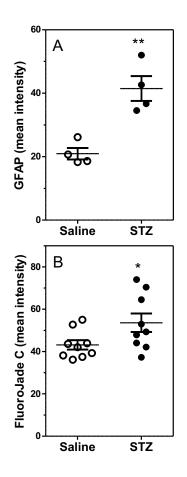
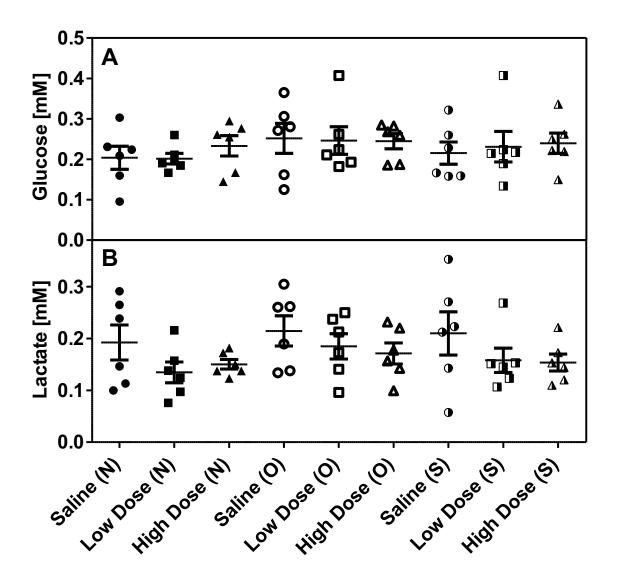
Central cholinergic function and metabolic changes in streptozotocininduced rat brain injury

Tri Yuliani^{1,2}, Sebastian Lobentanzer¹, Jochen Klein¹

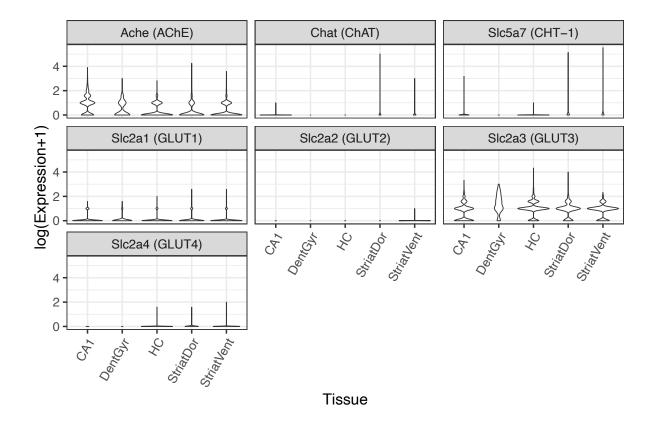
¹Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany


²Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Gedung 452

Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten 15314, Indonesia


To whom correspondence should be addressed: Jochen Klein PhD, Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Biocenter N260, Max-von-Laue Str. 9, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Tel: +49-69-79829366. Fax: +49-69-79829277. E-mail: <u>klein@em.uni-frankfurt.de</u>

Supplemental Table 1. Animal groups and numbers of animals. HPC = hippocampus; STR= striatum. For cholinergic parameter experiments, hippocampus and striatum samples were obtained from the same rats.


	Saline		Low Dose		High Dose	
Total number of animals						
receiving i.c.v. injection	44		15		44	
Brain region	HPC	STR	HPC	STR	HPC	STR
Total number of animals for						
histology study	9	0	0		9	0
Total number of animals for						
mitochondria study	12	0	0)	12	0
Total number of animals for						
cholinergic marker study	8		0		8	
Total number of animals for						
microdialysis study	7	8	7	8	7	8
Dialysates was used in the						
statistics (n)	6	8	6	8	6	8
Exclusion criterion	1	0	1	0	1	0

Supplementary Figure 1. Quantification of fluoroscence intensity from coronal cryosections of hippocampus (14 μ m) at AP -5.6 mm from bregma (for exemplary pictures, see Fig. 2). GFAP staining was performed according to Kallenborn-Gerhardt *et al.* (2014) and Fluoro-Jade C staining was performed based on Schmued *et al.* (2005). Fluorescence signal was detected using a filter system (a TRITC filter for GFAP; a FITC filter for Fluoro-Jade C) and was quantified using ImageJ software. Data were analyzed by unpaired t-test. (A) Glial fibrillary acidic protein (GFAP) immunoreactivity in the rat hippocampus 21 days after i.c.v. injection of saline vs. streptozotocin (STZ). t=4.6, p = 0.003, N=4 animals; (B) Fluoro-Jade C signals of the CA1 region of the hippocampus 21 days after i.c.v. injection of saline vs. streptozotocin (STZ).

Supplemental Figure 2. Metabolite levels in hippocampal microdialysates under basal conditions (N), during open field exploration (O) and during infusion of scopolamine (S). Statistics: one-way ANOVA followed by Tukey post-test. N = 6 animals. Data are averages of six samples (90 minutes) each. (A) Glucose $F_{2,15} = 0.11$, p = 0.897; (B) Lactate $F_{2,15} = 1.38$, p = 0.282.

Supplementary Figure 3. Single-cell expression of cholinergic-associated transcripts and glucose transporters in neurons of hippocampus and striatum of the adult mouse. Hippocampal regions: CA1, dentate gyrus (DentGyr), complete hippocampus (HC); striatal regions: dorsal striatum (StriatDor), ventral striatum (StriatVent). Y-axis shows log₂(expression + 1).

А -0.05 -0.09 0,06 0.28 0.35 0.72 Slc2a3 0.49 Ache -0.05 0.16 0.49 -0:04 Slc5a7 -0.01 X 0.1 0.96 Chat 0,01 -0.02 0.16 Slc2a2 0)02 -0.04 Slc2a4 0.2 56282 51c23A 516521 Chat Ache G10221 В Slc2a4 -0.04 -0.02 X -0:01 X X Slc2a1 ø -0.04 0.04 0.02 0.02 0.22 Slc5a7 0,01 0.08 0.63 0.21 Chat 0 0.05 Ache 0,01 0.07 Slc2a3 0.01 Ache 516282 56283 Chat 51c5a1 516221 С Slc2a4 X -0.02 -0.04 -0.01 Ø -0.04 Slc2a2 0)03 0)01 0)01 0.01 -0.01 Slc5a7 0.11 0.23 0.24 0.55 Chat 0.07 0.14 0.28 Ache 0.18 0.24 Slc2a3 0.1 Ache 56223 510222 Chat SICSal

Supplementary Figure 4. Correlation of expression cholinergic-associated of transcripts and glucose transporters in single cells of the murine nervous system. Size and depth of colour of circles denote strength of correlation (Pearson's product-moment correlation coefficient, PPMCC), numbers denote PPMCC (range: -1 to 1). Nonsignificant correlation coefficients (p > 0.05) are crossed out. Rows and columns are ordered hierarchical clustering, representing by similarity of PPMCC values (Euclidian distance). (A) Correlation of transcripts in all tissues (cell-type-level) of the murine nervous system. (B) Correlation in all neurons (singlecell-level) of the murine nervous system. (C) Correlation in cholinergic neurons (singlecell-level) as determined by expression of the vesicular ACh-transporter, SLC18A3.