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ZUSAMMENFASSUNG 

Die Expression von Genen geschieht generell durch den Prozess der Transkription und 

ermöglicht einem Organismus unter anderem die Reaktion auf eine umweltbedingte 

Stresssituation (Leake, 2018) (Jacob and Monod, 1961) (Burkhardt et al., 2017). Die 

Regulation der Transkription erfolgt bei Prokaryoten und Eukaryoten jedoch unterschiedlich 

(Fan et al., 2017) (Moore and Proudfoot, 2009) (Kornblihtt et al., 2013). Hierbei ist einer der 

Hauptunterschiede zwischen Prokaryoten und Eukaryoten, dass die Organisation von 

prokaryotischer DNA in sogenannte transkriptionelle Einheiten („transcription unit“, TU) 

geschieht (Chen et al., 2017) (Cho et al., 2013) (Mao et al., 2015). Eine besondere Art von 

TUs stellen sogenannte Operons dar. Operons sind Einheiten, die aus mehr als einem Gen 

bestehen und je nach Bedingung an- und abgeschaltet werden können. Operons können 

darüber hinaus als dynamische Einheiten verstanden werden, sodass verschiedene Operons 

durchaus überlappen können (Mao et al., 2015). Weiterhin sind innerhalb von verschiedenen 

Operons mehrere Transkriptionsstartseiten (TSS) bekannt; somit können mehrere TUs, je 

nach Situation, ausgebildet werden (Mao et al., 2015) (Chen et al., 2017). 

Neben experimentellen Ansätzen wie „northern blotting“ (Vinnemeier et al., 1998) und „reverse 

transcription PCR“ (RT-PCR) (Gupta, 1999) können Operons auch mithilfe von in-silico 

Methoden vorhergesagt werden (Brouwer et al., 2008) (Moreno-Hagelsieb, 2015). Häufig 

verwendete genomische Eigenschaften sind hierfür zum Beispiel die intergenische Distanz, 

funktionale Relation und evolutionäre Stabilität (Brouwer et al., 2008) (Moreno-Hagelsieb, 

2015). Beispielsweise tendieren Gene innerhalb eines Operons dazu, eine geringere 

intergenische Distanz untereinander aufzuweisen als Gene, die sich nicht im gleichen Operon 

befinden. Weiterhin neigen Gene eines Operons dazu, ähnliche funktionelle Aufgaben zu 

übernehmen oder sie sind an ähnlichen biologischen Prozessen beteiligt. Darüber hinaus sind 

Operons evolutionär gesehen stabil und als konservierte Einheiten in vielen Organismen 

identifiziert worden. Auch die Verwendung von spezifischen Codonen kann eine Rolle spielen, 

da Gene innerhalb eines Operons häufig eine Ähnlichkeit bei den gewählten Codonen 

aufweisen. Neben diesen genomischen Eigenschaften wird allerdings mittlerweile auch die 

genomweite Expression von verschiedenen Genen zur Vorhersage genutzt. Hierbei ist die 

Hypothese, dass Gene innerhalb einer TU eine ähnliche Expression aufweisen sollten. Im 

Gegensatz zu den genomischen Eigenschaften, welche vorrangig an Modellorganismen wie 

Escherichia coli oder Bacillus subtilis untersucht wurden, sind solche Eigenschaften auch 

problemlos für Nicht-Modellorganismen wie Cyanobakterien (z.B. Anabaena sp. PCC 7120) 

auffindbar. In diesem Zusammenhang, weiterhin problematisch bei den verschiedenen 

Vorhersageprogrammen ist hierbei die Spezifität für einen bestimmten Organismus und die 

Nichtanwendbarkeit auf andere Organismen. Um nun verschiedene Eigenschaften zur 
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Vorhersage von Operons an Nicht-Modellorganismen zu analysieren, sollten neue 

Vorhersagemodelle und Filter implementiert und getestet werden. 

Insgesamt lässt sich die Arbeit in vier unterschiedliche Abschnitte unterteilen. Der erste Teil 

beschreibt zunächst den Aufbau der Pipeline und zeigt dabei die Nutzeroberfläche. Der zweite 

Abschnitt befasst sich mit der Erstellung einer Mapping Pipeline für RNA-Sequencing Daten. 

Der dritte Teil beschäftigt sich mit der Verarbeitung dieser Daten sowie genomischer Daten, 

hin zu generalisierten Modellen für die Identifizierung von operonischen Gen-Paaren. Diese 

Modelle wurden dann in einem ersten, vereinfachten Vorhersagemodell kombiniert. Im vierten 

und letzten Teil wurde dieses Vorhersagemodell zunächst mit anderen Vorhersagetools und 

Literaturbeispielen verglichen. Anschließend wurde untersucht, inwiefern die Identifizierung 

von operonischen und nicht-operonischen Gen-Paaren mithilfe von drei verschiedenen 

„machine learning“ Modellen die Vorhersage verändert. 

Der Prototyp der in dieser Arbeit entwickelten Pipeline „OpPipe“ (Operon Pipeline) ist in der 

Programmiersprache Java entwickelt worden und inkludiert Vorhersagemodelle, die in der 

Programmiersprache Python geschrieben sind. Für die Vorhersagemodelle wurden neben 

einem stark vereinfachten Vorhersagemodell mit vordefinierten Wertungsskalen auch 

maschinelle Lernansätze wie Random Forest (RF), Support Vector Machine (SVM) und 

Neuronale Netze (NN) verwendet. Als Eingabe für alle Modelle wurden für jedes mögliche 

Gen-Paar auf dem gleichen DNA-Strang genomische und Expressionseigenschaften 

übergeben, um die Gene in Operon- und nicht-Operon Gene zu unterteilen. Da diese Modelle 

auch über eine Nutzeroberfläche bedienbar sind und ein automatisierter Pipeline-Durchlauf 

gewährleistet ist, wurde mithilfe der Bibliotheken SpringBoot und Thymeleaf eine 

Nutzeroberfläche implementiert.  

Damit die Pipeline auch Expressionswerte für die Vorhersage verwenden kann, wurde als 

erster Schritt das korrekte Mapping und die Zuordnung der Reads auf Gene implementiert. 

Hierbei wurden existierende Aligner wie BBMap, Bowtie2, NextGenMap (NGM) und 

Rockhopper bezüglich ihrer Laufzeit und Genauigkeit beim Mappen getestet. Darüber hinaus 

wurde auch bei der Prozedur der Zuordnung von Reads zu Genen ein Vergleich zu einem 

bestehenden Programm (HTSeq) vorgenommen. Für den Anwendungsfall der Bestimmung 

von Expressionsprofilen für prokaryotische Genome konnte durch die eigne Mapping-Prozedur 

eine Verbesserung dieser Zuordnung im Vergleich zu HTSeq festgestellt werden. Der 

Mapping-Teil der Pipeline ermittelt aus den Expressionsdaten einerseits ein Expressionsprofil, 

in welchem für jede Position im Genom die Anzahl gemappter Reads gespeichert wird. Hierbei 

wird davon ausgegangen, dass die unterschiedlichen genomischen Positionen unterschiedlich 

häufig getroffen werden. Dabei sollte es unter einer bestimmten Umweltbedingung 
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vergleichbar wenige Positionen geben, die entweder von sehr wenigen reads 

(herunterregulierte Bereiche) oder von sehr vielen reads (stark hochregulierte Bereiche) 

getroffen wurden. Die Mehrheit der genomischen Positionen sollte sich um einen gewissen 

Mittelwert einpendeln (durchgängige Expression). Um hierbei operonische von nicht-

operonischen Gen-Paaren zu separieren, wird das zugrundeliegende Expressionsprofil unter 

verschieden starken Werten beobachtet. Jeder Wert suggeriert dabei, wie viele genomische 

Positionen von mindestens x reads abgedeckt wurden. Somit ergeben sich verschiedene 

„Expression patterns“ (EP) je nach Stärke der zugrundeliegenden Werte. Sind zwei Gene unter 

einer erhöhten Stärke als operonisches Gen-Paar klassifiziert, ist die Wahrscheinlichkeit 

erhöht, dass sie tatsächlich als solches zu zählen sind. Darüber hinaus speichert der Mapping-

Teil der Pipeline auch solche Gen-Paare, die von demselben read getroffen wurden und somit 

durch diesen verbunden sind. Diese Information wird für einen sogenannten „Gene Graph“ 

(GG) Filter verwendet. Hierbei wird auch davon ausgegangen, dass operonische Gen-Paare 

co-exprimiert sind, jedoch erfolgt die Identifizierung über die reads (bzw. Templates) an sich. 

Existieren reads (bzw. Templates), welche auf mehr als ein Gen mappen, wird dies als Signal 

aufgefasst, dass diese Gene gleichzeitig abgelesen wurden. Dies ist als starkes Signal zu 

betrachten, dass zwei Gene als Operon abgelesen wurden. Hierbei wird eine Graph-Struktur 

aufgebaut, wobei die Kanten, die die unterschiedlichen Gene verbinden, gewichtet sind mit 

der Anzahl der reads, die beide Gene abgedeckt haben. 

Neben diesen Expressionsdaten wurde die Eigenschaft der intergenischen Distanz zur 

Betrachtung hinzugenommen. Allerdings nicht basierend auf einer bestimmten Spezies, 

sondern dynamisch gehalten als sogenannte „Dynamic Intergenic Distance“ (DGD). Für die 

intergenische Distanz konnte bereits gezeigt werden, dass sie zwischen verschiedenen 

Organismen sehr unterschiedlich sein kann (Price et al., 2005) (Rogozin et al., 2002). Hierbei 

wurde ersichtlich, dass das Genom von Escherichia coli enger gepackt ist als beispielsweise 

das Genom von Bacillus subtilis oder Anabaena sp. PCC 7120. Um hierfür ein 

allgemeingültiges Modell zu definieren, werden für den DGD zunächst alle intergenischen 

Distanzen paarweise berechnet und anschließend wird die Distanz gesucht, die von 45-50% 

der Gen-Paare eingehalten werden. 

Basierend auf den drei definierten Operon-Eigenschaften GG, EP und DGD wurden in dieser 

Studie vier verschiedene Vorhersagemodelle erstellt, wobei eine binäre Kodierung nur 

zwischen Operon (1) und Nicht-Operon Gen-Paar (0) vorgenommen wurde. Zum Vergleich 

der Filter und des vereinfachten Vorhersagemodells wurden diese mit verschiedenen Operon 

Datenbank- und Vorhersagetools sowie einem identifizierten Literaturset verglichen. 
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Zunächst wurden Operons aus den Datenbanken DOOR und RegulonDB sowie dem 

Programm Rockhopper basierend auf dem Modellorganismus Escherichia coli gegen den 

eigenen Klassifizierer getestet. Hierbei konnte beobachtet werden, dass der erstellte 

vereinfachte Klassifizierer eine hohe Überschneidung mit dem Operon Set der Regulon 

Datenbank hat, die experimentell bestätigte Operons beinhaltet. Weiterhin wies der 

vereinfachte Klassifizierer eine höhere Überschneidung mit der Regulon-Datenbank auf als 

die anderen Vorhersageprogramme. 

Im Vergleich zu dem Modellorganismus konnten bei dem Cyanobakterium Anabaena sp. PCC 

7120 sehr starke Unterschiede festgestellt werden. Hierbei wies der vereinfachte Klassifizierer 

~38% mehr Operons auf als vergleichbare andere Tools und Datenbanken. Während die 

verschiedenen Vorhersageprogramme auch untereinander eine niedrige Überschneidung 

aufweisen, konnte der vereinfachte Klassifizierer ~99% aller Operons der anderen 

Klassifizierer entweder teilweise oder in der gleichen Art und Weise vorhersagen. 

Um einen ersten Eindruck über die Aussagekraft der neuen Vorhersage zu gewinnen, wurden 

aus der Literatur bestätigte Operons aus beiden Organismen zum Vergleich herangezogen. 

Auch hierbei konnte gezeigt werden, dass der vereinfachte Klassifizierer mehr als 60% der 

Operons des Literatursets aus Escherichia coli und Anabaena sp. PCC 7120 korrekt 

identifizieren konnte, währen andere Klassifizierungsprogramme ~30-50% korrekt 

vorhersagen konnten. Im Hinblick auf die Genauigkeit der genomweiten Vorhersage von 

Operons wurden die Vorhersagen des vereinfachten Modells, der anderen 

Klassifizierungsprogramme sowie die Operons des Literatursets im Anschluss mit 

experimentellen Transkriptionsstartseiten (TSS) aus der Literatur verglichen (Mitschke et al., 

2011). Untereinander zeigten die drei Modelle eine hohe Überschneidung von ~90% und auch 

verglichen mit dem ursprünglichen, vereinfachten Vorhersagemodell konnten ungefähr 50% 

der Operons in derselben Zusammensetzung von Genen vorhergesagt werden. Hierbei wurde 

eine generelle Überschneidung von 567 Operons der jeweils gleichen Struktur, verglichen 

zwischen den verschiedenen Vorhersagen, gefunden. Zu den Vorhersagetools (bzw. 

Datenbanken) DOOR, ProOpDB und Rockhopper konnte durch die maschinellen Klassifizierer 

jedoch kein höherer Überlapp erreicht werden als mit dem vereinfachten Klassifizierer. 

Insgesamt zeigte sich, dass die entwickelten Klassifizierer in Escherichia coli eine Operon-

Länge im Durschnitt von ~3,4 Genen aufwiesen. Somit korrelieren sie im Vergleich zu den 

anderen Vorhersageprogrammen besser mit dem definierten Literaturset sowie dem Operon 

Set der Regulon-Datenbank, die eine durchschnittliche Operon-Länge von 3,2 bzw. 4,4 Genen 

aufwiesen. Für Anabaena sp. PCC 7120 wiesen die erstellten Modelle eine durchschnittliche 

Operon-Länge von ~3,2 Genen auf, während die bekannten Datenbanken und Programme 
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eine durchschnittliche Länge von ~2,4 aufwiesen. Somit liegt die durchschnittliche Operon-

Länge der erstellten Klassifizierer näher an der von der Literatur bestätigten Operon-Länge 

(4,5 Gene) als die anderen Ansätze. Weiterhin konnte gezeigt werden, dass die erstellten 

Klassifizierer besser zu der Annahme passen, dass 50-60% aller Gene in Prokaryoten in 

Operons organisiert sind (Brouwer et al., 2008) (Moreno-Hagelsieb, 2015). In Escherichia coli 

wurden von den eigenen Klassifizierern und der RegulonDB ~60% der Gene in Operons 

vorhergesagt, während die anderen Datenbanken und Tools ~50% der Gene in Operons 

klassifizierten. Für Anabaena sp. PCC 7120 war für die eigenen Klassifizierer die Anzahl der 

in Operons klassifizierten Gene mit ~74% zwar leicht erhöht im Vergleich zu den angenommen 

50-60%. Jedoch erscheint diese Anzahl plausibler als die nur 27-35% aller Gene, die von den 

anderen Klassifizierern in Operons vorhergesagt wurden. 

Insgesamt konnte durch die verschiedenen Modelle gezeigt werden, dass die wichtigste 

Eigenschaft für die Operon-Vorhersage das Kriterium der intergenischen Distanz ist. Dieses 

Kriterium muss jedoch in einer dynamischen Art und Weise angepasst werden, da die 

Vorhersage sonst sehr spezifisch für einen bestimmten Organismus ist. Weiterhin konnte 

gezeigt werden, dass eine Identifizierung von TUs durch TSS zu einem unvollständigen Set 

führen kann und in-silico Methoden hierfür eine sehr nützliche Alternative und Erweiterung 

darstellen. Durch die Kombination der unterschiedlichen Filter, Vorhersagemodelle und einer 

Visualisierung konnte weiterhin die Nützlichkeit der Pipeline hinsichtlich der Expression von 

verschiedenen Genclustern und Operons, auch unter verschiedenen Stressbedingungen, 

gezeigt werden. Die entwickelte Pipeline soll hierfür als Startpunkt dienen und kontinuierlich 

weiterentwickelt werden. Hierfür sollen beispielsweise die vorhergesagten Operons 

anschließend mit Informationen über die Funktion der einzelnen Gene sowie Informationen 

über die evolutionäre Konservierung, sofern beide vorhanden, angereichert werden, um dem 

Anwender einen besseren Überblick über die vorhergesagten Operons zu verschaffen. 

Weiterhin können die entwickelten Filter auch verwendet werden, um die Vorhersage von 

alternativen TUs (auch innerhalb von Operons) umzusetzen und in die Pipeline zu integrieren.  
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ABSTRACT 

Despite parallels in the gene expression between prokaryotes and eukaryotes, several 

mechanisms differ, especially on the regulatory level. One peculiarity of the prokaryotic system 

is that it regulates most of the expression via functional transcriptional units (TUs). A specific 

class of these TUs are the so-called operons, which play a central role during the transcription. 

Further, the TUs can be adapted via alternative transcription start sites (TSS) to react to 

external conditions like biotic or abiotic stress conditions or developmental changes. Such 

operons can be identified via experimental approaches for single operons or assumed for the 

whole genome. This can be achieved using techniques like next generation sequencing (NGS) 

to determine similar expression or via transcription start sites (TSS). 

Beside the experimental approaches, in-silico methods for the prediction of TUs and operons 

have also been developed based on general genome features as well as the usage of 

expression data. Even if never stated clearly in the initial operon definition by Jacob and Monod 

(1961), different in-silico tools assume TUs to be non-overlapping single units. However, 

depending on the external conditions via multiple TSS, even more complex structures have 

been observed with multiple TUs arising even out of a single operon. This and the availability 

of large scale proteomic and transcriptomic data under different conditions prove that the 

assumption of non-overlapping operons held by numerous in-silico tools and databases is 

generally not true. 

Overall, several general genomic features and combinations of them are so far used for the 

prediction of operons. Firstly, the intergenic distance between two genes is one of the most 

widely used parameters. It is based on the observation in model organisms like Escherichia 

coli where the intergenic distance between genes within an operon typically is less than 100 

nucleotides. A second common feature is the functional relation of genes if they belong to an 

operon, assuming they are part of the same pathway. Further, a third commonly used feature 

is the conservation, as operons are thought to be evolutionarily conserved. Related to this, due 

to the availability of whole transcriptome expression data, the co-expression of genes is used 

as a feature for the prediction of operons. In this context, it is assumed that genes within an 

operon are transcribed as one unit and share the same expression level.  

In comparison to already existing prediction tools and databases, the aim of this study is to 

generate features for operon prediction which are not based on specific organisms. Out of this, 

the goal is to develop new and more powerful features based on the NGS expression data 

instead of simply using the average expression of an annotated gene.  

As a second step, these newly developed features are combined into an application by the 

usage of machine learning methods. These methods assume structures by learning through 
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the data rather than through explicit programming like a classical algorithm. However, the 

application of machine learning methods to a given species dataset often leads to a species 

or dataset bias as the model is only able to infer features of the training species but fails to 

infer these features on another species.  

To address this issue, the pipeline called OpPipe was developed to rely on general genomic 

and expression data features which should be applicable to a wide range of species. To ensure 

that the application is not only specifically applicable to a sample species, OpPipe uses a 

species dynamic intergenic distance as well as expression features. Subsequently, OpPipe 

includes different classifier methods like a plain predictor model, but also further different 

machine learning algorithms such as random forest, support vector machine and neural net. 

The implemented models ensure the identification of operons in a non-overlapping context, 

but also aim to identify them as multiple alternating TUs. To ensure high applicability and user-

friendliness, OpPipe offers a graphical user interface (GUI). 

With the use of different in-silico predictors of operons, it could be demonstrated that they only 

have an overlap of 40% to experimental whole transcription start sites (TSS) identification. By 

this, in-silico predictors add additional information to identify operons and TUs. The benchmark 

of the developed in-silico models in this study for two species for 38 known operons from the 

literature showed a correct prediction for over 60%. This outperforms several available 

databases and tools, which only reach 30-50%. Further, from the whole genome prediction, 

OpPipe predicts 60-74% of genes to be present in operons. This fits to the assumptions that 

at least 50-60% of the genes from a given genome are organized into operons. The other 

prediction tools, however, are underestimating this assumption by only assigning 27-50% of 

the genes to operons. 

These findings offer practical guidance to improve operon prediction in model and non-model 

species. Therefore, this study adds a valuable contribution to existing research on operon 

prediction, by adding species independent features to a genome wide prediction. 
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1. INTRODUCTION 

1.1. The transcriptional regulation program in prokaryotes 

The process of transcription, which is mediated by the RNA polymerase, transcribes genes 

from DNA into RNA and thereby expresses them [1] [2]. The RNA polymerase binds upstream 

of the gene(s) to be expressed on their referring promoters. Further, the expression of genes 

during transcription is regulated (activated or inhibited) by transcription factors (TF) [3]. TFs 

are binding to the DNA at transcription factor binding sites (TFBS), which are located upstream 

the expressed gene [3] [4]. Alternatively, TFs interact with other parts of the transcriptional 

machinery and thereby regulate the transcription [5]. However, the transcriptional regulation 

machinery differs highly in prokaryotes compared to the eukaryotic machinery [6] [7] [8]. While 

prokaryotes only exhibit one RNA polymerase in charge of gene expression [9], eukaryotes 

exhibit three RNA-Polymerase for the synthesis of ribosomal RNAs, pre-mRNAs and tRNAs 

[5] [10]. Further, the eukaryotic genome is structured in highly supercoiled chromatin structures 

(associated with histones in nucleosomes) [5]. This packaging of the DNA limits the 

accessibility and thereby influences the transcriptional regulation effect, as some genomic 

regions are tighter and are therefore less accessible to the transcriptional machinery than 

loosely coiled (and easily accessible) regions [11]. The expression of genes thereby requires 

the presence of DNA binding regulatory elements which increase (enhancer) or decrease 

(repressor) the transcriptional rate [12]. In addition, the deriving mRNA of eukaryotes is 

monocistronic [13] meaning that in eukaryotes single genes exhibit their own promotor and 

enhancer elements to turn the expression on or off [5] [12]. The transcription (nuclear) and 

translation (cytoplasm) is thereby separated in the eukaryotic system and RNAs undergo post-

transcriptional adaptions (e.g. capping, polyadenylation and splicing) [1] [13] [14].  

Contrasting to the eukaryotic supercoiled structures, prokaryote DNA chromosomes are 

organized circular [11]. They are often extended by smaller DNA elements like plasmids and, 

compared to eukaryotic genomes, relatively small [11]. Further, splicing is usually a rare event 

in prokaryotes and occurs typically in non-coding RNAs [15] [16]. Compared to eukaryotes, the 

translation and transcription is not locally separated and promoters within the prokaryotic DNA 

are more easily accessible [11]. Beside the regulation via TFs, the promoter recognition of 

promoters and the recruiting of the RNA polymerase holoenzyme to the promoter is 

coordinated by the aid of a single regulatory subunit known as so called sigma factors [2] [17]. 

These factors are thereby highly discriminatory, as each binds a distinct set of promoter 

sequences, and therefore plays an important role during the activation of genetic regions under 

different stress conditions and growth states [2] [18]. This is achieved as they are part of the 
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holoenzyme but distinct sigma factors compete for the binding to a common pool of RNA 

polymerases [2]. 

In contrast to eukaryotes, the prokaryotic genome is organized in so called transcription units 

(TU), meaning that beside monocistronic mRNA also polycistronic mRNA containing more than 

one gene gets transcribed [19] [20] [21]. The regulation of these units is facilitated by DNA 

segments (also called operators) which are acting as activation or repression binding sites for 

proteins [22]. Thereby for some units, the binding of the activator is necessary for transcription 

(positive regulation), while for other units the prevention of the repressor protein binding to its 

target is indispensable (negative regulation) [22]. As intergenic regions in front of genes from 

defined TUs tend to exhibit an increased number of conserved sequence motifs compared to 

genes within the TU [21], TUs are likely to each exhibit an own promoter. Continuing, TUs of 

at least two genes (which are adjacent) harboring a shared genetic regulation signal (e.g. 

promoter) are called operons (Figure 1A) [21] [23]. These functional units are sets of adjacent 

genes on the same strand that are getting transcribed together into a polycistronic messenger 

RNA (Figure 1A) [23] [24] [25] [26]. As it is assumed that 50-60% of all genes in a prokaryotic 

genome are part of an operon [27] [28], operons regulate gene expression of a prokaryotic 

system [29]. Therefore, the transcription of an operon is adapted to the cellular needs ensuring 

that operonic genes are transcriptionally co-regulated in respect to various conditions (e.g. 

environmental, development or stress conditions) [23] [30]. Despite the fact that operons are 

defined as transcriptional unit under control of one promoter [20] [21], even more complex 

transcriptional regulation structures have been reported with operons containing multiple 

promoters and transcription start sites (TSS) [20] [27]. This leads to the formation of different 

elements from a given operon (Figure 1B). 

 

Figure 1: Schematic operon and TU structure (adapted from [4] [20] [21]). (A) Operon structure of 
bacterial genome including the promoter where the RNA polymerase binds and the TSS downstream 
the promoter leads to the expression of the adjacent genes 1-4. (B) Formation of different TUs from a 
given operon structure (TU1-4) and a formation of a TU cluster (TUC) by the overlapping genes of the 
different TUs.  
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In this context it has been demonstrated that different sub-sets of genes in an operon may be 

co-transcribed under different conditions, leading to smaller TUs emerging out of an operon 

depending on the condition [20] [21] [31]. Consequently, the transcriptional units of an operon 

do not always have to be unique and multiple transcriptional units (resulting in poly- and 

monocistronic mRNAs) may arise of one operon [32]. In this context, TUs emerging from a 

defined operon have shown to possibly overlap each other [33] [34], meaning they are 

exhibiting shared genes (e.g. Figure 1B). This means they are overlapping each other but are 

not necessarily a sub-part of each other.  

Further, genes within an operon might not only be co-transcribed under different conditions 

into specific TUs but rather there exist multiple parallel operons and TUs that are overlapping 

[21]. This observation also leads to the formation of TU clusters (TUC, Figure 1B), where 

multiple TUs can be grouped into one bigger TUC by their overlapping genes [21]. A key driver 

for the observation of multiple parallel operons and TUs is the fact that even if operonic genes 

are co-transcribed and usually exhibit a similar expression profile [27] [35], it has been 

observed that their co-expression and thereby their expression profile can be different [24] 

[32]. As the multiple TSS inside an operon can be used in respect to their environmental and/or 

growth conditions [20], individually expressed units arise depending on the condition [31] [36] 

[37], but also different TUs arise in respect to the strength of the different promoters [33] [34] 

(Figure 2). 

In the expression profile of the rplKAJL-rpoBC [38] operon of Escherichia coli K-12 (wildtype; 

MG1655), a different coverage of expression is revealed when comparing the sub-units rplK-

L and rpoBA under different conditions like L-tryptophan supplementation, anaerobic 

conditions and control. Further, the coverage of the sub-units under anaerobic conditions is 

altered, as it shows an increased coverage compared to the coverage under normal growth 

conditions or in the presence of L-Tryptophan (Figure 1A, [38]). The density changes correlate 

with the presence of promoter and transcriptional attenuator regions [33] [34] [38] [39]. Alike, 

the spermidine operon (yacC, speED, Figure 1B, [40]) shows an approximately continuous 

expression profile under anaerobic conditions and in the presence of L-Tryptophan, while 

under normal conditions yacC appears not to be expressed within the same transcription unit. 
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Figure 2: Detection of operons and TUs in Escherichia coli based on read coverage. Read 
coverage of the rplKAJL-rpoBC (A, [38]) and yacC-speED operon (B, [40]) based RNA-Seq experiments 
of Escherichia coli K-12 grown in normal media (GSM1174824, black), with L-tryptophan 
supplementation (GSM1174827, orange) and under anaerobic conditions (GSM1174828, yellow) are 
shown. Solid arrows indicate promoter regions ([33], [34], [38], [39], [40], [41], [42], [43], [44]). 

In this case, too, the changes correlate with promotor identified in-vitro [40], empowering the 

assumption that expression data can be used for the prediction of transcriptional units operons 

[45] and enhances the prediction [36] [46], especially under different conditions. Accordingly, 

understanding the composition and regulation of operons is a crucial point for understanding 

the general adaption of species under different conditions. 

1.2. Current methods for identification and prediction of operons 

Operons can be experimentally identified either by in-vitro methods like northern blotting and 

reverse transcription-PCR (RT-PCR) or by primer extensions, which are subsequently 

validated with methods like southern and western blotting [47] [48] [49] [50]. For example, 

northern blotting and primer extension have successfully been used to identify coxBAC and nir 



INTRODUCTION 

 

5 

 

operons in Anabaena sp. PCC 7120 [51] [52] and thereby it could be demonstrated that they 

are essential for the fructose-dependent growth in the dark (coxBAC operon) and are 

expressed under the presence of nitrate and nitrite (nir operon). Further, southern blots and 

primer extension were successfully used to identify the coxBAC-III operon within Anabaena 

sp. PCC 7120 by comparing the resulting blots to Anabaena variabilis [53] while a combination 

of RT-PCR, northern and western blots led to the identification of the fraC operon and the 

included antisense element [54]. Finally, with different RT-PCR experiments, the cluster of the 

hyp genes were demonstrated to be transcribed into one single operon (six hyp genes and 

one ORF), as well as the extension by additionally seven genes (five before the hyp genes 

and two after the hyp genes) that are part in the transcription regulation of this operon [55].  

However, in-vitro methods can be on the one hand time consuming [47] and it is on the other 

hand impossible to test all genes of a species for being part of an operon. Regarding this, the 

set of genes to be tested for being part of an operon should be limited previously. Therefore, 

it is also possible to apply experimental screening methods that were developed based on 

Next Generation Sequencing (NGS), allowing genome-wide identification verification of single 

operons by using transcription start sites (TSS) [20] [56] and gene-expression data [27] [57].  

Beside experimental identification methods, in-silico methods for predicting operon structures 

were also developed over the last decades (Table S1). Several criteria and features associated 

with operon structures have been defined and widely used for the identification and prediction 

of operons such as (i) the intergenic distance between adjacent gene-pairs [27] [58], (ii) the 

functional relation of gene-pairs [27] [59], (iii) conservation of operons among species [27] [60], 

(iv) shared sequence based features (e.g. promoter regions [61] [62], transcription start sites 

[56], codon usage [59] [63] [64]) and (v) co-expression of gene-pairs [27] [46] [64]. One of the 

simplest methods for the differentiation between operonic gene pairs (OP) and non-operonic 

gene pairs (NP) is the difference in the intergenic distance which is thought to be smaller for 

OPs than for NPs, irrespective of different species [35]. It could be shown that a valid intergenic 

distance measure for Bacillus subtilis and Escherichia coli is in the range of -50nt to 250nt [65]. 

As second criterion, it can be assumed that genes of an operon are often functionally related 

[24]. In this context, their transcription results in products that functionally work together and 

proteins which are part of the same pathway [24] [65]. Further, from an evolutionary point of 

view, once evolved, operons in ancestors are likely to be conserved in different species and 

are thought to be stable over time [24]. In this respect, the term of a so called uber-operon was 

created, describing operons that can be found in numerous species [37] [66] [67]. As operons 

are thought to be activated or inactivated during different conditions, genes part of the same 

operon show similar expression patters and thereby co-expression across different conditions 

suggests an increasing probability of genes being part of the same operon [26] [27] [35].  
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However, most of the in-silico methods use a combination of the features defining an operon 

to identify operons genome -wide in a given species (Table S1) [36] [37] [59] [68]. For example, 

the classifier of the ProOpDB [69] considers the intergenic distance, functional relation and 

conserved features for the prediction. Further, databases like the DOOR database extend the 

given features by including phylogenetic relation and DNA-motifs into the prediction model 

[65]. As it has been shown that gene expression data enhances the operon prediction, methods 

like Rockhopper [36] and CONDOP [45] make use of RNA-Seq data for their prediction. Further 

methods also take into consideration the codon usage of the genes within an operon (Table 

S1) as the codon usage of genes inside an operon showed to be similar [63] and therefore is 

thought to have a positive impact on the predictive performance [35] [64] [70]. In general, 

provided features for the identification of operons are combined in a different manner by 

numerous tools (Table S1). For instance, several methods which consider the intergenic 

distance and further genomic features for operon prediction are using a plain scoring model. 

Subsequently, it can be observed that prediction methods making use of experimental datasets 

(e.g. via RNA-Seq) are using different machine learning approaches like naïve Bayes classifier 

(Table S1, Rockhopper), SVM (Table S1, SeqTU, CONDOP) and neural networks (Table S1, 

ProOpDB). 

1.3. Biological applications for machine learning approaches  

Due to numerous technological advances, the amount of (biological) data increased in the past 

years in a way that challenges conventional analysis [71]. Advances especially in the field of 

high throughput sequencing methods made large biological datasets available [72]. 

Computational analysis offers powerful ways of identifying trends within a vast amount of data 

[71] [73] [74] [75] [76]. Especially machine learning as a form of artificial intelligence is best 

suited for the analysis of biological data within the data [71] [77] [78]. Machine learning enables 

a system to rather learn from the provided data than through explicit programming [78] and 

discover patterns in the dataset that are hidden or non-obvious [72]. Thereby, machine learning 

does not suffer from parameter tuning and software re-programming like a conventional 

algorithm where the developed algorithm has to manually be adapted to another problem than 

it has been designed for [71].  

Common machine learning tasks are classification (assign classes to input data [71]), 

regression (predict a continuous characteristic of the inputs [71]) and clustering (assign inputs 

to groups so that points of one group are similar [71]), which can be assigned to the field of 

supervised and unsupervised methods [79] [80] [81]. Supervised machine learning approaches 

are used for classification and regression tasks and generally are separated into the training 

phase, the test and the prediction phase [73] [79] [82]. In the training phase, the machine 
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learning algorithm uses a sample of labeled data within the dataset to infer structures and 

relations and to create a model. Following, during the test phase, the trained model is applied 

onto new data (also labeled data) to evaluate the performance of the model trained on the 

labeled data. Finally, the trained machine learner can be used to infer relations in a new, 

unknown dataset and predict these structures. While for supervised approaches, the machine 

learning algorithm is trained on labeled classes which the output should be mapped onto, 

unsupervised machine learning tends to observe a trend within the data without any labeled 

data by themselves. The aim is thereby to group data into clusters based on similarity 

measures [71]. However, the workflow of machine learning always contains of data cleaning 

and pre-processing, feature extraction, model fitting and evaluation [73]. For training, validation 

and verification of the given classification model, the input dataset is usually split into training 

set (60%, used for training of the model), validation set (10-20%, used for evaluating the 

hyperparameters) and test set (20-30%, evaluate accuracy of the model [72] [73]. The training 

process typically consists of many iterations with a large amount of training samples so the 

model can learn to recognize complex connections between the input features and thus might 

be able to reliably assign the correct label [83]. 

Frequently mentioned machine learning applications are for example support vector machines 

(SVM, Figure 3A), random forest (RF, Figure 3B) and neural networks (NN, Figure 3D) [82]. 

SVMs are generalized linear classifiers and can be associated with the field of supervised 

machine learning algorithms [77] [84]. The aim of SVMs is to minimize the expected 

generalization error while keeping the number of adjustable parameters small [85], which is 

also equivalent to minimizing the cost function [86]. SVMs therefore try to separate the 

provided data and to classify them into two groups of features, separated by an optimal 

hyperplane [87]. The optimal hyperplane separates the two groups in a way that the data points 

nearest to the hyperplane (support vectors) of the two different classes exhibit the maximum 

amount of margin [85]. As a hyperplane is a linear separating function, it can be easily applied 

to linear separable data [85] [87]. SVMs are considered as kernel methods as they use 

mathematical functions called kernels [77]. These are specific functions for a given problem 

and act as an interface between the learning system and the data [77] [88]. The so-called 

“kernel-trick” is applied by an SVM using the kernel functions to map the inputs non-linearly to 

a high-dimensional space. If used, they apply dimensions to the dataset in order to find 

possible structures and separations in a higher dimension [89]. Within this higher 

dimensionality, the input data can then be separated linearly. While the kernel trick allows 

SVMs to separate non-linear inputs, the kernel function itself can be of a different kind (e.g. a 

polynomial, linear, radial or sigmoidal) [88] [90]. Although SVMs are robustly designed against 

overfitting, especially in high-dimensional space [71], native SVMs have been designed as 

binary classifiers, whereby the adaption to a multiclass problem (e.g. through “one-against-all”, 
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“one-against-one” or “directed acyclic graph”) results in an increase of computational 

resources [87] [91] [92] [93].  

In contrast to the native SVMs binary separation classifier [87], the classification model of 

random forest (Figure 2B) has been shown to efficiently handle large sets of training data with 

many classes of object detection [94]. RFs are an ensemble of decision trees, while the trees 

of the ensemble are created by using a randomness vector (e.g. random selection of examples 

from training set, random split selection or random training set selection) [95] [96] [97]. The 

final prediction is then obtained by aggregating over the ensemble. A striking point of RF is 

that many relatively uncorrelated models (trees) operating as a committee reduces the overall 

variance while keeping the low bias for decision trees [71] [96]. The individual trees protect 

each other from their individual errors (if they don’t constantly all err in the same direction) and 

thereby RF does not suffer from the overfitting problem while ensuring to be a highly accurate 

and robust method [98]. However, because of the creation of multiple trees, RF is a complex 

method and the algorithm needs a lot of computational resources [99].  

Another machine learning technique for numerous tasks are neural networks (NN) [100] [101] 

[102]. This classification model, albeit greatly simplified, is inspired by the neurons in the 

human brain [78]. A first model of an artificial neuron is the so-called perceptron (Figure 3C), 

which is a plain model of prediction and has first been described by Frank Rosenblatt [103]. 

This model basically consists of a single neuron which receives different (weighted) inputs and 

produces an output on a(n) (adjustable) threshold [104]. Thereby the perceptron separates the 

outputs in either 0 or 1. In contrast, a sigmoid neuron is able to take output values between 0 

and 1 [105]. Cascading numerous neurons leads to a multi-layer perceptron (MLP) [105]. In 

contrast to a perceptron, a node of an MLP node produces a graded value based on how close 

the input is to the desired category instead of binary classifying it [73] [78] [106] [107]. The 

numerous neurons within such a neural network are connected via edges, which are weighted 

(Figure 3D). Neurons receive a value of activation through these edges from the previous 

neuron. Each neuron then applies its activation function onto the input and passes the signal 

with their edges (which are again weighted) to the next neuron.  

There are different types of neural networks. A feedforward NN is fed with a static set of data 

and the neurons of a certain layer will only feed information to a subsequent layer [106]. Further 

examples are recurrent NNs (which process sequential data, compute data and time steps and 

create a memory like effect [76] [106]) and convolutional NNs (which apply mathematical 

operations called convolution on model input data to put them into the form of multidimensional 

arrays [73] [76] [108]). NNs typically consist of an input and output layer and can harbor 

numerous layers of multiple neurons. With the possibility of training NNs with more than one 
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hidden layer, artificial NNs are considered as “deep”, coined the term of deep-learning models 

[73]. NNs can be used for both, supervised and unsupervised approaches [76]. During training, 

the NN (or more specifically its adjustable parameters, e.g. the weights and thresholds/bias) 

are fine-tuned via backpropagation [76] [108] [109]. For this purpose, a gradient vector for the 

weights is computed by the learning algorithm, which tracks the decrease or increase of the 

error if the weights are changed by a tiny amount. Graphically, this can be illustrated as a hilly 

landscape (high dimensional space of weight values), where the minimum has to be found (low 

output error) by following the negative gradient vector to the steepest descent from the current 

position (in the optimization landscape). Since calculation of the gradient is often 

computationally expensive due to the memory parameters, a commonly used technique is 

stochastic gradient decent (SGD), which computes the gradient using only a randomly 

sampled subset of parameters. The velocity of traveling downwards the slope of the 

optimization landscape is expressed via the learning rate. This hyperparameter describes the 

amount of adjustments (step size) which are done to the weightings of the edges in the model 

in respect of moving towards a minimum of the loss function. Finding an optimal learning rate 

is a crucial point, as a learning rate which is too high might lead to a miss of the desired 

minimum, while a learning rate which is too low might result in a training process that is too 

slow [76] [100] [101] [102].  

 

Figure 3: Classification models support vector machine (A), random forest (B), perceptron (C) 
and neural network (D). While the SVM separates two classes by a hyperplane (A), RF calculates 
different trees which are then aggregated (B). The plain perceptron (C) receives different inputs and 
classifies them binary, while the NN can classify multiple classes (D). 
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Further, the performance of the NN can be influenced by tweaking certain parameters, such 

as the type of activation function, or by changing/adding biases, which will shift a neuron’s 

activation function in a certain direction along the x-axis [83] [110] [111] [112]. Deep learning 

methods have been shown to outperform other predictive models on multiple prediction tasks 

and are the current state-of-the-art for certain domains (e.g. image, audio, and text 

classification) [73] [76]. However, avoiding overfitting of NNs is a major task and results in their 

nonlinearity and in many parameters [73] [113]. In general, finding the best model for the 

prediction always depends on the data and cannot be generalized [73].  

In this context, machine learning approaches have successfully applied on biological questions 

like cancer detection and classification, image classification of biological samples, drug 

discovery and phenotype prediction [71] [75] [84] [107] [113] [114] [115] [116], as well as the 

identification of biological structures like TSS, promotors, enhancer, splice sites [82] and 

operon prediction (Table S1). Additionally, advances in NGS technologies have led to a huge 

amount of samples, which have the potential to increase our knowledge of the genome 

dramatically [117]. Especially the use of machine learning applications on these expression 

data have shown to potentially reveal correlations within this data [117] [118]. Further, the 

application of these classifiers to expression data (etc. microarray and NGS) has shown to 

increase the predictive performance of a classifier [46] [119]. Also, for operon prediction, 

different machine learning methods like RF, SVM and NN (Table S1) have been shown to 

accurately identify operons by using a combination of different genomic features (e.g. 

intergenic distance, codon usage and conservation) and expression data approaches [46] [69] 

[120]. 

1.4. Putative influence of operon structures to improve biotechnical 
applications for prokaryotes 

As microorganisms regulate their transcriptional program depending on changing conditions 

[18], it is fundamental to identify and understand operons and TUs for elucidating gene 

regulatory networks [19] [26] [46]. In times of climate change, there is a major demand for 

clean energy creation and processes that are able to couple CO2 fixation with chemical process 

for energy creation [121] [122]. In this context, the advantage of bacterial systems, in contrast 

to eukaryotic systems, is the direct coupling of transcription and translation [6] [7] [8]. Together 

with their faster growth rates compared to plants and the fact that they are easy to manipulate 

genetically, cyanobacteria are currently in the focus of interest [56], as these photoautotrophic 

cyanobacteria offer great potential as host organisms for renewable synthesis of chemical bulk 

products. [123]. Firstly, they are able to directly convert atmospheric CO2 into hydrocarbons 

which are suitable for biofuels [124], and secondly, they are able to convert solar energy into 

biomass [121] [124] [125] [126] [127] [128]. Biofuels, which can be produced through this 
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biomass, are regarded as one of the central alternative energy sources [129]. Furthermore, 

compared to other crops, cyanobacteria require a decreased amount of land [129]. Beside 

their usefulness in terms of biofuels, cyanobacteria were significant contributors to global 

photosynthetic productivity during evolution [130]. At the same time, cyanobacteria, particularly 

nitrogen-fixing ones, are beneficiaries of the global climate change [131], which results in 

enhanced, often harmful, cyanobacterial blooms [132] [133], whereby cyanobacteria secrete 

compounds with allelopathic properties regulating their ecological community growth [134]. In 

the environment, cyanobacteria can experience starvation or oversupply of nutrients like 

metals, phosphate, sulfur or nitrogen [135] [136] [137], which induces regulatory mechanisms 

to adapt to these environmental changes.  

For a detailed understanding of cyanobacterial behavior in ecosystems and communities as 

well as of their adaption under variable environmental conditions, it is essential to describe 

underlying molecular adaptations [138] [139]. In addition, it is essential to fully understand their 

transcriptional regulation and environmental adaptions [56]. For understanding these 

adaptions, the central elements like operons and alternating TUs are of central interest, as 

operon identification is an important step in understanding regulatory networks [26] [46]. As 

bacteria living in biofilms have been shown to be more resistant to antibacterial compounds 

[140], understanding transcriptional regulation could help to identify genomic regions 

responsible for the creation of biofilms. However, the formation of operons is still not completely 

understood [24] [46] [60] [141]. To analyze the transcriptional changes and to conclude on 

molecular sensors and transducers involved in environmental stresses, systematic 

approaches including Next-Generation-Sequencing (NGS) methods are used [142] in 

combination with in-silico methods [57]. 

1.5. Objectives of this study 

The transcriptional regulation of prokaryotes is a key element of understanding the gene 

expression within prokaryotes. In this context, understanding the behavior of prokaryotes when 

exposed to different stress conditions makes the transcription a central element also in case 

of an increased productivity of microorganisms for biotechnological approaches under stress 

conditions. Prokaryotes have shown to exhibit numerous ways of controlling the transcription. 

Beside known regulations in a classical way of functional non-overlapping controlling regions 

like operons, further regulation have been discovered even within these controlling regions. 

This leads to new insights onto transcription unit regulation with overlapping transcription units 

and multiple TSS even within defined operons. These insights are contrasting to the 

assumption of non-overlapping operons. In general, regulation features can be discovered via 

genomic features, which are missing the information of stress dependent expression and serve 
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perfectly for the traditional way of operon and TU identification. Therefore, the inclusion of 

expression data via RNA-Seq leads to an increased precision of TU identification in a dynamic 

way and under different conditions. As numerous available tools do not take expression data 

into account or are specialized on given model species, there is a need for an expression-

based species-free prediction pipeline. 

In the first section of this study, the task of creating a prototype of a usable framework for the 

identification of operons is addressed. For this reason, beside the user intuitive graphical user 

interface (GUI), data processing steps like the mapping of NGS data should be implemented. 

In this context, a challenging task is the fast and memory efficient evaluation of these data. For 

gaining insights into the processed data, different models should be developed that on the one 

hand guarantee the identification of operons in a traditional way. On the other hand, they 

should also be able to work without a provided reference while at the same time providing hints 

on alternative TUs within operons. Beside the evaluation of expression data, the formatting of 

genome-based features is a crucial part for the TU identification as well. Therefore, a 

generalized automated way should be developed. Both, expression and genomic features, 

thereby should be applicable in a generalized manner so that the developed concept does not 

lack of the drawback of being specialized only for model species. 

Consequently, in the second part of this study, the first defined model, which should be a 

training free approach, will be compared to existing tools and databases as well as to literature 

defined operon structures based on the model organism Escherichia coli and the non-model 

cyanobacteria Anabaena sp. PCC 7120. Following, the predicted structures will be compared 

to a genome wide experimental approach (TSS identification) in Anabaena sp. PCC 7120. 

Finally, the identification of TUs will be improved by letting machine learning applications learn 

through the provided data and therefore being free of manual cut-off provision.  



MATERIALS & METHODS 

 

13 

 

2. MATERIALS & METHODS 

All databases, tools and datasets have been used, collected and created between March 2017 

and March 2020. 

2.1. Database sources 

2.1.1. CyanoBase 

CyanoBase (http://genome.microbedb.jp/mnt.html, [143]) is a database for cyanobacteria and 

harbors cyanobacterial species information, complete genome sequences, genome-scale 

experiment data, gene information, gene annotations and mutant information. It was used to 

access different genomic data of cyanobacteria.  

2.1.2. Database of prOkaryotic OpeRons (DOOR) 

The DOOR (version 2.0, http://161.117.81.224/DOOR2/index.php, [65]) contains 

computationally predicted operons of all sequenced prokaryotic genomes. Thereby DOOR 

contains predicted operons and gene pair lists for 2072 prokaryotic genomes, based on a 

decision tree trained with data from Escherichia coli and Bacillus subtilis. DOOR was used to 

acquire operon labels from the opr files for a list of neighboring gene pairs for Anabaena sp. 

PCC 7120, Bacillus subtilis, Clostridium perfringens, Escherichia coli, Synechococcus 

elongatus and Synechocystis PCC 6803. 

2.1.3. DNA Data Bank of Japan (DDBJ) Sequence Read Archive  

The DDBJ Sequence Read Archive (DRA, https://www.ddbj.nig.ac.jp/dra/index.html, [144]) is 

an archive database for output data generated by next-generation sequencing machines and 

offers a close collaboration with NCBI Sequence Read Archive (SRA). It was used to search 

SRA RNA-Seq samples (http://sra.dbcls.jp/index.html). 

2.1.4. Google scholar 

Google scholar (http://scholar.google.de) provides the search for scholarly literature and was 

used to search for different publications. 

2.1.5. National Center for Biotechnology Information 

The National Center for Biotechnology Information (NCBI, http://ncbi.nlm.nih.gov, [145]) 

provides biochemical and genomic information. PubMed (http://ncbi.nlm.nih.gov/pubmed) was 

used to search for publications. Furthermore, the NCBI Genome Database 

(https://www.ncbi.nlm.nih.gov/genome) organizes information on genomes including 

sequences, maps, chromosomes, assemblies, and annotations and was used to collect 

generic feature format files (GFF) and FASTA files of different species. The Sequence Read 
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Archive (SRA, https://www.ncbi.nlm.nih.gov/sra,[146]) makes biological sequence data 

available and was used to extract different RNA-Seq data samples. 

2.1.6. Prokaryotic Operon DataBase (ProOpDB) 

ProOpDB (version 1.0, http://biocomputo2.ibt.unam.mx/OperonPredictor/, [29]) contains 

operons identified by an operon prediction algorithm and harbors the operon structures of 1200 

prokaryotic species. The operons are predicted using a multilayer perceptron neural network 

with intergenic distance between two subsequent genes as well as STRING-scores as input 

features. ProOpDB was used to acquire operon labels from the gene pair list files for a list of 

neighboring gene pairs for Anabaena sp. PCC 7120, Bacillus subtilis, Clostridium perfringens, 

Escherichia coli, Synechococcus elongatus and Synechocystis PCC 6803. 

2.1.7. RegulonDB 

RegulonDB (http://regulondb.ccg.unam.mx/, version 10.5, [147]) is a relational database 

harboring data on the transcriptional regulation in Escherichia coli K-12 containing knowledge 

manually curated from original scientific publications, complemented with high throughput 

datasets and comprehensive computational predictions. It was used to extract operons for 

Escherichia coli K-12. 

2.2. Tools and libraries 

2.2.1. Anaconda 

Anaconda (https://docs.anaconda.com/anaconda/, version 3 2019.07) is an open-source 

package and environment manager for python and R for scientific computing (e.g. machine 

learning and data science). 

2.2.2. BBMap 

BBMap (https://sourceforge.net/projects/bbmap/, version 38.75, [148]) is a short-read aligner 

for DNA and RNA-Seq data. It is written in Java and is thereby platform independent and only 

requires Java being installed on the target system. It was used to map RNA-Seq samples of 

different species onto a reference genome. 
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Table 1: Used parameters for BBMap.  
The first column shows the used options, the second column shows the used value, and the third column 
shows their description. 

Option Used Description 

ref= <file to fasta sequence> Path to the reference genome. 

in= <r1.fq> Path to the read file containing mates 1. 

in2= <r2.fq> Path to the read file containing mates 2. 

threads= 16 Number of threads used for candidate search. 

ambigous= best Set behavior on ambiguously mapped reads (with 

multiple top-scoring mapping locations). 

mappedonly= true Write only mapped reads to output file 

output= <outputFile.sam> Path to output file. 

2.2.3. Bowtie2 

Bowtie 2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml, version 2.3.5.1, [149]) is a tool 

for aligning sequencing reads to reference sequences supporting gapped, local, and paired-

end alignment modes. Bowtie 2 creates and uses a full-text minute index for each genome. It 

was used to map RNA-Seq samples of different species onto a reference genome. Further, 

bowtie2-build was used to create an index file for different FASTA input (bowtie2-build 

<inputFile.fa> <outputFileIndex>). 

Table 2: Used parameters for Bowtie2.  
The first column shows the used options, the second column shows the used value, and the third column 
shows their description. 

Option Used Description 

-x <file to fasta sequence> Path to the reference genome. 

-1 <r1.fq> Path to the read file containing mates 1. 

-2 <r2.fq> Path to the read file containing mates 2. 

-t -t Print wall-clock time taken by search phases. 

-p 16 Number of threads used for candidate search. 

--mm --mm Use memory-mapped I/O for index; many 'bowtie's can 

share. 

--no-unal --no-unal Do not show unaligned reads. 

-S <outputFile.sam> Path to output file. 

2.2.3.1. Jupyter Lab  

Jupyter lab (https://jupyter.org/hub, Version 0.35.4) is an open-source web-based user 

interface for project jupyter. It integrates versioning to create and share documents containing 

executable code, (interactive) output and descriptive texts. Jupyter lab was used to create 

notebooks for development and evaluation of machine learning methods and preparation and 

analysis of data. 
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2.2.4. CorelDRAW 

CorelDRAW (version X6; http://coreldraw.com) is a tool for the creation and modification of 

images and figures and was used to create and modify figures for this thesis. 

2.2.5. Eclipse 

Eclipse (version 4.14.0, https://www.eclipse.org/) is an integrated development environment 

(IDE). It offers the development in different programming languages and is open-source. 

Eclipse was used to write the framework (in Java) and smaller applications (Java & Python). 

2.2.5.1. Git integration for Eclipse (EGit) 

EGit (https://www.eclipse.org/egit/, version 5.6.0.201912101111-r) is a provider of the git 

version control system for Eclipse. It was used to manage versioning of the code. 

2.2.5.2. Maven integration for Eclipse (M2Eclipse) 

M2Eclipse (https://www.eclipse.org/m2e/, version 1.8.3) enables the integration of Apache 

Maven into the Eclipse IDE. It was used to manage the developed pipeline in Java with Maven 

via Eclipse. 

2.2.5.3. Python Development Environment for Eclipse (PyDev) 

PyDev (https://www.pydev.org/, version 7.4.0) is an open-source integrated Python IDE for 

Eclipse and enables it to develop Python code. 

2.2.5.4. Spring Tools for Eclipse 

Spring Tools (https://marketplace.eclipse.org/content/spring-tools-4-spring-boot-aka-spring-

tool-suite-4, version 4.14) integrates Spring into the Eclipse IDE and enables it to develop 

modern Spring Boot applications. 

2.2.6. GitHub 

GitHub (https://github.com/, version 2.25.0) is a hosting service for software development and 

version controlling based on git (https://git-scm.com/, version 2.24.1), which is the control 

system for software project development. It was used to manage the code written for this 

thesis. 

2.2.7. HTSeq 

HTSeq ([150] , https://htseq.readthedocs.io/, Version 0.11.1) is a free python package 

providing functions and data structures to process data from high-throughput sequencing 

experiments. HTSeq-count was used to analyze genome regions covered by mapped reads. 
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Table 3: Used parameters for HTSeq.  
The first column shows the used options, the second column shows the used value, and the third column 
shows their description. 

Option Used Description 

path to sam file <file to SAM> Path to the SAM file. 

path to gff file <genome.gff> Path to the reference genome. 

-t gene Feature type (3rd column in GFF file) to be used. 

-s no? Specifies if the data is from a strand-specific assay. 

-m union Mode to handle reads overlapping more than one feature. 

-r pos For paired-end data, the alignment must be sorted either by 

read name or by alignment position. 

--nonunique all Mode to handle reads that align to or are assigned to more 

than one feature in the overlap <mode> of choice (see -m 

option). 

-a 10 Skip all reads with alignment quality lower than the given 

minimum value. 

2.2.8. Java scripts and libraries 

Java (https://www.java.com/, https://openjdk.java.net/, version SE 8 LTS) is a class-based, 

object-oriented general-purpose programming language. It was used for the development of 

the operon prediction pipeline as well as for the parsing of data out of different files. 

2.2.8.1. Deeplearning4J 

Deeplearning4J (https://deeplearning4j.org/, version 1.0.0-beta4) is an open-source deep 

learning library for the java virtual machine (JVM) and was used to import the neural network 

written in python with TensorFlow into the java-written operon prediction pipeline. 

2.2.8.2. JUnit 

JUnit (https://junit.org, version 4). is a testing framework for the Java programming language. 

It was used to create test cases for the different parts of the written framework and evaluate 

the tests. 

2.2.8.3. Kryo 

Kryo (https://github.com/EsotericSoftware/kryo, version 5.0.0-RC4) is a binary object graph 

serialization framework for Java with the focus on speed, efficiency and user-friendly API. It 

was used to serialize the data structures of the framework. 

2.2.8.4. ND4j-native-platform 

ND4j (https://nd4j.org, version 1.0.0-beta4, [151]) is an open-source deep learning project for 

Java including n-dimensional arrays for java. It was used to set up the input data for the 

prediction models. 
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2.2.8.5. Simple Logging Facade for Java (SL4J) 

SL4J (http://www.slf4j.org/, version 1.7.5) offers different logging frameworks allowing the user 

to use the desired logging framework at deployment time. It was used to integrate log4J 

(https://logging.apache.org/log4j/2.x/, version 2.13.0) into the pipeline. 

2.2.8.6. Spring framework 

The Spring framework (https://spring.io/, version 5.2.2) is an open-source application 

framework and control container for the Java platform. It can be used for different modern 

applications like modern cloud-based microservice applications or web-applications. Spring 

Boot thereby makes it extremely efficient to implement applications and services on top of Java 

as it is the starting point for all Spring-based applications. From the Spring framework, Spring 

Boot was used to create the GUI for this thesis. 

2.2.8.7. Thymeleaf 

Thymeleaf (https://www.thymeleaf.org, version 2.1.6) is a server-side Java template engine for 

both web and standalone environments, capable of processing HTML, XML, JavaScript, CSS 

and even plain text. As a Java library it was used to create the GUI of OpPipe and connect the 

single parts of OpPipe to one pipeline. 

2.2.9. Mason 

Mason (https://www.seqan.de/apps/mason/, [152], version 2019-03-21) is a read simulator for 

second generation sequencing (SGS) techniques like Illumina, 454 and Sanger sequencing. It 

was used to simulate reads out of different genomes to evaluate the mapping part of the 

framework. 
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Table 4: Used parameters for Mason.  
The first column shows the used options, the second column shows the used value, and the third column 
shows their description. 

Option Used Description 

sequencing technology illumina The first argument specifies the sequencing 

technology to use. 

-mp –mate-pairs -mp Enable mate pair simulation.  

-n --read-length 100 Length of the reads to simulate. 

-s --seed not used The seed for the random number generator. 

-N --num-reads 100 Number of reads to generate. 

-rnp --read-name-prefix read Read name prefix. 

-f --forward only -f Simulate from forward strand only. 

-nN –no-N -nN If set, no Ns will be introduced in the reads. 

-sq --simulate-qualities -sq If given, qualities are simulated for the reads and the 

result is a FASTQ file, is FASTA otherwise. 

-o --output-file random100.fq Path to the resulting FASTA/FASTQ file. 

2.2.10. Maven 

Maven (https://maven.apache.org/, version 3.6.3) by Apache is a software management tool 

and was used to build the different parts of the framework including their dependencies. 

2.2.11. Mendeley 

Mendeley (https://www.mendeley.com, Version 1.19.5) is a free reference manager to store 

and manage research and publications. It was used to store different articles together with the 

Microsoft Word plugin to manage the citations and to create the bibliography and references 

in this thesis. 

2.2.12. Microsoft Office 

Microsoft Office (http://office.com, version 365) is an office suite providing different office 

applications and services. Microsoft Word was used to write this thesis. Microsoft Excel was 

used to create diverse tables and graphics and Microsoft PowerPoint was used for the creation 

of different graphics. 

2.2.13. Microsoft Windows  

Windows 10 (https://www.microsoft.com/de-de/windows, version 10 Home) is an operating 

system produced by Microsoft and was used as operating system during this thesis. 

2.2.14. NCBI Sequence Read Archive (SRA) Toolkit 

The SRA Toolkit (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software, version 

2.10.0) allows users to download biological sequence data from SRA. It was used to download 

different RNA-Seq samples. 
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2.2.15. NetBeans 

NetBeans (http://netbeans.org, version 8.0) is a software development platform and was used 

to create java scripts for the automatic parsing and for the evaluation of different datasets. 

2.2.16. NextGenMap 

NextGenMap (NGM, http://cibiv.github.io/NextGenMap/, Version 0.5.5, [153]) is a fast and 

flexible read mapping program, which is able to handle read data independent of read length 

and sequencing technology and also to automatically adapt to highly polymorphic regions while 

keeping runtime low and sensitivity high. NextGenMap was used with default parameters to 

map reads from RNA-Seq experiments. 

Table 5: Used parameters for NGM.  
The first column shows the used options, the second column shows the used value, and the third column 
shows their description. 

Option Used Description 

-r <file to fasta sequence> Path to the reference genome. 

-1 <r1.fq> Path to the read file containing mates 1. 

-2 <r2.fq> Path to the read file containing mates 2. 

-p -p Input data is paired end. 

-t 16 Number of threads used for candidate search. 

--no-progress --no-progress Silent mode. 

--strata --strata Only output the highest scoring mappings for any 

given read, up to mappings per read. 

--no-unal --no-unal Do not show unaligned reads. 

-o <outputFile.sam> Path to output file. 

2.2.17. Oracle VirtualBox 

VirtualBox (https://www.virtualbox.org/, version 6.1) is a visualization product for operating 

systems that supports many guest operating systems (e.g. Windows and Linux). 

2.2.18. Picard  

Picard (https://broadinstitute.github.io/picard/, version 2.21.6) is a set of command line tools 

for the work with high-throughput sequencing data and formats (e.g. SAM and BAM). Within 

Picard, SortSam was used to sort the reads of a SAM (and BAM) file based on their 

coordinates. 

2.2.19. Python scripts and libraries 

Python (https://www.python.org/, version 3.6.8) is an interpreted general-purpose 

programming language. Python was used for the creation of different machine learning models 

and visualization of these models as well as for parsing information out of different data files. 
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2.2.19.1. Keras 

Keras (https://keras.io/, version 2.3.0) is a high-level API for neural networks written in Python. 

It has a focus on easy and fast experimentation and prototyping. Keras can run on top of 

different machine learning libraries. Keras running on top of TensorFlow and Keras without 

running on top of another library was used for the implementation of the feed-forward neural 

networks. 

2.2.19.2. Matplotlib 

Matplotlib (https://matplotlib.org/, version 3.1.0) is a library for data visualization and generating 

publication quality figures in Python. Matplotlib was used to create visualizations of the 

machine learning models. 

2.2.19.3. NumPy 

NumPy (http://www.numpy.org/, version 1.15.4) is a package containing many tools for 

scientific computing in Python. NumPy was used to handle the data sets and is also a 

dependency for other used libraries. 

2.2.19.4. Pandas 

Pandas (https://pandas.pydata.org/, version 0.24.2) is an open-source library for Python 

providing different data structures and analysis tools, especially for numerical tables and time 

series. It was used for data analyses in the context of machine learning applications. 

2.2.19.5. PyInstaller 

PyInstaller (http://www.pyinstaller.org/index.html, version 3.6) bundles a Python application 

and all its dependencies into a single package. The user can run the packaged app without 

installing a Python interpreter or any modules. It was used to include the SVM and RF models 

into a packed app. 

2.2.19.6. Scikit-learn 

Scikit-learn (https://scikit-learn.org/, version 0.22.1) is an open-source machine learning library 

written in Python using NumPy, SciPy and matplotlib. It has various tools for data mining and 

data analysis. Scikit-learn was used for development and performance evaluation of the 

different machine learning models. 

2.2.19.7. Seaborn 

Seaborn (https://seaborn.pydata.org/, version 0.9.0) is a high-level interface for statistical data 

visualization based on matplotlib. Seaborn was used to create visualizations of the machine 

learning models. It was used to run Ubuntu during this thesis. 
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2.2.19.8. TensorFlow 

TensorFlow (https://www.tensorflow.org/, version 1.13.1) is a library for dataflow programming 

that was originally developed by the Google Brain Team for internal use but was released as 

an open-source library in 2015. TensorFlow has a strong support for machine learning and 

deep learning. TensorFlow was used for the implementation of feed-forward neural networks. 

2.2.20. Rockhopper 

Rockhopper (https://cs.wellesley.edu/~btjaden/Rockhopper/index.html, [36], version 2) is a 

tool for the computational analysis of RNA-Seq data including reference based transcript 

assembly, de novo transcript assembly, normalization of experiments, transcript abundance 

quantification, differential gene expression and operon prediction. It was used to predict sets 

of operons for different species to benchmark them against other prediction tools. 

2.2.21. SigmaPlot 

SigmaPlot (Version 12.5; http://systatsoftware.com/products/sigmaplot) is a tool for the 

visualization of scientific datasets. It was used to create figures in this thesis. 

2.2.22. Ubuntu 

Ubuntu (https://ubuntu.com/download, version 18.04 LTS) is a free open-source Linux 

distribution and was used via virtual box to execute libraries and tools only available for Linux. 

2.2.23. WebVector 

WebVector (http://cssbox.sourceforge.net/webvector/, version 3.4) converts HTML to SVG, 

PDF or PNG format. It was used during this thesis to convert the HTML output of the visualizer 

part into SVG and PNG images. 

2.3. Organism sources and data samples 

2.3.1. Biological samples for Anabaena sp. PCC 7120 

For RNA-Seq analysis, different datasets were used from Anabaena sp. PCC 7120, which 

were created and kindly provided by Niclas Wolfgang Fester (PhD student, AK Schleiff). In 

total, 18 samples with nine different conditions (Control, -Cit, -Co, -Cu, -Fe, -Mn, -Mo, -Nit,  

-Zn) each with two technical replicates have been created. YBG11_0 was the base media with 

addition of ammonium chloride as nitrogen source except of the -Nit samples (Tables S2-3). 

To buffer pH changes due to the ammonium chloride, the media were buffered with TES buffer. 

For all metal starvation samples, only the corresponding metal was left out. The media have 

been combined from different premixed and sterile filtered solutions. The autoclaving process 

was only used for the water to prevent the precipitation of metals. All cultures were grown in 

50 ml glass flasks with a metal lid at 30 °C under light conditions (70 µmol photons per m² * 
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sec). For starvation conditions the Anabaena sp. PCC 7120 cultures were pre-starved (in total 

seven days) to get rid of extant metals that were brought in with the cells. For the pre-starvation, 

the fresh biomass was washed twice in the corresponding dropout medium before it was 

inoculated with an OD (optical density) of 0.1. After 3 and 7 days, the cells were washed and 

reinoculated in fresh dropout medium to reduce intrinsic metal of the bacteria. In the starvation 

step after 7 days, the cultures were grown until the iron deficient sample reached a chlorophyll 

a content below (2 µg/µl). As the iron starved cultures reached that point, all samples were 

precipitated and rapidly frozen with liquid nitrogen.  

The total RNA was extracted and purified using the ambion PureLink RNA Mini Kit and the 

DNA depletion was done on-column (for 15 minutes at ~21 °C). After the extraction, the total 

RNA was quantified (peqLab NanoDrop 1000) to ensure the purity and concentration needed 

for the RNA-Seq experiment. After the RNA extraction and in advance of the library 

preparation, the quality of the total RNA was checked generating a RIN score equivalent with 

a bioanalyzer and the LabChip GK Software (Version 5.2.2009.0). Subsequently the rRNA 

depletion was done with a RiboZero Kit. The library preparation was done by GenX Pro and 

the RNA sequencing was done on an Illumina 1.9 Sequencer. The RNA sequencing yielded 

about 1 billion read pairs overall. For this thesis, the samples of the control, -Fe and -Nit have 

been used for operon prediction (Table S4). 

2.3.2. Collected data samples from public databases 

Beside the provided RNA-Seq datasets for Anabaena sp. PCC 7120, additional datasets have 

been collected from different data sources (Table S4). For the species Anabaena sp. PCC 

7120, Bacillus subtilis, Clostridium perfringens, Corynebacterium xerosis, Escherichia coli, 

Synechococcus elongatus and Synechocystis PCC 6803, genomic sequence files (GFF, 

FASTA) were extracted from the CyanoBase (2.1.1) and NCBI genome (2.1.5) (Table S4). 

Additionally, SGS (second generation sequencing) RNA-Seg data were collected for Bacillus 

subtilis, Clostridium perfringens, Corynebacterium xerosis, Escherichia coli, Synechococcus 

elongatus and Synechocystis PCC 6803 under control conditions using the NCBI SRA. For 

Escherichia coli, additional TGS (third generation sequencing) data was collected, while for 

Anabaena sp. PCC 7120 TSS were collected (TSS selection during nitrogen stress-induced 

cell differentiation and control conditions, Table S4). For all species, operon annotation was 

extracted from the databases DOOR (2.1.2), ProOpDB (2.1.6) and RegulonDB (2.1.7) for 

comparison. Subsequently, experimentally proven operons for Anabaena sp. PCC 7120, 

Bacillus subtilis, Corynebacterium, Escherichia coli K-12, Synechococcus and Synechocystis 

PCC 6803 were extracted by a literature search (PubMed (2.1.5) and google scholar (2.1.4), 

Table S5). The literature set resulted in a total of 71 operons, while 18 are designated from 
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Anabaena sp. PCC 7120, 12 from Bacillus subtilis, 3 from Corynebacterium, 20 from 

Escherichia coli K-12, 10 from Synechococcus and 8 from Synechocystis PCC 6803. 

2.4. Hardware 

All calculations and computations were done on a workstation with an Intel® Core™ i7-

4710MQ CPU @ 2.50GHz with 16 GB of RAM, Crucial MX500 SSD (1TB), 2 WD Elements 

external HDD (4TB and 2TB). 

2.5. Statistical measures and implemented calculations 

For the measure of the different created filters and the resulting classification models, different 

statistical measures were used (Table 6). Reference labels to verify true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) rates for prediction were based on 

gene pairs from the experimental proven literature set of known operons (Table S5). 

Table 6: Statistical measures for the evaluation of the different filters and prediction models. 
Indicated are the different formulas for the statistical measures with TP = true positives, TN = true 
negatives, FP = false positives and FN = false negatives. The F1-score is the harmonic mean of 
precision and recall. 

Statistical measure Definition 

Accuracy 𝑇𝑃 +  𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Precision (Positive Predictive Value) 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Specificity (True Negative Rate) 𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

Sensitivity (Recall, True Positive Rate) 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

F1-score 2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

Subsequently, different formulas have been implemented within OpPipe to allow normalization 

of mapped reads and intergenic distance between gene pairs (Table 7). For the mapping of 

reads onto a reference, the template length was considered, which has to be calculated for 

paired end reads (Table 7, Formula 1). The intergenic distance is calculated by subtracting the 

start and end positions of two genes (Table 7, Formula 2). The score of one filter within the 

plain prediction model is reached by multiplying the binary input with a given weight (Table 7, 

Formula 3). The total score of the plain prediction model is achieved by summing up the scores 

of the different filters (Table 7, Formula 4). Calculation of a scaling factor for different RNA-

Seq samples (Table 7, Formula 5).  
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Table 7: Implemented formulas within the prediction framework. Indicated are the description of 
the formula and the formula itself. In Formula 1, pNEXT indicates the position of the next template, which 
is the start of the mate (readB) if the read is properly mapped and the start of the read itself (readA) if 
not. 

Description Formula 

1. Calculation of total 

template length basing 

on two paired end reads 

𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ 𝑟𝑒𝑎𝑑𝐴−𝑟𝑒𝑎𝑑𝐵 = 𝑃𝑂𝑆𝑟𝑒𝑎𝑑𝐴 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑒𝑎𝑑𝐴 − 𝑝𝑁𝐸𝑋𝑇 

2. Intergenic distance of 

two genes 

𝐼𝑛𝑡𝑒𝑟𝑔𝑒𝑛𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐺𝑒𝑛𝑒1,𝐺𝑒𝑛𝑒2 = 𝑆𝑡𝑎𝑟𝑡𝐺𝑒𝑛𝑒2 −  𝐸𝑛𝑑𝐺𝑒𝑛𝑒1 

3. The score of each sub-

filter by multiplying 

binary encoding with the 

weighting 

𝑆𝑐𝑜𝑟𝑒𝐺1−𝐺2 =  𝐼𝐵 ∗  𝑊  

4. Maximum reachable 

score for all inputs 

𝑀𝐴𝑋𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑈𝑀𝐸𝑄𝑊
+ 𝑆𝑈𝑀𝐺𝐺𝑊

+ 𝑆𝑈𝑀𝐷𝐺𝐷𝑊
  

5. Calculation of scaling 

factor for library size 

normalization 

𝑆𝐹 = ∑ConditionA / MAX(∑ConditionA, … , ∑ConditionN) 

2.6. Implementation and benchmark procedures 

2.6.1. Operon prediction and data set creation  

Despite the collected operons from the operon databases DOOR (2.1.2) and ProOpDB (2.1.6), 

Rockhopper (2.2.20) was used to predict operons for Anabaena sp. PCC 7120 and Escherichia 

coli using the same RNA-Seq data from control conditions based on the same data as OpPipe. 

Subsequently, the predicted and collected operon sets were filtered and harmonized to a 

standard format and saved in a tab separated list. Therefore, all adjacent gene pairs on the 

same strand of the same operon were extracted as well as information about (i) numeration of 

genes in operon, whereby genes were numerated basing on their occurrence in the GGF-file 

of the referring species (ii) genes in operon, (iii) operon number (from 0 to n), (iv) strand of 

operon (based on GFF file from the referring species). 

Overall, from the 71 operons derived out of Anabaena sp. PCC 7120, Bacillus subtilis, 

Corynebacterium, Escherichia coli K-12, Synechococcus and Synechocystis PCC 6803, 280 

gene pairs were labelled as operon gene pairs (OP). For the generation of sets of non-operon 

gene pairs (NP), two approaches were used: (1) The boundary genes of the experimentally 

known operons from the literature set, meaning the gene before and after the operon, served 

as NP-set1 resulting in 142 gene pairs, (2) all gene pairs were identified that were not part of 

an operon in the dataset of Rockhopper, ProOpDB and DOOR and included to a NP set. Out 
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of this set, 280 gene pairs were randomly drawn which leads to the NP-set2 which is of the 

same size as the OP set. 

2.6.2. Mapping of RNA-Seq via OpPipe 

To determine the handling of mapped reads by OpPipe, NGM was used to map the control 

dataset onto the FASTA reference of Anabaena sp. PCC 7120. The arising SAM file was used 

to evaluate the mappings of the reads per position and per gene by evaluating the SAM flags 

(Table S6). This led to the adjustment for OpPipe of only considering reads with SAM flags 99-

147, 105-149, 153-101 and 155-103 (proper-paired reads and reads which are mapped to a 

strand but their mate is unmapped) and of discarding reads with 97-145 and reads without a 

strand information. Consequently, mapped reads, which could be mapped to a strand and 

whose mates were unmapped but exhibited a quality (SAM position 5, MAPQ, [154]) lower 

than 10 were also rejected. For defining the counts of mapped reads per genomic position, 

OpPipe uses (i) the read length of the mapped read for single-end data and for paired end 

reads where only one pair matched onto the reference, or (ii) the whole template length of the 

mapped read pairs and therefore always the read (readA) with the negative template length 

(SAM position 9, tLen, [154]), as it indicates the rightmost position of the whole template [154].  

From the start until the end of the read (or the template, respectively) each genomic position 

is increased by one. For paired end reads with negative tLen, the strand is then inverted, as 

for the library types fr-unstranded, fr-firststrand and fr-secondstrand reads from the leftmost 

end of the fragment map to the transcript strand like suggested in Trapnell et al. [155]. For the 

length of readA, the CIGAR string (indicates matches/mismatches, insertions and deletions of 

a mapped read, [154]) is then evaluated (SAM position 6, CIGAR, [154]). The length of the 

whole template is then calculated (Table 7, Formula 1) by subtracting the end of readA (start 

of readA + length of readA) from the position of the primary alignment of the next read in the 

template (SAM position 8, pNEXT [154]). The mapping part of OpPipe thereby needs a 

provided GFF file and creates different data structures, namely (i) count coverage for each 

genomic position, (ii) the number of reads mapped onto an annotated gene (based on GFF 

file) and (ii) the number of reads being mapped onto two annotated genes (based on GFF file) 

and thereby connecting them. This mapping procedure of OpPipe is done separately for the 

plus and minus strand of the referring reference. The OpPipe mapping was then applied onto 

all species. 

2.6.3. Mapping and runtime benchmark of OpPipe 

For versatility in respect to the mapping part of OpPipe, different aligners were evaluated. 

Therefore, the runtime and mapping precision of BBMap (2.2.2), Bowtie2 (2.2.3) and NGM 

(2.2.16) was evaluated. For the runtime analysis of the mapping, the build of an index was 
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included. For this purpose, FASTA files of five reference species were used to map the RNA-

Seq datasets of the control experiments (Table S4). 

To further benchmark the mapping of OpPipe, 100 reads were simulated from the genomic 

sequence of the gene alr2350 from Anabaena sp. PCC 7120 using mason (options mentioned 

in 2.2.8). These reads were mapped onto the genomic reference of Anabaena sp. PCC 7120 

to generate a SAM file using NGM (2.2.15). For each possible SAM flag of paired end reads, 

an independent SAM file was created with a different amount of reads and each read only 

containing this specific SAM flag (and the flag of its mate). Then HTSeq (option compare 2.2.7) 

and the mapping part of OpPipe were run onto the manually modified SAM files to evaluate 

which reads were being used by the mapping algorithms. Each of these files contained 

simulated paired reads with different SAM flags which were created with mason (2.2.10). 

Subsequently, the mapped reads per gene have been compared between HTSeq-count and 

the OpPipe-count. Subsequently, HTSeq-count and OpPipe -count were both applied on the 

fully mapped set of Anabaena sp. PCC 7120. In a first step, runtimes of the mapping framework 

and of HTSeq have been compared. Subsequently, nine different genes were drawn randomly 

to compare counted reads and to evaluate the SAM flags of these reads. 

2.6.4. Filter creation for operon prediction in plain predictor, SVM, NN and RF 

model 

For the creation of input features for the prediction algorithms, genomic information and 

expression data have been used to create four different so-called filters. The expression data 

from RNA-Seq have been used to create (i) gene graph filter (GG) and (ii) expression pattern 

filter (EP). A provided GFF file was used to calculate (iii) the dynamic intergenic distance filter 

(DGD). As a prerequisite for the expression-based filters, the expression profile was used to 

calculate coverage per genomic position and the number of reads covering one or more genes. 

The GG filter constructs a graph with the nodes being the genes of a species with edges 

connecting them. These are initially weighted with zero. If a pair of genes has been hit by the 

same read, an edge between them is created and the weight is increased by one. For each 

following read covering both genes, the weight of their edges is increased by one. This leads 

to a graph of genes indicating, via the edges, by how many reads both genes have been hit. 

To identify TUs, the algorithm loops over the gene graph and indicates genes as a start (or 

end, respectively) of the TU, if their edge-weight is equal or higher (or lower, respectively) than 

a defined cut-off (co=2 in initial state).  

The EP filter determines a cut-off which indicates that at least x% (x can be 0.98, 0.95, 0.9, 

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and 0.05) of all genomic positions are covered by n reads. 

Thereby different kind of the stringency in the range from 0.98 (tolerant) to 0.05 (strict) lead to 
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12 different EP stringencies. For each stringency between 0.98 and 0.05, the cut-off is 

determined by first looping over all genomic positions and detecting by how many reads they 

have been hit (n, Table S7A). Subsequently, it is detected, how often n occurs within the 

genome (occurrence in genome, o, Table S7B) and all occurrences are summed up (sum of 

occurrences, S, Table S7). Further, the sum of occurrences (S) is multiplied with the stringency 

(ST) and subtracting this result from the sum of occurrences (S, Table S7C) leads to a 

stringency value (STval, Table S7). The cut-off is then defined by searching the sum of 

occurrences (So, Table S7), which is greater than the stringency value (STval, Table S7B). For 

example, for the stringency of 0.98, this would suggest that only 2% of all genomic positions 

are covered by less than one read, but that at least 98% of all genomic positions are covered 

by at least one read (Table S7B). Subsequently, it is looped over the expression landscape 

and if the number of reads hit to a genomic position is higher or equal (or lower, respectively) 

than the cut-off, this position is marked as the start (or the end of a TU, respectively). 

Subsequently, all genes of this TU are identified. 

From the GFF file, the distance of all adjacent gene pairs is used to create the dynamic gene 

distance (DGD) filter. Therefore, the intergenic distance (given in nucleotides) of adjacent 

protein coding genes is grouped into specific distance ranges (smaller than one, 1 to 100, 101 

to 200, 201 to 300, 301 to 400, 401 to 500, 501 to 1000, greater than 1000). Consequently, it 

is evaluated how many percent of all genes are part of each specific distance range. The 

percentages of each distance range are then summed up (from small to great distance). For 

defining a cut-off for classifying two adjacent genes in and operon pair (OP) or non-operon pair 

(NP), it is evaluated at which distance range the sum is greater than a predefined value x. 

Even though it is assumed that 50-60% of all genes in a prokaryotic genome are part of an 

operon [27] [28], x was set initially to 45% for the DGD (explaining % of all gene pairs), to 

minimize the amount of false positives in the initial approach. The upper bound distance range 

is then set as the cut-off (co). Subsequently, the algorithm loops over each gene and 

determines for each gene (G1) the distance to its adjacent pair (G2). If the distance is within 

the cut-off, G1 is marked as the TU start and consequently G2 is marked as TU end if the 

distance is greater than the cut-off. In general, each filter is conducted separately for Watson 

and Crick strand and leads to an independent list of putative TUs.  

Subsequently, the filters GG, EP and DGD were grouped together into an output format that 

served as input for the different prediction algorithms. Each filter indicates for a pair of genes, 

if they are part of a TU in the given filter (labelled as ‘1’ OP and ‘0’ NP). Thereby, the input is 

a table with the columns indicating the gene pairs, EP filter (0.98 to 0.05 cut-off), GG filter (GG 

fulfilled & GG not fulfilled) and DGD filter (DGD fulfilled & DGD not fulfilled). Thereby, the filters 
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are divided into EP0.98, EP0.95, EP0.90, EP0.80, EP0.70, EP0.60, EP0.50, EP0.40, EP0.30, EP0.20, EP0.10, 

EP0.05, GGY, GGN, DGDY, DGDN leading to 16 inputs per adjacent gene pair of a specific strand.  

2.6.5. Combining filters to a plain prediction model 

The defined input format served as starting point for a first operon prediction structure. 

Therefore, a plain decision tree predictor was built (using the EP, GG and DGD filter). Specific 

weights were applied to the 12 EP, 2 GG and 2 DGD input vectors while the vectors of each 

filter sum up to one. The inputs are simply binary coded (‘1’ adjacent gene pair part of TU 

within this filter, ‘0’ adjacent gene pair not part of TU within this filter). Afterwards, all achieved 

scores of all inputs are summed up leading to a total score for each gene pair (TSG1-G2, sum of 

all scores MAXScore, Table 5, Formula 5). Thereby, MAXScore can be reached if an adjacent 

gene pair is present in each EP (0.98 to 0.05) filter, present within the GG filter (GGY) and 

present within the DGD filter (DGDY). With the initial weightings, this results in MAXScore of 2.7. 

Subsequently, the TSG1-G2 is divided by MAXScore. If the observed score is greater than a pre-

defined cut-off (default 0.6), the two gene pairs are considered as OP.  

2.6.6. Filter and operon prediction classifiers benchmark 

OpPipe has been used to map RNA-Seq data under control conditions from Anabaena sp. 

PCC 7120, Bacillus subtilis, Escherichia coli K-12, Synechococcus elongatus and 

Synechocystis sp. PCC 6803, as well as RNA-Seq data under -Fe and -Nit conditions from 

Anabaena sp. PCC 7120 (Table S4). Subsequently, for these datasets all filters were 

calculated, and operons were identified using the plain predictor model. In a first step, the 

operons from the literature set (2.6.1) in Anabaena sp. PCC 7120 where compared under 

different EP stringencies. Further, the nir, fraC and pec operon from Anabaena sp. PCC 7120 

have been modeled under the different EP stringencies and the decay of the TUs has been 

observed. Further, these three operons were used to monitor differences within the number of 

(normalized) reads connecting them under the GG filter. In a first attempt, the counts were 

normalized [156] to one million reads by dividing each counting position with the summed size 

and then multiplying it with one million. Additionally, library size normalization was conducted 

using a scaling factor (Table S7, SF). Therefore, the maximum of the summed counts of all 

used conditions was identified (Table 7, Formula 5). Then, each of the sums was divided with 

the max leading to a scaling factor. This scaling factor was then multiplied with each count 

position. Following, the filters were evaluated based on the performance on the literature set 

(Table S5) using accuracy, precision, sensitivity, specificity and f1-score (Table 4). In a first 

approach, GG and DGD were evaluated using the OP-set and NP-set1 (2.6.1) and 

subsequently, DGD was evaluated using OP-set and NP-set2 (2.6.1). In addition, the GG 

graph was also compared on SGS and TGS data from Escherichia coli K-12 (Table S4) basing 

on the Op-set and the Np-set1 (2.6.1). 
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Further, an overall comparison was done with operons that can be found in the same 

composition among different predictors (OpPipe plain predictor, DOOR, ProOpDB, 

RegulonDB, Rockhopper) leading to an overlap of operons being identified either by one or up 

to all predictors. In addition, in Anabaena sp. PCC 7120, a set of operons has been created 

which have only been identified by OpPipe (exclusive set) but not by the other predictors 

(DOOR, ProOpDB, Rockhopper). Subsequently, it has been compared how many of the 

operons from Anabaena sp. PCC 7120 and Escherichia coli collected in the literature have 

been identified by the different predictors (separated into correctly predicted, elongated 

predicted, partially predicted, not predicted). Further a scoring system was applied to compare 

the predictors for the predicted operons from Escherichia coli and Anabaena sp. PCC 7120. 

Thereby a correctly predicted operon was multiplied with 1, elongated and partially predicted 

operons with 0.5 and not predicted operons with -1 (basing on OP literature set 2.6.1). The 

resulting scores were summed up and divided by the total number of operons leading to a 

predictor-specific score for each species that can be compared.  

2.6.7. TSS benchmark of predicted operons 

For the identification of TSS within the genome Anabaena sp. PCC 7120, a dataset of 

experimentally identified TSS was used (2.3.2, [56]). Firstly, a whole genome search for these 

TSS was conducted using different java scripts. It was evaluated where in the genome the 

TSS are located based on the GFF annotation (before genes, inside genes, between genes). 

Therefore, if a TSS is in a maximum distance of 200 nucleotides before the start codon 

(comparable like proposed in [56]), it is counted as “before genes”. If a TSS cannot be assigned 

to these two groups, it is counted as “between genes”. To sort out low abundant TSS, 

abundance distribution of TSS regions is calculated over the whole genome leading to the 

result that a TSS is only counted if it has been hit by at least 50 (or 100, respectively) reads. 

Subsequently, the predicted operons in Anabaena sp. PCC 7120 of DOOR, the OpPipe plain 

predictor, ProOpDB, Rockhopper, the exclusive set (2.6.6) and the literature set (2.6.1) were 

used to compare the composition for these sets regarding TSS distribution. For the two cut-

offs of 50 and 100, the percentage of operons was evaluated that exhibit a TSS before the 

operon, within the operon or which do not exhibit a TSS. 

2.6.8. Implementation of different classifiers and comparison 

For a first inference, the input dataset harboring the filters EP, GG and DGD (2.6.4, output 

format) were used to create different machine learning models. Therefore, the defined 

literature set (2.6.1, OP-set, NP-set2) was used for training and testing the predictors. On a 

first step, a random forest classifier (RF) was created with scikit-learn (2.2.19.6) using a grid 

search and a five time 5-fold cross validation. The best scoring model was stored for each fold. 

Within the input features, an importance analysis was conducted and plotted. Further, a 
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support vector machine (SVM) was created using also scikit-learn (2.2.19.6) with a grid search 

and a five time 5-fold cross validation. The best scoring model was again stored for each fold. 

Both the RF and SVM classifier were created using eclipse (2.2.6) in combination with PyDev 

(2.2.5.3). Subsequently, a neural network (NN) was implemented using TensorFlow (2.2.19.8) 

and Keras (2.2.19.1). The network was created with Jupyter Lab (2.2.3.1) and is comprised of 

16 inputs (EP, GG and DGD filters), two hidden layers with five nodes each, and one binary 

output. The activation was set to sigmoid. To find the hyperparameters like training epochs, 

dropout and learning rate, a grid search was performed using scikit-learn grid search. These 

results were used to train the neural network. With matplotlib (2.2.19.2) and seaborn (2.2.19.7), 

training accuracy, validation accuracy, training loss and validation loss were plotted. 

Consequently, the statistical measures (accuracy, precision, recall, f1-score, ROC, AUC) of 

RF, SVM and NN predictor were compared. PyInstaller (2.2.19.5) was afterwards used to 

bundle the SVM and RF into an application to make it executable without a python interpreter, 

while the NN was integrated into OpPipe using Deeplearning4J (2.2.8.1) and ND4J (2.2.8.4). 

RF, SVM and NN were then used to predict operons based on Anabaena sp. PCC 7120 control 

conditions. 

Additionally, an overall comparison was done with operons that can be found in the same 

composition (i) among different predictors (RF, SVM, NN, DOOR, ProOpDB, Rockhopper), (ii) 

among different OpPipe predictors (plain predictor, RF, SVM and NN) leading to a conserved 

overlap set of 556 operons, (iii) conserved overlap set of plain predictor, RF, SVM and RF 

among different predictors (DOOR, ProOpDB, Rockhopper). For the comparisons, the operons 

of the RF, SVM and NN training sets were excluded. Finally, the minimum, maximum and 

average length (number of gene) of all operons, as well as the percentage of operons 

containing less than five or more than four genes of the predicted operons in Escherichia coli 

K-12 and Anabaena sp. PCC 7120 were compared between the different predictors (DOOR, 

OpPipe plain predictors, ProOpDB, RegulonDB, Rockhopper, RF-filter, SVM and NN). Also, 

the percentage of genes being assigned into operon in these two species was compared 

between the different predictors.  

2.6.9. Implementation of visual output 

To track changes within the composition of predicted operons (e.g. due to environmental 

changes), the visualizer of operon prediction files was implemented using different java scripts. 

These scripts parse out the genomic information out of GFF files and the predicted operons of 

the operon files. Subsequently, a list of adjacent gene pairs is created with a color code 

indicating if they are part of the same operon. Thereby, on a first step, an HTML file is created 

providing different genomic information about two adjacent genes like start position, stop 

position, intergenic distance, and prediction score of the gene pair. If different operon prediction 
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files are provided, a second HTML output is created, listing the predicted operons along each 

other (with regard to the provided reference), again with color coding to track the changes 

within the different predictions. Finally, the HTML outputs are converted to SVG and PNG 

images using the WebVector library (2.2.23). 

2.6.10. Implementation of a pipeline prototype for the operon prediction 

The implementation of the OpPipe prototype was conducted in java using different maven 

projects within Eclipse (2.2.5). The projects were staged with git (2.2.6). First, the functionality 

of OpPipe was implemented as a single executing framework. For this purpose, different sub 

packages were created, each with the ability to act independently, to ensure different tasks of 

OpPipe. In general, OpPipe is separated in eight different modules handling GUI, pipeline, 

evaluation of genomic feature files as well as mapping of RNA-Seq data and filter creation, 

prediction, visualization, storage and helper tools part (Figure S1). The package 

“userInterface” harbors all relevant features for the creation of the different GUIs, namely the 

GUIs itself and the controlling and data storing parts of the GUIs. Additionally, package 

“pipeline” manages the execution of OpPipe. The storage part is facilitated by the package 

“gffTools” which serializes and deserializes provided genomic and experiment files. The 

serialization is beneficial as the execution time can be decreased drastically, if a genome or 

experiment was loaded into OpPipe previously. The package “readGFF” evaluates a given 

GFF file. Once a GFF file is evaluated, it is then serialized using kryo (2.2.8.3) onto a given 

home repository using the package “gffTools”. For each experiment using this specific GFF, it 

has not to be evaluated a second time and can be easily deserialized (using kryo). Further, the 

package “filterCreation” on the one hand evaluates genomic features (intergenic distance). On 

the other hand, it maps given RNA-Seq experiments onto a given reference (provided in 

FASTA format) or reads already mapped files (SAM). Subsequently, the filters are created 

based on the data. Once an experiment is read, the filter relevant features are also serialized 

and can be reused. The package “predictionModels” harbors different predictive algorithms 

(plain predictor, neural net classifier, support vector machine, random forest) and applies the 

given predictor onto the filter data. After the operon prediction, the package “visualization” 

provides the predicted operons as a visual output also in HTML format. Finally, the package 

“helperTools” provides different additional methods for e.g. comparing different predicted 

results against each other. For each functionality, different Junit tests (2.2.8.2) were created 

and executed. The different GUIs were thereby developed using the SpringFramework 

(2.2.8.6) and Thymeleaf (2.2.8.7). The different packages and the containing classes and 

methods thereby should follow in a maximum possible way the principle of single responsibility, 

understandability and maintainability. In this first step, OpPipe was designed as a prototype of 

the desired pipeline and can be seen as minimum viable product (MVP).   
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3. RESULTS 

The developed framework for operon prediction called OpPipe during this study combines 

RNA-Seq data and genomic feature data to increase accuracy of the prediction. OpPipe allows 

operon prediction even for non-model organisms with only expression or genomic feature data.  

3.1. Development of operon prediction pipeline prototype based on 
expression and general genome data 

The prototype of OpPipe is implemented using Java (2.2.8), offering graphical user interface 

(GUI) written in HTML. In general, the OpPipe is separated into four different GUIs, each with 

an independent task. While the application is controlled with the initial GUI of OpPipe (Figure 

4A), further GUIs exist for the loading of a GFF file (Figure 4B), loading of RNA-Seq 

experiments (Figure 4C) and for the visualization (Figure S2). 

The initial OpPipe GUI is clearly separated into three parts (Figure 4A). The first part (Figure 

4A, left control element) consists of the “Genome list” and the “NGS list”. Via the control buttons 

“Add genome” and “Add experiment”, the user can add a new species or experiment, which is 

then displayed in the referring dropdown menus above the add buttons. When clicking “Add 

genome”, the user is redirected to another GUI for loading a GFF file (Figure 4B). For loading 

a new genome, the user has to provide a name (Figure 4B) and then select the desired GFF 

file via “Load GFF file”. Subsequently, the GFF file is validated and if needed separated. 

Finally, the new genome is serialized onto the hard drive and therefore does not have to be 

read again. The user is re-directed back to the initial OpPipe GUI where the loaded genome is 

then displayed within the initial GUI in the genome dropdown (Figure 4A) and can be used for 

every experiment. 

The loading procedure of experimental data follows similar steps. For adding a new 

experiment, the user has to click “Add experiment” and is then redirected to the GUI for loading 

an experiment (Figure 4C). For loading a new experiment, the user can simply provide a SAM 

file (Figure 4C). Additionally, it is also possible to start from scratch and provide FASTQ data 

(single and paired end) and start the mapping with the desired aligner and FASTA genome 

reference. When the user clicks onto “Submit” the selected choices are then stored (including 

the paths to the experiment files) internally, and the user is redirected to the initial OpPipe GUI. 

The experiment is added to the experiment list (dropdown above “Add experiment”). The user 

is able to delete the loaded GFFs and experiments at any time by clicking “Remove genome” 

and “Remove experiment”. Further, details for the provided experiment are accessible, 

providing information about the experiment input type (SAM or FASTQ), library type (single 

and paired end) and selected aligner. 
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Figure 4: GUIs of OpPipe. (A) The user chooses the species and experiment of interest (left control 
element), then selects a prediction model (center control element) and starts the pipeline (right control 
element). (B) GUI for loading a GFF file, with the text field for providing a name and a submit button to 
start the loading process. (C) GUI for loading an experiment, whereby plain SAM files can be loaded, 
as well as FASTQ files. 

The center control element (Figure 4A), offers the functionality of creating a run. Therefore, 

first a predictive model has to be chosen from the combo box in the centered control element, 

where the choice is between a plain predictor model, RF, SVM or NN. Further, a custom output 

path (for operon results graphically and text format) can be set manually, otherwise the output 

path will be a standard output path.  

For defining a run, the user first has to select a reference genome and an experiment in the 

left control element, followed by the prediction model. With the option “Add selections to list”, 

the selected choices are added to the “Execution list” within the right control element. As entry, 

the “Execution list” contains the chosen species, the chosen experiment and chosen predictor. 

Internally, the predictor and all other required paths are stored for each entry of the “Execution 

list”. After adding the experiment, the pipeline is not started, offering the user the possibility of 

adding numerous experiments to the “Execution list” (e.g. different stress conditions for a 
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provided genome). If all experiments are added to the “Execution list”, the user clicks “Submit” 

within the right control element (Figure 4A) and all experiments in the list will be executed. 

Therefore, the serialized genome data is deserialized for each experiment and the 

experimental data is applied onto the genome. In different sub-steps, data structures from 

OpPipe are also getting serialized for following modules. If the run is finished, operon 

predictions are provided at the specified output path in .txt format. 

Beside the plain text output, OpPipe also offers a visualization. The user can access the visual 

output by moving to the visualizer GUI (Figure S2), which can be achieved by clicking the 

burger menu in the left upper corner of the initial GUI (Figure 4A) and click onto “OpPipe – 

visualization”. The visualizer thereby offers the possibility of a “Plain visualization” and a 

“Compare visualization” (Figure S2). Within the plain variant, the user is able to choose all 

conducted experiments from the dropdown in the left control element. With clicking “Show 

visualization”, the graphical output is loaded below. The compare variant offers the user the 

possibility of comparing different experiments (e.g. different stress conditions). Therefore, 

different experiments can be added to the compare list by selecting them via the dropdown 

and clicking “+add to compare list”. For starting the comparison, one experiment has to serve 

as reference. When clicking “Show visualization”, the comparison is displayed below. The 

graphical representation of plain and compare visualizer thereby follows the same color code 

(Figure 5). 

 

Figure 5: Visual output of OpPipe. The visualizer produces an output for each operon file (A) and a 
comparison of different predictors on the same dataset (B) from left to right. 

On the plain visualization, OpPipe provides information of a specific operon (Figure 5A). Listed 

are the adjacent genes of the operon (green color indicates being part of the same operon) 
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and different information like genomic position, strand intergenic distance and operon score. 

For a specific prediction, all predicted operons are visualized. For the comparison of different 

experiments, the different experiments are placed next to each other, while the reference 

experiment (e.g. control conditions or a specific predictor) is placed on the left (Figure 5B). As 

a comparison, the output of other predictors can be used, as well as other environmental 

conditions (e.g. -Nit, -Fe). All operons from the reference experiment are thereby displayed 

and the other inputs are compared to the reference. Comparing different prediction runs with 

each other, red color displays that a gene is not part of an operon in the other condition or 

predictor, while a green color indicates being part of an operon (Figure 5B). For example, the 

genes phhB-alr4554 are clustered into operons within the reference prediction and by Predictor 

3. However, while Predictor 1 is assigning all genes into one operon, Predictor 3 is separating 

the gene into two operons (obtainable by different green shades). Contrastingly, Predictor 1, 

Predictor 2 and Predictor 4 are only assigning a sub-set of the genes into an operon. 

3.2. Mapping and counting of RNA-Seq data module of OpPipe 

As an expression-based prediction pipeline, OpPipe must be able to deal with provided 

experimental data. A prerequisite for the prediction of operons and TUs via expression data is 

the counting of reads per genomic position and thereby the creation of an expression profile 

for defining start and stop positions of a TU. On the one hand, previously mapped RNA-Seq 

reads can be provided (e.g. SAM format), while unmapped FASTQ data can be provided by 

the user, which then must be mapped onto a reference before being evaluated.  

To allow good mapping quality, three different available mapping algorithms (NGM 2.2.16; 

BBMap, 2.2.2; Bowtie2, 2.2.3) were compared to an RNA-Seq mapping including operon 

predictor (Rockhopper 2.2.20) using different RNA-Seq samples (compare 2.3, Table S4). To 

obtain different quality and sequencing depth, samples from five different prokaryotes namely 

Anabaena sp. PCC 7120 control conditions (paired, about 88 million reads), Bacillus subtilis 

(control conditions, paired end, about 28 million reads), Escherichia coli (control conditions, 

paired end, about 26 million reads), Synechococcus elongatus (control conditions, single end, 

about 15 million reads), Synechocystis PCC 6803 (control conditions, paired end, about 16 

million reads) were compared (Figure 6). 
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Figure 6: Benchmark of Aligner. Compared are the different aligner BBMap (black), Bowtie2 (orange), 
NGM (grey) and Rockhopper (yellow) based on the control conditions for different species. For each 
aligning algorithm Anabaena sp. PCC 7120 (AB), Bacillus subtilis (BS), Escherichia coli (EC), 
Synechococcus elongatus (SC) and Synechocystis PCC 6803 (SY) aligned reads as well as the time 
needed for the mapping is indicated. 

In general, NGM exhibits the shortest execution time for all data samples compared to the 

other mapping algorithms with a maximum of 20 minutes for 88 million reads (Figure 6B, 

Anabaena sp. PCC 7120). While Rockhopper achieved comparable runtimes to NGM, BBMap 

and Bowtie2 showed a longer execution time for nearly all samples (exception Bowtie2 for 

Synechococcus elongatus, Figure 6B). 

For the number of mapped reads, it could be observed that Rockhopper showed the least 

percentage of mapped reads compared to the other tools in all different datasets. For the 

species Anabaena sp. PCC 7120, Bacillus subtilis and Escherichia coli, the algorithms BBMap, 

NGM and Bowtie2 had comparable mapping results (Figure 6A). Interestingly, for 

Synechococcus elongatus, NGM and Rockhopper are only able to align seven to eight percent 

of the reads onto the reference, while BBMap and Bowtie2 can map ~37% and ~23% onto the 
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reference. Although BBMap needed six times longer to align the reads of Synechocystis PCC 

6803 than the fastest algorithm (NGM), it resulted in 10% more mapped reads.  

Irrespective of an already submitted SAM file or a raw read file in FASTQ format, the next step 

of OpPipe is the assignment of reads and coverage to the annotated genes in a given GFF 

file. Therefore, the features of the mapped reads have to be evaluated. In the first step, 

numerous different SAM flags could be assigned to the different reads (Table S5) and have to 

be considered. OpPipe thereby only considers (i) reads for which only one mate could be 

properly assigned to a strand (only the region of this mate was counted), (ii) reads that are 

mapped as pairs onto different strands. In case of reads where both mates could be mapped 

on opposite strands, the separation was made into pairs where the mates are considered as 

mapped in a proper or not in a proper pair. Data from control conditions in Anabaena sp. PPC 

7120 (mapped by NGM) thereby reveals that only reads mapped in a proper pair should be 

used for the counting algorithm of OpPipe (Figure 7). 

 

Figure 7: Distance of proper read pairs and non-proper read pairs in Anabaena sp. PCC 7120. 
Indicated are the percentages of all pairwise mapped reads, evaluating the distance of the two read 
pairs (in nucleotides) for reads mapped in a proper pair (orange) and reads not mapped in a proper pair 
(dark grey). 

It is observable, that reads which are mapped in a proper pair exhibit a maximum distance of 

300 nucleotides within the dataset of Anabaena sp. PCC 7120 (Figure 7). Further, the amount 

of these reads is less than 5%. Subsequently, at least 15% of properly mapped read pairs 

exhibit a nucleotide distance of 100-200nt, while the majority exhibits 0-100 nts (nearly 90%). 

In contrast, most of the reads not mapped in a proper pair exhibit an inner-mate distance of 

more than 1000. Even though a few amounts of the reads have an inner distance of 800 to 

1000 nucleotides (summed together fewer than 0.1%), more than 99% of the reads in the 

sample exhibit the distance of 1000 nucleotides. As for prokaryotes splicing is typically not 

occurring, the distance of paired reads should only be of the size as the inner mate distance 

(typically 50-300bps). Therefore, only such reads paired properly were considered, while reads 
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of an improper pair were sorted out. In comparison to a read assignment tool like HTSeq, the 

choice of used SAM flags of the mapping part of the pipeline (OpPipe-count) revealed 

differences (Figure 8).  

 

Figure 8: Counted reads of HTSeq-count and OpPipe-count. Indicated are counted reads where 
both read pairs could be mapped (97/145= mapped in non-proper pair, 99/147 = mapped in proper pair), 
reads where only one read pair could be mapped (105/149, 153/101, 155/103) and the number of all 
counted reads (A). Further nine genes from Anabaena sp. PCC 7120 and the number of paired reads 
that are counted (total counts: OpPipe-count = orange, counted by HTSeq-count = dark grey, counted 
with SAM flag 99/147: OpPipe = yellow, HTSeq-count = black and counted reads with SAM flags 97/145 
by HTSeq-count = light grey). 

Evaluating 100 read pairs with specific SAM flags (97/145: reads mapped in proper pair, 

99/147: reads mapped in non-proper pair, paired reads where only one read pair was mapped) 

reveals different counting approaches between the counting methods (Figure 8A). Comparing 

the two approaches, HTSeq-count and OpPipe-count, it is observable that they assign the 

same number of counted reads to reads being mapped properly (99/147). Further, also for 

reads where only one read pair could be mapped (Figure 8A, 105/149, 153/101, 15/103), the 

number of counted reads remains the same for HT-Seq count and OpPipe-count. In addition, 

OpPipe-count is not counting reads with 97/147 (not mapped in proper pair), while they are 

counted by HTSeq-count. The genome-wide comparison in Anabaena sp. PCC 7120 of 

OpPipe-count and HTSeq-count based on read counts of nine randomly drawn genes of the 

control sample from Anabaena sp. PCC 7120 show the same behavior (Figure 8B). In general, 

for all genes, the number of counted reads for HTSeq-count is multiple times higher than for 

the OpPipe-count. This can be explained with the counting of non-proper paired reads (or 

ignorance of them, respectively). However, when only counting the proper paired reads 

(99/147, Figure 8B), the number of counted reads for HTSeq-count and OpPipe-count is equal. 
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For example, for Gene 1 the number of counted reads for HTSeq-count is about 400, the 

Framework-count for Gene 1 is lower than 50. However, when comparing the count for the 

SAM flags 99/147 (reads mapped in a proper pair), it is observable that the counted reads for 

HTSeq count and OpPipe-count are always identical. Further, when comparing the different 

counters of HTSeq-count, it is observable that the counts of 99/147 and 97/145 sum up to the 

total count of HTSeq-count.  

3.3. Filter creation based on expression data for operon detection 
with OpPipe 

For the creation of input features for the operon prediction models expression data has been 

used to create different generalization models called filters. The expression data has been 

used to create the expression pattern filter (EP, Figure 9) and the gene graph filter (GG, Figure 

10). As a prerequisite for the EP filter the counts of mapped reads per genomic position is 

needed (expression profile), which is delivered by OpPipe-count. Further, for the GG filter a 

list of pairwise genes is required, with the number of reads indicated that map on both genes 

and thereby connecting them. As a starting point, genes of a TU (or operon) are assumed to 

be co-expressed. The EP filter is thereby able to identify TUs without any annotation file 

information and is only based on the expression landscape of the Watson and Crick strand 

(Figure 9).  

 

Figure 9: Implementation of EP filter. The different stringencies lead to different cut-off strictness (A), 
which indicates that at least x% of all genomic positions are covered by at least n reads. The cut-off 
influences the size and amount of predicted TUs (B). A less stringent cut-off (stringency 0.98) leads to 
longer TUs while a stricter one (stringency 0.05) leads to shorter TUs. The decay of the fraC operon 
(fraC-fraE, [157], C) of Anabaena sp. PCC 7120 for the different stringencies under control conditions 
can be obtained for different cut-offs while the orange arrows show the length of the TUs. Indicated are 
the adjacent genes of the operon (grey box) and the genes of the opposite strand (white box). 
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As a starting point, the EP filter loops over the expression landscape (expression profile of 

Watson or Crick strand) and thereby determines a cut-off which indicates that at least x% of 

all genomic positions are covered by a specific number (n) of reads for different stringencies 

(2.6.4, Figure 9).  

In theory, transcribed genomic positions (e.g. operons and TUs) are thought to exhibit a higher 

read count with an observable increase of counted reads within the expression profile 

compared to intergenic regions without transcriptional activity. Consequently, it is assumed 

that the majority of the number of mapped reads onto genomic positions is located around a 

specific average, while few regions with a high number (highly expressed regions) or a low 

number (poorly expressed regions) of mapped reads can be obtained (Figure 9A) occur less 

frequently. Applying cut-offs with a different amount of stringency thereby should be able to 

identify the boundaries of the transcribed positions within a condition. 

In a schematically representation this leads to a sparse amount of genomic positions being hit 

by one up to four reads. Further, a sparse amount of genomic positions is hit by more than 

sixteen reads. Many genomic positions are hit by five to fifteen reads (Figure 9A). A moderate 

cut-off of 0.98 thereby indicates that at least 98% of all genomic positions are covered by at 

least two reads (Figure 9A). If a genomic position is covered by more than two reads under 

this stringency, it is considered as a TU start (or TU stop, respectively, if a position is covered 

by fewer than two reads) which leads then to an elongated TU of five genes (Figure 9B). 

Applying a cut-off of 0.5 (meaning that 50% of all genomic positions by a specific position, 

Figure 9A) results to the separation of the TU into two smaller TUs (G1-G2, G3-G4-G5, Figure 

9B) compared to the more moderate stringency of 0.98. The expression profile thereby shows 

a decrease of reads mapped between G2 and G3 which is now below the cut-off defined by 

stringency 0.50 (Figure 9B). Subsequently, applying a stringency of 0.05 leads to a strict cut-

off of 17 reads per genomic position (Figure 9A). The application of this cut-off leads to a small 

TU which is highly expressed (Figure 9B). This leads to the assumption that if two genes are 

assigned to the same TU under a strict stringency, the probability of being co-expressed is 

increased compared to two genes that are only considered as part of the same TU under 

moderate stringencies. 

The EP filter with the aim to indicate the decay of a TU (giving a hint that genes are co-

expressed under a strict cut-off) shows that most of the operons from Anabaena sp. PCC 7120 

(based on literature set, 2.6.1) are elongated under the 0.98 stringency (Table S8), while the 

number of full hit operons increases with the strictness of the stringency until 0.6. With the start 

of stringency 0.4, the number of elongated operons starts to decrease, while the number of 

operons not found increases, leaving only highly expressed operons.  
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The different sample operons fraC operon (Figure 9C), the nir operon (Figure S3) and the pec 

operon show different behaviors for the different stringencies of the EP filter under control 

conditions. The fraC operon shows a decay under stricter stringencies (Figure 9C). According 

to Merino-Puerto et al. [157], it consists of the three fra genes (C-E). Downstream the fraE the 

fraF gene is located on the opposite strand. This gene is known to be part of the operon as 

antisense transcript [158]. For the most moderate stringency (0.98), the TU consists of the fraC 

operon and five genes upstream (Figure 12C). Furthermore, the TU covers the sequence 

which, on the opposite strand, has two genes leading to an antisense transcription. However, 

the TU with 5 genes upstream of the fraC operon does not seem to be conserved, as for the 

next cutoff (0.95) it is not present anymore. Although the TU gets shorter for each stringency, 

the antisense genes stay a part of the TU for the stringencies of 0.95 to 0.5. For the stringency 

0.4, only fraC gene of the operon remains, indicating a higher expression of the fraC compared 

to the other genes of the operons. For the stricter stringencies, the operon is not abundant 

anymore under control conditions. A similar behavior can be obtained when comparing the 

results of the EP filter based on the fraC operon to the EP filter based on the nir operon. Like 

mentioned by Frías et al. [159] [160], the nir operon consists of the adjacent genes nirA, nrtA, 

nrtB, nrtC, nrtD, narB, followed by the two genes alr0613 and alr0614, which might also be 

part of this gene cluster. The nir operon exhibits for the most moderate stringency (0.98) of all 

eight genes. This is also the case for the stringencies of 0.95 and 0.9, although the position of 

the start and stop numbers are changing. With stricter stringency, the operon starts to decay: 

For the stringency of 0.8, the operon starts to decay into three subunits. The stricter the 

stringency gets, the smaller the units become, until they are not present anymore after a 

stringency of 0.3. Contrastingly to the decay of nir and fraC operon is the behavior of the pec 

operon under control conditions. According to Swanson et al. [161], this operon consists of the 

adjacent genes pecB, A, C and E. The composition of this operon remains the same under 

each stringency (0.98 to 0.05) although the start and stops of the TUs change (Figure S3). 

Even though the EP filter might be enough for analyzing TUs in different conditions and allows 

conclusions of the conservation of operons under specific conditions, the peculiarity of the cut-

off detection might lead to a preference of highly expressed genes and a discrimination of 

lower expressed genes. However, a TU can be identified even without information of gene 

composition, as a start and end position of a TU can be identified by only considering the 

expression profile. 

For this purpose, the design of the GG filter (Figure 10) tries to take the assumption into 

account that operonic genes are co-transcribed in one single mRNA. By this, paired end reads, 

or long reads, should cover parts of adjacent genes in one mRNA. 
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Figure 10: Implementation of GG filter. Differences in the expression (A) leading to reads covering 
only one specific gene (grey arrow) and genes covering more than one gene (black arrow). Genes 
covering more than one gene are identified (B) and represented as weighted edges between two gene 
nodes (C). 

To reflect this assumption, the GG filter identifies adjacent genes that have both been hit by 

the same reads or templates (Figure 10A-B). The GG filter constructs a graph with the nodes 

being the genes of a species with edges connecting them (Figure 10C), which are initially 

weighted with zero. Per hit read (or template, respectively), the edge between them is 

increased by one (Figure 10C). Exemplarily, G1 and G2 are connected by two reads (Figure 

10A-B). One read covers G1 and G2, while another one covers G1, G2 and G3, which leads 

also to the connection of G2 and G3 by one read. While G3 and G4 are again connected by 

one read, no read is connecting G4 and G5, as well as G5 and G6. Finally, G6 and G7 are 

connected by two reads. These connections are then assigned to the edges between the 

referring genes within the created gene graph (Figure 10C). 

As the concept of the GG filter relies on reads overlapping more than one gene, it is best suited 

for TGS data, as TGS produces longer reads that should cover more genes. Therefore, the 

identification of OPs and NPs through the GG filter based on SGS and TGS from Escherichia 

coli under control conditions (Table S4) has been compared basing on the operons from the 

literature set (2.6.1) from Escherichia coli, showing that TGS data could increase the power of 

the GG filter (Table 8). 

Table 8: Comparison of SGS and TGS data for Escherichia coli. Indicated are prediction of OPs and 
NPs where SGS and TGS lead to the same result and where not. Further, different statistical measures 
were calculated. 

 SGS TGS 
 gene-pairs % of gene-pairs gene-pairs % of gene-pairs 
True positive 49 72% 59 87% 
False positive 19 28% 9 13% 
True negative 61 95% 60 94% 
False negatives 3 5% 4 6% 

SGS = TGS  85%  
SGS! = TGS  15%  
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Comparing the assigned labels of the gene pairs from Escherichia coli from the OP set and 

NP-set1 (2.6.1) shows that in 85% of the cases, SGS assignments based on the GG filter were 

identical to the GG filter of TGS data. However, for 15% of the gene pairs, they were not 

identical. For TGS data, an increased accuracy can be obtained as the TP rate for SGS data 

is 72%, while for TGS data 87% could be reached. Further, the false positive rate is decreased 

in TGS (13%) compared to SGS (28%). Regarding the true negative rate (SGS = 95%, TGS = 

94%) and the false negative rates (SGS = 5%, TGS = 6%), the two sequencing approaches 

are comparable. 

Evaluating the GG filter on the full OP set and full NP-set1 (2.6.1), it is observable that about 

85% are correctly assigned as OP by the GG filter (TP, Figure S4), while about 15% of the 

OPs are falsely set to NP (FN, Figure S4). However, the rate of falsely predicted OPs is low 

(FP, Figure S4), as only about 5% of the NPs have been classified as OPs. Consequently, 

about 95% of all NPs are getting classified correctly as NP (Figure S4). Although the GG filter 

shows to be able to identify a high number of OPs under control condition, it seems to be easier 

to identify NPs with this filter. Applying the GG filter onto the control conditions of Anabaena 

sp. PCC 7120, several operons were identified. Among others, the pec operon (pecA-E) has 

been identified by the GG filter. The genes within the pec operon (Table S9A) are connected 

by many reads under control conditions. The surrounding genes of the operon (ORF1 and 

pecF) do not exhibit any shared reads with the genes of the operon. Comparing the number of 

mapped reads per each edge (an edge is connecting two genes), differences for the genes of 

the pec operon can be observed (Table S9A). For example, 2,886 reads were found to be 

matched onto pecA as well as onto pecC and 4,382 reads connecting pecC and pecE. 

However, the connection between pecB and pecA is approximately nine times more covered 

(18,823) than the connection between pecA and pecC. In general, through such increases 

alternative TUs could be identified thorough the expression profile. An increase of mapped 

reads after the start of an alternative TU within an operon is thereby assumed. Interestingly, 

two TSS are located upstream the pecB gene of the pec operon. This might lead to the 

expression of the whole operon from one of the TSS and the second giving birth to an 

alternative TU only harboring pecB and pecA. Consequently, two TSS can be observed within 

the pecC gene. Consistent with this, the connection between pecC and pecE is increased 

compared to the connection of pecA to pecC.  

In general, the GG filter lacks the ability to identify TUs or operons without provided genomic 

information (annotation of genes), while the EP filter is independent of annotation of genes. In 

general, the expression filters of GG and EP are assumed to monitor a specific “operon 

behavior” (co-expression). Therefore, they are thought to generalize the provided data in a 

universal valid operon format. Further, the assumed operon behavior tracks only a general 
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gene connection (GG filter) and changes in expression strength (EP filter). After this 

generalization, the data is no longer specific to the species but rather operon-specific. 

Therefore, it is not biased by the derived species and consequently cross-species applicable.  

Nevertheless, all expression filters always rely on the derived experiment and the quality of the 

sequencing. In contrast, genomic features are conserved irrespective of the condition. 

Assuming the correct annotation of genes within a genome, the inclusion of the feature of the 

intergenic distance can help increasing the ability of defining OPs. 

3.4. Intergenic distance is not universal usable for all prokaryotic 
genomes 

Even though expression-based filters offer several advantages, they are dependent on the 

quality RNA-Seq datasets and are condition-specific. To overcome this, genomic features 

should be considered to make prediction of operons based on known transcribed genes on the 

chromosome and plasmids. One of the most used genomic features is the intergenic distance 

between two annotated genes, which showed to be different among different prokaryotes 

(Figure 11, Figure S5).  

 

Figure 11: Average distance of adjacent genes of the Watson strand within different genomes. 
Distribution of the intergenic distance of adjacent genes in Anabaena sp. PCC 7120 (orange), Bacillus 
subtilis str. 168 (grey), Escherichia coli K-12 (yellow), Synechococcus elongatus (light grey) and 
Synechocystis PCC 6803 (dark grey) into different distance ranges (in nt). 

In general, the adjacent genes from the Watson and Crick strands within one species do not 

exhibit great differences regarding their intergenic distances (Figure S5). For all five reviewed 
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species, the adjacent genes assigned to a distance range are approximately of the same size 

for the Watson and Crick strand (Figure S5). Considering only the Watson strand, for all five 

species, most of the adjacent genes exhibit either a distance which is lower than 300 nt or 

greater than 1000 nt (Figure 11). Ignoring the genes with a distance greater than 1000, most 

of all adjacent genes in every species exhibit a distance of 1 to 100 nucleotides (Figure 11). 

For Bacillus subtilis, Escherichia coli and Synechococcus elongatus, more than 30% of all 

genes are located in this range, while for Anabaena sp. PCC 7120 and Synechocystis PCC 

6803, about 25-28% of all genes exhibit this distance range. However, the genomes of Bacillus 

subtilis and Escherichia coli seem to exhibit a smaller distance in general, as more than 50% 

of all genes exhibit an intergenic distance fewer than 200 nts to their neighbor. For Escherichia 

coli 60% of all genes and for Bacillus subtilis 66% of all genes exhibit this distance (Figure 11). 

In contrast, genes from Anabaena sp. PCC 7120 seem to be spaced in greater distances as 

only 51% of all genes exhibit an intergenic distance which is 300 or fewer. Furthermore, the 

genes of Bacillus subtilis and Escherichia coli are overlapping to a greater amount (15% and 

12%, respectively) than in Anabaena sp. PCC 7120 (5%), which is observable within the range 

of 0 or fewer nucleotides.  

As a result, it is difficult to identify OPs in Anabaena sp. PCC 7120 based on the intergenic 

distance of Escherichia coli. A static definition of a cut-off and a training on this definition for 

the determination of OP and NP based on intergenic distance might lead on the one hand to 

the discrimination of OPs (cut-off to low) or on the other hand to an enhanced false positive 

rate (cut-off too high). For this purpose, the intergenic distance feature has to be applicable to 

a given species in a universal way. Consequently, a generalization of the intergenic distance 

must be applied, on the one hand leaving the specificity of the distance feature but on the other 

hand being able to be applied in a sensitive way to every species. To join these genomic 

features into a generalized filter model, the distance of two genes is used to create the dynamic 

intergenic gene distance (DGD) filter. Therefore, the intergenic distances of adjacent genes 

(G1-G2, in nucleotides) in different genomes are calculated in a dynamic way (Table 9).  
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Table 9: DGD filter creation for five different species. The intergenic distances (in nt) of all adjacent 
genes located on the Watson strand are assigned to different distance ranges (first column) for Bacillus 
subtilis (BS), Escherichia coli (EC), and the cyanobacteria Anabaena sp. PCC 7120 (AB), 
Synechococcus (SC) and Synechocystis (SY). Further, the percentage of genes being part of this range 
is assigned (second column). The sum of percentages (third column) is marked green for the range 
where 45% of all genes are reached.  

Distance (nt) BS EC AB SC SY 

  % ∑ % % ∑ % % ∑ % % ∑ % % ∑ % 

<=0 12 12 15 15 5 5 10 10 6 6 

1-100 39 51 32 47 22 27 32 42 29 36 

101-200 16 67 12 59 16 43 11 53 18 53 

201-300 5 72 6 65 8 51 5 58 7 60 

301-400 3 75 3 69 5 56 3 61 3 63 

401-500 1 76 2 70 3 59 2 63 1 64 

501-1000 6 81 5 75 9 68 7 70 6 70 

>1000 19 100 25 100 32 100 30 100 30 100 

Based on Brouwer et al. and in Moreno-Hagelsieb et al. [162], around 50-60% of the genes 

are located in operons. To decrease the false positive rate, the mean intergenic distance for 

45% of the genes in each species was searched. The five different species showed the reach 

the mean intergenic distance of 45% of adjacent genes differently (Table 9). While the 45% 

mean intergenic distance is reached at a distance of 201-300 for Anabaena sp. PCC 7120 

(cut-off = 300), the mark is reached for Bacillus subtilis and Escherichia coli at 1-100 (cut off = 

100) and for Synechococcus and Synechocystis at 101-200 (cut-off) (Table 9). As assumed, 

this leads to a different cut-off for the species (Table 9).  

Applying the defined dynamical distances to a defined literature OP set and NP set1 (2.6.1), it 

is observable that the DGD filter is able to correctly identify OPs and NPs (Figure S4). From 

the OP set, about 95% are correctly assigned as OP by the DGD filter (TP), while about 5% of 

the OPs are falsely set to NP (FN). However, the rate of falsely predicted OPs is low (FP), as 

only about 2% of the NPs have been classified as OPs. Consequently, about 98% of all NPs 

are getting classified correctly as NP. In general, the DGD filter proves to be able to identify a 

high number of OPs under control condition and a higher TP and TN rate compared to the 

expression-based GG filter. However, it also seems to be easier to identify NPs with this filter.  

Applying the dynamic distance procedure of a specific species to the literature OP set and NP2 

set (2.6.1) of this species thereby shows a high ability of identifying OPs and NPs for the five 

different species (Table 10). Additionally, applying the dynamic distance of e.g. Escherichia 

coli to the dataset of Anabaena sp. PCC 7120 (and vice versa) leads to a decrease of the 

ability of the DGD filter to correctly identify OPs and NPs (Table 10, Table S11). 
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Table 10: Different statistical measures for the DGD filter. Calculated are the true positive rate 

(specificity, spec), true negative rate (sen, sensitivity) rate and accuracy (acc). Letters behind the rates 
indicate the measurement within a species of Anabaena sp. PCC 7120 (AB), Bacillus subtilis (BS), 
Escherichia coli (EC), Synechococcus elongatus (SC) and Synechocystis PCC 6803 (SY) when 
applying different intergenic distance cut-offs of these species (300,AB = column 2, 100,BS + EC = 
column 3, 200, SC + SY = column) as well as an average distance cut-off of all cyanobacteria (233, CY 
= column 5) and average distance over all other distance cut-off (180, All = column 6). Green color 
indicates the statistical measures from application of the cut-off from one species onto the operon set of 
the same species. 

Stat. measure 300 (AB) 100 (BS + EC) 200 (SC + SY) CY (233) All (180) 

specAB 100% 56% 87% 92% 83% 

specBS 100% 91% 100% 100% 100% 

specEC 100% 100% 100% 100% 100% 

specSC 100% 14% 100% 100% 32% 

specSY 100% 75% 100% 100% 93% 

senAB 97% 100% 99% 98% 99% 

senBS 60% 91% 67% 64% 70% 

senEC 72% 98% 82% 77% 84% 

senSC 83% 97% 95% 89% 95% 

senSY 86% 99% 99% 93% 99% 

accAB 98% 76% 93% 95% 91% 

accBS 80% 91% 84% 82% 85% 

accEC 86% 99% 91% 88% 92% 

accSC 92% 26% 97% 94% 48% 

accSY 93% 87% 99% 97% 96% 

The dynamic distances were calculated for five different species (Table 10), which leads to 

three different cut-offs. Thereby, the cut-off of Anabaena sp. PCC 7120 is the highest (300), 

while Synechococcus and Synechocystis exhibit the same cut-off with 200, as well as Bacillus 

subtilis and Escherichia coli (both 100). Subsequently, the average distance cut-off of all 

cyanobacteria (233) and all five species (180) was calculated. The application of the distance 

cut-off onto the same species thereby leads to an increased performance compared to the 

application of a distinct cut-off to a foreign gene pair set. For example, for Escherichia coli, the 

measures when the Escherichia coli dynamic distance is applied are increased compared to 

the application of the Anabaena sp. PCC 7120 dynamic distance onto the Escherichia coli 

(Table 10, Table S11). 

Further, it is observable, that the application of a stricter dynamic distance to a gene pair set 

leads to an increase of specificity (true negative rate). For example, the application of the 

Anabaena sp. PCC 7120 distance cut-off (300) onto Anabaena sp. PCC 7120 leads to a 

specificity (specAB) of 97% (Table 10, Table S11), while applying a stricter dynamic distance 

of 100 (Escherichia coli and Bacillus subtilis), 200 (Synechococcus and Synechocystis), 233 

(cyanobacterial average) and 180 (average) leads to increased specificity values (100%, 99%, 

98%, 99%). However, this can be explained with more genes being rejected (labelled as NP) 
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by a stricter cut-off. In this context, it is observable that for the stricter cut-offs applied to a gene 

pair set, the values for the sensitivity (true positive rate) decreases (56%, 87%, 92%, 83%) 

compared to the application of the species cut-off (100%). Consequently, the opposite effect 

is observable if a less cut-off is applied to a gene pair list. For example, the application of the 

cut-off 300 (Anabaena sp. PCC 7120), 200 (Synechococcus and Synechocystis), 233 

(cyanobacterial average) and 180 (average) leads to an increase of sensitivity (100%) 

compared to the application of the Bacillus subtilis cut off (100, 91%). Consequently, the 

specificity decreases from 91% for the distance of 100 (Escherichia coli and Bacillus subtilis 

distance) compared to the 300 (60%, Anabaena sp. PCC 7120), 200 (67%), 233 (64%), 180 

(70%) distance cut-offs.  

In general, the measurements show that a species-specific dynamic defined distance is 

necessary, as otherwise the prediction is inaccurate. Further, congruently to the GG and EP 

filter, the described filter model addresses an assumed operon behavior. Previously 

generalizing the distance feature thereby leads to a species-unspecific output that can be 

included better into a predictive model than a static distance cut-off definition. 

3.5. Combination of operon filters into plain prediction model of 
OpPipe 

After the definition of different filters based on expression and genomic data, they have to be 

combined and used for a predictive model. In a first approach the EP, GG and DGD filters were 

used. They are grouped together into one output (Table S12). Thereby, each gene pair is listed 

in a column. The rows for each gene pair are labeled with the referring filters. For example, all 

stringencies for the EP filters are listed (EP0.98-EP0.05). For GG and DGD filter, it is listed, 

whether the gene pair was considered as an OP (GGY, DGDY) within the filter or as NP (GGN, 

DGDN). For each row it is labeled whether the sub-filters can be applied, whereby “1” is used 

for labeling the application of the sub-filter and “0” if the filter cannot be applied, leading to a 

binary encoding for each sub-filter. In a schematic representation gene-par G1-G2 is 

considered as OP by EP0.98, GG and DGD, while gene pair G2-G3 is considered as OP by 

EP0.98-EP0.05, GG but considered as NP by DGD (Table S12). 

Subsequently, the input for the prediction algorithms is a table with the columns indicating the 

gene pairs, EP filter (0.98 to 0.05 cut-off), GG filter (GG fulfilled & GG not fulfilled) and DGD 

filter (DGD fulfilled & DGD not fulfilled). Thereby, the filters are divided into EP0.98, EP0.95, EP0.90, 

EP0.80, EP0.70, EP0.60, EP0.50, EP0.40, EP0.30, EP0.20, EP0.10, EP0.05, GGY, GGN, DGDY, DGDN, 

leading to 16 input rows for each gene pair. For a first combination of all developed filters, the 

filters have been combined to a plain predictor model (Figure 12A). For the inputs of the plain 

predictor, the filters EP, GG and DGD are used. For each adjacent gene pair, it is provided via 
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the input data if the sub-referring filters can be applied (label 0 and 1). The input labels are 

then multiplied by a specific weighting (Figure 12) and are summed up for all filters. This total 

sum is divided by the maximum reachable score. Subsequently, it is evaluated via the decision, 

whether the summed score of a gene pair is greater than a defined cut-off. The cut-off is 

thereby representing 60% of the maximum reachable score. If the reached score of the gene 

pair is greater than the cut-off, the gene pair is labeled as OP or as NP if the score is below 

the cut-off (Figure 12A). The weighting of each sub-filter thereby depends on the assumed 

importance of the sub-filter, while the sum of all sub-filters of one filter always adds up to one. 

With the current weightings (Figure 12B), the maximum reachable score is 2.7 (all EP 

stringencies applicable, GGY and DGDY applied), leading to a cut-off of 1.62 that is the 

minimum that has to be reached by a provided gene pair to be classified as OP. 

The EP filter is weighted based on the different stringencies. A moderate stringency should 

thereby be weighted with a lower score than a strict score. For this purpose, the EP0.98 is 

weighted with 0.05 while the EP0.05 is weighted by 0.13 (Figure 12B). The more EP sub-filters 

can be applied to two genes, the higher their overall EP score will be. However, the two filters 

GG and DGD (co-expression, distance) are considered to be the major criteria for the OP/NP 

classification and therefore the classification of OP and NP by these filters should have a bigger 

influence than the single sub-filters of EP. As the decision of being an OP (by the plain 

predictor) is based on the height of the summed score off all sub-filters, the GGY and DGDY 

are weighted with a relatively high score of 0.85 each. If an adjacent gene pair is identified as 

OP by one of these filters, it is strongly promoted to be an OP by the plain predictor, as the 

overall score is strongly increased. Consequently, if an adjacent gene pair is not considered 

as an OP by GG and DGD filter (GGN, DGDN), a low score is applied (0.15) to promote the 

label of NP by the decision function of the plain predictor. 
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Figure 12: Schematic structure of the plain predictor model and weightings applied to the filter 
inputs. (A) The model receives the inputs of each filter and multiplies them with the weighting. The 
summed scored weightings are then passed on to the decision function, which labels two adjacent gene 
pairs as OP or NP depending on the height of the score. (B) Indicated are the filter names and their filter 
types (EP, GG, DGD). For each sub-filter a specific weighting score is applied. 

In general, a gene pair is considered as OP by the plain predictor if GG and DGD can be 

applied, leading to a score of 1.7 (which is greater than the cut-off 1.62). However, a gene pair 

can also be labeled as OP if GG or DGD are applied and EP0.98 – 0.20 can be applied (score of 

1.75). In all other scenarios, two genes are considered as NP by the plain predictor. After 
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determining all OPs and NPs, they are grouped into operons, leading to a list of operons for 

both Watson and Crick strand. In contrast to typical machine learning approaches, the plain 

predictor model is not a trained classification model, where training and test data have to be 

identified for setting up the model. The decision model is based on the assumption that for 

OPs, a significantly higher score should be reached than for NPs based on the defined filters. 

Further, a combination of generalized filters into a generalized prediction model gets rid of the 

typical training set reliance of classical machine learning models, as no specific training set is 

used to set up the model. In fact, the decision model could best be described with a simple “if-

else” decision, as based on summed scores either and OP or NP is declared. 

3.6. High confidence of OpPipe plain predictor on labeled datasets 

For a first indication whether the assumed generalization caused by the filters and plain 

predictor are applicable to different species, the predicted operons of the plain predictor of 

OpPipe were compared to other databases and predictors. Therefore, Escherichia coli as a 

model organism has been used. Escherichia coli operon sets identified by the plain predictor 

have first been compared to the RegulonDB, which contains experimentally and 

computationally identified operons. Consequently, it has been estimated which operons are 

part of both predictors and which are not, revealing that the predicted operon sets are 

comparable between both approaches (Figure 13). 

 

Figure 13: Comparison of operons predicted by OpPipe with collected ones from RegulonDB 
[147] in Escherichia coli K-12. The found operons divide into operons that have been found in the 
same composition in both sets (full, orange), operons that are found in the same composition in both 
sets but longer in one of the sets (longer in OpPipe, light grey vs. longer in RegulonDB, moderate grey), 
operons which share more than one gene, but are not of the same composition (shifted, black) and 
operons that are exclusively in the OpPipe set (no hit, red).  
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Starting from the OpPipe set, it has been searched, which operons can be found inside the 

RegulonDB set (Figure 13). Both sets exhibit a comparable number of operons while the 

number of operons in the RegulonDB set (856) is slightly increased compared to the OpPipe 

set (834). In general, 82% of the OpPipe operons can be identified within the RegulonDB set, 

whereby 39% of the operons could be identified in the same composition in both sets (Figure 

13), and 18% are exclusively found in OpPipe (Figure 13). However, comparing the 

RegulonDB set with the OpPipe set also showed the identification of 81% of the operons while 

only 19% of the RegulonDB operons could not be identified within the OpPipe set. This leads 

to a high overlap between the RegulonDB and the OpPipe plain predictor. 

Comparing the predicted operon sets of the OpPipe plain predictor, RegulonDB, Rockhopper 

and DOOR with each other shows that on the one hand OpPipe is the one sharing the most 

full hit candidates with the RegulonDB, but on the other hand that the predicted operon sets 

differ between prediction approaches (Figure 14). 

 

Figure 14: Venn diagram of the predicted operon set of four predictors in Escherichia coli K-12. 
The diagram (A) shows the number of total predicted operons for the predictors Rockhopper [36], DOOR 
[65], RegulonDB [147] and OpPipe (total number in brackets behind name) and the number of operons 
which could be found in the overlap (only full hits are counted). The table (B) shows the number of full 
hits (#FH) of the pairwise comparison and the number of operons not found if the operon set of the first 
predictor is compared to the second (#NH1) and the number of operons if the operon set of the second 
predictor is compared to the first (#NH2).  

All four predictors exhibit 103 full hit operons which were predicted by all of them. In general, 

RegulonDB and OpPipe exhibit the most operons (856 and 834), while DOOR (837) and 

Rockhopper (749) exhibit fewer operons (Figure 14A). Subsequently, Rockhopper and DOOR 

exhibit 289 operons that are exclusively found within their overlap (Figure 14A). However, 180 

have been predicted exclusively by OpPipe and RegulonDB, while OpPipe and DOOR only 

share 43 exclusively predicted operons (Figure 14A). Interestingly, the two RNA-Seq based 

approach Rockhopper and OpPipe only share five exclusively predicted operons (Figure 14A). 
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When compared pairwise, Rockhopper and DOOR exhibit the most full hits (481, Figure 14B, 

#FH). RegulonDB thereby shares the most full hits with OpPipe (326, Figure 14B, #FH), while 

it shares only 207 with Rockhopper and 208 with DOOR. Rockhopper and OpPipe only share 

152 operons while DOOR and OpPipe sharing 207 full hits (Figure 14B, #FH). When 

comparing Rockhopper to DOOR, only 50 operons could not be identified (Figure 14B, #NH1), 

however when comparing DOOR to Rockhopper, 175 operons could not be found (Figure 14B, 

#NH2). When comparing RegulonDB and OpPipe, 168 operons remain unfound (Figure 14B, 

#NH1), while 155 (Figure 14B, #NH2) could not be found when comparing OpPipe to 

RegulonDB. Compared to other predictors, OpPipe is the one being the closest to the operon 

set of experimentally proven operons provided by the RegulonDB, which suggests a high 

sensitivity of the OpPipe plain predictor for the dataset of Escherichia coli. 

Despite the model organism Escherichia coli, the prediction for the cyanobacteria Anabaena 

sp. PCC 7120 has also been compared with different predictors (Figure 15, Figure 16), for 

which the Escherichia coli specific RegulonDB was substituted with the ProOpDB.  

 

Figure 15: Comparison of operons predicted by three different predictors in Anabaena sp. PCC 
7120. OpPipe prediction was compared to Rockhopper [36] (A), ProOpDB [69] (B) and DOOR [65] (C) 
and grouped into operons which are found in the same composition in both sets (full, orange), operons 
that are found in the same composition in both sets but longer in one of the sets (longer in OpPipe, light 
grey vs. longer in other predictor, moderate grey) and operons which share more than one gene, but 
are not of the same composition (shifted, s, black) and OpPipe exclusive ones (no hit, nh, red). Further, 
the total amount of predicted operons is indicated for all predictors (D). 
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In contrast to the comparison with the RegulonDB, operons for Anabaena sp. PCC 7120 

identified by the OpPipe plain predictor show a decreased overlap to other prediction tools 

(Figure 15). In general, the number of predicted operons differs between the predictors (Figure 

15D). While for OpPipe, 1230 operons could be identified (Figure 15D), only about half could 

also be identified by the RNA-Seq based predictor Rockhopper (618). ProOpDB identified 870 

operons and DOOR 760 operon candidates. When comparing the operons from OpPipe to 

Rockhopper it is interesting that about 700 could not be identified at all in the Rockhopper 

operon set, while fewer than 200 exhibit the same composition (Figure 15A). Further, 

numerous operons are elongated by more than five genes within the OpPipe set. While no 

operon is longer in Rockhopper compared to the OpPipe set (Figure 15A), the prediction of the 

ProOpDB exhibits few operons that are longer than in the OpPipe prediction (Figure 15B). 

Here, about 250 operons were fully hit, while about 550 could not be found. Additionally, shifted 

operons also occur when comparing OpPipe to ProOpDB. Compared to DOOR (Figure 15C) 

nearly 600 operons from OpPipe could not be identified by DOOR. The predicted operons by 

OpPipe thereby differ compared to other predictors, as numerous operons from OpPipe were 

not identified by the other tools. However, congruently to the Escherichia coli approach, the 

different predictors also prove to have a decreased overlap when compared against each 

other, as few operons can be identified among different prediction sets (Figure 16A). 

 

Figure 16: Venn diagram of the predicted operon set of four predictors in Anabaena sp. PCC 
7120. The diagram (A) shows the number of total predicted operons for the predictors Rockhopper [36], 
DOOR [65], ProOpDB [69] and OpPipe (total number in brackets behind name) and the number of 
operons which could be found in the overlap (only full hits are counted). The table (B) shows the number 
of full hits (#FH) of the pairwise comparison and the number of operons not found if the operon set of 
the first predictor is compared to the second (#NH1) and the number of operons if the operon set of the 
second predictor is compared to the first (#NH2).  

At least 145 operons were identified by all the predictors. However, the biggest amount of full 

hit operons is between ProOpDB, DOOR and Rockhopper with 190 full hit operons (Figure 

16A). With 863 candidates, OpPipe exhibits the highest number of operons which could not be 
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found as a full hit in another predictor. While for ProOpDB, this is the case for 172 operons, for 

Rockhopper (91) and DOOR (98), fewer than 100 operons could not be found as a full hit in 

another predictor. In general, OpPipe exhibits the biggest predicted operon set and, 

interestingly, approximately twice as many operons compared to Rockhopper. However, there 

are no operons in the full hit overlap between just OpPipe and Rockhopper. However, they are 

sharing 197 full hit operons (Figure 16B). Further, it seems like Rockhopper and DOOR have 

similar prediction routines as they share the most full hit operons (503). Comparing the operons 

which could not be found when comparing the different approaches, 241 operons from 

ProOpDB could not be found in any composition within the Rockhopper set, while 89 operons 

identified by Rockhopper are not part of the ProOpDB set in any composition. Subsequently, 

137 operons remain unique when comparing ProOpDB and DOOR (or 130, respectively, when 

comparing DOOR to ProOpDB). However, when comparing Rockhopper to DOOR, again, only 

three remain unfound, while 159 operons of DOOR cannot be found in Rockhopper. 

Remarkably, nearly all operons identified by DOOR, Rockhopper and ProOpDB can be found 

fully or partially within the operons set of OpPipe. Only three operons could not be identified 

when comparing ProOpDB to OpPipe, also three when comparing Rockhopper to OpPipe and 

only one operon when comparing DOOR to OpPipe. The results on the two species suggest 

that, firstly, different prediction models tend to state different operons within the same species. 

Secondly, while the individual comparisons in Anabaena sp. PCC 7120 leads to a decreased 

overlap, a combination of the operon sets of ProOpDB, DOOR and Rockhopper (Figure 16B) 

and a search against the OpPipe set leads to in total 370 full hits, while only three operons 

remain unfound. The remaining operons are either full hits, partially covered or shifted, leading 

to a generalized identification by OpPipe as it combines predicted operons of different 

predictive models within one dataset. 

Even though OpPipe exhibited a greater overlap in Escherichia coli compared to Anabaena 

sp. PCC 7120, when comparing different predictors, it remains difficult to interpret the values 

as it is not clear what the ground truth is in Escherichia coli as well in Anabaena sp. PCC 7120. 

To address this issue and because the comparison of the predicted operon sets in Escherichia 

coli and Anabaena sp. PCC 7120 leads to partially contrasting results, the predictors were 

evaluated on real operon data. In a first step, 20 operons from the Escherichia coli literature 

set (2.6.1) were used and compared with different predictors (Table S13). Eye-catching is the 

ability of the RegulonDB to identify all of the operons, while the other predictors do not identify 

all of the operons (3 not found in OpPipe, 4 not found in ProOpDB, 1 not found in DOOR and 

4 not found in Rockhopper). However, all predictors except Rockhopper are able to identify at 

least 50% of the operons as a full hit. 
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For a further analysis, 18 operons of the Anabaena sp. PCC 7120 literature set (2.6.1) were 

chosen and compared around the different predictors (Table 11). Thereby, OpPipe and 

ProOpDB prove their ability to identify the majority of the operons in the stated literature set, 

while Rockhopper and DOOR identify fewer operons that are part of the literature set. 

Table 11: Prediction of literature operons from Anabaena sp. PCC 7120 by OpPipe, ProOpDB, 
DOOR and Rockhopper. The inked boxes indicate if an operon was found (green) by the predictor or 
not (red). Further, it is indicated if a predicted operon is longer than in the literature set (blue) or if the 
predicted operon partially hits the literature set operon (yellow). 

The 18 operons stated in the literature set could all be identified by OpPipe (Table 11). 

However, four of them are elongated, while three of them are only partially found. Likewise, 

ProOpDB identifies most of the stated operons while failing to identify four of them, just as 

DOOR. Further, six and eleven operons are only partially covered. No operon is elongated 

within both approaches while, ProOpDB identifies eight and DOOR three operons within a 

perfect hit. In contrast, the expression-based predictor Rockhopper is only able to identify two 

of the operons correctly, while nine of the operons remain unfound. Thereby, seven operons 

are covered partially. As the overlap between the different prediction tools in Anabaena sp. 

PCC 7120 and Escherichia coli suggests similar prediction models of Rockhopper and DOOR 

(Figure 14 and Figure 16), DOOR can also only identify three operons, while three remain 

unfound. However, DOOR seems to be able to identify the operons more precisely in 

Operon OpPipe ProOpDB*1 DOOR*2 Rockhopper*3 Source 

pec          [161] 

cpc         [163] 

cox1          [164] 

cox2          [164] 

cox3          [164] 

fraC         [165] 

nir          [159] 

alr2825-alr2831         [166] 

alr2835-2841         [166] 

devBCA         [166] 

all1780-all1781         [166] 

cphA-cphB         [166] 

nif         [166] 

rbcLXS         [166] 

natA-natC         [167] 

hyp         [55] 

all5341-all5350         [166] 

cmpA-D         [166], [168] 

      

 perfect partial  elongated not found  

*1ProOpDB [69], *2DOOR [65], *3Rockhopper [36] 
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Anabaena sp. PCC 7120 compared to Rockhopper, as the remaining operons are at least 

partially covered. The three operons fraC, pec and nir thereby demonstrate the different 

predictions (Figure 17). 

 

Figure 17: Representation of the fraC [165] (A), pec [161] (B) and nir operon [159] (C) in Anabaena 
sp. PCC 7120 and their prediction by different prediction tools. Shown is the composition of the 
referring operons with their adjacent genes. Genes part of an operon are inked light grey, genes part of 
a cluster with the operon are inked dark grey (C) and genes from the opposite strand are marked as 
dotted white square (A). Indicated are the predicted operons of different predictors as arrows (OpPipe 
= orange, DOOR [65] = grey, ProOpDB [69] = black, Rockhopper [36] = yellow).  

For example, the fraC operon (Figure 17A) is only identified by OpPipe and ProOpDB in the 

correct composition, while the DOOR database splits the operon into two TUs and Rockhopper 

only predicts fraD and fraE into one operon. Further, only OpPipe identifies the pec operon in 

the correct compositions, while only DOOR identifies parts of the operon and ProOpDB and 

Rockhopper are not able to identify the operon (Figure 17B). Following, the nir operon (Figure 

17C) cannot be identified by Rockhopper, while it is shorter in DOOR and longer in OpPipe. 

The ProOpDB perfectly predicts the operon.  

Comparing the scoring models of each predictor for Anabaena sp. PCC 7120 and Escherichia 

coli (Table S14), ProOpDB, DOOR and Rockhopper exhibit an increased prediction score of 

Escherichia coli compared to Anabaena sp. PCC 7120, while the opposite can be obtained 

within OpPipe. Subsequently, DOOR and Rockhopper fit best for the model organism 

Escherichia coli, as the operon scores are clearly increased compared to the Anabaena sp. 

PCC 7120 scores. Additionally, DOOR nearly reaches the same scores for Escherichia coli 

compared to the RegulonDB, while exhibiting a poor score for Anabaena sp. PCC 7120. 

Further, ProOpDB seems to be able to offer a generalized prediction, but reaches poorer 

scores compared to OpPipe. In general, OpPipe shows encouraging abilities of predicting 

operons in a generalized way that is species independent.  
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3.7. Operon prediction via in-silico methods leads to different 
results than experimental TSS data  

After observation of different in-silico predictions of operons, the overlap between an 

experimental TSS identification approach and the operon prediction was conducted. For this 

reason, TSS information form the publication of Mitschke et al. [56] on Anabaena sp. PCC 

7120 under control conditions was used. The TSS were thereby identified by using RNA-Seq 

data and the number of mapped reads per TSS were monitored. Comparable like proposed in 

the publication, a TSS should be located upstream a genetic arrangement (in at least 200 nts). 

By this definition, each polycistronic region should contain one strongly expressed TSS for the 

specific condition. For a first overview, the distribution of all TSS within the genome has been 

separated into TSS located before an annotated gene (within 200nt), within an annotated gene 

or between annotated genes (more than 200nt before next annotated gene). Surprisingly, a 

high number of TSS was found which do not corelate with any gene within the genome of 

Anabaena sp. PCC 7120 (Figure 18). 

 

Figure 18: Distribution of transcription start site within the genome of Anabaena sp. PCC 7120. 
Indicated are the percentages of all TSS located before genes (fewer than 200nt before start of 
annotated gene), TSS within an annotated gene and TSS located between adjacent genes. 

Remarkably, only 23% of them are located before genes (within the range of 200nt) and do 

not lie in an annotated gene position (Figure 18). Further, 32% of the TSS are located within 

annotated genes. Surprisingly, nearly half of all TSS (45%) are located between adjacent 

genes, meaning they are not within the distance of 200nt to the next gene and do not lie within 

an annotated gene. For an evaluation of relevance, the expression coverage of the three TSS 

groups (before genes, in genes, between genes) has been evaluated (Figure 19). 
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Figure 19: Distribution of TSS (%) divided into number of reads per TSS in Anabaena sp. PCC 
7120. The TSS are separated into TSS before genes (genes fewer than 200nt before start of annotated 
gene), TSS within an annotated gene and TSS located between adjacent genes. On the x-axis the TSS 
are separated into buckets which indicate the number of reads that have been mapped onto the TSS. 

In general, the TSS in genes and between genes are higher for the first buckets until bucket 

40-50 (Figure 19). TSS located before genes exhibit a higher expression than the other groups 

firstly observable within the range of 50 reads per TSS (bucket 40-50 and 50-60). However, 

the values are nearly even for the buckets of 70-80 and 90-100. Starting from the bucket of 

90-100, the TSS located before genes are always higher than the other two groups. Therefore, 

only these TSS were considered which exhibit a number of at least 50 reads and of at least 

100 reads per TSS. 

After defining a cut-off for considering a TSS to be expressed, the predicted operons for 

Anabaena sp. PCC 7120 from OpPipe, ProOpDB, DOOR and Rockhopper have been 

compared (Figure 20). 
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Figure 20: TSS distribution based on the operon sets of different predictors from Anabaena sp. 
PCC 7120. The predicted operons (y-axis) are separated into different categories, operons that harbor 
a TSS only before the operon (Only before, black), operons with TSS before the operon and within the 
operon (Before and inside, light grey), operons harboring TSS only in the inside of the operon (Only 
inside, moderate grey) and operons that have not been hit by a TSS at all (No hit, orange). The 
categories are illustrated for all predictors (OpPipe, ProOpDB [69], DOOR [65], Rockhopper [36]) with 
two different cut-offs of number of reads hit to the TSS (50 and 100).  

For both cut-offs, all predictors found between ~40% (cut-off 100) and ~60% (cut-off 50) of 

operons which could not be supported by a TSS (Figure 20). OpPipe exhibits the fewest 

number of operons that do not have a TSS at any place of the operon compared to the other 

operon sets (Figure 20). The number of operons without any TSS was nearly the same for 

ProOpDB, DOOR and Rockhopper. Interestingly, the number of operons with a TSS located 

only before an operon remains stable compared to the different cut-offs and predictors.  

Comparing the TSS distribution from all predictors to the operon set that has only been 

identified by OpPipe shows a congruent behavior as only 40-60% of the operons could be 

validated via TSS (Figure 21). 
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Figure 21: TSS distribution of exclusively found operons in Anabaena sp. PCC 7120. The 
predicted operons (y-axis) are separated into different categories, operons that harbor a TSS only before 
the operon (Only before, black), operons with TSS before the operon and within the operon (Before and 
inside, light grey), operons harboring TSS only in the inside of the operon (Only inside, moderate grey) 
and operons that have not been hit by a TSS at all (No hit, orange). The categories illustrate two different 
cut-offs of number of reads hit to the TSS (50 = black and 100 = orange). 

For both cut-offs, the exclusive set exhibits about 10% of the operons which have a TSS before 

the operon (Figure 21). However, for both cut-offs, the major number of operons did not have 

a TSS. To rule out that this observation is misleading due to many not experimentally proven 

TUs, the OP literature set (2.6.1) of Anabaena sp. PCC 7120 was evaluated regarding TSS 

(Figure 21). 

Interestingly, comparing the operon sets of the different predictors (Figure 20) as well as the 

OpPipe exclusive set (Figure 21) to the literature set (Figure 22), the TSS distribution seems 

to show a comparable behavior. The number of operons validated via TSS is slightly increased 

but only 60-65% of the operons could be validated via the TSS localization. 
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Figure 22: TSS distribution of the literature operon set of Anabaena sp. PCC 7120. The operons 
from the literature set (x-axis) are separated into different categories (y-axis), operons that harbor a TSS 
only before the operon (Only before), operons with TSS before the operon and within the operon (Before 
and inside), operons harboring TSS only in the inside of the operon (Only inside) and operons that have 
not been hit by a TSS at all (No hit). The categories are illustrated for two different cut-offs of number of 
reads hit to the TSS (50 = orange and 100 = black). 

Only ~20% of the operons from the literature set in Anabaena sp. PCC 7120 exhibit a TSS 

solely before the referring first gene of the operon (Figure 22). Interestingly for cut-off 100, 

more than 20% of the literature operons have a TSS before the first gene, while for the cut-off 

50 this is only the case for 10%. 

Within the genome of Anabaena sp. PCC 7120 nearly half of the TSS (45%) have been 

identified to be located between adjacent genes with a distance greater than 200 nts. Further, 

for different in-silico methods, the majority of predicted operons (~60%) does not exhibit a TSS 

(covered by 50-100 reads) that is either located 200 nts before or inside the operon. This 

observation shows to be congruent when evaluating the operons stated in the literature. 
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3.8. Machine learning approaches on filter data for labeled literature 
operons lead to enhanced operon prediction confidence 

The comparison of the plain predictor of OpPipe to other available tools and databases (like 

DOOR, RegulonDB, Rockhopper and ProOpDB) for two different species showed different 

results. To exclude bias based on the architecture of the plain predictor with defined scores, 

further models (RF, SVM and NN) were used for the operon prediction. For all three models, 

the different filters (GG, EP and DGD) were used as inputs.  

In contrast to the plain predictor, where the different filter inputs are weighted based on a score 

that reflects an assumed importance, the different models are evaluated based on different 

statistical measures for a defined dataset. Nevertheless, through the filters, the data is 

previously generalized and are assumed to model an “operon-behavior”. Therefore, the input 

data are assumed to lead to species unspecific training. The input data thereby was a gene 

pair within the standard input format (Table S12). The input dataset was based on the literature 

OP set and NP-set 2 (2.6.1) and was split into training and test set (80% training, 20% test) 

via a cross validation. The validation thereby relied on a 5-fold cross validation split into training 

and test set of the input dataset.  

As a first approach, RF was used to create an operon prediction model. The training set 

provided through the cross validation was then used within a grid search which also relied on 

a 5-fold cross validation and the best classification model of each grid search was saved.  

The 5-fold cross validation via five-fold grid search revealed at least 92% accuracy for each 

best RF model of the different folds. Further, the RF models of each fold revealed an AUC of 

at least 0.99 (Figure S6). The different RF models thereby show differences for the different 

statistical measure (precision, recall, f1-score) for positive (OP) and negative examples (NP) 

(Table 12). 
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Table 12: Performance measure of the training of the random forest classifier for the filter data. 
For each of the 5-folds, the precision, recall, f1 score is shown. For each fold, the best scoring model of 
the 5-fold cross validation of the grid search is shown. 

  fold 1 fold 2  fold 3 fold 4 fold 5 Average   

NP 1,00 1,00 1,00 1,00 0,92 0,98 

Precision OP 0,85 1,00 1,00 0,88 1,00 0,95 

average 0,92 1,00 1,00 0,94 0,96 0,96 

NP 0,82 1,00 1,00 0,86 1,00 0,94 

Recall OP 1,00 1,00 1,00 1,00 0,91 0,98 

average 0,91 1,00 1,00 0,93 0,96 0,96 

NP 0,90 1,00 1,00 0,92 0,96 0,96 

F1-score OP 0,92 1,00 1,00 0,93 0,96 0,96 

average 0,91 1,00 1,00 0,93 0,96 0,96 

Interestingly, fold 1 and 4 lead to an increased amount of gene pairs being classified as OPs. 

It is observable that the precision for OP (0.85 and 0.88) is decreased compared to the other 

folds, meaning a higher amount of FP for these classifiers. In the same context, the recall 

within these folds for NPs is also decreased (0.82 and 0.86) compared to the other folds, 

meaning an increased amount of FN (NPs that have been predicted as OPs). Albeit not that 

strong, a similar effect can be obtained for fold 5. An advantage of the RF model is the 

possibility to extract the feature importance of the single input filter for each model (Figure 23).  

 

Figure 23: Feature importance of RF classifier on filter data. For each of the filters, the importance 
of the feature was calculated. The different folds of the cross validation are inked differently. A gene pair 
served as input. 

In general, the DGD is the most important feature in each fold. For all folds, the importance for 

being a part of the DGD filter is above 0.4. After the DGDY feature, the DGDN is the second 
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most important feature. The filter reaches an importance of 0.3 to 0.37 for all folds. However, 

the importance of DGDN is not as high as for DGDY. The importance of DGDY and DGDN 

seems to be non-related as for example in fold 2, the DGDY has the highest importance within 

the folds while for DGDN, fold 2 exhibits the lowest importance for all folds. However, the 

importance analysis suggests that the DGD filter might be the driving factor for the 

classification of OP and NP. However, when comparing the importance of the filter for the RF 

classifier, the different provided inputs are differently weighted within the folds. Interestingly, 

although folds 2 and 3 exhibit the same statistical measures, the importance of each sub-filter 

is different between these folds. The feature importance of the RF models also shows 

differences compared to the scoring of the plain predictor. In contrast to the weighting of the 

EP filter in the plain prediction model, the moderate EP filter stringency of 0.98 seems to be 

the most important feature within the EP filter. For all folds, this stringency reaches a value of 

approximately 0.04 to 0.07. However, a decrease of importance can be observed for the 

following EP stringencies of 0.95 to 0.50 compared to the EP filter with a stringency of 0.98. 

Following, the GG filter shows a congruently importance between the feature of being part of 

the GG (GGY) and not (GGN). Interestingly, the importance of the GG filter does not differ 

dramatically from the EP filter with a stringency of 0.98, which is also in contrast to the plain 

predictor model, where the GG filter is as important as the DGD filter. 

SVM was trained with the same inputs and settings as the RF model. For the SVM, an accuracy 

of at least 98% could be reached for all folds, which is increased compared to the RF approach 

(92% accuracy), while the AUC remains comparable between both approaches (Figure S6). 

With 0.97 (Table 13), the average for the measures of precision, recall and f1-score, are slightly 

increased compared to the RF model where these measures all reached average values of 

0.96 (Table 12). 
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Table 13: Performance measure of the training of the support vector machine classifier for the 
filter data. For each of the 5 folds, the precision, recall and f1 score is shown. For each fold, the best 
scoring model of the 5-fold cross validation of the grid search is shown. 

  fold 1 fold 2  fold 3 fold 4 fold 5 Average   

NP 0,98 1,00 1,00 0,98 0,92 0,98 

Precision OP 0,85 1,00 1,00 0,98 1,00 0,97 

average 0,91 1,00 1,00 0,98 0,96 0,97 

NP 0,82 1,00 1,00 0,98 1,00 0,96 

Recall OP 0,98 1,00 1,00 0,98 0,91 0,97 

average 0,90 1,00 1,00 0,98 0,96 0,97 

NP 0,89 1,00 1,00 0,98 0,96 0,97 

F1-score OP 0,91 1,00 1,00 0,98 0,95 0,97 

average 0,90 1,00 1,00 0,98 0,96 0,97 

Interestingly, for fold 1, the SVM also shows only 0.85 precision for OPs and consequently a 

decreased NP value (0.82) within the recall. Likewise, for the RF model, two SVM folds show 

average statistical measures (precision, recall, f1-score) of 1.0 (Table 13). In contrast to the 

RF model, the SVM model only exhibits one fold with decreased precision for OP and 

decreased recall for NP (Table 13, fold 1), while the RF model exhibits two of such folds (Table 

12, fold 1 and 4). Equally to the RF model, which showed different feature importance for the 

different folds (Figure 23), the SVM grid search leads to different parameters of the model 

(Table S12). While folds 1, 2 and 5 exhibit a rbf kernel, folds 3 and 4 exhibit a polynomial 

kernel. However, folds 2 and 3 both reach scores of 1.0 for all statistics, although different 

kernels were chosen.  

As a third approach, an NN was created with the architecture of two hidden layers with five 

nodes each and one output node (Figure 24A), which was chosen via a trial and error 

approach. As an input of the NN, like for the RF and SVM models, the different filters were 

used leading to 16 different input nodes (Figure 24A). The activation function was set to 

sigmoid for both hidden layers. After both hidden layers a dropout (0.1) was added, which was 

clarified with a grid search (Figure 24B). 
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Figure 24: Composition and grid search result for neural network. The different layers for the neural 
network (A) are displayed in colors. Grid search for different dropouts and learning rates (B) lead to 
different accuracies. The output of “0” thereby refers to NP, while “1” is assigned to OP. 

Even though the accuracies for the dropouts do not show greater differences between a 

dropout of 0.1 and 0.4, the dropout of 0.1 and learning rate of 0.1 resulted in the best accuracy 

(Figure 24B). Consequently, also the learning rate was set to 0.1. In contrast to the RF and 

SVM models, the architecture was not clarified via a grid search leading to a simple 5-fold 

cross validation. Beside the typical split of 80% test and 20% training data, 20% of the training 

set were used as validation set. Thereby, the NN model showed a decrease of validation and 

training loss over the 50 epochs, as well an increase of the training and validation accuracy 

(Figure 25). 

 

Figure 25: Training performance of neural net for 50 epochs. History of metrics (accuracies of 
training and validation, loss for training and validation) during training for the 5-fold cross validation. 
Shaded areas show the standard deviations of the corresponding metric for each epoch across the 
rounds of the cross-validation. The minimum / maximum values are marked by a large dot.  
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The validation and training loss reach their minimum at 47 to 49 epochs. Also, the standard 

deviation decreases (Figure 25). Compared to this, the accuracy for the validation reaches the 

optimum at 19 epochs, while the accuracy of the training reaches the maximum at about 45 

epochs. Compared to the RF and SVM approaches, the NN shows an increased average 

measure for precision, recall and f1-score with each exhibiting 0.98 (Table 14), while for the 

SVM, these averages were at 0.97 (Table 13) and for RF at 0.96 (Table 12).  

Table 14: Performance measure of the training of the neural net classifier (filter data). For each 
of the 5 folds the precision, recall and f1 score is shown. 

  fold 1 fold 2 fold 3 fold 4 fold 5 Average   

NP 0,95 1,00 0,98 0,97 0,98 0,98 

Precision OP 1,00 0,97 0,98 1,00 0,98 0,99 

average 0,97 0,98 0,98 0,98 0,98 0,98 

NP 1,00 0,96 0,98 1,00 0,98 0,98 

Recall OP 0,95 1,00 0,98 0,96 0,98 0,97 

average 0,97 0,98 0,98 0,98 0,98 0,98 

NP 0,97 0,98 0,98 0,98 0,98 0,98 

F1-score OP 0,97 0,98 0,98 0,98 0,98 0,98 

average 0,97 0,98 0,98 0,98 0,98 0,98 

Also comparing the performance of the different folds for the NN model to the SVM and RF 

models, no fold is observable where the precision for OP and recall for NP is decreased 

compared to the other folds.  

In general, the three machine learning models RF, SVM and NN showed to fit onto the provided 

dataset and to be able to identify OPs and NPs out of the dataset. Thereby, it could be 

observed for all three models that they lead to high measures of accuracy, AUC, precision, 

recall and f1-score. However, the fit onto the provided dataset does not reflect an increased 

predictive ability of predicting an operon. Therefore, for getting a greater overview of the 

different prediction models (plain predictor, RF, SVM, NN), operons were predicted in 

Anabaena sp. PCC 7120 with the RF, SVM and NN and compared to the defined operon set 

of the plain predictor (by leaving out the training set operons, Figure 26).  
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Figure 26: Comparison of different operon prediction models based on Anabaena sp. PCC 7120. 
(A) Number of operons that have been identified as full hit among different classifiers. (B) Indicated are 
four different classifiers. Grey arrows indicate the pairwise comparison of two classifiers, with the 
percentages inside the arrows showing the percentages of operons identified by both within the same 
composition (full hit), operons that overlap ore containing each other (partial) and operons that were 
only found by one of the classifiers (exclusive). 

In general, all four approaches share 556 full hits (Figure 26A, Table S17). These operons 

seem to be conserved through all four predictors (Figure 26A). In general, the different machine 

learning algorithms show a high overlap of full hit operons with each other. For the machine 

learning algorithms, 40-60 operons remain partial or exclusively found, while for the plain 

predictor around 563 remain partial or exclusively found operons (Figure 26A). Further, the 

different machine learning algorithms share at least 87% of their predicted operons as full hits. 

In this context, the NN and RF classifiers share the most full hit operons (93%), while 6% are 

partially found and only 1% are exclusively found operons (Figure 26B). Comparing the SVM 

to the NN, 87% of the predicted operons are full hit, 11% are partial and 2% are exclusive 

operons. In both comparisons, the exclusive operons refer to the RF and SVM models, as all 
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predicted operons of the NN could be found as full hit or partial hit in the RF and SVM sets. 

Even though the NN classifier predicted more operons (1220, Figure 26A) than RF and SVM 

(1218, Figure 26A), the majority of operons when comparing the NN to the RF and SVM are 

partial hits. This means that the operons of RF and SVM either contain the NN operons or they 

overlap at the start or end positions. Comparing the RF, SVM and NN to the plain predictor, 

9% (SVM) and 10% (RF, NN), respectively, are exclusively found operons. The remaining 

operons are divided nearly to equal parts into full and partial hits. Using the 556 operons 

conserved around all four OpPipe predictors (plain predictor, RF, SVM, NN, Table S17), 80 of 

them could be found in the same composition within DOOR, ProOpDB and Rockhopper (Figure 

27). 

 

Figure 27: Venn diagram of the predicted operon set of three predictors and OpPipe conserved 
set in Anabaena sp. PCC 7120. The diagram shows the number of total predicted operons (total 
number in brackets behind name) for the overlap of the OpPipe predictors (plain, RF, SVM, NN) and 
Rockhopper [36], DOOR [65], ProOpDB [69] (only full hits are counted). 

However, around 65% of the different predictor conserved operons could not be found as a full 

hit (364) in the sets of DOOR, ProOpDB and Rockhopper (Figure 27). In addition, although the 

machine learning approaches (RF, SVM and NN) showed high statistical measures on the 

defined train/test dataset, comparing the overlaps between the machine learning models and 

the operon sets of DOOR, Rockhopper and ProOpDB, the general number of operons that 

could be found in the same compositions could not be enhanced using machine learning 

approaches onto the filter models (Table S16). While the plain predictor exhibited 200-300 

operons in the overlap to DOOR, ProOpDB and Rockhopper, the different machine learners 

exhibiting around 140-200 operons in the overlap with these predictors. However, comparing 

the operons of the four created prediction models being not found in DOOR, ProOpDB and 



RESULTS 

 

72 

 

Rockhopper (Table S16, NH2), the machine learning algorithms exhibit a lower number of 

operons not found compared to the plain predictor. 

Even though the overlap to other prediction tools could not be increased by the use of machine 

learning, the different OpPipe predictors show an increased correlation to the average operon 

length (number of genes within an operon) compared to the literature set (Table 15). 

Table 15: Average length of predicted operons from Anabaena sp. PCC 7120. For the literature set 
and the different predictors (DOOR [65], ProOpDB [69], Rockhopper [36], Plain predictor, NN predictor, 
SVM predictor and RF predictor), the average number of genes in an operon of all predicted operons in 
Anabaena sp. PCC 7120 is calculated. The smallest (Min) and largest (Max) operons are displayed as 
well as the ones with less than five genes and more than four genes. 

Predictor Average 
operon length 

Min operon 
length 

Max operon 
length 

% <5 % >4 

Literature set 4.55 2 10 61 39 
DOOR 2.41 2 12 97 3 
ProOpDB 2.54 2 32 95 5 
Rockhopper 2.29 2 9 98 2 
Plain predictor 3.22 2 37 84 16 
RF predictor 3.23 2 18 85 15 
SVM predictor 3.30 2 18 84 16 
NN predictor 3.17 2 18 86 14 

Comparing different OpPipe classifiers for the operons of Anabaena sp. PCC 7120 DOOR, 

Rockhopper and ProOpDB result in 95-98% of operons with a length smaller than five genes. 

All OpPipe predictors predict ~85% with less than five genes (Table 15), while about 61% of 

the operon literature set are smaller than five. The different OpPipe machine learners thereby 

show again a high correlation for minimal (2) and maximum (18) operon length. While DOOR 

and Rockhopper show a maximum operon length of ten to twelve genes, ProOpDB and the 

plain predictor show an increased maximum operon length of 32 to 37 genes within an operon. 

Interestingly, the operon with the maximum length in the ProOpDB and plain predictor operon 

set refers to the same gene cluster (in plain predictor all4179-rplC) in Anabaena sp. PCC 7120. 

This gene cluster is separated into smaller operons by the other machine learning algorithms, 

as well as for DOOR and Rockhopper. It is observable that the NN exhibits the fewest average 

operon length with 3.17 compared to the plain predictor (3.22), RF (3.23) and SVM (3.30) 

(Table 15). This leads to an increased number of operons, which are shorter compared to the 

other models. In general, the operon sets of the OpPipe predictors fit better to the average 

length of the literature operon sets (4.5) than the operon sets of DOOR (2.41), ProOpDB (2.54) 

and Rockhopper (2.29) which categorize on average one gene less to an operon than the 

OpPipe predictors (Table 15). 

Regarding the number of all annotated genes of Anabaena sp. PCC 7120 being categorized 

into operons by different predictors, the OpPipe predictors show to categorize a decreased 

number of genes into operons compared to DOOR, ProOpDB and Rockhopper (Table 16).  
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Table 16: Number of annotated genes (%) of the Anabaena sp. PCC 7120 genome that have been 
classified into operons. Displayed are the different predictors of DOOR [65], ProOpDB [69], 
Rockhopper [36], Plain predictor, RF, SVM and NN.  

Predictor Species % of genes covered 

DOOR Anabaena sp. PCC 7120 34% 

ProOpDB Anabaena sp. PCC 7120 35% 

Rockhopper Anabaena sp. PCC 7120 27% 

Plain predictor Anabaena sp. PCC 7120 74% 

RF predictor Anabaena sp. PCC 7120 74% 

SVM predictor Anabaena sp. PCC 7120 76% 

NN predictor Anabaena sp. PCC 7120 73% 

In general, from the OpPipe predictors, the SVM predictor classifies the highest number of 

genes (76%) of Anabaena sp. PCC 7120 into operons, while the NN assigns the fewest 

number (73%) of genes inside an operon (Table 16). However, the predictors of DOOR, 

ProOpDB and Rockhopper show to only classify about 27-35% of all genes of Anabaena sp. 

PCC 7120 into operons (Table 16).  

The different OpPipe predictors showed to identify operons on the provided training/test 

dataset, while the different machine learners showed a higher overlap between each other 

compared to the plain predictor. However, 556 operons were found to be conserved in all 

predictors. Even though the overlap with other prediction tools like DOOR, ProOpDB and 

Rockhopper could not be increased by the different machine learning algorithms, all OpPipe 

predictors show an increased correlation with the literature set of Anabaena sp. PCC 7120 

regarding the average length of the operons. In this context, the four OpPipe predictors show 

a higher coverage of genes being part of operons compared to DOOR, ProOpDB and 

Rockhopper in Anabaena sp. PCC 7120. 
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4. DISCUSSION 

4.1. Intergenic distance is the major criteria for operon prediction 
and strongly dependent on the derived species 

Nowadays, numerous operon prediction tools and databases exist (Table S1) [26] [27]. Most 

of them rely on functional features like the intergenic distance, functional relation or 

evolutionary features. However, it has been demonstrated that a very simple variant using only 

intergenic distance outperforms several approaches which take into account numerous criteria 

(e.g. functional and evolutionary relation) [27] [47]. This has for example been proven by 

Brouwer et al. [27], who demonstrated that the operon predictor of Moreno-Hagelsieb et al. 

[169], which relies only on the intergenic distance, outperforms several tools which take into 

account numerous operon features. In fact, researchers like Brouwer et al. [27], Bockhorst et 

al. [70] and De Hoon et al. [170] showed that the intergenic distance was, overall, the most 

accurate feature. Therefore, the intergenic distance may be the driving factor for the prediction 

of operons [27] [47] [59]. Further, it has been demonstrated that the intergenic assumption can 

be universally applied to bacterial genomes [47]. In congruence with these assumptions, the 

plain predictor model was created by assigning an enhanced score to gene pairs if they are 

considered to be OP by the DGD (Figure 12). Further, the feature importance of the RF model 

showed an even greater importance of the intergenic distance feature (Figure 23) compared 

to the scoring of the plain predictor model. Interestingly, also most operon predictors are taking 

this feature into account (Table S1). A problem with this is that numerous operon prediction 

tools are trained and tested on sub-sets of operons derived from model organisms like 

Escherichia coli and Bacillus subtilis [25] [47] [65] [69]. A driving feature thereby is that for 

these species, a sustainable number of operons have been proven experimentally [27]. A short 

coming of this is that applying a pre-trained predictor onto an unknown species may result in 

misclassification. 

This is the fact because it has been revealed that intergenic distances of genes inside an 

operon vary among species [35] [171]. The same effect was observed when comparing the 

average intergenic distances between five different species within this study (Figure S5, Figure 

11). In general, the genome of Escherichia coli seemed to be packed more densely compared 

to other species like Bacillus subtilis or different cyanobacteria (Figure 11). Therefore, using 

the intergenic distance of Escherichia coli can be less effective when applying it to other 

species. For example, applying a trained model of Escherichia coli to Bacillus subtilis could 

result in an accuracy drop due to the low ability of generalization [65]. This phenomenon was 

described within this study by applying intergenic distances of different species to other species 

(Table 10, Table S11). It could be observed that applying an intergenic cut-off of Escherichia 

coli to Anabaena sp. PCC 7120 leads to an increased FN rate as this cut-off is too strict (Table 
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10, Table S11). Swapping sides, the intergenic distance of Anabaena sp. PCC 7120 leads to 

an increased FP rate in Escherichia coli as this cut-off is too lose (Table 10, Table S11). Such 

an effect has also been shown by Dam et al. [65] when they tried to apply their length ratio 

from Escherichia coli to Bacillus subtilis. 

To address this issue, the developed DGD filter (Table 9) poses the central question of how to 

easily define a dynamic distance cut-off that is applicable across species. However, even the 

DGD within the different ranges showed satisfying results but could be optimized with leaving 

out the distance ranges. The cut-off then becomes more dynamic by directly searching the 

distance between two adjacent genes that are present for more than 45% of all adjacent gene 

pairs. However, the DGD filter with the distance ranges proved to identify operons proven in 

the literature with high confidence and also proved the necessity of applying this feature in a 

dynamic way (Table 10, Table S11). 

4.2. In-silico methods demonstrate improved ability of operon 
identification compared to genome wide TSS identification 

Beside classical in-silico approaches, another way of identifying operons is via TSS. However, 

the approach showed to have limitations. Like Mitschke et al. [56] mentioned, on the one hand, 

for Synechocystis sp. PCC 6803, ~87% of the genome should be coding. On the other hand, 

Mitschke et al. [56] resumed that only one third of the TSS are located upstream an annotated 

gene. Thereby, it has been mentioned by Mitschke et al. [56] and Choe et al. [20] that ~64% 

of all TSS in Synechocystis give rise to antisense or non-coding RNAs.  

Congruently to this, the data for Anabaena sp. PCC 7120 demonstrated that only one third of 

the TSS are located directly before or within genes, while ~45% give rise to non-coding 

elements (Figure 18). As for example in Escherichia coli, Choe et al. [20] mentioned that 

promoters of operons showed to exhibit multiple TSS. Applying these to Anabaena sp. PCC 

7120 and screening for TSS before (or inside) operons, at least one of these multiple TSS 

should be found for each operon. However, for all predictors (OpPipe plain predictor, DOOR, 

Rockhopper, ProOpDB) used in this study, the most operons (~60%) did not exhibit a TSS 

directly before or even within the operon (Figure 20). Congruently to this, the defined literature 

set of Anabaena sp. PCC 7120 showed a decreased number of operons exhibiting a TSS 

before or within the operon (Figure 22). Interestingly, the pec operon mentioned by Swanson 

et al. [161] which is part of the literature set showed to be expressed under control conditions 

through the developed filters (Figure S3, Table S9). Further, this operon could be shown to 

exhibit TSS (Table S9) that were also identified by the experiment of Mitschke et al. [56]. The 
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same effect can be observed for the fraC operon 

mentioned by Merino-Puerto et al. [157], where 

with the data of Mitschke et al. [56], two TSS 

directly before the operon (within 200 nucleotides) 

could be identified (Figure 28). Both of these TSS 

were within the defined cut-off of 50 and 100 reads 

that have to be matched to them to be counted 

(Figure 19). Additionally, the fraC operon shows two weaker TSS within the operon. In contrast 

to pec and fraC operon, the nitrate assimilating nir operon mentioned by Frías and Flores [51] 

shows for both cut offs (50 and 100, Figure 22) no TSS before the operon under control 

conditions. With the TSS identification approach, this operon remains unfound under control 

conditions. As with the GG filter an increased expression can be observed for the nir operon 

under -Nit conditions compared to control conditions (Table S10) this might lead to an 

identification of this operon via the TSS approach under a different condition. 

The operon TSS analysis within this study shows the disadvantages of an operon prediction 

only relying on TSS. The identification of operons by a TSS-only based approach is limited to 

the current used condition because reliance on TSS data only shows active TSS under this 

specific condition. Therefore, an approach only based on TSS leaves out numerous putative 

operon classification, as their TSS are not detectable under a specific condition. The inclusion 

of in-silico methods thereby improves the ability to identify operons which are not or only 

weakly expressed during a specific condition. 

  

.  

Figure 28: TSS for the fraC operon [157]. 
Black dashed arrows indicate a TSS above 
50 and 100 reads, while grey dashed 
indicates TSS below the cut-off. 
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4.3. Increased ability of operon prediction through generalized filter 
models based on expression and intergenic distance 

For the prediction of operons, the features of expression and intergenic distance have been 

used within this study. Comparable operon prediction tools often use phylogenetic inference, 

functional relations or promoter/terminator site identification for their predictions [47] [69] 

(Table S1).  

OpPipe does not consider functional relations and conservation for the prediction model. On 

the one hand this is because a functional or evolutionary information is not available in 

databases for every species. This would lead to a species-specific prediction tool, which was 

not the aim of OpPipe as it should be applicable onto a broad range of species. On the other 

hand, operons often harbor genes which can be functional related (e.g. coding for enzymes 

that catalyze steps in a pathway or genes which are members of a protein complex) and 

thereby ensure a co-regulation of these genes [141] [172] [173]. However, there are examples 

where genes of an operon are functional unrelated [24]. In this context, the rpsU-dnaG-rpoD 

operon in Escherichia coli encodes the 30S ribosomal protein S21, DNA primase and RNA 

polymerase and thereby contains genes involved in different pathways [65]. Further, newly 

formed operons might consist of genes which do not share a similar function, but they may be 

needed in the same environmental condition. 

In the same context, OpPipe does not make use of evolutionary relations. Although functional 

operons are thought to be stable over time and be present among different prokaryotic species 

[24], the formation of operons is still not completely understood [24] [46] [60] [141]. The 

formation of genes into operons is often described as “self-defense” or of operons being 

“selfish”, as these formatted genes ensure via horizontal gene transfer (HGT) to not be 

removed from the genome [27] [60] [171]. However, the composition of genes inside an operon 

can be very diverse compared between species [24] and many operons undergo shuffling 

events during evolution [174].  

This makes it difficult to identify conserved operons, as they exhibit the same genes but in a 

shuffled order [47]. For this purpose, like functional relations, the evolutionary connections 

were not used for the operon prediction. In general, enriching the prediction with expression 

data like DNA microarray or RNA-Seq data showed to improve the prediction for example for 

the tools of Rockhopper and CONDOP [27] [31] [46] [175]. However, even though numerous 

operon prediction tools predict operons with a high amount of sensitivity and specificity, they 

are only specialized and rely on a selected subset of species [27] [59] [65]. 
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To address this issue, OpPipe aims to identify shared features of operons among species and 

to convert them into uniform data before using them for operon prediction. Within OpPipe this 

is achieved by assuming a general “operon behavior” previously and trying to monitor these 

behaviors via filters. By this, adjacent genes of an operon should be co-transcribed which is 

monitored by the developed EP and GG filters (3.3). Further, operonic genes are assumed to 

exhibit a specific intergenic distance which is monitored by the DGD filter (3.4). 

However, even though a generalized “operon behavior” through the filters is assumed, it is not 

guaranteed that this does in fact happen. Despite the best fit to a model organism, an operon 

predictor might still lack the general classification function as the classifier overperforms when 

applied to another species [65]. Therefore, the dataset was tried to be as broad as possible by 

including different species (model species Escherichia coli, gram positive Bacillus subtilis and 

Corynebacterium, cyanobacteria Anabaena sp. PCC 7120, Synechococcus elongatus, 

Synechocystis sp. PCC 6803). A problem when comparing the results of a developed predictor 

with other tools is, on the one hand, the specificity to a given model organism. On the other 

hand, prediction tools often evaluate their accuracy by comparing their results to 

experimentally proven operons, resulting in the dead end that the used literature sets often 

differ between the studies [27]. Further, the comparison of statistical measures often relies on 

gene pairs, while the setup also differs.  

To address this issue, OpPipe was benchmarked against other tools as universal as possible. 

For this purpose, there was no comparison of statistical measures with other prediction tools 

but rather, it was attempted to find the overlap of fully predicted operons between the OpPipe 

predictors, different tools, databases, and literature proven operons (Figure 13, Figure 14, 

Figure 15, Figure 16, Table S16). On the model organism Escherichia coli, the plain predictor 

showed encouraging results by exhibiting an increased overlap of predicted operons with the 

Regulon database compared to the other predictors (Figure 13, Figure 14). However, even in 

this study, a defined literature set was used to gather a possible hint for the correctness of the 

developed model. In general, the plain predictor showed to outperform the other compared 

predictors (Table S14) for the literature sets of Escherichia coli (Table S13) and Anabaena sp. 

PCC 7120 (Table 11, Figure 17). Although contradicting results on the Anabaena sp. PCC 

7120 set occurred when comparing it to other predictors, OpPipe showed to perform best on 

the defined literature operon set for Anabaena sp. PCC 7120 compared to the other predictors 

and also showed to be able to confirm these results on another species (Escherichia coli). In 

general, the comparison of the plain predictor with the other tools and databases based on 

these literature sets shows encouraging results, as the plain predictor has not been trained 

onto these data.  
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However, when focusing on in-silico methods, finding the right classification model is always 

difficult [73]. For this purpose, for this study it was decided to rely on multiple classifiers (plain 

predictor, NN, RF, SVM). Even though the impression of overprediction could arise when 

regarding the results of OpPipe in Anabaena sp. PCC 7120, during this study, it has been 

demonstrated that for example the average length of operons of the OpPipe predictors is 

correlated in a greater way with the defined literature set than the predictors of DOOR, 

ProOpDB and Rockhopper did (Table 15). In this context, OpPipe also shows an increased 

correlation regarding the operon length of the defined literature set in Escherichia coli and the 

operon length of Regulon database (Table 17). Comparing the average length of predicted 

operons in Escherichia coli and Anabaena sp. PCC 7120 between different predictors (Table 

15, Table 17), it is observable that the operons of the plain predictor tend to be elongated 

compared to the predictors of DOOR, ProOpDB and Rockhopper. Compared to the Regulon 

database with a length of on average 3.07 genes in an operon in Escherichia coli, the plain 

predictor assigns on average 3.37 genes to an operon. However, DOOR only assigns 3.07 

genes to an operon while Rockhopper only assigns 2.86 to an operon. Further, the sets of the 

OpPipe plain predictor and the Regulon database also correlate to a greater extent to the 

literature set, where 4.5 genes are part of an operon. Comparing the results of Escherichia coli 

to the operons of Anabaena sp. PCC 7120, Rockhopper assigns on average 0.57 times fewer 

genes and DOOR 0.66 tomes fewer genes to an operon, while the plain predictor assigns on 

average 0.15 times fewer genes into an operon compared to Escherichia coli. 

Table 17: Average length of predicted operons from Escherichia coli. For the literature set and the 
different predictors (DOOR [65], RegulonDB [147], Rockhopper [36], Plain predictor), the average 
number of genes in an operon of all predicted operons in Escherichia coli is calculated. The smallest 
(Min) and largest (Max) operons are displayed as well as the ones with less than five genes and more 
than four genes. 

Predictor Average 
operon length 

Min 
operon 
length 

Max 
operon 
length 

% <5 % >4 

Literature set 4.40 2 11 55 45 
DOOR 3.07 2 16 85 15 
RegulonDB 3.23 2 16 82 12 
Rockhopper 2.86 2 12 88 12 
Plain predictor 3.37 2 20 80 10 

Interestingly, the plain predictor also shows a greater correlation of operons with less than five 

genes comparing Anabaena sp. PCC 7120 and Escherichia coli than DOOR and Rockhopper. 

Salgado et al. [58] showed that in Escherichia coli, based on operons extracted from the 

Regulon database, about 80% of all TUs are composed of less than five genes. This 

observation can be confirmed with the used dataset of the Regulon database (Table 17, 82%). 

Comparing the results of the different predictors (Table 17), the OpPipe plain predictor (80%) 

shows a greater correlation with this assumption than DOOR (85%) and Rockhopper (88%). 

Transferring this assumption to Anabaena sp. PCC 7120 (Table 15), the predictors of DOOR 
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(97%), ProOpDB (95%) and Rockhopper (98%) show an increased number of operons with 

less than five genes. However, the different OpPipe predictors show to correlate better with 

the assumption of ~80% of the operons being shorter than five genes, because they predict 

~85% of the operons being shorter than five genes.  

The two literature sets of Escherichia coli and Anabaena sp. PCC 7120 thereby seem to 

contain comparatively long operons as only 55% (Table 17, Escherichia coli) and 61% (Table 

15, Anabaena sp. PCC 7120) consist of less than five genes. However, it is observable, that 

the length of the operons in the literature sets does not affect the identification of operons via 

the OpPipe prediction approaches as they exhibit (i) a shorter average length compared to the 

literature set of Escherichia coli (3.37 average length plain predictor and 4.4 average length 

literature set, Table 17) and Anabaena sp. PCC 7120 (3.17-3.3 average length OpPipe 

predictors and 4.55 average length literature set, Table 15), (ii) correlating with the assumed 

80% of operons that exhibit less than five genes (80-85%, Table 15, Table 17). 

Subsequently, it is stated in Brouwer et al. that 50-60% and in Moreno-Hagelsieb et al. [162] 

that around 60% of genes should be organized in operons. When comparing OpPipe to other 

predictors regarding the number of annotated genes categorized into operons by them, it is 

again remarkable that OpPipe tends to outperform the other predictors of DOOR, ProOpDB 

and Rockhopper (Table 16, Table 18). For Escherichia coli, OpPipe shows comparable results 

to the Regulon database with approximately 60% of the annotated genes being predicted into 

operons by these two approaches (Table 18). Rockhopper thereby only classifies 47% of the 

annotated genes into operons (Table 18).  

Table 18: Number of annotated genes (%) of the Escherichia coli genome that have been 
classified into operons. Indicated are the different predictors of DOOR [65], RegulonDB [147], 
Rockhopper [36] and Plain predictor. 

Predictor Species % of genes covered 

DOOR Escherichia coli 56% 

RegulonDB Escherichia coli 59% 

Rockhopper Escherichia coli 47% 

Plain predictor Escherichia coli 61% 

Regarding the Anabaena sp. PCC 7120 results (Table 16), OpPipe predictors seems to rather 

fulfill the 50-60% assumption, as with ~74% of covered genes, 14% are classified falsely 

positive compared to 60% of genes that where expected in operons basing on Moreno-

Hagelsieb et al. [162]. However, for tools like Rockhopper, 34% of potential operon genes are 

missing. Interestingly, the machine learning approaches assign nearly the same number of 

genes into operons, showing the high overlap of these approaches.  
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In combination with the accurate prediction of OpPipe, the visualization of these results 

enhances the analysis process. By this, interesting operons can easily be monitored through 

the visualization tool. Such an interesting operon is for example the rbcLS operon in 

Synechococcus sp. PCC 7942. Quintana et al. optimized the energy production by metabolic 

pathway engineering through inclusion of coding sequences for pyruvate decarboxylase and 

alcohol dehydrogenase II from Zymomonas mobilis to produce ethanol [176]. To increase the 

yield, they were expressed under the control of the rbcLS operon promoter. For monitoring the 

expression of fused operon products like proposed in Liang et al. [177] and Quintana et al. 

[176], a tool like OpPipe offers a very useful way of monitoring the expression of this operon 

under different conditions. 

In fact, with the visualizer of 

OpPipe, it is easy to monitor 

the high expression of the 

rbcLXS gene cluster under 

the different conditions of 

control, -Nit and -Fe (Figure 

29). The operon shows to be 

identified by the OpPipe plain 

predictor with an elongation 

of three genes (alr1527-

alr1529) showing an 

increased expression of this gene cluster. The extension of this operon under control 

conditions thereby shows the importance of operon prediction and the visualization of these 

results, as maybe not only the core operon is getting expressed but rather further promoters 

and genes might be part of the regulation of this transcription unit. Additionally, like Picossi et 

al. [168] mentioned, the rbcLXS operon in Anabaena sp. PCC 7120 encodes for RuBisCo, 

which facilitates the CO2 fixation. If the regulator of this operon LysR is knocked down, the 

mutant is not able to survive under high light. Such knock down experiments can easily be 

monitored with a tool like OpPipe. Thereby, the usefulness is that if an unknown regulator gets 

knocked down, it can easily be monitored, which genetic regions and control units this knock 

down has an effect on. A further useful scope of application of OpPipe and the included 

visualizer is that especially under different conditions, it is possible to identify highly expressed 

operons. Through the comparison under different conditions, such operons that are highly 

expressed under various conditions can be identified and can be exploited to produce other 

substances.  

 

Figure 29: Visual operon prediction of the rbcLXS [166] 
operon of Anabaena sp. PCC 7120 by OpPipe (under control, 
-Nit and -Fe conditions). Green colour indicates an operon. 
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The results of OpPipe compared to other prediction tools are encouraging and suggest that 

OpPipe is suitable for the operon prediction and leads to a more generalized model compared 

to the predictors it was compared to. Further, the defined filters and visualization is a useful 

tool for monitoring the regulation on the level of transcription of a given species. 

4.4. Identification of alternative TUs through operon prediction 
filters 

Despite the plain operon prediction, the search for alternative TUs also remains a challenging 

task. Alternative TUs thereby are detectable through expression data or TSS. Like Cao et al., 

Chen et al. and Mao et al. suggested, operons or not non-overlapping units but rather multiple 

TUs can arise from an operon through alternative TSS [4] [20] [21]. However, currently 

available operon prediction tools typically describe operons as non-overlapping elements 

under a specific condition [21] and do not list alternative TUs [27]. In this context, ~35% of 

promoters in Escherichia coli harbored multiple TSS, which results in multiple transcription 

units [20]. Therefore, it can be assumed that this number is alike in Anabaena sp. PCC 7120. 

Thereby, prediction tools predicting operons in a non-overlapping way are leaving out this 

information. 

Within OpPipe the monitoring of alternative TUs is ensured by the different expression-based 

filters that were created. For example, the EP filter evaluates the expression landscape. 

Therefore, it is, beside the plain operon prediction, best suited for the search for alternative 

TUs and different regulated TUs under various stress conditions. For example, differences for 

the pec operon under different stress conditions can be monitored using the EP filter (Table 

19). 

Table 19: Pec operon from Anabaena sp. PCC 7120 under different EP stringencies and different 
stress conditions. 

EP 
stringency 

Operon composition 
(control) 

Operon composition 
(-Nit) 

Operon composition 
(-Fe) 

0.98 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE 
0.95 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE 
0.8 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE 
0.7 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE 
0.6 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE 
0.5 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE 
0.4 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE 
0.3 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA, pecC 
0.2 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE pecB-pecA 
0.1 pecB-pecA-pecC-pecE pecB-pecA-pecC-pecE - 
0.05 pecB-pecA-pecC-pecE pecB-pecA, pecC - 

While the pec operon proves to be stable through all stringencies under control conditions, it 

starts to decrease under -Nit an -Fe conditions.  
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In this context, the GG filter under different stress conditions also showed to be useful to 

monitor differences in expression levels of operons (-Nit, -Fe, Table S10). For example, the 

connection of pecB-pecA is covered by ~15804 normalized reads under control conditions but 

is downregulated under -Nit as it only exhibits ~4415 normalized reads and under -Fe 

conditions, where only ~565 normalized reads mapped onto the connection. A similar trend is 

observable for all genes and connections within the operon for the three conditions. In contrast, 

the nir operon (Table S10) exhibits fewer reads connecting the genes under control conditions 

compared to the pec operon. In contrast to control conditions, the number of reads connecting 

the genes of the nir operon is increased under different stress conditions (Table S10). Under  

-Fe conditions, the single genes exhibit a highly increased number of reads that cover them 

compared to control conditions (e.g. nirA ~162 normalized reads to ~1175). However, this 

effect is even more drastically when comparing control conditions to -Nit conditions (Table 

S10), where for example nirA is covered by ~48172 normalized reads. Interestingly, it is 

observable that the number of reads connecting two genes within the operon is heterogenous, 

which could hint to alternative TSS within this operon. Additionally, the fraC operon seems to 

be constitutively expressed under control conditions but also shows an increase of reads 

mapped onto the genes under -Nit and -Fe conditions (Table S10). Interestingly, the 3’ end of 

the operon shows an increased expression compared to the 5’ end in all three conditions.  

For example, in the cyanobacteria Anabaena sp. PCC 7120, Simm et al. [178] identified 

several gene clusters. Sustainable differences within the PKS gene cluster can be obtained 

within different stress conditions, as well between the different predictors (Figure S7, Figure 

30). Thereby OpPipe identifies eight different operons out of this gene cluster, while DOOR (4 

operons), Rockhopper (2 operons) and ProOpDB (6 operons) identify fewer operons (Figure 

S7). Under different stress conditions (control, -Nit, -Fe), a similar regulation of the cluster can 

be observed for several TUs (Figure S7). For example, the section of alr5331-all5347 shows 

the same characteristics of TUs. However, several differences in the occurrence of TUs within 

the stress conditions can be observed. Especially the section between alr5348-alr5357 can 

easily be monitored with the visualizer of OpPipe regarding changes of the TU creation (Figure 

30). Comparing different predictors, OpPipe proves to identify four different operons out of this 

section under control conditions, while DOOR and Rockhopper do not identify any operon 

within this section (Figure 30A). Moreover, differences between the conditions of control, -Nit 

and -Fe are monitorable with OpPipe. For example, the sections between asr5349-alr5355 

show to be differently regulated under the three observed conditions (Figure 30B). 
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Figure 30: Visual operon prediction for a section of the PKS gene cluster [178] of Anabaena sp. 
PCC 7120 by OpPipe (under control, -Nit and -Fe conditions) and ProOpDB [69], DOOR [65], 
Rockhopper [36] (control conditions). Red color indicates that no operon has been identified, green 
color indicates an operon, while a darker green indicates that two operons have been predicted. 

To properly describe and understand newly characterized cluster OpPipe is a very helpful tool. 

Like Simm et al. [178] mentioned, the PKS cluster gene is devoted to important cellular 

processes in cyanobacteria such as iron uptake and nitrogen fixation. With OpPipe the different 

regulations of this cluster are traceable among different conditions regarding iron and nitrogen 

uptake. OpPipe can firstly be used to predict regulatory operons out of these clusters and 

secondly for graphically displaying these predictions.  
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In general, a main advantage of cyanobacteria for biofuel production is the ability of fixing 

nitrogen directly from the atmosphere [179] [180]. They are therefore not dependent on a high 

amount of fertilizer in form of nitrogen like crop plants [181]. However, to make use of such 

organisms, it is essential to understand gene clusters responsible for the fixation of nitrogen 

like the PKS cluster identified by Simm et al. [178]. 

Summarizing, the developed pipeline OpPipe proved to identify operons with a high amount of 

confidence. Thereby, the different developed filters proved to generalize the data of a species 

in the context of monitoring OP specific features. This transformation of species-specific data 

to operon-specific data leads to a high affinity of the prediction models for identifying operons 

in a non-species-specific way. For the prediction of operons, different filter models have been 

developed during this study, focusing on expression (EP, GG) and genomic features (DGD). 

However, it has been demonstrated that the intergenic distance is a major criterion for the 

operon prediction, which can be enhanced by being applied in a dynamic and generalized way. 

By the inclusion of genomic features, the identification of weakly expressed operons is also 

possible and demonstrates that OpPipe is not only dependent on the quality and strength of 

an expression experiment. Thereby, the comparison of different in-silico methods to an 

experimental approach of TSS identification showed the value of operon prediction tools. In 

this context, the developed four classifiers (plain predictor, RF, SVM, NN) proved to precisely 

identify operons from different species.  

Moreover, with OpPipe changes within the regulation of the transcription due to changing 

conditions are easily traceable and therefore OpPipe offers the possibility of identifying 

different regulated TUs. One the one hand, this demonstrates that the inclusion of expression-

based features through specific filters can be used for an operon prediction in a non-

overlapping context. On the other hand, these filters add valuable information to the prediction 

regarding the regulation of alternative TUs. 
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5. FUTURE PERSPECTIVES 

5.1. Validation of predicted operons via OpPipe 

The developed framework OpPipe to predict operons and alternative TUs relies on functional 

genomic features (intergenic distance) as well as expression features and can be used for 

model and non-model organisms. The study showed that the different developed models in 

form of filters of OpPipe can identify operons and TUs. Further, it has been demonstrated that 

different features (e.g. intergenic distance) should be generalized previously in order to 

achieve a universally valid model. Even though the filters and algorithms showed high accuracy 

for these examples, they showed partially contradicting results for a whole genome approach. 

A future task for unbiased validation is the creation of broader standard data sets of operons 

from various species. So far, the validation is based on a small set of experimentally proven 

operons in few species. This extended dataset can serve as validation for a scoring model like 

the plain predictor and as training/test set for the machine learning algorithms. Thereby, only 

experimental proven operons and operons proven by the literature should be extracted from 

databases like the Escherichia coli based Regulon database [147], the Bacillus subtilis based 

DBTBS [182] or the species-independent operon database (ODB, [183]) to generate a set of 

OPs. Thereby, the identification could follow the approach of NP-set2 (2.6.1) by identifying 

NPs through the consensus of numerous databases and tools. 

Further, it is essential to validate or check the predicted operons in the wet lab. Therefore, 

different approaches like northern blots can be used. As a starting point, different gene clusters 

identified in Anabaena sp. PCC 7120 by Simm et al. [178] could be used, while operons of 

Escherichia coli should also be tested to guarantee the universal application of the pipeline. 

5.2. Improvements and adaptions of OpPipe 

In general, the OpPipe is not a dead-end software project, as it is designed to be extended. 

Different modules can easily be fine-tuned and replaced and therefore offer a great possibility 

for further work. Thereby, it is clear that the developed GUI and pipeline needs adaptations 

and extensions. Currently, OpPipe is only available as minimum viable product (MVP). The 

major choice is if the MVP should serve as a server application or as a local tool, which is both 

feasible with the chosen architecture. Currently, the different sub-modules of OpPipe (e.g. 

gffReader, predictionModels) are integrated into one executable project to make it testable as 

a first MVP. However, for a complete pipeline, it is suggested to split the different packages 

into sub-projects which are then individually executable projects. This makes adaptions and 

changes easier. Subsequently, one project should thereby handle the control of the others.  
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As mentioned, the prediction models of OpPipe currently do not take into account functional 

and evolutionary functions. Nevertheless, as operons are assumed to be functionally and 

evolutionarily related, as mentioned for example by Brouwer et al. [27], Chen et al. [62] and 

Dam et al. [65], such features should not be ignored. However, to stay a generalized model, it 

is suggested to integrate such information into the predictors’ output. The presence of 

conserved operons among species, which is called uber-operon [37], and functional relations 

could be used to enhance and validate the predictions given by the different predictors. 

Further, the different filters of OpPipe are also in the focus of improvements. Although the 

applied filters (intergenic distance and expression) proved to be accurate, further features 

might enhance the operon prediction. A feature that might have a positive impact on the 

predictive performance is the codon usage, which is assumed to be related for genes inside 

an operon [35] [63] [64] [70]. This feature was not considered during this study and should be 

investigated. Further, the generalized expression features have only been created using the 

control data. As has been demonstrated, the assumption of “local optimal operons” under a 

given condition is not true [31]. Therefore, the filters have to be validated with regard to stress 

conditions and maybe the stress data should be included into the training/test data. 

Subsequently, the identification of alternating transcriptional elements under these conditions 

is a task. Alternative TUs thereby are detectable through expression data or TSS. Alternative 

TUs should be visible through the expression profile and it is expected to see an increase of 

mapped reads after the start of an alternative TU within an operon. 

The current filter models proved to be able to identify different TUs under given conditions 

(Figure 30) but are having the drawback of only being grouped together into binary classifiers. 

Therefore, an identification of alternative TUs by the increase/decrease of expression could be 

difficult with the given predictors. For this purpose, a classifier should only rely on expression 

data. Therefore, the idea of the so-called read coverage (RC) filter could lead to an increased 

ability of identifying alternative TUs. The RC filter thereby concentrates on a comparison of the 

same expression pattern between a gene pair in a local view. It considers different length by 

setting the lengths in an equal amount of 10 buckets (Figure 31) to calculate the mean 

expression of each bucket.  
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Figure 31: Schematic creation of the RC filter. Exemplarily shown is a gene that gets divided into ten 
buckets with each bucket representing a genomic section. For each of these buckets, a mean 
expression is calculated. 

In theory, genes within an operon should exhibit a similar bucket mean expression. However, 

in case of an alternative TU within an operon, the mean expression within the buckets of two 

adjacent genes should show an increase. In this context, the RC filter gives hints on the start 

of a TU (and end, respectively) and with this also on alternative TSS within an operon by the 

increase and decrease of the mean expression (Figure 31, Table S9B). For example, the 

genes of the pec operon, the different genes (pecB-pecE), exhibit different strengths of 

expression (Table S9B). As for pecB and pecA, the mean expression of each bucket is above 

25k reads. A decrease can be observed for pecC and pecE. Additionally, the number of reads 

connecting pecB and pecA is also higher compared to the connection of pecA and C as well 

as for pecC to E. Interestingly, two TSS are located upstream the pecB gene of the pec operon 

(Table S9A). This might lead to the expression of the whole operon from one of the TSS and 

the second giving birth to an alternative TU only harboring pecB and pecA.  

For predicting TUs out of these data, the binary labeling should be extended by labeling the 

known starts of TUs (e.g. through TSS or operon starts), as well as the end of a TU. Therefore, 

labeling is demanded with labeling NP (0), simple OP pairs (1), and OP pairs with the start of 

new TUs (2) and TU stop (3). Instead of labeling the pec operon with 0-1-1-1-0, it would then 

be labelled 0-2-3-1-0. In general, a combination of the GG and RC filter might successfully 

lead to the identification of alternative TUs because with the combination of increases and 

decreases of the level of expression, TU starts and stops are easily traceable. 
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7. SUPPLEMENTS 

Table S1: Different operon predictors. Table adapted from Brouwer (2008, [27]) and Tjaden (2019, [26]). Indicated are the features of intergenic distance (ID), 
conservation (Cons.), functional relations, further genome sequence-based features and experimental datasets as well as the underlying scoring model. 

Author(s) Year ID Cons. Functional relations Genome sequence based 
Experimental 
sets 

Scoring 
method Source 

Yada et al.  1999 X      

Promoters, transcriptional 
terminators, ribosome binding 
sites    

Hidden 
Markov 
model  [184] 

Craven et al.  2000 X    Riley's functional classification  
Promoters, transcriptional 
terminators, operon size  

39 DNA 
microarray 
datasets  Naive Bayes   

Salgado et 
al. 2000 X    Riley's functional classification      

Log-
likelihood 
scores  [58] 

Ermolaeva et 
al.  2001   X          [185] 
Moreno-
Hagelsieb et 
al. 2002 X          

Log-
likelihood 
scores  [169] 

Sabatti et al. 2002 X        

72 DNA 
microarray 
datasets  

Bayesian 
classifier  [186] 

Tjaden et al. 2002         

Genome tilling 
DNA 
microarrays    [187] 

Zheng et al. 2002     Metabolic pathways         

Bockhorst et 
al. 2003 X      

Codon usage, promoters, 
transcriptional terminators, operon 
length  

39 DNA 
microarray 
datasets  

Bayesian 
network  [64] 

Chen et al. 2004 X  X  COG  
Transcriptional terminators, 
conserved promoters    

Log-
likelihood 
scores  [62][188] 

de Hoon et 
al. 2004 X      Operon length  

174 DNA 
microarray 
datasets  

Bayesian 
classifier  [170] 
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Paredes et 
al. 2004 X      

Promoters, transcriptional 
terminators,    

Emprical 
scoring 
scheme  [189] 

Romero et al. 2004 X    

Riley's functional classification, 
metabolic pathways, protein 
complex information, functional 
classification of upstream 
genes, similarity in codon 
usage      

Log-
likelihood 
scores  [173] 

Steinhauser 
et al. 2004 X        

140 DNA 
microarray 
datasets  

Unweighted 
average 
linkage-
clustering 
algorithm  [190] 

Wang et al. 2004 X  X    Transcriptional terminators    

Empirical 
scoring 
scheme  [191] 

Jacob et al. 2005 X  X  
Metabolic pathways, protein 
function      

Genetic 
algorithm  [192] 

Price et al. 2005 X  X  COG  Codon adaptation index    
Naive Bayes 
approach  [35] 

Westover et 
al. 2005 X  X  Functional relatedness      

Naïve Bayes 
approach  [193] 

Zhang et al. 
et al. 2006 X  X  

Metabolic pathways, 
interacting protein domains      

Support 
vector 
machine  [194] 

Bergman et 
et al. 2007 X  X        

Bayesian 
hidden 
markov 
model  [59] 

Charaniya et 
al. 2007 X      Transcriptional terminators  

67 DNA 
microarray 
datasets  

Support 
vector 
machine  [120] 

Dam et al. 
(DOOR) 2007 X  X  GO  

DNA motifs, phylogenetic 
distance, gene length ratio    

11 classifiers 
from 
PRTools 
Mathlab 
toolbox  [65] 
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Roback et al. 2007 X        

474 DNA 
microarray 
datasets  

Logistic 
regression 
predictive 
model  [195] 

Tran et al. 2007 X    Metabolic pathways, GO      

Neural 
network 
incorporating 
the criteria 
combined 
with results 
from [28, 36, 
37]  [196] 

Laing et al. 2008       Transcription factor binding sites      [197] 
Tjaden et al. 
(Rockhopper) 

2002,2015, 
2019 X    RNA-Seq 

naïve Bayes 
classifier [36] [26] 

Fortino et al. 
(CONDOP) 2016    x 

RNA-Seq, 
DOOR operons 

Neural 
Networks 
(NN), 
Support 
Vector 
Machines 
(SVMs) and 
Random 
Forests 
(RFs) [45] 

Taboada et 
al. 
(proOpDB) 2010, 2011 X X STRING, COG   

MLP, 
artificial 
neural 
network [69] 

Okuda et al. 
(ODB) 

2006 & 
2011  X   

Experimental 
proven and 
predicted 
operons  [183] 

Santos-
Zavaleta et 
al. 
(RegulonDB) 2019     

Experimental 
proven 
operons  [147] 
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Chen et al. 
(SeqTU)      RNA-Seq SVM [19] 

 



SUPPLEMENTS 

 

110 

 

Table S2: Base composition for each 1L of dropout medium. 

S1 10 ml 
S2 1 ml 
S3 1 ml 
S4 1 ml 
S5 20 ml 
S6 100 ml 
S Am 12 ml 

 

Table S3: Composition of solutions. 

Solution Reagents g/mol g/L Dropout 
     
S1 NaNO3 84.99 149.58  
 MgSO4 246.47 7.49  
 Citric Acid 192.13 0.6  
 K2HPO4 174.18 3.05  
 H3BO 61.81 0.28  
     
S2 FeCl3 270.3 1.62 Not in –Fe 
 EDTA NA Salt 372.24 2.23  
     
S3 CaCl2 147.02 36  
     
S4 Na2CO3 106 20  
     
S5 Hepes pH 7.8 238.31 119.14  
     
S6 MnCl2 197.92 1.81 Not in –Mn 
 ZnSO4 287.54 0.222 Not in –Zn 
 Na2MoO4 241.96 0.39 Not in –Mo 
 CuSO4 249.7 0.079 Not in –Cu 
 Co(NO3)2 291.05 0.0494 Not in –Co 
 EDTA Na Salt 372.24 0.55  

Table S4: Collected datasets for different species. Indicated are the type of the file (first column) 
and the species it can be assigned to (second column). The third column indicates the source of the 
dataset and (if abundant) assigned identifiers. 

Type of file Deriving species Source (and identifier) 

GFF Anabaena sp. PCC 

7120 

CyanoBase: 

http://genome.kazusa.or.jp/cyanobase/Anabaena/, 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/009/705/GC

A_000009705.1_ASM970v1 

FASTA Anabaena sp. PCC 

7120 

CyanoBase: 

http://genome.kazusa.or.jp/cyanobase/Anabaena/, 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/009/705/GC

A_000009705.1_ASM970v1 

RNA-Seq Anabaena sp. PCC 

7120 

Provided by Niclas Wolfgang Fester (PhD student, Ak 

Schleiff, compare 2.3.1), Control, -Fe, -Nit 

TSS Anabaena sp. PCC 

7120 

[56]: http://www.cyanolab.de/software_downloads.html 
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Operons Anabaena sp. PCC 

7120 

DOOR: 

http://161.117.81.224/DOOR2/displayNCoperon.php?id=89

8&page=1&nc=NC_003267#tabs-1 

Operons Anabaena sp. PCC 

7120 

ProOpDB: 

http://biocomputo2.ibt.unam.mx/OperonPredictor/ 

Operons Anabaena sp. PCC 

7120 

Literature: [52], [53], [198], [199], [200], [51], [201], [168], 

[55], [202], [167], [165], [158], [159], [203], [204], [166], 

[205], [206], [207], [161], [163]  

GFF Bacillus subtilis str. 

168 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome?LinkName=nuccore_

genome&from_uid=452916715 

FASTA Bacillus subtilis str. 

168 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome?LinkName=nuccore_

genome&from_uid=452916715 

RNA-Seq Bacillus subtilis SRA: 

http://sra.dbcls.jp/details.html?db=sra&accession=SRP0189

04&_id=SRP018904, SRP018904 

Operons Bacillus subtilis str. 

168 

DOOR: 

http://161.117.81.224/DOOR2/displayNCoperon.php?id=12

40&page=1&nc=NC_000964#tabs-1 

Operons Bacillus subtilis str. 

168 

ProOpDB: 

http://biocomputo2.ibt.unam.mx/OperonPredictor/ 

Operons Bacillus subtilis str. 

168 

Literature: [208], [209], [210], [211], [212], [213] 

GFF Clostridium 

perfringens ATCC 

13124 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=txid1502 

[Organism:noexp] 

FASTA Clostridium 

perfringens ATCC 

13124 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=txid1502 

[Organism:noexp] 

RNA-Seq Clostridium 

perfringens 

SRA: 

http://sra.dbcls.jp/details.html?db=sra&accession=SRP0953

63&_id=SRP095363, SRX5089960, SRX5089961 

Operons Clostridium 

perfringens ATCC 

13124 

DOOR: 

http://161.117.81.224/DOOR2/displayNCoperon.php?id=18

38&page=1&nc=NC_008261#tabs-1 

Operons Clostridium 

perfringens ATCC 

13124 

ProOpDB: 

http://biocomputo2.ibt.unam.mx/OperonPredictor/ 
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GFF Corynebacterium 

xerosis 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=txid1725 

[Organism:noexp] 

FASTA Corynebacterium 

xerosis 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=txid1725 

[Organism:noexp] 

RNA-Seq Corynebacterium 

xerosis 

SRA: 

http://sra.dbcls.jp/details.html?db=sra&accession=SRP2122

21&_id=SRP212221, SRX6372980 

Operons Corynebacterium Literature: [214], [215], [216] 

GFF Escherichia coli str. 

K-12 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=Escherichia+c

oli+enteroinvasive 

FASTA Escherichia coli str. 

K-12 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=Escherichia+c

oli+enteroinvasive 

RNA-Seq Escherichia coli str. 

K-12 

SRA: 

http://sra.dbcls.jp/details.html?db=sra&accession=DRP001

474&_id=DRP001474, DRP001474, DRP001475 

RNA-Seq Escherichia coli str. 

K-12 

[217]: ftp://ftp.neb.com/unpub/yan/ 

Operons Escherichia coli str. 

K-12 

RegulonDB: 

http://regulondb.ccg.unam.mx/menu/download/datasets/ind

ex.jsp 

Operons Escherichia coli str. 

K-12 

DOOR: 

http://161.117.81.224/DOOR2/displayNCoperon.php?id=19

44&page=1&nc=NC_000913#tabs-1 

Operons Escherichia coli str. 

K-12 

ProOpDB: 

http://biocomputo2.ibt.unam.mx/OperonPredictor/ 

Operons Escherichia coli str. 

K-12 

Literature: [40], [218], [219], [220], [221], [222], [223] 

GFF Synechococcus 

elongatus PCC 6301 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=txid1140 

[Organism:noexp] 

FASTA Synechococcus 

elongatus PCC 6301 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=txid1140 

[Organism:noexp] 

RNA-Seq Synechococcus 

elongatus 

SRA: 

http://sra.dbcls.jp/details.html?db=sra&accession=SRP1485

55&_id=SRP148555, SRX4105568 
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RNA-Seq Synechococcus-

bacteria coculture 

system  

SRA: 

http://sra.dbcls.jp/details.html?db=sra&accession=SRP1999

49&_id=SRP199949, SRX5936775 

TSS Synechococcus 

elongatus PCC 6301 

[56]: http://www.cyanolab.de/software_downloads.html 

Operons  Synechococcus 

elongatus PCC 6301 

DOOR: 

http://161.117.81.224/DOOR2/displayNCoperon.php?id=31

47&page=1&nc=NC_006576#tabs-1 

Operons  Synechococcus 

elongatus PCC 6301 

ProOpDB: 

http://biocomputo2.ibt.unam.mx/OperonPredictor/ 

Operons  Synechococcus  Literature: [204], [224], [225], [226], [227], [228], [229], 

[230] 

GFF Synechocystis sp. 

PCC 6803 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=ASM972v1 

FASTA Synechocystis sp. 

PCC 6803 

NCBI Genome: 

https://www.ncbi.nlm.nih.gov/genome/?term=ASM972v1 

RNA-Seq Synechocystis sp. 

PCC 6803 

SRA: 

http://sra.dbcls.jp/details.html?db=sra&accession=SRP0296

97&_id=SRP029697, SRX347145, SRX347146 

Operons Synechocystis sp. 

PCC 6803 

DOOR: 

http://161.117.81.224/DOOR2/displayNCoperon.php?id=17

61&page=1&nc=NC_017277#tabs-1 

Operons Synechocystis sp. 

PCC 6803 

ProOpDB: 

http://biocomputo2.ibt.unam.mx/OperonPredictor/ 

Operons Synechocystis sp. 

PCC 6803 

Literature: [49], [56], [224], [231], [232], [233], [234] 

 

Table S5: Operons identified within the literature for six species. 

Operon Species Source Species # operons 

pec  Anabaena sp. PCC 7120 [161] Anabaena sp. 18 

cpc Anabaena sp. PCC 7120 [163] Bacillus subtilis  12 

cox1  Anabaena sp. PCC 7120 [164] Corynebacterium 3 

cox2  Anabaena sp. PCC 7120 [164] Escherichia coli K-12 20 

cox3  Anabaena sp. PCC 7120 [164] Synechococcus 10 

fraC Anabaena sp. PCC 7120 [165] 
Synechocystis PCC 
6803 

8 

nir  Anabaena sp. PCC 7120 [159] Sum 71 

alr2825-alr2831 Anabaena sp. PCC 7120 [166]     

alr2835-2841 Anabaena sp. PCC 7120 [166]     

devBCA Anabaena sp. PCC 7120 [166]   

all1780-all1781 Anabaena sp. PCC 7120 [166]     

cphA-cphB Anabaena sp. PCC 7120 [166]     

nif Anabaena sp. PCC 7120 [166]     

rbcLXS Anabaena sp. PCC 7120 [166]     

natA-natC Anabaena sp. PCC 7120 [167]     



SUPPLEMENTS 

 

114 

 

hyp Anabaena sp. PCC 7120 [55]     

all5341-asr5350 Anabaena sp. PCC 7120 [166]     

cmpA-D Anabaena sp. PCC 7120 [166], [168]     

lacA-Z Escherichia coli K-12 [235]     

csgG-D Escherichia coli K-12 [218]     

csgB-A Escherichia coli K-12 [218]     

trpA-L Escherichia coli K-12 [219]     

ydhT-Y Escherichia coli K-12 [220]     

leuD-L Escherichia coli K-12 [221], [222]     

leuV-Q Escherichia coli K-12 [221], [222]     

phoB-R Escherichia coli K-12 [223]     

tdcG-A Escherichia coli K-12 [63]     

cas2-casB Escherichia coli K-12 [222]     

elfA-ycbF Escherichia coli K-12 [222]     

agaB-C Escherichia coli K-12 [222]     

gspC-D Escherichia coli K-12 [222]     

fecE-R Escherichia coli K-12 [222]     

ssuB-E Escherichia coli K-12 [222]     

yehA –D Escherichia coli K-12 [222]     

mngA-B Escherichia coli K-12 [222]     

paaA-K Escherichia coli K-12 [222]     

crfC-yjcZ Escherichia coli K-12 [222]     

sgcC-X Escherichia coli K-12 [222]    

comE Bacillus subtilis [208]     

sin Bacillus subtilis [209]    

yczA-ycbK Bacillus subtilis [210]   

yydFGHIJ Bacillus subtilis [211]   

trpA-L Bacillus subtilis [236]   

ureABC Bacillus subtilis [213]   

sdpABC Bacillus subtilis [211]  

liaH-R Bacillus subtilis [211]  

sbo-alb Bacillus subtilis [211]  

sunAT-bdbA-
yolJ-dbdB 

Bacillus subtilis [211]  

aroHBF Bacillus subtilis [236]  

pyr Bacillus subtilis [231]  

sufBCDS Synechococcus [224]     

groESL Synechococcus [225]    

isiAB Synechococcus [226]   

nirA Synechococcus [228]   

cmp Synechococcus [228]   

lux Synechococcus [228]   

petCA Synechococcus [230]   

cpcBA Synechococcus [229]      

psbD-C Synechococcus [226]   

petF Synechococcus [226]   

atp1  Synechocystis PCC 6803 [234]     

atp2 Synechocystis PCC 6803 [234]   

slr0303-slr0305 Synechocystis PCC 6803 [237]    

isiAB Synechocystis PCC 6803 [49]   

hox Synechocystis PCC 6803 [56]   

sufBCDS Synechocystis PCC 6803 [224]    

mntCAB Synechocystis PCC 6803 [232]   

groESL Synechocystis PCC 6803 [231]   

pyr Corynebacterium [238]   
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sigH-rshA Corynebacterium [215]   

prpDBC Corynebacterium [214]  

 

 

 

Figure S1: Schematic overview of OpPipe packages. OpPipe separates into the pipeline managing 
parts (userInterface, pipeline) and the theoretical models (grey dashed box). 
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Table S6: Occurrence of SAM flags within the SAM file of Anabaena sp. PCC 7120. Counted 
were the occurrences of each SAM flag and indicated are the descriptions of the SAM flags. As NGM 
was called with the exclusion of non-mapped reads, some of the mates are assigned with value zero. 

SAM flag # occurrence description 

65 24137 read paired, first in pair 

129 24137 read paired, second in pair 

   

69 0  

137 23783 read paired, mate unmapped, second in pair 

   

73 123139 read paired, mate unmapped, first in pair 

133 0  

   

81 8394 read paired, read reverse strand, first in pair 

161 8394 read paired, mate reverse strand, second in pair 

   

83 20880295 read paired, read mapped in proper pair, read reverse strand, first in 

pair 

163 20880295 read paired, read mapped in proper pair, mate reverse strand, 

second in pair 

   

89 126802 read paired, mate unmapped, read reverse strand, first in pair 

165 0  

   

97 7605 read paired, mate reverse strand, first in pair 

145 7605 read paired, read reverse strand, second in pair 

   

99 20928948 read paired, read mapped in proper pair, mate reverse strand, first in 

pair 

147 20928948 read paired, read mapped in proper pair, read reverse strand, second 

in pair 

   

101 0  

153 19646 read paired, mate unmapped, read reverse strand, second in pair 

   

113 27774 read paired, read reverse strand, mate reverse strand, first in pair 

177 27774 read paired, read reverse strand, mate reverse strand, second in pair 
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Table S7: Cut-off calculation for EP filter. (A) Number of reads (n) per genomic position is counted. (B) Occurrence of n is counted and summed up. (C) Cut-off 
is determined basing on given stringency. 

A Number of mapped reads (n) 5 0 1 1 2 5 5 5 3 1         

  Genomic position pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10         

                                

                                

B Number of mapped reads (n) Occurrence in genome (o) Summing occurrences (So)           

  1 3 3 cut-off for stringency 0.98, SO > STval 

  2 1 4           

  3 1 5 cut-off for stringency 0.50, SO > STval 

  4 0 5           

  5 4 9 cut-off for stringency 0.05, SO > STval 

  Sum of occurrences (S) 9                    

                                

C Stringency (ST) STval = S - (S * Stringency)                 

  0,98 0,18                 

  … …                 

  0,50 4,5                 

  … …                 

  0,05 8,55                 
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Figure S2: GUI of the visualization tool of OpPipe. In the plain visualizer setting all conducted experiments can be visualized via the dropdown. For the 
compare visualization the user chooses the desired experiments (dropdown)and adds them to the list. All the experiments in the list will be compared against the 
reference (combo box). 
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Table S8: Literature set operons from Anabaena sp. PCC 7120 compositions under different 
stringencies of the EP filter 

Stringency Elongated Full hit Partial No hit 

0.98 67% 6% 28% 0% 

0.95 39% 22% 39% 0% 

0.9 33% 22% 44% 0% 

0.8 17% 33% 50% 0% 

0.7 6% 39% 56% 0% 

0.6 6% 44% 50% 0% 

0.5 6% 39% 56% 0% 

0.4 6% 28% 56% 11% 

0.3 0% 33% 39% 28% 

0.2 0% 17% 39% 44% 

0.1 0% 11% 33% 56% 

0.05 0% 11% 17% 72% 
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Figure S3: Decay of the nir operon [159] (A) and pec operon [161] (B) from Anabaena sp. PCC 7120 under different stringencies of the EP filter under 
control conditions. Light grey inked genes are part of the operon, dark grey inked genes might be part of the gene cluster. The orange arrows indicate the 
length of the referring TU under a specific stringency. 
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Figure S4: Evaluation of GG- and DGD filter basing on adjacent gene pairs of Anabaena sp. 
PCC 7120. Indicated are all adjacent gene pairs from the literature set (2.6.1) being part of an operon 
(OP) or not being part of an (NP). It is indicted if adjacent genes have been assigned as OP (orange) 
or NP (grey) for both filters (GG and DGD) and for the OP and NP set
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Table S9: Overlaps for GG filter and buckets for RC filter distribution for pec operon. Indicated is the composition of the operon, with the genes belong to 
the operon (yellow) and the surround genes (grey). The numbers between the genes indicate the number of reads connecting them under CO conditions. Dashed 
arrows indicate TSS. Each gene of the cluster is divided into Buckets (B1-10) with the numbers indicating the average expression for this bucket under CO 
condition. 

A 

 

B 
 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

ORF1 225 155 109 97 95 110 145 147 120 80 

pecB 41557 41210 39478 35992 31272 28439 30776 30453 30867 28678 

pecA 28881 36645 26623 26695 26002 26591 26799 26654 30867 28678 

pecC 8501 9177 8736 7549 6442 6790 8904 9703 10501 9142 

pecE 46233 3677 3065 2620 3350 2143 1860 1637 1149 669 

pecF 398 348 331 343 342 449 512 556 521 413 
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Table S10: Overlaps for GG filter of nir, fraC and pec operon under different conditions. Indicated are the genes and gene pair connections of the nir, fraC 
and pec operon. For each condition the raw counts are indicated, as well as the normalized values (Norm. PM and Norm. SF). Norm. PM indicates the 
normalization to one million reads and SF indicates the normalization with a scaling factor (Control scaling factor: 0.84, -Fe scaling factor: 0.79, -Nit scaling factor: 
1). 

Gene (-pair) Covered reads (Control) Covered reads (-Nit) Covered reads (-Fe) 
 Total count Norm. PM Norm. SF Total count Norm. PM Norm. SF Total count Norm. PM Norm. SF 

nirA 194 11.96 162.89 61056 4004.40 48172.33 1175 60.80 1175.00 
nirA-nrtA 10 0.62 8.40 2051 134.52 1618.21 49 2.54 49.00 
nrtA 129 7.95 108.31 17724 1162.44 13983.99 673 34.83 673.00 
nrtA-nrtB 14 0.86 11.75 1241 81.39 979.13 59 3.05 59.00 
nrtB 78 4.81 65.49 2921 191.58 2304.63 155 8.02 155.00 
nrtB-nrtC 28 1.73 23.51 381 24.99 300.60 39 2.02 39.00 
nrtC 291 17.93 244.34 4036 264.70 3184.35 704 36.43 704.00 
nrtC-nrtD 11 0.68 9.24 290 19.02 228.81 63 3.26 63.00 
nrtD 119 7.33 99.92 1257 82.44 991.76 440 22.77 440.00 
nrtD-narB 17 1.05 14.27 141 9.25 111.25 65 3.36 65.00 
narB 880 54.23 738.88 1695 111.17 1337.33 2066 106.91 2066.00 
narB-alr0613 19 1.17 15.95 15 0.98 11.83 70 3.62 70.00 
alr0613 268 16.52 225.02 392 25.71 309.28 773 40.00 773.00 
alr0613-alr0614 6 0.37 5.04 16 1.05 12.62 18 0.93 18.00 
alr0614 222 13.68 186.40 242 15.87 190.93 485 25.10 485.00 

fraC 256 15.78 214.95 461 30.23 363.72 513 26.55 513.00 
frac-fracD 49 3.02 41.14 90 5.90 71.01 119 6.16 119.00 
fracD 437 26.93 366.92 743 48.73 586.22 841 43.52 841.00 
fracD-fracE 253 15.59 212.43 363 23.81 286.40 357 18.47 357.00 
fracE 931 57.38 781.71 1125 73.78 887.61 1278 66.13 1278.00 

pecB 90772 5594.18 76215.95 24558 1610.65 19375.92 2516 130.19 2516.00 
pecB-pecA 18823 1160.04 15804.57 5597 367.08 4415.95 565 29.24 565.00 
pecA 52099 3210.80 43744.49 13814 906.00 10899.05 1622 83.93 1622.00 
pecA-pecC 2886 177.86 2423.21 952 62.44 751.11 99 5.12 99.00 
pecC 32008 1972.62 26875.25 9156 600.50 7223.96 1217 62.98 1217.00 
pecC-pecE 4382 270.06 3679.31 1119 73.39 882.88 133 6.88 133.00 
pecE 6853 422.34 5754.06 1774 116.35 1399.66 250 12.94 250.00 
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Figure S5: Average distance of adjacent genes of Watson and Crick strand within different genomes. Distribution of the intergenic distance of adjacent 
genes in Anabaena sp. PCC 7120 (orange), Bacillus subtilis str. 168 (grey), Escherichia coli K12 (yellow), Synechococcus elongatus (light grey) and 
Synechocystis PCC 6803 (dark grey) into different distance ranges (in nt). A black border (first bar of species) indicates the Watson strand and a red border 
(second bar of species) the Crick strand.
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Table S11: Different statistical measures for the DGD filter. Calculated are the sensitivity (sen), 
specificity (spec), precision (prec), accuracy (acc) and f1-score. Operon sets of Anabaena sp. PCC 
7120 (AB), Bacillus subtilis (BS), Escherichia coli (EC), Synechococcus elongatus (SC) and 
Synechocystis PCC 6803 (SY) are indicated (last column). Indicated are also the intergenic distance 
cut-offs of these species (AB = column 2, EC = column 3, BS = column 4, SY = column 5, SC= column 
6) as well as an average distance cut-off of all cyanobacteria (CY) and average distance over all other 
distance cut-off (A). The values of the cut-off are indicated in brackets. The rows two to eight indicate 
the statistical measures for the operon prediction using the intergenic distance cut-off of a specific 
species onto a specific operon set. Bold values indicate the application of an intergenic distance of a 
species to its referring operon set. 

Stat. measure AB 
(300) 

EC 
(100) 

BS 
(100) 

SY 
(200) 

SC 
(200) 

CY 
(233) 

A 
(180) 

 

senAB 100% 56% 56% 87% 87% 92% 83% A
B

 o
p

e
ro

n
s

 

specAB 97% 100% 100% 99% 99% 98% 99% 

precAB 97% 100% 100% 99% 99% 98% 99% 

accAB 98% 76% 76% 93% 93% 95% 91% 

F1AB 98% 72% 72% 92% 92% 95% 90% 

senEC 100% 100% 100% 100% 100% 100% 100% E
C

 o
p

e
ro

n
s

 

specEC 72% 98% 98% 82% 82% 77% 84% 

precEC 78% 98% 98% 84% 84% 81% 86% 

accEC 86% 99% 99% 91% 91% 88% 92% 

F1EC 88% 99% 99% 92% 92% 90% 92% 

senBS 100% 91% 91% 100% 100% 100% 100% B
S

 o
p

e
ro

n
s

 

specBS 60% 91% 91% 67% 67% 64% 70% 

precBS 72% 91% 91% 75% 75% 74% 77% 

accBS 80% 91% 91% 84% 84% 82% 85% 

F1BS 83% 91% 91% 86% 86% 85% 87% 

senSY 100% 75% 75% 100% 100% 100% 93% S
Y

 o
p

e
ro

n
s

 

specSY 86% 99% 99% 99% 99% 93% 99% 

precSY 88% 99% 99% 99% 99% 94% 99% 

accSY 93% 87% 87% 99% 99% 97% 96% 

F1SY 94% 85% 85% 99% 99% 97% 96% 

senSC 100% 14% 14% 100% 100% 100% 32% S
C

 o
p

e
ro

n
s

 

specSC 83% 97% 97% 95% 95% 89% 95% 

precSC 86% 96% 96% 95% 95% 90% 95% 

accSC 92% 26% 26% 97% 97% 94% 48% 

F1SC 92% 24% 24% 97% 97% 95% 47% 



SUPPLEMENTS 

 

126 

 

Table S12: Schematically data for gene pairs basing on EP, GG and DGD filter. Shown are schematic views of the different filters. Each gene pair is 
assigned to a column. The rows are labelled with the different filters. A “1” indicates that the filter can be applied, a “0” indicates that the filter cannot be applied. 
For the literature set, the gene pairs were labelled (1=OP, 0=NP). 

 

 

Gene-pair EP0.98 EP… EP0.05 GGY GGN DGDY DGDN Label 

G1 - G2 1 … 0 1 0 1 0 1 

G2 - G3 1 … 1 1 0 0 1 1 

G3 - G4 1 … 0 0 1 0 1 0 

G.. - G.. xx … xx xx xx x x X 
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Table S13: Prediction of literature operons from Escherichia coli by OpPipe, ProOpDB, DOOR 
and Rockhopper. The inked boxes indicate if an operon was found (green) by the predictor or not 
(red). Further it is indicated, if a predicted operon is longer as in the literature set (blue) or the 
predicted operon hits partially the literature set operon (yellow). 

Operon OpPipe ProOpDB*1 DOOR*2 Rockhopper*3 RegulonDB*4   

lacA-Z FH PH FH NH FH [235] 

csgG-D FH NH FH FH FH [218] 

csgB-A PH NH FH NH FH [218] 

trpA-L FH PH FH PH FH [219] 

ydhT-Y FH PH FH PH FH [220] 

leuD-L FH PH PH PH FH [221], [222] 

leuV-Q FH FH NH NH FH [221], [222] 

phoB-R FH FH FH NH FH [223] 

tdcG-A FH FH PH PH FH [63] 

cas2-casB NH NH FH FH FH [222] 

elfA-ycbF PH FH PH PH PH [222] 

agaB-C NH EG FH FH FH [222] 

gspC-D NH FH FH FH FH [222] 

fecE-R PH FH FH PH FH [222] 

ssuB-E FH FH FH FH FH [222] 

yehA –D PH FH FH FH FH [222] 

mngA-B FH FH FH FH FH [222] 

paaA-K FH FH FH FH FH [222] 

crfC-yjcZ FH NH FH FH FH [222] 

sgcC-X PH PH PH PH FH [222] 

              

  perfect partial  elongated not found     

*1ProOpDB [69], *2DOOR [65], *3Rockhopper [36], *4RegulonDB [147]   
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Table S14: Scoring of operon prediction of different predictor basing on Anabaena sp. PCC 7120 (AB) and Escherichia coli (EC). Indicated are operons 
that have been found as full hit, partial hit, elongated or not found basing on the literature set. Full hits are multiplied by 1, non-hits by -1, elongated and partial 
with 0.5, leading to a specific score. For OpPipe, the plain predictor is indicated. 

  OpPipe ProOpDB [69] DOOR [65] Rockhopper [36], RegulonDB [147] 

  AB EC AB EC AB EC AB EC AB EC 

Full Hit 11 12 8 10 3 15 2 9 0 19 

Partial 3 5 6 5 11 4 5 7 0 1 

Elongated 4 0 0 1 0 0 0 0 0 0 

Not found 0 3 4 4 4 1 10 4 0 0 

Sum 18 20 18 20 18 20 17 20 0 20 

Score 0,81 0,58 0,39 0,45 0,25 0,80 -0,32 0,43 0,00 0,98 

 

Figure S6: AUC for random forest (RF), support vector machine (SVM) and neural net (NN) for 5-fold cross validation on filter data. For RF and SVM for 
each fold, the best scoring model of the 5-fold cross validation of the grid search is shown. 
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Table S15: Grid Search result for support vector machine classifier (filter data). Shown are the calculated parameters fitting best for the classifier. For each 
fold, the best scoring model of the 5-fold cross validation of the grid search is indicated. 

K-Fold Best Params 

RF – Fold 1-5  

SVM - Fold1 
{'decision_function_shape': 'ovr', 'max_iter': -1, 'cache_size': 2000, 'kernel': 'rbf', 'degree': 1, 'shrinking': False, 'coef0': 0, 'C': 0.027, 
'gamma': 0.464} 

SVM - Fold2 
{'decision_function_shape': 'ovr', 'max_iter': -1, 'cache_size': 2000, 'kernel': 'rbf', 'degree': 1, 'shrinking': False, 'coef0': 0, 'C': 22.539, 
'gamma': 0.01} 

SVM - Fold3 
{'decision_function_shape': 'ovr', 'max_iter': -1, 'cache_size': 2000, 'kernel': 'poly', 'degree': 1, 'shrinking': False, 'coef0': 0, 'C': 22.539, 
'gamma': 0.01} 

SVM - Fold4 
{'decision_function_shape': 'ovr', 'max_iter': -1, 'cache_size': 2000, 'kernel': 'poly', 'degree': 1, 'shrinking': False, 'coef0': 0, 'C': 6.2e-05, 
'gamma': 4641.588} 

SVM - Fold5 
{'decision_function_shape': 'ovr', 'max_iter': -1, 'cache_size': 2000, 'kernel': 'rbf', 'degree': 1, 'shrinking': False, 'coef0': 0, 'C': 0.050, 
'gamma': 1.0} 

Table S16: Full hit and not found candidates of predicted operons for different predictors. The first column indicates different predictors (ProOpDB [69], 
Rockhopper [36], DOOR [65]), while the following columns show the OpPipe plain predictor (PP), the random forest approach (RF), the SVM approach (SVM) 
and the neural net approach (NN). The first column of each comparison shows the number of full hit operons (FH), the second column (NH1) shows the non-
found operons of ProOpDB, Rockhopper and DOOR compared to the OpPipe predictors, while the second comparison column (NH2) indicates the opposite 
comparison.  

  PP RF SVM NN 

 #FH #NH1 #NH2 #FH #NH1 #NH2 #FH #NH1 #NH2 #FH #NH1 #NH2 

ProOpDB 292 3 578 193 37 551 187 38 558 199 40 556 

Rockhopper 197 3 715 139 39 702 138 39 709 145 41 707 

DOOR 276 1 585 184 46 568 180 45 574 195 49 572 
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Table S17: Conserved operons that have been predicted by the plain predictor, RF, SVM and 
NN. Indicated is the start gene and the stop gene of the operon. 

Genes of operons 

thrB-ndhD alr2372-alr2374 alr4132-alr4134 alr3307-asr3309 asr5004-alr5005 

alr2306-alr2310 alr2385-asr2389 asl3966-aat alr1166-alr1167 asr3881-alr3887 

alr2014-asr2016 all3256-all3257 alr3364-alr3366 alr1054-alr1055 alr1490-alr1491 

hglK-asl0815 alr4153-asr4154 alr0430-asr0431 alr1194-alr1199 alr1285-alr1286 

all2753-all2754 asr1945-alr1946 alr1956-alr1957 alr4029-alr4033 all3819-ycf27 

all1483-all1484 alr0616-alr0618 alr5134-alr5135 alr4308-alr4311 devB-alr1605 

alr4880-alr4882 alr1270-alr1271 aroK-alr1247 alr4745-asr4747 alr1905-asr1907 

psbI-alr1278 all2037-all2038 alr3330-alr3331 alr0451-alr0452 alr2708-alr2709 

alr0789-alr0790 alr0444-alr0447 asr2474-alr2476 menA-menE alr3246-alr3247 

alr3588-alr3589 psaA-alr5158 radA-alr3825 grpE-dnaK alr5034-alr5035 

all2115-all2116 asr3369-alr3370 tpiA-alr4386 alr5259-asr5261 alr2467-asr2468 

alr1332-asr1333 all1487-all1489 all3865-all3866 alr1952-rpsU asr2666-asr2669 

alr3510-alr3514 alr3812-nblB gidB-alr3183 asr4004-alr4005 alr1713-asr1714 

all0844-tatA alr4094-alr4095 alr0963-alr0965 alr1867-alr1870 alr5360-alr5368 

alr4772-alr4773 alr1519-alr1520 alr3361-alr3363 alr4280-alr4282 alr0235-asr0243 

alr5329-alr5333 alr2137-alr2138 all0888-all0889 alr1404-asr1406 alr1877-glgA 

alr0540-alr0541 alr2184-alr2188 alr1721-alr1722 alr4839-recQ all0664-all0665 

alr3806-alr3807 asr0680-alr0681 prk-alr4124 glyA-alr4808 asr0043-alr0045 

alr2304-alr2305 alr2957-asr2959 truB-alr1545 alr3481-alr3486 alr1146-alr1148 

alr1652-alr1656 alr1142-alr1144 alr3638-alr3641 thrS-alr0336 alr0810-alr0812 

alr2717-alr2719 asr4910-alr4915 asr2602-asr2603 alr4258-alr4259 alr1633-alr1635 

alr2790-alr2791 asr5139-alr5143 alr4404-alr4405 alr3583-alr3584 alr3896-alr3897 

alr3146-alr3147 mutL-hisD dmnB-trpD alr1369-alr1370 alr4114-alr4115 

alr4416-alr4417 asr5146-alr5148 all4736-all4737 alr0295-alr0297 alr4878-alr4879 

alr3008-alr3009 alr0246-alr0247 alr1232-alr1233 alr2350-radC asr1309-alr1315 

alr3723-alr3725 alr4783-alr4788 asr2953-alr2954 alr3646-alr3649 alr1665-asr1667 

alr3930-alr3932 all4256-all4257 alr2426-asr2427 asr3098-alr3102 alr4576-lspA 

ndhF-alr0871 alr1627-alr1629 alr0029-glgA alr3155-alr3156 alr1959-alr1961 

asr1817-alr1819 alr2471-alr2472 alr5225-alr5240 alr4973-alr4976 rpmB-all2631 

alr0198-alr0199 alr0074-alr0079 alr2857-alr2867 asr1048-pgi alr4067-alr4069 

alr0709-alr0710 dnaJ-asr2994 alr4521-asr4522 all2229-phnC alr0487-alr0490 

alr2738-alr2739 alr5251-alr5254 alr1976-alr1979 all3391-cobW alr2935-panC 

alr1295-alr1302 alr4660-alr4661 alr0730-alr0731 ksgA-alr3231 alr4849-alr4850 

alr2256-hstK asr0365-asr0368 alr3877-asr3878 all4298-all4300 all2622-all2624 

asr0148-alr0150 alr1028-alr1031 alr2264-cyaB1 asr0855-alr0857 ileS-alr1074 

dnaK-dnaJ alr2659-alr2660 alr2972-alr2975 alr2482-alr2486 all0955-all0956 

alr4504-alr4505 ureE-alr0735 alr4027-alr4028 alr5293-alr5294 alr1531-asr1532 

alr0299-alr0301 cobN-alr1690 alr4559-asr4560 aksA-alr1410 alr1094-alr1097 

alr4711-alr4712 alr0302-alr0304 alr1200-alr1201 all3735-all3736 alr0819-alr0821 

hrcA-alr4046 alr4239-alr4241 bvdR-alr4151 asr0581-alr0587 alr4691-alr4692 

alr4695-alr4696 alr4582-alr4589 asr4937-alr4939 groES-alr3663 alr2178-alr2179 

alr0642-alr0644 alr2814-alr2816 alr2190-alr2191 alr1674-alr1675 hoxR-psbJ 

alr3356-alr3357 alr3095-alr3097 alr3618-alr3623 alr3994-alr3997 alr0739-rpsU 
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alr2240-alr2241 asr0098-asr0104 alr5286-folE alr1392-asr1393 alr5180-alr5181 

asr4942-alr4944 alr3037-alr3038 alr2558-alr2560 alr4346-alr4347 alr2662-alr2663 

asr0798-alr0799 alr1222-alr1224 all2617-all2618 alr3762-asr3763 asr1611-alr1614 

alr4009-alr4011 asr5080-alr5081 asr3019-alr3020 asr3042-asr3043 alr3666-ureB 

alr2710-alr2711 alr2921-alr2922 asr1451-adx alr4277-alr4278 alr2111-alr2112 

alr1206-alr1209 asr3137-surE alr2278-alr2280 alr1024-alr1026 alr1004-asr1005 

alr0803-alr0806 alr4099-alr4100 alr0668-alr0669 alr4015-alr4017 hetF-alr3548 

alr4438-alr4439 alr2131-alr2132 alr0055-alr0058 alr0212-alr0214 alr1808-alr1809 

rfbB-alr0039 alr4250-cytA asr2330-alr2331 alr2741-alr2742 asr1307-alr1308 

alr5208-alr5209 asr3598-alr3599 asr5349-asr5350 alr4738-alr4741 alr1821-alr1822 

asr5289-alr5290 alr3827-asr3834 asr0682-alr0683 alr2118-asr2120 alr0545-alr0549 

alr1128-alr1129 asr5312-asr5313 all2281-all2282 asl3851-all3853 alr2881-exoD 

alr4226-alr4230 all5106-all5108 dapF-alr2049 all4396-all4397 uvsE-dnaK 

asr0013-alr0014 alr0072-hisB era-alr0913 alr1229-alr1231 alr1576-alr1579 

asr1275-alr1276 alr1085-alr1086 alr3506-alr3508 asr4301-asr4302 alr3590-alr3594 

alr1534-alr1535 alr5283-accA asr3935-alr3937 alr1485-asr1486 alr1492-asr1494 

alr2768-alr2769 alr0083-alr0084 all3408-all3410 alr2614-alr2615 asr1661-asr1662 

all2955-all2956 alr4064-alr4066 rbpF-alr2312 alr1104-alr1105 alr3187-alr3188 

trpE-trpC alr3910-alr3912 alr5182-asr5183 alr1014-alr1018 alr4222-alr4224 

alr4847-alr4848 alr0381-asr0382 hemH-alr3752 alr5317-alr5320 psbX-alr0944 

glcD-alr5271 rbpB-all2930 alr3105-alr3106 alr1077-rps1 asl4253-all4254 

alr1334-alr1337 alr1726-alr1727 alr2502-alr2505 alr0279-alr0280 orrA-alr3771 

alr4637-asr4638 asr2605-asr2607 alr2335-alr2336 alr4512-alr4513 ureC-alr3672 

alr1343-asr1344 alr2541-alr2543 alr1923-aroB alr0515-alr0517 alr2832-alr2833 

asr2172-alr2173 alr0840-alr0841 alr2122-alr2123 asr2978-alr2980 asr0179-alr0181 

alr0188-alr0191 alr1550-alr1552 asr4594-alr4595 alr1107-alr1108 asr0105-gmk 

asr0755-alr0758 all4458-all4459 alr0092-alr0094 ictA-patN alr4836-alr4837 

alr4863-alr4864 alr1917-alr1918 asr4313-asr4314 all4927-all4929 alr3384-asr3390 

alr0784-alr0787 alr0518-alr0520 aphA-alr3159 alr2569-alr2570 alr2431-alr2434 

alr4447-asr4449 alr2722-alr2723 ubiA-minE queA-alr1799 alr3085-alr3086 

asr3217-alr3219 hepB-alr3701 alr5030-alr5032 alr1113-asr1115 alr4818-alr4819 

asr1899-alr1901 alr3561-alr3562 all0166-all0168 alr0114-alr0117 alr1850-alr1855 

all4381-all4382 alr0140-alr0142 alr4514-alr4516 alr5242-alr5243 alr1254-alr1255 

alr1536-alr1540 ndhD-asr3961 alr3789-alr3790 asr3001-asr3006 coaD-alr4703 

alr4995-asr4997 alr2201-alr2207 alr3610-alr3611 all1367-hisH psbZ-ribH 

alr3543-asr3544 pex-alr3980 alr3242-alr3243 alr3863-alr3864 alr0717-alr0720 

alr1001-alr1002 alr3471-alr3479 alr2966-alr2967 alr3754-alr3757 alr2535-alr2539 

avtA-rimM alr0288-alr0289 asr3467-alr3469 alr2575-alr2577 alr1376-alr1379 

xisC-alr0679 alr0704-asr0705 alr3311-alr3312 asr3657-asnC alr3376-alr3377 

alr3276-alr3277 alr4359-alr4360 asr1399-alr1401 all0807-all0809 alr0552-alr0559 

hisG-alr1968 alr1044-alr1045 asr2365-alr2366 alr0972-alr0975 alr4714-crhC 

alr2751-alr2752 asr1558-asr1572 alr3052-asr3053 chlH-alr4734 alr5356-hetM 

argJ-alr2076 alr5159-alr5162 alr5216-alr5217 alr0998-alr0999 alr3602-alr3603 

asr4951-alr4954 alr3296-alr3297 all3740-all3741 alr3707-asr3708 hisF-asr2896 

alr0068-rph asr3605-alr3608 hisC-alr2093 alr4641-alr4642 alr3904-alr3907 

murC-alr5068 alr4919-alr4922 alr3955-ndhF alr1170-alr1171 alr5211-alr5212 

alr2780-alr2784 alr3379-moaC alr5186-alr5190 asl4743-all4744 alr3795-asr3796 
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ndhF-alr4158 alr1941-alr1942 alr0018-alr0019 alr3175-alr3178 alr1890-alr1892 

alr3524-alr3525 asr2937-sodB psbD-psbC gatB-alr1398 hglE-alr5353 

alr1505-alr1507 alr3351-alr3352 alr2694-alr2698 alr4566-alr4571 alr1920-alr1921 

alr4525-alr4537 alr3411-alr3417 asr2135-alr2136 alr3213-alr3216 alr3026-alr3027 

alr0946-alr0947 alr2925-alr2927 alr0760-hoxH asr0837-alr0838 alr0599-alr0600 

alr4794-alr4795 alr4454-asr4457 alr2492-alr2496 alr3689-alr3690 ccmK-alr0318 

asr3089-alr3091 alr3760-alr3761 alr3280-alr3281 alr3224-alr3225 alr4907-alr4909 

alr2478-alr2479 alr3017-alr3018 alr4485-alr4494 alr0576-alr0577 asr0062-rbfA 

asr3405-alr3407 alr1372-alr1375 smpB-asr5071 alr2377-asr2378 asr3133-asr3134 

alr2294-alr2296 alr4610-asr4612 alr0900-alr0901 alr0428-alr0429 alr2153-asr2155 

alr0308-alr0309 alr0970-alr0971 alr3268-alr3269 alr2872-alr2873 alr3803-alr3804 

alr1619-alr1624 alr2943-alr2946 icd-asr1828 alr3248-alr3252 alr3240-alr3241 

alr5149-alr5152 alr4597-alr4606 alr4469-asr4471 clpP-asr3686 alr4681-alr4684 

alr1259-ftsH alr1997-alr1998 alr1555-alr1556 thrC-asr3294 alr3165-alr3166 

alr2411-alr2412 alr1668-alr1669 asr0460-asr0461 pds-pys alr2081-alr2083 

alr3265-asr3266 alr2140-alr2144 alr0986-alr0987 alr3120-ycf44 asr2932-alr2933 

alr2522-alr2527 alr2174-alr2176 alr1498-alr1501 alr1449-alr1450 dnaJ-alr2450 

asl2370-all2371 alr1212-asr1213 alr3057-lpxD secA-alr4854 all0333-all0334 

glyS-murD alr4685-alr4686 alr0892-alr0898 asr2041-alr2046   

alr2773-alr2774 alr3077-asr3082 alr2463-alr2465 alr3393-alr3395   

alr3920-glmU asr0485-alr0486 all3435-all3436 alr5027-alr5028   

alr3816-alr3817 alr4164-alr4167 kaiA-alr2890 all3696-all3697   
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Figure S7: Visual operon prediction for the PKS gene cluster [178] of Anabaena sp. PCC 7120 
by OpPipe (under control, -Nit and -Fe conditions) DOOR [65], ProOpDB [69], Rockhopper [36] 
(under control conditions). Red color indicates that no operon has been identified, green color 
indicates an operon, while a darker green indicates that two operons have been predicted. 
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