn) = a1 + spminI(P2, . . . , Pn)

Proof
a1 is the first element of every tuple in any interleaving of P1, . . . , Pn, hence the
claim is valid.

Processes with start- or end-peaks can be reduced by omitting elements.

Omission of Start- and End-PeaksProposition 6.2 (Omission of Start- and End-Peaks)
Let Pi = [pi,1, . . . , pi,ni

] for i ∈ {1, . . . , n} be processes. If p1,1 is a start-peak of P1,
then let P ′1 = [p1,2, . . . , p1,n1].
Then spminI(P1, . . . , Pn) =max(∑i pi,1, spminI(P ′1, P2, . . . , Pn)).
The same holds symmetrically if P1 ends with a local peak.
Proof
Consider the following interleaving for P1, . . . , Pn and some h:

q = [(p1,1, q1,2, . . . , q1,n), . . . , (p1,1, qh,2, . . . , qh,n)]++[(p1,2, qh+1,2, . . . , qh+1,n)]++R

If h /= 1, this can be changed to

[(p1,1, q1,2, . . . , q1,n), (p1,2, q2,2, . . . , q2,n), . . . , (p1,2, qh,2, . . . , qh,n)]
++[(p1,2, qh+1,2, . . . , qh+1,n)]++R

without increasing the necessary space. Hence the following inequality holds:

spminI(P1, . . . , Pn) ≥max(∑
i

pi,1, spminI(P ′1, P2, . . . , Pn))

On the other hand, if we have a space-optimal schedule of P ′1, P2, . . . , Pn, then we
can extend this by starting with (p1,1, . . . , pn,1) and obtain the following inequality:
spminI(P1, . . . , Pn) ≤max(∑i pi,1, spminI(P ′1, P2, . . . , Pn)).

Hence spminI(P1, . . . , Pn) =max(∑i pi,1, spminI(P ′1, P2, . . . , Pn)).

Since start- and end-peaks were removed and also singleton processes are not need to
be considered by the main calculation, the following holds:

Minimal Length of ProcessesLemma 6.4 (Minimal Length of Processes)
We can assume that processes P1, . . . , Pn are all of length at least 3 for computing
the optimal space.
Proof
Proposition 6.1 requires a length of at least 2 and Proposition 6.2 requires that there
is neither a start- nor an end-peak. Hence we obtain the the claim.
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The patterns cannot remove start- or end-peaks and preserve start- and end-valleys,
hence Proposition 6.2 needs to be applied before the main calculation.

PatternsM0, . . . ,M4 preserve Start- and End-ValleysProposition 6.3 (PatternsM0, . . . ,M4 preserve Start- and End-Valleys)
Let P be a process that starts and ends with local valleys. Then the application of the
patternsM0, . . . ,M4 with subsequent reduction always produces a process that also
starts and ends with local valleys.
Proof
The reduction either removes according to patternM0 or it removes inner entries
of the lists.

Now we show that through the exhaustive use of the five patterns M0, . . . ,M4 for
reductions a midzz is calculated, if start- and end-peaks are also eliminated.

Generation of midzzProposition 6.4 (Generation of midzz)
A process such that none of the patterns M0, M1, M2, M3, M4 matches and which
does neither start nor end with a local peak is a midzz.
Proof
We consider all four different cases how small sequencesmay proceed, if no pattern
applies.

1. Case a1 > a2, a2 < a3 and a3 < a1. Then a4 < a3. The relation a4 ≤ a2 is not
possible, since then patternM3 matches. Hence a3 > a4 > a2. Then a1, a2, a3, a4
is a tail of a mdzz.
The case a1 > a2, a2 < a3 and a3 = a1 leads to the same relations a3 > a4 > a2.
Then a2, a3, a4 is a tail of a mdzz.

a1

11
11
11
11 a3

��
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a4?

a2

2. Case a1 < a2, a2 > a3 and a3 > a1. Then a4 > a3. The relation a4 ≥ a2 is not
possible, since then patternM4 matches. Hence a3 < a4 < a2. Then a1, a2, a3, a4
is a mdzz.
The case a1 < a2, a2 > a3 and a3 = a1 leads to the same relations a3 < a4 < a2.
Then using case 1 for the the next element a5, the sequence a3, a4, a5 is a tail
of a mdzz.

a2
a4?

a3

99999

a1











3. Case a1 > a2, a2 < a3 and a3 > a1. Then a3 > a4 and there are three cases:

– If a4 = a2 then the sequence starting from a3 is a mdzz.
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– If a4 > a2 then case 2 is applicable and the sequence starting from a2 is a
mdzz.

– If a4 < a2 then the sequence starting with a1 proceeds as mizz. It may later
turn into a mdzz.

a3
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�

a1 KKK a4?

a2

4. Case a1 < a2, a2 > a3 and a3 < a1. Then a3 < a4 and there are three cases:

– If a4 = a2 then the sequence starting from a3 is a mdzz.

– If a4 < a2 then case 1 is applicable and the sequence starting from a2 is a
mdzz.

– If a4 > a2 then the sequence starting with a1 proceeds as mizz. It may later
turn into a mdzz.

a2

a1
www

a4?

a3

555555

Now we put the parts together and conclude that the sequence must be a midzz.

Note that the definition of midzz permits the simplified case that the process is a mizz
or mdzz. Finally, a standard form of processes can be defined:

Standardized ProcessDefinition 6.12 (Standardized Process)
A process is called standardized if it is a midzz of length at least 3 and does neither
start nor end with a local peak.
For the calculation of the required space, it is important, that there are not two global
valleys and two global peaks at the same time.

Number of Global Valleys and Global PeaksLemma 6.5 (Number of Global Valleys and Global Peaks)
LetP be amidzz-process, where none of the patternsM0,M1,M2,M3 andM4 applies,
has a length of at least 3 and does neither start nor end with a local peak. Then a
midzz-process has one or two global peaks, it has one or two global valleys, but not
two global peaks and two global valleys at the same time.
Proof
The considerations and cases in the proof of Proposition 6.4 already exhibit the
possible cases.

Since the patterns M3 and M4 do not apply, there cannot be three global peaks
and also there cannot be three global valleys. If there are two global peaks and two
global valleys, then the picture is as follows:
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a1
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In this case we can apply patternM3, which is forbidden by the assumptions.

The case where a1 is a global valley is similar.

Hence, a standardized process in midzz-form has three different possibilities for the
global peaks and valleys:

1. A unique global peak and a unique global valley.

2. A unique global peak and two global valleys.

3. Two global peaks and a unique global valley.

In summary, we can use standardized processes for the calculation of the required
space, where the spminI-value is not affected by the standardization. The possibilities
of global valleys and peaks above also ease the calculation.

6.2.3 Required Space of Many Independent Processes

In this section we give an algorithm that calculates the required space of many inde-
pendent processes. First we give an algorithm that implements the standardization of
Section 6.2.2.

Standardization of N ProcessesAlgorithm 6.1 (Standardization ofN Processes)
For an input of N processes P1, . . . , PN :
1. For every process Pi in turn scan Pi by iterating j from 0 as follows:

If the patterns M0, . . . ,M4 apply at index j then reduce accordingly and restart
the scan at position j − 3, otherwise go on with index j + 1.

2. Let K0 be the sum of all first elements of P1, . . . , PN .
LetP ′1, . . . , P ′N be obtained fromP1, . . . , PN by removing all start-peaks only from
processes of length at least 2.

3. Let Kω be the sum of all last elements of P ′1, . . . , P ′N .
LetP ′′1 , . . . , P ′′N be obtained fromP ′1, . . . , P

′
N by removing all end-peaks only from

processes of length at least 2.
4. Let A be the sum of all elements of one-element processes and let P ′′′1 , . . . , P ′′′N ′

be P ′′1 , . . . , P ′′N after removing all one-element processes.
5. If M ′′′ is spminI(P ′′′1 , . . . , P ′′′N ′), then spminI(P1, . . . , PN) is computed as

max(M ′′′ +A,K0,Kω).

We show the correctness of the above algorithm and analyze the runtime:

Correctness and Complexity of Standardization of N ProcessesTheorem 6.1 (Correctness and Complexity of Standardization ofN Processes)
Algorithm 6.1 for standardization reduces the computation of spminI for N proces-
ses P1, . . . , PN of size n to the computation of spminI for standardized processes in
runtime O(n).
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Proof
Algorithm 6.1 is correct by Lemma 6.1, Lemma 6.2, Lemma 6.3, Proposition 6.1,
Proposition 6.2 and Proposition 6.4.

The required number of steps for pattern application is O(n): Every successful
application of a pattern strictly reduces the number of elements. The maximum
number of steps back is 3, hence at most 4n total steps are necessary. Stepping
back for 3 is correct, since a change at index k cannot affect pattern application for
indices less than k − 3. The overall complexity is O(n) since scans are sufficient to
perform all the required steps and computations in Algorithm 6.1.

Since a zig-zag-process is symmetric, the calculation of the required space can be split
into two parts: From the left to the middle and from the right to the middle using
symmetry. Hence the following algorithm only works on the left half. Note that in the
case, where a midzz is a mizz, the algorithm is also applicable and in the case of a mdzz
the symmetric variant of the algorithm applies.

Left-Scan of N processesAlgorithm 6.2 (Left-Scan ofN processes)
We describe an algorithm for standardized processes which performs a left-scan until
a global valley is reached and returns the required space for the left part.
The following index Ii,ends in process Pi for i ∈ {1, . . . ,N} is fixed: It is the index in
Pi of the global valley, if it is unique and of the rightmost global valley if there are
two global valleys.
1. Build up a search tree T that contains ((pi,2−pi,1), i) for each Pi = [pi,1, . . . , pi,ni

],
where the first component is the search key.

2. Set S = M = ∑i pi,1. Also for each process Pi there are indices Ii indicating the
current valley positions of the process, initially set Ii = 1 for each process.

3. If T is empty then returnM and terminate.
4. Remove the minimal element V = (d, i) from T .

If Ii+2 ≤ Ii,ends, then setM =max(M,S+d),S = S+(pi,3−pi,1), insert (pi,4−pi,3, i)
into T (only if Pi contains at least 4 elements), set Ii = Ii + 2 and remove the first
two elements from Pi. Note that Pi is not considered anymore in the future if
Ii + 2 > Ii,ends or if there is no further peak in Pi after Ii.
Goto (3).

The algorithm for the right-scan is the symmetric version and also yields the required
space for the right part, that only scans to the rightmost valley for every process.

We show the correctness and analyze the runtime for the left- and right-scan.

Correctness and Complexity of Left- and Right-ScanTheorem 6.2 (Correctness and Complexity of Left- and Right-Scan)
Algorithm 6.2 calculates the required space spminI forN standardized processes until
a global valley is reached. The runtime is O((N +n) logN), where n is the total size
of the processes.
The same holds for the right-scan symmetrically, where the scan only runs to the
rightmost global valley.
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Proof
Consider a state (i1, . . . , in) during the construction of a space-optimal interleaving
using space M , where every ij is not after the index of the smallest valley, which
means ij ≤ Ij,ends.

An invariant of the state is that pi1 + . . . + pin ≤ M holds. We also assume as an
invariant that the current state belongs to an optimal interleaving.

If some ij is the position of a local peak, then the optimal interleaving can be chan-
ged to ij + 1 such that the next tuple is (i1, . . . , ij + 1, . . . , in). Repeating this argu-
ment, we can assume that (i1, . . . , in) contains only indices of local valleys. Now
consider the set S of positions j in the tuple, such that ij < Ij,ends. For at least one
such index the optimal interleaving must proceed.

For the indices in S, the next index will be a local peak, so the best way is to look
for the smallest peak pij+1 for j ∈ S. If the sum of the spaces exceeds M then we
have a contradiction, since the interleaving must proceed somewhere. HenceM is
at leastmin{pij+1 +∑h/=j pih ∣ j = 1, . . . , n}. This argument also holds, if the indices
ij for j /∈ S are beyond Ij,ends, since the valley at Ij,ends is smaller.

For a better efficiency the algorithm calculates these sums implicitly by keeping
track of the sum of the current valleys, i.e. ∑h pih . Then it uses a search tree con-
taining the space differences between the corresponding local valley and the next
peak to step forward, i.e. to calculate pij+1.The search tree can be initially construc-
ted in O(N logN). Since the search tree contains at most N elements during the
whole calculation, we need O(n logN) steps for all lookups and insertions. Hence
the overall runtime of the left-scan is O(N logN + n logN).

For the right-to-left scan the same arguments hold, symmetrically where by slight
asymmetry, we only scan to the rightmost global valley for every process.

Using the algorithms above we now can construct an algorithm, that calculates the
required space for N processes:

SpOptN Computation of spminI for N processesAlgorithm 6.3 (SpOptN Computation of spminI forN processes)
1. LetMstart be the sum of all start elements andMend be the sum of all end elements

of the given processes P1, . . . , PN .
Also letMone be the sum of all elements of one-element-processes.

2. Transform the set of processes into standard form using Algorithm 6.1.
3. ComputeMleft using the left-scan andMright using the right-scan (see Algorithm

6.2).
4. Return the maximum of (Mleft +Mone), (Mright +Mone),Mstart andMend.

We also show the correctness of the complete algorithm SpOptN and analyze the run-
time.

Correctness and Complexity of SpOptNTheorem 6.3 (Correctness and Complexity of SpOptN)
Algorithm 6.3 calculates the required space spminI for N processes in runtime
O((N + n) logN), where n is the total size of the processes.
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Proof
The standard forms of the processes is achieved by Algorithm 6.1, hence the cor-
rectness and runtime O(n) of this part is shown by Theorem 6.1.

The valuesMleft andMright are calculated using Algorithm 6.2 and its symmetric
variant, hence the correctness and runtimeO((N+n) logN) for this part is shown
by Theorem 6.2.

The only missing argument is that we can combineMleft andMright. For processes
that have a unique global minimal valley the combination is trivial. For the case of
processes that have global minimal valleys, we glue together the left interleaving
with the reversed right interleaving.This is an interleaving and it can be performed
in space at most the maximum ofMleft andMright.

Note that the bit-size of the integers of the space-sizes is not relevant, since we
only use addition, subtraction and maximum-operations on these numbers.

Concluding, the algorithm computes spminI for the input processes with runtime
O((N + n) logN).

We give an example for the algorithm SpOptN.

Computation using SpOptNExample 6.2 (Computation using SpOptN)
This example illustrates the computation of SpOptN (see Algorithm 6.3) as follows.
The optimization using search trees is not considered in this example, since the un-
optimized variant is easier to grasp.
Let P1 = [10,1,12,5,7,1], P2 = [3,11,2,10,3] and P3 = [1,2,3,4,3,2,1]. The pro-
cesses can be sketched as follows:
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Then we first can reduce the processes as follows: P3 can be reduced by patterns
M1 and M2 to P ′3 = [1,4,1]. P2 is already a zig-zag process, therefore no pattern
applies. P1 starts with a local peak, hence we keep in mind 14 as the sum of the first
elements and replace P1 by P ′1 = [1,12,5,7,1]. The next step is to apply the pattern
M3, which reduce it to P ′′1 = [1,12,1]. Thus the new problem is P ′′1 = [1,12,1],
P2 = [3,11,2,10,3] and P ′3 = [1,4,1] as sketched in the following:



138 6.2. SPACE-OPTIMAL SCHEDULES
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A short try shows that 15 is the optimum. However, we want to demonstrate the
algorithm:
The left scan starts with M = 5. The peak in P ′3 then enforces M = 8 and P ′3 is not
considered anymore, since the left scan reached the final position in P3, i.e. the right-
most global valley.The peak in P ′2 then enforcesM = 13 and also P2 is not considered
anymore, since the final position is reached. Finally the peak in P ′′1 enforcesM = 15
and the left scan terminates.
The right scan starts withM = 5. Then the peak in P ′3 enforcesM = 8, after this the
peak in P ′2 enforcesM = 12 and finally the peak in P ′′1 enforcesM = 15.
Hence in summary, also taking the local peak at the beginning of P1 into account,
the result is 15.

6.2.4 Processes with Synchronizations

The model of independent processes can be extended to timing and synchronization
restrictions. For example, in CHF∗ writing into a filled MVar requires the process to
wait until the MVar is empty. There are also race-conditions, for example if several
processes try to write into an empty MVar or several processes try to read the same
MVar. These cases are captured by the constraints below, where the race conditions
can be modeled by disjunctions.

Basic Synchronization RestrictionsDefinition 6.13 (Basic Synchronization Restrictions)
There may be various forms of synchronization restrictions. We will only use the
following forms of fundamental restrictions:
1. simul(P1, P2, i1, i2): For processes P1 and P2 the respective actions at indices i1

and i2 must happen simultaneously.
2. starts(P1, P2, i): Process P1 starts at index i of process P2.
3. ends(P1, P2, i): Process P1 ends at index i of process P2.
4. before(P1, P2, i1, i2): For processes P1 and P2 the action at index i1 of P1 happens

simultaneously or before the action at i2 of P2.
For a setR of restrictions only schedules are permitted that obey all restrictions. This
set R is also called a set of basic restrictions.
We also permit Boolean formulas over such basic restrictions. In this case the per-
mitted schedules must obey the complete formula.
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Note that in CHF∗ these restrictions correspond to synchronization conditions of the
start of a future or waiting for an MVar to be in the right state. The simultaneous
condition is not necessary for single reduction steps in CHF∗, but can be used for
blocks of monadic commands.

We show that there is an algorithm for computing the optimal space and an optimal
schedule that has an exponential complexity, where the exponent is b ⋅N where b is
the size of the Boolean formula and N is the number of processes.

Upper Complexity of Synchronization RestrictionsTheorem 6.4 (Upper Complexity of Synchronization Restrictions)
Let there be N processes and a set B of Boolean restrictions where b is the size of B
and n the size of the input. Then there is an algorithm to compute the optimal space
and an optimal schedule of worst case asymptotic complexity ofO(poly(n) ⋅nO(b⋅N)),
where poly is a polynomial.
Proof
The algorithm is simply a brute force method of trying all possibilities:

For every condition try all tuples of indices. The number of different tuples is at
most nN and for trying this for every basic restriction we get an upper bound of
nN ⋅b.

Now we have to check whether the time constraints are valid, i.e. there are no
cycles, which can be done in polynomial time. Then we can split the problem into
at most b + 1 intervals with interception of an index of a condition and apply for
every interval the algorithm SpOptN (see Algorithm 6.3), which requires time sub-
quadratic in n by Theorem 6.3.

Thus we get an asymptotic time complexity as claimed.

However for a fixed number of processors and a fixed size of Boolean restrictions, the
time is obviously polynomial:

Polynomial Time for Fixed Number of Processors and RestrictionsCorollary 6.1 (Polynomial Time for Fixed Number of Processors and Restrictions)
Let there beN processes and a set B of Boolean restrictions where b is size of B and
n the size of the input. Assume that the number N of processes and the size of B
is fixed. Then there is a polynomial algorithm to compute the optimal space and an
optimal schedule.
In general, the synchronization restrictions yield NP-completeness:

NP-Completeness of General Synchronization RestrictionsTheorem 6.5 (NP-Completeness of General Synchronization Restrictions)
Using general synchronization restrictions, the problem of finding the required space
is NP-hard and hence NP-complete.
Proof
We use the (perfect) partition problem, which is known to be NP-hard. An instance
is a multi-set A of positive integers and the question is whether there is a partition
of A into two sub-multi-sets A1 and A2 such that ∑A1 = ∑A2.



140 6.2. SPACE-OPTIMAL SCHEDULES

This can be encoded as the question for the minimal space for a scheduling:

Let Pi = [0, ai,0,0] for A = {a1, . . . , an} and P0 = [0,0,0,0], where the indices are
1,2,3,4.The condition is a conjunction of the following disjunctions: (P0, Pi,2,3)∨
(P0, Pi,3,2). The optimal space is reached for a schedule, where the indices 1 and
4 are zero and where at index 2 and 3, there is a perfect partition of A.

Since SpOptN solves a special case, it is natural to search for an approximation algo-
rithm that solves the space-optimization using general synchronization restrictions.
In (MSV12) tree-shaped task graphs are used, where the task durations and number
of processors are assumed to be known. They showed that the problem, whether the-
re exists a schedule of a task graph, that has a makespan lower or equal to a given
constant and also a peak memory consumption does not exceed a given constant, is
NP-complete. Furthermore they showed that there exists no approximation algorithm
with constant approximation factors for makespan and peak memory consumption.

6.2.5 Applications of Space-Optimizations using Synchronizations

Apart from space analyses in CHF∗ there are two further applications of finding space-
optimal schedules using synchronizations.

Producer-Consumer Problem

We illustrate how an abstract version of the producer-consumer problem can bemode-
led using interleavings and synchronization restrictions.The idea is that the consumer
process P1 produces a list or stream that is consumed by the process P2. The single
elements are also modeled as processes.

Our model will be such that the optimal space model coincides with the intuition that
the space usage of the intermediate list is minimal if there is an eager consumption of
the produced list elements.

We represent the problem as follows. There are two processes P1 and P2, the producer
and the consumer, which consist of n times the symbol 1. There are also n processes
Q1, . . . ,Qn that only consist of two elements: A 1 followed by a 0, where the processes
represent the unconsumed parts of the exchanged list.

We represent the possible executions by synchronization restrictions:

• Qi is started by P1 at time point i:

starts(Qi, P1, i)

• Qi is consumed by P2 at a time point i or later:

before(P2,Qi, i,2) for all i.

• Qi+1 ends later than Qi for all i:

before(Qi,Qi+1,2,2) for all i.

The start of the space-optimal schedule is as follows and requires 3 units of space:
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Variant of Job Shop Scheduling

A variant of job shop scheduling is the following:

Let there be n jobs (processes) that have to be performed on a number of identical ma-
chines. If the focus is on the question howmanymachines are sufficient for processing,
then we can ignore the time and thus only specify the number of machines that are
necessary for every single sub-job of any job. The necessary information is then the
list of numbers (of machines) for every job. Note that also the number 0 is permitted.
The trivial solution would be that all jobs run sequentially, in case the machine lists
of every job are of the form [0, k2, . . . , kn,0].

If there are in addition (special) time constraints, for example every job starts immedia-
tely with a nonzero number of machines, all jobs endwith a nonzero number of machi-
nes and they terminate all at the same time, then our algorithm SpOptN (see Algorithm
6.3) can be applied in a nontrivial way and will compute the minimal total number of
necessary machines.

In the case of further time constraints, Corollary 6.1 shows that in certain cases there
are efficient algorithms and Theorem 6.5 shows that the problem, if there are general
time constraints, is NP-complete.

Our approach and algorithm SpOptN (see Algorithm 6.3) is related to resource cons-
trained project scheduling (ADN08) insofar as we are looking and optimizing the space
resource of several given processes (projects respectively). The difference is that in job
shop and project scheduling the primary objective is to minimize the overall required
time, whereas our algorithm computes a minimal bound of a resource (here space) not
taking the time into account.

6.3 Environment for Space Analyses

Since CHF∗-programs often have synchronization points and the general case of syn-
chronization restrictions is NP-complete (see Theorem 6.5) this motivates to develop
an environment for space analyses in CHF∗. Moreover such an environment helps to
find examples, where a transformation increases the space consumption and also we
can perform more complex analyses.
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6.3.1 Abstract Machine CIOM1sp,int

The abstract machine CIOM1 as defined in Section 2.4.4 implements a sequential stan-
dard reduction. We adapt the abstract machine, so that the space consumption is com-
patible to CHF∗ using spmin (see Definition 6.3). The result is the abstract machine
CIOM1sp,int.

First of all we give a definition of a garbage collector as an additional transition rule for
the abstract machine CIOM1, that has to be applied whenever possible to be compati-
ble to the eager garbage collection approach of the measures sps and spmin (compare
Definition 6.3):

Additional CIOM1-Rule (GC)Definition 6.14 (Additional CIOM1-Rule (GC))
(GC) ⟨H,{xi = si} ∣M,{yj = tj} ∣ T ⟩→ ⟨H ∣M ∣ T ⟩

where T = {(n1, e1,S1,I1), . . . , (nm, em,Sm,Im)}.
{xi = si} is the maximal set such that for all i and k ∈ {1, . . . ,m}:
xi /∈ FV(H), xi /∈ FV(ek), #app(xi) /∈ Sk, #seq(xi) /∈ Sk, #put(xi) /∈ Ik,
#bind(xi) /∈ Ik and if xi ∈ FV(alts) then #case(alts) /∈ Sk
{yj = tj} is the maximal set such that for all j and k ∈ {1, . . . ,m}:
yj /∈ FV(H), yj /∈ FV(ek), #app(yj) /∈ Sk, #seq(yj) /∈ Sk, #put(yj) /∈ Ik,
#bind(yj) /∈ Ik and if yj ∈ FV(alts) then #case(alts) /∈ Sk

Since H only contains bindings,M only contains MVars and (GC) only removes bin-
dings of both H andM, this is a direct implementation of (gc) (compare Definition
6.2). The requirements for stack and IO-stack are needed, because the CIOM1 stores
parts of the program on stack and IO-stack during execution.

The space measure sps (see Definition 6.3) abstracts over local peaks, since only the
maximum of such values that do not allow a garbage collection are considered. This
transfers to the space measure spmin that is defined as the standard reduction se-
quence with the minimal sps-value. Often an abstraction or constructor application
can be directly garbage collected, this both applies to CHF∗ and CIOM1 (the example
in Section 3.6.1 also is applicable here).

The measure msize of M1 (see Definition 3.16) is now generalized for CIOM1.The size
of a thread is defined as follows:

Size of CIOM1-Thread ctmsizeDefinition 6.15 (Size of CIOM1-Thread ctmsize)
The size of a CIOM1-thread T = (x, s,S,I) is defined as follows:

The size of stack ctmsizeS is the sum of the sizes of the stack-entries. #app(x) and
#seq(x) are counted as 1, #upd(x) as 0 and #case(alts) as follows:
For a case-alternative (c y1 . . . yn) → t the size is defined as 1 + size(t) and the
size of #case(alts) is the sum over all of such sizes of the case-alternatives alts.

The size of IO-Stack ctmsizeI is the sum of the sizes of the stack-entries, where
#take, #put(x) and #bind(x) are counted as 1.

Finally ctmsize(T ) ∶= size(s) + ctmsizeS + ctmsizeI .



6.3. ENVIRONMENT FOR SPACE ANALYSES 143

Using the definition of ctmsize, we can define the size of a CIOM1-state:

Size of CIOM1-State cmsizeDefinition 6.16 (Size of CIOM1-State cmsize)
The size of a CIOM1-state S = ⟨H ∣M ∣ T ⟩ is defined as follows:
Let H = {x1 ↦ e1, . . . , xn ↦ en}, then the size of the heap cmsizeH is defined as
∑n

i=1 size(ei).
SinceM can be seen as heap, we define cmsizeM analogous to cmsizeH.
The size of threads cmsizeT is the sum of the thread-sizes ctmsize of all of the
threads in T .
Finally cmsize(S) ∶= cmsizeH + cmsizeM + cmsizeT .
LRPgc copies values directly to the end of variable-to-variable-chains, without placing
it at any intermediate position. Therefore in Section 3.6.1 we had to take care of this,
since the abstract machine M1 implicitly copied values to each intermediate position
of a variable-to-variable chain. In contrast to LRPgc, CHF∗ copies such values to the
intermediate positions and also the abstract machine CIOM1 performs this implicit
step-by-step copies, hence with regard to this there is no extra work required to obtain
compatibility between CHF∗ and CIOM1.

In contrast to LRPgc, CHF∗ has no rules like (seq-in) or (case-in), hence the values
and constructor applications has to be copied to the certain positions and then are
directly evaluated by (seq) or (case).This is the reason whyM1sp needed a special space
measurement, that ignored an (Update) if it is directly followed by (Seq) or (Case) (see
Definition 3.17), to gain space-compatibility. This is not needed for CHF∗, hence the
definition of the overall space measurement of evaluation sequences of the CIOM1 is
as follows:

CIOM1 Space Measures spsM and spminMDefinition 6.17 (CIOM1 Space Measures spsM and spminM )
Let Red = S1 → ⋅ ⋅ ⋅ → Sn be a terminating evaluation sequence of the machine
CIOM1. Then the space measure spsM is defined as follows:

spsM(Red) ∶=max{cmsize(Si) ∣ (GC) is not applicable to Si}

The space measure for a state of the CIOM1 is defined as follows. Note that the state
⟨∅ ∣ ∅ ∣ {(main, s, [], [])}⟩ corresponds to a machine expression s and therefore the
measure can also be applied to machine expressions.

spminM(S) =min{spsM(Red) ∣ Red is a terminating evaluation sequence
starting with S}

Sequences of #upd(.) on the stack, e.g. #upd(x) ∶ #upd(y) ∶ #upd(z) ∶ S , lead to a
sequence of copyings.This can be seen as a letrec-environement, for the example we
then have letrec x = y, y = z, z = True, that leads to letrec x = y, y = True, z = True
and finally to letrec x = True, y = True, z = True. The three #upd(.)-markers on the
stack have the same effect. This is a contrast to LRPgc and M1 where an additional
rule was needed to prevent such cases.

Thus the adapted abstract machine is defined as follows:
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Abstract Machine CIOM1sp,intDefinition 6.18 (Abstract Machine CIOM1sp,int)
The abstract machine CIOM1sp,int is the abstract machine CIOM1, but additionally the
transition rule (GC) has to be applied whenever possible.
Thus we now can show that the abstract machine CIOM1sp,int can be used to measure
the space consumption of CHF∗-programs:

Space Equivalence between CHF∗ and CIOM1sp,intTheorem 6.6 (Space Equivalence between CHF∗ and CIOM1sp,int)
If a CHF∗-process P is translated to its corresponding simplified process Pm, then
spmin(P ) = spminM(Pm) holds, if CIOM1sp,int is used for the evaluation of Pm.

Proof
The translation σ (see Definition 2.29), that transforms P to Pm, is the reverse
of the transformation (ucp) on the expression layer. (ucp) allows a step-by-step
translation from CHF∗-expressions to simplified expressions and does not affect
the space consumption. On the monadic layer, the MVars are also only allowed
to have variables as content and therefore σ creates a binding, referenced by the
MVar, that contains the real content. This is the same approach as used for the
expression layer and also does not affect the space consumption.

The garbage collection (GC) of the machine CIOM1sp,int is applied as often as pos-
sible. For CHF∗ the garbage collection (gc) is never applied during the standard
reduction itself, but it is applied before a space-value is taken into account by sps.
Also the measure spsM only takes garbage-free states into account. Hence in sum-
mary the space measurement for CHF∗ and CIOM1sp,int is the same w.r.t. garbage
collection.

For an easier analysis of differences in evaluation and therefore space consumption,
we put the abstract machine states into relation with the corresponding CHF∗-
processes:

CHF∗-bindings are represented as usual heap-bindings inH, MVars are aggregated
inM and threads are in T . Hence the structure of CHF∗-processes differs from
CIOM1sp,int-states, but the space consumption is identical. Thus we only need to
consider the differences w.r.t. evaluation.

For most of the functional and monadic transformations there is no difference. A
transformation with potential of a difference in space consumption is (Update): For
a variable-to-variable-chain, CHF∗ copies a value to each intermediate position of
the chain and this is the same effect caused by sequences of #upd(.) on the stack.
Moreover also (seq) and (case) require the needed value or constructor application
to be copied to the argument of the corresponding seq- or case-expression, the
same effect is caused by an (Update) on the CIOM1sp,int.

The CHF∗-rules (cpcxa) and (cpcxb) also cause no difference in space consumption:
(cpcxa) is used to allow sharing of constructor applications.This is already achieved
by σ and obviously does not affect the space consumption. (cpcxb) also occurs on
the CIOM1sp,int, since for simplified expressions all constructor applications only
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have variables as arguments and therefore in this situation a (Lookup) followed by
an immediate (Update) is triggered and leads to the same space consumption.

In summary this shows the claim.

6.3.2 Abstract Machine CIOM1sp,par

The abstract machine CIOM1sp,int as defined in Definition 6.18 can be used for space
analyses using a sequential standard reduction. We adapt the CIOM1sp,int, in order that
parallel reduction steps are possible and also all calculation paths are considered that
affect the space measurement. The result is the abstract machine CIOM1sp,par.

For each transition step, the CIOM1sp,int uses a scheduler to choose a single thread that
proceeds, for example a round-robin-approach (e.g. see (ADAD18)) can be used where
the time-slices are random numbers to obtain fairness. The CIOM1sp,par in contrast
should be able to proceed in many processes in parallel in a single transition step. Also
we want to find the space-minimum, hence in case of nondeterminism all evaluation
paths need to be considered.

To implement this parallelism, we use another perspective: A thread that is able to
proceed can be delayed by the scheduler, but at least one threadmust be able to proceed
and not delayed by the scheduler, otherwise the current CIOM1sp,par-state would not
change in the transition-step. The motivation to use delays instead of a set of threads
that are forced to proceed in parallel, is the fact, that a CIOM1sp,par-state where all
threads proceed in parallel has the best runtime properties, especially if we take the
complexity of the overall problem into account. The abstract machine can be both
used for runtime and space analyses, however it is often crucial to delay some thread
– even if it might be better w.r.t. runtime not to delay a thread – to gain a better space
consumption.

The abstract machine CIOM1sp,par is an adaption of CIOM1sp,int. Since an evaluation
path with minimal space consumption is calculated, we need to keep all possibili-
ties w.r.t. nondeterminism in mind and also the parallelism using delays requires this.
Hence the states of the CIOM1sp,par are slightly modified compared to CIOM1sp,int, whe-
re the possible paths aremodeled by a list of CIOM1sp,int-states. checksum(S) calculates
a checksum for state S, to allow the removing of equal states later.

CIOM1sp,par StateDefinition 6.19 (CIOM1sp,par State)
We interpret our model as tree. A state of CIOM1sp,par (node of the tree) is the pair
([(S, spsC , cs, d)], l), where S is a CIOM1sp,int-state, spsC the maximal cmsize-value
of garbage free states on the path from the root to S, cs is a checksum to identify S
without considering spsC , d the depth in the tree and l is either undefined (denoted
as −) or a tuple of a leaf with minimal spsC-value, checksum and depth.

The definition of initial states is straightforward:

CIOM1sp,par Initial StateDefinition 6.20 (CIOM1sp,par Initial State)
Given a machine expression s, the corresponding CIOM1sp,par initial state is:
([(S,size(s), checksum(S),0)],−) with S = ⟨∅ ∣ ∅ ∣ { (main, s, [], []) }⟩
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The delays are defined for CIOM1sp,int-states as follows. Since CIOM1sp,par-states are a
list of such states, the definition also holds for CIOM1sp,par-states.

Delay for ThreadsDefinition 6.21 (Delay for Threads)
Given a CIOM1sp,int-state S = ⟨H ∣ M ∣ T ⟩. Let TP be a subset of T containing all
threads that are able to proceed.
A delay is a mapping from all thread-names of T to Booleans, where a thread is only
delayed if its corresponding Boolean value is True. For the threads in TP it is required
that at least one thread is not delayed.
A delay is written as (t1 ↦ b1, . . . , tn ↦ bn) where ti is the name of the thread and bi
the corresponding Boolean value.
A delay-function takes a CIOM1sp,int-state and calculates a set of delays. Note that this
set is not required to contain all delays.

We give an example for delays:

DelaysExample 6.3 (Delays)
Consider the following CIOM1sp,int-state:

⟨H ∣M,{zmNil} ∣ {(main,takeMVar z, [], []), (t1,False, [#upd(x)], []),
(t2,False, [#upd(y)], [])}⟩

All threads are able to proceed and there is also no interference between the threads.
Thus we have the following delays:

(main↦ False, t1↦ False, t2↦ True )
(main↦ False, t1↦ True , t2↦ False)
(main↦ False, t1↦ True , t2↦ True )
(main↦ True , t1↦ False, t2↦ False)
(main↦ True , t1↦ False, t2↦ True )
(main↦ True , t1↦ True , t2↦ False)

Note that (main↦ True, t1↦ True, t2↦ True) is not a valid delay.
Thus we calculate all Boolean combinations of all threads that can proceed except of
the case where all threads would be delayed.

We often need the following terms for threads.

Conflicting, Independent and Paused ThreadsDefinition 6.22 (Conflicting, Independent and Paused Threads)
In the following needed terms w.r.t. threads are defined:
1. We say that the threads t1, . . . , tn are in conflict or conflicting threads if they all

can proceed and want to perform the same operation on an MVar, i.e. all threads
want to perform (TakeMVar) or (PutMVar) on the same MVar and the operation
is possible.

2. The threads t1, . . . , tn are independent if none of them is in conflict with any of
the other threads.

3. If a thread pauses, then it remains completely unchanged.

We give an algorithm that calculates a list of successor states of a CIOM1sp,int-state.
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Intuitively each thread that can perform (unIO) or (fork) is allowed to proceed. Then
delays are used to determine which threads proceed. All threads that are indepen-
dent from each other proceed if the current delay permits this, for conflicting threads
additional states need to be generated to handle all combinations.

SuccState Successor States of CIOM1sp,int-StateAlgorithm 6.4 (SuccState Successor States of CIOM1sp,int-State)
Let S = ⟨H ∣M ∣ T ⟩ be a CIOM1sp,int-state and we assume that also a delay-function
is given. Calculate a list containing triples (Si, spsC,i, csi) for each successor state Si

with the corresponding spsC-value and checksum as follows:
1. Let Tuf be a subset of T containing all threads, where either (unIO) or (fork) is

applicable (compare Definition 2.44). Let T ′uf be the threads after all of the threads
of Tuf performed its (unIO)- or (fork)-operation.

2. Let Tw be a subset of T containing all threads that have to wait (i.e. threads that
want to perform (PutMVar) on a non-empty MVar or (TakeMVar) on an empty
MVar) and let Sp ∶= ⟨H ∣M ∣ Tp⟩ where Tp = T /(Tuf ∪ Tw).

3. Use the delay-function to calculate all delays for Sp. For each delay construct
corresponding successor states: All threads in Sp cannot perform (unIO) or (fork),
since these threads were filtered above.
(I) For all threads that are independent from each other apply (IOM1) simulta-

neously, yielding the state S′p = ⟨H′ ∣M′ ∣ T ′⟩. Since there are no conflicts,
H′ andM′ can be calculated straightforwardly.

(II) Group the conflicting threads of S′p by the MVar-names, they want to access:
G = {. . . (ti,1, . . . , ti,ni

) . . .} where ti,j is the j-th thread of group i.
Since all threads of the same group want to access the same MVar, only a
single thread of a group is able to proceed simultaneously. Go trough each of
these groups (ti,1, . . . , ti,ni

) one after each other: For each combination, whe-
re only one of the threads of the current group proceeds, apply the approach
of (I) yielding a corresponding state only containing the threads of the cor-
responding group. Also remember the changes to heap and MVars for each
state.
Use the previously calculated states together with the changes to heap and
MVars to calculate all combinations of the states between the groups (i.e. a
generalized Cartesian product). Since for each state the changes to heap and
MVars were memorized, the heaps andMVars can be constructed by applying
the changes to heap and MVars to the ones from S′p.

4. For each state ⟨H′′ ∣M′′ ∣ T ′′⟩ calculated in the last step add T ′uf and Tw yielding
⟨H′′ ∣M′′ ∣ T ′′ ∪ T ′uf ∪ Tw⟩.

5. Gather all states from the last step in form of a tuples together with the spsC-
values and checksums into a list.

Correctness of SuccStateLemma 6.6 (Correctness of SuccState)
Algorithm 6.4 calculates the successor states of a CIOM1sp,int-state using a delay-
function.
Proof
Threads performing (unIO) or (fork) do not affect heap or MVars, hence they can
be handled separated from the other threads.
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For every delay that is calculated by the delay-function the independent threads
can directly proceed. For conflicting threads a grouping by the MVar, the threads
want to access, allows to calculate all needed combinations: Since in each group
every thread tries to access the same MVar, only one per group can proceed. Thus
we need to calculate all combinations per group, where only one thread proceeds
and then the groups are combined bymerging each state of a groupwith each of the
other groups. Since the changes of the heap and MVars are independent between
the groups, the changes of MVars and heaps can be merged without conflicts.

However it is crucial to perform the operations for heap and MVars correctly. This
can be done using a recording-approach: For each thread record the changes on
heap and MVars and in the end apply all of the changes one after each other. This
leads to correct heap and MVars.

We give an example for the computation of successor states:

Computation using SuccStateExample 6.4 (Computation using SuccState)
We focus on the CIOM1sp,int-states. Consider the following state:

⟨H, x = True, y = False, k = Nil ∣M,{im−, jm−} ∣ {(main, i, [], [#take]),
(t1, i, [], [#put(x)]),
(t2, i, [], [#put(y)]),
(t3, i, [], [#take]),
(t4,future k, [], []),
(t5, j, [], [#put(x)]),
(t6, j, [], [#put(y)]) }⟩

We apply Algorithm 6.4. First of all we have Tuf = {(t4,future k, [], [])} and a
single application of (fork) yields T ′uf = {(t4,return t7, [], []), (t7, k, [], [])}.
Then we have Tw = {(main, z, [], [#take]), (t3, i, [], [#take])}, since i is currently
empty. Removing all threads of Tuf and Tw leads to the following state Sp:

⟨H, x = True, y = False, k = Nil ∣M,{im−, jm−} ∣
{(t1, i, [], [#put(x)]), (t2, i, [], [#put(y)]),
(t5, j, [], [#put(x)]), (t6, j, [], [#put(y)]) }⟩

We assume that the delay-function delays none of the threads, i.e. the delay-function
only yields a single combination.
For the threads that need to be considered now, everyone is in conflict: There are two
groups of threads in conflict for the same MVar, i.e. G = {(t1,t2), (t5,t6)}. For the
group (t1,t2) we have the combination where t1 proceeds and t2 pauses and vice
versa, hence the following threads with the memory what has to be done w.r.t. the
MVars later:

(t1,return (), [], []), (t2, i, [], [#put(y)])
where x needs to be written to MVar i later

(t1, i, [], [#put(x)]), (t2,return (), [], [])
where y needs to be written to MVar i later
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For the group (t5,t6) we have the combination where t5 proceeds and t6 pauses
and vice versa, hence the following threads with the memory what has to be done
w.r.t. the MVars later:

(t5,return (), [], []), (t6, j, [], [#put(y)])
where x needs to be written to MVar j later

(t5, j, [], [#put(x)]), (t6,return (), [], [])
where y needs to be written to MVar j later

The combinations per group and merge of the groups are as follows:

(t1,return (), [], []), (t2, i, [], [#put(y)]),
(t5,return (), [], []), (t6, j, [], [#put(y)])

where x needs to be written to MVars i and j later
(t1,return (), [], []), (t2, i, [], [#put(y)]),
(t5, j, [], [#put(x)]), (t6,return (), [], [])

where x needs to be written to MVar i and y to MVar j later
(t1, i, [], [#put(x)]), (t2,return (), [], []),
(t5,return (), [], []), (t6, j, [], [#put(y)])

where y needs to be written to MVar i and x to MVar j later
(t1, i, [], [#put(x)]), (t2,return (), [], []),
(t5, j, [], [#put(x)]), (t6,return (), [], [])

where y needs to be written to MVars i and j later

Heap and MVars now can be calculated yielding states and then finally Tuf and Tw
need to be added to the four states:

[⟨H, x = True, y = False, k = Nil ∣M,{imx, jmx} ∣
{(main, i, [], [#take]), (t1,return (), [], []), (t2, i, [], [#put(y)]),
(t3, i, [], [#take]), (t4,return t7, [], []), (t5,return (), [], []),
(t6, j, [], [#put(y)]), (t7, k, [], []) }⟩,

⟨H, x = True, y = False, k = Nil ∣M,{imx, jm y} ∣
{(main, i, [], [#take]), (t1,return (), [], []), (t2, i, [], [#put(y)]),
(t3, i, [], [#take]), (t4,return t7, [], []), (t5, j, [], [#put(x)]),
(t6,return (), [], []), (t7, k, [], []) }⟩,

⟨H, x = True, y = False, k = Nil ∣M,{im y, jmx} ∣
{(main, i, [], [#take]), (t1, i, [], [#put(x)]), (t2,return (), [], []),
(t3, i, [], [#take]), (t4,return t7, [], []), (t5,return (), [], []),
(t6, j, [], [#put(y)]), (t7, k, [], []) }⟩,

⟨H, x = True, y = False, k = Nil ∣M,{im y, jm y} ∣
{(main, i, [], [#take]), (t1, i, [], [#put(x)]), (t2,return (), [], []),
(t3, i, [], [#take]), (t4,return t7, [], []), (t5, j, [], [#put(x)]),
(t6,return (), [], []), (t7, k, [], [])} }⟩]

It is easy to see that the checksums and spsC-values can be calculated straightfor-
wardly.
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The overall calculation is an iterative depth-first-search and enables to cut parts of the
tree. Especially if the tree has a greater depth on the right-side, a breadth-first search
would have more possibilities of cutting parts of a tree very fast. However the space
consumption is very high and a practical limitation. Moreover it helps to find a leaf as
early as possible, since leafs are important for tree cuts and in many cases depth-first-
search finds leafs earlier with less space consumption than breadth-first search – then
this helps to cut parts of the tree in the ongoing calculation.

A final state is a state that definitely provides the target spsC-value and directly models
the idea that a tree does not need to be calculated entirely:

CIOM1sp,par Final StateDefinition 6.23 (CIOM1sp,par Final State)
A CIOM1sp,par-state S is a final state, if S is of one of the following forms:
1. ([], (Sleaf , spsC,leaf , csleaf , dleaf))
2. ([(S1, spsC,1, cs1, d1), . . . , (Sn, spsC,n, csn, dn)],
(Sleaf , spsC,leaf , csleaf , dleaf))

where spsC,leaf ≤ spsC,i holds for i ∈ {1, . . . , n}.

Since a maximal depth is now used for the depth-first-search we also define failed
states, where the maximal depth terminated the calculation, but the state does not
provide a result. If a failed state is reached, then the maximal depth is increased and
the whole calculation starts again.

CIOM1sp,par Failed StateDefinition 6.24 (CIOM1sp,par Failed State)
A CIOM1sp,par-state S is a failed state, if S is of the following form, where a spsC,i

exists with spsC,i < spsC,leaf and dj ≥ dmax holds for all j ∈ {1, . . . , n} and a given
maximal depth dmax:

([(S1, spsC,1, cs1, d1), . . . , (Sn, spsC,n, csn, dn)], (Sleaf , spsC,leaf , csleaf , dleaf))

Checksums are used to eliminate CIOM1sp,int-states that are included in CIOM1sp,par-
states. Also alpha equivalence of CIOM1sp,int-states can be used to reduce the size of
the tree.

α-Equivalence of CIOM1sp,int-StatesDefinition 6.25 (α-Equivalence of CIOM1sp,int-States)
Two CIOM1sp,int-states S1 and S2 are α-equivalent, if there exists a renaming σ of
bound variables so that S1 = σ(S2) holds.
Note that also names of threads are allowed to be renamed by σ, an exception is the
main-thread.
Often some delays only lead tominor differences, that cause states where some threads
are exchanged but semantically lead to the same result.Thismight lead toα-equivalent
states if the different combinations of the threads between the compared states are
tested. As excepted this increases the runtime.

If not only the top-letrec, but also the letrec-subexpressions are free of garbage
bindings, then the order of the heap-bindings can be calculated, otherwise also all
combinations need to be checked. Since garbage collection has a strong impact on
spsC it is not correct to apply (GC) to all letrec-expressions of a state before testing
the α-equivalence. We give a definition for this strict kind of garbage-freeness.
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GC-Normalform of CIOM1sp,int-StatesDefinition 6.26 (GC-Normalform of CIOM1sp,int-States)
A CIOM1sp,int-state S is in GC-normalform, if the complete state is free of garbage,
i.e. (GC) does not apply and also there are no letrec-expressions as subexpressions
that contain garbage.

Since we are only interested in unneeded letrec-bindings and MVars, it can be tested
efficiently if a CIOM1sp,int-state is in GC-normalform.

Complexity of GC-Normalform-Testing of CIOM1sp,int-StateProposition 6.5 (Complexity of GC-Normalform-Testing of CIOM1sp,int-State)
For a CIOM1sp,int-state it can be tested in time O(n logn) whether the state is in GC-
normalform, where n is the syntactical size of the state.
Proof
The usual garbage collector can be extended straightforwardly without increasing
the asymptotic runtime.

The complexity to test the α-equivalence of states is as follows, where the complexity
given in Proposition 6.5 helps to automatically choose the most efficient strategy:

Complexity of α-Equivalence-Testing of CIOM1sp,int-StatesProposition 6.6 (Complexity of α-Equivalence-Testing of CIOM1sp,int-States)
Let S1 and S2 be CIOM1sp,int-states.
1. If S1 and S2 have a different structure, then the α-equivalence-property can be

falsified in O(n), where n is the syntactical size of the smaller state.
2. If S1 and S2 have not a different structure, then the syntactical size and number of

threads is identical and there are two cases, where in both casesN is the number
of threads and n the syntactical size of the states:
(I) If S1 and S2 are in GC-normalform, then the α-equivalence-test of the two

states can be performed in time O(N ! ⋅ (n logn)).
(II) If not both S1 and S2 is in GC-normalform, then the α-equivalence-test of the

two states can be performed in time O(N ! ⋅ n!).
Proof
The structural test on syntactical level is straightforward and the complexity is cau-
sed by the fact, that the whole comparison between the two states can be cancelled
if a single difference is found.

The stacks and IO-stacks can be reverted to the expressions. Note that there cannot
be an overlap between two threads and the same heap variable or MVar, since then
one of those threads would have to wait. Then a part of the whole α-equivalence-
test can be performed on expression-level. However all orderings of threads need
to be considered.

If the letrec-expressions are all free of garbage, then the heap-bindings can be im-
plicitly ordered by a numbering-approach. Maps can be used to assign the numbers
to variables. All permutations need to be considered for the threads. Hence for the
case of garbage-free letrec-expressions, the time complexity is O(N ! ⋅ (n logn)).

If the letrec-expressions are not free of garbage, then all permutations also for
letrec-bindings and heaps need to be considered, hence the time is in O(N ! ⋅n!).
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The best runtime is achieved by first running the structural test, then check if both
states are in GC-normalform and depending on the result applying the most efficient
strategy.

A transition step of the machine CIOM1sp,par uses Algorithm 6.4 and implements a
variant of an iterative depth-first-search:

CIOM1sp,par Transition StepDefinition 6.27 (CIOM1sp,par Transition Step)
A transition step from one CIOM1sp,par-state to the next one is defined by the fol-
lowing algorithm:
Given a CIOM1sp,par-state

S = ([(S1, spsC,1, cs1, d1), . . . , (Sn, spsC,n, csn, dn)], T )
where T = − or T = (Sleaf , spsC,leaf , csleaf , dleaf)

that is neither a final state nor a failed state, hence the list is not empty. Let dmax be
the maximal depth and we write L for the first component of S.
1. If d1 > dmax, then remove (S1, spsC,1, cs1, d1) from S, yielding Sd and return Sd

as overall result.
2. Apply Algorithm 6.4 to S1 and extend all tuples of the result by a fourth compo-

nent containing d1 + 1. This step yields the list L1.
3. Apply (GC) to every state in L1 yielding L1,gc.
4. For every state Sj in L1,gc, if Sj is a CIOM1sp,int-final-state:

If T = − or Sj has a lower spsC-value than spsC,leaf , then set Sleaf = Sj and remove
every tuple from L that has a higher or equal spsC-value than spsC,leaf , yielding
L′. Also update spsC,leaf , csleaf and dleaf accordingly.

5. If T /= −: Remove every tuple from L1,gc that has a higher or equal spsC-value
than spsC,leaf , yielding L′1,gc.

6. Remove every tuple from L′1,gc, where a state with the same checksum or being
α-equivalent in L′ can be found with lower or equal spsC value, yielding L′′1,gc.

7. Add L′′1,gc in front of L′ yielding the result list Lres. Return (Lres, Sleaf).

The removing of states depending on a so far found leaf is correct:

Correctness of Tree CutsLemma 6.7 (Correctness of Tree Cuts)
Let L = [(S1, spsC,1), . . . , (Sn, spsC,n)] where Si are CIOM1sp,int-states and spsC,i the
corresponding spsC-values. Also we assume that a CIOM1sp,int-final-state Sleaf is
known, where spsC,leaf is the corresponding spsC-value.
Removing all Si with spsC,i ≥ spsC,leaf does not affect the overall result.

Proof
Let w.l.o.g. P1 = [S,S1-1, S1-2 . . . , S1-n] be the path in the tree from the root S to
the leaf S1-n = Sleaf . Also let Pk = [S,Sk-1, Sk-2] be the states on the path in the
tree from the root to the state Sk-2.

spsC,i−j denotes the spsC-value of state Si-j . Let spsC,k-2 ≥ spsC,1-n. The maximal
space value of P1 is equal to spsC,1-n and the maximal space value of P2 is at least
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spsC,k-2. The overall required space over all paths of the complete tree is at most
spsC,1-n.

Hence even if all states followingSk-2 have smaller space values, the overall result is
not affected by Pk, therefore the states following Sk-2 do not need to be considered
anymore.

S

S1-1

S1-2

⋮

S1-n ⋮

⋮

⋮

Sk-1

Sk-2

⋮ ⋮

⋮

…

The optimization using checksums and α-equivalence is also correct:

Correctness of State-Eliminations Using Checksums and α-EquivalenceLemma 6.8 (Correctness of State-Eliminations Using Checksums and α-Equivalence)
Let Si be a CIOM1sp,int-state with checksum csi and spsC-value spsC,i. Given a
CIOM1sp,par-state containing a CIOM1sp,int-state Sp with checksum csp and spsC-value
spsC,p. Also spsC,i ≥ spsC,p holds.
If the checksums are equal (i.e. csi = csp holds) or Si and Sp are α-equivalent, then
the overall result is the same, both if Si is added to the stack or not.
Proof
If two CIOM1sp,int states have the same checksum or are α-equivalent, then they at
most differ w.r.t. names of bound variables or threads, but are semantic equivalent.
Hence both for Si and Sp the further calculation steps have exactly the same space
consumption.

Since spsC,i ≥ spsC,p, the so far overall space consumption using Si instead of Sp is
higher or equal and therefore the removing of Si does not affect the overall optimal
solution.

The returned space-optimal leaf is not guaranteed to be the runtime-optimal under the
space-optimal leafs.

Returned Leaf using Tree Cuts not Necessarily Runtime-OptimalProposition 6.7 (Returned Leaf using Tree Cuts not Necessarily Runtime-Optimal)
If the optimizations w.r.t. tree cuts are not performed, then a set of leafs {L1, . . . , Ln)
can be calculated, that contains all leafs of the state tree.
In contrast to this set, let Ltc be the leaf that is calculated using tree cuts.
Then there might be a leaf Li that has the same spsC-value but a better runtime than
Ltc, that cannot be found using tree cuts.
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Proof
Consider the following tree:

S

⋮

⋮

S1-(n−1)

S1-n ⋮

⋮

⋮

⋮

⋮ S2-(n−2)

⋮ S2-(n−1)

⋮

…

In this tree S1-n and S2-(n−1) are leafs, where n denotes the depth. We assume that
the spsC-values of S1-n, S2-(n−1) and S2-(n−2) are equal.

Because of the depth-first-search, S1-n is found before the state S2-(n−2) is proces-
sed. Hence the tree cut mechanism (see Definition 6.27) ignores the leaf S2-(n−1),
since the state S2-(n−2) is not added to the stack. However the leaf S2-(n−1) has the
same space consumption and is one level higher than S1-n. This general approach
can be applied for different measurements of runtime.

A further idea to reduce the overall runtime is the extension of the optimization using
checksums and α-equivalence:

Before adding a state to the stack, it already is checkedwhether there exists a state with
the same checksum or an α-equivalent state. Also it is possible to remove elements
from the stack, i.e. applying this approach in the other direction.

Assume that a CIOM1sp,int-state Sj is intended to be added to the stack (compare Defi-
nition 6.27) and there is a CIOM1sp,int-state Sk on the stack that has the same checksum
or is α-equivalent. It is correct to remove Sk using the same arguments as in the proof
of Lemma 6.7, but since currently Sj is currently processed and not Sk or one of the
following states of Sk, Sk must be on a path of the tree that is further to the right than
Sj .

Hence if the there is a leaf in the sub-tree of Sj , then the depth-first-search finds it
and then – depending on the space-consumption – eliminates Sk. Thus the approach
to eliminate states on the stack before adding states, that are α-equivalent or have
the same checksum, decreases the space consumption of a practical implementation
of the abstract machine by a low amount but heavily increases the runtime, since the
stack might contain many states for an exponential tree and this leads to additional
iterations with a high frequency.
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In the following we analyze the impact of delays and give a useful set of delays to
calculate the space-optimum. Delays can increase the amount of work:

Delays May Duplicate WorkProposition 6.8 (Delays May Duplicate Work)
A set of delays might introduce duplicated states.
Proof
Consider the following state CIOM1sp,int-state:

⟨H, x = True, y = False ∣M,{zm−} ∣ {(main, z, [], [#take]),
(t1, z, [], [#put(x)]),
(t2, z, [], [#put(y)])}⟩

The two threads t1 and t2 both want to put something to the same empty MVar.
If we then use the following delays

{(t1↦ False,t2↦ False), (t1↦ False,t2↦ True), (t1↦ True,t2↦ False)}

this doubles the amount of states:

Since both threads access the same MVar one has to wait. Hence if no thread is
forced to pause, i.e. (t1 ↦ False,t2 ↦ False), the maximal parallelization then
calculates a state where t1 proceeds while t2 is waiting and a state where t1
waits while t2 proceeds – these two states are completely the same as the states
calculated for (t1↦ False,t2↦ True) and (t1↦ True,t2↦ False).

Thus Proposition 6.8 requires delay-functions not to delay already conflicting threads.
Moreover many transformations are not required to be delayed, because the delay of
them do not affect the space consumption. This leads to the following definition of a
delay-function, that can be used to perform space analyses:

Delay-Function DelSpaceOpt for Space-AnalysesDefinition 6.28 (Delay-Function DelSpaceOpt for Space-Analyses)
Given a CIOM1sp,int-state S = ⟨H ∣M ∣ T ⟩. We consider the following subsets of T :
– Tuf contains all threads that want to perform (unIO) or (fork).
– Tw contains all threads that are not able to perform a (TakeMVar)- or (PutMVar)-

operation, because the corresponding MVar is empty or not filled.
– Tc contains all threads that are in conflict for MVars.
– Tp contains all other threads, i.e. T /(Tuf ∪ Tw ∪ Tc).

The delay-function DelSpaceOpt follows the rules below:
1. Threads that want to perform (unIO) or (fork) are not delayed, i.e. for all tuf ∈ Tuf

we define tuf ↦ False.
2. Waiting threads are not delayed, i.e. for all tw ∈ Tw we define tw ↦ False.
3. Conflicting threads are not delayed, i.e. for all tc ∈ Tc we define tc ↦ False.
4. For all threads tp ∈ Tp where the next transition rule of tp is either an (Unwind1),

(Unwind2), (Unwind3), (Unwind4), (Unwind5), (Unwind6), (Lookup), (Letrec),
(Subst), (Branch), (Seq), (NewMVar), (LUnit) or (Blackhole), we define tp ↦ False.
For (Update), (TakeMVar) and (PutMVar) delays are allowed.

We show that the delay-function DelSpaceOpt can be used for space analyses:
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DelSpaceOpt yields Correct Space MeasurementLemma 6.9 (DelSpaceOpt yields Correct Space Measurement)
Using DelSpaceOpt as delay-function yields correct results w.r.t. space-measurement.
Proof
It is obvious that the space measurement is not affected if all delays are considered.
Hence we argue that the prohibition of delays for certain transition rules does not
change the overall result.

The functional transitions (Letrec), (Unwind1), (Unwind2), (Unwind3), (Unwind4),
(Unwind5), (Unwind6), (Subst), (Seq), (Branch), (Lookup), (Update) cannot cause
conflicts: It is no difference, which thread performs a (Lookup), since all other
threads cannot continue their calculations until the value is written back to the
heap using (Update) and the calculation depends on the heap-entry and not on the
threads. Since all rules except of (Update) do not increase the size of the CIOM1sp,int-
state, not delaying functional transition rules cannot have an effect on space con-
sumption for all functional transition rules except of (Update). In the case of an
(Update) or (PutMVar) the size of the CIOM1sp,int-state is increased, hence an effect
on the overall result is possible by delaying. (TakeMVar) is synchronizing and thus
a delay needs to be considered.

(unIO) decreases the size of the current state by 1, (fork) does not change the size.
After a (fork) there is still the possibility to delay the new thread as long as needed,
as if it is not created, a similar argument applies to (unIO).

Since Algorithm 6.4 already takes care of conflicting threads, i.e. for each combi-
nation the successor states are calculated, the delay of conflicting threads would
only lead to duplicated threads (see Proposition 6.8). Hence it is correct not to delay
conflicting threads. Also Algorithm 6.4 does not allows waiting threads to proceed,
hence the abstract machine delays such threads itself and there is no difference
w.r.t. the overall result caused by a delay of a waiting thread.

Now we can put the parts together and define the abstract machine:

Abstract Machine CIOM1sp,parDefinition 6.29 (Abstract Machine CIOM1sp,par)
The abstract machine CIOM1sp,par uses the states defined in Definition 6.19, where an
initial state is defined in Definition 6.20. As delay-function DelSpaceOpt is used (see
Definition 6.28). Until a final state (see Definition 6.23) or failed state (see Definition
6.24) is reached, Definition 6.27 is applied exhaustively using an upper bound for the
depth. In case of a final state, the leaf is returned containing the required space value.
In case of a failed state the upper bound for the depth is increased and the whole
calculation is started again.

We now show that the abstract machine CIOM1sp,par can be used to measure the space
consumption of CHF∗-programs using parallel evaluation:

Space Equivalence between CHF∗ with Parallelization and CIOM1sp,parTheorem 6.7 (Space Equivalence between CHF∗ with Parallelization and CIOM1sp,par)
If a CHF∗-process P is translated to its corresponding simplified process Pm, then
spmin(P ) = spsC(Sleaf), if the parallel evaluation is used for CHF∗ and Sleaf is the
result returned by the CIOM1sp,par-evaluation of Pm.
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Proof
The only difference between CHF∗ in its interleaved and parallel variant, is that the
parallel evaluation as defined in Definition 5.2 is used instead of the sequential eva-
luation. This difference between the CHF∗-variants is the same difference we have
between the abstract machines CIOM1sp,int and CIOM1sp,par. The CIOM1sp,par makes
the scheduling explicit and heavily uses the CIOM1sp,int for the real calculations
w.r.t. the schedule.

For a single CIOM1sp,int-state the algorithm SuccState calculates the following sta-
tes using a delay-function. The correctness of SuccState follows from Lemma 6.6
and since the delay-function DelSpaceOpt is used, the correctness of space measu-
rement follows from Lemma 6.9. Also tree cuts are performed, where Lemma 6.7
yields the correctness of space measurement and the correctness w.r.t. space mea-
surement for the further optimizations using checksums andα-equivalence follows
from Lemma 6.8. Hence the scheduling implemented by CIOM1sp,par yields correct
space results and then for each schedule the correctness of space measurement of
CIOM1sp,int (see Theorem 6.6) shows the claim.

The complexity of the CIOM1sp,par mainly depends on the algorithm SuccState, hence
the number of following states in a single transition step of the CIOM1sp,par.

Complexity of a Single Transition Step of CIOM1sp,parProposition 6.9 (Complexity of a Single Transition Step of CIOM1sp,par)
Consider a single transition step of the abstract machine CIOM1sp,par for a state S.
Let n be the syntactical size of S, cT be the number of threads of the first state S1 of
the state-list of S, cD be the number of threads of S1 that might be delayed and cS
be the number of elements of the state-list of S. Let there be m groups of threads,
where every thread in each group tries to perform an operation on the same MVar,
then ni for i ∈ {1, . . . ,m} is the number of threads of group i.
Then the complexity of a single transition step is O((∏m

i=1 ni ⋅ 2cD) ⋅ (cS + cT ! ⋅ n!)) if
α-equivalence is used and O((∏m

i=1 ni ⋅ 2cD) ⋅ (n logn+ cS)) otherwise. In the case of
m = 0,∏m

i=1 ni is replaced by 1.
Proof
Given a CIOM1sp,par-state

S = ([(S1, spsC,1, cs1, d1), . . . , (Sn, spsC,n, csn, dn)],
(Sleaf , spsC,leaf , csleaf , dleaf))

that is neither a final state nor a failed state, hence the list is not empty. Also d1 is
lower than the maximal depth.

We analyze the runtime complexity of the application of SuccState (see Algorithm
6.4) to S1. If there arem groups of threads, where every thread in each group tries
to perform an operation on the same MVar, then let n1, . . . , nm be the numbers
of elements of each group. For each group all combinations need to be calculated
where one thread proceeds while all other threads of the same group pause and
then these combinations are combined with all other combinations of the other
groups.
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Hence for conflicting threads there are n1 ⋅ . . . ⋅ nm combinations i.e. states. Also
taking the worst-case runtime of the CIOM1sp,int-step into account, we so far have
a time complexity of O(∏m

i=1 ni ⋅ logn). Waiting threads and threads that intend to
perform an (unIO) or (fork) do not increase the number of states. Let there be cD
threads that are able to proceed, not waiting, not in conflict with each other and all
of them want to perform an (Update)-, (TakeMVar)- or (PutMVar)-operation, then
the delay-function DelSpaceOpt yields 2cD combinations, that need to be combined
with all combinations of the conflicting threads, hence the complexity increases to
O((∏m

i=1 ni ⋅ 2cD) ⋅ logn). Then (GC) is applied to each of these states, hence we
have O((∏m

i=1 ni ⋅ 2cD) ⋅ (n logn)).

Let L be the result of SuccState. If all CIOM1sp,int-states in L are final states and
the spsC-values are decreasing from left to right, then for each of them the whole
list, i.e. first component of S, is traversed, hence the worst-case runtime for each
step is O(cS). Thus this leads to O((∏m

i=1 ni ⋅ 2cD) ⋅ (n logn + cS)).

The further optimizations can be combined into a single traverse of L. We have
the overall runtime O((∏m

i=1 ni ⋅ 2cD) ⋅ (n logn + cS)) if α-equivalence is not used,
otherwise we have O((∏m

i=1 ni ⋅ 2cD) ⋅ (cS + cT ! ⋅ n!)) where it is assumed that the
syntactical sizes of the states inL are equal to the sizes of the states of S and n logn
is clearly dominated by (cT ! ⋅ n!) for cT > 0 and therefore omitted.

The estimation is pessimistic but therefore easier to grasp, since the size n of a state
is estimated roughly, because often instead of n the size of a certain CIOM1sp,int-state
is lower. The estimation helps to illustrate the complexity of the problem. However
for many programs the worst-case does not occur, since DelSpaceOpt delays as less
as possible and for a not too high amount of conflicting threads, the complexity is
adequate. Also it is a good approach, to only use the testing of α-equivalence if really
needed.

6.3.3 Abstract Machine CIOM1t,par
In this section an abstract machine is defined to analyze the optimal runtime, since
the runtime might be affected by a space-optimal schedule. First of all we define the
runtime measure that can be used by CIOM1sp,par.

Reduction Length Measures mlnP and mlnallPDefinition 6.30 (Reduction Length Measures mlnP and mlnallP )
Given a simplified process Qm. The corresponding complete state tree T consisting
of CIOM1sp,int-states, using all possible delays and possibilities caused by conflicts on
MVars, contains the leafs L1, . . . , Ln with finite paths from root to Li. Let n ≥ 1.
1. For two CIOM1sp,int-states Sj and Sj+1 we define mlnP,step(Sj) as 1 if at least one

thread from Sj to Sj+1 performed a (Subst)-, (Branch)- or (Seq)-step, otherwise 0.
Analogous mlnallP,step(Sj) is defined taking all steps into account.

2. mlnP,C(Sj)with a pathS1, . . . , Sj from root toSj is defined as∑j−1
k=1mlnP,step(Sk).

mlnallP,C(Sj) is defined analogous using mlnallP,step(Sj).
3. mlnP (Qm) is defined as a minimal mlnP,C(Li).

mlnallP (Qm) is defined as a minimal mlnallP,C(Li).
If n = 0 then we have mlnP (Qm) = mlnallP (Qm) =∞.
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The intuition is, that a shortest path from root to leaf in a given complete state tree has
the best runtime-property. However this is intuition is not correct in detail: mlnP takes
each transition step of every single thread into account and therefore a low depth not
guarantees that the runtime is lower than for a leaf with a higher depth. Hence we
can apply the same approach as also used in CIOM1sp,par, but the considered measure
values are not the sizes, instead the so far calculated runtimes are used. Moreover
there might be unneeded threads, hence it is necessary to allow delays of (Subst), (Seq)
and (Branch). Also (TakeMVar) and (PutMVar) are allowed to be delayed because they
synchronize. This leads to the following delay-function:

Delay-Function DelTimeOpt for Runtime-AnalysesDefinition 6.31 (Delay-Function DelTimeOpt for Runtime-Analyses)
Given a CIOM1sp,int-state S = ⟨H ∣M ∣ T ⟩. We consider the following subsets of T :
– Tuf contains all threads that want to perform (unIO) or (fork).
– Tw contains all threads that are not able to perform a (TakeMVar)- or (PutMVar)-

operation, because the corresponding MVar is empty or not filled.
– Tc contains all threads that are in conflict for MVars.
– Tp contains all other threads, i.e. T /(Tuf ∪ Tw ∪ Tc).

The delay-function DelTimeOpt follows the rules below:
1. Threads that want to perform (unIO) or (fork) are not delayed, i.e. for all tuf ∈ Tuf

we define tuf ↦ False.
2. Waiting threads are not delayed, i.e. for all tw ∈ Tw we define tw ↦ False.
3. Conflicting threads are not delayed, i.e. for all tc ∈ Tc we define tc ↦ False.
4. For all threads tp ∈ Tp where the next transition rule of tp is either an (Unwind1),

(Unwind2), (Unwind3), (Unwind4), (Unwind5), (Unwind6), (Lookup), (Update),
(Letrec), (LUnit), (NewMVar) or (Blackhole), we define tp ↦ False. For (Subst),
(Branch), (Seq), (TakeMVar) and (PutMVar) delays are allowed.

We show that the delay-function DelTimeOpt can be used for runtime analyses:

DelTimeOpt yields Correct Time MeasurementLemma 6.10 (DelTimeOpt yields Correct Time Measurement)
Using DelTimeOpt as delay-function yields correct results w.r.t. time-measurement.
Proof
Obviously all transformations that do not cause synchronizations or are directly
counted by the measurement, cannot cause an increase of runtime and therefore it
does not affect the overall runtime result not to delay these transformations. Hence
we go through all transformations that might have an effect on the runtime:

It improves the runtime, if (Subst), (Branch) and (Seq) is delayed, in the case that
the corresponding thread does not have an impact on the result of the main-thread
(i.e. the corresponding thread can be seen as garbage). Moreover (TakeMVar) and
(PutMVar) can cause synchronizations and therefore may have an impact on the
overall runtime result.

Thus we can modify the abstract machine CIOM1sp,par to get a valid runtime measure-
ment w.r.t. mlnP as follows.
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Abstract Machine CIOM1t,parDefinition 6.32 (Abstract Machine CIOM1t,par)
The abstract machine CIOM1t,par is the abstract machine CIOM1sp,par (see Definition
6.29) with the following modifications:
1. mlnP,C is used instead of spsC . In detail this applies to the states (compare De-

finition 6.19, Definition 6.23, Definition 6.24) and the transition step (compare
Definition 6.27).

2. The delay-function DelTimeOpt is used instead of DelSpaceOpt.
We now show that the abstract machine CIOM1t,par can be used to calculate the mini-
mal runtime of CHF∗-programs using parallel evaluation. In the following srnrpA is
the same as srnrpNA (see Definition 5.3) butN is omitted since the number of processors
is not limited.

Runtime Compatibility between CHF∗ with Parallelization and CIOM1t,parTheorem 6.8 (Runtime Compatibility between CHF∗with Parallelization and CIOM1t,par)
If a CHF∗-process P is translated to its corresponding simplified process Pm, then
srnrpA(P ) = mlnP,C(Sleaf) for A = {(lbeta), (case), (seq)}, if the parallel evaluation
is used for CHF∗ and Sleaf is the result returned by the CIOM1t,par-evaluation.

Proof
The delay-function DelTimeOpt yields correct runtime measurement, see Lemma
6.10. Moreover the abstract machine CIOM1t,par applies the same approach for con-
flicting threads and tree cuts, only using the measure mlnP,C instead of spsC . Tree
cuts usingmlnP,C are also correct, i.e. tree cuts do not affect the overall mlnP -value.
This can be shown in the same way as in the proof of Lemma 6.7. The proofs of
Lemma 6.8 can be directly adapted to show that state eliminations using checksums
and α-equivalence also do not affect the runtime-measurement.

Hence we now have to show that the transformation to simplified processes and
also the different evaluation steps do not affect the runtime.

The translation σ (see Definition 2.29), that transforms P to Pm, is the reverse
of the transformation (ucp) on the expression layer. (ucp) allows a step-by-step
translation from CHF∗-expressions to simplified expressions and does not affect
the runtime as measured by srnrpA and mlnP . On the monadic layer, the MVars
are also only allowed to have variables as content and therefore σ creates a binding,
referenced by the MVar, that contains the real content. This is the same approach
as used for the expression layer and also does not affect the runtime.

srnrpA takes the minimal value w.r.t. the number of applications of (lbeta), (case)
and (seq), this is also the case for mlnP , where the number of (Subst), (Branch) and
(Seq) are considered. Hence we only need to compare the paths in the state tree
with the corresponding paths of reduction sequences in CHF∗ using the parallel
evaluation step.

For an easier analysis of differences in evaluation and therefore runtime, we put
the abstract machine states into relation with the corresponding CHF∗-processes.
Since we compare the paths, each path is a sequence of CIOM1sp,int-states.
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CHF∗-bindings are represented as usual heap-bindings inH, MVars are aggregated
inM and threads are in T . Hence the structure of CHF∗-processes differs from
CIOM1sp,int-states, but the runtime is identical. Thus we only need to consider the
differences w.r.t. evaluation.

For most of the functional and monadic transformations there is no difference.
The only difference occurs for the CHF∗-rules (cpcxa) and (cpcxb): (cpcxa) is used
to allow sharing of constructor applications. This is already achieved by σ and
obviously does not affect the runtime. (cpcxb) also occurs on the transition from
one CIOM1sp,int-state to the next one, since for simplified expressions all construc-
tor applications only have variables as arguments and therefore in this situation
a (Lookup) followed by an immediate (Update) is triggered and leads to the same
runtime.

In summary this shows the claim.

The complexity of a single transition step of CIOM1t,par increases practically, since
a few more transition rules are allowed to be delayed by DelTimeOpt compared to
DelSpaceOpt. However the asymptotical complexity is the same as for CIOM1sp,par as
given by Proposition 6.9.

Note that the measure mlnP,C can be used for correct runtime measurements for the
abstract machines CIOM1sp,int and CIOM1sp,par. Since both CIOM1sp,int and CIOM1sp,par
calculate space optimal leafs of the complete state tree, that are not guaranteed to also
have an optimal runtime, hence mlnP cannot be used for these two abstract machines.

6.3.4 Analysis-Tool CHFi

Theabstract machines CIOM1sp,par and CIOM1t,par are both implemented in the analysis
tool CHFi. Using this tool affirmative tests can be performed and also improvement-
properties of transformations w.r.t. space or runtime can be falsified.

Moreover the algorithm SpOptN (see Algorithm 6.3) is implemented in CHFi using a
buffer-approach: A calculation can be written to a specified buffer and in this way for
independent calculations the input for SpOptN can be calculated directly by writing
them in buffers. The call of SpOptN then only requires the buffers as input.

The tool also provides various features that can be handy in special situations, e.g.
terminating as soon a leaf is discovered. For large state trees, where space-optimum
or time-optimum cannot be calculated in appropriate time, this rather extreme kind of
tree cutting yields an orientation. A template-system is provided to calculate a series
of programs with a scalable input and also an LRP-mode.

The implemented measure interface can be used to extend the CHFi by arbitrary mea-
sures, where the only requirement is, that it is definite for two measures values if they
are equal or one is greater. This interface allows extensions, e.g. the abstract machine
CIOM1t,par is implemented only by defining a new measure.

The CHFi can be found at:

http://www.ki.cs.uni-frankfurt.de/research/chfi

http://www.ki.cs.uni-frankfurt.de/research/chfi
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6.3.5 Analyses of Examples

In the following subsections we perform analyses using the CHFi. Needed function
definitions can be found in Section 2.6.

Required Space of Non-Interfering Processes

In this example we consider five programs named from A to E for simplicity. Program
A applies foldr together with append on lists. Program B applies the linear reverse on
a list (see Definition 3.21 for the definition of reverse'). ProgramC performs appends
on lists. Program D is the same as the unshared example for repeat as defined in
Section 3.6.2 for the analysis of sharing. Program E generates k-times lists containing
k True-elements, checks whether all elements are True-elements and checks whether
all of the elements of all of such lists are True-elements.

Program Definition
A last (foldr (++) [] (take k (let gen = (False ∶ gen) in gen)))
B last (reverse' (take k (let gen = (True ∶ gen) in gen)))
C last (((replicate k True)++(replicate k True))

++(replicate k True))
D letrec f = λy.take k (repeat y)

in and (allTrue (f True)) (and (allTrue (f True))
(allTrue (f True)))

E allTrue (take k (repeat (allTrue (take k (repeat True)))))

TheCHFi is now used to generate the input for SpOptN (see Algorithm 6.3) as follows:
The direct implementation of CIOM1sp,par only provides the calculated leaf, but we need
the whole space trace. Therefore the CHFi is configured to calculate the whole state
tree. For thread-free programs each of the state trees only consist of a single path and
this applies to all of the five programs, hence delays can be turned off (note that still
conflicts for MVars are considered, but there are no conflicts for independent threads).
All of the resulting state trees are written to buffers. Then SpOptN can be called using
the buffer numbers.

The following diagram shows all programs together for k = 10 where we see many
overlaps. The result of SpOptN is 239.

165 329 494 658 823 988

12
23
35
47
59
70

1
0 i

size(si)
A
B
C
D
E
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Since all programs except of program B do not require to store intermediate data in
memory, the optimal schedule can move the calculation of program B appropriately
and therefore the required space only depends on the space consumption of B:

k 10 20 30 40 50 60 70 80 90 100

spmin for specified program
A 82 82 82 82 82 82 82 82 82 82
B 69 79 89 99 109 119 129 139 149 159
C 61 61 61 61 61 61 61 61 61 61
D 75 75 75 75 75 75 75 75 75 75
E 61 61 61 61 61 61 61 61 61 61

Required space of all programs
spmin 239 239 239 239 239 239 239 239 239 239

Also for all combinations, where certain processes have a higher k compared to the
others, that have a fixed k of 10, the required space only depends on B. The reason for
this is, that the schedule can be scaled, since only program B has a non-constant space
behavior w.r.t. k. For further analyses we define two additional programs:

Program Definition
F foldl and True (concat (take k (repeat (take 3 (repeat True)))))
G foldr padd 0 (take k (repeat 3))

The program F has a space consumption that behaves quadratic since foldl is used
(see Section 3.6.2 for more details) and program G has a linear space consumption.
Note that each Peano number is counted as size 1, hence there is no difference in
space consumption if a high number is replaced by a low number. In the following
table the results are summarized for different combinations, where a subset of the
three considered programs is analyzed.

k 10 20 30 40 50 60 70 80 90 100

spmin for specified program
B 69 79 89 99 109 119 129 139 149 159
F 242 482 722 962 1202 1442 1682 1922 2162 2402
G 118 168 218 268 318 368 418 468 518 568

Required space, if k used for specified programs, all others use k = 10
B 269 269 269 269 269 269 269 269 269 269
F 269 509 749 989 1229 1469 1709 1949 2189 2429
G 269 286 286 286 320 370 420 470 520 570
B, F 269 509 749 962 1229 1469 1709 1949 2189 2429
B, G 269 286 286 286 320 370 420 470 520 570
F, G 269 526 766 1006 1246 1486 1726 1966 2206 2446
B, F, G 269 526 766 1006 1246 1486 1726 1966 2206 2446

Program B does not have an impact on the required space, since it is always dominated
by program F and even an optimal schedule as calculated by SpOptN here for all cases
cannot improve the space consumption by a smart rearrangement. This is clearly vi-
sible in the case where only B has input size k and also if we compare the case where
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F and G has input size k with the case where all processes have input size k. The same
argumentation applies to the case where B and G have input size k compared to the
case where only G has input size k.

In the case, where G has input size k, the required space increases linearly, but not for
low input sizes. For low input sizes the scheduler can rearrange the threads so that the
required space remains at 286 or lower.

As expected, in all cases where F is involved, the required space increases drastically.

Parallelization of List-Evaluation

If a long is constructed and evaluated afterwards, then it seems to be a good idea to
parallelize the construction of the list if possible. Consider the following programs:

s ∶= let res = foldr padd 0 (replicate (2 ⋅ k) 1)
in seq res (return res)

t ∶= do n1⇐ future (return (let res = foldr padd 0 (replicate k 1)
in seq res res))

n2⇐ future (return (let res = foldr padd 0 (replicate k 1)
in seq res res))

let res = padd n1 n2
seq res (return res)

The pure program s constructs a list containing 2 ⋅k-times the number 1 and then uses
foldr to calculate the sum of all of these numbers. t is the same as s but parallelizes
the list-constructions and most additions.

Since we are interested in an improvement of runtime and want to analyze the space
consumption, delays are turned off. For space analyses mlnP,A denotes the mlnP -value
of the space-optimal path, hence mlnP,A is an approximation of mlnP .

Then we get the following results:

k 10 20 30 40 50 60 70 80 90 100

Pure variant (s)
mlnP 208 408 608 808 1008 1208 1408 1608 1808 2008
mlnP,A 208 408 608 808 1008 1208 1408 1608 1808 2008
spmin 158 258 358 458 558 658 758 858 958 1058

Parallel variant (t)
mlnP 114 214 314 414 514 614 714 814 914 1014
mlnP,A 114 214 314 414 514 614 714 814 914 1014
spmin 122 172 222 272 322 372 422 472 522 572

The parallelization nearly halves both runtime and space consumption and since all
mlnP,A-values are the same as the corresponding mlnP -values, the required spmin-
values correspond to optimal runtime-values. The reason for the space decrease is
that the whole list can be garbage collected from left to right and using two threads,
the garbage collector can remove two elements in the parallel variant in contrast to
one element in the pure variant.
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The table above is generated as follows:

The doubling of k for the pure variant is directly achieved using the flexible template
system. Two calculations are performed separately. The first calculation yields spmin
and the corresponding mlnP,A-value and the second one only calculates the mlnP -
values.

For both calculations no delays are needed, since the space consumption is intended
to be improved while keeping a good runtime.This approach is correct, since there are
no conflicts between threads and the results of all threads are needed. Moreover for
both cases the full state tree mode is used, since there are no dependencies between
the threads, hence there is only a path and the calculation of the state tree has the least
overhead.

For the second case the garbage collector is turned off completely. Note that this might
increase the memory consumption of the CHFi, hence in some comparable cases it
might be better to configure the garbage collector to be active with a lower frequency
instead of turning it off.

Fold using Addition on Binary Tree

In this analysis an introductionary improvement-example of (SSSD18) w.r.t. runtime
is considered and we also want to confirm the improvement-property w.r.t. space con-
sumption. The program is slightly adapted as follows:

s ∶= let calcPure = (λn.case n of {
((Leaf k)→ k)
((Node l r)→ padd (calcPure l) (calcPure r)) })

res = calcPure tree
in seq res (return res)

t ∶= let calcFut = (λn.case n of {
((Leaf k)→ return k)
((Node l r)→ do lres⇐ future (calcFut l)

rres⇐ future (calcFut r)
let res = padd lres rres
seq res (return res)) })

in calcFut tree

We assume that the input tree is a binary tree that already is fully evaluated and all
leafs contain the value 0. The zeroes allow an easier reasoning, since no laziness w.r.t.
Peano addition is introduced by zeroes. Both programs fold the addition operator over
the whole tree, but s is a pure implementation while t parallelizes as much as possible,
if many of the threads are able to run in parallel.

Since the impact of parallelization on space consumption is the goal of this analysis,
the CHFi is configured not to use any delays.This is correct, since there are no conflicts
between the threads and the results of all threads are needed.

Two calculations are needed. The target of the first calculation is the space consump-
tion and mlnP -value of the space-optimal path, denoted as mlnP,A. The target of the
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second calculation is the optimal overall runtime mlnP , where the garbage collector
can be turned off for a shorter calculation-time.

k 10 20 30 40 50 60 70 80 90 100

Pure variant (s)
mlnP 10 24 52 108 220 444 892 1788 3580 7164
mlnP,A 10 24 52 108 220 444 892 1788 3580 7164
spmin 36 47 64 93 146 247 444 833 1606 3147

Parallel variant (t)
mlnP 12 28 52 88 137 218 349 626 1133 2165
mlnP,A 12 28 52 88 137 218 349 626 1133 2165
spmin 54 84 144 253 437 724 1263 2336 4424 8566

Theparallelization has a great impact on the runtime (about 70 percent for k = 100) but
simultaneously the space consumption increases by a multiplicative constant (about
2.7 for k = 100).

The pure variant needs less space, since the calculation proceeds over the whole tree
using a depth-first-order and therefore all intermediate calculations can be performed
locally, using as least memory as possible. The parallel variant calculates as much as
possible in parallel and thus the space requirement of all additions sums up quickly.
As expected the mlnP,A and mlnP -values coincide, hence the calculated spmin-values
always coincide with optimal runtime-values.

Thus if a great amount ofmemory is available, then the parallelization can be applied to
improve the runtime noticeably. If the memory is limited, then it might be better to use
the pure variant. However in practice the number of processors is usually a restriction,
hence the improvement of runtime can be expected to be weaker in practice than in
this analysis and also the space increase is consequently not that high.

Common Subexpression Elimination

The example used in the proof of Proposition 3.7 to show that common subexpression
elimination (cse) is not a space improvement in LRP can be directly transferred to CHF∗
and a short test using CHFi affirmed, that common subexpression elimination is not a
space improvement. However in this example the improvement of runtime using (cse)
is only an additive constant and therefore we now analyze a case with higher impact
on runtime.

The following programs s and t both use two threads that each calculate a Boolean va-
lue and in the end the logical and is applied on the two Boolean values.The calculation
of the Boolean values are based on the same list of Boolean values, where s performs
the generation of those lists separately in the calculations of both threads, while t uses
an extra thread, that calculates the needed list. Hence t is s after some general form of
common subexpression elimination is applied.
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s ∶= do b1⇐ future (return (last (replicate k True)))
b2⇐ future (return (allTrue (replicate k True)))
let res = and b1 b2
seq res (return res)

t ∶= do lst⇐ future (return (replicate k True)
b1 ⇐ future (return (last lst))
b2 ⇐ future (return (allTrue lst))
let res = and b1 b2
seq res (return res)

Now the CHFi is configured to use an iterative depth-first-search using checksums.
α-equivalence-testing is turned off, but the delay-function DelSpaceOpt is used, since
the target is the required space. This calculation leads to the following spmin-values
with the corresponding runtime values mlnP,A.

A second calculation yields the optimal overall runtime mlnP , where the garbage
collector can be turned off for a shorter calculation-time. Also no delays are needed,
since there are no conflicts between the threads and moreover it is known that the
results of all threads are required for the final result.

k 5 10 15 20 25 30 35

Pure variant (s)
mlnP 74 134 194 254 314 374 434
mlnP,A 74 134 194 254 314 374 434
spmin 56 56 56 56 56 56 56

Parallel variant (t)
mlnP 57 102 147 192 237 282 327
mlnP,A 57 102 147 192 237 282 327
spmin 55 60 65 70 75 84 94

The space consumption for s is constant, since last and allTrue work on separated
lists and therefore the list can be garbage collected from left to right. For t the space
consumption is linear in the length of the list, since the future lst implements a sharing
that forces the complete calculation of the list. For both programs the runtime is linear,
however the runtime improves by at most 25 percent if common subexpression is used.

Optimizing Factory and Limitations

In the following example a small factory is considered. The goal is to model the space
used in the factory building. The idea is to analyze the effectiveness of buying addi-
tional machines.

It is assumed that only one product is produced in the factory. The factory has six
machinesm1, . . . ,m6 in total, producing different subproducts, where some machines
require already produced subproducts of other machines. The machines together with
the subproducts they produce and the requirements are defined by the following table:
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Machine Subproduct Required Subproducts (Amounts)
m1 sp1
m2 sp2
m3 sp3
m4 sp4 sp1 (2), sp2 (1)
m5 sp5 sp2 (1), sp3 (2)
m6 sp6 (final product) sp4 (1), sp5 (1)

The factory can be visualized as follows, where the lines represent conveyors and the
numbers at each arrow states howmany subproducts of the machine, where the arrow
starts at, are needed for the machine or point where the arrow ends:

m1 m2 m3

m4

2
1 2 m5

2
1

m6
1 1

Themachinesm1, . . . ,m3 can bemodeled in CHF∗ using threeMVars and three threads.
For each machine exists an MVar, saymv1, . . . ,mv3, that contains a list of correspon-
ding subproducts, e.g. [sp1, sp1, . . . ] for m1. For each machine m1, . . . ,m3 a thread
exists that runs in an infinite loop, extending the list of the corresponding MVar by
finished subproducts. Since the termination of the main-thread terminates all other
threads, this does not affect the overall termination.

Then the machines m4 and m5 take the needed subproducts (respecting the require-
ments as defined by the table above) of the MVars mv1, . . . ,mv3 and write back the
reduced lists to the corresponding MVars. If the needed amount of subproducts is not
reached, then the affected list is not changed and written back to the MVar. The same
approach as for m4 and m5 can be used to model m6. Since the lists are empty at the
start of the program and we are looking for a minimum of space consumption, it is
necessary to require that m6 produces a certain amount of products (e.g. the amount
of products per day). To get an intuition of the interpretation of space consumption,
consider the following factory layout, wherem2 is duplicated:

m1 m2 m′2 m3

m4

2 1
m5

21

m6
1 1
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The space consumption implicitly takes the needed real space in the factory building
of each machine into account and also the length of conveyors can be reduced, if the
minimal space consumption is known. Adjusting the certain amount of products of
m6 simulates the flow and is interesting if new machines are added, hence to compare
the both factory layouts above.

The machinem1 can be implemented as follows (m2,m′2 andm3 can be implemented
similarly), where prodSP1 is a function that simulates the production of subproduct
sp1 bym1:

do sp1⇐ newMVar Nil
t1⇐ future (letrec inf = do lst⇐ takeMVar sp1)

putMVar sp1 (prodSP1 ∶ lst)
in inf)

The implementation of machine m4 is straightforward, however it needs a few more
operations (m5 can be implemented similarly), where > as in Haskell can be imple-
mented using a case-expression and all other Haskell-constructs (e.g. lst !! k returns
the k-th element of lst) are also implemented using case-expressions. Also prodSP4
takes two subproducts sp1 and one subproduct sp2 and simulates the production of
one subproduct sp4.

do sp4⇐ newMVar Nil
t4⇐ future (do sp1lst⇐ takeMVar sp1

sp2lst⇐ takeMVar sp2
sp4lst⇐ takeMVar sp4
if (length sp1lst > 1) && (length sp2lst > 0)

then do putMVar sp1 (tail (tail sp1lst))
putMVar sp2 (tail sp2lst)
putMVar sp4 ((prodSP4

(head sp1lst)
(head (tail sp1lst))
(head sp2lst))
∶ sp4lst)

else do putMVar sp1 sp1lst
putMVar sp2 sp2lst
putMVar sp4 sp4lst)

It is correct to write sp1lst and sp4lst back to the corresponding MVars, since all
threads require a filled MVar to proceed, hence the thread of machine m4 blocks all
affected MVars. Note that alsom6 can be implemented as above form4, however some
additional program logic is needed to implement that a certain number of products
should be produced.

This whole example shows the computation limit and can be used to analyze the CHFi
using different configurations.

First of all the checksum-testing and especially α-equivalence-testing of states can be
helpful (e.g. in the example for common subexpression elimination above the check-
sums are effective), but this hardly depends on the considered program. If delays lead
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to a high amount of nearly identical states, then the chance to get rid of big subtrees is
high and in these cases the extra runtime needed by α-equivalence-testing also help to
cut off subtrees. However there never is a guarantee that these optimizations reduce
the overall calculation time.

The initial maximal depth and the amount of increase, if the maximal depth needs to
be enhanced, have a great impact. For cases where leafs with low space consumption
are detected with a low depth, the initial maximal depth should be quite low. But there
are cases, where the first leaf is found with a high depth and then the initial maximal
depth needs to be set a lot higher.

Moreover the leftmost path might be the longest and then the calculation time might
increase a lot, especially if the shortest path is the rightmost one. We consider the
factory example above and assume that only the machines m1 to m3 are implemen-
ted and then let the main-thread finishes its calculation with a take-operation on the
MVar sp1. The shortest calculation is clearly, that the main-thread performs its take-
operation and the whole calculation terminates, while all other threads pause. But the
depth-first-search takes the longest path first, while the optimal path is on the right
side of the tree, hence the optimal path is only found if the maximal depth is reached.
But even if this is the case, the optimal path is also long because of the amount of re-
duction steps caused by the complexity of the program, hence effectively a big part of
the tree needs to be processed before the optimal path is found. Permuting the order
in which the children are processed might only help in this explicit scenario, but in
general the optimal path can go through the whole tree without visible order of the
next elements seen locally from a single node.

If we look at the implementation of m4 above, then the program is clearly too large
w.r.t. minimal runtime itself and also the number of threads. We give a strategy for
such cases, that however yields no results for the factory example, since the state tree
is too large:

1. Check whether only iterative depth-first-search or using checksums or also using
α-equivalence is the best.

2. Try different initial maximal depth configurations and also adapt the constant that
controls the increase of maximal depth.

3. The full tree evaluation provides a tree cut, as soon as a leaf is found. This way an
approximation is calculated the helps to get an orientation.

4. If there are no conflicts between threads, then delays can be turned off.

– For space analyses this leads to an approximation.

– For time analyses it depends, if it is known, that all results from the threads
are fully needed (hence no thread performs an unnecessary reduction step).
If this is the case, then turning off delays yields the optimal runtime with a
much lower calculation time. If this cannot be guaranteed, then the result is an
approximation.
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Conclusion and Future Work

In this thesis the space consumption and runtime is analyzed using the calculi LRP and
CHF. Both calculi are slightly adapted for an easier space analysis, yielding LRPgc and
CHF∗, where all modifications preserve the semantics. This work focuses primarily on
the minimization of the maximal space consumption during execution.

The notions of space improvement and space equivalence are introduced in different
variants for LRPgc and LR: Using an efficiently implementable eager garbage collector
that is appliedwhenever possible or using an eager total garbage collector that replaces
any subexpressions by a non-terminating constant with size zero, if the overall termi-
nation is not affected. Also context lemmas are proved for (total) space improvement
and equivalences. The context lemmas are used to show the (total) space improvement
or equivalence properties of several transformations.

Compared to (GS99, GS01) the space measurement and definitions of space improve-
ments used for LRPgc turns out to be stable and effective. Also examples of (GS01) can
be analyzed easier using our method.

The compatibility between LRPgc and the introduced abstract machine M1sp leads to
analyses of the space consumption and runtime of more complex programs using an
implementation of M1sp.

We also develop an efficient algorithm to calculate the required space w.r.t. schedules
of multiple independent processes, where only start- and end-points are required to
be in sync. Using Boolean conditions on simultaneous or relative time points of two
processes, the required space can be calculated in exponential time, however the time
is still polynomial, if the number of processors and conditions is fixed. For the general
case of synchronizations, that is NP-complete, the abstract machines CIOM1sp,par and
CIOM1t,par are introduced and help to find the required space or minimal runtime.

The abstract machines CIOM1sp,par and CIOM1t,par intuitively both build up a tree of all
needed possibilities to find an optimal solution.The tree can be large caused by nonde-
terminism and the different interleavings of threads that affect the overall space con-
sumption. Optimizations of both machines are tree cuts, where subtrees are removed,
that not contribute to the optimal solution and also checksum- and α-equivalence-
testing helps to eliminate semantic equal nodes in the tree.

Implementations of the machines can easily be extended and also different options,
that effect the overall runtime, can be used. In any case the impact of each optimization
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heavily depends on the given input. Despite of the worst-case complexity of the tree,
we performed several analyses successfully.

As future work different space measures can be considered. The maximal space con-
sumption during the execution of a program is optimized in this work and this applies
to various scenarios. However sometimes the average space consumption is interes-
ting and then the used space measure might be not appropriate.

Moreover if we know that a space increase is temporary in any case, thenwe alsomight
accept this little space increase. One approach is a measure that abstracts over such
temporary increases, another approach would be to glue some sequences of transfor-
mations together. The last approach can be implemented using forking diagrams.

If we compare an optimal garbage collector with total garbage collection, then it seems
that the difference is negligible. The relationship between the implementable eager
garbage collection as used by LRPgc and total garbage collection is a topic for future
research. Also different garbage collection approaches can be used in the implemen-
tations, where (Wil92) shows different basic techniques.

The notions of space improvement and equivalence can be transferred to CHF∗. The
approach for runtime improvements in (SSSD18) can be utilized: A context lemma is
not needed, instead normalized reduction sequences can be used and forking diagrams
need to be calculated directly, where care has to be taken w.r.t. garbage collection.
Using this approach it seems viable to show the space improvement or equivalence
properties of several transformations.

The abstract machines CIOM1sp,par and CIOM1t,par can be optimized further, e.g. for
some specific (Update)-transitions it is clear, that a delay of the corresponding thread
cannot improve the space consumption and thus a complete subtree can be removed.
However such optimizations are sophisticated since the check itself is required to be
very quick, otherwise the overall optimization of runtime is insignificant.
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