ChemBioChem

Supporting Information

Nonribosomal Peptides Produced by Minimal and Engineered Synthetases with Terminal Reductase Domains

Andreas Tietze, Yan-Ni Shi, Max Kronenwerth, and Helge B. Bode*

Strain	Genotype	Reference
E. coli BL21 DE3	F– ompT hsdSB(rB- mB-) gal dcm lon λ(DE3 [lacl	Invitrogen
	lacUV5-T7 gene 1 ind1 sam7 nin5])	
E. coli BL21 DE3 pET11a_xind01729	E. coli BL21star DE3 pET11a_xind01729	This work
pCK_mtaA	pCK_mtaA, Amp ^R , Cm ^R	
E. coli DH10B	F_mcrA (<i>mrr-hsd</i> RMS- <i>mcr</i> BC), 80/acZΔ, M15,	[1]
	Δ <i>lac</i> X74 recA1 endA1 araD 139 Δ(ara, leu)7697	
	galU galK λrpsL (Strr) nupG	
<i>E. coli</i> DH10B::mtaA	DH10B with mtaA from pCK_mtaA ∆entD	[2]
E. coli ST18		[3]
E. coli ST18 pCEP-Kan_xind01729	<i>E. coli</i> ST18 pCEP-Kan_ <i>xind01729,</i> Kan ^R	This work
S. cerevisiae CEN.PK 2-1C	MATa; his3D1; leu2-3_112; ura3-52; trp1-289;	Euroscarf
	MAL2-8c; SUC2	
P. luminescens TT01		DSMZ
Xenorhabdus sp. TS4		DSMZ
X. eapokensis DL20		DSMZ
X. budapestensis DSM 16342		DSMZ
X. indica DSM 17382		DSMZ
X. indica DSM 17382::pCEP-	X. indica DSM 17904::pCEP-Kan_xind01729, Kan ^R	This work
Kan_ <i>xind</i> 01729		
E. coli DH10B::mtaA pAT41_NRPS-1	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-1</i> , Kan ^R	This work
E. coli DH10B::mtaA pAT41_NRPS-2	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-2</i> , Kan ^R	This work
E. coli DH10B::mtaA pAT41_NRPS-3	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-3</i> , Kan ^R	This work
E. coli DH10B::mtaA pAT41_NRPS-4	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-4</i> , Kan ^R	This work
E. coli DH10B::mtaA pAT41_NRPS-5	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-5</i> , Kan ^R	This work
E. coli DH10B::mtaA pAT41_NRPS-6	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-6</i> , Kan ^R	This work
E. coli DH10B::mtaA pAT41_NRPS-7	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-7</i> , Kan ^R	This work
E. coli DH10B::mtaA pAT41_NRPS-8	<i>E. coli</i> DH10B::mtaA pAT41_ <i>NRPS-8</i> , Kan ^R	This work

Supplementary Table 1. Strains used and generated in this work.

Supplementary Table 2. Oligonucleotides used in this work.

Plasmid	Oligonucleotide	Sequence (5'->3')	Template
pCEPKan_xind01729	pCEP_fw_gib	ATGTGCATGCTCGAGCTC	pCEP-Kan
	pCEP_rv_gib	ATGCTAGCCTCCTGTTAGC	
	PF 7	TTTTGGGCTAACAGGAGGCTAGCATATGATAAATACCACCCCCTATAATTTCG	X. indica DSM 17382
	PF ⁸	ATCTGCAGAGCTCGAGCATGCACATCGTGGCCGTCATAATCAGAC	
pET11a_xind01729	pET11a_for_strep-tag	GTAGGATGGAGCCATCCACAGTTCGAGAAGTAAGGATCCGGCTGCTAAC	pET11a-modified
	pET11a rev	ATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTA	
	PF_15	TTAACTTTAAGAAGGAGATATACATATGATAAATACCACCCCCTATAATTTCG	<i>X. indica</i> DSM 17382
	PF_16	CGAACTGTGGATGGCTCCATCCTACTGATAAAAAACCTATTTTTTTCCAGTAAGTA	
pAT41_ <i>NRPS-1</i>	AT_293	GATACCTATCTGAATAGTGATAAAAAATCAAATAATG	pAT41_ <i>NRPS-2</i>
	AT_470	TCAGATTTCGTGATGTTCGTC	
	AT 471	ACGAACATCACGAAATCTGACGCTCAAATCAGTGGTGGC	pAT41 <i>NRPS-4</i>
	AT_483	TCACTATTCAGATAGGTATCCAATGTTTGGGCCAACTCCG	
pAT41 NRPS-2	pAT41 bb+Ypet fw	GGATCCGCTGGCTCC	pAT41 NRPS-4
	AT 451	GATTTTCTCGGTAAATGTCGCC	
	AT_454	ATTGGCGACATTTACCGAGAAAATCCAACAAAAACAAGAACGAGCTCACTG	X. indica DSM 17382
	AT [_] 455	AACCAGCAGCGGAGCCAGCGGATCCCTATGATAAAAAACCTATTTTTTTCCAGTAAGTA	
pAT41 NRPS-3	AT 293	GATACCTATCTGAATAGTGATAAAAAATCAAATAATG	pAT41 NRPS-4
	AT_470	TCAGATTTCGTGATGTTCGTC	
	AT_471	ACGAACATCACGAAATCTGACGCTCAAATCAGTGGTGGC	pAT41 <i>NRPS-4</i>
	AT_483	CGGTGATGTTCTGTCTGGTCTACACTCAGAGTCTGGGCGACAAA	
pAT41 NRPS-4	pAT41 bb+YPet fw	GGATCCGCTGGCTCC	pAT41
	pAT41 bb rv	GGAATTCCTCCTGTTAGCCC	
	AL_GxpS-2-1	ACTGTTTCTCCATACCCGTTTTTTTGGGCTAACAGGAGGAATTCCATGAAAGATAGCATGGCTAAAAAGG	P. luminescens TT01
	AT 328	TTTCATTATTTGATTTTTATCACTATTCAGATAGGTATCGATTTTCTCGGTAAATGTCGCC	
	AT_308	GATACCTATCTGAATAGTGATAAAAAATCAAATAATGAAATAAAAAAATAC	X. eapokensis DL20
	AT_289	TCATGAACTCGCCAGAACCAGCGGAGCCAGCGGATCCCTTACTTTCAGGTTTATATGACGGTATGCTTG	
pAT41 NRPS-5	pAT41 bb+Ypet fw	GGATCCGCTGGCTCC	pAT41 NRPS-4
	AT 458	CGCGACATAAATTTGGCGAG	
	AT_460	TTTTGCTCGCCAAATTTATGTCGCGGTTCTGACTTCAACCGAACAAACA	X. eapokensis DL20
	AT_459	(AACCAGCAGCGGAGCCAGCGGATCCTTACTTACTTTCAGGTTTATATGACGGTATGC	
pAT41_NRPS-6	pAT41_bb+Ypet_fw	GGATCCGCTGGCTCC	pAT41_ <i>NRPS-4</i>
	AT_451	GATTTTCTCGGTAAATGTCGCC	
	AT 452	ATTGGCGACATTTACCGAGAAAATCGAAATTTATCGGCGCGAAGG	X. TS4
	AT_453	AACCAGCAGCGGAGCCAGCGGATCCTTATTTCTGTTCCTGTGTCTGGTGTTG	
pAT41 NRPS-7	pAT41 bb+Ypet fw	GGATCCGCTGGCTCC	pAT41 <i>NRPS-4</i>
—	AT_451	GATTTTCTCGGTAAATGTCGCC	—
	AT_456	ATTGGCGACATTTACCGAGAAAATCGAACAGCAAAGTGACGAATCGTG	S. lugdunensis
	AT_457	AACCAGCAGCGGAGCCAGCGGATCCTCATCTATGGTATTCTTTACATTCAAATTTTTCATTG	-
pAT41_NRPS-8	pAT41_bb+YPet_fw	GGATCCGCTGGCTCC	pAT41_ <i>NRPS-4</i>

pAT41_bb_rv	GGAATTCCTCCTGTTAGCCC	
JK-P1	CGGATCCTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAACAGGAGG	pFF1 <i>NRPS 5</i> *
	AATTCCATGAAAGATAACATTGCTACAGTGG	
AT_328	TTTCATTATTTGATTTTTTATCACTATTCAGATAGGTATCGATTTTCTCGGTAAATGTCGCC	
AT 308	GATACCTATCTGAATAGTGATAAAAAAATCAAATAATGAAATAAAAAAATAC	X. eapokensis DL20
AT_289	TCATGAACTCGCCAGAACCAGCAGCGGAGCCAGCGGATCCCTTACTTTCAGGTTTATATGACGGTATGCTTG	-

Supplementary Table 3. Plasmids used and generated in this work. pFF1_*NRPS_5* from (^[4]) is indicated with an * to avoid confusion with NRPSs constructed in this work.

Plasmid	Genotype	Reference
pAT41	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	[4]
	Flag, Kan ^R , MCS	
pCK_mtaA	Cm ^R , ori p15A, <i>mtaA</i>	[5]
pET11a-modified	pBR322 ori, P_{T7} promoter, Amp ^R , lacl, His ₆ -smt3	[6]
	tag	
pET11a_xind01729	pBR322 ori, P _{T7} promoter, Amp ^R , lacl, <i>xind01729</i> ,	This work
	strep tag	
pFF1	2µ ori, kanMX4, P _{BAD} promoter, pCOLA ori, Ypet-	[7]
	Flag, Kan ^R , MCS	
pFF1_ <i>NRPS_5</i> *	2µ ori, kanMX4, P _{BAD} promoter, pCOLA ori, Ypet-	[4]
	Flag, Kan ^R , <i>bicA</i> -A1T1C2_ <i>gxpS</i> -	
	A2T2C3A3T3C4A4T4CDsub5_bicA-	
	C _{Asub} 5A5T5C _{term}	
pCEP-Kan	R6Kγ ori, oriT, Kan ^R , araC, P _{BAD} promoter	[8]
pCEP-Kan_xind01729	R6Kγ ori, oriT, Kan ^R , araC, P _{BAD} promoter,	This work
	<i>xind01729</i> (bp 1-700)	
pAT41_NRPS-1	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>gxp</i> S_A1T2- <i>xind01</i> 729_R	
pAT41_NRPS-2	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>gxp</i> S_A1T2CE2A2T2- <i>xind0172</i> 9_R	
pAT41_NRPS-3	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>gxpS</i> _A1T2- <i>xtvB</i> _R	
pAT41_ <i>NRPS-4</i>	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>gxpS</i> _A1T2CE2A2T2- <i>xtvB</i> _R	
pAT41_ <i>NRPS-5</i>	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>gxpS</i> _A1T2CE2A2- <i>xtvB</i> _T2R	
pAT41_NRPS-6	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>gxpS</i> _A1T2CE2A2T2- <i>sacC</i> _R	
pAT41_NRPS-7	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>gxp</i> S_A1T2CE2A2T2- <i>ausA</i> _R	
pAT41_NRPS-8	2µ ori, URA3, P _{BAD} promoter, pCOLA ori, Ypet-	This work
	Flag, Kan ^R , <i>bicA</i> _A1T2CE2- <i>gxpS</i> _A2T2- <i>xtvB</i> _R	

xind01715	xind01722	xind01725	xind01729	xind01	131 xind ⁰	v1 ³⁴	xind01741 xind01742
5,000	10,000	15,000	20,000	25,000	30,000	35,000	40,000
	e biosynthetic ge	enes	othe	er genes		regulatory	genes
additional biosynthetic genes							
xind01715	condensin subunit E			xind01729	ATRed		
xind01716	condensin subunit F			xind01730	L-asparaginase		
xind01717	methyltransferase			xind01731	ribosomal protein	S12 methylthiotransfe	rase accessory factor
xind01718	membrane protein			xind01732	formate transport	er	
xind01719	3-deoxy-D-manno-oct	ulosonate cytidylylt	ransferase	xind01733	formate acetyltra	nsferase 3	
xind01720	01720 hypothetical protein		xind01734	pyruvate formate	-lyase 1-activating enzy	/me	
xind01721	1721 tetraacyldisaccharide 4'-kinase		xind01735	hypothetical prote	ein		
xind01722	d01722 lipid A ABC transporter ATP-binding protein/permease		xind01736	membrane protei	n		
xind01723	01723 ComEC family protein		xind01737	serine-tRNA liga	se		
xind01724	1724 DNA-binding protein HU		xind01738	Holliday junction	DNA helicase		
xind01725	30S ribosomal protein	S1		xind01739	outer membrane	lipoprotein carrier prote	ein
xind01726	cytidylate kinase			xind01740	cell division prote	in FtsK	
xind01727	3-phosphoshikimate 1-	carboxyvinyltransfe	erase	xind01741	AsnC family trans	scriptional regulator	
xind01728	phosphoserine aminot	ransferase		xind01742	thioredoxin reduc	tase	

Supplementary Figure 1. Genomic region of *X. indica* DSM 17382 containing the ATRed encoding gene *xind01729*. The gene annotations and details are according to antiSMASH 5.1.2.^[9]

Supplementary Figure 2. HR-HPLC-MS data of **1a**, **1b** and **1c** produced by *X. indica* WT and promoter exchange mutant of *xind01729*. **(A)** Stacked BPC of production from *X. indica* WT (green) and promoter exchange mutant of *xind01729* (grey, non-induced; blue, induced). **(B)** Structure of **1a**, **1b** and **1c** and MS² fragments (red). **(C)** Stacked EIC (left) and MS² spectra (right) of **1a** (I, rt = 9.5 min, $m/z [M+H^+]^+ = 261.138$; calculated ion formula C₁₈H₁₇N₂; Appm 1.4), **1b** (II, rt = 9.1 min, $m/z [M+H^+]^+ = 300.149$; calculated ion formula C₂₀H₁₈N₃; Appm -0.3) and **1c** (III, rt = 7.9 min, $m/z [M+H^+]^+ = 277.130$; calculated ion formula C₁₈H₁₇N₂O; Appm 0.5)

Supplementary Figure 3. HR-HPLC-MS data of **1a**, **1b**, **1c** and **1d** produced by ATRed_{*xind01729*} after heterologous expression in *E. coli*. **(A)** SDS-PAGE analysis of protein extracts of non-induced (-) and induced (+) sample. The calculated molecular weights of the protein and the size of the marker proteins are indicated. **(B)** Stacked BPC of non-induced (grey) and induced (blue) production from ATRed_{*xind01729*}. **(C)** Stacked EIC (left) and MS² spectra (right) of **1a** (I, rt = 9.4 min, *m/z* $[M+H^+]^+$ = 261.138; calculated ion formula C₁₈H₁₇N₂; Δ ppm 1.0), **1b** (II, rt = 9.0 min, *m/z* $[M+H^+]^+$ = 300.149; calculated ion formula C₂₀H₁₈N₃; Δ ppm 1.3), **1c** (III, rt = 7.8 min, *m/z* $[M+H^+]^+$ = 277.133; calculated ion formula C₁₈H₁₇N₂O; Δ ppm 0.0) and **1d** (III, rt = 8.3 min, *m/z* $[M+H^+]^+$ = 277.133; calculated ion formula C₁₈H₁₇N₂O; Δ ppm 0.8). **(D)** Postulated structure of **1d** and MS² fragments (red).

Supplementary Figure 4. Structure of compound 1a.

no	1a			
	δ _C	$\delta_{\rm H}$ (mult., J)		
1, 1'	143.7	8.30 (s)		
2, 2'	153.7			
3, 3'	41.6	4.05 (s)		
4, 4'	138.4			
5, 5', 9, 9'	129.0	7.18 (m)		
6, 6', 8, 8'	128.8	7.22 (m)		
7, 7'	126.7	7.15 (m)		

Supplementary Table 4. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectroscopic data for compound **1a** in DMSO- d_6 (δ in ppm and J in Hz).

HMBC H→ C

Supplementary Figure 5. Key HMBC correlations of 1a.

Supplementary Figure 6. ¹H NMR spectrum of compound 1a.

Supplementary Figure 7. ¹³C NMR spectrum of compound 1a.

Supplementary Figure 8. COSY spectrum of compound 1a.

Supplementary Figure 9. HSQC spectrum of compound 1a.

Supplementary Figure 10. HMBC spectrum of compound 1a.

Supplementary Figure 11. Schematic overview of all NRPSs used in this work. ATRed_{xind01729} from *X. indica* (WP_047678938), GxpS from *P. laumondii* subsp. *laumondii* TT01^[10], XtvB from *X. eapokensis* DL20^[11], SacC from *Xenorhabdus* sp. TS4 (PRJNA328577), AusA from *S. lugdunensis* (WP_012990658) and BicA from *X. budapestensis*^[12]. Substrate specificities are assigned for all A domains with (1) as 3-hydroxy anthranilic acid, (2) as 3-hydroxy-5-methyl-O-methyltyrosine (3) as leucine, tyrosine, phenylalanine, 4-fluoro-phenylalanine, 4-chloro-phenylalanine, 3-chlorotyrosine and (S)-(+)-a-amino-cyclohexane propionic acid. See Fig. 1 and 2 for assignment of the domain symbols.

Supplementary Figure 12. SDS-PAGE analysis of engineered proteins. Culture extracts of *E. coli* cells with the respective plasmids after induction with (+) or without arabinose induction (-). The calculated molecular weights of the proteins and the size of the marker proteins are indicated. See Fig. 1 and 2 for assignment of the domain symbols. The colour identifies NRPSs used as building blocks (Supplementary Fig 9).

Supplementary Figure 13. HR-HPLC-MS data of **2a** and **2b** produced by NRPS-4 after heterologous expression in *E. coli* DH10B::*mtaA.* (**A**) Stacked BPC of non-induced (grey) and induced (blue) production from NRPS-4. (**B**) Structure of **2a** and **2b** and MS² fragments (red). (**C**) Stacked EIC (left) and MS² spectra (right) of **2a** (I, rt = 6.6 min, $m/z [M+H^+]^+ = 195.149$; calculated ion formula C₁₁H₁₉N₂O; Δ ppm 1.0) and **2b** (II, rt = 7.2 min, $m/z [M+H^+]^+ = 209.164$; calculated ion formula C₁₂H₂₁N₂O; Δ ppm 1.6).

Supplementary Figure 14. Structure of compound 2a.

no	2a			
110.	δ _c	$\delta_{\rm H}$ (mult., J)		
1	160.5			
2	156.2			
3	121.4	7.05 (s)		
4	138.4			
5	38.8	2.26 (d, 7.3)		
6	28.0	1.92 (m)		
7	22.4	1.11 (d, 6.9)		
8	22.4	1.11 (d, 6.9)		
1'	29.7	3.24 (m)		
2'	17.6	0.86 (d, 6.6)		
3'	17.6	0.86 (d, 6.6)		

Supplementary Table 5. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectroscopic data for compound **2a** in DMSO- d_6 (δ in ppm and J in Hz).

HMBC $H \rightarrow C$ COSY $H \rightarrow H$

Supplementary Figure 15. Key HMBC and COSY correlations of 2a.

Supplementary Figure 16. ¹H NMR spectrum of compound 2a.

Supplementary Figure 17. ¹³C NMR spectrum of compound 2a.

Supplementary Figure 18. HSQC spectrum of compound 2a.

Supplementary Figure 19. COSY spectrum of compound 2a.

Supplementary Figure 20. HMBC spectrum of compound 2a.

Supplementary Figure 21. Biosynthesis of **2a** by NRPS-4. Standard NRPS biochemistry attaches the nascent D-Val-L-Leu dipeptide on the T2 domain which is released by the R domain via an NAD(P)H-dependent 2-electron reduction of the thioester to produce **2c**. Intramolecular nucleophilic attack of the amino group onto the aldehyde generates a 6-membered Schiff base which oxidizes to yield **2a**. The relaxed substrate specificity of GxpS_A1 can also incorporate Leu beside Val leading to **2b**. See Fig. 1 and 2 for assignment of the domain symbols.The colour code at the bottom identifies NRPSs used as building blocks (Supplementary Fig 9).

Supplementary Figure 22. (A) HR-HPLC-MS data of **2a** and **2b** as well as derivatization product **2d** of intermediate **2c** produced by NRPS-4 after heterologous production with PFBHA in *E. coli* DH10B::*mtaA*. (I) blue, induced, without PFBHA, (II) grey, non-induced without PFBHA, (III) green, induced with PFBHA and (IV) black, non-induced with PFBHA. The BPC is indicated by continuous lines and the EIC (**2d**; $m/z [M+H]^+ = 410.186$; rt = 7.6 min; calculated ion formula C₁₈H₂₅F₅N₃O₂; Δ ppm -1.9) by dashed lines. The y-axes of the EICs are increased 25-fold compared to the BPCs. (**B**) Derivatisation of **2c** with PFBHA resulting in **2d**.

Supplementary Figure 23. Sequence logo and alignment of 86 NRPS T domains. Color code is due to their similarity (black, high similarity; white, low similarity). (1) ATRed_T1 from *X. indica*, (2) GxpS_T1 from *P. luminescens*, (3) GxpS_T2 from *P. luminescens*, (4) XtvB_T2 from *X. eapokensis*, (5) SacC_T3 from *Xenorhabdus* sp. TS4, (6) AusA_T2 from *S. lugdunensis*, (7) GxpS_T5 from pFF1_gxpS_C2_{int}^[7] and (8) SrfA-C from *B. subtilis*^[13]. All sequences are from *Xenorhabdus* and *Photorhabdus* except (6) and (8). The fusion point of T and R domains is indicated by a red line. The data were analyzed with Geneious 6.1.7.

Supplementary Figure 24. HR-HPLC-MS data of compound **2e** produced by NRPS-8 after heterologous expression in *E. coli* DH10B::*mtaA.* (**A**) Stacked BPC of noninduced (grey) and induced (blue) production from NRPS-8. (**B**) Structure of **2e** and MS² fragments (red). (**C**) Stacked EIC (left) and MS² spectra (right) of **2e** (I, blue, rt = 4.2 min, *m*/*z* [*M*+H⁺]⁺ = 252.181; calculated ion formula $C_{12}H_{22}N_5O$; Δppm 1.3) and chemically synthesized **2e** (II, green, rt = 4.2 min, *m*/*z* [*M*+H⁺]⁺ = 252.181; calculated ion formula $C_{12}H_{22}N_5O$; Δppm 1.3)

Supplementary Figure 25. Labeling experiments and HR-MS of compounds **2e** produced by NRPS-8 in *E. coli*. MS data of inverse labeling experiments in (I) LB media (blue), (II) ¹⁵N media (orange), (III) ¹⁵N media supplemented with ¹⁴C₄ Arg (IV) ¹³C media (purple) and (V) ¹³C media supplemented with ¹²C₆ Leu. The shifts due to incorporation of labelled precursors are indicated by arrows.

Supplementary Figure 26. Structure of compound 2e.

no	2e			
110.	$\delta_{\rm C}$, type	δ _H (mult., <i>J</i>)		
1	undetected			
2	156.2			
3	121.2	7.05 (s)		
4	138.4			
5	29.3	2.65 (t, 7.4)		
6	25.6	1.82 (m)		
7	40.8	3.16 (m)		
8		7.50 (s)		
9	157.0			
1'	38.8	2.28 (d, 7.2)		
2'	28.1	1.93 (m)		
3'	22.4	0.87 (d, 6.2)		
4'	22.4	0.87 (d, 6.2)		
-N <u>H</u> CO		12.1 (s)		

Supplementary Table 6. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectroscopic data for compound **2e** in DMSO- d_6 (δ in ppm and J in Hz).

Supplementary Figure 27. Key HMBC and COSY correlations of 2e.

Supplementary Figure 29. HSQC NMR spectrum of synthesized 2e.

Supplementary Figure 31. HMBC NMR spectrum of synthesized 2e.

References

- [1] D. Hanahan, J. Mol. Biol. **1983**, 166, 557–580.
- [2] O. Schimming, F. Fleischhacker, F. I. Nollmann, H. B. Bode, *ChemBioChem* 2014, *15*, 1290–1294.
- [3] S. Thoma, M. Schobert, *FEMS Microbiol. Lett.* **2009**, 294, 127–132.
- K. A. J. Bozhüyük, A. Linck, A. Tietze, J. Kranz, F. Wesche, S. Nowak, F.
 Fleischhacker, Y.-N. Shi, P. Grün, H. B. Bode, *Nat. Chem.* 2019, *11*, 653–661.
- [5] C. Kegler, F. I. Nollmann, T. Ahrendt, F. Fleischhacker, E. Bode, H. B. Bode, *ChemBioChem* 2014, 15, 826–828.
- [6] C. Hacker, X. Cai, C. Kegler, L. Zhao, A. K. Weickhmann, J. P. Wurm, H. B. Bode, J. Wöhnert, *Nat. Comm.* 2018, *9*, 4366.
- [7] K. A. J. Bozhüyük, F. Fleischhacker, A. Linck, F. Wesche, A. Tietze, C.-P. Niesert, H. B. Bode, *Nat. Chem.* 2018, 10, 275–281.
- [8] E. Bode, A. O. Brachmann, C. Kegler, R. Simsek, C. Dauth, Q. Zhou, M. Kaiser, P. Klemmt, H. B. Bode, *ChemBioChem* 2015, *16*, 1115–1119.
- [9] K. Blin, S. Shaw, K. Steinke, R. Villebro, N. Ziemert, S. Y. Lee, M. H. Medema, T. Weber, *Nucleic Acids Res.* 2019, 47, W81-W87.
- [10] H. B. Bode, D. Reimer, S. W. Fuchs, F. Kirchner, C. Dauth, C. Kegler, W. Lorenzen, A. O. Brachmann, P. Grün, *Chem. Eur. J.* 2012, *18*, 2342–2348.
- [11] H. Wolff, H. B. Bode, *PloS one* **2018**, *13*, e0194297.
- [12] S. W. Fuchs, C. C. Sachs, C. Kegler, F. I. Nollmann, M. Karas, H. B. Bode, *Anal. Chem.* **2012**, *84*, 6948–6955.
- [13] A. Tanovic, S. A. Samel, L.-O. Essen, M. A. Marahiel, *Science* 2008, 321, 659–663.