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Abstract: We construct a new equation of state for the baryonic matter under an intense magnetic
field within the framework of covariant density functional theory. The composition of matter includes
hyperons as well as ∆-resonances. The extension of the nucleonic functional to the hypernuclear
sector is constrained by the experimental data on Λ and Ξ-hypernuclei. We find that the equation
of state stiffens with the inclusion of the magnetic field, which increases the maximum mass of
neutron star compared to the non-magnetic case. In addition, the strangeness fraction in the matter is
enhanced. Several observables, like the Dirac effective mass, particle abundances, etc. show typical
oscillatory behavior as a function of the magnetic field and/or density which is traced back to the
occupation pattern of Landau levels.
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1. Introduction

Compact stars are the end products of stellar evolution that are produced in supernova explosions.
They are among the most fascinating objects in the universe that motivate theoretical studies of
exotic states of matter which are difficult or impossible to produce in modern terrestrial laboratories.
Among the remarkable features of compact stars are the wide range of densities covered by their
interiors (from sub-saturation up to possibly 10 times the nuclear saturation density) and the huge
magnetic field range 109 to 1018 G. The compact stars are arranged in various classes according to
some of their characteristic features. These include millisecond pulsars, neutron stars in X-ray binaries,
radio pulsars, anomalous X-ray pulsars, soft gamma repeaters, etc. Among these, the anomalous X-ray
pulsars and soft gamma repeaters are believed to be compact stars with the surface magnetic field
in the range of 1014–1015 G [1,2] and are commonly referred as magnetars . Furthermore, there has
been recently growing evidence that (at least) the repeating fast radio bursts (FRBs) are related to
magnetars [3–7]. Since the gravitational equilibrium of compact stars admits stars with magnetic
fields in the range B ≤ 1018–1019 G, large magnetic fields beyond those currently inferred have been
studied theoretically. Earlier works [8–12] have studied the effects of the magnetic field on the gross
parameters of compact stars, such as the mass, radius, moment of inertia under intense magnetic fields.
The induced deformations of the neutron stars (NSs) due to the strong magnetic fields can be important
sources of gravitational waves and precession in neutron stars, see Refs. [13–16]. The structure of
magnetized compact stars, in particular, their deformation, in general relativity, has been studied
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initially in Refs. [14–16] assuming various forms of the poloidal and toroidal field configurations.
More recent studies [17–19] considered also a combination of toroidal and poloidal fields which
appear to be more stable than purely poloidal or toroidal configurations. Moreover, a “universal”
field profile represented by an 8th-order polynomial as a function of star’s internal radius has been
proposed recently to describe the magnetic field profile inside the star [20] based on the solution of
Einstein–Maxwell equations in general relativity. While large magnetic fields are required to affect
the equation of state (i.e., the dependence of pressure on the energy density, hereafter abbreviated
as EoS) and the structure of the star, the role of the magnetic field is still important at lower values.
In particular, MeV-scale magnetic field can significantly alter the quasiparticle spectrum of baryons,
leading to the suppression of the superfluidity of protons via Landau diamagnetism [21,22] and
superfluidity of neutrons via Pauli paramagnetism [23], see for a review [24]. These modifications alter
the neutrino emissivity of compact stars with MeV-scale magnetic fields [22] through the modifications
of the neutrino production reaction rates. The anisotropy introduced by the magnetic field also affects
evolutionary processes in compact stars such as their magneto-thermal evolution [25] and rotational
dynamics [26,27].

Recent observations of compact stars in a wide range of electromagnetic spectra and in
gravitational waves motivate detailed microscopic studies of the interior matter, in particular,
its EoS and composition. A fundamental observational property of compact stars is the maximum
mass, which is still a matter of debate. The mass of PSR 1913+16 (the Hulse–Taylor pulsar)
1.4398 M� is one of the precisely determined pulsar masses [28]. The largest masses were measured
for millisecond pulsars in binaries with white dwarfs, namely J1614−2230 (1.97 ± 0.04M�) [29],
PSR J0348+0432 (2.01± 0.04M�) [30] and MSP J0740+6620 (2.14+0.20

−0.18M� with 95% credibility) [31].
The last measurement, which is based on Shapiro delay, is so far the largest measured maximum
mass with relatively small error bars and, thus, sets a reliable lower bound on the maximum mass of
a compact object. Another recent observation of gravitational waves by the LIGO-Virgo Collaboration
(the “GW190814”event) from a binary system of a black hole and light compact object companion sets
the mass of the latter at 2.59+0.08

−0.09M� [32], but the origin of this object (i.e., a light black hole or a heavy
neutron star) is not settled. In addition, high precision mass and radius measurements for the pulsar
PSR J0030+0451 are offered by the Neutron star Interior Composition ExploreR (NICER) space mission
with mass–radius values 1.44+0.15

−0.14M�, 13.02+1.24
−1.06 km [33] and 1.34+0.15

−0.16M�, 12.71+1.14
−1.19 km [34].

The composition of matter at about several times the nuclear saturation density is not known.
One possibility is that matter is nucleonic (with a small admixture of leptons to guarantee the charge
neutrality) up to the center of a star. However, in massive compact stars, the densities can reach
values exceeding the saturation density by an order of magnitude. Therefore, the appearance of new
degrees of freedom is a possibility. One option is the nucleation of hyperons, which softens the EoS
and results (for some models) in a maximum mass of a compact star below the value observational
minimum 2M�. There are several modern covariant density functional (CDF)-based models which
avoid this problem and provide sufficient repulsion to produce stars with large enough masses
M > 2M�. A particular class of these models, which we will use in this work, is based on density
functionals with density-dependent (DD) couplings [35–39]. The interactions in these models are
mediated via the exchange of σ, ω, ρ-mesons, and in the hypernuclear sector also via two additional
(hidden strangeness) σ∗ and φ-mesons.

An interesting possibility is an appearance of ∆-resonances in compact stars, which has regained
attention in recent years [40–42], after they have been neglected for a long time due to presumed high
onset density of the order of 10 times the nuclear saturation density [43]. The strong interactions,
in this case, are mediated by the exchange of σ, ω and ρ-mesons only. The inclusion of ∆-resonances in
the EoS shifts the onset of hyperons to higher densities. Consequently, the high-density part of the EoS
is stiffer and the maximum mass is higher when ∆-resonances are included. They also significantly
reduce the radius of the star [44–46] due to the softening of the EoS at intermediate densities.
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In this work, we consider ∆-resonance admixed hypernuclear matter in strong magnetic fields
within the DDME2 parameterization, which has been used already for the same problem in the case of
zero magnetic fields in Refs. [44–47].

The paper is organized as follows. In Section 2, we briefly discuss the CDF formalism in the
presence of strong magnetic fields. Our results are shown in Section 3 and our conclusions are collected
in Section 4.

2. Formalism

2.1. Model

In this work, we consider matter composed of the full baryon octet, the quartet of ∆-resonances
and leptons—electrons and muons (e−, µ−). The strong interaction between (non-strange) baryons
is mediated by the σ, ω and ρ-mesons. In addition, the hidden-strangeness mesons σ∗ (scalar) and
φ (vector) mediate the hyperon–hyperon interactions. The total Lagrangian density of the fermionic
component of matter in presence of a magnetic field is given by,

L = Lm + L f , (1)

where, Lm and L f are the matter and the gauge field contributions, respectively.
We take the matter part of the Lagrangian density as [42,48],

Lm =∑
b

ψ̄b(iγµDµ −mb + gσbσ + gσ∗bσ∗ − gωbγµωµ − gφbγµφµ − gρbγµτb · ρµ)ψb

+ ∑
d

ψ̄dν(iγµDµ −md + gσdσ− gωdγµωµ − gρdγµτ∆ · ρµ)ψν
d

+
1
2
(∂µσ∂µσ−m2

σσ2) +
1
2
(∂µσ∗∂µσ∗ −m2

σ∗σ
∗2)− 1

4
ωµνωµν +

1
2

m2
ωωµωµ

− 1
4

φµνφµν +
1
2

m2
φφµφµ − 1

4
ρµν · ρµν +

1
2

m2
ρρµ · ρµ

+ ∑
l

ψ̄l(iγµDµ −ml)ψl

(2)

where Dµ = ∂µ + ieQAµ is the covariant derivative, Aµ is the electromagnetic vector potential, eQ is
the charge of the particle (e being unit ‘+’ charge), the b-summation in the first line is over the nucleons
and hyperons (spin-1/2), d-summation in the second line is over the ∆-resonances (spin-3/2) and the l
summation in the last line is over leptons. The fields ψb, ψl and ψν

d correspond to the Dirac baryons,
leptons and the Rarita–Schwinger fields for ∆-resonances. Their masses are, respectively, mb, ml and
md. The third and fourth lines in Equation (2) contain the contributions from scalar meson fields σ

and σ∗ with masses mσ and mσ∗ , isoscalar-vector meson fields ωµ and φµ with masses mω and mφ

and, finally, the isovector-vector meson field ρµ with mass mρ. The coupling between the mesons
and baryons is described by the density-dependent couplings gib and gid, whereby τi stands for the
iso-spin operator. Finally, the purely “gauge” mesonic contributions in Equation (2) contain the tensors

ωµν = ∂µων − ∂µων,

φµν = ∂νφµ − ∂µφν,

ρµν = ∂νρµ − ∂µρν.

(3)

The electro-magnetic field Lagrangian density in Equation (1) has the standard form

L f = −
1

16π
FµνFµν (4)
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with Fµν being the electro-magnetic field tensor. Below, we adopt the reference frame in which the
four-vector potential has the form Aµ ≡ (0,−yB, 0, 0), where B is the magnitude of the magnetic field.

In the mean-field approximation, assuming that the system is infinite, the meson fields acquire
the ground-state expectation values,

σ = ∑
b

1
m2

σ
gσbns

b + ∑
d

1
m2

σ
gσdns

d, σ∗ = ∑
b

1
m2

σ∗
gσ∗bns

b (isoscalar-scalar), (5)

ω0 = ∑
b

1
m2

ω
gωbnb + ∑

d

1
m2

ω
gωdnd, φ0 = ∑

b

1
m2

φ

gφbnb (isoscalar-vector), (6)

ρ03 = ∑
b

1
m2

ρ
gρbτb3nb + ∑

d

1
m2

ρ
gρdτd3nd (isovector-vector), (7)

where the scalar and baryon (vector) number densities are defined for the baryon octet as ns
b = 〈ψ̄bψb〉

and nb = 〈ψ̄bγ0ψb〉, respectively. For the ∆-resonances, these are defined as ns
d = 〈ψ̄dνψν

d〉 and
nd = 〈ψ̄dνγ0ψν

d〉, respectively. The effective (Dirac) baryon masses in the same approximation are
given by,

m∗b = mb − gσbσ− gσ∗bσ∗, m∗d = md − gσdσ (8)

The scalar density, baryon number density and the kinetic energy density of the uncharged baryon
(denoted by index u) at zero temperature are given by,

ns
u =

2Ju + 1
2π2 m∗u

[
pFu EFu −m∗

2

u ln
(

pFu + EFu

m∗u

)]
, (9)

nu = (2Ju + 1)
p3

Fu

6π2 , (10)

εu =
2Ju + 1

2π2

[
pFu E3

Fu
− m∗

2
u

8

(
pFu EFu + m∗

2

u ln
(

pFu + EFu

m∗u

))]
, (11)

respectively, where, Ju, pFu , m∗u, EFu are the spin, Fermi momentum, effective mass and Fermi energy
of the uth-uncharged baryon.

The same quantities for a charged baryon (denoted by index c) are given by the following
expressions:

• Spin-1/2 case:

ns
c =

e|Q|B
2π2 m∗c

νmax

∑
ν=0

(2− δν,0) ln

 pFc + EFc√
m∗2

c + 2νe|Q|B

 , (12)

nc =
e|Q|B
2π2

νmax

∑
ν=0

(2− δν,0)pFc , (13)

εc =
e|Q|B
2π2

νmax

∑
ν=0

(2− δν,0)

pFc EFc +
(

m∗
2

c + 2νe|Q|B
)

ln

 pFc + EFc√
m∗2

c + 2νe|Q|B

 , (14)
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• Spin-3/2 case:

ns
c =

e|Q|B
2π2 m∗c

νmax

∑
ν=0

(4− δν,1 − 2δν,0) ln

 pFc + EFc√
m∗2

c + 2νe|Q|B

 , (15)

nc =
e|Q|B
2π2

νmax

∑
ν=0

(4− δν,1 − 2δν,0)pFc , (16)

εc =
e|Q|B
2π2

νmax

∑
ν=0

(4− δν,1 − 2δν,0)

pFc EFc +
(

m∗
2

c + 2νe|Q|B
)

ln

 pFc + EFc√
m∗2

c + 2νe|Q|B

 , (17)

where, pFc , m∗c , EFc are the Fermi momentum of the νth-Landau level, effective mass and Fermi energy
of the cth-charged baryon. The Landau levels for spin-1/2, 3/2 baryons are denoted by ν, the maximum
value of which is defined by,

νmax = Int
(

pFc

2e|Q|B

)
. (18)

In the case of spin-1/2 particles, the lowest Landau level has degeneracy equal unity and all other
levels have degeneracy equal 2 [49]. In the case of spin-3/2 particles, the degeneracy of the lowest
(first) level is 2, for the second level it is 3 and is 4 in the remaining Landau levels [50].

For the case of leptons (l ≡ e−, µ−), the number density and contribution to the kinetic energy
density is given by,

nl =
e|Q|B
2π2

νmax

∑
ν=0

(2− δν,0)pFl , (19)

ε l =
e|Q|B
2π2

νmax

∑
ν=0

(2− δν,0)

pFl EFl +
(

m2
l + 2νe|Q|B

)
ln

 pFl + EFl√
m2

l + 2νe|Q|B

 , (20)

where, pFl , ml , EFl are the Fermi momentum of the νth-Landau level, bare mass and Fermi energy of
the lepton, respectively.

In Equations (9)–(17), the Fermi momenta pFu and pFc are defined as,

pFu =
√

E2
F −m∗2 , pFc =

√
E2

F − (m∗2 + 2νe|Q|B), (21)

with EF being the Fermi energy of the respective particle. The total energy density of the matter is thus
given by,

εm = ∑
b

εb + ∑
d

εd +
1
2

m2
σσ2 +

1
2

m2
σ∗σ
∗2 +

1
2

m2
ωω2

0 +
1
2

m2
φφ2

0 +
1
2

m2
ρρ2

03 + ∑
l

ε l (22)

where the sum over b, d includes the baryon octet and the ∆-quartet, and the l-summation is over the
leptons. The matter pressure can be evaluated from the thermodynamic (Gibbs–Duhem) relation as,

pm = ∑
b

µbnb + ∑
d

µdnd + ∑
l

µlnl − εm, (23)

where µb(d) = ∂εm/∂nb(d) is the chemical potential of the bth-spin-1/2 (dth-spin-3/2) baryon which
can be defined as,

µb =
√

p2
Fb
+ m∗2b + gωbω0 + gφbφ0 + gρbτb3ρ03 + Σr,

µd =
√

p2
Fd
+ m∗2d + gωdω0 + gρdτd3ρ03 + Σr

(24)
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In order to maintain thermodynamic consistency a self-energy re-arrangement term,
Σr is introduced

Σr = ∑
b

[
∂gωb
∂n

ω0nb −
∂gσb
∂n

σns
b +

∂gρb

∂n
ρ03τb3nb −

∂gσ∗b
∂n

σ∗ns
b +

∂gφb

∂n
φ0nb

]
+ ∑

d

[
∂gωd

∂n
ω0nd −

∂gσd
∂n

σns
d +

∂gρd

∂n
ρ03τd3nd

] (25)

where n = ∑b nb + ∑d nd is the total baryon (or vector) number density. This re-arrangement term
contributes explicitly only to the matter pressure. Equations (22) and (23) provide the EoS (the relation
between the pressure and energy density) of the system under consideration in a parametric form.

2.2. Meson–Baryon Coupling Parameters

In this work, we adopt the DD-ME2 parameterization proposed in Ref. [51] for nucleonic matter.
The density-dependent meson–nucleon coupling constants are given by,

giN(n) = giN(n0) fi(x) for i = σ, ω, (26)

where x = n/n0, n0 is the saturation density, N stands for a nucleon and

fi(x) = ai
1 + bi(x + di)

2

1 + ci(x + di)2 . (27)

For the ρ-meson, the density-dependent coupling constant is given by

gρN(n) = gρN(n0)e−aρ(x−1). (28)

The details of the procedure for fixing the values of coefficients in Equations (27) and (28) can be
found in Ref. [51]. Table 1 provides the parameter values employed in this work. Note that nucleons
do not couple with the σ∗ and φ-mesons, i.e., gσ∗N = gφN = 0.

Table 1. The coupling constants for the DD-ME2 parameterization [51], at nuclear saturation
density n0 = 0.152 fm−3. For this model, the nuclear parameters are: the compression modulus
K0 = 250.89 MeV, the binding energy per nucleon E/A = −16.14 MeV, the symmetry energy
asym = 32.3 MeV, the effective nucleon Dirac mass m∗N/mN = 0.572 with mN = 938.9 MeV.

Meson (i) mi (MeV) giN(n0) ai bi ci di

σ 550.1238 10.5396 1.3881 1.0943 1.7057 0.4421
ω 783 13.0189 1.3892 0.9240 1.4620 0.4775
ρ 763 7.3672 0.5647

For the hyperonic sector, the density-dependent vector coupling constants are determined from
SU(6) symmetry [52]

1
2

gωΛ =
1
2

gωΣ = gωΞ =
1
3

gωN ,

2gφΛ = 2gφΣ = gφΞ = −2
√

2
3

gωN ,

1
2

gρΣ = gρΞ = gρN , gρΛ = 0.

(29)

For the evaluation of hyperon–σ-meson coupling constants, we consider the optical potentials
of the Λ, Σ and Ξ hyperons in nuclear matter to be, U(N)

Λ (n0) = −30 MeV, U(N)
Σ (n0) = +30 MeV and

U(N)
Ξ (n0) = −14 MeV. Due to the repulsive nature of the Σ-potential in nuclear matter, Σ-hyperons
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do not matter for the densities considered in this work. The σ∗–Λ coupling constant is evaluated by
fitting it to a potential depth U(Λ)

Λ (n0/5) = −0.67 MeV and further constraining the σ∗–Ξ and σ∗–Σ
couplings via the relation [53]

gσ∗Y
gφY

=
gσ∗Λ

gφΛ
, Y ∈ {Ξ, Σ}. (30)

Table 2 provides the numerical values for the density-dependent scalar couplings. The coupling
constants for the ∆-resonances are taken as [47]

gωd = 1.1gωN , gρd = gρN . (31)

The density-dependent gσd scalar coupling is determined by fixing the ∆-potential to the value
V∆ = 4

3 VN , where VN is the isoscalar nucleon potential. This implies that gσd/gσN = 1.16. Note that
∆-resonances do not couple to σ∗ and φ-mesons, i.e., gσ∗d = gφd = 0.

Table 2. Scalar meson–hyperon coupling constants.

Λ Ξ Σ

gσY/gσN 0.6105 0.3024 0.4426
gσ∗Y/gσN 0.4777 0.9554 0.4777

2.3. Magnetic Field Profiles

To model the magnetic field profile in the neutron star interior, we adopted two types of profiles
which give the dependence of the field on the position inside the star.

The exponential profile is given by [9]

B
(

nb
n0

)
= Bs + Bc

{
1− exp

[
−β

(
nb
n0

)γ]}
, (32)

where Bs and Bc denote the magnetic fields at surface and at center of the star, respectively. The free
parameters β and γ are commonly adjusted such as to have a fixed surface magnetic field of 1015 G for
any given value of the field in the center, which is typically larger than the surface field.

The universal profile is given as [20]

B(x) = Bc

(
1− 1.6x2 − x4 + 4.2x6 − 2.4x8

)
, (33)

where x = r/rmean, r is the internal radius joining the center to the point of observation, rmean is the
mean radius of the star and Bc is the value of the field at the center of the star.

3. Results

We turn now to the numerical results of our study and consider the effect of strong magnetic field
on high-density stellar matter with three types of composition:

(1) Nucleons (N),
(2) nucleons and hyperons (NY),
(3) nucleons, hyperons and ∆-resonances (NY∆).

Figure 1 shows the EoS and mass–radius (hereafter M–R) relations for these three compositions of
matter in the case B = 0 along with some astrophysical constraints on the masses and radii of compact
stars. Table 3 lists some parameters of the stars with maximum masses along the stellar sequences for
the three compositions listed above.

Let us now turn to stellar configurations with magnetic field. In order to show the effect of the
field in the case of the universal profile, we need a relation between the internal radius and the density,
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i.e., the function r(n). This requires us to specify a stellar model. We, therefore, chose three stars from
the stable region of M–R curve with parameters shown in Table 4. After fixing the value of the central
field Bc = 2.9× 1018 G, we are then able to use Equation (33). We note that the predicted surface
magnetic field values are Bs ≈ 5.6× 1017 G.

In the case of exponential profile (32), the surface field is fixed at Bs = 1015 G and we adopt
the parameter values β = 0.01 and γ = 3.95, 3.15 and 3.2 for N, NY and NY∆ matter, respectively.
The resulting magnetic field profiles guarantee that the matter remains stable under the influence of
strong B-field.
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Figure 1. Left panel: Equation of state (EoS) of matter in the absence of magnetic field for three
compositions considered. Solid, dashed, dash-dotted lines correspond to the cases of nucleons only (N),
nucleons and hyperons (NY), nucleons, hyperons and Delta (NY∆), respectively. The circles indicate
the location of the maximum mass star for each composition. Right panel: the mass–radius (M–R)
relations corresponding to the EoS on the left panel obtain through solutions of the TOV equations.
The mass constraints from the various astrophysical observations are represented by the colored bands
and correspond to the GW190814 event [32], MSP J0740+6620 [31] and the mass–radius limits inferred
for PSR J0030+0451 from the Neutron star Interior Composition ExploreR (NICER) experiment [33,34].

Table 3. Parameter values of the maximum-mass stars for non-magnetic stellar sequences derived
for three different compositions. Here, Mmax, R, εc denote the maximum mass (in solar units),
corresponding radius (in km) and central energy density (in MeV/fm3), respectively.

Composition Mmax (M�) R (km) εc (MeV/fm3)

N 2.483 11.941 1035.558
NY 2.008 11.606 1119.700

NY∆ 2.034 11.365 1161.771

Table 4. The values of the energy–density, pressure and number density at the center of non-magnetized
stellar models which were used to obtain the universal relation (33) as a function of density (instead of
the internal radius). We also list the mass and the radius for each model.

Composition M (M�) R (km) εc (MeV/fm3) pc (MeV/fm3) nc (fm−3)

N 2.482 12.002 1000 467.44 0.788
NY 2.000 11.801 1000 266.94 0.846

NY∆ 2.034 11.376 1150 333.38 0.944
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Figure 2 shows the variationof the magnetic field in the interior of the star as a function of internal
radius and density in the cases of exponential and universal relations.
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Figure 2. Magnetic field profiles for the NY∆ composition as a function of baryon number density,
n (left panel) and internal radius r (right panel). Black solid, red dash-dotted lines denotes exponential
and universal profiles, respectively.

Figures 3 and 4 show the EoS in the presence of magnetic field for various compositions. In all the
cases studied, it is seen that the EoSs follow the same trends with and without magnetic field. For the
assumed values of the field, the changes in the EoS are marginal if viewed on the P(ε) plots shown on
the left panels of Figures 3 and 4.

200

400

600

800 without magnetic field

with magnetic field

0.996

1

1.004

100

200

300

400

500

(b) NY

0.995

1

1.005

P
(B

)/
P

(0
)

0 500 1000 1500

ε (MeV/fm
3
)

0

100

200

300

400

500

P
 (

M
eV

/f
m

3
)

(c) NY∆

0 1 2 3 4 5 6 7

n/n
0

0.995

1

1.005

(a) N

Figure 3. A comparison of the EoS of magnetized and non-magnetized matter for three different
compositions (a) nucleons only (N), (b) nucleons and hyperons (NY) and (c) nucleons, hyperons and
∆-resonances. We assume an exponential magnetic field profile. Left panels show the dependence
of pressure on energy density with (solid lines) and without (dots) magnetic field. The right panels
the ratio of pressure in the presence of magnetic field P(B) to that in the absence of the field P(0) as
a function of particle number density normalized to the nuclear saturation density.
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Figure 4. Same as in Figure 3, but for the universal magnetic field profile.

The right panels of the same figures show the ratio of the pressure in presence of magnetic field
to the pressure in the absence of the field. The oscillations in the pressure are associated with the
occupation of the Landau levels in the strong field. It is seen that these oscillations are stronger at the
surface of the star for the universal profile, because the field does not decay in this case as quickly as
for the exponential profile. In the high density regime, the oscillations are comparable for both the
profiles. This behavior is a consequence of the fact that close to the centre of the star, both profiles have
similar values of the magnetic field (see Figure 2).

As a result of the additional pressure due to the magnetic field, the EoS is stiffened and,
consequently, the maximum masses of magnetized compact stars are higher compared to their
non-magnetized counterparts. This can be seen from Figure 5, where the corresponding M–R relations
are displayed. More quantitatively, we find that for the N-composition the increase in maximum
mass due to the effect of the magnetic field is about 0.13%, in the case of NY-composition 0.20% for
the exponential profile and 0.244% for the universal profile and, finally, for the NY∆-composition,
about 0.01% for the exponential profile and 0.034% for the universal profile. We note that in the
case of NY-composition the EoS is softer at high densities, than in the case of NY∆-composition.
Therefore, the effect of the magnetic field is more sizable in the case of the softer EoS, i.e., for the
NY-composition. Thus, we conclude that the changes in the maximum mass are more pronounced in
the case of NY-composition and are less significant for the NY∆-composition.
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Figure 5. The M–R relations for three compositions considered: (a) nucleons only (N), (b) nucleons
and hyperons (NY) and (c) nucleons, hyperons and ∆-resonances in the cases of with (solid lines) and
without (dots) magnetic field. The left panels correspond to the exponential magnetic field profile and
the right panels to universal magnetic field profile.

Figure 6 shows the ratio of fractions of different species δYi = ni(B)/ni(0) as a function of
normalized baryon number density. The oscillating nature of the fractions arises due to successive
occupation of Landau levels for the charged species. The effect of the field is not substantial in the
low-density regime for exponential field profile as the field strength in this case is small near the
surface. In the case of the universal profile, the low-density regime shows strong fluctuations because
the decay of the magnetic field with density is small and the surface magnetic field is of the order
few times of 1017 G (see Figure 2). It is interesting to note that for most of the particles δYi > 1, but in
the case of ∆−, the opposite is the case. This is a consequence of the charge neutrality. Due to the
Landau quantization the fraction of electrons increases compared to non-magnetic case which causes
the ∆− fraction to decrease. The pattern in Figure 6 results from the complicated interplay between the
Landau quantization for charge particles entering into the two key conditions imposed—the charge
neutrality and baryon number conservation, which are used in the construction of the EoS. Note also
that ∆+ and ∆++ resonances do not appear until baryon density of n ≥ 6.1n0 for our particular choice
of ∆-potential.

In Figure 7 we show the quantity Yb
i , which is defined as the ratio of the partial fractions of strange

or non-strange baryons in presence of a magnetic field to that without a magnetic field. The fraction
of strange baryons is affected significantly (∼4%) by the magnetic field, whereas the fraction of the
non-strange baryons is affected much less. We see that in the presence of magnetic field strange
baryons appear earlier than in the non-magnetic case. This is, again, a consequence of complex
interplay between the imposed charge neutrality condition and modifications of the phase-space
occulation due to the Landau quantization.

Finally, to quantify the variations of the effective mass of a baryon in the presence of magnetic
field, we show in Figure 8 the ratio of effective nucleon Dirac mass (m∗N) in the magnetic field to its
value in the absence of the field Xm∗n = m∗N(B)/m∗N(0). It is seen that, for the exponential profile
case, m∗N remains unchanged until the appearance of ∆− around 1.3 times nuclear saturation density.
A similar trend is observed for the universal profile case, but the amplitudes of the oscillations are
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larger. This is (again) due to the fact that the magnetic field value at the surface of the star is larger for
this profile. With the onset of Ξ−, we observe a reduction in Xm∗n by about 4% in the density range
∼4–5 times saturation density for both the profiles.
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Figure 6. Dependence of the ratio δYi = ni(B)/ni(0) on the baryon number density normalized to the
nuclear saturation density n0 for neutrons (n), protons (p), Λ0, Ξ0, Ξ−, ∆0, ∆−, e− and µ−. The particle
markers are indicated in the panel on the right. The upper panel corresponds to the exponential field
profile, the lower one to the universal field profile.
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the universal field profile.
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universal by a dash-dotted line.

4. Conclusions and Outlook

Recent years have seen substantial progress in describing compact stars with heavy baryons
(hyperons as well as ∆-resonances) in a manner consistent with all the currently available astrophysical
as well as laboratory data. Motivated by this, we have extended, for the first time, one of the standard
approaches which is based on CDF theory with density-dependent couplings to the case of strongly
magnetized matter. In doing so, we have taken into account fully the Landau quantization of orbits of
charged particles in strong fields. We confirm previous findings that magnetic fields make EoS stiffer
and lead to higher maximum masses of compact stars. To quantify these effects we employed two
parameterizations of the magnetic field profiles, namely the exponential [8] and the universal [20]
profiles for a fixed value of the central magnetic field Bc = 2.9× 1018 G. The universal profile implies
a relatively high surface magnetic field of∼5.6× 1017 G and flat magnetic field profile. The exponential
profile, by construction, is adjusted to produce a surface magnetic field value 1015 G. In this case,
the profile is steep with the magnetic field changing by orders of magnitude. Having the profiles
at hand, we have explored the changes in the composition of matter and the effective mass of the
nucleon. We find typical for magnetized system oscillations in these quantities which are similar to
the de Haas-van Alphen oscillations of observables (e.g., the magnetic susceptibility of electronic
systems) in magnetic fields. The oscillations have their origin in the occupation of the Landau levels
by particles. As a result that the charged and neutral baryons are coupled by the baryon number and
charge conservation, the oscillations are coupled as well and affect the fractions of neutral particles
(neutrons, Λs and ∆0s). The oscillations of the particle fractions are substantially different for the two
profiles studied if they are compared for the same value of the central magnetic field. In the case of
the universal profile, these oscillations extend up to the low-density regime because the field does
not change substantially. In the exponential profile case, the low-density regime has low magnetic
fields, therefore the amplitudes of oscillations are low. Comparing the oscillations in the strange and
non-strange sectors we observe that the hyperon fractions are more affected by the magnetic fields that
the non-strange baryon fractions within the density range considered. Furthermore, the Dirac nucleon
effective masses exhibit similar oscillations, which implies that a range of quantities (specific heat,
baryon mean-free-path, thermal conductivity, etc.) may show oscillations as well.

Our extension of the CDF-based EoS to the non-zero magnetic field can be used to study a range
of phenomena in and with magnetized compact stars in a framework that guarantees the consistency
of underlying compact objects with the currently available astrophysical and experimental data.
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