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Abstract
Anthropogenic climate change is expected to impact ecosystem structure, biodiver-
sity and ecosystem services in Africa profoundly. We used the adaptive Dynamic 
Global Vegetation Model (aDGVM), which was originally developed and tested for 
Africa, to quantify sources of uncertainties in simulated African potential natural veg-
etation towards the end of the 21st century. We forced the aDGVM with regionally 
downscaled high-resolution climate scenarios based on an ensemble of six general 
circulation models (GCMs) under two representative concentration pathways (RCPs 
4.5 and 8.5). Our study assessed the direct effects of climate change and elevated CO2 
on vegetation change and its plant-physiological drivers. Total increase in carbon in 
aboveground biomass in Africa until the end of the century was between 18% to 43% 
(RCP4.5) and 37% to 61% (RCP8.5) and was associated with woody encroachment 
into grasslands and increased woody cover in savannas. When direct effects of CO2 
on plants were omitted, woody encroachment was muted and carbon in aboveground 
vegetation changed between –8 to 11% (RCP 4.5) and –22 to –6% (RCP8.5). Simulated 
biome changes lacked consistent large-scale geographical patterns of change across 
scenarios. In Ethiopia and the Sahara/Sahel transition zone, the biome changes  
forecast by the aDGVM were consistent across GCMs and RCPs. Direct effects from 
elevated CO2 were associated with substantial increases in water use efficiency, pri-
marily driven by photosynthesis enhancement, which may relieve soil moisture limi-
tations to plant productivity. At the ecosystem level, interactions between fire and 
woody plant demography further promoted woody encroachment. We conclude that 
substantial future biome changes due to climate and CO2 changes are likely across 
Africa. Because of the large uncertainties in future projections, adaptation strategies 
must be highly flexible. Focused research on CO2 effects, and improved model repre-
sentations of these effects will be necessary to reduce these uncertainties.
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1  | INTRODUC TION

Climate change is expected to drive changes in ecosystem struc-
ture and functioning as well as geographical shifts of ecosystems 
and biomes (Engelbrecht & Engelbrecht,  2016; Hoegh-Guldberg 
et  al.,  2018; Niang et  al.,  2014). Such ecosystem changes will im-
pact the potential for future land uses and the livelihoods of people 
in Africa, where agriculture accounted for ~50% of employment in 
2019 (ILO, 2019). The critical ecosystem services provided vary for 
different biomes (Chapin et al., 2011, p. 428), such as carbon seques-
tration (forests), and pasture for grazing (grasslands and savannas, 
Naidoo et  al.,  2008). Biome changes and shifts therefore impact 
ecosystem services (Gonzalez et al., 2010). Furthermore, many an-
imal species are strongly associated with certain biome types (Jetz 
& Fine, 2012), which together with vegetation changes implies large 
potential impacts on prevailing biodiversity.

Biome shifts attributed to climate change have already been ob-
served in Africa (Niang et al., 2014), but do not show a consistent 
pattern. For instance, declines in tree density and changes in species 
composition have led to a southward shift of the savanna vegeta-
tion zone in West Africa (Gonzalez et al., 2012) into previously more 
humid areas. At the same time, increased woody cover in savannas 
has been reported at many sites across Africa, including West Africa. 
Increasing atmospheric CO2 concentrations ([CO2]), changes in land 
management and altered rainfall patterns were identified as likely 
drivers of this woody vegetation increase (Stevens et al., 2017).

With the widespread mixture of grasses with C4 photosynthe-
sis and woody plants with C3 photosynthesis across African savan-
nas, plant-physiological effects of increasing [CO2] might change the 
competitive balance between grasses and trees and thus play a key 
role for future ecosystem changes (Bond & Midgley,  2000; Midgley 
& Bond, 2015; Osborne et al., 2018). Furthermore, changes in plant 
growth interact with changes in fire regimes, and direct enhancement 
of tree sapling growth rates under elevated [CO2] (eCO2) increases the 
likelihood that young tree individuals escape the ‘firetrap’. This might 
lead to a positive feedback, where an initial increase in woody vege-
tation suppresses grasses, thereby reduces fire activity, which in turn 
benefits woody plants (Bond & Midgley, 2012; Midgley & Bond, 2015).

However, the magnitude of eCO2 effects, both directly on plant 
growth through CO2 fertilization of photosynthetic efficiency (Long 
et al., 2004) and indirectly on ecosystem hydrology (through a re-
duction of stomatal conductance, gs; Ainsworth & Rogers,  2007; 
Medlyn et  al.,  2001), is still debated (Körner,  2015; Medlyn 
et al., 2015; Zaehle et al., 2014). Free-Air carbon dioxide enrichment 
(FACE) experiments suggest that an increase in carbon assimilation 
in C3 plants does not necessarily scale to increased plant growth (e.g. 
Körner et al., 2005; Medlyn et al., 2015), particularly when limited by 
nutrient availability (e.g. Jiang, Caldararu, et al., 2020; Jiang, Medlyn, 
et al., 2020; Norby et al., 2010). For ecosystem hydrology and water 
use efficiency (WUE), eCO2 effects translate into a balance of de-
creased transpiration and water demand due to reduced gs (De 
Kauwe et al., 2013) and increased water demand following increased 
net primary production (NPP; Warren et al., 2011).

Dynamic Global Vegetation Models (DGVMs) are a widely used 
tool to project future ecosystem changes and to attribute ongoing 
changes to different drivers and mechanisms (Prentice et  al.,  2007). 
DGVMs simulate ecophysiological processes, such as photosynthesis 
and plant growth, vegetation dynamics and structure, geographical 
distribution of plant biomes and biogeochemical cycles (e.g. water 
and carbon), in particular in response to climate change (e.g. Prentice 
et al., 2007; Sitch et al., 2008). However, the effects of eCO2 on plants 
and interactions with nutrient limitations in DGVMs are still uncertain 
(Hickler et al., 2015; Medlyn et al., 2015). If key plant demographic pro-
cesses such as mortality, recruitment of tree saplings and fire impacts 
on plant individuals are implemented in DGVMs (Fisher et al., 2018), 
they can capture complex dynamics in savanna ecosystems.

In this study, we simulated the impacts of climate change and 
eCO2 on carbon stocks, WUE and biome distribution of potential 
natural vegetation (PNV) in Africa using the adaptive Dynamic 
Global Vegetation Model (aDGVM; Scheiter & Higgins,  2009). 
The aDGVM was originally developed for Africa and its savannas 
(Scheiter & Higgins, 2009) and has been applied and tested in sev-
eral Africa-focused case studies (e.g. Scheiter et al., 2018; Scheiter & 
Savadogo, 2016). It simulates woody plant demography for individ-
ual trees and this allows fire impacts to be conditioned on individual 
tree size. Advancing on earlier studies with the aDGVM, we used an 
ensemble of regional climate model (RCM) data based on six down-
scaled general circulation models (GCMs; Archer et al., 2018; Davis-
Reddy et al., 2017; Engelbrecht et al., 2015) and two Representative 
Concentration Pathway (RCP) scenarios (RCPs 4.5 and 8.5, Stocker 
et al., 2013). This is the first time that this ensemble of downscaled 
GCM data has been used as a climate driver for a DGVM covering 
Africa. We ran the aDGVM with and without eCO2 effects enabled 
to assess uncertainty related to plant-physiological CO2 effects and 
to identify important drivers of vegetation change. Our study quan-
tifies how uncertainty in projections caused by CO2, in particular 
concerning CO2 effects on WUE and biomass, interacts with uncer-
tainty due to the choice of GCM and RCP.

2  | MATERIAL S AND METHODS

2.1 | The aDGVM

For this study, we used the well-tested aDGVM, a regionally adapted 
DGVM (e.g. Scheiter & Higgins, 2009; Scheiter et al., 2015; Scheiter 
& Savadogo,  2016). The aDGVM was developed for tropical and 
subtropical grass–tree ecosystems (for details, see Scheiter & 
Higgins, 2009; Scheiter et al., 2012). It incorporates ecophysiologi-
cal processes that are commonly implemented in DGVMs (Prentice 
et al., 2007). State variables such as photosynthetic rates, biomass 
or height are simulated for individual plants depending on environ-
mental conditions. For each plant the aDGVM dynamically simulates 
leaf phenology and flexibly determines carbon allocation to plant 
biomass compartments (roots, stem or leaf biomass). aDGVM pri-
oritizes carbon allocation to compartments that are most limiting 
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for plant growth based on the constraining factors water, light or 
photosynthesis. Physiological processes, such as photosynthesis, 
gs and transpiration, are simulated for each individual plant based 
on environmental and plant individual state variables such as light 
availability. Stomatal conductance is represented by the model from 
Ball et al. (1987) and is directly proportional to relative humidity, and 
the ratio of photosynthesis and [CO2] at the leaf surface (Medlyn 
et al., 2001).

The aDGVM simulates 1-ha plots that are assumed to be repre-
sentative for the simulated grid cell. Grasses with C3 and C4 photo-
synthesis are each implemented as two types of super-individuals 
that represent grasses growing beneath tree canopies and in tree 
canopy gaps. The aDGVM distinguishes savanna and forest trees 
(Scheiter et al., 2012) as two distinct tree types that differ in their fire 
and shade tolerance (Bond & Midgley, 2001; Ratnam et al., 2011). In 
the model, savanna trees are shade intolerant and more fire resis-
tant as adult trees (>2 m). Modelled forest trees are shade tolerant 
but fire sensitive in all age classes. Each tree individual competes for 
light with neighbouring plants and for water with all plants simulated 
per 1-ha plot.

Fire in the aDGVM is determined by fuel load and fuel mois-
ture, both dependent on biomass growth and thus indirectly influ-
enced by climate, and wind speed following Higgins et al. (2008). 
Ignitions are simulated as random events decoupled from climatic 
or regional factors. Fire disturbance is therefore one of the fac-
tors causing some stochasticity in the model results. Whether fire 
spreads after a stochastic ignition event depends on fire inten-
sity and a previously determined likelihood that a fire will spread 
(Scheiter & Higgins, 2009).

In contrast to many other DGVMs, simulating individual trees in 
aDGVM allows accounting for fire effects on individual plants and 
vegetation structure as a function of individual plant height (Scheiter 
& Higgins, 2009). Height influences if trees survive grass fires be-
cause only tall enough trees can escape the flame or topkill zone of 
a fire (Higgins et al., 2000). In addition, in contrast to forest trees, 
grasses and savanna trees in aDGVM are able to resprout after fire 
damage (Bond & Midgley,  2001). Population composition evolves 
dynamically in the model as a result of interactions of, for example, 
fire and [CO2]. Random events in demography subroutines for tree 
populations add to the stochasticity in model results.

2.2 | Regional climate model simulations

Climate input data consisted of an ensemble of six downscaled 
GCM projections under two mitigation scenarios generated with 
the variable-resolution conformal-cubic atmospheric model (CCAM; 
McGregor, 2005). The simulations were performed at the Council for 
Scientific and Industrial Research in South Africa (Archer et al., 2018; 
Davis-Reddy et al., 2017; Engelbrecht et al., 2015). The GCM projec-
tions formed part of the Coupled Model Intercomparison Project 
Phase 5 (CMIP5; Table S1; Stocker et al., 2013). The downscaling pro-
cedure involved CCAM being integrated globally at a quasi-uniform 

resolution of about 50  km in the horizontal, forced at its lower 
boundary by sea-ice concentrations and bias-corrected sea-surface 
temperatures from the host GCMs (Engelbrecht et  al.,  2015). The 
CCAM simulations were performed for the period 1961–2099 and 
for the low mitigation scenario RCP8.5 and modest-high mitigation 
scenario RCP4.5.

The downscaled climate data sets were bias-corrected to the 
monthly climatologies of temperature and rainfall from CRU TS3.1 
data for the period 1961–1990 (Engelbrecht & Engelbrecht,  2016; 
Engelbrecht et al., 2015). Previously, the CCAM downscalings have 
been shown to realistically represent present-day climate over 
southern Africa (e.g. Engelbrecht et al., 2009, 2013, 2015).

CCAM output is available on a latitude–longitude grid of 0.5° 
resolution and at a daily time step. We used daily precipitation, daily 
minimum and maximum temperature, daily wind speed and daily 
relative humidity from the CCAM data set to force aDGVM (see 
Figure  S1 for mean annual precipitation (MAP) and temperature 
maps). As projected radiation data were not available, we derived 
present-day radiation from sunshine percentage (Allen et al., 1998) 
from New et al. (2002). Thus, our vegetation simulations are based 
on an ensemble of climate data providing a range of GCM-projected 
climate change under two emission scenarios at high spatial and 
temporal resolution.

2.3 | Simulation design

We simulated vegetation dynamics in Africa from 1971 to 2099 
at 0.5° resolution by forcing the aDGVM with the climate ensem-
ble described above and soil data from the Global Soil Data Task 
Group (2000). A model spin-up of 210  years was simulated to 
allow vegetation to reach equilibrium with environmental forcing. 
To that end, we used a random series of climate data from the pe-
riod 1971–1979. In our experimental setup, we combined changes 
in climatic conditions with increases in [CO2] (eCO2) for two green-
house gas emission scenarios, RCPs 4.5 and 8.5. To estimate the 
extent of the eCO2 effect and its uncertainties, we repeated the 
same simulations with climate conditions following the two RCP 
scenarios, but with [CO2] rising only to 400 ppm and then keeping 
[CO2] fixed (fCO2).

Stochastic effects within DGVMs can be factored in when con-
ducting replicate runs for each ensemble member. Due to high com-
puting times for continental-scale high-resolution simulations, for 
each GCM only one simulation was conducted per RCP-CO2 sce-
nario. In a previous study with the aDGVM at regional scale, more 
than 60% of replicate simulations agreed with respect to biome 
projections for the year 2100 for large parts of the simulated area, 
the Limpopo province in South Africa (Scheiter et al., 2018). As op-
posed to Scheiter et al.  (2018), the use of daily climate input data 
for our simulations helped to avoid the generation of daily climate 
time series with the aDGVM and thus removed the associated sto-
chasticity. In addition, the high spatial resolution of our simulations 
effectively acts as a replication in space with smooth simulation 
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patterns in space indicating low aDGVM-caused variability in the 
simulation.

2.4 | Analysis of simulation results

Aboveground carbon dynamics and plant-physiological effects of 
eCO2 were analysed in more detail. We defined stand WUE as the 
ratio of NPP and plant transpiration, following the definition by De 
Kauwe et  al.  (2013) for FACE results. We used NPP, transpiration 
and WUE to isolate which processes—CO2 fertilization of photosyn-
thesis or increased WUE via reduced transpiration through reduced 
gs—are driving plant-physiological responses to eCO2.

We created time series for total aboveground carbon and WUE 
in Africa for the four RCP-CO2-scenario combinations (RCP4.5/8.5 
with fCO2/eCO2) with annual time steps for 2000–2099. We used the 
ensemble mean and standard deviation (SD) of the six ensemble mem-
bers for each of the four scenario combinations in each year. For other 
analyses, model results were averaged over 20-year periods to focus 
on long-term climate-driven trends (Stocker et al., 2013) and to reduce 
the influence of model-inherent stochastic processes on model out-
put. Two time windows were used for comparison: 2000–2019 and 
2080–2099. Maps of aboveground biomass were generated, based on 
the mean across all 24 simulation runs in 2000–2019, because the dif-
ferent scenarios did not deviate much from another. For 2080–2099, 
we used the ensemble mean of each of the four scenarios. In addition, 
changes in mean aboveground biomass from the present (2000–2019) 
until 2080–2099 were mapped for the four scenarios.

For changes in total aboveground vegetation carbon and in 
WUE (from 2000–2019 to 2080–2099), we used the omega squared 
(ω2) measure to quantify the effect size of explanatory variables 
(see Supporting Information S1 for R code; R Core Team,  2015). 
CO2 scenario, RCP scenario, and GCM and their two-way interac-
tions were used to explain differences of the dependent variables. 
Using ω2 to estimate the proportion of variance explained (Olejnik 
& Algina,  2003), we quantitatively evaluate the magnitude of the 
differences between the ensemble members (White et  al.,  2014). 
As computational limitations restricted us from implementing rep-
licate runs, analysing for three-way interactions between the three 
explanatory variables was not possible.

To study potential future biome distributions and biome changes, 
we classified the simulated vegetation into seven biome types: 
desert, C3 grassland, C4 grassland, C3 savanna, C4 savanna, wood-
land and forest. The classification scheme is based on simulated 
tree cover, grass biomass and composition of tree and grass types 
(Scheiter et al., 2012) with minimum grass biomass levels for grass-
land classifications (Scheiter et al., 2018; see Table S2). In this defini-
tion scheme, the main difference between savannas and woodlands 
is the predominance of savanna or forest tree types, which is in turn 
an indicator of fire activity.

Based on this biome classification scheme, we identified biomes 
for the above-listed time periods for Africa for each RCP-CO2-
scenario (RCP4.5/8.5 with eCO2/fCO2). The biomes identified for all 

GCM simulations per scenario were used to derive consensus biome 
maps for each scenario. For each grid cell, the biome type that was 
most common in the ensemble member maps was used to derive 
each scenario's consensus biome. According to the binomial distri-
bution, two ensemble members agreeing in the simulated biome do 
not have a higher probability than an outcome by chance. Such grid 
cells therefore were denominated as having ‘No consensus’. In addi-
tion, we plotted the number of ensemble members that simulated 
the consensus vegetation type for each time period as an indicator 
of agreement within the simulated ensemble.

We used the number of ensemble members per RCP-CO2-
scenario combination that showed a biome change from 2000–2019 
to 2080–2099 (maximum six ensemble members) as an indicator for 
the probability of biome change under future climatic conditions. We 
therefore derived a measure of uncertainty from the number of simu-
lated biome changes within a scenario. The type of biome change, that 
is, whether ensemble members simulate the same or different biome 
transitions, was not considered in this uncertainty assessment.

To illustrate the overall potential consequences (i.e. areal increase 
or decrease) of biome changes for each biome type, we determined 
each biome's change in total area covered [%] between 2000–2019 
and 2080–2099 based on the consensus biome maps for all four sce-
narios. In addition, we plotted the changes in total area covered by 
each biome type for two time steps (2000–2019, 2080–2099).

Atmospheric CO2 effects on WUE and gs were analysed for each 
RCP-CO2 scenario, based on the relative change of ensemble means 
from 2000–2019 to 2080–2099 for each grid cell. As a proxy for 
water availability, NPP change and MAP change were plotted against 
each other as relative change for each RCP-CO2 scenario combina-
tion. NPP change against tree biomass change per grid cell was used 
to illustrate possible effects of population dynamics on biomass. For 
these figures, biomes in 2000–2019 were depicted on a per grid cell 
basis to assess different responses for different biomes.

3  | RESULTS

3.1 | Current aboveground biomass and future 
projections

The spatial pattern of simulated biomass in 2000–2019 compared 
reasonably well with an observation-based biomass distribution 
(Avitabile et  al.,  2016; Figure  1a,b). Our simulations of potential 
natural biomass underestimated the high aboveground biomass in 
the Congo basin, while overestimating biomass in areas more dis-
tant to the equator (Figure 1a). While Avitabile et al.’s (2016) map 
included both intact and nonintact vegetation, aDGVM only simu-
lated PNV, thus intact vegetation. aDGVM, therefore, overestimated 
simulated biomass and actual carbon stocks in areas of high land use, 
such as agricultural land. The mean carbon stored in simulated total 
aboveground biomass for Africa between 2000 and 2010 amounted 
to 52.2 Pg C (±0.36, all 24 ensemble members, Figure 2a). This is 
within the range of estimates derived from satellite and inventory 
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plot data (48.3–64.5 Pg C; Figure 2a; Avitabile et al., 2016, Baccini 
et al., 2012; Liu et al., 2015; Saatchi et al., 2011; extent varies from 
tropical Africa to continental Africa).

When comparing current (2000–2019) and future (2080–2099) 
aboveground biomass, both RCP-eCO2 scenarios showed similar 
spatial patterns of increasing and decreasing biomass, but areas with 
increasing biomass predominated (Figure 1c,d; Figure S2a,b; Table 1). 
Both RCP-eCO2 scenarios showed small biomass decreases in a nar-
row belt along the equator. North and south of the equator both RCP 
scenarios showed a general pattern towards woody encroachment, 
with higher biomass increases for RCP8.5.

Spatial patterns of biomass change in the fCO2 scenarios were 
more variable. Increases prevailed over decreases under RCP4.5 and 

decreases prevailed under RCP8.5 (Table 1; Figure 1c–f). The Ethiopian 
Highlands were the only larger area that showed mean biomass in-
creases for all four RCP-CO2 scenarios. However, these increases were 
weaker under fCO2 than under eCO2. This biomass increase is in line 
with precipitation increases predicted for this region (Figure S1).

Both RCP-eCO2 scenarios showed an appreciable carbon sink 
for Africa by the end of the 21st century in all GCM simulations 
(Figure  2a; Figure S3). The increase under RCP8.5 was more pro-
nounced, whereas under RCP4.5 mean total aboveground carbon 
started to saturate towards the end of the century (81.3 and 70.0 Pg 
C in 2080–2099, respectively, see Table 2 for % change). Saturating 
biomass increases under RCP4.5-eCO2 followed the projected 
mid-century peak in greenhouse gas emissions for RCP4.5 (Stocker 

F I G U R E  1   Simulated and observation-
derived aboveground biomass in Africa 
and simulated change in biomass. Current 
aboveground biomass in Africa (t/ha) 
is derived from the ensemble mean 
across all 24 ensemble members of 
aDGVM-simulated biomass (2000–2019, 
a) and Avitabile et al. (2016, b). Change 
in aboveground biomass between 
2000–2019 and 2080–2099 under 
RCP4.5 and 8.5 with eCO2 (c, d) and with 
fCO2 (e, f) is based on the mean of all six 
ensemble members of the respective 
scenario. aDGVM, adaptive Dynamic 
Global Vegetation Model; eCO2, elevated 
CO2; fCO2, CO2 fixed at 400 ppm; 
RCP, representative concentration 
pathway

(a) (b)

(c)

(e) (f)

(d)
(t/ha)

(t/ha)
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et al., 2013). Variability within each RCP ensemble due to differences 
between the six GCMs (±SD, 2 × SD = 9.7 and 11.2 Pg C, respectively 
for RCPs 4.5 and 8.5) was similar to the difference of the means of 
the two eCO2 RCP scenarios (11.2 Pg C, see Table S3).

Under fCO2, simulated total biomass in 2099 was lower than 
under eCO2 (Figure 2a). For RCP8.5 under fCO2, vegetation became 
a carbon source by the 2050s and biomass in 2080–2099 (47.1 Pg C, 
see Table 2 for % change) was less than that in 2000. For RCP4.5-
fCO2, the ensemble mean biomass in 2080–2099 was 55.2 Pg C. It 
depended on the downscaled GCM whether a small source or a small 
sink was projected for RCP4.5 under fCO2 (Figure S3). The ω2 met-
ric indicated that variation in total carbon between all 24 ensemble 
members was mainly explained by the CO2 scenarios, followed by 
interaction effects of CO2 and RCP scenarios (Table 3; see Table S5 
for corresponding F-values from ANOVA).

3.2 | Future projections of WUE and underlying 
plant-physiological processes

Changes in WUE, here defined as the ratio of NPP and transpiration, 
until 2080–2099 were similar to the trends simulated for aboveground 

F I G U R E  2   Mean total aboveground carbon and WUE in Africa in 2000–2099 under RCP4.5 and RCP8.5 with eCO2 and fCO2 simulated 
by the aDGVM. Thick lines are the mean over all six ensemble members per scenario. Shaded areas are the mean ± standard deviation 
(SD) of the six ensemble members per scenario. In (a), aboveground carbon for tropical Africa (64.5 Pg C, Baccini et al., 2012), sub-Saharan 
Africa (48.5 Pg C, assuming 50% carbon content in aboveground biomass for Avitabile et al., 2016, and 48.3 Pg C, Saatchi et al., 2011) and 
Africa (55.7 Pg C, Liu et al., 2015) are depicted for comparison. See Figure S3 for aboveground carbon time series of all individual ensemble 
members. Water use efficiency (WUE, b) is defined as the ratio of net primary production and transpiration. See Table S3 for more details on 
the variability of aboveground carbon and WUE in 2080–2099. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; 
fCO2, CO2 fixed at 400 ppm; RCP, representative concentration pathway

(a) (b)

TA B L E  1   Area (%) of Africa affected by biomass change and biome change between 2000–2019 and 2080–2099 and agreement of 
simulation results per scenario. Change for aboveground biomass (AGB) is given as the percentage of area with AGB increases or decreases. 
Where AGB increases and decreases did not sum to 100%, the remaining percentage of land area did not experience AGB changes. For 
biome change, proportions of area with no consensus biome in either period were not included. For agreement of biome state, only areas 
where all six ensemble members of a scenario agreed on simulated biome in 2080–2099 were included. The respective percentages refer to 
the total area of the African continent

Scenario
% area with AGB 
increase

% area with AGB 
decrease

% area with biome 
changes

% area with agreement in biome state in all 
ensemble members in 2080–2099

RCP4.5, eCO2 84.3 15.3 23.4 45.6

RCP8.5, eCO2 80.2 19.1 27.7 45.7

RCP4.5, fCO2 64.5 35.2 17.5 50.3

RCP8.5, fCO2 31.8 67.5 18.6 53.7

AGB, aboveground biomass; eCO2, elevated CO2; fCO2, CO2 fixed at 400 ppm; RCP, representative concentration pathway

TA B L E  2   Change in aboveground biomass (AGB) and in WUE 
from 2000–2019 to 2080–2099. Change in carbon in AGB was 
calculated for all six ensemble members for each RCP-CO2 
scenario. The range of minimum and maximum change rate for the 
six ensemble members for each scenario are presented here. See 
Table S4 for change rates for each ensemble member

Scenario AGB change WUE change

RCP4.5, eCO2 18 to 43% 15 to 25%

RCP8.5, eCO2 37 to 61% 61 to 74%

RCP4.5, fCO2 –8 to –11% –1 to –9%

RCP8.5, fCO2 –6 to –22% –9 to –16%

AGB, aboveground biomass; eCO2, elevated CO2; fCO2, CO2 fixed at 400 
ppm; RCP, representative concentration pathway; WUE, water use efficiency
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biomass for all four RCP-CO2 scenarios (Figure 2b; Table 2). Yet, under 
RCP4.5-eCO2, WUE levelled off earlier than carbon in aboveground 
biomass. Both fCO2 scenarios showed a decrease in mean WUE. For 
NPP and WUE, the shape of the time series was almost identical for 
each individual scenario (Figure  2b; Figure S4a). For transpiration 
on the other hand, all four scenarios showed increases (Figure S4b). 
Within an RCP, transpiration was lower for fCO2 than for eCO2.

WUE increased in most of the simulated grid cells between 2000–
2019 and 2080–2099 in eCO2 simulations, and relative change ratios 
were higher than in fCO2 simulations (Figure  3a). With a stronger 
decrease under eCO2 than fCO2 and for RCP8.5 than for RCP4.5, gs 
showed the opposite trend (Figure 3b). Although gs decreased with 
increasing [CO2], transpiration increased for all four RCP-CO2 sce-
narios (Figure S4b). NPP was more sensitive to MAP changes under 
RCP8.5 than RCP4.5, with a steeper slope for eCO2 (Figure 3c). We 
found increased NPP in both eCO2 scenarios even for grid cells where 
MAP decreased. Variation in WUE was largely explained by the CO2 
scenario. The interaction effect between the CO2 scenario and the 
RCP scenario, as well as the RCP scenario on its own also explain some 
of the variation (Table 3). The effect of RCP scenario on WUE was 
stronger than its effect on carbon in aboveground biomass.

3.3 | Projected biome changes and 
population dynamics

For all 24 ensemble members, aDGVM simulated biome shifts (change 
of spatial location of biomes) and biome transitions (change of biome 
type at a given location) from 2000–2019 to 2080–2099 (Figures 4 
and 5 for RCP8.5 and Figures S6 and S7 for RCP4.5). This implied 
considerable changes in area covered by each biome (Figure 6).

Under eCO2, in line with simulated biomass increase, biome tran-
sitions from non-woody biomes to woody biomes dominated for both 
RCP scenarios (Figure 4). The area covered by forest increased for 

TA B L E  3   Effect size of explanatory variables for change in 
carbon stored in aboveground biomass and WUE between 2000–
2019 and 2080–2099. The table presents ω2 for the dependent 
variables aboveground biomass change (in Pg C) and WUE change 
(in gC/kgH2O) and explanatory variables CO2 scenario, RCP 
scenario and GCM. Two-way interaction effects are included in the 
model and are denoted with ‘:’

Independent variables and 
interaction effects

ω2

AGB WUE

CO2 0.794 0.692

RCP 0.005 0.105

GCM 0.069 0.009

RCP:CO2 0.123 0.190

CO2:GCM 0.002 0.000

GCM:RCP 0.005 0.000

AGB, aboveground biomass; GCM, general circulation model; RCP, 
representative concentration pathway; WUE, water use efficiency

(a)

(b)

(c)

F I G U R E  3   Change in WUE (a) and stomatal conductance gs 
(b) under eCO2 and fCO2, and change in NPP versus change in 
MAP (continental scale, c) between 2000–2019 and 2080–2099 
simulated by the aDGVM. Changes are represented by the ratio 
between values for 2000–2019 and 2080–2099 for each simulated 
grid cell. Values greater than 1 indicate an increase, values less than 
1 indicate a decrease. Black lines in (a) are linear regressions for the 
respective RCP scenarios with the continental-scale mean of the 
scenario shown as a black point. Red lines represent the 1:1 lines. 
Each point represents a grid cell and is shape- and colour-coded 
according to its assigned biome type in 2000–2019. Lines in (c) are 
continental-scale regression lines for the four RCP-CO2 scenario 
combinations. See Figure S5 for data points used to derive the MAP-
NPP change regression lines for each scenario. Note that x- and  
y-axes do not have the same scale. aDGVM, adaptive Dynamic Global 
Vegetation Model; eCO2, elevated CO2; fCO2, CO2 fixed at 400 ppm; 
MAP, mean annual precipitation; NPP, net primary production; RCP, 
representative concentration pathway; WUE, water use efficiency
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F I G U R E  4   Consensus biome type under RCP8.5-eCO2 in 2000–2019 (a), biome changes until 2080–2099 (b) and transitions and 
fractional cover of biomes (c) simulated by aDGVM. The consensus biome type is the biome simulated by at least three ensemble members 
of the scenario. Grid cells with an agreement of less than three ensemble members do not have a higher probability than an outcome by 
chance and are marked as ‘No consensus’. The biomes shown in (b) are the biomes that were simulated for 2080–2099 for grid cells where 
biome transitions were simulated for the consensus biome. Numbers in each coloured circle (c) represent the percentage of area covered 
by each biome at the respective time step in the consensus map. Arrows show biome changes with regard to the previous time step. Arrow 
thickness is proportional to the change in total area. In panel (c), only changes that affected more than 0.5% of the African land surface are 
shown. See Figure S6 for RCP4.5-eCO2. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; RCP, representative 
concentration pathway

F I G U R E  5   Consensus biome type under RCP8.5-fCO2 in 2000–2019 (a), biome changes until 2080–2099 (b) and transitions and 
fractional cover of biomes (c) simulated by aDGVM. The consensus biome type is the biome simulated by at least three ensemble members 
of the scenario. Grid cells with an agreement of less than three ensemble members do not have a higher probability than an outcome by 
chance and are marked as ‘No consensus’. The biomes shown in (b) are the biomes that were simulated for 2080–2099 for grid cells where 
biome transitions were simulated for the consensus biome. Numbers in each coloured circle (c) represent the percentage of area covered 
by each biome at the respective time step in the consensus map. Arrows show biome changes with regard to the previous time step. Arrow 
thickness is proportional to the change in total area. In panel (c), only changes that affected more than 0.5% of the African land surface 
are shown. See Figure S7 for RCP4.5-fCO2. aDGVM, adaptive Dynamic Global Vegetation Model; fCO2, CO2 fixed at 400 ppm; RCP, 
representative concentration pathway
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both RCP-eCO2 scenarios at the expense of desert, grasslands and 
savannas, with stronger effects for RCP8.5 (Figure 6). Non-desert 
biomes shifted towards mid-latitudes (Figure  4a,b; Figure S6a,b). 

However, in line with simulated biomass reductions, woodland re-
placed forests in some areas close to the equator (Figure 1c,d). [CO2] 
increase and climatic change are stronger in RCP8.5, therefore the 

F I G U R E  6   Change in African area 
covered by each biome in each GCM 
simulation and ensemble medians (box 
plots) under RCP4.5 and RCP8.5 with 
eCO2 and fCO2 simulated by aDGVM. 
Change is the difference in area covered 
between the time periods 2000–2019 and 
2080–2099 in percentage points (left axis) 
and km2 (right axis). aDGVM, adaptive 
Dynamic Global Vegetation Model; 
eCO2, elevated CO2; fCO2, CO2 fixed 
at 400 ppm; GCM, general circulation 
model; RCP, representative concentration 
pathway
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F I G U R E  7   Mean tree biomass change in relation to mean NPP change for eCO2 (a, b) and fCO2 (c, d) under RCP4.5 (a, c) and RCP8.5 (b, d) 
simulated by aDGVM. Change is represented by the ratio between 2000–2019 and 2080–2099. Hence, values greater than 1 indicate increase 
and values less than 1 indicate decrease. Black lines are regression lines for all data points of the mean of a scenario. Coloured lines are 
regression lines for the respective biomes in 2000–2019 of the mean of a scenario. The regression lines for biomes are marked with a symbol 
at the top right of each line with colour and shape of the respective biome. Each point represents the mean for a simulated grid cell, and colour 
and shape represent the grid cell's consensus biome type in 2000–2019. The mean of each scenario is based on the six GCM simulations in 
each time period. Note that the scales of x- and y-axes differ. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; fCO2, 
CO2 fixed at 400 ppm; GCM, general circulation model; NPP, net primary production; RCP, representative concentration pathway
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(c) (d)
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aDGVM simulated that larger areas changed biome state than under 
RCP4.5 (Table 1). Large areas showed transitions from C4 savanna to 
forest, especially under RCP8.5 (Figure 4c).

As opposed to the eCO2 scenarios, a decrease in forests domi-
nated biome cover changes in the fCO2 scenarios (Figure 5). In total, 
under fCO2, a smaller area was projected to experience biome tran-
sitions (Table 1). For RCP8.5, we found a strong decrease in forest 
cover (5.8 percentage points) and an increase in C4-dominated bi-
omes. Forests mainly changed to woodlands in both RCP scenarios 
(Figure 5c; Figure S7c). Under RCP8.5-fCO2, the core savanna area 
in 2080–2099 in southern Africa was smaller and located further 
north than in the other three scenarios (Figures  S8e,f and S9e,f), 
with a pronounced transition from C4 savanna to C4 grasslands in 
the Kalahari region (Figure 5a,b). Under RCP4.5, the cover fractions 
of biome types did not change as much, with transitions in favour of 
C4 savanna and woodlands.

Rates of tree biomass change were biome specific and varied be-
tween CO2 scenarios (Figure 7). Under eCO2, C4 savannas showed a 
stronger relative increase in tree biomass change rates than wood-
lands and forests for both RCP scenarios, hinting at population dy-
namic effects (Figure 7a,b). Tree biomass change in C4 savannas was 
more sensitive to NPP change than in other woody biomes for both 
eCO2 scenarios. With fCO2, an increase in NPP often did not lead to 
an increase in tree biomass, especially for RCP8.5 and forest biomes.

3.4 | Uncertainty of biome projections

The simulated biomes for the six ensemble members of all four 
RCP-CO2 scenarios agreed well at the beginning of the simulations 

(2000–2019) in the equatorial forests, the Sahara desert along the 
Tropic of Cancer, and in more open C4 savanna areas (Figure  8a; 
Figure S10a). In the transition zones between these biome types, 
the ensemble members agreed less well and agreement was low in 
grasslands, closed savannas and woodlands.

Agreement of the six ensemble members per scenario decreased 
towards the end of the 21st century, especially for eCO2 scenarios 
(Figure 8b,c; Figure S10b,c). The core areas of forest, C4 savanna and 
desert, where all six ensemble members still showed high agreement 
within a scenario, decreased. Agreement was higher for fCO2 sce-
narios, where only climate change influenced vegetation changes 
(Table 1; Figure 8b,c; Figure S10b,c).

Under eCO2, the projections for the transition zones between 
forest and C4 savanna, and C4 savanna and desert showed in-
creasing disagreement between ensemble members for each RCP 
scenario (Figure  8b; Figure S10b), with the desert–grassland– 
savanna transition zone north of the equator at a medium to high 
probability of biome transition in our simulations, especially under 
RCP8.5 (Figure  9a; Figure S11a). Further hotspots of medium to 
high probability of biome transitions for both RCP-eCO2 scenarios 
were found in eastern Africa, areas north and south of the equator 
in the humid and moist subhumid tropics, and for RCP8.5 in south-
ern Africa with an increased dominance of C3 plants (Figures 4b 
and 9a).

In fCO2 scenarios, biomes were projected to have a lower proba-
bility of change (Figure 9b; Figure S11b). The hotspot of likely biome 
transitions south of the equator under eCO2 was also simulated 
under fCO2 for both RCP scenarios. Conversely, unlike in the eCO2 
scenarios, the southern Kalahari was projected to change with me-
dium to high probability under RCP8.5-fCO2. Overall for both CO2 

F I G U R E  8   Agreement of ensemble members in 2000–2019, under eCO2 (a) and change in agreement until 2080–2099 under eCO2 (b) 
and fCO2 (c) for RCP8.5 in aDGVM simulations. The number of ensemble members simulating the consensus type is denoted as ‘Agreement’. 
Grid cells with an agreement of less than three ensemble members are marked as ‘No consensus’. We only displayed the number of ensemble 
members simulating the consensus type in 2000–2019 for eCO2 in (a), because agreement is almost identical for eCO2 and fCO2 (see 
Figures S8b and S9b). The consensus biome type is the biome simulated by at least three ensemble members of the scenario. See Figure S10 
for RCP4.5. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; fCO2, CO2 fixed at 400 ppm; RCP, representative 
concentration pathway

(a) (b) (c)
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scenarios, under RCP8.5, a larger area in Africa had a medium to high 
probability for biome transitions than under RCP4.5 (Figure 9; Figure 
S11).

4  | DISCUSSION

The aim of this study was to provide projections of climate- and [CO2]-
driven vegetation changes in Africa until the end of the century using 
a regionally adapted DGVM and regionally downscaled climate data. 
We analysed plant-physiological and vegetation dynamic responses 
to eCO2 and quantified the impact of three sources of uncertainty 
on vegetation projections: the influence of climate models (GCM im-
plementations), future global socio-economic development (RCP sce-
narios) and strength of CO2 effects on plant growth (CO2 scenarios).

We found that large regions in Africa are likely to experience 
changes in biomes and carbon stocks, especially with eCO2 re-
sponse scenarios. The extent of the projected changes depended 
on the chosen scenario and patterns were less clear for biome 
changes. Projected change in aboveground biomass was driven pri-
marily by CO2 fertilization and showed that assumptions concerning 
CO2 effects (eCO2 or fCO2) caused the strongest variability in fu-
ture projections (Table 3; Figure 2; Figure S3). Even medium-impact 

scenarios (RCP4.5, irrespective of CO2 scenario) suggested consider-
able ecosystem change (Figure 6; Figure S6b,c).

4.1 | Plant-physiological effects of eCO2 and 
drivers of woody encroachment

Elevated CO2 led to strong woody encroachment in our projections 
and was accompanied by enhanced WUE. Increases in NPP clearly 
drove WUE enhancement, although both photosynthesis (increase 
in NPP via more efficient CO2 fixation) and gs (decrease) are af-
fected by eCO2 in aDGVM. We therefore conclude that increased 
WUE, intensification of carbon sinks and woody encroachment are 
mainly driven by CO2 fertilization of photosynthesis in aDGVM. 
This finding seems to contradict observational studies that found 
that increased intrinsic WUE in mature tropical and subtropical 
trees did not translate into growth enhancement and often even 
resulted in declining tree growth rates (Peñuelas et al., 2011; Silva 
& Anand,  2013; van der Sleen et  al.,  2015). However, our simu-
lated biomass increases in savannas are driven by a combination 
of demographic processes and CO2 fertilization effects on tree 
seedlings and saplings, which are submature, unlike most empirical 
studies (Figure 7).

F I G U R E  9   Probability of biome change between 2000–2019 and 2080–2099 simulated by aDGVM. The proportion of the six GCM 
ensemble members per scenario—here RCP8.5, eCO2 (a) and fCO2 (b)—that showed a biome change from 2000–2019 to 2080–2099 was 
used as a measure of probability of biome change. The more ensemble members projected a biome change per grid cell, the higher its 
probability of biome change. High probability of biome change—all six simulations project biome changes; medium probability of biome 
change—four or five simulations with biome changes; low probability of biome change—three simulations with biome changes; no change—
zero to two simulations with changes. Grid cells with two or fewer simulations with biome changes do not have a higher probability than 
an outcome by chance and were therefore regarded as ‘No change’. Whether the ensemble members simulated the same type of biome 
transition was not considered here. See Figure S11 for RCP4.5. aDGVM, adaptive Dynamic Global Vegetation Model; eCO2, elevated CO2; 
fCO2, CO2 fixed at 400 ppm; GCM, general circulation model; RCP, representative concentration pathway

(a) (b)
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Similar to observations reported from FACE experiments in 
young forest stands (Warren et al., 2011), the effects of increased 
NPP and vegetation cover on transpiration outweigh the effects 
of decreased gs under eCO2 with increased transpiration having a 
dampening effect on WUE. For RCP8.5, this leads to an increased 
positive relation between NPP and MAP change with a steeper 
slope under eCO2. The increased sensitivity of NPP to MAP under 
RCP8.5 implies stronger limitation of plant growth by soil moisture 
availability. This limitation is driven by a combination of higher de-
mand for water by more productive vegetation, higher transpiration 
(Figure S4b), temperature increases and regionally decreasing MAP 
(Figure  S1). However, the gs model implemented in the aDGVM 
might not represent eCO2 responses adequately in these increas-
ingly water-limited ecosystems (Medlyn et al., 2001).

Our results confirm results from previous DGVM studies that 
plant-physiological CO2 effects strongly impact projections of fu-
ture vegetation states (Cramer et al., 2001; Hickler et al., 2015; 
Huntingford et al., 2013; Rammig et al., 2010; Sato & Ise, 2012). 
The ensemble modelling results are useful to estimate poten-
tial lower and upper bounds of potential eCO2 effects. Disabled 
eCO2 effect scenarios serve as a surrogate for low physiologi-
cal sensitivity of plants to eCO2 and represent an artificial lower 
bound of change. It is, however, unlikely that eCO2 effects on 
plants will be negligible in systems composed of C3 and C4 plants, 
where feedbacks between CO2 fertilization and fire disturbance 
affecting the competitive balance between C3 and C4 plants have 
been postulated (Midgley & Bond, 2015). However, DGVMs such 
as aDGVM might not adequately represent carbon sink–source 
processes and other non-photosynthetic growth limitations 
(Körner,  2015), though empirical work by Kgope et  al.  (2010) 
strongly implicate sink–source effects in controlling the demo-
graphic process under elevated CO2, as simulated by aDGVM. 
The first submodels that consider long-term physiological accli-
mation effects in plants to eCO2 are now being implemented in 
DGVMs (Haverd et al., 2018).

Nutrient dynamics in plants and ecosystems can stimulate or re-
duce eCO2 effects on plants, but are not represented in aDGVM. 
Low nutrient availability, for example, nitrogen and phosphorus defi-
cits, limits the growth-enhancing effects of eCO2 and therefore on 
aboveground biomass (e.g. Jiang, Caldararu, et  al., 2020; Peñuelas 
et  al.,  2011). Vegetation models including nutrient cycling fre-
quently predict smaller eCO2 effects (Fleischer et al., 2019; Hickler 
et al., 2015). Field data suggest that tree encroachment might fur-
ther reduce nitrogen availability in African savannas, which might 
lead to a negative feedback on CO2-induced tree encroachment 
(Higgins et al., 2015). The ability of trees to benefit from eCO2 under 
nutrient limitation depends on their association with different my-
corrhizal types and a tree's ability to fix atmospheric nitrogen (Terrer 
et al., 2018) with nitrogen-fixing trees from the Fabaceae family hav-
ing high abundances in African savannas (Stevens et al., 2017). Under 
nitrogen limitation, tree species associated with arbuscular mycor-
rhizae, the dominant type in the tropics, benefit less than trees asso-
ciated with ectomycorrhizae or N2 fixers (Terrer et al., 2016, 2018).

Based on extrapolation of 138 eCO2 experiments, Terrer 
et  al.  (2019) confirmed substantial biomass increases due to CO2 
fertilization in past decades and likely in the future, even when 
accounting for nutrient limitation. They estimated 12  ±  3% and 
12.5 ± 3% increases in global and tropical biomass, respectively, as 
a result of a 250 ppm increase in [CO2] from 375 ppm by 2100. This 
is less than the increase of 26.9% in aDGVM-projected aboveground 
biomass for eCO2-compared to fCO2 scenarios in 2080–2099 for 
RCP4.5 (ΔCO2 ~ 135 ppm, Figure 2a), but Terrer et al.’s results clearly 
ignore demographic effects that result in biome structural shifts. 
Next to missing nutrient limitations in aDGVM, another explanation 
for this mismatch could be that empirical eCO2 experiments do not 
account for ecological feedback mechanisms proposed for savannas 
that might foster woody encroachment and increase biomass stocks 
(Midgley & Bond,  2015), nor does Terrer et al.’s meta-analysis ex-
plicitly (but indirectly) include N2 fixation and the associated eCO2 
response. Indeed, Stevens et al. (2017) found that recent patterns of 
woody encroachment in savannas in Africa are often due to N-fixing 
species. Thus, large uncertainties in vegetation response remain 
with a significant response to be expected in tropical areas. For rep-
resentation in DGVMs, the FUN2.0 model offers a mechanism that 
considers a range of processes for nitrogen acquisition (e.g. differ-
ent mycorrhizal strategies, active uptake, resorption from senescing 
leaves; Shi et al., 2016).

Belowground carbon, including roots and soil carbon, are esti-
mated to make up 77% of Sub-Saharan Africa's carbon stocks (161 of 
209 Pg C total C stocks, Bombelli et al., 2009). We acknowledge that 
root biomass and soil carbon are crucial for a full representation of 
the terrestrial carbon cycle, especially as carbon and nitrogen cycles 
are highly interdependent. Soil and vegetation responses to climate 
change and eCO2 may vary and may impact carbon cycling signifi-
cantly (Dietzen et al., 2019; Dufresne et al., 2002).

Long-term FACE experiments in African ecosystems (such as 
AmazonFACE in Brazil and OzFACE in Australia; Norby et al., 2016; 
Stokes et al., 2005) in combination with eCO2 experiments such as 
open-top chamber experiments with savanna plants (B. S. Ripley, 
personal communication, March 2019) may provide further insights 
regarding the long-term effects of eCO2 in Africa. Consolidated re-
sults from these experiments will contribute to a comprehensive 
understanding of the effects of rising [CO2] on African plant commu-
nities and can be used to revise process implementation in DGVMs.

4.2 | Climate change impacts on biome patterns

Projected biome changes towards woody vegetation under eCO2 are 
consistent with results from previous studies on regional (Doherty 
et  al.,  2010) and continental scale (Conradi et al., 2020; Gonzalez 
et  al.,  2010; Higgins & Scheiter,  2012; Niang et  al.,  2014; Scholze 
et al., 2006; Sitch et al., 2008). The transition of grassland and savanna 
biomes, that is, C4-dominated biomes, to more woody biomes, that is, 
C3-dominated biomes, in eCO2 simulations corroborates findings that 
savannas and grasslands are particularly vulnerable to biome changes 
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under eCO2 (Higgins & Scheiter, 2012; Osborne et al., 2018; Scheiter 
et al., 2018). Woody encroachment into grasslands and savannas in 
Africa is a major threat to their biodiversity (Bond, 2016).

Tropical forests are less stable in our simulations than suggested 
by Gonzalez et al. (2010), Scholze et al. (2006) and Sitch et al. (2008). 
Climatic changes outweigh eCO2 effects in a belt south of the equator 
with decreasing biomass in both CO2 scenarios by 2080–2099, which 
is similar to DGVM results by Sato and Ise (2012) and projections of 
carbon sinks saturating in African tropical forests by 2040 (Hubau 
et  al.,  2020). In our simulations, this decrease in regional carbon 
stocks in forests is outweighed on the continental scale by increases 
in other tropical forest areas as well as savanna and grassland areas 
that were not included in the study by Hubau et al. (2020). Feedbacks 
between population dynamics and combined fire-eCO2 effects in the 
aDGVM also explain this discrepancy. While Hubau et al. (2020) used 
linear regression models both to project predictor variables, such as 
mean annual temperature, and then based on these to project carbon 
changes into the future, here the process-based aDGVM was driven 
with downscaled GCM data. Increases in aboveground biomass and 
transitions to forest biomes in East Africa under both eCO2 and pres-
ent-day [CO2] levels (400 ppm, fCO2) for both RCP scenarios are the 
result of higher water availability due to increased precipitation in 
these areas (Figure S1e,f; Archer et al., 2018; Doherty et al., 2010; 
Engelbrecht et al., 2015; Niang et al., 2014).

Large proportions of simulated biome changes under eCO2 occur 
in the moist subhumid and humid tropics where woodland and C4 
savanna biomes were found in 2000–2019 (Figure 4a,b). This is op-
posed to previous studies where most changes occurred further 
north and south of the equator in regions with more open savannas 
(Gonzalez et al., 2010; Higgins & Scheiter, 2012).

Explanations for differences in biome change projections be-
tween different studies include the use of different modelling ap-
proaches (e.g. species distribution models, Conradi et  al.,  2020), 
different climate data sets (e.g. GCM data or interpolated data 
such as ISIMIP instead of RCM data), different DGVMs (Doherty 
et  al.,  2010; Gonzalez et  al.,  2010) and that precipitation changes 
until 2100 were not accounted for (Higgins & Scheiter,  2012). In 
addition, utilization of different biome classification schemes can 
influence if and where vegetation changes are simulated (Scheiter 
et  al.,  2020) and create mismatches between different vegetation 
models that impede comparison of simulated biomes. Nonetheless, 
the different studies agree on a potential increase in the area cov-
ered by woody biomes under future climatic conditions.

Where MAP decreases and temperatures increase, C4 plants 
can maintain their competitive advantage over C3 plants even 
under eCO2 (Higgins & Scheiter,  2012). We found such behaviour 
in south-western Africa, where the CCAM ensemble predicts a de-
crease in MAP, and a temperature increase to levels unprecedented 
in recent history. Bush encroachment observed in this region in 
the recent past was explained by a combination of [CO2] increase, 
precipitation increase and land-use practices such as livestock graz-
ing (O’Connor et al., 2014). However, future projections of precip-
itation in our forcing data for this region showed a trend towards 

substantial precipitation decreases, that is, opposed to increases in 
the past, whereas land use was not considered in our study. In partic-
ular, the shift from C4 savanna to C4 grasslands by 2080–2099 in the 
Kalahari under RCP8.5 with fCO2 is due to the competitive advan-
tage of C4 plants over C3 trees under drier conditions at lower [CO2]. 
Differences between Higgins and Scheiter’s (2012) and our result in 
this region illustrate that it is crucial to include precipitation changes 
in vegetation projections under climate change. On the one hand, 
an increasing likelihood or severity of droughts under future climate 
conditions may offset the eCO2 effect, as plant responses to eCO2 
are hampered by low soil water availability (Nowak et  al.,  2004; 
Reich et al., 2014). On the other hand, advantages of C4 grasses over 
C3 grasses in dry habitats may be reduced under drought conditions 
(Taylor et al., 2011).

4.3 | Uncertainties of vegetation projections

In our simulations, direct eCO2 effects on plants are the primary 
determinants of the future carbon sink or source, WUE and biome 
states in Africa (Figures 2 and 6; Table 3). This is consistent with the 
results from Rammig et al. (2010) for the Amazon and Huntingford 
et al. (2013) for the global tropics. Direct eCO2 effects are very likely, 
but considerable uncertainty remains with respect to the strength 
of the effect. Thus, the effect sizes in Table 3 only allow comparison 
of CO2 effects and climate input data as simulated by the aDGVM. 
Nevertheless, our results suggest that improving our understand-
ing of plant-physiological CO2 effects is crucial to achieve realistic 
future ecosystem projections.

Areas with high uncertainty in projected biome transitions only 
partially agree with patterns reported by Gonzalez et  al.  (2010). 
Uncertainty is often higher in our study (Figure  9a). Both studies 
agree on high uncertainty for biome changes in the western parts 
of the transition zone between the Sahel and the Sahara. The un-
certainty of biome change we inferred in this study was similar or 
smaller than that in Scholze et al.’s (2006) projections. Low agree-
ment of projected biome changes in grassland, closed savanna and 
woodland areas in our ensemble can be explained by alternative veg-
etation states related to fire occurrence typical for Africa (Hoffmann 
et al., 2012; Moncrieff et al., 2014; Staver et al., 2011) and variability 
in climatic drivers derived from GCMs, in particular uncertainty re-
garding precipitation.

Uncertainty in future projections is increased by the interplay of 
eCO2, fire and feedbacks caused by population dynamics. Enhanced 
tree sapling growth under eCO2 may eventually reduce grass biomass 
and fine fuel availability, which in turn reduces fire frequency and inten-
sity. In combination with climate changes, this feedback mechanism can 
lead to a rapid woody encroachment in savanna ecosystems (Figure 7; 
Midgley & Bond, 2015). Fire disturbance is a factor shaping ecosystems 
(e.g. Bond & Midgley, 2012; Midgley & Bond, 2015; Scheiter et al., 2012) 
leading to multiple stable states for the same climate zones (e.g. Higgins 
& Scheiter, 2012; Staver et al., 2011). Fire has been shown to influence 
and delay projected biome changes and can delay transitions to woody 
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biomes and thus stabilization of ecosystem states after changes in en-
vironmental drivers stabilized (e.g. [CO2], Scheiter et al., 2020). Even 
when ecophysiological processes have already saturated (e.g. here ex-
pressed via NPP), ecosystem states continue to change (e.g. biomass, 
Figure 2a; Figure S4a), because they have not reached an equilibrium 
state under changed environmental conditions. In addition, stochastic 
processes in the aDGVM fire model and differences in GCM climate 
projections can produce varying fire occurrences in different ensem-
ble members and thus explain uncertainty in projections, especially in 
fire-shaped ecosystems like savannas. Other disturbances not included 
here, such as herbivory, and their interactions with fire and eCO2 are 
additional factors of uncertainty in vegetation projections.

Despite the uncertainties in regional patterns, the projections 
of substantial biome changes across all scenarios of the ensemble 
suggest substantial future changes in habitat structure and biodiver-
sity. These potentially large changes in climate and biomes sharply 
contrast with relative stability in past climates and disturbance re-
gimes in Africa, which probably contributed to its high biodiversity 
(Midgley & Bond, 2015).

4.4 | Opportunities for future ensemble vegetation 
simulations

By downscaling climate data from a GCM with an RCM, regional 
change is represented consistent with global changes, but regional 
features such as topography that affect regional climate are accounted 
for (Morales et al., 2007). Future studies could increase the ensem-
ble size by using downscaled climate from multiple RCMs. However, 
Morales et al.  (2007) have shown for Europe that the choice of the 
GCM used as boundary condition for an RCM is more important than 
the choice of the RCM when applying downscaled climate data in an 
ecosystem model. We therefore considered the CCAM ensemble in 
combination with the CO2 scenarios as sufficient for this study.

Extending the ensemble by applying the same simulation de-
sign to different DGVMs would allow assessing the impact of dif-
ferent implementations of vegetation processes in DGVMs and 
the associated variability in DGVM results (Nishina et  al.,  2015; 
Sitch et al., 2008; Warszawski et al., 2014). The physiological rep-
resentation in many DGVMs is based on the biochemical model 
of photosynthetic assimilation in leaves of C3 and C4 plants devel-
oped by Farquhar et al.  (1980) and Collatz et al.  (1991, 1992; Sitch 
et al., 2008). Therefore, we expect similar eCO2 responses in an en-
semble of DGVMs, unless the DGVMs additionally include nutrient 
limitation, or different representations of carbon allocation or of 
stomatal control models.

4.5 | Socio-economic development and 
flexible adaptation

The stronger impacts under RCP8.5 compared to RCP4.5, irrespec-
tive whether eCO2 or fCO2 is assumed, entail that today's decisions 

from individual to policy level shape the degree to which climate, 
ecosystems and livelihoods will change. The strong carbon sink 
simulated here under RCP8.5-eCO2 might suggest regional potential 
for land-based climate mitigation, but the associated conversion of 
grassy biomes to more encroached biomes is a threat to their biodi-
versity. Increased woody cover in grassy biomes might lead to losses 
of their ecosystem services, such as arable and range land (Bond 
et al., 2019; Parr et al., 2014).

The range of possible climate change impacts in Africa presented 
in our study can support policymakers and stakeholders in Africa in 
planning for alternative climate futures in climate change adaptation 
measures (Müller et al., 2014) even though the study was not specif-
ically designed to address policy questions. Our PNV simulations, for 
example, could help to guide good practice in nature conservation 
and land-use planning (Loidi & Fernández-González, 2012) or to avoid 
afforestation activities in non-forest ecosystems (Bond et al., 2019; 
Brancalion et al., 2019; Veldman et al., 2015). Stakeholders such as 
NGOs and state agencies can use projections of PNV to raise aware-
ness for possible climate change impacts. To inform policymakers 
and stakeholders, it will also be necessary to include land manage-
ment practices such as livestock and fire management in model 
simulations (e.g. Pfeiffer et  al.,  2019; Scheiter & Savadogo,  2016; 
Scheiter et al., 2019) and to implement DGVM ensemble simulations 
with greenhouse gas emissions and land-use scenarios of different 
Shared Socio-Economic Pathways (SSPs; Popp et al., 2017).

As the large differences between the different scenarios imply 
large uncertainties, adaptation strategies must be highly adaptive 
and flexible. Over time, observations of climate change and impacts 
on ecosystems will provide an improved knowledge base (Fletcher 
et  al.,  2019). As opposed to using vegetation projections only, 
Bayesian statistics combined with a stochastic dynamic program-
ming approach allow an upfront assessment of the opportunity of 
this increased knowledge base in the future (Fletcher et al., 2019; 
Yousefpour et  al.,  2012). Thus, trade-offs between investing in 
highly flexible measures compared to potentially simpler but less 
flexible measures can be weighed against each other (Fletcher 
et al., 2019). In combination with updated information on population 
developments and land-use change via continued monitoring, this 
method may support stakeholders in the development of adequate 
management plans. However, implementing this method requires 
close and iterative exchange between stakeholders and scientists, 
so that specific policy and planning questions and their uncertainties 
can be assessed using vegetation projections as an exploratory tool 
adjusted to the specific question (Weaver et al., 2013).

Combining DGVMs with land use, SSPs and population develop-
ment would give deeper insights into the vulnerability of different 
regions in Africa to climate change. However, knowledge of PNV 
states is a basis for future conservation planning and provides an 
estimate of ecosystem and plant types that could persist and thrive 
under future climatic conditions. When considering human popula-
tion development and future potential land use, information on PNV 
is essential to feed into development policies. Especially in regions 
with higher uncertainty regarding the impact of climate change on 
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future PNV, a diverse set of climate change adaptation measures 
needs to be included in development strategies, such as diversifica-
tion of income and flexibility in production methods, to account for 
this uncertainty (Müller et al., 2014). Policies need to embrace the 
opportunities of continuous knowledge gain about climate change 
impacts (Fletcher et al., 2019) based on latest monitoring results, 
empirical research and updated models with scientists and policy-
makers collaborating closely in the decision-making process.
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