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An integrative correlation of myopathology, phenotype and genotype in late onset Pompe disease

Aims: Pompe disease is caused by pathogenic muta-

tions in the alpha 1,4-glucosidase (GAA) gene and in

patients with late onset Pome disease (LOPD), geno-

type–phenotype correlations are unpredictable. Skeletal

muscle pathology includes glycogen accumulation and

altered autophagy of various degrees. A correlation of

the muscle morphology with clinical features and the

genetic background in GAA may contribute to the

understanding of the phenotypic variability. Methods:

Muscle biopsies taken before enzyme replacement ther-

apy were analysed from 53 patients with LOPD. On

resin sections, glycogen accumulation, fibrosis, autop-

hagic vacuoles and the degree of muscle damage (mor-

phology-score) were analysed and the results were

compared with clinical findings. Additional autophagy

markers microtubule-associated protein 1A/1B-light

chain 3, p62 and Bcl2-associated athanogene 3 were

analysed on cryosections from 22 LOPD biopsies.

Results: The myopathology showed a high variability

with, in most patients, a moderate glycogen accumula-

tion and a low morphology-score. High morphology-

scores were associated with increased fibrosis and

autophagy highlighting the role of autophagy in severe

stages of skeletal muscle damage. The morphology-

score did not correlate with the patient’s age at biopsy,

disease duration, nor with the residual GAA enzyme

activity or creatine-kinase levels. In 37 patients with

LOPD, genetic analysis identified the most frequent

mutation, c.-32-13T>G, in 95%, most commonly in

combination with c.525delT (19%). No significant cor-

relation was found between the different GAA geno-

types and muscle morphology type. Conclusions:
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Muscle morphology in LOPD patients shows a high

variability with, in most cases, moderate pathology.

Increased pathology is associated with more fibrosis

and autophagy.
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Introduction

Pompe disease (OMIM 232300) is an autosomal reces-

sive disease caused by a defect in the lysosomal alpha

glucosidase due to bi-allelic pathogenic mutations in

the alpha 1,4-glucosidase gene (GAA). GAA is located

on chromosome 17q25.2–25.3 and contains 20 exons

resulting in a protein of 952 amino acids [1]. Nowa-

days, more than 500 variants of mutations in GAA are

known, which are listed at the Pompe Disease Mutation

Databank (http://www.pompevariantdatabase.nl/) and

are associated with a severity ranking by determining

GAA enzyme activity [2–4]. However, the clinical phe-

notypes associated with most of the pathogenic vari-

ants show a high variability without clear genotype-

phenotype correlation, which makes prediction of the

disease outcome difficult [2–9].

Infants with infantile onset Pompe disease (IOPD) are

associated with pathogenic variants, e.g. c.525delT,

c.2481+102_2646+13del, that affect both alleles

severely, resulting in near absence of GAA enzyme

activity (<1%), an age of onset below 12 months,

hypertrophic cardiomyopathy and poor outcome, at

least in the patients not treated with enzyme replace-

ment therapy (ERT) in time [10–14].

In individuals with late onset Pome disease (LOPD),

the pathogenic variant c.32-13T>G is the most com-

mon and is associated with a milder phenotype

[9,11,12,15]. In German LOPD patients, the c.-32-

13T>G mutation is also the most common. The mis-

sense mutations c.307T>G and c.877G>A are more

common in German patients than in the other Euro-

pean patients [16–18]. In individuals with LOPD, treat-

ment with ERT reduces muscle weakness, respiratory

insufficiency and mortality [19,20]. The GAA enzyme

defect leads to lysosomal and extra-lysosomal accumu-

lation of glycogen in striated muscles with disorganiza-

tion of myofibrillar architecture and loss of function of

the muscle cell [17,21–23]. In addition, disturbed

autophagy contributes to the muscle pathology and

autophagic vacuoles (AV) are frequently present in

muscle biopsies from patients with Pompe disease

[21,24–29]. ERT leads to glycogen clearance in skeletal

muscle from the individuals with IOPD and LOPD. Nev-

ertheless, severely abnormal microscopic findings in

skeletal muscle at the start of therapy are associated

with a worse clinical outcome [21,22,29,30]. Also,

muscle pathology can progress even on ERT, a phe-

nomenon, which is not well understood. The aim of

the present study was to analyse the muscle morphol-

ogy of 53 patients with LOPD in detail and compare

these findings with the clinical data. Histopathological

changes were correlated with individual genotypes in

37 patients. To our knowledge, this is the largest

cohort of detailed muscle biopsy analysis in LOPD, and

individual correlation of detailed muscle morphology

with the GAA genotype has not been described before.

Materials and methods

Patients

Patients with LOPD who underwent a muscle biopsy

were included in this study. In all 53 patients, a muscle

biopsy was taken for diagnostic purposes before ERT

was started. Muscle biopsy location was chosen based

on the clinical presentation of the myopathy

(Table S1). The diagnosis of Pompe disease was con-

firmed by a reduction in GAA enzyme activity and/or

genetic testing. We included all available muscle biopsy

tissue samples from confirmed Pompe patients though

the German Neuromuscular centre network. The

patients have been seen and examined at different

Pompe centres in Germany and resin embedded muscle

tissue and cryosections were provided from the associ-

ated laboratories. Clinical data were collected retrospec-

tively. Data on enzyme activity levels were available in

26 patients with samples derived from either dried

blood spot or muscle tissue. The GAA enzyme activity

levels were stated as the percentage of normal values.

The GAA mutations were available for 37 patients and

expected effects were categorized according to the
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Pompe Disease Mutation Database as potentially mild,

severe or unknown phenotype (Table 1) [4]. Clinical

data on the duration of symptoms prior to biopsy were

available in 30 patients. Serum creatine kinase (CK) at

the time of biopsy was available in 39 patients

(Table S1).

Muscle pathology analysis

Resin sections and transmission electron

microscopy Small samples were taken from open

muscle biopsies and fixed in 4% glutaraldehyde/

0.4MPBS and processed according to standard

procedures. One to two µm semithin sections were cut

from resin embedded tissue and stained with Periodic

acid-Schiff (PAS) and 2%-p-phenyldiamine (PPD) [21].

Morphometric analysis of glycogen accumulation, large

empty vacuoles (LEV) and pathology score were

performed on PAS-stained resin sections using a light

microscope equipped with a motorized stage and digital

camera with newCAST software as described before

[21]. In brief, the section was delineated and a point

grid containing 256 crosses was projected to each field

of view. For estimating glycogen deposits and LEV, the

area below the points were graded as PAS positive,

PAS negative or LEV and estimated as percentage of

total area [%/muscle fibre (MF)]. For estimating the

muscle score, area below the points were graded from

0 to 5 according to the previously described criteria

(grade 0 = normal, grade 1 = small PAS + vacuoles,

grade 2 = medium PAS + vacuoles, grade 3 = larger

PAS + vacuoles with myofibrillar disruption, grade

4 = larger PAS + vacuoles and LEV with myofibrillar

disruption, grade 5 = LEV with myofibrillar disruption)

(Figure S1A–C). A morpho-score was calculated (x%

grade0 9 0) + (x%grade1 9 1) + (x%

grade2 9 2) + (x%grade3 9 3) + (x%

grade4 9 4) + (x%grade5 9 5)/100 from these

findings expressed in grade 1–5 with 0 as lowest grade

demonstrating normal morphology [21].

Muscle fibres with AV (vacuoles with dark inclu-

sions) were analysed on PPD stained resin sections as

percentage of all MFs. Additionally, the degree of fibro-

sis was estimated semi-quantitatively on PAS stained

resin sections and rated from normal (0) to severe (3)

(Table S2). For contrast in transmission electron micro-

scopy (TEM), ultrathin sections were treated with 3%

lead citrate-3H20 with a Leica EM AC20 (ultrastain kit

II, Leica Microsystems, Wetzlar, Germany) and exam-

ined at a Zeiss EM109 TEM (Carl Zeiss Microscopy

GmbH, Jena, Germany) equipped with a sharp eye digi-

tal camera.

Histochemical, immunohistochemical and

immunofluorescence microscopy In a smaller cohort

(n = 22), unfixed muscle tissue was available for

additional enzymatic and immunohistological staining

for autophagy and lysosomal markers. Unfixed tissue

was snap frozen and 6 µm cryosections were stained for

the lysosomal enzyme, acid phosphatase according to

Table 1. Mutations in GAA in 37 patients were matched and

ranked according to the Pompe Disease Mutation Database

(http://www.pompevariantdatabase.nl/)

Patient Allele 1 Allele 2

P3 c.-32-13T>G c.525delT

P17 c.-32-13T>G c.525delT

P24 c.-32-13T>G c.525delT

P30 c.-32-13T>G c.525delT

P58 c.-32-13T>G c.525delT

P51 c.-32-13T>G c.525delT

P52 c.-32-13T>G c.525delT

P9 c.-32-13T>G c.794delG

P10 c.-32-13T>G c.794delG

P1 c.-32-13T>G c.1076-1G>A
P8 c.-32-13T>G c.1548G>A
P13 c.-32-13T>G c.2078_2079insA

P25 c.-32-13T>G c.2608C>T
P28 c.-32-13T>G c.1822

P34 c.-32-13T>G c.118C>T
P37 c.-32-13T>G c.2242G>T
P41 c.-32-13T>G c.271delG

P42 c.-32-13T>G c.118C>T
P11 c.-32-13T>G c.1495T>A
P12 c.-32-13T>G c.307T>G
P15 c.-32-13T>G c.1655T>C
P16 c.-32-13T>G c.925G>A
P18 c.-32-13T>G c.1942G>A
P19 c.-32-13T>G c.2055C>A
P20 c.-32-13T>G c.1829C>T
P21 c.-32-13T>G c.1064T>C
P22 c.-32-13T>G c.1075 G>A
P32 c.-32-13T>G c.1655T>C
P36 c.-32-13T>G c.655G>A
P4 c.-32-13T>G c.2407C>T
P6 c.-32-13T>G bp del (IVS16+102_IVS17+31)

P29 c.-32-13T>G c.1127delGGinsC

P23 c.-32-13T>G /

P27 c.-32-13T>G /

P14 c.1655T>C c.1478C>T
P40 c.1478C>T /

P53 536bpdel c.-32-13T>G

Red = severe; blue = mild; grey = unknown clinical phenotype.
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standard procedures [31]. Immunohistochemical

analysis was performed on cryosections using a Bench

Mark XT automatic staining platform (Ventana,

Heidelberg, Germany) with the following primary

antibodies: mouse monoclonal anti-microtubule-

associated protein 1A/1B-light chain 3 (LC3) (0231-

100/LC3-5F10, nanoTools, 1:100, Teningen,

Germany); mouse monoclonal anti-p62 (610832, BD

Biosciences, 1:500, Franklin Lakes, NJ, USA). The

following primary antibodies were used for

immunofluorescence: mouse monoclonal anti-desmin

(M076029-2, Agilent, 1:100, Santa Clara, CA, USA);

rabbit polyclonal anti-Bcl2-associated athanogene 3

(BAG3) (10599-1-AP, Proteintech, 1:500, Manchester,

UK). The secondary antibodies were: Alexa Fluor 568

goat anti-rabbit IgG (Life Technologies, 1:100, Carlsbad,

CA, USA) and Alexa Flour 488 goat anti-mouse (Life

Technologies, 1:500). The sections were mounted with

Fluoroshield mounting medium with DAPI (Abcam,

Cambridge, UK) and examined using a Nikon Eclipse

80i or Leica DM2000 fluorescence microscopes. The

intensity of acid phosphatase staining was estimated

semi-quantitatively and rated from normal or absent (0)

to strong (4), LC3 and p62 was estimated semi-

quantitatively and rated from normal or absent (0) to

strong (3). Muscle sections stained with antibodies

against desmin and BAG3 were estimated for BAG3

positive inclusions and rated from absent (0) to strong

(3).

Statistics Correlations between the morphological

score and clinical data and autophagy markers were

analysed by calculating the Spearman rank correlation

coefficient to asses a possible linear association between

two variables. To analyse differences between the

genetic combination with regard to score, age and

GAA enzyme activity Kruskal–Wallis-test was used.

Data were analysed using the R software package

(version 3.4.3 for Windows; https://CRAN.R-project.

org, R Core Team, [51]).

Results

Patients

Muscle biopsy specimens from 29 (55%) male, age at

biopsy varying between 16–78 years (median 46 year),

and 24 (45%) female patients, age at biopsy between

14–72 year (median 42 year), were analysed. The dis-

tribution of gender and age in this study was similar to

those in other studies [29]. Patients were 14�78 years

of age (n = 53, median 44 year) at time of biopsy, with

n = 29 (55%) between 30 and 50 years. Disease onset

was at 8–73 years (n = 33; median 39 year) with a

diagnostic delay to the time of biopsy and disease dura-

tion of 0–26 years (n = 33, median 5 year) (Figure 1A

and Table S1).

Muscle pathology

Morpho-score The analysis of the muscle biopsies

(n = 53) showed high variability in the morpho-score

[0.59 (0.07–3.77)], glycogen accumulation [4.73

(0.24–44.62) PAS+ %/MF], LEV [0.06 (0–10.09)

LEV%/MF] and AV [n = 48, 2.68 (0–27.56) AV%/MF].

Forty patients (75%) showed <10% PAS/MF glycogen

accumulation and 68% (36/53) a low morpho-score

(<1) (Figure 1B and Table S2).

The morpho-score significantly correlated with fibro-

sis (Spearman’s q = 0.46; P = 0.0006) showing

remodelling of connective tissue in severe stages. The

analysis of AV showed a significant positive correla-

tion with the morpho-score (Spearman’s q = 0.34;

P = 0.0173), highlighting the role of autophagy dur-

ing muscle pathology progression. The morpho-score

significantly correlated with glycogen accumula-

tion (PAS) (Spearman’s q = 0.86; P < 0.0001) and

LEV (Spearman’s q = 0.35; P = 0.01) as was to be

expected since both parameters are included in the

morpho-score (Figure 2).

TEM Samples with different degrees of pathology were

examined at the ultrastructural level. Muscle biopsies

with a low morpho-score mainly showed lysosomal

glycogen and normal sarcomeric architecture

(Figure 3A,C,E). Biopsies with high morpho-scores

showed massive lysosomal and non-lysosomal glycogen

deposits with sarcomere disorganization (Figure 3B,D,

F). Additionally, AV were more prominent in biopsies

with high morpho–scores, often accompanied by

abnormal mitochondria with increased variation of size

and disruption of cristae structure (Figure 4A–F). In

many biopsies with low morpho-scores, in addition to

lysosomal glycogen, intermyofibrillar glycogen was

present (Figure 5A,B). In biopsies with higher scores,

extra-lysosomal glycogen surrounding lysosomes was
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often seen in combination with autophagosomes with

double layered membranes and autophagic material

(Figure 5C,D).

Enzymatic staining for acid phosphatase and expression of

antibodies against autophagy markers p62, LC3 and

BAG3 Staining intensity of acid phosphatase and

expression of autophagy markers LC3 and p62 in 22

muscle biopsies showed a stronger upregulation in

muscle biopsies graded with a higher morpho-score

and increased AV. The analysis of the morpho-score

showed a significant positive correlation with p62

(Spearman’s q = 0.48; P = 0.031) and acid

phosphatase (Spearman’s q = 0.70; P = 0.0006)

compatible with increased autophagy during Pompe

disease progression (Figure S2A,B and Table S3).

Figure 1. Analyses of clinical data compared to muscle morphology. Patients analysed are equally distributed in gender (male 55%) with

no difference at age at biopsy. The age at symptom onset varies from 8 to 73 years (median 39 year) and age at biopsy from 14 to

78 years (median 44 year) with a duration of symptoms before biopsy of 0–26 years (median 5 year) (A). The majority of patients are

between 30–50 years old and have glycogen accumulation < 10 PAS%/muscle fibre (MF) (75%) and a low morpho-score < 1 (68%)

without differences in muscle morphology between different age groups (B). The superimposed box and whisker plots have been

constructed using the quartiles and medians (solid horizontal line within the boxes). The lines add 1.5 times the interquartile range (IQR)

to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile and are expected to include 99.3% of the data. They are

surrounded by violin plots showing the density distribution of the values.
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Double immunofluorescent staining against Z-band

proteins desmin and BAG3 was performed at 22 biop-

sies. In the majority of biopsies, small BAG3 positive

aggregates were present mainly in the core of well-pre-

served fibres and were increased in biopsies of high

p62 and LC3 expression. In comparison, in MFs with

large vacuoles (LEV), there was co-expression of desmin

and BAG3 in the peripheral area reflecting remnants of

Z-band structures and no BAG3 positive inclusions

were detected. At TEM, large autophagosomes were

mainly seen in the core of MFs with normal sarcomere

structures whereas they were not present in MFs with

abundant LEV (Figure S4). These findings suggest that

BAG3 plays a role in early, but not late stage in the

single MF pathology. Interestingly, one patient (P28)

with a high number of AV showed high expression of

LC3, p62 and BAG3 consistent with increased autop-

hagy even at a moderate score (0.38) and glycogen

Figure 2. Correlation matrix of morpho-score, glycogen accumulation, large empty vacuoles (LEV), autophagic vacuoles (AV) and

fibrosis obtained from the muscle biopsies. For estimating the muscle pathology PAS and 2%-p-phenyldiamine stained resin sections were

analysed by a recently established morpho-score. Upper triangular part of the matrix shows the Spearman correlation coefficients

(Spearman’s rho with significance levels associated to a symbol (P-values: ***<0.001, **<0.01, *<0.05) or conditional (split according to

levels) boxplots. The distribution of each variable is shown on the diagonal (green). Lower triangular part of the matrix shows the

bivariate scatterplots (green) with a fitted line (black) and the confidence interval of the line (grey) or histograms were separated

according to levels. The morpho-score significantly correlates with fibrosis and AV showing remodelling of connective tissue and

increased autophagy during muscle pathology progression (bold).
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accumulation (4.19%). The biopsy was taken at

14 years of age (the youngest patient in the study)

with the GAA mutations c.-32-13T>G, c.1822C>T (Fig-

ure S3 and Table S3).

Muscle pathology and clinical findings The morpho-score

showed no significant correlation with the age at

biopsy, disease duration (years from first symptoms to

biopsy) and GAA enzyme activity (n = 26), 18% (3.8–

39%) (P > 0.3) and CK levels [n = 39, median 536,

(96–1767 U/I)] CK levels showed a significant negative

correlation with the age at biopsy (Spearman’s

q = �0.54; P = 0.0004) (Figure 6).

Genotype, clinical phenotype and muscle morphology

type In 37 patients, 26 known pathogenic mutations

in GAA were detected. Among those, the majority

(95%) were the common splice site mutation c.-32-

13T> G, followed by the deletion mutation c.525delT

(19%). Other mutations were c.1655T>C (8%),

c.1478C>T (5%), c.118C>T (5%) and c.794delG (5%).

The most common combination (n = 7, 19%) was c.-

(A) (B)

(C) (D)

(E) (F)

Figure 3. Muscle biopsy specimens from two patients with different grade of muscle pathology. P16 demonstrates a low morpho-score of

1.02 with moderate increased spectrum of muscle fibre (MF) diameters without endomysial fibrosis (PAS%/MF = 7.04, LEV = 0.48 and

AV = 0.45) (A). On ultrastructural analysis, P16 shows lysosomal glycogen and small extra-lysosomal glycogen deposits (C). The

sarcomere architecture is mostly well organized with only a few dispersed Z-bands and marginal mitochondrial pathology with

aggregation and deranged cristae (E). P30 shows a high morpho-score of 2.23 with increased MF size variation and pronounced

endomysial fibrosis (PAS%/MF = 19.29, LEV%/MF = 3.41 and AV%/MF = 27.56) (D). On ultrastructural analysis, P30 shows lysosomal

and extra-lysosomal glycogen (D) with disorganization of the sarcomeric structures with Z-band streaming (F) (A,B: PAS stained resin

sections). (PAS, Periodic acid-Schiff; LEV, large empty vacuoles; AV, autophagic vacuoles).
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32-13T>G together with c.525delT. In three patients

(8%), only a single mutation on one allele was

identified (Figure 7 and Table 1).

We were interested in comparing genotype data to

the clinical phenotype and muscle morphology data.

Therefore, the mutations in GAA were ranked accord-

ing to the Pompe Disease Mutation Database (http://

www.pompevariantdatabase.nl/) as ‘severe’ (very sev-

ere mutation), ‘mild’ (potentially less severe mutation)

or ‘unknown’ phenotype [2–4]. Applying this ranking

clustered the patients into six different groups (score

and age shown as medians): patients with two muta-

tions predicted to be ‘mild’ [n = 11, score: 0.53 (0.07–

2.9), n = 9 age of onset: 43 year (15-73 year)],

patients with one mutation predicted to be ‘mild’ and

one to be ‘severe’ [n = 18, score 0.70, 0.14–2.23,

n = 15, age of onset, 36 (13–55 year)], patients with

one mutation predicted to be ‘mild’ and one ‘unknown’

(A) (B)

(C) (D)

(E) (F)

Figure 4. Estimation of glycogen accumulation and AV in muscle biopsy specimens from a patient with a high morpho-score. Disturbed

autophagy is a hallmark of Pompe disease and AV increase with the morpho-score and glycogen accumulation. On resin sections,

autophagy can be estimated by the amount of the AV and LEV. Patient (P2) with a high morpho-score of 3.77 with an abundant

glycogen accumulation (PAS%/MF = 44.6%), vacuoles (AV = 18.43, LEV = 10.09), and endomysial fibrosis (grade 2): pronounced

muscle pathology and massive glycogen accumulation in PAS-stained sections (A) with prominent AV detectable in PPD stained sections

with dark inclusions (B). Transmission electron microscopy shows AV containing myelin-like structured debris (C,D), and are located

adjacent to the sarcomeres or massive glycogen deposits (C,E). Mitochondria are focally accumulated and swollen with disrupted internal

cristae structures (F). (PAS, Periodic acid-Schiff; LEV, large empty vacuoles; AV, autophagic vacuoles; PPD, p-phenyldiamine).
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[n = 3, score 0.37 (0.13–1.57), n = 3, age of onset:

43 year (27–58 year)] and patients with one mutation

predicted to be ‘mild’ only [n = 2, score 1.39 (0.94–

1.84), age of onset 22 year (12–32 year)], patient with

one ‘unknown’ and one predicted to be ‘mild’ (n = 1,

score 0.71, age of onset 55 year) and ‘unknown’ muta-

tion at one allele (n = 1, score 0.87, age at onset

49 year) (Table 1 and Figure 7). The ranked means of

the allele combinations for morpho-score, disease onset

and GAA enzyme levels were equally distributed as the

p-values did not meet statistical significance (P > 0.4).

In particular, the ranked means of the most common

combination of mutation c.-32-13T>G; c.525delT

[n = 7, score 0.94, 0.14–2.23; age of onset: 45 year,

(20–55 year)] for score, disease onset and GAA enzyme

levels were equally distributed compared to mutation

combination c.-32-13T>G and other [n = 28, score:

0.59 (0.07–2.9), n = 22, age of onset: 39 year (13–

73 year)] and combination non c.-32-13T>G and other

[n = 3, score 0.87 (0.71–1.57), n = 2, age of onset:

33.5 year (27–40 year)] (Figure 7).

Additionally, no significant differences were detect-

able analysing the vacuoles (AV or LEV) with respect

to the GAA genotype (Figure S5).

Discussion

Investigation of muscle biopsies gives a great opportu-

nity to analyse disease pathogenesis and may add to

the understanding of the broad clinical variability in

LOPD. The aim of our study was a detailed analysis of

muscle morphology from a large cohort of patients

with LOPD before the start of ERT and comparison of

these findings to the clinical, laboratory (GAA enzyme

activity, CK levels) and pathogenic variants in GAA.

For grading the muscle pathology, we used a mor-

pho-score, which we had already established on resin

embedded biopsies from patients with IOPD [21]. The

morpho-score includes, in addition to glycogen accu-

mulation, myofibrillar disruption and LEV as a feature

of disturbed autophagy. In IOPD patients, a lower score

reflecting less pathology is associated with a better

(A) (B)

(C) (D)

Figure 5. Lysosomal and extra-lysosomal glycogen deposits and autophagosomes at transmission electron microscopy. Muscle biopsy

P47 with a moderate score = 1.59 and glycogen accumulation of PAS%/MF = 30.1% shows frequent extra-lysosomal glycogen with no

severe disturbance of sarcomeric structures (A,B). Muscle biopsy from P30 with a high score = 2.23 with frequent enlarged glycogen

containing lysosomes, extra-lysosomal glycogen and large autophagosomes (C,D) (Lys, lysosome; AP, autophagosome).
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response to ERT with recombinant GAA, whereas

patients with a high morpho-score have a limited ERT

response [21]. The data are in line with other reports

showing a worse response to therapy in patients with

severely damaged MFs with worse pathology indicating

the need for early therapy in patients with minor

Figure 6. Correlation matrix of morpho-score, age at biopsy, disease duration, creatine kinase (CK) and alpha 1,4-glucosidase (GAA)

residual enzyme activity obtained from the patients. Upper triangular of the matrix shows the Spearman correlation coefficients

(Spearman’s q) with significance levels associated to a symbol (P-values: ***<0.001, **<0.01, *<0.05). The distribution of each variable is

shown on the diagonal (red). Lower triangular part of the matrix shows the bivariate scatterplots (red) with a fitted line (black) and the

confidence interval of the line (grey). The morpho-score shows no significant correlation with clinical symptoms and GAA residual

enzyme activity, CK levels are significantly negative correlated with the age at biopsy.

Figure 7. Analyses of alpha 1,4-glucosidase (GAA) mutations compared to muscle morphology and clinical data. Boxplots of the

individual morpho-score to GAA mutation combination. The combinations for each subject are shown as points, and the box and whisker

plots show the quartiles and medians (solid horizontal line within the boxes). The whiskers add 1.5 times the interquartile range (IQR) to

the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. According to the Pompe Disease Mutation Database,

mutations were ranked as mild (potential less severe mutation); severe, (very severe mutation); unknown, (unknown mutation) and no

single nucleotide polymorphism (SNP). The global differences between the individual scores to mutation combination did not meet

statistical significance (P > 0.1). The ranked means of the GAA allele combinations for (A) morpho-score, (B) disease onset and (C) GAA

residual enzyme activity are equally distributed.
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pathology [30]. But even early therapy does not predict

a good clinical outcome in all patients [10,32,33].

However, the underlying reason why the efficiency of

therapy is restricted is not fully understood. Here, we

translate this morpho-score to the muscle analysis in

LOPD. Although, muscle pathology in LOPD patients

has been reported earlier, our cohort encompasses the

highest number of tissue specimens investigated in

detail so far [17,22,23,29]. In our study, LOPD muscle

biopsy samples show a high variability in muscle mor-

phology. Interestingly, 75% of the specimens have

minor muscle damage with a glycogen accumulation of

<10% and a morpho-score below grade 1. On average,

the morpho-score is much lower in LOPD compared to

IOPD, which shows muscle pathology before the start

of ERT with scores up to 4, as expected by a higher

residual GAA enzyme activity in LOPD [17,21]. Muscle

biopsies from LOPD patients can show a subtle pathol-

ogy and sometimes are graded as unspecific on PAS

stained cryosections [34]. In the present study,

although in four patients the morpho-score was low,

glycogen containing vacuoles were present in all of

them on PAS-stained resin sections.

Treatment with recombinant GAA leads to decreased

intra-lysosomal glycogen accumulation [35]. In our

study even in muscle biopsy specimens with a low mor-

pho-score, extra-lysosomal glycogen was detectable, but

without major disruption of the sarcomeric structure.

Whereas high morpho-scores were associated with

large extra-lysosomal glycogen deposits and severe sar-

comeric disorganization. The morpho-score and glyco-

gen accumulation correlated with increased endomysial

fibrosis, informing about severe stages of muscle dam-

age with increased connective tissue replacement.

Recently, analyses of glycogen clearance in LOPD mus-

cle samples showed that free extra-lysosomal cytoplas-

mic glycogen persisted in post-treatment biopsy

specimens, suggesting that ERT treatment may have

been introduced too late, but neither fibrosis nor sar-

comeric disorganisation was described [22].

The age and gender distribution of our cohort reveals

a median age of 41 years, 55% of patients were male

patients and a diagnostic delay of 5 years, consistent

with other reports [9,17,29]. Correlating muscle

pathology with disease duration shows that patients

with longer disease duration do not have more severe

muscle tissue damage. These data underscore the clini-

cal heterogeneity and indicate that additional factors

may contribute to disease progression and severity.

Interestingly, serum CK levels were lower in older

patients, possibly related to disease associated muscle

atrophy.

In mechanically strained striated MFs, autophagy is

an important process for normal cell function, and dys-

function of autophagy plays a major role in disease

progression in lysosomal myopathies [24,36]. In Pompe

disease, autophagy is impaired with autophagic buildup

of various degree in both IOPD and LOPD showing

large vacuoles and increase of autophagy markers, LC3

and p62, which might accelerate the muscle damage

[37–39]. Large vacuoles and large glycogen deposits

remain unchanged on ERT treatment, whereas a reduc-

tion in glycogen is associated with a reduction in vac-

uolated fibres [29].

Therapeutic benefits by modifying autophagy in

Pompe disease have been demonstrated in several ani-

mal models [40–43]. In our study, buildup of autop-

hagy showed a significant positive correlation with the

morpho-score and glycogen accumulation, highlighting

the role of autophagy in severe stages of LOPD muscle

pathology. The autophagic markers, LC3 and p62 cor-

related with the lysosomal enzyme acid phosphatase

and were increased in muscle biopsies with more severe

pathology. Tension induced accumulation of proteins

in skeletal MFs are degraded by chaperone-assisted

selective autophagy in which the co-chaperone BAG3

plays an important role [44]. Interestingly in our study,

small BAG3 positive inclusions were present mostly in

the core of preserved MFs suggesting that BAG3 is

involved in early events and not at late stage pathol-

ogy. BAG3 has been found to be located inside

autophagosomes and triggers the autophagy of ubiqui-

tinated clients [45], which is in line with large

autophagosomes found at ultrastructural analysis in

MFs in our study. These observations also fit well with

autophagic buildup observed in the core of the MFs in

GAA mice [37]. The autophagic buildup seems to dis-

rupt sarcomere structure and leads to loss of muscle

force rather than buildup of glycogen filled lysosomes

[46]. Further studies are necessary to investigate the

role of BAG3 in the autophagic process in Pompe dis-

ease in more detail.

Countries with new-born screening for Pompe dis-

ease are increasing and in addition, to the early genetic

diagnosis of IOPD, a large number of mutations in GAA

associated with LOPD are being detected and are of an
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uncertain clinical outcome [47,48]. Over 500 different

pathogenic GAA mutations are known and affected

individuals show high phenotypic variability despite

sharing the same GAA mutations, even within a family

[3,7,32]. Until now, only a few factors such as angio-

tensin enzyme polymorphisms have been reported to

modify the individual Pompe disease phenotype [5].

The c.-32-13T>G mutation is the most common GAA

mutation in Europe. In individuals with compound

heterozygous mutations, disease manifestation may be

highly variable regarding both age of onset and initial

symptoms [4,6,7,16,49,50]. In our cohort of 37 Ger-

man LOPD patients, 95% are compound heterozygous

with the c.-32-13T>G mutation on one allele, and

show symptom onset at a mean age of 39 years (12–

73 year), consistent with published data [4]. The high

variability of mutations affecting the second allele, with

the most common combination being with c.525delT

in 19% in our patients along with several other less

common mutations, makes correlative analysis difficult.

Our analysis does not show differences in the morpho-

score or disease onset between different allele combina-

tions. Therefore, we ranked the phenotype of the muta-

tions according to the Pompe mutation database. We

studied different allele combinations to elucidate

whether patients with different combinations had dis-

tinct clinical features, ages of onset or muscle pathol-

ogy [2]. The majority of the LOPD patients had a

combination of a mild with a severe GAA (49%). How-

ever, clinical findings and muscle morphology do not

relate to the genetic findings in the investigated patient

group. Therefore, a genotype–phenotype correlation

cannot be defined.

Conclusion

The detailed analysis of muscle morphology in a large

cohort of patients with LOPD reflects high variability of

muscle tissue damage. This variability is accompanied

by moderate glycogen accumulation and a low mor-

pho-score in most patients. High morpho-scores are

associated with increased fibrosis and autophagy. This

highlights the role of autophagy in severe stages of

muscle tissue damage. Comparing muscle morphology

and genetic findings reveals no meaningful genotype–

phenotype correlations. This emphasises the putative

relevance of yet unknown genetic modifiers indepen-

dent of the GAA mutational spectrum. Transcriptomics,

proteomics and metabolomics studies need to be per-

formed to address these open questions.
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online version of this article at the publisher’s web-site:

Figure S1. For estimating the morpho-score Periodic

acid-Schiff (PAS) stained resin sections were graded

from 0 to 5: grade 0 = normal, grade 1 = small

PAS + vacuoles, grade 2 = medium PAS + vacuoles,

grade 3 = larger PAS + vacuoles with myofibrillar dis-

ruption, grade 4 = larger PAS + vacuoles and large

empty vacuoles (LEV) with myofibrillar disruption,

grade 5 = LEV with myofibrillar disruption (A). Muscle

sections show muscle fibres with different grading close

to each other (B,C). (A–C: PAS stained resin sections,

magnification 9 400).

Figure S2. Staining intensity of acid phosphatase and

expression of autophagy markers microtubule-associ-

ated protein 1A/1B-light chain 3 and p62 in patients

with different morpho-scores. Muscle biopsies with a

higher morpho-scores shows increased expression com-

pared to muscle biopsies with a lower score (A). Corre-

lation matrix of score, Periodic acid-Schiff (PAS), large

empty vacuoles (LEV), autophagic vacuoles (AV) and

fibrosis obtained from the muscle biopsies. Upper trian-

gular part of the matrix shows the spearman correla-

tion coefficients (Spearman’s rho with significance

levels associated to a symbol (P-values: ***<0.001,

**<0.01, *<0.05). The distribution of each variable is

shown on the diagonal (blue). Lower triangular part of

the matrix shows the bivariate scatterplots (blue) with

a fitted line (black) and the confidence interval of the

line (grey) The morpho-score shows a significant posi-

tive correlation with p62 and acid phosphatase com-

patible with increased autophagy and lysosomal

activity during muscle pathology progression (B).

Figure S3. With double immunofluorescent staining

against Z-band proteins desmin (green) and Bcl2-associ-

ated athanogene 3 (BAG3) (red) small BAG3 positive

inclusions in the core of muscle fibres (MFs) can be

detected mostly in well-preserved MFs and are

increased in muscle biopsies with high expression of

microtubule-associated protein 1A/1B-light chain 3

and p62. In vacuolated fibres sarcomeric remnants

show co-expression of desmin and BAG3 (yellow) and

no larger BAG3 positive inclusions.

Figure S4. Ultrastructural analysis of muscle biopsies in

which immunofluorescence staining against Bcl2-asso-

ciated athanogene 3 (BAG3) was performed: large

autophagosomes are located mainly in the muscle fibre

(MF) core. Only focal loss of Z-bands is noted at higher

magnification accompanied by swollen microtubules,

small vacuoles and intra- and extra-lysosomal glycogen

(P53). In single MFs with more severe sarcomere disar-

ray or large areas of glycogen accumulation no

increased large autophagosomes are present (P33,

P41). Muscle fibres with upregulation of microtubule-

associated protein 1A/1B-light chain 3 expression show

increased numbers of large autophagosomes (P30).

Figure S5. Analyses of alpha 1,4-glucosidase (GAA)

gene mutations compared to muscle morphology and

clinical data: Boxplots of the individual morpho-score

to GAA gene mutation combination. The combinations

for each subject are shown as points, and the box and

whisker plots show the quartiles and medians (solid

horizontal line within the boxes). The whiskers add 1.5

times the interquartile range (IQR) to the 75th per-

centile or subtract 1.5 times the IQR from the 25th

percentile. The global differences between the individ-

ual scores to mutation combination did not met statisti-

cal significance (P > 0.1). According to the Pompe

Disease Mutation Database mutations were ranked as

mild (potential less severe mutation); severe, (very sev-

ere mutation); unknown, (unknown mutation) and no

single nucleotide polymorphism (SNP) (AV, autophagic

vacuoles; LEV, large empty vacuoles). No significant dif-

ferences are detectable analysing the vacuoles (AV or

LEV) with respect to the GAA genotype.

Table S1. Clinical data and genetic background of the

patients with late onset Pome disease.

Table S2. Morphological data of the patients with late

onset Pome disease.

Table S3. Analysis of autophagy markers in patients

with late onset Pome disease.
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