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Zusammenfassung

Im Rahmen dieser Arbeit wird die Struktur von exotischen und überschweren

Kernen mit Hilfe eines relativistischen Ansatzes untersucht, bei dem die relativis-

tische Mesonen-Feldtheorie eine zentrale Rolle spielt. Bei dem relativistischen

mean-field (RMF) Modell wird die Wechselwirkung der Nukleonen miteinan-

der über den Austausch verschiedener effektiver Mesonen (Skalar, Vektor und

Isovektor-Vektor) beschrieben. Das exakte Dichtefunktional des stark wechsel-

wirkenden Systems wird angenähert, indem die mesonischen Felder auf ihre gemit-

telten Feldwerte begrenzt werden. In den meisten RMF Rechnungen wird weiter-

hin die “no-sea” Näherung verwendet, das heißt, antinukleonische Freiheitsgrade

werden nicht berücksichtigt. Es wurde gezeigt, dass das RMF Modell ähnlich

flexibel und vielseitig ist wie nicht-relativistische Modelle mit dem Vorteil, dass

einige relativistische Effekte, wie zum Beispiel die Spin-Bahn Wechselwirkung,

automatisch auftreten und das RMF Modell die Kernsättigung erklären kann

[Due56, Mil72, Wal74]. Ein Programm auf der Basis des RMF Modells wurde

dahingehend angepaßt, dass die selbstkonsistenten Dirac (für die Nukleonen und

Lambda-Teilchen) und Klein-Gordon (für die Mesonen) Gleichungen im Rahmen

der sphärischen und axial deformierten Näherung numerisch gelöst werden kon-

nten. Vorher war bereits gezeigt worden, dass das Modell endliche Kerne und

Sättigungseigenschaften von Kernmaterie korrekt beschreibt. [Sch02]

Die Elemente mit geraden Ladungszahlen Z (von 8 bis 120) und ihre Eigen-

schaften für alle möglichen, geraden Neutronenzahlen wurden untersucht und

mit drei verschiedenen Sätzen von Parametern (ChiM[Sch02], NLZ-2[Bür02b]

und NL3 [Lal97]) berechnet. Die RMF Modelle (NL3 und NL-Z2) sind bei

der Beschreibung der Eigenschaften von Kernen über einen großen Bereich von

Massenzahlen sehr erfolgreich, das besondere Merkmal von NL-Z2 ist dabei die

niedrige Inkompressibilität. Das chirale Modell (ChiM) benutzt eine chirale Sym-

metrie und wurde entwickelt, um eine gute Beschreibung der Kernsättigung und

eine annehmbare Beschreibung von Kernen und Hyperkernen mit einem einzigen

Modell und einem Satz von Parametern zu ermöglichen. Die nukleare Asymme-

trieenergie in den ChiM Parametern liegt nahe an dem empirischen Wert. Bei
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einer Testrechnung ergab sich eine gute Übereinstimmung zwischen dem chiralen

Modell (ChiM) und experimentellen Ergebnissen [Fis00] bezüglich des Grundzu-

standes von 68Se mit starker oblater Deformation (β2 ∼ -0.3).

Mit Hilfe der RMF Theorie und drei verschiedenen Parametersätzen haben wir

die Eigenschaften und Synthesemöglichkeiten von exotischen und überschweren

Kernen im Bereich bis zur Dripline untersucht. Wenn einem Kern an der nuk-

learen Stabilitätslinie schrittweise mehr Neutronen zugefügt werden, wird die

Bindungsenergie des letzten Neutrons immer geringer, bis es nicht mehr gebunden

ist und der Kern durch Neutronenemission zerfällt. Ein Kern, der keine weiteren

Neutronen binden kann, befindet sich auf der so genannten Neutronen-Dripline,

deren Gegenstück die Protonen-Dripline ist. Ein instabiler Atomkern jenseits der

Neutronen-Dripline gibt freie Neutronen ab, und die Separationsenergie des Neu-

trons ist auf der Dripline gleich Null. Die Protonen- und Neutronen-Driplines

definieren die Grenzen der Existenz von endlichen Kernen. Die Untersuchung

von Kernen nah an der Neutronen-Dripline hilft beim Verständnis von stellarer

Nukleosynthese und Neutronensternen in der nuklearen Astrophysik. Der Verlauf

der Dripline ist nach wie vor nicht genau bestimmt, und seine experimentelle und

theoretische Bestimmung ist ein Problem von großem Interesse in dem Gebiet

der Kernstrukturforschung. Die Driplines, unter Berücksichtigung axialer Defor-

mation (mit Hilfe des ChiM Parametersatzes) wurden für Kerne mit 8 ≤ Z ≤

120 berechnet. Für die Ketten von Isotopen mit magischer Protonenzahl sind die

stabilsten Kerne in unseren Rechnungen nicht die mit magischer Neutronenzahl,

abgesehen von Z = 20. Dieses Ergebnis ist im Einklang mit dem einer vorange-

gangenen Rechnung mit dem Parametersatz NL3. Für größere Kerne können

wir die Protonen und Neutronen Driplines klarer festlegen als in Rechnungen mit

dem Parametersatz NL3. Bei unseren Rechnungen (wie auch bei Rechnungen mit

NL3) mit axialer Deformation finden wir geschlossene Neutronenschalen für die

magischen Neutronenzahlen (N = 82, 126, 184).

Die Untersuchung von protonen- und neutronenreichen Kernen bis zu den

Proton- und Neutron-Driplines ist ein besonderer Schwerpunkt dieser Arbeit.

Wir haben eine systematische Untersuchung von 1661 Kernen durchgeführt,

um zum ersten Mal überhaupt die Hypothese der axialen Deformation von

gerade-gerade-Kernen (8 ≤ Z ≤ 100) mit unterschiedlichen Neutronenzahlen im

Rahmen der RMF-Theorie mit dem ChiM Parametersatz zu überprüfen. Die

Protonen Quadrupoldeformationsparameter β2p für die Kerne (8 ≤ Z ≤ 100)

wurden vorher mit Hilfe des RMF-BCS Modells und der FRDM und HFB-2

Massenformeln berechnet. Aus unserer systematischen Untersuchung lässt sich

schliessen:
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1) Die meisten sphärischen Kerne (-0.05 ≤ β2 ≤ 0.05) befinden sich bei oder in

der Nähe der magischen Zahlen.

2) Während in den isotonischen Ketten mit den bekannten magischen Neutro-

nenzahlen (N = 82, 126, 184) die sphärische Form des Kerns erhalten bleibt,

werden die Kerne mit magischen Protonenzahlen deformiert, wenn man sich

entlang der isotopischen Ketten von den magischen Neutronenzahlen wegbewegt

(Ausnahmen bilden die isotopischen Ketten mit Z = 8 und 20). Über die

Berechnung der axialen Deformation für 8 ≤ Z ≤ 100 lassen sich ausserdem

semi-magische Zahlen (Z = 40, 172, 182, 186 ) und die wohlbekannten doppelt-

magischen Kerne (16O, 40Ca, 48Ca, 132Sn, 208Pb), abgesehen von der isotonischen

Kette mit Z = 28, identifizieren. Bei den Blei-Isotopen finden wir zwei neue

doppelt-magische Kerne: 262Pb und 264Pb (N = 180, 182).

3) Unter den Pb-Isotopen befinden sich oblat deformierte Kerne (β2 ∼ -0.2) in

der Nähe der Protonen-Dripline. Einige neutronenreiche Pb Isotope sind axial

prolat deformiert (0.2 ≤ β2 ≤ 0.3), alle anderen Pb Isotope haben sphärische

Form.

4) Die meisten prolat deformierten Kerne beobachten wir bei Protonenzahlen ab

Z = 50, isotonisch oder isotopisch von den magischen Zahlen entfernt.

5) Es gibt ausserdem Regionen, in denen starke Deformationen beiden Typs

(prolat und oblat) auftreten. Os und Pt Isotope (Z = 76 und 78) weisen eine

große Anzahl von axial prolaten Deformationen auf, ausser in der Nähe von

(N = 126).

6) In der Nähe der Neutronen-Dripline von Cf (Z = 98) und der Protonen und

Neutronen Driplines von Fm (Z = 100) haben wir Isotope mit superdeformierten

Zuständen (0.7 ≤ β2 ≤ 0.8) gefunden.

7) Relativ stark oblat deformierte Kerne sind selten, aber es gibt einige Bereiche

oblater Deformation in der Nuklidkarte, wovon eine nun gekennzeichnet werden

soll. Diese oblate Region liegt zwischen den isotonischen Ketten der Zn (Z = 30)

und Kr (Z = 34) Isotope, die Deformation dieser Kerne ist stark ausgeprägt (0.2

≤ β2 ≤ 0.3)

Axial deformierte Kerne auf der Protonen- und Neutronen-Dripline bei Mag-

nesium wurden im Rahmen der RMF Theorie mit dem ChiM Parametersatz
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berechnet. Das Auftreten oblater und prolater Minima für verschiedene Isotope

bei diesen Rechnungen stimmt mit den Ergebnissen anderer relativistischer und

nicht-relativistischer mean-field Rechnungen überein [Lal98, Bür02a].

Kenntnisse über Kerne weit ausserhalb des Bereichs der exotischen Kerne können

nicht nur dabei helfen, die Elementhäufigkeit auf der Erde zu verstehen, sondern

auch Aufschluss über die Entwicklung von Materie im Universum geben. Exotis-

che Kerne haben durch ihren hohen Isospin und andere interessante Eigenschaften

wie z.B. Halo und Neutronenhaut weltweit Aufmerksamkeit auf sich gezogen. Die

RMF Theorie mit dem ChiM Parametersatz kann den Neutronenhalo von 34Ne

und die Dicke der Neutronenhaut einer Reihe von Isotopen um Z = 40 sowie von

Sn und Pb Isotopen vorhersagen. Der Neutronenhalo und die Dicke der Neu-

tronenhaut werden über die Berechnung der Dichteverteilung und der Differenz

zwischen den Mittelwerten der Protonen- und Neutronenradien bestimmt. Die

berechneten Grundzustandseigenschaften dieser exotischen Kerne, wie z. B. die

Bindungsenergie pro Nukleon und die Zwei-Neutronen-Separationsenergie stim-

men gut mit den experimentellen Werten [Aud03] und FRDM [Möl95] Rechnun-

gen überein.

Es ist interessant, die Deformation von Blei-Isotopen zu untersuchen. Wir

beobachten, dass die niedrigsten drei Zustände im Energiespektrum des neutro-

nenarmen Kerns 186Pb sphärisch, oblat und prolat deformiert sind, siehe Abb.

4.16, und unsere Ergebnisse stimmen mit denen einer anderen dreidimensionalen

Rechnung [And00] überein. Potentialkurven für 190−204Pb weisen bemerkenswert

hohe Anregungsenergien relativ zu den niedrigen Superdeformationsbanden (SD

Banden) und flache Potentialtöpfe um das SD Minimum auf. Im Vergleich zu be-

nachbarten Kernen zeichnet sich 192Pb dadurch aus, dass es schwierig ist, einen

stabilen SD Zustand zu bilden. Die SD Zustände können für diese Kerne aber

trotzdem beobachtet werden, wobei es eine vernünftige Übereinstimmung zwis-

chen der RMF Theorie (mit den Parametersätzen NL3, PK1, TM1 und NLSH)

[Guo06] und den experimentellen Beobachtungen gibt. Die berechnete Deforma-

tion in den SD Minima von 190−204Pb liegt zwischen 0.6 und 0.7.

Die RMF Theorie mit dem ChiM Parametersatz kann nicht nur für normale

Kerne sondern auch für Hyperkerne benutzt werden. Dazu wurden die Rech-

nungen für exotische Kerne mit hinzugefügten Λ Hyperonen wiederholt. Ein Λ

besteht aus jeweils einem u, d und s Quark, und ein Hyperkern entsteht, wenn

ein solches Hyperon in einem Kern gebunden wird. Hyperkerne mit einem Hy-

peron wurden vor 30 Jahren entdeckt und seitdem intensiv experimentell unter-

sucht [Pov76]. Die Lambda-Hyperkerne sind besonders gut dafür geeignet, die

Struktur der Kerne zu untersuchen, da das Lambda-Teilchen stark mit dem Kern

wechselwirkt und sich von den Nukleonen unterscheiden lässt. Die axiale De-
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formation von Ne Isotopen mit und ohne Λ Hyperon wird verglichen. Aus den

Rechnungen lässt sich schliessen, dass deformierte Kerne das Ausmaß der De-

formation durch den Einschluss eines Λ Hyperons ein wenig vermindern können.

Andererseits verändert der Einschluss eines Λ-Hyperons die “bulk Eigenschaften”

nicht übermässig, stabilisiert aber neutronenreiche Kerne und verschiebt dadurch

die Neutronen-Dripline. Mit Hilfe der RMF Theorie und dem Parametersatz

ChiM sagen wir die Existenz von hyperonischen Kohlenstoffisotopen voraus. Das

Hinzufügen von zwei Λ-Hyperonen zum 12C Kern ändert die Nukleonendichtev-

erteilung nicht, und die Hyperonendichteverteilung am Rand des Kerns ist mit der

der Nukleonen vergleichbar. Bei dem Kohlenstoffisotop, das durch Hinzufügen

von drei Λ-Hyperonen zum Kern gebildet wird, sagen wir einen Hyperonhalo

vorher, da es Anzeichen dafür gibt, dass der Schwanz der Hyperonendichtev-

erteilung weit aus dem Kern herausreicht.

Die Bestimmung der Protonen und Neutronen Driplines wird in dieser Arbeit

ausführlich diskutiert. Dieselbe Rechnung wurde anschliessend mit einem Λ Hy-

peron im Kern wiederholt. Das Λ Hyperon ist ausgezeichnet dafür geeignet, die

Struktur des Kerns zu untersuchen, da es sich im Zentrum des Kerns befindet.

Durch die Berechnung der Driplines mit dem RMF Modell lässt sich die Ver-

schiebung der Driplines von normalen Kernen zu Hyperkernen mit einem Lambda

untersuchen, was für die geplanten Experimente bei FAIR/GSI in dem Bereich

der sehr neutronenreichen Hyperkerne von Interesse sein könnte. Abgeschlossene

Schalen zeigen sich unter Einbeziehung eines Λ Hyperons bei den magischen

Zahlen 82, 126, 184 so, dass die Hyperkerne mehr Neutronen aufnehmen können

und somit eine höhere Bindungsenergien als normale Kerne haben.

Den Abschluss dieser Arbeit bildet die Untersuchung von überschweren Kernen.

Die RMF Theorie mit den drei unterschiedlichen Parametersätzen (ChiM, NL3,

NL-Z2) wird besprochen. Basierend auf einer detaillierten Analyse der zwei-

Nukleonen Separationsenergien S2n und S2p und der zwei-Nukleonen Schalen-

Gaps δ2p und δ2n mit den effektiven Wechselwirkungen ChiM, NL3 und NL-Z2

wurden die Protonen und Neutronen Schalenabschlüsse vorhergesagt. Die Pro-

tonenzahlen Z = 114, 120 und Neutronenzahlen N = 172, 184, 258 sind bei allen

drei effektiven Wechselwirkungen magisch. Der Grundzustand der überschweren

Kerne variiert mit dem Parametersatz, das ergibt eine Berechnung der Poten-

tialhyperflächen. Für diese Kerne ist daher interessant, unser Modell mit axialer

Deformation auf eine vollständige dreidimensionale Rechnung auszudehnen, mit

deren Hilfe man die Lage des Grundzustandes besser bestimmen könnte.
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Introduction

1.1 Objectives

The enlargement of the Nuclear Chart poses a challenge and an opportunity

for nuclear physics, offering a better understanding of the isospin dependence of

nuclear forces and stellar nucleosynthesis. The objective of this study is to inves-

tigate exotic nuclei and the structure of superheavy elements within meson field

theory. The GSI is the only accelerator laboratory in the world with the capacity

to investigate these nuclei throughout the entire periodic table: from hydrogen,

the lightest element, to the superheavy elements. Discovery of new superheavy

elements can support long-held nuclear theories regarding the existence of the

island of stability and the ultimate limits of the periodic table of the elements.

These discoveries also provide scientists a better understanding of how nuclei are

held together and how they resist the fission processes and α decay.

The production and investigation of exotic nuclei have become one of the cen-

tral topics of interest in nuclear physics. By investigating exotic nuclei, we can

refine our theoretical nuclear structure models, with the farsightedness beyond

the range of isotopes available to us on earth and thereby taking into account

the broadest possible spectrum of nuclei. The formation of chemical elements

and their abundance are essentially determined by the properties of these exotic

nuclei. This research work is dedicated to calculate the structure of exotic nuclei

and superheavy elements within meson field theory.

Key for understanding the synthesis of elements in stars is the knowledge of the

properties of exotic nuclei up to the proton and neutron driplines. In addition

this work focuses on the properties of exotic hypernuclei, neutron rich hyper-

nuclei and proton rich hypernuclei. The results can be used to enhance more

comprehensive approach to perceive on the Λ-N interactions and could be very

17
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relevant in the stellar nucleosynthesis. With better knowledge of the structure

of possible superheavy elements, one can observe and predict which superheavy

elements might be produced experimentally.

1.2 Atomic nuclei

The atomic nucleus represents one of the fundamental building blocks of matter

in the universe. It takes its place between the atom and the hadron in a chain

of basic constituents which stretches from quarks to galaxies. In common with

many of its neighbours in the chain, the basic problem of nuclear structure physics

is a quantum many-body one whose unique aspect stems from the number of

constituents and the nature of the force. A nucleus consists of a large, but finite

number of nucleons: proton and neutron (two types of baryons), interacting via

a strong, short-range force. These baryons have a substructure, the sub-atomic

fundamental particles known as quarks, bounded by the strong interaction. The

mediators for this strong interaction are the gluons. The composition of baryons

and antibaryons, the basic building blocks of atomic nuclei, in terms of their

quark constituents is shown in Fig (1.1).

Figure 1.1: Baryons and Antibaryons: the fundamental building blocks of atomic

nuclei and their properties. Source: [con03]

The atomic nucleus is governed by three interactions among the four fundamental

interactions in nature, namely; weak interaction, electromagnetic interaction and

strong interaction. Weak interaction processes occur in the beta decay of nuclei.

The electromagnetic interaction enters through the interaction of protons, the

positively charged nucleons. The strong interaction acts between the the hadrons

- baryons and mesons. The general properties of the fundamental interactions
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are summarised in Fig (1.2). The size of a nucleus, given by the nuclear radius

of the order of 10−13 cm, is one of the most fundamental bulk properties of

an atomic nucleus [Rin80] that needs to be reproduced in theoretical models.

Nuclear radii follow approximately the formula R = r0A
1/3 where r0 ∼ 1.3fm.

The corresponding nuclear charge distribution is positive, representing the charge

of the protons contained in the nucleus.

Figure 1.2: The properties of the fundamental interactions. Source: [con03]

As atomic nuclei get heavier as the number of nucleons they contain increases,

they have a tendency to become more unstable against radioactive decay: the

nuclei fall apart spontaneously because of the enormous electrical repulsion, in-

duced by the Coulomb interaction of all the positively charged protons. That is

why especially superheavy elements are so difficult to produce, and generally so

short-lived. So far, researchers have succeeded in making superheavy elements

up to number 118 - that is, with 118 protons in the nuclei - by merging big nuclei

through atomic collisions. But this instability of superheavy elements does not

seem to be inevitable. Calculations have predicted that there should be an ’island

of stability’, originally assumed to lie around element 114 for nuclei that have the

right number of neutrons (in many calculations N=184). The island of stability,

however, and its range, or even if it exists at all, depends strongly on the model

calculation used.

1.3 Different atomic nuclei towards the

driplines

In the area of theoretical and experimental nuclear physics the investigation of

exotic nuclei and superheavy elements is of central importance. Especially with

the advent of new radioactive beam facilities one can explore a much larger range

of isotopes that couldn’t be accessed before. Therefore complementary theoreti-

cal studies are urgently needed. The boundaries of the nuclear chart define the
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so-called driplines. As neutrons are successively added to a nucleus, the binding

energy of the least bound neutron decreases steadily until it is no longer bound

and the nucleus decays by neutron emission. This defines the neutron dripline,

which lies much further away from the valley of stable nuclei than for the cor-

responding proton dripline, simply because of the lack of Coulomb repulsion.

Experimentally, the position of the driplines is still uncertain. In fact, the neu-

tron dripline is only known for nuclei with (roughly) mass 30 or less. Beyond

that, its location becomes increasingly uncertain and it is predicted to be further

away from the line of stability as the proton number increases.

The interest in the study of nuclei with large neutron excess is not focused on the

location of the dripline alone, but is also motivated by the expectation of new

features which may appear in these highly exotic nuclei. Exotic nuclei are nuclei in

which the ratios of N/Z are very different from those of ordinary nuclei. Exotic

nuclei are highly unstable with weak binding of the outer nucleons and after

some time they decay into stable nuclei. Beyond the proton dripline, the protons

are not emitted instantaneously as they are confined by an additional potential,

which originates from the Coulomb barrier for the protons. Nuclear models have

to be developed in order to accommodate the fruitful new phenomena that have

been unveiled by the continuing experimental work. The study of exotic nuclei

[Tan96, Mue99b] with radioactive nuclear beams is one of the most active and

important areas in contemporary nuclear physics as it explores strong interaction

physics at large isospin and helps to pin down the position of the neutron and

proton driplines.

As a consequence of the weak neutron binding the existence of the new effects of

nuclear halos and neutron skins among neutron rich nuclei becomes possible. In

stable nuclei, due to the Coulomb force the number of neutrons tends to exceed

the number of protons. Nuclei with too many neutrons, however, are unstable;

beyond the ’neutron drip-line’, nuclei become unbound. Nuclei close to the neu-

tron dripline are weakly bound to the core nucleus. The nuclear densities and

sizes of the systems approaching the driplines with large N/Z ratios are different

from those encountered in nearly stable nuclei. Through quantum-mechanical

tunnelling, and because of their lower binding energy , in certain light nuclei

close to the neutron dripline, the wave function describing the quantum state of

the last neutron (or neutrons), extends to a remarkably large distance out from

the centre of the nucleus, so that these last few neutrons spend most of their time

far from the normal density core of the nucleus and form a halo. In other words,

the nuclear halo has an appreciably larger radius (∼ 8fm) than that predicted by

the liquid drop model, wherein the nucleus is assumed to be a sphere of constant

density. The discovery of this neutron halo is one of the most interesting aspects
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in nuclear physics [Tan85a, Han87]. The first observed case of neutron halo, the

nucleus 11Li is still a topic of considerable theoretical interest.

In the realm of heavier nuclei, a related phenomena can be predicted in which the

steadily increasing neutron excess gives rise to the neutron skin on the outside of

the nucleus. In normal nuclear matter, the proton and neutron radii are similar

and their distributions overlap. As the other extreme pure neutron matter is only

found in neutron stars (with a small fraction of protons present). Analysing the

difference in the root mean square (r.m.s) radii of the neutron and proton density

distributions can be used to quantitatively describe the existence of halos or skins.

Experimental evidence of effects ascribed to a neutron halo or a neutron skin have

been observed in several nuclei near the neutron dripline [Han95, Tan96]. The

neutron skin of the nucleus has been one of central issues of nuclear structure

[Mye85, Kra91]. A thick neutron skin has been observed experimentally only in

quite light nuclei 6He and 8He [Tan92]. A neutron skin does not emerge in nuclei

near the β stability line, but a neutron skin with more than 10 neutrons can be

formed in nuclei far from the stability line [Fuk93]. The formation of a proton

skin is quite difficult as the proton dripline is close to the line of equal number of

protons and neutrons.

In the region of extremely large atomic number the existence of superheavy ele-

ments was predicted about 30 years ago on the basis of the nuclear shell model,

which was originally developed in 1949. The model explains why nuclei with

certain magic numbers of neutrons and protons are especially stable. These nu-

clei have closed shells of either protons or neutrons. Magic nuclei are spherical

in shape and characterised by exceptionally high nuclear binding energies. The

most stable nuclei observed are doubly magic having closed shells of both pro-

tons and neutrons. The heaviest known doubly magic nucleus is 208Pb, an isotope

of lead consisting of Z= 82 protons and N =126 neutrons. In the Gesellschaft

für Schwerionenforschung (GSI) in Darmstadt, in Dubna in Russia and in other

places, the next ”magic” elements, which might occur for an atomic charge of

Z=120, appears to be within reach. The additional stability, which arises from

the shell closure, results in a greater probability that the nuclei in this region may

exist at least sufficiently long for their properties to be measured. This region

has thus been called an ”Island of Stability” and its discovery would represent a

major triumph for nuclear science.
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1.4 The Relativistic Meson field theory

A widely and successful approximation method for the ground state properties

of the finite nuclei is the microscopic self-consistent mean field theory applying

effective interactions. In the present work, we employ the relativistic meson-field

(RMF) theory in mean-field approximation. In general the mean field approaches

include relativistic meson field theory [Ser86] starting from an effective relativistic

meson-baryon Lagrangian density and non-relativistic Hartree-Fock (HF) the-

ory with effective interactions, such as Skyrme or Gogny. In recent years, a

number of effective interactions of meson-baryon couplings of RMF theory have

been developed, including non linear effective interactions NL1, NL2 [Lee86],

NL3[Lal97], NLSH[Sha93], TM1, TM2 [Sug94], PK1, PK1r[Lon04], PL40[Rei88],

NL-Z2[Bür02b] and extended versions including chiral symmetry, ChiM [Sch02].

In this thesis, several effective interactions including both nonlinear interactions

and the interaction using chiral symmetry are studied and the properties of nu-

clear matter and of nuclei including deformation are investigated in the whole

range between the driplines.

The RMF theory has been used not only for the description of the properties of

finite nuclei near the valley of near stability [Vau72, Bei75, Ser86, Rei89, Ser92,

Rin96, Rut99, Ben03] but also for the prediction of finite nuclei with large neutron

or proton excess. Among the nuclear models, the RMF theory has reached a level

of accuracy to present the structure of nuclei. This approach has been a successful

tool to microscopically describe bulk nuclear ground-states properties, such as

energies, radii and surfaces as well as deformation properties and fission [Rei89,

Blu94]. Specifically, the RMF theory explicitly includes the mesonic degrees of

freedom and describes the nucleons as Dirac particles.

Nucleons interact in a relativistic covariant manner through the exchange of

isoscalar scalar self-coupling σ meson, the isoscalar vector ω meson, the isovector-

vector ρ meson, and the photon. The role of relativity in the short-ranged region

of the nuclear force and its effect in producing saturation at the correct density

and binding energy in nuclear matter is now being recognised. [Rei95]. Another

well-known feature in the RMF theory is that the proper spin-orbit interaction

and associated nuclear shell structure comes out naturally. The proper spin-orbit

coupling arises directly from the relativistic nature of the meson-nucleon interac-

tions. The isospin asymmetry is generated by the isovector ρ meson coupling term

in the Lagrangian density so that ρ meson contribution (Eρ) becomes increasingly

important for large isospin asymmetry.
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1.5 Outline of Dissertation

Although this work focuses on nuclear structure of exotic nuclei and superheavy

nuclei, in fact these are related to enlarge the chart of the nuclei and the boundary

of nuclear chart. In addition a study of lambda hypernuclei serves as an extension

of the nuclear landscape in the direction of hypercharge or strangeness. Chapter

2 describes the basic concepts used in the study of the structure of atomic nuclei.

Chapter 3 introduces basic theoretical modelling methods of nuclei and a brief

description of the relativistic mean field theory which is used to investigate the

structure of exotic and superheavy nuclei. Nuclear structure of exotic nuclei

is discussed in Chapter 4. The modification of nuclear properties by including

a Lambda baryon is studied in Chapter 5. The investigation of the driplines,

the boundaries of the nuclear chart are presented in Chapter 6. This work is

concluded with the results on superheavy nuclei.
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Structure of Atomic Nuclei

From a theoretical viewpoint the atomic nucleus can be described as a complex

many-body quantum system governed by the interplay of strong and Coulomb

interactions. Just as baryons and mesons can be viewed as many-body states of

quarks and gluons, the nucleus is composed of the most stable of these baryons—

uncharged neutrons and positively charged protons—whose interactions are de-

termined by strong, electromagnetic and - for beta decay - weak forces. The sum

of the number Z of protons and the number N of neutrons in a nucleus is called

the mass number A=Z+N. The knowledge of how the strong force affects the

binding of nucleons inside the nucleus is fundamental to our understanding of

the creation of the nuclei in the early universe by extrapolating our knowledge of

known nuclei to exotic elements. A few minutes after the Big Bang, the mutual

interactions between nucleons led to the formation of light nuclei. During stellar

evolution and in violent events like supernovae explosions, the subsequent nuclear

processes synthesising heavier nuclei, have been crucial in building the chemical

elements found on earth today.

2.1 Nuclear Landscape

The nuclear landscape, shown in Fig (2.1), represents all of the stable and radioac-

tive nuclei with their respective proton number Z and neutron number N. There

are 276 known stable nuclei in nature, with 166 even-even, 55 odd N and even Z,

50 even N and odd Z, and 4 odd-odd combinations [Hod00]. The stable nuclei,

depicted with black squares, have similar numbers of protons and neutrons and

thus extend diagonally across the chart, starting from hydrogen. Heavier nuclei

(Z>20) have more neutrons to be stable to overcome the electrostatic repulsion

of protons.

25
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Figure 2.1: Nuclear Landscape illustrates the range of possible atomic nuclei, based

on the number of protons and neutrons each contains. Source: [ANL07]

These stable nuclei are surrounded by unstable nuclei, that decay via various

channels with a certain half-life. The about 3500 unstable nuclei have, generally,

shorter and shorter half-lives as we proceed away from the region of stable of

nuclei. Eventually one reaches the driplines at which the nucleus will no longer

bind extra neutrons or protons and therefore they drip off without sticking per-

manently. Many unstable nuclei have been synthesised and studied in nuclear

structure laboratories (yellow zone). The limits of bound nuclear systems are un-

certain and are known experimentally for only the lightest (Z≤13) elements. The

half-lives vary over an enormous range from 1018 years (209Bi) to 10−7s (212Po).

Exploring the region between the stability line and driplines (green zone) is of

special importance for better understanding the stellar nucleosynthesis.

2.2 Nuclear Deformation

Further away from closed shells, the accumulation of particle-hole strength leads

to additional configuration mixing and deviation from spherical symmetry, that

is, deformation of the nuclear shape even in the ground state. In a multipole

expansion the lowest applicable shape component deviating from sphericity is the

quadrapole deformation. Deformed nuclei can also have octupole and hexapole or
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higher multipole shape components. The electric nuclear quadrapole moment is a

parameter which describes the effective shape of the ellipsoid of the nuclear charge

distribution. Nuclear quadrapole moments can be either positive or negative. By

convention, the value of Q is taken to be positive if the ellipsoid is prolate (cigar-

like shape) and negative if it is oblate (disk-like shape). The latter is the rarer

case. The different deformation of nucleus can be seen in Fig. 2.2. The classical

definition of a quadrapole moment is

Q =
∫

(3z2 − x2)ρ(x)d3x (2.1)

here, ρ(x) = charge density for the corresponding quadrapole moment of the

nuclear charge distribution.

Figure 2.2: Deformation of nucleus

In a mean-field language nuclear deformations result form residual two-body in-

teractions between valence nucleons that favour configurations in which nucleons

occupy single-particle orbitals in a deformed mean field. Prolate deformations

are preferred at the beginning of large shells (almost empty shells) and oblate
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deformations at the end of large shells (almost full shells), although for detailed

and realistic situations the prolate ones appear more often in nature.

2.3 Nuclear binding energy

The nuclear binding energy is the basic of the gross properties describing a nu-

cleus. The nuclear binding energy results from the combined effect of the attrac-

tive strong interactions between the nucleons and the Coulomb repulsion between

the protons. It is defined as the energy required to disassemble a nucleus into

free unbound neutrons and protons. As to be expected, an examination of the

nuclear mass shows that the mass of a nucleus is always less than the sum of

individual masses of protons and neutrons which constitute it. According to the

theory of relativity , the nuclear binding energy which holds the nucleus together

can be defined as

B = (ZMp + NMn − M)c2 (2.2)

Here a nucleus of mass M contains Z protons and N neutrons.

A key parameter in the study of atomic nuclei is their average binding energy per

nucleon, EB/A. The average binding energy per nucleon varies from one nucleus

to another. The characteristic of binding energy per nucleon can be observed in

Fig. 2.3. For most nuclei, however, the binding energy per nucleon is about 8

MeV. The fact that there is a peak in the binding energy curve in the region of

stability near iron means that either the breakup of heavier nuclei (fission) or the

combining of lighter nuclei (fusion) will yield nuclei which are more tightly bound

(less mass per nucleon).

The higher the average nuclear binding energy per nucleon, the more energy is

required to remove a nucleon from the nucleus and, hence, the more stable the

nucleus.

2.4 Nuclear Charge and matter distributions

Nuclear structure determines nuclear charge and matter distributions in the nu-

cleus, and these strongly affect the way the nucleus interacts with other particles.

The arrangement of protons is given by the charge distribution and the matter

distribution is determined by the densities of neutrons and protons combined.

The charge and matter distribution can be measured by analysing the way var-

ious particles are scattered by the nucleus. The charge distribution is observed
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Figure 2.3: Binding energy per nucleon.

by using a probe that interacts only with the charge, and in this study the elec-

tron is ideal. Because of the well-understood electromagnetic field, the studies of

electron elastic scattering by nuclei have provided accurate charge distributions.

In the work of Hofstadter and colleagues at Standford [Hof56] a phaseshift anal-

ysis was made of elastic electron scattering from an arbitrary charge distribution

through the Coulomb interaction. The best fit to the data, on the average, was

found with the following shape, illustrate in Fig. 2.4 .

The distribution of the nuclear charge density is often quite well approximated

by means of a Fermi function:

ρ(r) =
ρ0

1 + e(r−R)/a
(2.3)

where ρ0 is the central density, R= 1.07×A1/3 fm and a = 0.54 fm.
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Figure 2.4: Nuclear density

2.5 Thickness of the nuclear surface

The nuclear thickness t is defined as the thickness of the layer where the density

drops from 90% to 10% of the central density. This means:

t = r2 − r1 where ρ(r1) = 0.90ρ0, ρ(r2) = 0.10ρ0 (2.4)

In accordance with Eq (2.3):

1 + exp(
r1 − c

a
) =

1

0.9
=

10

9
→ exp(

r1 − c

a
) =

1

9
→

r1 − c

a
= ln

1

9
(2.5)

and

1 + exp(
r2 − c

a
) =

1

0.1
= 10 → exp(

r2 − c

a
) = 9 →

r2 − c

a
= ln9 (2.6)

This gives

r2 − c

a
−

r1 − c

a
=

r2 − r1

a
= ln9 − ln

1

9
= 2ln9 → t = r2 − r1 = 2aln9 (2.7)

With the typical value of a ∼ 0.54fm, given in the previous section, the thickness

of the nuclear surface is about 2· ln 9 · 0.54 fm = 2.37 fm.
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2.6 Isospin

Isospin was first introduced by Werner Heisenberg in 1932. Isospin is defined as

a vector quantity which is conserved in particle reaction caused by strong force.

Isospin is a symmetry of the strong interactions as it applies to not only the

interaction of the neutron and proton but also in the interaction of baryons and

mesons. To be precise, the isospin symmetry is described as the invariance of

the Hamiltonian of the strong interactions under the action of the corresponding

isospin Lie group SU(2). The isospin properties of a state can generally be de-

scribed by two numbers T, the total isospin and T3, the component of to isospin

vector in a given (here the 3-) direction. The isospin invariance of strong inter-

action implies that the proton and the neutron form a symmetry multiplet, in

this case an isodoublet with T=1/2 (analogous to the intrinsic spin s). The pions

(π+, π−, π0), for instance, are assigned to an isotriplet with T=1. For a com-

bined description of protons and neutrons as nucleons, the nucleon is described

by an additional intrinsic degree of freedom representing the isospin. This degree

of freedom has two eigenvalues to distinguish protons and neutrons [Wal04] It is

similar to ordinary spin 1/2 and can be represented as

ηp =

(

1

0

)

ηn =

(

0

1

)

(2.8)

The three isospin Pauli matrices can be written as τa. If the spin and isospin

dependence is included, the single particle wave functions can be presented as

ψk,λ,ρ = φkχληρ (2.9)

here χλ is the spin wave function with

χ↑ =

(

1

0

)

, χ↓ =

(

1

0

)

ηρ = isospin wave function

The charge of the isospin state is given by

q =
1

2
(1 + τ3) (2.10)

where τ3 is the third component of the Pauli matrices. For a general nucleus with

N neutrons and Z protons the projection of the isospin can be represented as

T3 =
(N − Z)

2
(2.11)
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From the above equation, one can observe that the isospin dependence is a more

relevant quantity in neutron rich nuclei than for proton rich nuclei, because of the

smaller value of isospin in proton rich nuclei. In contrast, the isospin contribution

in neutron rich nuclei is an important feature in nuclear structure research.

2.7 Nuclear Matter Compressibility

The basic gross properties defining symmetric nuclear matter (assuming N=Z

and no Coulomb interaction) are its density at saturation point, the energy per

baryon at this point and the nuclear matter compressibility. The value of the

nuclear matter compressibility is an important ingredient of the equation of state

of nuclear matter. The compressibility Knm is generally defined as,

Knm = k2
f

d2E/A

dk2
f

∣

∣

∣

∣

kf0, (2.12)

or, alternatively,

Knm = 9ρ2∂2(E/A)

∂ρ2

∣

∣

∣

∣

ρ=ρnm

, (2.13)

where E/A is the binding energy per nucleon, kf is the Fermi momentum, and

kf0 is the equilibrium Fermi momentum and ρnm ≈ 0.16fm−3 is the corresponding

saturation density.

The nuclear matter equation of state E/A = E/ρ0 is a basic physical quantity

which is very important for the study of nuclei. It has a minimum (E/A)eq ≈ −16

MeV at saturation density.

Experimental information on the value of Knm can be derived from the properties

of the nuclear giant monopole resonance [Bla76], but the values K = 210±30 MeV

that are derived from these experiments, are on the rather low end for various

theoretical estimates of the compression modulus of nuclear matter.[Bla80, Tre81].

2.8 Symmetry Energy

Away from the symmetric case of equal numbers of protons and neutrons a ba-

sic quantity for asymmetric matter is given by the symmetry energy. Thus the

symmetry energy is one of the most important quantities in the study of nuclear

structure especially towards neutron-rich nuclei. The source of the symmetry en-

ergy is the imbalance between the number of protons and neutrons. As the Pauli

exclusion principle states that no two fermions can occupy the same quantum
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state, at a given energy level, there is only a finite number of quantum states

available for the nucleons. When protons or neutrons are added to a given nu-

cleus, the filling up of the fermi seas is not done anymore in the energetically

most preferred way, thus increasing the total energy of the nucleus and decreas-

ing the binding energy. In terms of a semi-empirical mass formula this effect

can be written in terms of a phenomenological term called the symmetry energy.

[Rin80],

Esym =
1

2
bsym

(N − Z)2

A
= asymT 2 (2.14)

with T = |Tz| = |N − Z|/2, the isospin projection, which originates from the

kinetic energy and additional interaction effects, i.e., asym = akin + aint. The

symmetry energy shows the typical quadratic isospin dependence in the semi-

empirical mass formula.

The symmetry energy coefficient a4 from the state of equation for asymmetric

nuclear matter can be seen as a kind of incompressibility in the variation of the

neutron-proton ratio [Cha97].

Esym =
1

2

∂2(E/A)

∂I2

∣

∣

∣

∣

I=0
with I = (N − Z)/A (2.15)

The symmetry energy used in RMF model is given by (the constants are defined

in the following section) ,

Esym =
(

k2
F

6
√

k2
F + m∗

N
2

+
1

2

g2
Nρ

mρ
2
ρ −

1

2

g2
Nδ

mδ
2

ρs2

ρ

)

ρ=ρnm

(2.16)
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Nuclear Models

In the last two decades our knowledge concerning the structure of nuclei has

steadily improved through the development of more sophisticated nuclear models.

Originally there are two basic types of simple nuclear model approaches:

1. The Liquid drop model - here the nucleus is considered as a collective ob-

ject with no individual particle states. It can provide a description of the gross

properties of nuclei in terms of volume, surface and symmetry energy terms.

2.The phenomenological Shell Model - the nucleons are taken into account as in-

dividual particles in discrete energy states in an external potential. The observed

magic numbers can be explained theoretically by including a spin-orbit force in

the shell model.

In this work I make use of the relativistic meson field theory, which will be

explained in detail in section 3 of this chapter. In contrast to the shell model it

is based on a relativistic formulation for the nucleon and meson fields, and the

mean potential for the nucleons is generated in a self-consistent way through the

interaction of the nucleons with the mesonic mean fields. This model is applied

to study the ground-state properties of nuclei over the entire range of the periodic

table, from light doubly magic nucleus 16
8O, to superheavy nuclei and, furthermore

to exotic nuclei up to the proton and neuron driplines. The parameters in this

model are adjusted to phenomenological and experimental data of nuclear matter

and a few finite nuclei.

3.1 Nuclear Liquid Drop Model

The liquid drop model is one of the first models of nuclear structure, originally

proposed by George Gamow. It is a simple model that does not explain all

the properties of nuclei, but does explain the spherical shape of most stable
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nuclei. It can also be used to predict the binding energy of the nucleus. The

nucleus is modeled as a droplet of incompressible nuclear fluid made of neutrons

and protons, with an internal repulsive electric force proportional to the number

of protons. The shape of the droplet is spherical as it minimises the positive

surface tension energy. As the fluid is incompressible, the density of the droplet

is constant. The nucleons in the nucleus behave like the molecules in the fluid,

that is, there is a short-range attractive force holding the nucleons together. The

basic assumption of the liquid drop model is that each nucleon in a nucleus

interacts only with its nearest neighbours like a molecule in a liquid. The nuclear

saturation property explains qualitatively the features found experimentally, that

is a nearly constant interior nucleon density and a surface radius approximately

equal to 1.2A1/3. The analogy of this experimental finding with the properties

of a droplet of a incompressible nuclear fluid results in the formulation of the

liquid drop model, where the nuclear binding energy consists of a nuclear-matter

contribution and various correction for finite nuclei.

3.1.1 Semi-empirical mass formula

The oldest well-known semi-empirical mass formula of Bethe-Weizsäcker reads

B(N,Z) = avA + asA
2/3 + acZ

2A−1/3 + aI
(N − Z)2

A
− δ(A), (3.1)

where one obtains by a fit [Mye66, Mye69, Mye70]

av = 15.68 as = 18.56 ac = 0.717 aI = 28.1 MeV

δ(A) =















34.A−3/4 for even − even

0 for even − odd

−34.A−3/4 for odd − odd















nuclei (3.2)

The physical meaning of formula (3.1) is the following [Gre96, Rin80]. The first

term is usually called the volume term (it is proportional to A[∝ R3]) which

indicates the constant binding energy per nucleon at equal density of protons

and neutrons and so provides one of the most important parameters of nuclear

matter. The second term is proportional to the square of the nuclear radius, it

describes the reduction of the binding energy due to the nucleons on the surface

of the nucleus like the analogous mechanism in the case of the surface tension in

liquids. Thus the term asA
2/3 is known as the surface term. These first two terms

originate from the strong force. The third term takes into account the Coulomb

repulsion between protons which can be calculated approximately by assuming
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that the charges are homogeneously distributed over a sphere. The Coulomb

energy of such a system is proportional to Z2/R and so to Z2/A−1/3. The fourth

term is the so-called symmetry energy showing the decrease in binding for unequal

numbers of protons and neutrons. The last term is known as the pairing term.

This term captures the effect of correlations of proton and neutron pairs.

3.2 Nuclear Phenomenological Shell Model

The nuclear shell model has shown remarkable success in the single-particle de-

scription of nuclei as well as serving as a complete basis to describe more com-

plicated nuclear states and excitations. The nuclear shell model is sometimes

referred to as the independent particle model because it assumes that each nu-

cleon moves independently of all the other nucleons and is acted upon by the

average field produced from the action of all the other nucleons. Neutrons and

protons are arranged into shells within the nucleus like the shells in atoms. Each

shell is filled to a certain maximum number of protons and neutrons according

to the Pauli exclusion principle where no two identical fermions can occupy the

same quantum state. The observation of shell structure and discrete energy levels

suggest the picture of the nucleon moving in some effective potential created by

the interaction with all the other nucleons. This leads to energy quantisation in a

manner similar to states in a given external potential like the simple square well

and harmonic oscillator potentials.

The experimental evidence for the shell closure in analogy to the inert gases of

atomic structure brought about the phenomenological postulation of mean field

potentials [May48, Fee49, Hax99, May49, May50] which could later be demon-

strated in terms of self-consistent fields. The most important experimental infor-

mation on shell structure is the existence of magic numbers. Magic numbers were

first discovered by Maria Goeppert-Mayer. At some proton or neutron number

(the so-called magic numbers occurring at 2, 8, 20, 28, 50, 82, 126) shell closure

occurs analogous to the electron shell closure in atoms. These magic nuclei are

much more bound than predicted by the liquid drop model.

In fact, it is known experimentally that the magic numbers are characterised

by a special stability, like noble gases in atomic physics. This observation is in

agreement with the existence of a shell structure of nucleons (protons and neu-

trons) within the nucleus like that of electrons within the atoms. Furthermore,

these magic nuclei (in comparison with neighbouring nuclei in the table of nuclei),

are characterised by larger total binding energies of the nuclei, larger separation

energies of single nucleons, higher energy of the lowest excited states, the elec-
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tric quadrapole moments are near to zero and the existence of larger number

of isotopes (isotones) with the same magic numbers of protons (neutrons). The

low magic numbers are the same for the protons and neutrons, namely 2, 8, 20,

28, 50, 82, whereas the next number, 126, is experimentally only established for

neutrons. Theoretical predictions suggest new magic numbers at 114 or 120 for

protons and 172 or 184 for neutrons, with considerable uncertainties depending

on the nuclear model. These new hypothetical magic numbers would constitute

long-lived superheavy nuclei [Gru69, Nil69, Fis72, Ran74].

According to the assumption of the phenomenological shell model, the

Schrödinger equation for the single-particle levels reads

(

−
h̄2

2m
∇2 + V (r)

)

Ψi(r) = ǫiΨi(~r), (3.3)

with a prescribed potential V(r). Before discussing how one can derive the form

of the average field from a microscopic two-body force, we will choose to have a

one-body potential V(r). It should be relatively constant inside heavier nuclei to

explain the constant density suggested by the fact that the definition of nuclear

radii,

R = r0A
1/3 (3.4)

yields reasonable phenomenological results, but should tend to zero quite rapidly

outside the nuclear radius.

Assuming spherical symmetry, a quite realistic and successful potential is the

Wood-Saxson potential [Woo54]

V (r) = −
V0

1 + exp[(r − R)/a]
(3.5)

where the parameters are the mean radius R ≃ 1.1 fm A1/3 and the surface

thickness a ≃ 0.5 fm. The well depth is adjusted to V0 ≃ 50 MeV. The shape of

the Wood-Saxon potential corresponds to the experimentally measured nuclear

density distributions. A practical disadvantage of the potential is that one is not

able to write down an analytic expression for the wave functions. For this reason,

one often finds two simple approximations for qualitative considerations and also

as basis states for more extended calculations:

The harmonic-oscillator potential

V (r) =
1

2
mω2r2 (3.6)

with h̄ω ≃ 41 MeV ×A−1/3 typically.
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The square-well potential

V (r) =

{

−V0 for r ≤ R

−∞ for r > R
(3.7)

Figure 3.1: Sketch of the functional form of three phenomenological shell-model po-

tentials: Wood-saxson, harmonic oscillator and the square well. Sources: [Gre96]

All three potentials are sketched in Fig (3.1).

The decisive idea that made the single particle shell model an effective tool in

nuclear physics was the inclusion of a strong spin-orbit force by Goeppert-Mayear

and Jensen. They suggested an additional strong, attractive, single-particle spin-

orbit coupling term in the single particle Hamiltonian operator.

H ′ = f(r)l · s (3.8)

Mathematically this leads to a jj-coupling scheme for the nucleons, since l · s

commutes with s2, l2, j2, jz but not with lz and sz. The single-particle eigenstates

are characterised by the eigenvalues |nlsjmj〉.

2l · s|nlsjmj〉 = (j2 − j2 − j2)|nlsjmj〉

= [j(j + 1) − l(l + 1) − s(s + 1)]|nlsjmj〉, (3.9)

In the present case, s = 1/2 , one can state spin-orbit splitting of the doubly

degenerate levels |nlsj = l ± 1/2〉 :

∆E(l) ∼ [l − (l − 1)] = 2l + 1. (3.10)
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The correct magic numbers could be thus predicted when the spin-orbit inter-

action is large enough to push the state of highest l and highest j in a major

oscillator shell down into the next lower shell. Fig (3.2). The success of the

phenomenological shell model justifies the assumption that the nucleons move

independently in an average potential produced by all other nucleons.

Figure 3.2: Single-particle energies for a simple harmonic oscillator(S. H. O) and

modified harmonic oscillator with l2 term and a realistic shell model potential with l2

and spin-orbit (l · s) terms. Source: [con03]
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3.3 The Relativistic Meson Field Theory

The Relativistic Meson Field (RMF) theory has been a significant progress

towards relativistic models of the nucleus in recent years. It is an elegant

and powerful model to investigate the structure of nuclei, providing a self-

consistent relativistic description of nuclei. The RMF theory has achieved remark-

able successes in the description and the prediction of the properties of nuclei.

[Ser86, Rei89, Ser92, Rin96, Rut99, Ben03]. It describes the nucleus as a system

of Dirac nucleons interacting in a relativistic covariant manner via mesonic fields

[Ser79, Hor81, Ser86, Ruf88, Rei89, Gam90, Fur97, Lal97, Fur98] usually adopting

the mean field approximation for the meson fields [Nik92, Hoc94]. For 30 years

before the application of RMF to nuclear structure calculations, models based

on single particle degrees of freedom governed by the appropriate Schrödinger

equation were central to nuclear structure calculations. In contrast, in the RMF

approach the nucleon wave functions are given as solutions of the Dirac equation.

In the single-particle non-relativistic approaches many achievements and a large

number of sophisticated techniques gave rise to an increased understanding of the

nuclear many-body problem.

Disadvantages of these models are the necessary ad-hoc introduction of a large

spin-orbit term, the difficulty to describe nuclear saturation, and the lack of a

microscopic understanding of the effective interactions in nuclei. One of the most

obvious signatures of RMF is the large nuclear spin-orbit force. In the RMF

model, the spin orbit interaction emerges naturally from the interplay between

two strong and counteracting fields: a long-range attractive scalar field and a

short-range repulsive vector field. These fields nearly cancel each other in the

calculation of the nuclear potential but add up for the spin orbit interaction. With

a few (about eight) free parameters adjusted once, they allow one to describe

the nuclear ground-state properties on a quantitative level. In the relativistic

framework of the model the interaction is governed by using (effective) mesonic

degrees of freedom rather than instantaneous forces. Overall, it was shown that

the relativistic mean field model is as flexible and powerful as the non-relativistic

models with the additional bonus that some relativistic effects, as the spin-orbit

force, come out naturally in the relativistic model and it allows an explanation

of the nuclear saturation. [Due56, Mil72, Wal74]

The RMF theory is an effective quantum field theory, starting from an effective

Lagrangian density, the protons and neutrons are described as Dirac particles in-

teracting in a covariant manner through the exchange of various mesons including

the isoscalar-scalar σ meson, the isoscalar-vector ω meson, the isovector-vector

ρ meson and the photon. [Ser86, Rei89] Although the nucleons are somehow
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Figure 3.3: Potentials of 208Pb. calculated by the RMF theory with NL3 force

complex QCD objects containing quarks and gluons, they are treated as point

particles, it is not possible so far to also include their degrees of freedom to obtain

a systematic solution of the nuclear many body problem in finite nuclei on the

basis of Quantum Chromodynamics. Most of the applications of the RMF theory

in the study of nuclear systems have been performed at the mean-field or Hartree

level. In general, RMF theory cannot be treated peturbatively because of its

large coupling constants. However, assuming large fields that justify a mean-field

approach, using the variational principle, one can obtain the coupled Dirac equa-

tions for the nucleons and the Klein-Gordon equations for mesons that have to

be solved in a self-consistent way.

In general the equations of the relativistic meson-field theory are very complex

and difficult to solve. Two simplifications will be used in this investigation (and in

most calculations in this field): the already mentioned mean-field approximation
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Figure 3.4: Densities of 208Pb. calculated by the RMF theory with NL3 force

and the no-sea approximation. In the mean field approximation the mesons are

treated as classical fields. i.e, the meson field operators are replaced by their ex-

pectation values, which are classical fields and the no-sea approximation neglects

the effect due to negative energy states in the Dirac sea. Moreover, one should

note that the pseudoscalar π-meson is not taken into account at the Hartree

level since the expectation value of the π-meson is zero in this approximation in

nuclear quantum states [Ser86]. However it will appear when more complex ex-

change diagrams are included. Recent results of one studies with the contribution

of π-meson can be found in these references [Ser86, Bro75, Sch02].

The relativistic models based only on a one-meson exchange could not provide

essential nuclear properties, that is, they gave too large incompressibility. Boguta

and Bodmer introduced the nonlinear self-coupling of the σ meson [Bog77] , which

has been widely accepted since then. The meson self-coupling term gives rise to
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a new density dependence in the Lagrangian in such a way that the nuclear

incompressibility can be lowered to reasonable values. The potential of RMF

theory is quite similar to the potential of phenomenological shell model. Neutron

and proton potential of Pb isotope which is calculated by RMF theory with the

effective interaction NL3 can be seen in Fig. 3.3. From this figure, it can be

clearly seen that neutron potential, which is not effected by Coulomb repulsion,

is lower than proton potential. Using RMF theory with the parameter set NL3,

the density distribution of baryon, neutron and proton for 208Pb can be observed

in Fig 3.4.

3.3.1 Relativistic Lagrangian Density

In the relativistic mean- field theory, the dynamics of a nuclear system which

contains the corresponding fields ψ(x) for nucleons, σ(x), ωµ(x), ~ρµ(x) for mesons

and Aµ for photons, is determined through the Lagrangian density L [Ser86],

L = LN + Lm + Llin
coup + Lnonlin

coup (3.11)

where the first term describes the free Lagrangian for nucleons with spin 1
2

and

the mass m,

LN = ψ̄(iγµ∂
µ − m)ψ (3.12)

Here, we employ the covariant notation of the four matrices γµ = (γ0,−γ),

γ0 =

(

1 0

0 −1

)

, γ =

(

0 σ

−σ 0

)

(3.13)

where σ corresponds to the three component Pauli spin 1/2 matrices.

The meson term describes free mesons (σ, ω and ρ) and photons,

Lm =
1

2
(∂µσ̂∂µσ̂ − m2

σσ̂
2)

−
1

2
(
1

2
ĜµνĜ

µν − m2
ωω̂µω̂

µ)

−
1

2
(
1

2
~̂Bµν · ~̂B

µν

− m2
ρ~̂ρµ · ~̂ρ

µ
)

−
1

4
F̂µνF̂

µν (3.14)

The fields σ̂ and ω̂µ describe the corresponding isoscalar-scalar and isoscalar-

vector mesons; ~̂Bµν is the field strength tensor of the isovector-vector ρ meson

and Âµ denotes the photon vector field.
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The field tensors for the vector mesons (ω, ρ) and photon fields are defined as

(since only the neutral ρ meson contributes in the calculation possible nonlinear

terms in the field strength tensor do not contribute and are not taken into account)

Ĝµν = ∂µω̂ν − ∂νω̂µ (3.15)

~̂Bµν = ∂µ~̂ρν − ∂ν ~̂ρµ (3.16)

F̂µν = ∂µÂν − ∂νÂµ. (3.17)

The nucleon-meson coupling is described by linear coupling terms given as a sum,

Llin
coup = −gσσ̂

ˆ̄ψψ̂ − gωω̂µ
ˆ̄ψγµψ̂ − gρ~̂ρµ · ˆ̄ψ~τγµψ̂ − eÂµ

ˆ̄ψ
1 + τ3

2
γµψ̂. (3.18)

with the coupling constants gσ, gω, gρ and e. Here, the usual relativistic units

of h̄ = c = 1 are used for the discussion of this model [Ser86]. M, mσ, mω,

mρ are the nucleon-, the σ-, ω-, ρ-meson masses respectively, while gσ, gω, gρ

and e2/4π = 1/137 are the corresponding coupling constants for the mesons and

photon.

Here the fields have the following meaning:

Fields T Jπ Type of fields

σ(x) 0 0 scalar field (massive)

V ν(x) 0 1+ vector field(massive)

Aν (x) 0 1+ photon filed (massless)
~Rν(x) 1 1+ isovector-vector field (massive)

Table 3.1: The fields from the relativistic mean field theory
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The σ- field can be identified with the 2π- exchange

while V ν(x) describes ω- mesons (3π- exchange) and ~Rν(x) the ρ-mesons

(isotriplet). The σ- field gives rise to the attractive part of the nucleon-nucleon

potential, the ω- mesons to the short-range repulsion. The δ-meson with T=1,

Jπ = 0+ is here not taken into account in the study of the properties of finite

nuclei.

Possible non-linear terms in the Lagrangian are introduced via

Lnonlin
coup = −Uσ[σ̂] (3.19)

In non-linear versions of the Lagrangian, the coupling is supplemented by a non-

linear self coupling of the σ meson,

U [σ̂] =
1

2
m2

σσ̂
2 +

1

3
b2σ̂

3 +
1

4
b3σ̂

4, (3.20)

first introduced by Boguta and Bodmer [Bog77] to improve the compressibility

of nuclear matter and to obtain a quantitative description of nuclei.

3.3.2 Equations of Motion

The classical variational principle gives the equations of motion for the nucleon

and meson fields,

δ
∫

L(qi, ∂µqi)d
4x = 0 (3.21)

by solving the Euler-Lagrange equations for the Lagrangian density (3.11)
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∂µ(
∂L

∂(∂µqi)
) −

∂L

∂qi

= 0, (3.22)

where qi is one of the generalised coordinates; qi=ψ corresponds to the nucleon,

and qi=σ, ωµ, ~ρµ and Aµ are meson and photon fields respectively. The Dirac

equation with the scalar and vector fields describes the nucleon,

{γµ(i∂µ + gωωµ + gρ~τ~ρµ + e
1 + τ3

2
Aµ) + (M + gσσ)}ψi = 0 (3.23)

from the above Dirac equation, the vector potential V (r) can be represented by:

V (r) = gωωµ(r) + gρ~τ~ρµ(r) + e
1 + τ3

2
Aµ)(r) (3.24)

and the scalar potential S(r):

S(r) = gσσ(r) (3.25)

the latter contributes to the effective mass by:

M∗(r) = M + S(r) (3.26)

The conservation of the baryon current is established by:

∂µB
µ = 0 (3.27)

with the conserved baryon current

Bµ = ψ̂γµψ (3.28)

Eq. (3.22) yields the Klein-Gordon equations for the meson and photon fields

that read:

(−∆ + m2
σ)σ(r) = −gσρs(r) − b2σ

2(r) − b3σ
3(r),

(−∆ + m2
ω)ωµ(r) = gωjµ(r) + b4ω

2
µ(r)ωµ(r),

(−∆ + m2
ρ)ρ

aµ(r) = gρj
aµ(r),

−∆Aµ(r) = ejµp (3.29)

These Dirac and Klein-Gordon equations are difficult to solve so that some ap-

proximation are needed. This relativistic mean-field model of the nucleus is for-

mulated on the basic of two approximations, the mean field and no-sea approxi-

mation.
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1. Mean Field Approximation

The mean field approximation is a treatment for mesonic and baryonic

degrees of freedom. The mean field approximation ignores all quantum

fluctuations of the meson fields and utilises their expectation values. It

means that all meson field operators are replaced by their expectation val-

ues, which are classical fields. It can formally be symbolised by [Ser86]

φ →< φ > ≡ φ0 (3.30)

Vµ →< Vµ > ≡ δµ0V0 (3.31)

In this approximation the nucleons interact only via the mean fields. The

mean field treatment also simplifies the handling of the nucleons. Nucleons

move as independent particles in the mean fields in such a way that the

nucleon field operator ψ can be expressed at all times in terms of a single-

particle state α as [Rei89]

ψ =
∑

α

ϕα(xµ)âα (3.32)

here, âα is the annihilation operator for a nucleon in the state α and ϕα(xµ)

is the appropriate single-particle wave function. The scalar density is the

summation over the bi-linear expressions of ϕα,

< Ψ : ψ̄ψ : Ψ >=
∑

α<F

ϕ̄αϕα −
∑

α<F0

ϕ̄α
freeϕα

free (3.33)

where F0 is the Fermi level with respect to the nucleon number zero and F

is the Fermi level with respect to a given nucleus. To ignore the quantum

field effects, we rewrite the summation in equation (3.33) as

< Ψ : ψ̄ψ : Ψ >= (
∑

α<F

ϕ̄αϕα −
∑

α<F0

ϕ̄α
freeϕα

free) +
A

∑

α=1

ϕ̄αϕα (3.34)

here, A is a nucleon number between F0 and F (see Fig. 3.5 ).
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2. No-sea approximation

The no-sea approximation is an approximation for the treatment of the

nucleons. The RMF approach is considered as an effective Lagrangian for

nuclear mean-field calculations at the Hartree level without the negative

energy states of nucleons. Neglecting the vacuum contributions reduces the

summation to the occupied particle states only, α = 1, · · ·, A. This is the

so called no-sea approach and the scalar density becomes

< Ψ : ψ̄ψ : Ψ >∼
F

∑

α=1

ϕ̄αϕα (3.35)

In a complete Hartree calculation, we would also have to include the

negative energy states from the Dirac sea. However, this could lead to

divergent terms, which can be removed by a proper renormalization in a

very complicated way, since the corresponding equations can be solved

only numerically [Rin96]. An analytical solution for infinite nuclear matter

has already been presented in [Chi74]. If the vacuum polarisation is taken

into account, the parameter set of the effective Lagrangian has to be re-

adjusted to the experimental data, giving a new force with approximately

the same results as in the case when the vacuum polarisation is switched

off [Hor84, Was88, Zhu91]. Therefore the no-sea approximation is used in

most of the RMF applications in nuclear matter and finite nuclei.

In order to describe the ground-state properties of nuclei, the stationary limit

of the time-independent relativistic mean-field equations of motion is taken into

account by adopting the mean-field and no sea approximations. Since the ground-

state of even-even nuclei is even under the time-reversal and has good parity, the

space-like components of the vector fields and the currents vanish. Moreover, only

the third (neutral) component of the rho-meson field remains because the single-

particle states do not mix isospin. The stationary RMF equations for the meson

fields are described as the time-independent inhomogeneous equations with the

nucleon densities as source terms:

(−∆ + m2
σ)Φ +

∂Uσ[Φ]

∂Φ
= −gNσρ

s,

(−∆ + m2
ω)ω0 +

∂Uω[ωµ]

∂ω0

= gNωρ −
fNω

2mN

ρt,

(−∆ + m2
ω)ω +

∂Uω[ωµ]

∂ω
= gNωj −

fNω

2mN

jt,
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(−∆ + m2
δ)δ

0 = gNδρ
s
T=1,

(−∆ + m2
δ)ρ

0
0 = gNρρT=1 −

fNρ

2mN

ρt
T=1,

(−∆ + m2
ρ)ρ

0 = gNρjT=1 −
fNρ

2mN

jtT=1

−∆A0 = eρp,

−∆A = ejp. (3.36)

The corresponding source terms are

ρs =
∑

α∈Ω

υ2
αψ̄αψα,

ρ =
∑

α∈Ω

υ2
αψ̄αγ0ψα, j =

∑

α∈Ω

υ2
αψ̄αγψα,

ρt = ∇ ·
∑

α∈Ω

υ2
αψ̄αψαiγ0γψα, jt = ∇×

∑

α∈Ω

υ2
αψ̄αΣψα,

(3.37)

here, the index ”s” stands for scalar density and ”t” represents tensor densities.

The isovector densities and electric field can be expressed in terms of ”T=1” and

for the proton, it is described with the index ”p”.

ρs
T=1 =

∑

α∈Ω

υ2
αταψ̄αψα,

ρT=1 =
∑

α∈Ω

υ2
αταψ̄αγ0ψα, jT=1 =

∑

α∈Ω

υ2
αταψ̄αγψα,

ρt
T=1 = ∇ ·

∑

α∈Ω

υ2
αταψ̄αψαiγ0γψα, jt = ∇×

∑

α∈Ω

υ2
αταψ̄αΣψα,

ρp =
∑

α∈Ω

υ2
α

1

2
(1 + τα)ψ̄αγ0ψα, jp =

∑

α∈Ω

υ2
α

1

2
(1 + τα)ψ̄αγψα.

(3.38)

The Relativistic Hartree equation for the time independent basic wave function

ψα can be written as follows:

ǫαψα = ĥαψα = (−iγ0γ · ∇ + mNγ0 (3.39)

+γ0U
s
α + U0

α − γ0γ · Uα + iγ · Ũt
α + γ0Σ · Ut

α)ψα

where ĥα is the single particle Hamiltonian operator. The single particle poten-

tials with the various coupling can be summarised as:

U s
α = gNσΦ + gNδταδ0,

U0
α = gNωω0 + gNρταρ0

0 + e1
2
(1 + τα)A0, Uα = gNωω + gNρταρ0 + e1

2
(1 + τα)A,

Ũt
α = fNω

2mN

∇ω0 +
fNρ

2mN

τα∇ρ0
0, Ut

α = fNω

2mN

∇× ω +
fNρ

2mN

τα∇× ρ0

(3.40)
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3.3.3 Effective Interactions

In the above Lagrangian density (3.11), there are 10 parameters for nonlinear

effective interactions, which are adjusted by fitting the bulk nuclear properties.

The mass of the ρ meson is fixed to the experimental value (mρ = 763.0MeV), the

value is slightly tuned in the chiral model (parameter set ChiM). The parameters

are fitted to measured ground state properties, mainly to the charge and neutron

radii and the binding energies of several spherical nuclei.

NL3 NL-Z2 ChiM PL40

mN (MeV) 939.0 938.9 939.2 938.9

mσ(MeV) 508.194 493.150 466.5 547.570

mω(MeV) 782.501 780.0 780.6 780.0

mρ(MeV) 763.0 763.0 761.1 763.0

gNσ 10.2170 10.1369 -10.569 10.0514

gNω 12.8680 12.9084 13.3265 12.8861

gNρ 4.47400 4.55627 5.48851 4.81014

b2 (fm−1) -10.4310 13.7561 - -

b3 -28.8850 -41.4013 - -

Table 3.2: Effective Interactions in RMF theory: NL3, NL-Z2, ChiM and PL40

In our present work, we use four effective interactions; NL3 [Lal97] NL-Z2,

[Bür02b], ChiM [Sch02] and PL40 [Rei88], which are described in Table 3.2.

The RMF model descriptions (NL3 and NL-Z2) are quite successful in describing

the properties of nuclear properties over a wide range of mass numbers. The

prominent feature of NL-Z2 is its low incompressibility.

The chiral model (ChiM), using a chiral symmetry has been developed for a good

description of nuclear saturation and a reasonable description of nuclei and hy-

pernuclei with a single model and a single set of parameters. In the chiral model

(ChiM), a hadronic model based on a chiral SU(3) ansatz in a nonlinear realiza-

tion of chiral symmetry is used (for a comprehensive reviews in Ref. [Sch02]).

The degrees of freedom in chiral model (parameter set ChiM) are seen in table 3.3.

The nuclear asymmetry energy in ChiM parameter set is quite close to the empir-

ical value. The lowering of the asymmetry energy in the chiral model is obtained

due to the influence of the isospin triplet δ meson and the non-linear terms in

the vector self-interaction [Bec02]. In a test case the chiral model (ChiM) shows

fair agreement with the experimental result in the prediction of 68Se for the
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Baryons n (ddu) p (uud)

Baryons Σ− (sdd) Σ0 Λ (sdu) Σ+ (suu) hyperons

Baryons Ξ− (ssd) Ξ0(ssu) hyperons

Scalar Mesons κ0 (s̄ d) κ+ (s̄ u)

Scalar Mesons δ− (ū d)δ0, σ, ζ δ+ (d̄u)

Scalar Mesons κ− (u s̄) κ0̄(d s̄)

σ ∼ 〈ū u + d̄d〉 ζ ∼ 〈s̄s〉 δ0 ∼ 〈ū u - d̄d〉

Vector Mesons K∗0 (s̄ d)K∗+(s̄ u) plus pseudoscalars,

Vector Mesons ρ− (ū d) ρ0, ω, φ ρ+ (d̄ u) axial vectors and

Vector Mesons K∗− (u s̄) K ∗̄0(d s̄) gluonic field χ.

Table 3.3: Degrees of freedom in chiral model (parameter set ChiM)

nuclear ground states with substantial oblate (β2 ∼ -0.3) deformation. The com-

prehensive view of experimental results can be seen in Ref.[Fis00]. Our model

calculation for 68Se displays oblate ground state (β2 ∼ -0.3) and excited prolate

state as shown in Fig 3.6.

NL3 NL-Z2 ChiM PL40

ρ0(fm−3) 0.148 0.151 0.153 0.152

E/A (MeV) -16.299 -16.07 -15.2 -16.18

m*/m 0.595 0.583 0.6 0.581

K (MeV) 271.76 172 215.33 165

Esym (MeV) 37.4 39.0 31.9 41.7

Table 3.4: Bulk properties of nuclear matter for the forces under consideration: K

corresponds to the incompressibility of the nuclear matter for each set of parameters
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Figure 3.5: Schematic spectrum of the Dirac equation with external r-dependent

fileds. The F0 is the Fermi surface for the total number 0. F is the Fermi surface for a

nuclei; here it represents 16O if both proton and neutrons are filled up to F. Sources:

[Rei89]
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Figure 3.6: Deformation β2 of 68Se:oblate ground state (β2 ∼ -0.3) and excited prolate

state.
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Nature of Exotic Nuclei

In general, the study of the structure of the atomic nucleus provides us with fas-

cinating insights into systems made of many strongly interacting particles. The

nuclei far from the β-stability line which are referred to as exotic nuclei have

attracted considerable interest in recent years. Nuclei far from stability play an

important role in the way the elements are synthesised in the universe. Exotic

nuclei are nuclei lying away from the line of β stability with a proton-to-neutron

ratio that is very different from the proton-to-neutron ratio in stable nuclei and

therefore have a relatively short half-life. The study of exotic nuclei is one of the

main frontiers of nuclear structure research [Mue99a, Tan99]. Experimental pro-

duction and the theoretical investigation of exotic nuclei is of particular interest

in understanding the stellar nucleosynthesis, the creation of the heavy elements

as they are observed now, and the role of isospin in determining the structure

and properties of nuclei. It is therefore a challenge for theoretical investigations

to provide models with a high predictive power. Achievements in the description

of nuclei near and far away from the β-stability line in the framework of the rel-

ativistic mean field (RMF) approach can be found in a series of review articles

[Ser86, Rei89, Rin96, Vre05, Men06, Sha93].

4.1 Nucleosynthesis

Nucleosynthesis is the process of creating new atomic nuclei from preexisting nu-

cleons. Explosive nucleosynthesis, including supernova nucleosynthesis, produces

most of the heavy elements present in the universe. In explosive environments

such as supernovae further nucleosyntesis processes can occur, such as the r-

process (in which heavier elements than iron and nickel are produced by rapid

absorption of free neutrons) and the rp process (which involves the rapid absorp-

55
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tion of free protons).

Figure 4.1: Kepler’s Supernova from pictures by the Spitzer space Telescope, Hubble

Space Telescope and Chandra X-ray Observatory.

4.2 r-process

The r-process (r- represents rapid) is a neutron capture process for radioactive ele-

ments that occurs in high neutron density and high temperature regimes. In the r-

process, nuclei are bombarded with a large neutron flux (∼ 1022 nucleons/cm2s−1

) to form highly unstable neutron rich nuclei, which very rapidly decay (rela-

tively to normal β decay) to stable neutron rich nuclei. The site of the r-process

is believed to be the supernova environment. The r-process is responsible for the

synthesis of half of the heavier nuclei beyond the iron group [Cow91, Qia03]. The

nuclei in the r-process path are extremely neutron rich and short lived.

4.3 rp-process

The rp-process (rapid proton capture process) consists of consecutive proton cap-

tures onto seed nuclei to produce heavier elements. It is also a nucleosynthesis

process and occurs with the s process and r process. The process has to occur in

very high temperature environments (above 1 x 109 K) so that the protons can
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overcome the large Coulomb barrier for charged particle reactions. The proton-

rich nuclei below a nucleon number of about 80-100 are thought to be produced in

a series of rapid proton captures taking place in astrophysical environments char-

acterised by explosive hydrogen burning. This sequence of reactions is termed the

rapid proton capture or rp process. A group of nuclei that play an important role

in the rp-process are the so called waiting point nuclei. These nuclei have partic-

ularly long lifetimes under rp-process conditions owing to long β decay half-lives

and low proton capture Q-values. There is a very remarkable difference to the

neutron-induced r process: the rp path runs much closer to the stability valley

(see in Fig 4.2). This will have significant implications for the properties of the

rp process.

Figure 4.2: The comparison of r-process path and rp-process path Sources: [Gui94]

4.4 Neutron Halo in Light Nuclei

Exotic nuclei have casted new light on nuclear structure entirely new feature

appeared: eg the neutron halo in 11Li [Tan85b] and neutron skin [Tan92] as

the rapid increase in the measured interaction cross section in the neutron-rich

light nuclei. The nucleus 11Li showed a remarkably large radius suggesting a
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Figure 4.3: Nuclear stability and neutron halos. Source: [Hin04]

large deformation or a long tail in the matter distribution. The nuclear densities

and sizes of the systems approaching the driplines with exotic N/Z ratios are

different from those encountered in near stable nuclei. In certain light nuclei at

the neutron dripline, the wave function describing the quantum state of the last

neutron or neutrons, extends to a remarkably large distance out from the centre

of the nucleus, so that these last few neutrons spend most of their time far from

the normal density core of the nucleus and form a halo, in particular near the

neutron dripline (see in Fig 4.3).

The structure of exotic nuclei with large isospin values gives rise to many inter-

esting phenomena originating from the extremely weak binding of the outermost

nucleons, regions of neutron halos and the existence of neutron skins. The sepa-

ration energy of the last nucleons become extremely small at the driplines. The

Fermi level close to the particle continuum and the lowest particle-hole is often

embedded in the continuum. In such a loosely bound system, the neutron den-

sity distribution shows an extremely long tail, the neutron halo. The formation

of neutron halo in Ne isotopes is presented in Fig. 4.4 and Fig. 4.5. The neutron

rms radius display abrupt change from between 30Ne and 32Ne as shown in Fig.
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4.4. This is an evidence of existence of neutron halo in 32Ne with remarkably

larger radius of neutron. From Fig. 4.5, one can observe that the proton density

profiles do not display a distinctive change with the number of neutrons, while

the neutron density distribution show an abrupt change between 30Ne and 32Ne.

The nucleus 32Ne display a remarkably large radius suggesting a long tail in the

neutron density distribution.
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Figure 4.4: Calculated proton and neutron rms radii for Ne isotopes (with the pa-

rameter set ChiM).
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Figure 4.5: Proton and neutron density distributions of Ne isotopes (with the param-

eter set ChiM).

4.5 Neutron Skin Thickness

The large difference between the proton and neutron density distributions in un-

stable nuclei is the question of interest among new phenomena concerning exotic

nuclei. The presence of a neutron skin in stable nuclei has been discussed since

the mid 1950s [Mye69]. No evidence of a thick neutron skin in stable nuclei has

been observed, even if many of them have a large neutron excess (N-Z). Thick

neutron skins (∼ 0.9fm) have been reported by Tanihata et al. in the He iso-

topes [Tan92]. Another formation of the neutron skin in unstable neutron-rich
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nuclei has been observed in Na isotopes [Suz95]. The observation of nucleon den-

sity distribution provides basic and important information in nuclear structure.

The proton distribution of stable nuclei can be determined accurately by elastic

electron or muon scattering. There is, however, no comparable measurement of

the neutron density distribution so far. Although it is difficult to obtain the nu-

clear density distribution, the difference in radii of neutron and proton density

distribution can be estimated by comparing radii deduced from electromagnetic

scattering to radii derived from nuclear reaction cross sections that are governed

by proton and neutron densities.
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Figure 4.6: Proton and neutron rms radii for Zr isotopes (with the parameter set

ChiM).

The neutron and proton rms radii for the example of Zirconium isotopes (Zr,

Z=40) are plotted in Fig. 4.6. The proton rms radius rp is constant until A =

92. It slightly increases between A = 94 and A =96. The prominent increase

of the proton rms radius takes place between A = 98 and 100 and it remains

almost constant beyond this point. The prominent increase of rp around A =

98 is obviously due to the transition from spherical to a quite deformed shape

where two protons jump from the N = 3 to N = 4 shell, which has a large radius.

The rms neutron radius display a smilar step at the transition point although it
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increases steadily with the mass number in neutron excess region. It exhibits the

fact that the more and more neutrons are built into the shell with N = 4 and N =

5. Like in proton rms radius, one pair is moved from the N = 3 to N = 4 shell at

the shape transition step. One can define as the reinforcing effect of deformation

and neutron excess. The calculated rms values (with the parameter set ChiM)

are in agreement with the experimental results in Table within error bars.
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Figure 4.7: Proton and neutron density distributions of Zr isotopes: A very large

neutron skin thickness for 110Zr obtained.(with the parameter set ChiM)

In Fig 4.7, we shows the density distribution of neutron and proton for the nuclei
90Zr, 98Zr 100Zr and 110Zr. For 90Zr isotope, the density distribution of neutron ρn

and the density distribution of proton ρp exhibits minor deviation in the nuclear

interior and at the surface two distribution are very similar. In the region of

nuclei between 90Zr and 98Zr, the change of proton density distribution are not

taken into account in comparison with the change of neutron density distribution.

The neutron density distribution increases in the interior and considerably at the
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surface. The shape transition from nuclei 98Zr to nuclei 100Zr reflects the move-

ment of particles from N = 3 to N = 4 shell. From nuclei 102Zr, proton density

distribution changes very little. In the neutron excess (above A = 100)region,

the neutron density distribution changes very rapidly and finally a quite large

neutron skin thickness is obtained for 110Zr nuclei near the neutron dripline.

A E/A rn rp rc

84 ChiM -8.60 4.19 4.19 4.19

NL1 -8.58 4.23 4.22 4.23

Expt. -8.55

90 ChiM -8.73 4.30 4.20 4.26

NL1 -8.73 4.36 4.21 4.29

Expt. -8.72

94 ChiM -8.66 4.45 4.27 4.37

NL1 -8.64 4.47 4.23 4.32

Expt. -8.67

96 ChiM -8.63 4.52 4.29 4.42

NL1 -8.59 4.53 4.24 4.32

Expt. -8.57

98 ChiM -8.59 4.58 4.31 4.47

NL1 -8.53 4.60 4.27 4.34

Expt. -8.58

100 ChiM -8.55 4.64 4.35 4.53

NL1 -8.48 4.75 4.44 4.63

Expt. -8.52

Table 4.1: Results of the chiral model calculations of Zr isotopes: binding energy

per particle E/A (MeV), root mean square radii (rms) for neutrons (protons) rn (rp),

charge (rc) radii (fm). The experimental data are taken from Ref. [Aud03]

4.6 Exotic Nuclei in the Region of Large Atomic

Number

In this section we present exotic nuclei in the heavy region, such as Sn and Pb

isotopes. The Sn isotopes are of particular interest for nuclear structure and

also astrophysical questions because of the closure of the Z=50 proton shell.

Relativistic mean field calculations employing the ChiM force, NL3 force and
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experimental binding energies are compared in Fig. 4.8 Fig. 4.9 for Pb and Sn

isotope. The ChiM force gives a reliable description of the binding energies per

nucleon for both Sn and Pb isotopes and it is an agreement with experimental

values. The strongest binding is obtained from the case of Pb istopes, at 116Sn,

consistent with experimental value. The experimental minimum of 208Pb isotope

is also reproduced by using the RMF theory with parameter sets NL3 and ChiM,

as shown in Fig.4.8.

Figure 4.8: The binding energy per particle for Pb isotopes, E/A, against mass number

A, calculated by ChiM and NL3 forces and experimental value

At the magic shells a strong sudden decrease is observed in the two neutron
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Figure 4.9: The binding energy per particle for Sn isotopes, E/A, against mass number

A calculated by ChiM and experimental value

separation energy, as expected (see Fig.4.10). The magic jump in the two-nucleon

separation energy

S2n(N,Z) = E(N − 2, Z) − E(N,Z)

S2p(N,Z) = E(N,Z − 2) − E(N,Z) (4.1)

is of also quite important observable since it can be used for determining shell

closures in the super heavy elements, as will be discussed in the last chapter.
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The separation energies for Sn isotopes are shown in Fig 4.10. As shown from

this figure the ChiM paramether gives a fair descrption of two neutron separation

energies for Sn isotopes and it gives a good agreement with experimental values

and FRDM [Möl95].

Figure 4.10: Two neutron separation energies of Sn isotopes

Neutron density distributions for several Sn and Pb isotopes are displayed in

Fig. 4.11 and Fig. 4.12 calculated by ChiM parameter set. In the case of Sn

isotopes, an extremely thick neutron skin builds up at 102Sn, the nuclei next to

the doubly magic nuclei 100Sn. It leads to a sudden jump in the neutron rms

radii. The rms proton and neutron radius for Sn isotopes can be observed in

Fig. 4.14. And a quite large neutron skin thickness can also be found beyond
132Sn, another doubly magic nuclei leading a sudden jump in the neutron rms

radii. At A = 132 of Sn isotope, the 1h11/2 shell is filled and pairing does not

contribute. The neutron 3p subshells become populated at larger masses of Sn

isotopes. Weak binding allow a large extension of valence wave functions into

the exterior, thus producing this extremely thick neutron skin. According to Fig.
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4.14,the rms neutron radius of Sn isotope increases suddenly at A = 132 while the

rms proton radius increases steadily. The neutron skin thickness is cleary visible

in Fig. 4.15 for Sn isotopes where the difference of the proton and neutron radii

is shown. The neutron density distribution Pb isotopes exhibits an extremely

thick neutron skin is building up for isotopes beyond doubly magic nuclei 208Pb.

From 200Pb nucleus to 216Pb nucleus are in spherical shape and 220Pb is in prolate

shape (β2 ∼ 0.2). Because of the shape transistion, Pb isotopes beyond 208Pb

have large neutron distributions leading to an extremely thick neutron skin. And
240Pb forms quite prolate shape (β2 ∼ 0.32) and 260Pb, which closes to neutron

dripline, is in spherical shape in such a way that the large neutron skin thickness

reflects the shape transistion of these elements.

Pb isotopes close to 260Pb and neutron driplines are in spherical shape, Pb iso-

topes close to the proton dripline and some isotopes near N=164 are in oblate

deformed shape, and the rest are in the form prolate shape. It is interesting to

investigate the deformation of Pb isotopes. We have carried out the calculated

energy surface for 186Pb. We observe that the lowest three states in the energy

spectrum of the neutron deficient nucleus 186Pb are spherical, oblate and pro-

late as shown in Fig. 4.16. Our calculation is in agreement with other three

dimensional calculation [And00]

4.7 Superdeformation of Pb isotopes

Superdeformation (SD) of atomic nuclei is one of the most attractive topics in

nuclear structure studies. Shape coexistence in Pb isotopes on the proton rich

side has been observed experimentally, as for instance in Ref. [And00]. It is

also been studied theoretically within the relativistic mean field model [Vre05].

In this work, superdeformation of Pb isotopes is investigated in RMF theory

with the parameter set ChiM. Potential energy curves for 190−204Pb are exhibited

in Fig. 4.18. For 190Pb, the RMF theory (with the parameter set ChiM) can

produce a considerable high excitation energy relative to the ground SD bands

and shallow well in the SD minimum in comparison with its neighbouring nucleus
192Pb signifies it is difficult form the stable SD state. Although the excitation

energy of 192Pb isotope is relatively lower, it is relatively easy to form SD state as

observed in experiment. As the number of neutron increase, the excitation energy

increases with the increasing of depth of well from the 194Pb isotopes. The SD

states can still be observed in these nuclei and it is reasonable agreement with

the RMF theory (with the parameter set ChiM) and experimental observations.

For nuclei (N > 118), however, it is difficult to excite the SD states because the
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Figure 4.11: Neutron density distributions of Sn isotopes ranging from A = 100 to

160, calculated by ChiM parameter set.

excitation energy is too high as the number of neutrons increase. On the other

hand, the SD nuclear states between N = 110 and N = 116 can be observed

in the Pb isotope chain. Furthermore, the RMF theory predicts an interesting

feature in the ground state. The evolution of shape from the prolate to oblate,

and finally to the spherical shapes are found in the Pb isotope chain. From

Fig. 4.18, one can clearly observe that the coexistence of the prolate and oblate

states for the ground state of 190Pb isotope. Starting from 190Pb, the ground

state gradually decreases deformation and moves towards the oblate side as the
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Figure 4.12: Neutron density distributions of Pb isotopes ranging from A = 200 to

260, calculated by ChiM parameter set.

number of neutron increase. Finally, 204Pb has a pronounced spherical shape.

Our present work provides a clear SD minimum at nearly all the potential energy

curves for the Pb isotopes. The deformation β2 in SD minima lies systematically

between 0.5 and 0.7, our result is consistent with experimental observation.
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Figure 4.13: The rms proton and neutron radii for Sn obtained in the RMF theory

using ChiM parameter set.

4.8 Ground state properties of exotic nuclei

near Z =40

The ground state properties of Krypton (Kr, Z=36), Strontium (Sr, Z=38), and

Zirconium (Zr, Z=40) nuclei is discussed in the relativistic meson field frame-

work using different parameter sets: ChiM, NL3 and NL4. It is shown that the

RMF theory provides a good description of the binding energies and deformation

properties of nuclei over a wide range of isospin in the Z = 40 region.
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Figure 4.14: The rms proton and neutron radii for Pb obtained in the RMF theory

using ChiM parameter set.
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Figure 4.15: Nuclear skin thickness as a function of mass number for Sn isotopes

obtained in the RMF theory using ChiM parameter set.
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Figure 4.16: Calculated energy surface for 186Pb, the lowest three energy states are

in the form of oblate, spherical and prolate shape.



74 IV 4. Nature of Exotic Nuclei

Figure 4.17: The rms proton and neutron radii for Kr, Sr and Zr isotopic chains

obtained in the RMF theory using ChiM parameter set.

A ChiM FRDM NLSH expt.

70 -580.58 -578.33 -575.87 -577.80

72 -607.45 -607.00 -604.00 -607.11

74 -634.34 -631.99 -628.49 -631.28

76 -657.21 -654.82 -651.64 -654.23

78 -677.65 -675.56 -672.69 -675.55

80 -697.48 -695.05 -693.45 -695.44

82 -716.70 -714.57 -713.39 -714.27

84 -734.63 -732.69 -733.16 -732.26

86 -750.96 -748.97 -750.06 -749.23

88 -761.98 -761.22 -760.00 -761.80

90 -773.36 -771.95 -769.89 -733.21

92 -785.12 -782.35 -779.84 -783.22

94 -796.71 -791.89 -789.88 -791.76

96 -804.06 -800.85 -799.46 -799.95

98 -813.25 -808.87 -807.51 -

100 -821.68 -815.68 -814.02 -

Table 4.2: The binding energy (MeV) of Kr isotopes obtained from the parameter set

ChiM in comparison with other parameter sets: FRDM [Möl95] and NL-SH [Lal95].The

empirical values [Aud03] are shown in the last column.
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Survey of Lambda Hypernuclei

Nuclei that are found in nature consist of nucleons (protons and neutrons), which

themselves are made of u (up ) and d (down) quarks. However, there also exist

s (strange )quarks and even heavier flavours, called charm, bottom and top.

Baryons that contain one or more strange quarks are called hyperons (Lambdas

and others). A Lambda consists of one u, d and s quark each. If such a hyperon

is bound in a nucleus, a hyper nucleus is created. Hypernuclei with one hyperon

have been known for more than 30 years now and have been extensively studied

experimentally [Pov76].

The Λ hyperon is a baryon, with mass 1115.684 ± 0.006 MeV/c2, 20% greater

than the mass of the nucleon, zero charge and isospin I = 0. It carries a new

quantum number, not contained normally inside the nuclei, the strangeness S =

-1. The Λ hyperon is unstable and decays with lifetime 263± 2 ps, typical of the

weak interaction that doesn’t conserve strangeness and makes a free Λ mainly

disintegrate in a nucleon-pion system. Since strangeness, however, is conserved

in strong interaction and the Λ particle is the lighter particle in the family of

hyperons (baryon with strangeness), the Λ particle can associate with nucleons

inside nuclei and form hypernuclei.

Lambda hypernuclei are excellent probes of the structure of the nucleus; the

Lambda interacts strongly with the nucleus and is distinguishable from the nu-

cleons. In hypernuclear experiments using electron beams, an electron strikes a

proton with enough energy to transform it into two new particles: a kaon and a

lambda hyperon. The original electron and the new kaon fly out of the nucleus,

leaving the lambda hyperon behind. In this way, experimentalists have added

an impurity to the nucleus - a lambda hyperon - that they can use to study the

structure of the nucleus and the properties of the hypernucleus itself. The mere

existence of hypernuclei is of great scientific interest, it gives indeed a new dimen-

sion to the traditional world of nuclei by revealing the existence of a new type of

77
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Figure 5.1: Deformation β2 of 34Ne and 35Ne isotopes without Λ and with Λ (with

parameter set NL3).

nuclear matter and generating new symmetries, new selection rules, etc. Hyper-

nuclei represent the first kind of flavoured nuclei (with new quantum numbers),

in direction of other exotic nuclear systems (charmed nuclei and so on).

Hypernuclei have been first observed by Danysz and Pniewski in 1953 [Dan53].

The life-time of hypernuclei is typically about 10−10 s, essentially given by the

lifetime of the Lambda. Since the strangeness quantum number is conserved by

the strong and electromagnetic interactions, at least hypernuclei containing the

lightest hyperon, the Lambda, live long enough to have sharp nuclear energy

levels. Therefore they offer opportunities for nuclear spectroscopy, as well as

reaction mechanism and other studies (hypernuclear physics). Their physics is

different from that of normal nuclei because a hyperon, having a different value

of the strangeness quantum number, can share space and momentum coordinates
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Figure 5.2: Deformation β2 of 36Ne and 37Neisotopes without Λ and with Λ(with

parameter set NL3).

with the usual four nucleons that can differ from each other in spin and isospin.

Already 30 years ago, hypernuclei with up to A = 15 have been produced

[Can74] and some years later even heavier hypernuclei could be observed at CERN

[Brü76, Brü78, Ber79, Ber80, Ber81] and AGS [Bon74, Chr79, May81, Chr88]

where also excited states has been investigated. There are new experimental pro-

grams planned at the new heavy-ion facility FAIR@GSI to extend the knowledge

of hypernuclei to higher neutron numbers, i.e. large isospin. Previous theoret-

ical descriptions of hypernuclei have been done in Skyrme-Hartree-Fock models

[Mil88, hyp96] and relativistic mean-field calculations [Mar89, Ruf88]. A very

interesting and theoretically challenging project is to study the stability line of

nuclei for large neutron excess (neutron dripline) and its change when additional

hyperons are included in the nucleus, leading to the study of exotic hypernuclei.
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(with parameter set ChiM).

5.1 Structure of Λ-hypernuclei

A Λ-hypernucleus represents as A
ΛZ. In this Λ -hypernucleus, A

ΛZ, a bound state of

Z protons, (A-Z-1) neutrons and a Λ hyperon are contributed. The ground state

of such a system consists of the (A-1) nucleons accommodated in the ground

state of the nucleus (A−1)Z and the Λ hyperon in its lowest energy state. The

Λ hyperon, consisting of the strangeness quantum number, is a distinguishable

baryon and is not limited by the Pauli exclusion principle, thus it can occupy

one of the quantum states already filled up with the nucleons. This characteristic

feature gives the Λ hyperon, embedded in a hypernucleus, a distinctive role in

exploring nuclear structure.

One of the bulk properties, the binding energy BΛ of a Λ particle in the hyper-



5.2. Halos in Hypernuclei 81

nucleus A
ΛZ in its ground state is generally defined as:

BΛ = MN + MΛ − Mhyp (5.1)

here,

MN = the mass (in MeV/c2) of the nucleus (A−1)Z

MΛ = the mass (in MeV/c2) of the Λ particle

Mhyp= the mass of the hypernucleus A
ΛZ (experimentally measured)

In Fig. 5.1 and Fig 5.2 , with the effective interaction NL3, the axial deformation

of Ne isotopes are compared without Λ and with Λ hyperon. According to these

figures, one can observe that deformed nuclei could reduce, however not too

pronounced, the strength of the deformation by inclusion of Λ hyperon. From

Fig 5.3, the potential energy surface of the core 10C isotope, 11
Λ C hypernucleus

and 12
ΛΛC hypernucleus by applying the RMF theory with ChiM parameter set are

observed. The deformation of C isotope can effectively reduce by adding two Λ

hyperons than one although the difference in energy levels is small. In the density

profile of these nuclei, we can observe that the Λ hyperon density distribution

for 12
ΛΛC hypernucleus is neraly the same as the baryon density distribution while

the the Λ hyperon density distribution for 12
Λ C is smaller than the matter density

distribution. If we add more Λ hyperons, we can observe the halo in hypernuclei

with the long tail of Λ hyperon density distribution.

5.2 Halos in Hypernuclei

The inclusion of the Λ hyperon does not produce an excessive change in bulk

properties but shifts the neutron dripline to larger neutron numbers [Vre98] (see

also in Fig. 6.1). The two-neutron separation energies S2n for ordinary nuclei,

single-Λ and double-Λ hyper nuclei of Be and Ca isotopes, respectively, at the

proton and neutron driplines are shown in Fig. 5.5 and Fig. 5.6. Apart from

the neutron halo, as the Λ hyperon is less bound than the corresponding nucleon

in nuclei, it is worth to investigate the existence of corresponding hyperon halos.

The hyperon carbon isotopes are presented in Fig. 5.7 by using the RMF the-

ory with the parameter set ChiM. When two Λ hyperons are added to the core
12C, the nucleon density distributions remain the same and the hyperon density

distribution at the tail are comparable with those of nucleons. We can predict a

hyperon halo for C isotope by adding three Λ hyperons to the the core 12C with

clear evidence of a long tail of the hyperon density which is extended far outside
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Figure 5.4: Proton, neutron, baryon and lambda density distributions of C isotopes.

of its core.
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Figure 5.5: Two neutron separation energies of Be isotopes: without Λ , with Λ and

with ΛΛ (8Be and 12Be are last proton and neutron bound nuclei).
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Figure 5.6: Two neutron separation energies of Ca isotopes: without Λ , with Λ (Λ:
40Ca and 58Ca are last proton and neutron bound nuclei).
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Figure 5.7: Density distributions for Λ (solid), neutron (long-dashed) and pro-

ton(dotted) in 13
Λ C, 14

2ΛC and 15
3ΛC in logarithmic scales.



86 V 5. Survey of Lambda Hypernuclei



–VI–

Driplines

One of the driving forces of today’s nuclear physics efforts is the journey to the

extreme limits in several directions. For nuclear charge and mass this journey

involves nuclei heavier than any that occur in nature or that have been produced

in the laboratory, leading the research field of superheavy nuclei; for the neutron-

to-proton ratio, it involves the driplines, the limits of nuclear stability along the

axes of proton and neutron number. As more and more neutrons are added

to a given nuclide, the neutron binding energy will become eventually negative,

leading to the emission of neutrons. The boundary of the region of the (N-Z)

plane where this occurs constitutes the ”neutron dripline” and its counterpart on

the proton rich side, the ”proton dripline”.

The locations of the drip lines on the chart of nuclei are still an open question.

In particle accelerators, the existence of about 3,000 isotopes can be studied.

[Aud03]. The exact location of the neutron drip line is of great interest in nuclear

physics research [Lun03], but the short lifetimes of these exotic nuclei and the

difficulty involved in making them results this a tremendous task. Nevertheless,

some progress has been made. The location of the proton drip line is known

for atoms with up to 90 protons, that is, up to thorium. The investigation of

the proton drip line is easier compared to that of the neutron drip line, because

electric repulsion between protons restricts the number that can be added to a

nucleus with a given number of neutrons [Hee07]. The procedure is very different

for neutron-rich nuclei, because there is no additional electric repulsion by adding

neutrons. The neutron drip line is therefore relatively distant from the β stability

line on the chart of nuclei, and is therefore much harder to reach experimentally.

Furthermore, the number of neutrons that can theoretically be added to a nucleus

increases as the number of protons increases.
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Figure 6.1: Neutron and Proton Driplines (within Z = 8 to Z =130) without Λ and

with Λ (NL3)

6.1 Proton dripline

There are different definitions of the proton dripline from a theoretical point

of view. One can define it as the location where the proton separation energy

passes through zero (Sp = 0 MeV) [Han03]. According to this definition, many

nuclei still exist beyond the drip line. An alternative definition of the drip line is

described as the value of Z and N for which the last proton is no longer bound and

the limitation of the typical nuclear timescale of ∼ 10−22s which is a reasonable

timescale for the existence of a nucleus [Mue43]. The dripline and the existence

of a nucleus could also be related to the limitation of radioactivity of ∼ 10−12s

[Cer77]. The driplines are the limits of the nuclear landscape where additional

protons and neutrons can no longer be kept inside the nucleus and they drip

out literally [Jon04]. In our present work, we define the proton dripline as the

boundary between the positive value and the negative value of the separation

energy. Proton separation energy becomes negative when the additional protons

are no longer bound in a nucleus and the Fermi energy is getting positive. A

negative proton separation energy means that the nucleus can spontaneously

decay by the emission of protons. Nuclei inside the dripline are stable with respect

to the spontaneous emission of nucleons, whereas these outside the driplines can

spontaneously decay by the emission of one and/or two nucleons.
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Figure 6.2: Neutron and Proton Driplines (within Z = 8 to Z =60) including defor-

mation (with the parameter set NL3)

6.2 Neutron dripline

It is generally accepted that the neutron dripline has been reached for all elements

up to oxygen, which has eight protons and can have a maximum of 16 neutrons

[Tho04], although recent calculations suggest the existence of oxygen isotopes up

to 32 neutrons [Gri05]. Beyond oxygen, the drip line has been tentatively assigned

for elements up to sodium, which has 11 protons and a possible maximum of 26

neutrons. Baumann et al. now report the discovery of two more neutron-rich

isotopes: a magnesium isotope (40Mg, which has 12 protons and 28 neutrons) and

an aluminium isotope (42Al, which has 13 protons and 29 neutrons). Previous

descriptions of nuclei close to the neutron dripline in the framework of RMF

theory [Sha94] have been successfully attempted.

6.3 Mapping Neutron and Proton driplines

When neutrons are successively added to a nucleus on the nuclear stability line,

the binding energy of the last neutron decreases steadily until it is no longer bound

and the nucleus decays by neutron emission. At a certain line, the nucleus will no

longer bind extra neutrons. This is called neutron drip line and its counterpart

is called the proton drip line. In other words, an unstable atomic nucleus beyond

the dripline will leak free neutrons and the neutron separation energy is zero at

the neutron drip line. The proton and neutron drip lines define the limits of

existence for finite nuclei. The theoretical knowledge of the properties of nuclei
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Figure 6.3: Neutron and Proton Driplines (within Z = 62 to Z =120) including

deformation (with the parameter set NL3)

up to the neutron drip line will provide a better understanding of the stellar

nucleosynthesis and neutron stars in nuclear astrophysics. The position of the

drip lines is still uncertain and its experimental determination is a problem of

foremost interest in the field. Baumann and et. al. reported a siginficant advance

in the determination of the neutron dripline: the discovery of two neutron-rich

isotopes - 40Mg and 42Al - that are predicted to be dripline nuclei [Bau07]. The

discovery of 40Mg as the neutron dripline nucleus and the most recently observed

dripline nucleus 44Si are in agreement with our prediction of neutron drip line by

applying the RMF theory with the parameter set ChiM.

From Fig. 6.1, which shows the position of the driplines of nuclei and hypernuclei

(obtained in spherical approximation with the parameter set NL3), we can read

off the shell closure of nuclei and predict new magic numbers. The last bound

protons (with blue and yellow square) show the normal proton dripline and the

proton dripline with the inclusion of one Λ hypernucleon. For the last bound

neutrons, observing the red and green squares in this Fig. 6.1, one can observe

the normal neutron dripline and the neutron dripline with the inclusion of one Λ

hypernucleon. These results are useful to understand the structure of the nucleus

and more specifically, physics close to the drip lines.

Both proton and neutron driplines with the inclusion of Λ hypernuclei move

towards the neutron rich sides from the driplines of nuclei without Λ. From this

results, we can conclude that hypernuclei can accept more neutrons and are more

strongly bound than normal nuclei. One can observe that prominent shell clousre

in neutron driplines. Neutron dripline with the inculsion of Λ hypernuclei displays
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Figure 6.4: Neutron and Proton Driplines (within Z = 8 to Z =60) including defor-

mation (with the parameter set ChiM)

the shell clousure at the isotonic chains with neutron magic numbers (N = 82,

126, 184. Isotonic chains with neutron magic numbers could not preserve well

on the normal neutron dripline. Shell closure shows on normal neutron dripline

at the neutron numbers ( N = 80, 124, 182). One can observe two new magic

numbers (N = 258, 350) in the mapping of the neutron dripline with the inclusion

of Λ hypernuclei and (N = 256, 348) for the normal neutron dripline.

Figure 6.5: Neutron and Proton Driplines (within Z = 62 to Z = 120) including

deformation (with the parameter set ChiM)

The drip lines including axial deformations are calculated (with the parameter
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set NL3 )and described in Fig 6.2 and Fig. 6.3 for the nuclei (8 ≤ Z ≤ 60 )

and nuclei (60 ≤ Z ≤ 120) respectively. Unlike in spherical calculations, isotonic

chains with neutron magic numbers could preserve well on the neutron dripline

including axially deformation. Shell closures appear on the neutron dripline at

the neutron numbers ( N = 82, 126, 184) while isotopic chains with proton magic

numbers move away from the neutron magic numbers (except for the Z = 20 ). In

the region of (82 ≤ Z ≤ 96), we can observe that some bound nuclei are located

after the neutron dripline. The neutron dripline could display very well except

this region.

A smiliar calculation was done for the drip lines including axial deformations

(with the parameter set ChiM )and described in Fig. 6.4 for (8 ≤ Z ≤ 60) nuclei

and Fig. 6.5 for (60 ≤ Z ≤ 120) nuclei . Isotopic chains with proton magic

numbers move away from the neutron magic numbers (except for the Z = 20).

It can be cleary seen in Fig. 6.4. This result agrees with the above calculation

(in Fig. 6.2) with the parameter set NL3. For larger nuclei (60 ≤ Z ≤ 120) as

shown in Fig. 6.5, the proton and neutron driplines are more distinct than in the

calculation with NL3 parameter set. Isotonic chains with neutron magic numbers

could preserve well (as in the calculation of parameter set NL3) on the neutron

dripline including axially deformation. Shell closures are seen at the neutron

dripline at the neutron numbers ( N = 82, 126, 184) while isotopic chains with

proton magic numbers move away from the neutron magic numbers (except for

the Z = 20).

6.4 Survey of Axial deformation between

driplines

The RMF theory with ChiM parameter set can reproduce the deformations of

finite nuclei very well. In the present work, we performed a systematic study of

1661 nuclei to verfiy the axial deformation of even-even nuclei (8 ≤ Z ≤ 100)

with different numbers of neutrons. This is the first time this study has been

performed using RMF theory with parameter set ChiM. Studies of deformed

nuclei in the range (8 ≤ Z ≤ 100) have already been done in RMF+BCS

calculations with different parametrizations, and within the FRDM and HFB-2

framework. A comprehensive view of these calculation can be found in [Gen05].

The quadrupole deformation obtained here for all even-even nuclei with 8 ≤ Z

≤ 100 between the proton and neutron driplines can be seen in Fig. 6.9. From

the analysis of this calculation, we can conclude that:
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Figure 6.6: Deformation β2 in prolate deformation (Z = 78 to 84) region.

1) Most of the spherical nuclei (-0.05 ≤ β2 ≤ 0.05) are located at or near magic

numbers.

2)While isotonic change with well-known neutron magic numbers (N =82, 126,
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Figure 6.7: Deformation β2 in oblate deformation (Z = 30 to 36) region.

184) preserve spherical shapes for the entire chain, isotopic chain with proton

magic numbers are usually deformed when one moves away from the neutron

magic numbers (except for the Z = 8 and 20 isotopic chain). Semi-magic

numbers (Z = 40, 172, 182, 186 ) can be observed from this axial deformation
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Figure 6.8: Potential energy surfaces for Fm isotopes close to the proton dripline

calculation (8 ≤ Z ≤ 100). Among these results, we can observe well-known

doubly magic nuclei (16O, 40Ca, 48Ca, 132Sn, 208Pb) except for the (Z = 28

isotopic chain). And another new two doubly magic numbers are observed in Pb

isotopes, namely 262Pb and 264Pb (N = 180, 182).

3) Among Pb isotopes, oblate deformation nuclei (β2 ∼ 0.2) are located near

proton dripline. Some neutron rich Pb isotopes are axially prolate deformed (0.2

≤ β2 ≤ 0.3). The rest of Pb isotopes are in spherical shape.

4) Most of prolate deformed nuclei are observed in the nuclei with a charge larger

than Z =50 when moving away from the magic numbers either isotonically or

isotopically.
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5) There are also several regions where strongly prolate and oblate deformations

coexist. Axially prolate deformed nuclei from one of regions with distinct prolate

deformation is shown in Fig. 6.6. This prolate region ranges from Z = 78

(Pt isotope) to Z = 84 (Po isotope). These nuclei have a substantial prolately

deformed nuclear ground state (0.3 ≤ β2 ≤ 0.4) and excited oblately deformed

states. From this calculation, one can see the coexistence of prolate and oblate

shapes. Os and Pt isotopes (Z = 76 and 78) exhibit a large number of isotopes

with axially prolate deformation except near the neutron shell closure (N = 126).

6) We found superdeformed nuclei near the proton and neutron driplines of Cf (Z

= 98) isotopes and Fm (Z = 100) isotopes (0.7 ≤ β2 ≤ 0.8). The superdeformation

of Fm isotopes near proton and neutron driplines is shown in Fig. ??. For Cm (

Z = 96) isotopes, one can see superdeformed nuclei only near neutron dripline.

7) Oblately deformed nuclei are rare. There are some oblate regions in this

axially deformation of even-even nuclear chart. Axially oblate deformation from

one of the oblate deformed region is described in Fig. 6.7. This oblate region

lies among the isotonic changes of Zn isotopes (Z = 30) to Kr isotopes (Z = 34).

These nuclei are quite deformed nuclei (0.2 ≤ β2 ≤ 0.3)

Axially deformed nuclei from the proton dripline to the neutron dripline for Mag-

nesium which are calculated by using RMF theory with the ChiM parameter set,

are shown in Fig. 6.13. These deformed nuclei, 20Mg to 42Mg cover three magic

numbers: N= 8, 20 and 28 and include the strongly deformed nuclei 22Mg, 24Mg

and 38Mg. 22Mg is the proton dripline nucleus and 40Mg is the neutron dripline

nucleus. We can see the existence of nuclear shell structure at magic numbers

N =8 and 20 but the old magic number 28 disappear and shows relatively large

deformation. This result agrees with the density dependent RMF theory. These

results show the occurrence of oblate and prolate minima for various isotopes and

are in general agreement with other relativistic and non relativistic mean field

calculations [Lal98, Bür02a].
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Figure 6.9: Axial deformation of even-even nuclei between driplines calculated by ChiM
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Figure 6.10: Potential energy surfaces for Fm isotopes: close to the neutron dripline.
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Figure 6.11: Potential energy surfaces for Fm isotopes: close to the neutron dripline.
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–VII–

Structure of Superheavy

Nuclei

The nuclei with charge number Z > 100 are known as superheavy elements

(SHEs). To understand the properties of superheavy nuclei is important not

only for testing the limits of nuclear structure, but might also be relevant in nu-

clear astrophysics and nucleosynthesis. The idea of superheavy elements emerged

at the end of the sixties and the beginning of the seventies, the time when heavy-

ion physics had its advent. The existence of superheavy elements was predicted

about 30 years ago on the basis of the nuclear shell model, which was originally

developed in 1949. The model explains why nuclei with certain magic numbers

of neutrons and protons are especially stable. These nuclei have closed shells of

either protons or neutrons. Magic nuclei are spherical in shape and characterised

by exceptionally high nuclear binding energies. The stability of superheavy nuclei

is mainly determined by shell effects. At the magic proton or neutron numbers,

2, 8, 20, 28, 50, 82, as well as N = 126 for neutrons, nuclei have higher stability

and abundance compared with their neighbours. Particularly, the highest stabil-

ity is observed in the case of the doubly magic nuclei. The most stable nuclei

observed are doubly magic having closed shell of both protons and neutrons. The

heaviest known doubly magic nucleus is 208Pb, an isotope of lead consisting of Z

= 82 protons and N = 126 neutrons. Predictions based on the shell model show

that the next doubly magic nucleus in the sequence might contain either 114, 120

or 126 protons and a total of 172 or 184 neutrons (relativistic calculations seem

to favour a magic number of Z=120). Typical predictions of their lifetimes vary

between seconds and many thousands of years.

Moreover, other studies predict a whole superheavy island of stability around

these proton and neutron numbers. Various predictions of the position of the

island of relatively stable superheavy elements exist around Z = 114 or 120, N
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Figure 7.1: Binding energy/nucleon vs no of neutrons within Z= 110 and Z = 130

(NL3)

= 172, 184 and 196, respectively, and one around Z = 164, N = 318. The first

superheavy elements are elements up to 112 which were discovered at GSI, Darm-

stadt [Hof95b, Hof95a, Hof96] and Berkeley [Ghi95a, Ghi95b, Oga95]. Physicists
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from Russia and the US have identified two new superheavy elements 115 and

113 in experiments at the Joint Institute for Nuclear Research (JINR) in Dubna

[Laz94, Laz95, Laz96]. Elements 115 and 113 were created in collisions between

a beam of calcium-48 ions and an americium-243 target made at the Lawrence

Livermore National Laboratory in California. The same collaboration discovered

element 114 in 1998 and element 116 two years later. The evidence of element

118 and its α-decay chains have been observed at Berkeley [Nin99]. These de-

veloped and the current experimental facilities produce more new elements and

isotopes and the expected magic Z =114 in progress. Element 118 has been indi-

rectly discovered in experiments conducted at the Flerov Laboratory of Nuclear

Reactions in Dubna, Russia by a collaboration of researchers from Russia’s Joint

Institute for Nuclear Research and the Lawrence Livermore National Laboratory

in California.

The production of superheavy elements is not an easy task. The more protons and

neutrons are packed into a nucleus, the less stable an atom becomes. Moreover,

the increase in the charge of a nucleus makes it increasingly unstable against

fission due to increased Coulomb repulsion. But the untiring research over decades

have now reached the point where new SHEs has been synthesised at various

laboratories in GSI, Darmstadt, Berkeley (USA) and Dubna (Russia). The only

method that is being successfully used for such a synthesis is that of the complete

fusion reaction. In complete fusion reactions, the two colliding nuclei merge

to form a compound nucleus, giving at most a few atoms of the SHE in an

experiment.

7.1 Two-nucleon enery gap

All the heaviest elements found are believed to be well deformed. However,

spherical doubly magic superheavy elements are still expected to exist. A quantity

, which is important for measuring magicity, is the two-nucleon energy gap. The

two-proton and two-neutron gaps are defined as

δ2p(N,Z) = E(Z + N,N) − 2E(Z,N) + E(Z − 2, N)

δ2n(N,Z) = E(Z,N + 2) − 2E(Z,N) + E(Z,N − 2) (7.1)

They are directly related to the two-nucleon separation energies and can be used

to investigate the magicity. At magic shells a pronounced peak can be shown

in the two-nucleon gap [Bür98, Ben99]. So far, the two-nucleon shell gaps have

been extensively used to be an indicator for the magic number and to analyze
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Figure 7.2: Deformation β2 of 292120 (NL3).

the shell quenching phenomenon. By applying RMF theory with the parameter

ChiM, two-nucleon gaps δ2N are determined in both spherical and axially two-

dimensional calculation [Sch02]. From this calculation, one can observe a weak

signal for a shell closure at N = 172 and N = 184, which is in agreement with

most relativistic calculations.
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Figure 7.3: Deformation β2 of 292120 (NLZ-2).

7.2 Island of Stability

The island of stability is a technical term in the realm of superheavy nuclei that

represents the possibility of elements with particularly stable ”magic numbers” of

protons and neutrons. The possible existence of islands of superheavy elements

was introduced by Walter Greiner in one of the regular Saturday-meetings at GSI

at the end of sixties. The island, a small region of longer-lived, superheavy nuclei

projects out from a sea of short-lived nuclei and that reputedly live for anything
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from milliseconds to days. Over the past few decades, many different experimental

efforts to approach this range of nuclei and observe long-lived superheavy elements

have been launched. The verification of the existence of an island of stability is

one of the most challenging topics in world-wide heavy ion research facility. In

various theoretical studies islands of superheavy elements around Z = 120, N

= 172, 184 and 196, respectively, and the one around Z = 164, N = 318 were

predicted.

Applying RMF theory with the effective interaction NL3, one expects the next

doubly magic number is at Z = 120 and N = 172. The binding energies per

nucleon for superheavy elements (from Z = 110 to Z =130) are shown in Fig.7.1.

This calculation is carried out by using RMF theory with the effective interaction

NL3. One can clearly observe that the minimum binding energy for this region

of superheavy nuclei is at N= 172. This result is performed in spherical approx-

imation. The new doubly magic number (Z = 120, N = 172) is still consistent

in the axially symmetric two-dimensional calculation. The ground state of 292120

is in spherical shape and another excited state is prolately deformed as shown in

Fig. 7.2.

From the calculation of RMF theory with the parameter NLZ-2, the ground state

displays prolate deformation and another excited state is spherical as in Fig. 7.3.

From this (using the parameter NLZ-2) calculation, it is not quite clear whether

the excited spherical shape might be the real minimum of the system and the

deformed state might vanish as stable state in a more complete three-dimensional

and reflection-asymmetric calculation. In RMF theory with the parameter NL3,

the energy difference of the spherical ground state and prolate excited state are

not so different. Deformation of the superheavy element (Z = 120 and N = 172) by

applying the RMF theory with the parameter ChiM, can be observed in Fig. 7.4.
292120 shows quite a complex structure with two oblate excited states, one prolate

excited states and spherical excited state. The nuclear ground state of 292120 is in

a strongly prolate shape. For all these results more extended calculations beyond

axial and reflection symmetry should be performed to investigate the stability of

the strongly deformed states [Bür04].

In Fig. 7.5 and Fig. 7.6, the deformation properties of the superheavy element of

(Z = 120 and N = 184) are investigated by applying RMF theory with parameters

ChiM and NLZ-2. This doubly magic nucleus, which is predicted by the shell

model, displays three different shapes (oblate, prolate and spherical) but shows

a quite prolate deformation in the ground state. The energy difference between

the ground state and excited state is relatively large in comparison with the

above superheavy element (Z = 120 and N = 172). In both calculations of the

RMF theory with the parameters ChiM and NLZ-2, the existence of a doubly
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Figure 7.4: Deformation β2 of 292120 (ChiM).

magic nucleus is not clear in case of the superheavy element (Z = 120 and N =

184). For the NL-Z2 parameter, by adding reflection-asymmetric shape degree

of freedom and triaxial degree of freedom, one can observe the minimum ground

states for superheavy elements (Z = 120 and N = 172, 184) are in spherical shape

[Bür04]. It is an interesting task to study these element more carefully in a three

dimensional calculation for the various parameter sets in such a way that one can

observe where the minimum ground state is located.
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Figure 7.5: Deformation β2 of 304120 isotope(with ChiM)
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–VIII–

Summary and Outlook

In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied

in a relativistic framework. In our approach, the relativistic meson field theory

plays a central role of the study. In the relativistic mean-field (RMF) approx-

imation, the nucleons interact with each other through the exchange of vari-

ous effective mesons (scalar, vector, isovector-vector). This model approximates

the exact density functional of the strongly interacting system by restricting the

mesonic fields to their mean field values. In most of the RMF calculations, the

no-sea approximation is applied. Therefore the anti-nucleon degree of freedom

are not taken into account. Overall, it was shown that the relativistic mean

field model is as flexible and powerful as the non-relativistic models with the

additional bonus that some relativistic effects, as the spin-orbit force, come out

naturally in the relativistic model and it allows an explanation of the nuclear

saturation. [Due56, Mil72, Wal74]. Adopting a numerical code on the basis of

the RMF model, the self-consistent Dirac (for the nucleons and the Lambda) and

the Klein-Gordon equations (for the mesons) were solved numerically in spherical

and axially deformed approximation. It was shown before [Sch02] that this model

successfully describes finite nuclei and nuclear matter saturation properties.

The elements with even charge number Z (from 8 to 120) and their properties

over the whole range of possible even neutron numbers are investigated and cal-

culated by using three parameter sets ChiM [Sch02], NLZ-2[Bür02b] and NL3

[Lal97]. The RMF model descriptions (NL3 and NL-Z2) are quite successful in

describing the properties of nuclear properties over a wide range of mass numbers.

The prominent feature of NL-Z2 is its low incompressibility. The chiral model

(ChiM), using a chiral symmetry has been developed for a good description of

nuclear saturation and a reasonable description of nuclei and hypernuclei with

a single model and a single set of parameters. The nuclear asymmetry energy

in ChiM parameter is quite close to the empirical value. In a test case for the

113
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properties of deformed nuclei the chiral model (ChiM) shows fair agreement with

the experimental result [Fis00] in the prediction of 68Se for the nuclear ground

states with substantial oblate (β2 ∼ -0.3) deformation.

By applying the RMF theory with different three parameter sets, we have de-

termined the properties of exotic nuclei and a number of superheavy nuclei in

a calculation of their nuclear structure. Extensive studies in the investigation

of drip lines have been performed in this work. When neutrons are successively

added to a nucleus on the nuclear stability line, the binding energy of the last

neutron decreases steadily until it is no longer bound and the nucleus decays by

neutron emission. At certain values of neutron numbers (for given charges), the

nuclei will no longer bind extra neutrons. These values define the neutron drip

line and its counterpart is called the proton drip line. In other words, an unstable

atomic nucleus beyond the drip line will leak free neutrons and the neutron sepa-

ration energy is zero at the neutron drip line. The proton and neutron drip lines

define the limits of existence for finite nuclei. The understanding of nuclei up to

the neutron drip line provide a better understanding of the stellar nucleosynthe-

sis and neutron stars in nuclear astrophysics. The position of the drip lines is

still uncertain and its experimental and theoretical determination is a problem of

great interest in the field. The drip lines including axial deformations (with the

parameter ChiM ) are described for (8 ≤ Z ≤ 120) nuclei. Isotopic chains with

proton magic numbers move away from the neutron magic numbers (except for

the case Z = 20). This result agrees with the above calculation with the param-

eter NL3. For larger nuclei, the proton and neutron drip lines are more clearly

observed than in the calculation with NL3 parameter. Isotonic chains with neu-

tron magic numbers stay pronounced (as in the calculation of parameter NL3)

up to the neutron drip line including axially deformation. Shell closure along the

neutron drip line can be seen at the neutron numbers ( N = 82, 126, 184) while

isotopic chains with proton magic numbers move away from the neutron magic

numbers (except for Z = 20).

This work puts special emphasis on studying the proton rich and neutron rich

elements up to the proton drip line and neutron drip line respectively. We

performed a systematic study of 1661 nuclei to verify the axial deformation of

even-even nuclei (8 ≤ Z ≤ 100) with different numbers of neutrons. This is the

first time this has been done by using RMF theory with a chiral parameter set

(ChiM). Proton quadrupole deformation parameters β2p for nuclei (8 ≤ Z ≤ 100)

have already been studied with RMF+BCS calculations, the FRDM mass and

the HFB-2 models. As resultt of the systematic study of our calculation, we can

conclude that
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1) Most of spherical nuclei (-0.05 ≤ β2 ≤ 0.05)are located at or near magic

numbers.

2)While isotonic change with well-known neutron magic numbers (N =82, 126,

184) preserve spherical shapes for the entire chain, isotopic chain with proton

magic numbers are usually deformed when one moves away from the neutron

magic numbers (except for the Z = 8 and 20 isotopic chain). Semi-magic

numbers (Z = 40, 172, 182, 186 ) can be observed from this axial deformation

calculation (8 ≤ Z ≤ 100). Among these different numbers of axial deformation,

we can observe well-known doubly magic nuclei (16O, 40Ca, 48Ca, 132Sn, 208Pb)

(except for the Z = 28 isotopic chain).

3) Among Pb isotopes, oblately deformed nuclei (β2 ∼ 0.2) are located near the

proton drip line. Some neutron rich Pb isotopes are prolately deformed (0.2

≤ β2 ≤ 0.3). The rest of the Pb isotopes are in spherical shape.

4) Most of prolately deformed nuclei are observed for nuclei with a charge larger

than Z =50 when moving away from the magic numbers either isotonically or

isotopically.

5)There are several regions where strongly prolate and oblate deformations co-

exist. In one of the prolate region, one can clearly observe the shape coexistence

of prolate and oblate shapes. Os and Pt isotopes (Z = 76 and 78) exhibit a large

number of prolate deformation except near ( N = 126).

6) We found superdeformed nuclei near the proton and neutron drip lines of Cf (Z

= 98) isotopes and Fm (Z = 100) isotopes (0.7 ≤ β2 ≤ 0.8). The superdeformation

of Fm isotopes near proton and proton drip lines is discussed. For Cm ( Z = 96)

isotopes, one can see superdeformed nuclei only near the neutron drip line.

7) Oblately deformed ground-state nuclei are rare. There are some oblate

regions in the chart of deformation of even-even nuclei. Axially symmetric oblate

deformation from one of the oblate deformed region is described. This oblate

region lies among the isotonic chains of Zn isotopes (Z = 30) to Kr isotopes (Z

= 34). These nuclei are quite deformed nuclei (0.2 ≤ β2 ≤ 0.3)

Axially deformed nuclei from the proton drip line to neutron drip line for Mag-

nesium which are calculated by using RMF theory with ChiM parameter are

discussed. From these calculation, it is found that the occurrence of oblate and

prolate minima for various isotopes are in general agreement with other relativis-
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tic and non relativistic mean field calculations [Lal98, Bür02a].

Knowledge about nuclei far away from the line of exotic nuclei may improve our

present insight, not only into the origin of the element abundance on the Earth,

but also into the processes leading to the formation of matter in the universe.

The study of exotic nuclei has attracted world-wide attention due to their large

isospin and interesting properties such halos and skins. The RMF theory with the

parameter set ChiM can predict the neutron halo in Ne isotope, the neutron skin

thickness in istopes near Z =40 isotopic chain, Sn and Pb isotopes. The neutron

halo and the neutron skin thickness are predicted from the calculation of density

distributions and the difference between the rms neutron and proton radii. The

nuclear groundstate properties such as the binding energy per nucleons and two

neutron separation energy of these exotic nuclei are in good agreement with the

experimental value [Aud03] and non-relativistic, FRDM [Möl95] calculations.

It is interesting to investigate the deformation of Pb isotopes. We observe that

the lowest three states in the energy spectrum of the neutron deficient nucleus
186Pb are spherical, oblate and prolate as shown in Fig. 4.16. Our calculation is

in agreement with other three-dimensional calculation [And00]. Potential energy

curves for 190−204Pb exhibit a considerably high excitation energy relative to the

ground state superdeformation (SD) bands and shallow wells in the superdefor-

mation minimum in comparison with its neighbouring nucleus 192Pb signifies that

it is difficult to form the stable SD state. The SD states can still be observed in

these nuclei and there is reasonable agreement with the RMF theory (with the

parameter set NL3, PK1, TM1 and NLSH) [Guo06] and experimental observa-

tions. The calculated deformation in the SD minima of 190−204Pb lies between 0.6

and 0.7.

The RMF theory with the parameter set ChiM can be employed not only for

normal nuclei but also hypernuclei. The same calculation as in the case of exotic

nuclei was repeated by adding Λ hyperons. A Λ consists of one u, d and s

quark each. If such a hyperon is bound in a nucleus, a hypernucleus is created.

Hypernuclei with one hyperon have been known for more than 30 years and

have been extensively studied experimentally [Pov76]. Lambda hypernuclei are

excellent probes of the structure of the nucleus; the Lambda interacts strongly

with the nucleus and is distinguishable from the nucleons. The axial deformation

of Ne isotopes are compared without Λ and with Λ hyperon. According to these

calculation, one can observe that deformed nuclei could reduce, however not too

pronounced, the strength of the deformation by inclusion of a Λ hyperon. On the

other hand, the inclusion of the Λ hyperon does not produce excessive change in

bulk properties but shifts the neutron drip line outward. The hyperon carbon

isotopes were calculated in this work by using the RMF theory with the parameter
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set ChiM. When two Λ hyperons are added to the core 12C, the nucleon density

distribution remains largely the same and hyperon density distributions at the

tail are comparable with those of the nucleons. We could predict a hyperon halo

for C isotopes by adding three Λ hyperons to the core 12C with the evidence of

the long tail of the hyperon density which is extended far outside of its core.

Mapping the proton and neutron drip lines is extensively discussed. The same

calculation was repeated by adding one Lambda hyperon in the nuclei. The

Lambda hyperon is an excellent probe of the structure of the nucleus, because

it is located in the centre of the nucleus. By determining the position of the

drip lines using the RMF model one can observe the difference between the drip

lines of ordinary nuclei and those of hypernuclei with one lambda, which could

be very interesting for the planned experiments at FAIR/GSI in the region of

very neutron-rich hypernuclei. The drip line inclusion of one Lambda hyperon

can display shell closure at the magic numbers: 82, 126, 184 in such a way that

the hypernuclei can accept more neutrons and are more strongly bound than the

normal nuclei.

This work is concluded with the study of superheavy nuclei. The RMF theory

with the three different parameter sets (ChiM, NL3, NL-Z2) are reviewed. Based

on the detail analysis of the two-nucleon separation energies S2n and S2p and

two-nucleon shell gaps δ2p and δ2n, the proton and the neutron shell closures have

been predicted by applying the RMF theory with the effective interactions ChiM,

NL3 and NL-Z2. Proton numbers Z =114, 120 and neutron numbers N = 172,

184, 258 are supported by all effective interactions to be magic. According to

the calculation of potential energy surfaces of superheavy nuclei with different

parameter sets, their ground states varies with the parameter sets. For these

particular nuclei, it would be very interesting to extend our calculation assuming

axially symmetric deformation to an investigation within a full three dimensional

calculation so that one can reliably determine where the true ground state is

located.
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Nuclear Deformation

The sequence of nuclear shape used to compute the deformation energy is given

via the spherical multipole moments Qλ0 respectively by the deformations βλ:

βλ =
4π

3ARλ
0

Qλ0, (A.1)

where A is the total number of nucleons, R0 = 1.2 A1/3. However these parameters

do not coincide with the collective parameters used in the parameterization of

the nuclear surface

R(θ) =
R0

c(β)

(

1 +
∑

λ

βλYλ0(θ, 0)
)

, (A.2)

where c(β) is a quantity related to the volume conservation. In the present

work, we consider only quadrupole and hexadecupole deformations. For small

deviations from spherical minimum the deformed density can be expressed as a

Talayor series in the collective parameters:

ρ(r, θ) = ρ(r) +
∞
∑

n=1

(−1)n

n!

(

R0

c(β)
(β2Y20(θ, 0) + β4Y20(θ, 0))

)n(

dnρ(r)

drn

)

(A.3)

For ρ (r) we use the spherical density computed microscopically within the RMF

approach:

ρ(r) =
∑

α

υ2
αψ̄α(r)γ0ψα(r), (A.4)

where the ψα(r) are the single-particle wavefunctions and υ2
α their corresponding

occupation probabilities. Substituting the above expression in equation (2) and

truncating the sum at n = 7 we obtain a set of two non-linear equations relating
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the quadrupole and hexadecupole moments (Q2, Q4) to the collective parameters

(β2, β4).
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