CHEMISTRY A European Journal

Supporting Information

Genetic Code Expansion Facilitates Position-Selective Labeling of RNA for Biophysical Studies

Andreas Hegelein^{+, [a]} Diana Müller^{+, [a]} Sylvester Größl,^[b] Michael Göbel,^[b] Martin Hengesbach,^[a] and Harald Schwalbe^{*[a]}

chem_201904623_sm_miscellaneous_information.pdf

Supporting Information

Genetic code expansion facilitates position-selective labeling of RNA for biophysical studies

Andreas Hegelein, Diana Müller, Sylvester Größl, Michael Göbel, Martin Hengesbach, and Harald Schwalbe

Content

In vitro transcription and NMR of RNA	4
Figure S1: Denaturing polyacrylamide gel of 14mer and 14mer ^x for analysis of the transcription efficiency	4
Table S1: Analysis of the relative yield of 14mer ^x to 14mer based on the gel shown in Figure 1 done with ImageJ.	5
Figure S2: 1D 1H Imino region of 14mer and 14mer ^x at 278 K	6
Figure S3: Optimization of XTP concentration for <i>in vitro</i> transcription of G79X	7
Table S2: Analysis of denaturing polyacrylamide gels (Figure 5B) to determine the absolute and relative transcription yield of G79X (73mer) and abortion product G79X abortion (67mer)	8
Figure S4: Optimization of 7-deazaxanthosine concentration for <i>in vitro</i> transcription of G79- 7dX	9
Table S3: Analysis of denaturing polyacrylamide gel (Figure 6A) to determine the absolute and relative transcription yield of G79-7dX (73mer) and abortion product G79-7dX abortion (67mer)). .0
Analytics of 3',5'-Bis-O-(tert-butyldimethylsilyl)thymidine (2)1	1
Figure S5: ¹ H-spectrum	1
Figure S6: ¹³ C-spectrum	2
Figure S7: MALDI-spectrum1	3
Analytics of 1,4-anhydro-3,5-bis-O-(tert-butyldimethylsilyl)-2-deoxy-D-erythro-pent-1-enitol (3).1	4
Figure S8: ¹ H-spectrum	4
Figure S9: ¹³ C-spectrum	5
Figure S10: MALDI-spectrum1	6
Analytics of 3-O-(tert-butyldimethylsilyl)-1,2-dideoxy-2,3-didehydro-D-ribofuranose (4)1	7
Figure S11: ¹ H-spectrum	7
Figure S12: ¹³ C-spectrum	8
Figure S13: MALDI-spectrum1	9
Analytics of 18-(2,4-dichloropyrimidin-5-yl)-1,2,3-trideoxy-3-oxo-D-ribofuranose (6) 2	0
Figure S14: ¹ H-spectrum	0

Figure S15: ¹³ C-spectrum	. 21
Figure S16: MALDI-spectrum	. 22
Analytics of 16-(2,4-dichloropyrimidin-5-yl)-1,2-dideoxy-D-ribofuranose (7)	. 23
Figure S17: ¹ H-spectrum	. 23
Figure S18: ¹³ C-spectrum	. 24
Figure S19: MALDI-spectrum	. 25
Analytics of 16-(2,4-dichloropyrimidin-5-yl)-1,2-dideoxy-5- <i>O</i> -(<i>tert</i> -butyl-dimethylsilyl)-D-ribofuranose (8)	. 26
Figure S20: ¹ H-spectrum	. 26
Figure S21: ¹³ C-spectrum	. 27
Figure S22: MALDI-spectrum	. 28
Analytics of 16-[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-5-O-(<i>tert</i> -butyl-dimethylsilyl)- ribofuranose (9)	-D- 29
Figure S23: ¹ H-spectrum	. 29
Figure S24: ¹³ C-spectrum	. 30
Figure S25: MALDI-spectrum	. 31
Analytics of 16-[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-D-ribofuranose (10)	. 32
Figure S26: ¹ H-spectrum	. 32
Figure S27: ¹³ C-spectrum	. 33
Figure S28: MALDI-spectrum	. 34
Analytics of 1 <i>β</i> -[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-5- <i>O</i> -(4,4'- dimethoxytriphenylmethyl)-D-ribofuranose (11)	. 35
Figure S29: ¹ H-spectrum	. 35
Figure S30: ¹³ C-spectrum	. 36
Figure S31: MALDI-spectrum	. 37
Analytics of 16-[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-5-O-(4,4'- dimethoxytriphenylmethyl)-D-ribofuranose-3-[(2-cyanoethyl)(N,N-diisopropyl)]phosphoramidite	e
(12)	. 38
Figure S32: ¹ H-spectrum	. 38
Figure S33: ³¹ P-spectrum	. 39
Figure S34: MALDI-spectrum	. 40
Analytics of <i>N</i> -(4-chloro-7 <i>H</i> -pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethyl-propionamide (14)	. 41
Figure S35: ¹ H-spectrum	. 41
Figure S36: ¹³ C-spectrum	. 42
Figure S37: ESI-spectrum	. 43
Analytics of N-(4-chloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethyl-propionamide (15	5) 44
Figure S38: ¹ H-spectrum	. 44

Figure S39: ¹³ C-spectrum	45
Figure S40: ESI-spectrum	46
Analytics of 4-chloro-5-iodo-2-pivaloylamino-7-[(2,3,5-tri- <i>O</i> -benzoyl)-β-D-ribofuranosyl]-7 <i>H</i> - pyrrolo[2,3-d]pyrimidine (16)	47
Figure S41: ¹ H-spectrum	47
Figure S42: ¹³ C-spectrum	48
Figure S43: ESI-spectrum	49
Analytics of 2-amino-5-iodo-3,7-dihydro-7-(β-D-ribofuranosyl)-4H-pyrrolo-[2,3-d]pyrimidin-4 (17)	l-one 50
Figure S44: ¹ H-spectrum	50
Figure S45: ¹³ C-spectrum	51
Figure S46: ESI-spectrum	52
Analytics of 1,7-dihydro-5-iodo-4-methoxy-7-(β-D-ribofuranosyl)-2H-pyrrolo[2,3-d]pyrimidin amine (18)	-2- 53
Figure S47: ¹ H-spectrum	53
Figure S48: ¹³ C-spectrum	54
Figure S49: ESI-spectrum	55
Analytics of 1,7-dihydro-5-(octa-1,7-diynyl)-4-methoxy-7-(β-D-ribofuranosyl)-2 <i>H</i> -pyrrolo[2,3-d]pyrimidin-2-amine (19)	- 56
Figure S50: ¹ H-spectrum	56
Figure S51: 13C-spectrum	57
Figure S52: ESI-spectrum	58
Analytics of 5-(octa-1,7-diynyl)-7-(β-D-ribofuranosyl)-1,3,7-trihydro-2 <i>H</i> ,4 <i>H</i> -pyrrolo-[2,3- d]pyrimidin-2,4-dione (20)	59
Figure S53: ¹ H-spectrum	59
Figure S54: ¹³ C-spectrum	60
Figure S55: ESI-spectrum	61
Analytics of 5-(octa-1,7-diynyl)-7-(β-D-ribofuranosyl)-1,3,7-trihydro-2 <i>H</i> ,4 <i>H</i> -pyrrolo-[2,3- d]pyrimidin-2,4-dione TP (21)	62
Figure S56: ¹ H-spectrum	62
- Figure S57: ³¹ P-spectrum	63
Figure S58: ³¹ P-HMBC-spectrum	64
- Figure S59: MALDI-spectrum	65

In vitro transcription and NMR of RNA

Figure S1: Denaturing polyacrylamide gel of 14mer and 14mer^x for analysis of the transcription efficiency

Table S1: Analysis of the relative yield of 14mer^x to 14mer based on the gel shown in Figure 1 done with ImageJ.

Lane	Band No.	Rel. Quant.	Band%
14mer	1	1	100
14merX	1	0,13010668	100

Figure S2: 1D 1H Imino region of 14mer and 14mer^x at 278 K.

The partial assignment was has been transferred from Fürtig et al.[31]

Figure S3: Optimization of XTP concentration for *in vitro* transcription of G79X.

Table S2: Analysis of denaturing polyacrylamide gels (Figure 5B) to determine the absolute and relative transcription yield of G79X (73mer) and abortion product G79X abortion (67mer).

	Lane	Lane #	Band No.	Length	Rel. Quant.	Band %
	Gsw ⁷³	1	1	73mer	1	100
-XTP	G79X	2	1	73mer	0,17	21,62
	G79X abortion		2	67mer	0,62	78,38
+XTP	G79X	3	1	73mer	0,71	76,73
	G79X abortion		2	67mer	0,22	23,27

Figure 5B for reference:

В Ò XTP + 73mer 67mer

Figure S4: Optimization of 7-deazaxanthosine concentration for *in vitro* transcription of G79-7dX.

Table S3: Analysis of denaturing polyacrylamide gel (Figure 6A) to determine the absolute and relative transcription yield of G79-7dX (73mer) and abortion product G79-7dX abortion (67mer).

	Lane	Lane #	Band No.	Length	Rel. Quant.	Band %
	Gsw ⁷³	1	1	73mer	1	100
-7dXTP	G79-7dX	2	1	73mer	0,16	19,16
	G79-7dX abortion		2	68mer	0,67	80,84
+7dXTP	G79-7dX	3	1	73mer	0,35	45,3
	G79-7dX abortion		2	68mer	0,42	54,7

Figure 6A for reference:

Analytics of 3',5'-Bis-O-(*tert*-butyldimethylsilyl)thymidine (2)

Figure S5: ¹H-spectrum

Figure S6: ¹³C-spectrum

Figure S7: MALDI-spectrum

Analytics of 1,4-anhydro-3,5-bis-*O*-(*tert*-butyldimethylsilyl)-2-deoxy-D-erythropent-1-enitol (3)

Figure S8: ¹H-spectrum

Figure S9: ¹³C-spectrum

Figure S10: MALDI-spectrum

16

Analytics of 3-*O*-(*tert*-butyldimethylsilyl)-1,2-dideoxy-2,3-didehydro-D-ribofuranose (4)

Figure S11: ¹H-spectrum

Figure S12: ¹³C-spectrum

Figure S13: MALDI-spectrum

Analytics of 1*8*-(2,4-dichloropyrimidin-5-yl)-1,2,3-trideoxy-3-oxo-D-ribofuranose (6)

Figure S14: ¹H-spectrum

Figure S15: ¹³C-spectrum

AV500-2015-10-05-ahhs.1752-AH-59 2 1 "Z:\andreas\Doktorarbeit\NMR Spektren Doktorarbeit"

Figure S16: MALDI-spectrum

Analytics of 18-(2,4-dichloropyrimidin-5-yl)-1,2-dideoxy-D-ribofuranose (7)

Figure S17: ¹H-spectrum

Figure S18: ¹³C-spectrum

Figure S19: MALDI-spectrum

25

Analytics of 1*6*-(2,4-dichloropyrimidin-5-yl)-1,2-dideoxy-5-*O*-(*tert*-butyl-dimethylsilyl)-D-ribofuranose (8)

Figure S20: ¹H-spectrum

Figure S21: ¹³C-spectrum

Figure S22: MALDI-spectrum

Analytics of 1*8*-[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-5-*O*-(*tert*-butyl-dimethylsilyl)-D-ribofuranose (9)

Figure S23: ¹H-spectrum

Figure S24: ¹³C-spectrum

Figure S25: MALDI-spectrum

31

Analytics of 1*B*-[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-D-ribofuranose (10)

Figure S26: ¹H-spectrum

Figure S28: MALDI-spectrum

34

Analytics of 18-[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-5-O-(4,4'-dimethoxytriphenylmethyl)-D-ribofuranose (11)

Figure S29: ¹H-spectrum

Figure S30: ¹³C-spectrum

Figure S31: MALDI-spectrum

Analytics of 1*6*-[2,4-bis(benzoylamino)pyrimidin-5-yl]-1,2-dideoxy-5-*O*-(4,4'dimethoxytriphenylmethyl)-D-ribofuranose-3-[(2-cyanoethyl)(*N*,*N*diisopropyl)]phosphoramidite (12)

Figure S32: ¹H-spectrum

Figure S33: ³¹P-spectrum

Figure S34: MALDI-spectrum

Analytics of *N*-(4-chloro-7*H*-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethyl-propionamide (14)

Figure S35: ¹H-spectrum

Figure S36: ¹³C-spectrum

AV500-2018-10-17-ahhs.26475-AH-Pv 2 1 "Z:\andreas\Doktorarbeit\NMR Spektren 7-Deaza guanine"

Figure S37: ESI-spectrum

Analytics of *N*-(4-chloro-5-iodo-7*H*-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethyl-propionamide (15)

Figure S38: ¹H-spectrum

Figure S39: ¹³C-spectrum

Figure S40: ESI-spectrum

Analytics of 4-chloro-5-iodo-2-pivaloylamino-7-[(2,3,5-tri-*O*-benzoyl)-*b*-D-ribofuranosyl]-7*H*-pyrrolo[2,3-d]pyrimidine (16)

Figure S41: ¹H-spectrum

Figure S42: ¹³C-spectrum

Figure S43: ESI-spectrum

Analytics of 2-amino-5-iodo-3,7-dihydro-7-(*b*-D-ribofuranosyl)-4*H*-pyrrolo-[2,3-d]pyrimidin-4-one (17)

Figure S44: ¹H-spectrum

Figure S45: ¹³C-spectrum

Figure S46: ESI-spectrum

Analytics of 1,7-dihydro-5-iodo-4-methoxy-7-(θ -D-ribofuranosyl)-2*H*-pyrrolo[2,3-d]pyrimidin-2-amine (18)

Figure S47: ¹H-spectrum

Figure S48: ¹³C-spectrum

"AV500-2017-04-18-ahhs. 19558-AH-178 Desaminierung" 2 1 "Z:\andreas\Doktorarbeit\NMR Spektren 7-Deaza guanine"

Figure S49: ESI-spectrum

Analytics of 1,7-dihydro-5-(octa-1,7-diynyl)-4-methoxy-7-(*B*-D-ribofuranosyl)-2*H*-pyrrolo[2,3-d]pyrimidin-2-amine (19)

Figure S50: ¹H-spectrum

Figure S51: 13C-spectrum

AV500-2018-12-28-ahhs.27229-AH-341-Sonogashira 2 1 "Z:\andreas\Doktorarbeit\NMR Spektren 7-Deaza guanine"

Figure S52: ESI-spectrum

Analytics of 5-(octa-1,7-diynyl)-7-(*B*-D-ribofuranosyl)-1,3,7-trihydro-2*H*,4*H*-pyrrolo-[2,3-d]pyrimidin-2,4-dione (20)

Figure S53: ¹H-spectrum

Figure S54: ¹³C-spectrum

Figure S55: ESI-spectrum

Analytics of 5-(octa-1,7-diynyl)-7-(β -D-ribofuranosyl)-1,3,7-trihydro-2*H*,4*H*-pyrrolo-[2,3-d]pyrimidin-2,4-dione TP (21)

Figure S56: ¹H-spectrum

"AV500-2019-02-12-ahhs.27706-AH-343a 1H+31P HMBC" 1 1 "Z:\andreas\Doktorarbeit\NMR Spektren 7-Deaza guanine"

Figure S57: ³¹P-spectrum

Figure S59: MALDI-spectrum

