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Abstract

The centrality of the United States in the global financial system is taken for granted,

but its response to recent political and epidemiological events has suggested that

China now holds a comparable position. Using minute-by-minute data from 2012 to

2020 on the financial performance of twelve country-specific exchange-traded funds,

we construct daily snapshots of the global financial network and analyze them for the

centrality and connectedness of each country in our sample. We find evidence that the

U.S. was central to the global financial system into 2018, but that the U.S.-China trade

war of 2018–2019 diminished its centrality, and the Covid-19 outbreak of 2019–2020

increased the centrality of China. These indicators may be the first signals that the

global financial system is moving from a unipolar to a bipolar world.
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1. Introduction

The United States is usually considered the center of the world’s financial system. This

was made dramatically clear during the financial crisis of 2008–2009, which originated in

the U.S., transmitting itself to other countries from there. Yet the centrality of the U.S.

in the global financial system is not limited to disruptive financial contagion. Returns

to U.S. stocks have led those of other advanced economies for the last forty years, with

shocks to returns in the U.S. predicting lagged returns in other countries, but not vice

versa (Rapach, Strauss, and Zhou, 2013; Cieslak, Morse, and Vissing-Jorgensen, 2019).

Very recent financial data, however, indicates that the world has started to move from

a unipolar to a bipolar system. Specific political and epidemiological forces, namely, the

U.S.–China trade wars and the outbreak of Covid-19, have coupled China and the U.S.

together in the global financial system (Acharya, Jiang, Richmond, and von Thadden,

2020; Antràs, Redding, and Rossi-Hansberg, 2020; Ossa, 2014; McKibbin and Fernando,

2020). These forces have made the international market system measurably less centered

on the U.S.

High-frequency data is able to capture previously unrecognized patterns in the real-

time dynamics of the market. It also makes it possible to calculate the origin and spread

of informational and financial contagion from an individual financial market or spe-

cific financial instruments to the financial system as a whole (Gao, Han, Li, and Zhou,

2018; Hasbrouck, 1995). Using high-frequency intraday data, we can thus determine

the network structure of the global financial system at any given moment, including the

relative centrality of countries within it, and visualize the system’s response to ”inno-

vations” such as trade wars and Covid-19. This network approach has been applied

to economic and sociological analysis (Battiston, Farmer, Flache, Garlaschelli, Haldane,

Heesterbeek, Hommes, Jaeger, May, and Scheffer, 2016; Diebold and Yılmaz, 2014; Jack-

son, 2014; LeBaron and Tesfatsion, 2008; Mantegna and Stanley, 1995).

We focus our analysis on twelve country-specific exchange-traded funds (ETFs) for
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Australia, Canada, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland,

the United Kingdom, China, and the U.S. Our minute-by-minute high-frequency data

comes from the New York Stock Exchange’s Trade and Quote dataset from January 3,

2012 to May 29, 2020. Ernst (2020) concludes that ETFs can provide single-stock price

discovery. Moreover, since all ETFs used in the analysis are traded on US exchanges, there

is no need for timing synchronization which is imperative when comparing individual

country stocks or indices.

The first attempt to estimate financial interconnectedness by examining the lead-lag

relationship (Granger causality) between stock returns was proposed by (Billio, Getman-

sky, Lo, and Pelizzon, 2012); however, the authors used only lower frequency (i.e., monthly)

returns in their analysis. Other proposed methods include using a multiplex financial

network (Battiston et al., 2016), an agent-based network (LeBaron and Tesfatsion, 2008),

production-based network (Gofman, Segal, and Wu, Forthcoming), an approach combin-

ing variance-decomposition and network topology theories (Diebold and Yılmaz, 2014),

and a network based on intersectoral input-output linkages (Acemoglu, Carvalho, Ozdaglar,

and Tahbaz-Salehi, 2012).

We use three methods to quantify the contagion between international markets: (i)

vector autoregression (VAR) estimation; (ii) the machine-learning technique of least ab-

solute shrinkage and selection operator (LASSO) estimation (Gu, Kelly, and Xiu, 2020);

and (iii) variance decomposition (Diebold and Yılmaz (2014)). Each method allows us to

construct a mathematical snapshot of the connections between the country-specific ETFs

for each day in our dataset. From these snapshots, we are able to compute three network

measures over time. Specifically we compute degree centrality from VAR estimation, Katz

centrality from LASSO estimation, and net total directional connectedness from variance

decomposition estimation.

All three methods depict a pattern of declining centrality for the U.S. and an increase

in the centrality of China at the start of the trade war between the two countries, begin-
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ning with the U.S. implementation of global safeguard tariffs on February 7, 2018, and a

memorandum to impose tariffs on Chinese products on March 22, 2018 (the initial U.S.

imposition of Chinese-specific tariffs took place on July 6, 2018). We also capture a sim-

ilar pattern leading up to the World Health Organization’s announcement of the global

Covid-19 pandemic on March 11, 2020. Our high-frequency financial data shows that

China became central well before the announcement of tariffs or the pandemic.

The timing of the rise of the centrality of China and the outbreak of Covid-19 leads to

the natural question of the relationship between network measures and the spread of the

virus. We analyze the relationship between network measures (centrality and net total

directional connectedness) to the daily increase in the number of Covid-19 cases in each

individual country as reported by the World Health Organization (WHO-Report, 2020)

by using a pooled regression approach. We find that there is a significant relationship

between the number of new Covid-19 cases and our measures of centrality and net to-

tal directional connectedness. We therefore conclude that financial markets incorporate

information from the epidemiological data.

When instead of using high-frequency ETF returns, we use daily returns data for stock

indices and ETFs, no clear patterns emerge among country indexes even after accounting

for timing synchronization. High-frequency data is forward-looking in capturing the rise

of centrality of China. We show that since 2018, China has held a comparable position to

the U.S. suggesting that the world has started to move from a unipolar to bipolar system.

The paper is organized as follows. Section 2 describes data and summary statistics.

Section 3 describes methodology for contagion models and network measures. Section

4 provides results for these network measures. Section 5 provides results for Covid-19

analysis. Section 6 provides additional analysis and robustness results and we conclude

in Section 7.
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2. Data and Summary statistics

2.1. Exchange Traded Funds (ETF) List

We focus on 12 country ETFs listed in Table 1. These countries encompass the 11 indus-

trial countries examined in Rapach et al. (2013) and iShares MSCI China ETF. The iShares

country ETFs, managed by BlackRock, have exposure to large and mid-sized companies

in each country available to international investors, and thus are representative of each

country’s economy.1 These companies should be available to international investors and

are included in corresponding country ETFs. We choose SPDR S&P 500 ETF Trust as the

US ETF. This ETF follows the S&P 500 stock market index. Table 1 presents the ETF list.

Table 1: ETF List
The list of 12 country ETFs. This list comes from 11 industrial countries in Rapach et al. (2013) and iShares MSCI China ETF. The
iShares MSCI ETF for each country exhibits exposure to large and mid-sized companies in their corresponding countries. These
companies should be available to international investors for investment.

Name Ticker Country Inception Date

1 iShares MSCI Australia ETF EWA Australia March 12, 1996
2 iShares MSCI Canada ETF EWC Canada March 12, 1996
3 iShares MSCI France ETF EWQ France March 12, 1996
4 iShares MSCI Germany ETF EWG Germany March 12, 1996
5 iShares MSCI Italy ETF EWI Italy March 12, 1996
6 iShares MSCI Japan ETF EWJ Japan March 12, 1996
7 iShares MSCI Netherlands ETF EWN Netherlands March 12, 1996
8 iShares MSCI Sweden ETF EWD Sweden March 12, 1996
9 iShares MSCI Switzerland ETF EWL Switzerland March 12, 1996

10 iShares MSCI United Kingdom ETF EWU United Kingdom March 12, 1996
11 iShares MSCI China ETF MCHI China March 29, 2011
12 SPDR S&P 500 ETF Trust SPDR USA January 22, 1993

2.2. Minute-by-minute returns

Our high frequency data comes from the TAQ (Trade and Quote Database) dataset

from January 3, 2012 to May 29, 2020. We choose January 2012 as the start date, since this

is the earliest year for which data for all ETFs are available. The earliest date that all the

ETF data is available is March 29, 2011, the inception date of the China ETF (MCHI).

1For example, the iShares MSCI China ETF on May 19 2020 has 17.73% invested in Alibaba Group,
14.95% in Tencent Holdings, and 3.62% in China Construction Bank Corp.
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The data is filtered following the steps in Holden and Jacobsen (2014). We remove

quotes with abnormal quote conditions (mode value in TAQ equal to 4, 7, 9, 11, 13, 14, 15,

19, 20, 27, 28), cross quotes on the same exchange (cross quotes are quotes from the same

exchange that are both positive and the bid is higher than the ask), one-sided bid and ask

quotes (for one-sided bid quotes, where the bid is positive and the ask is zero, we set the

ask to an extreme value so it does not enter the NBO; for one-sided ask quotes, where

the ask is positive and the bid is zero, we do not apply any adjustment), quotes with

abnormally large spreads (positive quotes with spreads higher than $5) and withdrawn

quotes (when price or depth fields are less than zero or equal to ‘.’, we set the quotes equal

to extreme values, e.g. $1 million).

We compute and assign the average best bid-ask quote midpoint in each minute as

the quote price of each minute. To avoid distortions in prices, we drop the first and last

minute of each trading day in our sample. As a result, every day our minute-by-minute

prices are observed from 9:31 A.M. to 3:59 P.M. leading to 389 daily price observations

per ETF. For missing observations, we replace the missing return for any ETF in each

minute by the average return in the cross-section in that minute. Our ETFs are traded

in the United States market and are traded in the same time zone. Therefore, no time

adjustment is needed for our VAR and LASSO lead-lag estimations.

Descriptive statistics for minute-by-minute returns (in basis points) for all country

ETFs are reported in Table 2.
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Table 2: Descriptive statistics of ETF minute-by-minute returns
Summary statistics for the minute-by-minute returns from mid-point prices for each country-specific ETF. The ETF list is reported in
Table 1. The minute-by-minute returns are in basis points. The sample is from January 3, 2012 to May 29, 2020.

Num. Country Mean Std Skewness Kurtosis Min Max

1 Australia 0.014 3.236 0.221 24.932 -71.497 87.575
2 Canada 0.006 3.424 0.587 48.500 -133.674 181.037
3 France 0.014 3.352 0.100 20.578 -82.465 80.865
4 Germany 0.013 3.354 0.058 20.945 -78.889 77.496
5 Italy 0.007 3.943 -0.012 19.636 -98.427 107.738
6 Japan 0.013 2.707 -0.012 23.959 -93.233 63.528
7 Netherlands 0.011 3.129 0.213 40.005 -128.144 119.807
8 Sweden 0.014 3.302 0.200 25.764 -90.871 92.334
9 Switzerland 0.013 2.634 0.125 32.108 -89.974 87.040
10 United Kingdom 0.011 2.997 0.097 18.838 -60.390 66.93
11 China 0.008 3.366 0.227 17.926 -64.297 90.382
12 USA 0.010 3.320 0.878 74.060 -81.782 226.983

6

Electronic copy available at: https://ssrn.com/abstract=3779127



3. Contagion models and network measures

We use three methods to quantify the contagion between international markets: (i)

vector autoregression (VAR) estimation; (ii) the machine-learning technique of least ab-

solute shrinkage and selection operator (LASSO) estimation; and (iii) variance decompo-

sition. Each method allows us to construct a mathematical snapshot of the connections

between the country-specific ETFs for each day in our dataset. From these snapshots, we

are able to compute three network measures over time. Specifically we compute degree

centrality from VAR estimation, Katz centrality from LASSO estimation, and net total di-

rectional connectedness from variance decomposition estimation. This section describes

in detail all three methods and construction of three network measures.

3.1. Vector Autoregression (VAR) Estimation

Using the standard VAR method, we consider the following basic linear data-generating

process for the market returns for each country ETF:

ri,t = ai +
N∑
j=1

bi,jrj,t−1 + εi,t (1)

where ri,t is the return for country i at time t, and εi,t is the noise term with E[εi,t] = 0

and V ar[εi,t] = σ2
ε . We use the Akaike information criterion (AIC) with one-day minute-

by-minute returns to check for the minimum number of lags in the VAR model, finding

that one lag gives the lowest AIC value.

We estimate the above VAR(1) model for each country ETF in a rolling daily window

to document any lead-lags in our data. This procedure generates a 12×12 set of coefficient

estimates of bi,j . Next, we build the adjacency matrix, B, using these estimated bi,j values.

In this adjacency matrix, the element Bi,j measures the impact of asset j’s lagged return

on asset i’s.
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B =



b1,1 b1,2 · · · b1,N

b2,1 b2,2 · · · b2,n
...

... . . . ...

bN,1 bN,2 · · · BN,N


(2)

The matrix B can be interpreted as a directed weighted network between countries,

and the magnitude of each element as the strength of the connection. To measure the

overall impact of lagged values of country j on other countries, we define the degree

centrality of country i as:

Degree− centralityj =
N∑
i=1

bi,j (3)

The higher the degree centrality of a country ETF, the greater its leading position.

Although this definition of degree centrality may lead to negative values, our results are

qualitatively the same when using squared coefficients.

We also estimate the Katz centrality:

Katz − centralityj = [(I −B′)−1.1]j,1 (4)

to capture higher-order relations between countries in the lead-lag network, similar to

measures of the level of influence of a publication in a citation network.

3.2. LASSO Estimation

Motivated by the empirical fact that only a sparse set of predictors is important at

any one time, we use the machine-learning technique of LASSO — a penalized regression

algorithm — to estimate the lead-lag network (Chinco, Clark-Joseph, and Ye, 2019). For

example, it is very rare that all twelve countries in our data set have commensurate effects

on stock returns. Using the data-generating process in Equation (1) and a rolling daily
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window to document lead-lags among country ETFs, we apply LASSO to our dataset.

LASSO works by formulating the regression as a convex optimization problem with a

penalty parameter:

arg min
ai,bi,j
{ 1

T

T∑
t=2

(ri,t − ai −
N∑
j=1

bi,jrj,t−1)
2 + λi(

N∑
j=1

|bi,j|)} (5)

where λi is the penalty parameter, setting all ordinary least squares coefficients smaller

than itself to be zero. We estimate λi using 10-fold cross-validation (Hastie, Tibshirani,

and Friedman, 2001). Because LASSO is convexified and drops weak coefficients, we can

estimate strong connections in a network using far fewer observations than the standard

VAR method described earlier. We additionally no longer have the computational road-

block of applying an informational criterion to our data.

3.3. Variance Decomposition Estimation

We use variance decomposition approach to calculate the net total directional connect-

edness between country ETFs. In variance decomposition, rather than determining the

pairwise strength of connection between the performances of country ETFs, the forecast

error variance of a given country variable is decomposed into parts that are attributable to

other variables (Diebold and Yılmaz (2014)). This approach measures the variation due to

shocks from other parts of the overall system, and therefore is also useful in determining

the directionality of a network.

Using Equation 1, we estimate rt by reinterpreting the error term vector as a shock

vector. In operator notation, this becomes:

rt = Ω(L)εt (6)

where Ω(L) = (I − BL)−1, and I is the identity matrix. We can then calculate the

forecast error variance decomposition of an innovation shock of one standard deviation
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as follows:

γHkj =

∑H−1
t=0 (e

′

kCtej)
2∑H−1

t=0 (e
′
kΩtΣΩ

′
tek)

(7)

where γHkj is the variance decomposition component of variable k due to shocks in

variable j forecast H time steps ahead, and ej is a selection vector in which element j is

equal to unity and all other elements are zeros. When the shocks are orthogonal, Σ is

automatically equal to Ωt. However, this is typically not the case, and we will need to

identify uncorrelated structural shocks. We approach this problem through the general-

ized variance decomposition (GVD) framework (Koop, Pesaran, and Potter, 1996; Pesaran

and Shin, 1998), which is invariant to any ordering effects of the variables in the model.

The GVD framework sets Ct = σ−1j ΩtΣ, where σj is the standard deviation of innovation

j.

After estimating γHkj , we build the variance decomposition network for an H-step fore-

cast as follows (Diebold and Yılmaz, 2014):

DH =



γH11 γH12 · · · γH1N

γH21 γH22 · · · γH2N
...

... . . . ...

γHN1 γHN2 · · · γHNN


(8)

We then can define a measure of total directional connectedness to others as the sum of

row elements for each column in DH , and the total directional connectedness from others

as the sum of column elements for each row in DH (Diebold and Yılmaz, 2014). The net

total directional connectedness is then the difference between the two values, formally

defined as:

Net−Directional − ConnectednessiH =
N∑

k=1,k¬i

γHki −
N∑

j=1,i¬j

γHij (9)
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4. Network results

We compute three network measures: degree centrality from VAR estimation, Katz

centrality from LASSO estimation, and net total directional connectedness from variance

decomposition estimation. The lead-lag VAR and LASSO networks are estimated using

minute-by-minute returns in each day. The time series of degree centrality for all 12 coun-

tries in our sample is depicted in Figure 1:A, while the time series of the Katz centrality

is depicted in Figure 1:B, and the time series of the net total directional connectedness

is shown in Figure 1:C. Centrality and net total connectedness values are averaged over

15-day rolling windows. Section 6.4 provides robustness checks using other windows for

moving averages and our main results are consistent.2

All three methods depict a pattern of declining centrality for the U.S. and an increase

in the centrality of China at the start of the trade war between the two countries, begin-

ning with the U.S. implementation of global safeguard tariffs on February 7, 2018, and a

memorandum to impose tariffs on Chinese products on March 22, 2018 (the initial U.S.

imposition of Chinese-specific tariffs took place on July 6, 2018). We also capture a sim-

ilar pattern leading up to the World Health Organization’s announcement of the global

Covid-19 pandemic was on March 11, 2020. Our high-frequency financial data shows that

China became central well before the announcement of tariffs or the pandemic.

To emphasize this pattern, Figure 2 depicts the maximum values of our three network

measures over time. When applied to our high-frequency data, all three methods again

show the same pattern of Chinese centrality before major events. We observe that at the

beginning of our sample, the U.S. was the center of the network in terms of information

spillovers. Only in the last part of our sample did China become the central country

(Figure 2:D). The three color-coded directed networks depict the one-day snapshot of the

lead-lag network from the sparse LASSO estimation. The nodes in the networks represent

2In Appendix, we calculate degree centrality from LASSO estimation of the lead-lag relationships be-
tween country-specific ETFs and Katz centrality from VAR estimation of the lead-lag relationships between
country-specific ETFs. The results are consistent with our main results.
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each country ETF and the edges depict the lead-lag relationship between the countries.

The larger are the nodes, the higher is their degree centrality.

We then further zoom in on the time slightly before and after the WHO Announcement

of the Covid-19 pandemic: October 2019 through the end of our sample, May 2020. We

calculate and depict the performance of country index returns during this period for non-

European countries (Figure 3:A) and European countries (Figure 3:B). The markets have

not reacted to initial lockdown in Hubei, China (January 23, 2020) or first Covid-19 cases

in Europe (January 17, 2020), however, right after first lockdown measures in Italy (Febru-

ary 21, 2020) all international stock markets in our sample started to drop. The drop was

especially pronounced around the first lockdown measures in the U.S (March 15, 2020)

(Figure 3:A and 3:B). During this period we find that all international stock markets in our

sample dropped at the same time with no identifiable leader or follower. Figure 3:C de-

picts Katz centrality measure from LASSO estimation procedure using minute-by-minute

country ETF returns data from October 2019 to May 2020 for all countries in our sam-

ple. During this time period we observe an increase in centrality of China, peaking at the

time of the WHO Announcement of Covid-19 pandemic (March 11, 2020). The network

centrality highlights the relevance of China in providing information to the rest of the

financial system (Figure 3:C). China is becoming the originating point for the spread of

information to the rest of the world. It is important to emphasize that we show that return

analysis is not adequate to capture this effect, and network analysis is essential.
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Figure. 1. Time series of network measures through time
This figure presents the (A) degree centrality from VAR estimation; (B) Katz centrality from LASSO estima-
tion; and (C) net total directional connectedness from variance decomposition estimation. The LASSO and
VAR networks are estimated using minute-by-minute returns each day and the corresponding centrality
and net directional connectedness values are averaged over 15-day intervals. The initial U.S. imposition
of Chinese-specific tariffs took place on July 6, 2018 and the WHO’s initial announcement of the Covid-19
pandemic occurred on March 11, 2020.
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Figure. 2. Maximum country centralities and net total directional connectedness through
time
Time series of maximum values of network measures through time: (A) Degree centrality using VAR es-
timation; (B) Katz centrality using LASSO estimation; and (C) Net total directional connectedness using
variance decomposition. For each point in time, only the maximum value and corresponding country
colour are depicted. The LASSO and VAR networks are estimated using minute-by-minute returns each
day and the corresponding centrality and net directional connectedness values are averaged over 15-day
intervals. The initial U.S. imposition of Chinese-specific tariffs took place on July 6, 2018 and the WHO’s
initial announcement of Covid-19 as a pandemic happened on March 11, 2020. (D) The three color-coded
directed networks depict the one-day snapshot of the lead-lag network from the sparse LASSO estima-
tion. The nodes in the networks represent each country ETF and the edges depict the lead-lag relationship
between the countries. The larger are the nodes, the higher is their degree centrality.
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Figure. 3. Performance of country indexes and Katz centrality measure
(A) Performance of non-European indexes from October 2019 to May 2020 using daily country index re-
turns, (B) Performance of European indexes from October 2019 to May 2020 using daily country index re-
turns, and (C) Katz centrality measure from LASSO estimation procedure using minute-by-minute country
ETF data from October 2019 to May 2020.
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5. Covid-19 Analysis

The transmission dynamics of Covid-19 and their implications for hospital capacity,

economic shutdowns, and global food security have been studied in several papers. This

literature has grown impressively during the last six months (see Brodeur, Gray, Islam,

and Bhuiyan (2020) for a broad overview). Here we posit a different question and ask

whether the spread of Covid-19 is driving network measures. Specifically, we analyze

whether there is any correlation between our calculated measures of centrality and con-

nectedness and the past daily increase in the number of Covid-19 cases in each individual

country. Each country enters the sample at the time of the first day of reported cases, e.g.,

for China, the data starts on January 13, and for Canada the data starts on January 27,

2020.

We run the following pooled regression to capture the predictive relationship between

degree centrality; Katz centrality; and net total directional connectedness (Yi,t+1) to daily

increase in Covid-19 cases (New Casesi,t).

Yi,t+1 = β0 + βNew CasesNew Casesi,t + βY Yi,t + εi,t (10)

Table 3 provides summary statistics for variables used in the regression analysis, specif-

ically different types of centrality and connectedness measures: degree centrality, katz centrality,

degree centrality lasso, katz centrality lasso, and net total directional connectedness. Sum-

mary statistics for New Cases, defined as daily change in Covid-19 cases are tabulated in

Table 3. Covid-19 data comes from the World Health Organization. On average, there are

1,879 new cases each day with the maximum reaching 33,510 new daily cases.

Table 4 reports the results of the predictive relationship between degree centrality;

Katz centrality; and net total directional connectedness (Yi,t+1) and daily increase in Covid-

19 cases (New Casesi,t). Centrality measures are estimated using VAR, LASSO and vari-

ance decomposition estimation procedures. Table 4 shows that for all three network
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Table 3: Descriptive statistics
Summary statistics for variables used in the regression analysis Equation 10. The centrality values are computed using the VAR and
LASSO estimation procedures. The net total directional connectedness is computed using variance decomposition method. The
Covid-19 data comes from the World Health Organization. New Cases is daily increase in Covid-19 cases.

Mean Std Skewness Kurtosis Min Max

New Cases 1,879 5,236 4 21 -525 33,510
Degree Centrality 0.248 1.825 -0.039 4.840 -7.627 7.915

Katz Centrality 1.284 2.615 -0.163 6.589 -16.343 11.591
Degree Centrality lasso 0.218 0.625 0.683 11.609 -3.531 4.156

Katz Centrality lasso 1.277 0.795 1.328 11.482 -3.210 7.047
Net Total Directional Connectedness 0.003 0.269 -0.237 4.320 -0.972 1.032

measures using three different estimation procedures, there is a significant relationship

between increase in new Covid-19 cases and our measures of centrality and net total di-

rectional connectedness. We therefore conclude that financial markets incorporate infor-

mation from the epidemiological data.

Table 4: Centrality, connectedness, and the spread of Covid-19: a pooled regression
Results of the predictive relationship between centrality and connectedness and the increase in Covid-19 cases. The values for
centrality and net total directional connectedness are computed using the VAR, LASSO and variance decomposition estimation
procedures. Covid-19 data comes from the World Health Organization. New − Casesi,t is the daily increase in Covid-19 cases
reported for country i on day t. Regression estimates are represented in basis points. The numbers in parentheses are t-statistics
based on White (1980) standard errors. * signifies 10%, ** 5% and *** 1%.

VAR LASSO Variance Decomposition

degree centralityi,t+1 Katz centralityi,t+1 degree centralityi,t+1 Katz centralityi,t+1 Net total directional
connectednessi,t+1

New casesi,t 0.324*** 0.535*** 0.095*** 0.129*** 0.062***
(2.98) (2.99) (2.82) (2.70) (4.52)

degree centralityi,t 0.067* 0.039
(1.85) (1.37)

Katz centralityi,t 0.014 0.037
(0.39) (1.20)

Net total directional
connectednessi,t

0.331***

(10.78)
intercept 1778.933*** 11739.567*** 1949.215*** 12071.128*** -96.84

(2.82) (11.45) (8.46) (23.92) (-1.13)
N 953 953 953 953 953
R2 0.014 0.012 0.008 0.009 0.135
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6. Additional Results and Robustness Analysis

In this section we conduct similar analysis as in the main text, but instead of using

high-frequency ETF returns, we use daily returns data for stock indices and ETFs. We also

conduct robustness analysis after accounting for timing synchronization and different

lengths of moving averages.

6.1. Daily Data Results – Indexes

This section presents the results of our contagion analysis applied to daily index re-

turns. Table 5 tabulates the names of the indexes and their corresponding tickers. Table 6

provides descriptive statistics for the indexes, and Figure 4 depicts the time series of the

maximum value for country centralities and the net total directional connectedness using

daily index data. As the figure shows, there is not a clear pattern in the network mea-

sures, and we cannot give a clear interpretation of the ranking of countries through time.

One might argue that the pattern in lead-lags emerges because we do not consider the

differences between opening and closing times of different countries’ stock markets. In

order to ensure this is not the case, and that it is the frequency of the data that influence

our results, in the Section 6.3 we examine the open-close of daily ETFs and a modified

version of the daily indexes using a lead-lag timing correction.
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Table 5: Index list
The list of 12 country indexes. This list comes from 11 industrial countries in Rapach et al. (2013) plus the Chinese market index (SSE).

Name Ticker Country

1 S&P/ASX 200 AXJO Australia
2 S&P/TSX Composite index GSPTSE Canada
3 CAC 40 FCHI France
4 DAX Index GDAXI Germany
5 FTSE MIB Index FTSEMIB.MI Italy
6 Nikkei 225 N225 Japan
7 AEX-INDEX AEX Netherlands
8 OMX Stockholm 30 Index OMX Sweden
9 SMI PR SSMI Switzerland

10 FTSE 100 FTSE United Kingdom
11 Shanghai Stock Exchange SSE China
12 S&P 500 GSPC USA

Table 6: Descriptive statistics
Summary statistics for daily returns of the 12 country indexes in Table 5. The returns are in percentages.

Num. Country Mean Std Skewness kurtosis Min Max

1 Australia 0.023 0.949 -0.826 12.658 -7.329 5.541
2 Canada 0.018 0.888 -2.268 30.234 -9.886 5.063
3 France 0.029 1.193 -0.546 7.935 -8.043 5.014
4 Germany 0.045 1.180 -0.37 6.481 -6.823 5.676
5 Italy 0.026 1.488 -0.606 8.752 -11.173 6.594
6 Japan 0.049 1.274 -0.118 7.392 -6.351 7.156
7 Netherlands 0.034 1.040 -0.447 6.284 -5.704 4.051
8 Sweden 0.037 1.082 -0.297 5.612 -5.210 4.531
9 Switzerland 0.028 0.928 -0.725 7.783 -5.964 3.423

10 United Kingdom 0.012 0.946 -0.429 6.715 -5.251 4.29
11 China 0.025 1.341 -0.702 9.126 -7.703 5.712
12 USA 0.051 1.006 -0.343 14.837 -7.597 7.036
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Figure. 4. Country centralities and net total directional connectedness through time (Daily
Indexes)
Time series of network measures through time: (A) Katz Centrality from LASSO estimation; (B) Degree
centrality from VAR estimation; and (C) Net total directional connectedness from variance decomposition
estimation. The values are averaged over rolling 15-day intervals. The initial U.S. imposition of Chinese-
specific tariffs took place on July 6, 2018 and the WHO’s initial announcement of Covid-19 pandemic was
on March 11, 2020. The VAR and LASSO networks are estimated in rolling 30-day intervals using daily
index returns.
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6.2. Daily Data Results – ETF

We repeat the contagion analysis in the main text using the daily ETF returns. We

compute the daily ETF returns using the mid-quote prices at the end of the day, at 15:59.

Table 7 reports the summary statistics for daily ETF returns. Figure 5 depicts time series

of maximum country centralities and net total directional connectedness through time

using daily ETF returns.

Figure 5 depicts the leading country degree centrality, Katz centrality and net total

directional connectedness from 2012 to the end of May 2020. Since all ETFs used in the

analysis are traded inside the United States, there is no need for timing synchronization.

There are no inherent patterns among countries using these network measures from the

daily data. On the other hand, using ETF minute-by-minute returns, as described in the

main results, the leading role of the United States is clear in the early years of our data.

Table 7: Descriptive statistics
Summary statistics for daily returns of the 12 country-specific ETFs. The returns are in percentages. The daily ETF returns are
computed using the mid-quote prices at the end of the day.

Num. Country Mean Std Skewness kurtosis Min Max

1 Australia -0.001 1.412 -0.891 17.081 -11.927 8.564
2 Canada 0.000 1.115 -1.534 19.604 -10.945 5.723
3 France 0.020 1.296 -1.044 14.864 -11.339 6.32
4 Germany 0.022 1.276 -0.833 11.077 -9.864 6.012
5 Italy 0.013 1.628 -0.862 12.514 -13.366 8.263
6 Japan 0.029 1.053 -0.181 6.811 -4.882 5.702
7 Netherlands 0.034 1.164 -1.051 12.539 -9.560 5.196
8 Sweden 0.016 1.370 -1.040 11.648 -11.143 6.013
9 Switzerland 0.030 0.957 -0.679 10.491 -6.973 4.833

10 United Kingdom 0.001 1.164 -1.247 16.126 -9.931 6.395
11 China 0.036 1.431 -0.177 4.954 -6.636 5.956
12 USA 0.044 0.978 -0.337 14.64 -7.467 6.969
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Figure. 5. Country centralities and net total directional connectedness through time (Daily
ETF)
Time series of network measures through time: (A) Katz centrality from LASSO estimation; (B) Degree
centrality from VAR estimation; and (C) Net total directional connectedness from variance decomposition
estimation. The initial U.S. imposition of Chinese-specific tariffs took place on July 6, 2018 and the WHO’s
initial announcement of Covid-19 pandemic was on March 11, 2020. The VAR and LASSO networks are
estimated using rolling 30-day intervals on daily ETF returns.
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6.3. Daily Index Results with Timing Correction

One could claim that the daily index results are not informative because the index re-

turns are not synchronized correctly with respect to the opening of different international

markets. Here, we propose a timing synchronization approach.

Table 8:A tabulates the opening and closing times of international stock exchanges.

The stock markets open and close at different hours, and due to this timing disagreement,

estimating a VAR model using daily returns to identify lead-lags between markets can be

misleading. In Table 8:B, we propose a timing adjustment approach in the VAR estimation

process. Depending on the country that is the dependent variable in the VAR estimation,

we use a lagged or simultaneous form of the open-close returns of independent country

indexes. For example, if the United States is the dependent variable, we use the same-

day open-close returns of European and Asian countries and the lagged value of North

American countries in the VAR estimation. This is because in one day (a day defined in

the UTC system), the markets in Asia and Europe open before the market in the North

America opens. We compute the daily open-close ETF returns using the mid-quote prices

in the beginning of the day, at 9:31 and the mid-quote price at the end of the day, at 15:59.

Table 9 reports the summary statistics of open-close index returns.

Figure 6 shows that no clear patterns emerge among country indexes using daily data

even after accounting for timing synchronization. This confirms the advantage of high-

frequency returns to extract lead-lags between countries’ stock markets and to capture

centrality in terms of information spillover. We note that another approach in dealing

with timing synchronization is to use monthly returns and follow the procedure in (Ra-

pach et al., 2013). However, in our setting, there are too few observations using monthly

returns to compute a time-series picture of dynamic centralities.
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Table 8: Time Synchronization of Indexes
Panel A shows the UTC timing of market opening and closing in different countries. Europe* stands for Sweden, Italy, Germany, the
Netherlands, and Switzerland. Panel B shows the lead-lag timing treatment of country indexes. Each day, t, is defined in UTC time
format. We have three sets of countries: North America: US, Canada; Asia: Japan, China, Australia; Europe: France, United Kingdom,
Sweden, Italy, Germany, the Netherlands, Switzerland.

Panel A. Market open and close time

UTC TIME USA Canada Europe* UK China Japan Australia

0 Tokyo Australian
1 Shanghai Stock Securities
2 Stock Exchange Exchange
3 Exchange
4 01:30
5 07:00 00:00 00:00
6 08:00 06:00
7
8
9 Euronext

10 Paris London
11 Stock
12 Exchange
13 New York Toronto 08:00 08:00
14 Stock Stock 16:30 16:30
15 Exchange Exchange
16
17 13:30 13:30
18 20:00 21:00
19
20
21
22
23

Panel B. Open to close return synchronization

Today Lag

NorthAmericat Asiat Europet NorthAmericat−1
Asiat NorthAmericat−1 Europet−1 Asiat−1
Europet Asiat NorthAmericat−1 Europet−1

Table 9: Descriptive statistics (open-close index returns)
Summary statistics for daily open-close returns of the 12 country indexes described in Table 1. The returns are in percentages.

Num. Country Mean Std Skewness kurtosis Min Max

1 Australia 0.022 0.935 -0.799 12.825 -7.329 5.541
2 Canada -0.002 0.662 -0.388 11.407 -4.651 4.377
3 France -0.005 0.911 -0.189 4.956 -3.687 3.994
4 Germany -0.006 0.923 -0.174 4.842 -3.757 3.948
5 Italy -0.041 1.294 -0.891 11.346 -11.092 5.57
6 Japan 0 0.925 -0.31 9.196 -5.96 5.143
7 Netherlands -0.002 0.812 -0.143 5.842 -3.66 4.308
8 Sweden 0.005 0.915 -0.384 5.194 -4.737 3.354
9 Switzerland 0.01 0.766 -0.903 9.83 -5.548 3.472

10 United Kingdom 0.013 0.943 -0.429 6.765 -5.251 4.29
11 China 0.123 1.179 -0.306 7.857 -6.523 5.147
12 USA 0.028 0.815 -0.426 8.63 -4.883 4.389
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 Figure. 6. Country centralities and net total directional connectedness through time

(Daily Indexes with Timing Adjustment)
Time series of network measures through time: (A) Katz centrality from LASSO estimation; (B) Degree
centrality from VAR estimation; and (C) Net total directional connectedness from variance decomposition
estimation. The initial U.S. imposition of Chinese-specific tariffs took place on July 6, 2018 and the
WHO’s initial announcement of Covid-19 pandemic was on March 11, 2020. The VAR and LASSO
networks are estimated in rolling 30-day intervals using daily open-close index returns adjusted for timing
synchronization in Table 8.
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6.4. Different Length of Moving Averages

In the main analysis we depict network analysis results averaged over rolling 15-day

intervals. In this section, we conduct robustness analysis on the length of our rolling

average, and allow for rolling 30-day intervals (Figure 7) and rolling 60-day intervals

(Figure 8). We find that our main results are unchanged. Using high-frequency data on

ETFs, we show that China became central well before the announcement of tariffs or the

pandemic while the centrality of the U.S. has decreased during these times.

Figure. 7. Maximum country centralities and net total directional connectedness through
time (30-day average)
Time series of maximum values of network measures through time: (A) Degree centrality from VAR estima-
tion; (B) Katz centrality from LASSO estimation; and (C) Net total directional connectedness from variance
decomposition estimation. For each point in time, only the maximum value and corresponding country
colour are depicted. The values are averaged over rolling 30-day intervals. The initial U.S. imposition of
Chinese-specific tariffs took place on July 6, 2018 and the WHO’s initial announcement of Covid-19 pan-
demic was on March 11, 2020.
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Figure. 8. Maximum country centralities and net total directional connectedness through
time (60-day average)
Time series of maximum values of network measures through time: (A) Degree centrality from VAR estima-
tion; (B) Katz centrality from LASSO estimation; and (C) Net total directional connectedness from variance
decomposition estimation. For each point in time, only the maximum value and corresponding country
colour are depicted. The values are averaged over rolling 60-day intervals. The initial U.S. imposition of
Chinese-specific tariffs took place on July 6, 2018 and the WHO’s initial announcement of Covid-19 pan-
demic was on March 11, 2020.

7. Conclusion

Network theory and high-frequency financial data show that the world has started to

move from a unipolar system to a bipolar one. Is this phenomenon captured by country-

specific index returns or low-frequency data? The answer is no, based on the analysis

of the daily returns data. We show that the high-frequency financial data is forward-

looking in capturing the rise of centrality of China. Simultaneously, the data show that
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some European countries also became more financially central during the pandemic, but

none quite as central as either the U.S. or China. We posit that Europe is fragmented

enough that it does not offer a counterweight to the newly formed bipolar relationship

between the U.S. and China. It is clear that both political and epidemiological forces can

significantly affect the structure of global networks. The high centrality of the U.S. and

its political hegemony in the unipolar system once gave it unchallenged influence over

global power, economics, culture, and moral leadership. Our data shows that the U.S. has

recently lost its edge, the world map becoming more bipolar as the U.S. has lost its central

authority and power.

It must be underscored that the centrality of China is a very recent phenomenon, and

may be transient. It is ironic, however, that one of the first indications of a newly bipolar

financial system was caused by the strained relationship between the U.S. and China, at

a time when scientific collaboration between the nations is especially needed to fight the

pandemic and develop a vaccine against the coronavirus (Silver, 2020). It remains to be

seen if the ”Thucydides trap” of conflict during hegemonic decline can be prevented. As

we move from a unipolar world to a bipolar one, we must prevent further escalation and

instead pursue scientific collaboration and cultural exchange.

28

Electronic copy available at: https://ssrn.com/abstract=3779127



References

Acemoglu, D., Carvalho, V. M., Ozdaglar, A., Tahbaz-Salehi, A., 2012. The network origins

of aggregate fluctuations. Econometrica 80, 1977–2016.

Acharya, V., Jiang, Z., Richmond, R., von Thadden, E.-L., 2020. Divided we fall: Interna-

tional health and trade coordination during a pandemic. NBER WP 28176 .
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Appendices

A. Network Measures Through Time

This appendix reports the dynamics of the degree centrality and Katz centrality for

the estimated network measures from our minute-by-minute ETF returns. In Figure 9, the

Katz centrality from VAR estimation is presented and in Figure 10, the degree centrality is

presented from LASSO estimation of the lead-lag relationships between country-specific

ETFs. The results are consistent with main results in the paper.

Figure. 9. Katz centrality through time (VAR estimation)
Time series of degree centralities (VAR estimation) for each country-specific ETF through time. We estimate
the lead-lag relationships between country-specific ETFs via VAR using minute-by-minute returns in each
day. The Katz centralities are computed each day and averaged over rolling 15-day intervals. The initial
U.S. imposition of Chinese-specific tariffs took place on July 6, 2018 and the WHO’s initial announcement
of Covid-19 as a pandemic happened on March 11, 2020.
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Figure. 10. Degree centrality through time (LASSO estimation)
Time series of degree centralities of each country-specific ETF through time. We estimate the lead-lag re-
lationships between country-specific ETFs via LASSO using minute-by-minute returns in each day. The
degree centralities are computed each day and averaged over rolling 15-day intervals. The initial U.S.
imposition of Chinese-specific tariffs took place on July 6, 2018 and the WHO’s initial announcement of
Covid-19 as a pandemic happened on March 11, 2020.
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